You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
8142 lines
380 KiB
C
8142 lines
380 KiB
C
/* ------------------------------------------------------------------ */
|
|
/* Decimal Number arithmetic module */
|
|
/* ------------------------------------------------------------------ */
|
|
/* Copyright (c) IBM Corporation, 2000, 2009. All rights reserved. */
|
|
/* */
|
|
/* This software is made available under the terms of the */
|
|
/* ICU License -- ICU 1.8.1 and later. */
|
|
/* */
|
|
/* The description and User's Guide ("The decNumber C Library") for */
|
|
/* this software is called decNumber.pdf. This document is */
|
|
/* available, together with arithmetic and format specifications, */
|
|
/* testcases, and Web links, on the General Decimal Arithmetic page. */
|
|
/* */
|
|
/* Please send comments, suggestions, and corrections to the author: */
|
|
/* mfc@uk.ibm.com */
|
|
/* Mike Cowlishaw, IBM Fellow */
|
|
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This module comprises the routines for arbitrary-precision General */
|
|
/* Decimal Arithmetic as defined in the specification which may be */
|
|
/* found on the General Decimal Arithmetic pages. It implements both */
|
|
/* the full ('extended') arithmetic and the simpler ('subset') */
|
|
/* arithmetic. */
|
|
/* */
|
|
/* Usage notes: */
|
|
/* */
|
|
/* 1. This code is ANSI C89 except: */
|
|
/* */
|
|
/* a) C99 line comments (double forward slash) are used. (Most C */
|
|
/* compilers accept these. If yours does not, a simple script */
|
|
/* can be used to convert them to ANSI C comments.) */
|
|
/* */
|
|
/* b) Types from C99 stdint.h are used. If you do not have this */
|
|
/* header file, see the User's Guide section of the decNumber */
|
|
/* documentation; this lists the necessary definitions. */
|
|
/* */
|
|
/* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */
|
|
/* uint64_t types may be used. To avoid these, set DECUSE64=0 */
|
|
/* and DECDPUN<=4 (see documentation). */
|
|
/* */
|
|
/* The code also conforms to C99 restrictions; in particular, */
|
|
/* strict aliasing rules are observed. */
|
|
/* */
|
|
/* 2. The decNumber format which this library uses is optimized for */
|
|
/* efficient processing of relatively short numbers; in particular */
|
|
/* it allows the use of fixed sized structures and minimizes copy */
|
|
/* and move operations. It does, however, support arbitrary */
|
|
/* precision (up to 999,999,999 digits) and arbitrary exponent */
|
|
/* range (Emax in the range 0 through 999,999,999 and Emin in the */
|
|
/* range -999,999,999 through 0). Mathematical functions (for */
|
|
/* example decNumberExp) as identified below are restricted more */
|
|
/* tightly: digits, emax, and -emin in the context must be <= */
|
|
/* DEC_MAX_MATH (999999), and their operand(s) must be within */
|
|
/* these bounds. */
|
|
/* */
|
|
/* 3. Logical functions are further restricted; their operands must */
|
|
/* be finite, positive, have an exponent of zero, and all digits */
|
|
/* must be either 0 or 1. The result will only contain digits */
|
|
/* which are 0 or 1 (and will have exponent=0 and a sign of 0). */
|
|
/* */
|
|
/* 4. Operands to operator functions are never modified unless they */
|
|
/* are also specified to be the result number (which is always */
|
|
/* permitted). Other than that case, operands must not overlap. */
|
|
/* */
|
|
/* 5. Error handling: the type of the error is ORed into the status */
|
|
/* flags in the current context (decContext structure). The */
|
|
/* SIGFPE signal is then raised if the corresponding trap-enabler */
|
|
/* flag in the decContext is set (is 1). */
|
|
/* */
|
|
/* It is the responsibility of the caller to clear the status */
|
|
/* flags as required. */
|
|
/* */
|
|
/* The result of any routine which returns a number will always */
|
|
/* be a valid number (which may be a special value, such as an */
|
|
/* Infinity or NaN). */
|
|
/* */
|
|
/* 6. The decNumber format is not an exchangeable concrete */
|
|
/* representation as it comprises fields which may be machine- */
|
|
/* dependent (packed or unpacked, or special length, for example). */
|
|
/* Canonical conversions to and from strings are provided; other */
|
|
/* conversions are available in separate modules. */
|
|
/* */
|
|
/* 7. Normally, input operands are assumed to be valid. Set DECCHECK */
|
|
/* to 1 for extended operand checking (including NULL operands). */
|
|
/* Results are undefined if a badly-formed structure (or a NULL */
|
|
/* pointer to a structure) is provided, though with DECCHECK */
|
|
/* enabled the operator routines are protected against exceptions. */
|
|
/* (Except if the result pointer is NULL, which is unrecoverable.) */
|
|
/* */
|
|
/* However, the routines will never cause exceptions if they are */
|
|
/* given well-formed operands, even if the value of the operands */
|
|
/* is inappropriate for the operation and DECCHECK is not set. */
|
|
/* (Except for SIGFPE, as and where documented.) */
|
|
/* */
|
|
/* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* Implementation notes for maintenance of this module: */
|
|
/* */
|
|
/* 1. Storage leak protection: Routines which use malloc are not */
|
|
/* permitted to use return for fastpath or error exits (i.e., */
|
|
/* they follow strict structured programming conventions). */
|
|
/* Instead they have a do{}while(0); construct surrounding the */
|
|
/* code which is protected -- break may be used to exit this. */
|
|
/* Other routines can safely use the return statement inline. */
|
|
/* */
|
|
/* Storage leak accounting can be enabled using DECALLOC. */
|
|
/* */
|
|
/* 2. All loops use the for(;;) construct. Any do construct does */
|
|
/* not loop; it is for allocation protection as just described. */
|
|
/* */
|
|
/* 3. Setting status in the context must always be the very last */
|
|
/* action in a routine, as non-0 status may raise a trap and hence */
|
|
/* the call to set status may not return (if the handler uses long */
|
|
/* jump). Therefore all cleanup must be done first. In general, */
|
|
/* to achieve this status is accumulated and is only applied just */
|
|
/* before return by calling decContextSetStatus (via decStatus). */
|
|
/* */
|
|
/* Routines which allocate storage cannot, in general, use the */
|
|
/* 'top level' routines which could cause a non-returning */
|
|
/* transfer of control. The decXxxxOp routines are safe (do not */
|
|
/* call decStatus even if traps are set in the context) and should */
|
|
/* be used instead (they are also a little faster). */
|
|
/* */
|
|
/* 4. Exponent checking is minimized by allowing the exponent to */
|
|
/* grow outside its limits during calculations, provided that */
|
|
/* the decFinalize function is called later. Multiplication and */
|
|
/* division, and intermediate calculations in exponentiation, */
|
|
/* require more careful checks because of the risk of 31-bit */
|
|
/* overflow (the most negative valid exponent is -1999999997, for */
|
|
/* a 999999999-digit number with adjusted exponent of -999999999). */
|
|
/* */
|
|
/* 5. Rounding is deferred until finalization of results, with any */
|
|
/* 'off to the right' data being represented as a single digit */
|
|
/* residue (in the range -1 through 9). This avoids any double- */
|
|
/* rounding when more than one shortening takes place (for */
|
|
/* example, when a result is subnormal). */
|
|
/* */
|
|
/* 6. The digits count is allowed to rise to a multiple of DECDPUN */
|
|
/* during many operations, so whole Units are handled and exact */
|
|
/* accounting of digits is not needed. The correct digits value */
|
|
/* is found by decGetDigits, which accounts for leading zeros. */
|
|
/* This must be called before any rounding if the number of digits */
|
|
/* is not known exactly. */
|
|
/* */
|
|
/* 7. The multiply-by-reciprocal 'trick' is used for partitioning */
|
|
/* numbers up to four digits, using appropriate constants. This */
|
|
/* is not useful for longer numbers because overflow of 32 bits */
|
|
/* would lead to 4 multiplies, which is almost as expensive as */
|
|
/* a divide (unless a floating-point or 64-bit multiply is */
|
|
/* assumed to be available). */
|
|
/* */
|
|
/* 8. Unusual abbreviations that may be used in the commentary: */
|
|
/* lhs -- left hand side (operand, of an operation) */
|
|
/* lsd -- least significant digit (of coefficient) */
|
|
/* lsu -- least significant Unit (of coefficient) */
|
|
/* msd -- most significant digit (of coefficient) */
|
|
/* msi -- most significant item (in an array) */
|
|
/* msu -- most significant Unit (of coefficient) */
|
|
/* rhs -- right hand side (operand, of an operation) */
|
|
/* +ve -- positive */
|
|
/* -ve -- negative */
|
|
/* ** -- raise to the power */
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
#include <stdlib.h> // for malloc, free, etc.
|
|
#include <stdio.h> // for printf [if needed]
|
|
#include <string.h> // for strcpy
|
|
#include <ctype.h> // for lower
|
|
#include "decNumber.h" // base number library
|
|
#include "decNumberLocal.h" // decNumber local types, etc.
|
|
|
|
/* Constants */
|
|
// Public lookup table used by the D2U macro
|
|
const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
|
|
|
|
#define DECVERB 1 // set to 1 for verbose DECCHECK
|
|
#define powers DECPOWERS // old internal name
|
|
|
|
// Local constants
|
|
#define DIVIDE 0x80 // Divide operators
|
|
#define REMAINDER 0x40 // ..
|
|
#define DIVIDEINT 0x20 // ..
|
|
#define REMNEAR 0x10 // ..
|
|
#define COMPARE 0x01 // Compare operators
|
|
#define COMPMAX 0x02 // ..
|
|
#define COMPMIN 0x03 // ..
|
|
#define COMPTOTAL 0x04 // ..
|
|
#define COMPNAN 0x05 // .. [NaN processing]
|
|
#define COMPSIG 0x06 // .. [signaling COMPARE]
|
|
#define COMPMAXMAG 0x07 // ..
|
|
#define COMPMINMAG 0x08 // ..
|
|
|
|
#define DEC_sNaN 0x40000000 // local status: sNaN signal
|
|
#define BADINT (Int)0x80000000 // most-negative Int; error indicator
|
|
// Next two indicate an integer >= 10**6, and its parity (bottom bit)
|
|
#define BIGEVEN (Int)0x80000002
|
|
#define BIGODD (Int)0x80000003
|
|
|
|
static Unit uarrone[1]={1}; // Unit array of 1, used for incrementing
|
|
|
|
/* Granularity-dependent code */
|
|
#if DECDPUN<=4
|
|
#define eInt Int // extended integer
|
|
#define ueInt uInt // unsigned extended integer
|
|
// Constant multipliers for divide-by-power-of five using reciprocal
|
|
// multiply, after removing powers of 2 by shifting, and final shift
|
|
// of 17 [we only need up to **4]
|
|
static const uInt multies[]={131073, 26215, 5243, 1049, 210};
|
|
// QUOT10 -- macro to return the quotient of unit u divided by 10**n
|
|
#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
|
|
#else
|
|
// For DECDPUN>4 non-ANSI-89 64-bit types are needed.
|
|
#if !DECUSE64
|
|
#error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
|
|
#endif
|
|
#define eInt Long // extended integer
|
|
#define ueInt uLong // unsigned extended integer
|
|
#endif
|
|
|
|
/* Local routines */
|
|
static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
|
|
decContext *, uByte, uInt *);
|
|
static Flag decBiStr(const char *, const char *, const char *);
|
|
static uInt decCheckMath(const decNumber *, decContext *, uInt *);
|
|
static void decApplyRound(decNumber *, decContext *, Int, uInt *);
|
|
static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
|
|
static decNumber * decCompareOp(decNumber *, const decNumber *,
|
|
const decNumber *, decContext *,
|
|
Flag, uInt *);
|
|
static void decCopyFit(decNumber *, const decNumber *, decContext *,
|
|
Int *, uInt *);
|
|
static decNumber * decDecap(decNumber *, Int);
|
|
static decNumber * decDivideOp(decNumber *, const decNumber *,
|
|
const decNumber *, decContext *, Flag, uInt *);
|
|
static decNumber * decExpOp(decNumber *, const decNumber *,
|
|
decContext *, uInt *);
|
|
static void decFinalize(decNumber *, decContext *, Int *, uInt *);
|
|
static Int decGetDigits(Unit *, Int);
|
|
static Int decGetInt(const decNumber *);
|
|
static decNumber * decLnOp(decNumber *, const decNumber *,
|
|
decContext *, uInt *);
|
|
static decNumber * decMultiplyOp(decNumber *, const decNumber *,
|
|
const decNumber *, decContext *,
|
|
uInt *);
|
|
static decNumber * decNaNs(decNumber *, const decNumber *,
|
|
const decNumber *, decContext *, uInt *);
|
|
static decNumber * decQuantizeOp(decNumber *, const decNumber *,
|
|
const decNumber *, decContext *, Flag,
|
|
uInt *);
|
|
static void decReverse(Unit *, Unit *);
|
|
static void decSetCoeff(decNumber *, decContext *, const Unit *,
|
|
Int, Int *, uInt *);
|
|
static void decSetMaxValue(decNumber *, decContext *);
|
|
static void decSetOverflow(decNumber *, decContext *, uInt *);
|
|
static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
|
|
static Int decShiftToLeast(Unit *, Int, Int);
|
|
static Int decShiftToMost(Unit *, Int, Int);
|
|
static void decStatus(decNumber *, uInt, decContext *);
|
|
static void decToString(const decNumber *, char[], Flag);
|
|
static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *);
|
|
static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
|
|
Unit *, Int);
|
|
static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
|
|
|
|
#if !DECSUBSET
|
|
/* decFinish == decFinalize when no subset arithmetic needed */
|
|
#define decFinish(a,b,c,d) decFinalize(a,b,c,d)
|
|
#else
|
|
static void decFinish(decNumber *, decContext *, Int *, uInt *);
|
|
static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
|
|
#endif
|
|
|
|
/* Local macros */
|
|
// masked special-values bits
|
|
#define SPECIALARG (rhs->bits & DECSPECIAL)
|
|
#define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
|
|
|
|
/* Diagnostic macros, etc. */
|
|
#if DECALLOC
|
|
// Handle malloc/free accounting. If enabled, our accountable routines
|
|
// are used; otherwise the code just goes straight to the system malloc
|
|
// and free routines.
|
|
#define malloc(a) decMalloc(a)
|
|
#define free(a) decFree(a)
|
|
#define DECFENCE 0x5a // corruption detector
|
|
// 'Our' malloc and free:
|
|
static void *decMalloc(size_t);
|
|
static void decFree(void *);
|
|
uInt decAllocBytes=0; // count of bytes allocated
|
|
// Note that DECALLOC code only checks for storage buffer overflow.
|
|
// To check for memory leaks, the decAllocBytes variable must be
|
|
// checked to be 0 at appropriate times (e.g., after the test
|
|
// harness completes a set of tests). This checking may be unreliable
|
|
// if the testing is done in a multi-thread environment.
|
|
#endif
|
|
|
|
#if DECCHECK
|
|
// Optional checking routines. Enabling these means that decNumber
|
|
// and decContext operands to operator routines are checked for
|
|
// correctness. This roughly doubles the execution time of the
|
|
// fastest routines (and adds 600+ bytes), so should not normally be
|
|
// used in 'production'.
|
|
// decCheckInexact is used to check that inexact results have a full
|
|
// complement of digits (where appropriate -- this is not the case
|
|
// for Quantize, for example)
|
|
#define DECUNRESU ((decNumber *)(void *)0xffffffff)
|
|
#define DECUNUSED ((const decNumber *)(void *)0xffffffff)
|
|
#define DECUNCONT ((decContext *)(void *)(0xffffffff))
|
|
static Flag decCheckOperands(decNumber *, const decNumber *,
|
|
const decNumber *, decContext *);
|
|
static Flag decCheckNumber(const decNumber *);
|
|
static void decCheckInexact(const decNumber *, decContext *);
|
|
#endif
|
|
|
|
#if DECTRACE || DECCHECK
|
|
// Optional trace/debugging routines (may or may not be used)
|
|
void decNumberShow(const decNumber *); // displays the components of a number
|
|
static void decDumpAr(char, const Unit *, Int);
|
|
#endif
|
|
|
|
/* ================================================================== */
|
|
/* Conversions */
|
|
/* ================================================================== */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* from-int32 -- conversion from Int or uInt */
|
|
/* */
|
|
/* dn is the decNumber to receive the integer */
|
|
/* in or uin is the integer to be converted */
|
|
/* returns dn */
|
|
/* */
|
|
/* No error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberFromInt32(decNumber *dn, Int in) {
|
|
uInt unsig;
|
|
if (in>=0) unsig=in;
|
|
else { // negative (possibly BADINT)
|
|
if (in==BADINT) unsig=(uInt)1073741824*2; // special case
|
|
else unsig=-in; // invert
|
|
}
|
|
// in is now positive
|
|
decNumberFromUInt32(dn, unsig);
|
|
if (in<0) dn->bits=DECNEG; // sign needed
|
|
return dn;
|
|
} // decNumberFromInt32
|
|
|
|
decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) {
|
|
Unit *up; // work pointer
|
|
decNumberZero(dn); // clean
|
|
if (uin==0) return dn; // [or decGetDigits bad call]
|
|
for (up=dn->lsu; uin>0; up++) {
|
|
*up=(Unit)(uin%(DECDPUNMAX+1));
|
|
uin=uin/(DECDPUNMAX+1);
|
|
}
|
|
dn->digits=decGetDigits(dn->lsu, up-dn->lsu);
|
|
return dn;
|
|
} // decNumberFromUInt32
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* to-int32 -- conversion to Int or uInt */
|
|
/* */
|
|
/* dn is the decNumber to convert */
|
|
/* set is the context for reporting errors */
|
|
/* returns the converted decNumber, or 0 if Invalid is set */
|
|
/* */
|
|
/* Invalid is set if the decNumber does not have exponent==0 or if */
|
|
/* it is a NaN, Infinite, or out-of-range. */
|
|
/* ------------------------------------------------------------------ */
|
|
Int decNumberToInt32(const decNumber *dn, decContext *set) {
|
|
#if DECCHECK
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
|
#endif
|
|
|
|
// special or too many digits, or bad exponent
|
|
if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; // bad
|
|
else { // is a finite integer with 10 or fewer digits
|
|
Int d; // work
|
|
const Unit *up; // ..
|
|
uInt hi=0, lo; // ..
|
|
up=dn->lsu; // -> lsu
|
|
lo=*up; // get 1 to 9 digits
|
|
#if DECDPUN>1 // split to higher
|
|
hi=lo/10;
|
|
lo=lo%10;
|
|
#endif
|
|
up++;
|
|
// collect remaining Units, if any, into hi
|
|
for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
|
|
// now low has the lsd, hi the remainder
|
|
if (hi>214748364 || (hi==214748364 && lo>7)) { // out of range?
|
|
// most-negative is a reprieve
|
|
if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
|
|
// bad -- drop through
|
|
}
|
|
else { // in-range always
|
|
Int i=X10(hi)+lo;
|
|
if (dn->bits&DECNEG) return -i;
|
|
return i;
|
|
}
|
|
} // integer
|
|
decContextSetStatus(set, DEC_Invalid_operation); // [may not return]
|
|
return 0;
|
|
} // decNumberToInt32
|
|
|
|
uInt decNumberToUInt32(const decNumber *dn, decContext *set) {
|
|
#if DECCHECK
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
|
#endif
|
|
// special or too many digits, or bad exponent, or negative (<0)
|
|
if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
|
|
|| (dn->bits&DECNEG && !ISZERO(dn))); // bad
|
|
else { // is a finite integer with 10 or fewer digits
|
|
Int d; // work
|
|
const Unit *up; // ..
|
|
uInt hi=0, lo; // ..
|
|
up=dn->lsu; // -> lsu
|
|
lo=*up; // get 1 to 9 digits
|
|
#if DECDPUN>1 // split to higher
|
|
hi=lo/10;
|
|
lo=lo%10;
|
|
#endif
|
|
up++;
|
|
// collect remaining Units, if any, into hi
|
|
for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
|
|
|
|
// now low has the lsd, hi the remainder
|
|
if (hi>429496729 || (hi==429496729 && lo>5)) ; // no reprieve possible
|
|
else return X10(hi)+lo;
|
|
} // integer
|
|
decContextSetStatus(set, DEC_Invalid_operation); // [may not return]
|
|
return 0;
|
|
} // decNumberToUInt32
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* to-scientific-string -- conversion to numeric string */
|
|
/* to-engineering-string -- conversion to numeric string */
|
|
/* */
|
|
/* decNumberToString(dn, string); */
|
|
/* decNumberToEngString(dn, string); */
|
|
/* */
|
|
/* dn is the decNumber to convert */
|
|
/* string is the string where the result will be laid out */
|
|
/* */
|
|
/* string must be at least dn->digits+14 characters long */
|
|
/* */
|
|
/* No error is possible, and no status can be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
char * decNumberToString(const decNumber *dn, char *string){
|
|
decToString(dn, string, 0);
|
|
return string;
|
|
} // DecNumberToString
|
|
|
|
char * decNumberToEngString(const decNumber *dn, char *string){
|
|
decToString(dn, string, 1);
|
|
return string;
|
|
} // DecNumberToEngString
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* to-number -- conversion from numeric string */
|
|
/* */
|
|
/* decNumberFromString -- convert string to decNumber */
|
|
/* dn -- the number structure to fill */
|
|
/* chars[] -- the string to convert ('\0' terminated) */
|
|
/* set -- the context used for processing any error, */
|
|
/* determining the maximum precision available */
|
|
/* (set.digits), determining the maximum and minimum */
|
|
/* exponent (set.emax and set.emin), determining if */
|
|
/* extended values are allowed, and checking the */
|
|
/* rounding mode if overflow occurs or rounding is */
|
|
/* needed. */
|
|
/* */
|
|
/* The length of the coefficient and the size of the exponent are */
|
|
/* checked by this routine, so the correct error (Underflow or */
|
|
/* Overflow) can be reported or rounding applied, as necessary. */
|
|
/* */
|
|
/* If bad syntax is detected, the result will be a quiet NaN. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberFromString(decNumber *dn, const char chars[],
|
|
decContext *set) {
|
|
Int exponent=0; // working exponent [assume 0]
|
|
uByte bits=0; // working flags [assume +ve]
|
|
Unit *res; // where result will be built
|
|
Unit resbuff[SD2U(DECBUFFER+9)];// local buffer in case need temporary
|
|
// [+9 allows for ln() constants]
|
|
Unit *allocres=NULL; // -> allocated result, iff allocated
|
|
Int d=0; // count of digits found in decimal part
|
|
const char *dotchar=NULL; // where dot was found
|
|
const char *cfirst=chars; // -> first character of decimal part
|
|
const char *last=NULL; // -> last digit of decimal part
|
|
const char *c; // work
|
|
Unit *up; // ..
|
|
#if DECDPUN>1
|
|
Int cut, out; // ..
|
|
#endif
|
|
Int residue; // rounding residue
|
|
uInt status=0; // error code
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
|
|
return decNumberZero(dn);
|
|
#endif
|
|
|
|
do { // status & malloc protection
|
|
for (c=chars;; c++) { // -> input character
|
|
if (*c>='0' && *c<='9') { // test for Arabic digit
|
|
last=c;
|
|
d++; // count of real digits
|
|
continue; // still in decimal part
|
|
}
|
|
if (*c=='.' && dotchar==NULL) { // first '.'
|
|
dotchar=c; // record offset into decimal part
|
|
if (c==cfirst) cfirst++; // first digit must follow
|
|
continue;}
|
|
if (c==chars) { // first in string...
|
|
if (*c=='-') { // valid - sign
|
|
cfirst++;
|
|
bits=DECNEG;
|
|
continue;}
|
|
if (*c=='+') { // valid + sign
|
|
cfirst++;
|
|
continue;}
|
|
}
|
|
// *c is not a digit, or a valid +, -, or '.'
|
|
break;
|
|
} // c
|
|
|
|
if (last==NULL) { // no digits yet
|
|
status=DEC_Conversion_syntax;// assume the worst
|
|
if (*c=='\0') break; // and no more to come...
|
|
#if DECSUBSET
|
|
// if subset then infinities and NaNs are not allowed
|
|
if (!set->extended) break; // hopeless
|
|
#endif
|
|
// Infinities and NaNs are possible, here
|
|
if (dotchar!=NULL) break; // .. unless had a dot
|
|
decNumberZero(dn); // be optimistic
|
|
if (decBiStr(c, "infinity", "INFINITY")
|
|
|| decBiStr(c, "inf", "INF")) {
|
|
dn->bits=bits | DECINF;
|
|
status=0; // is OK
|
|
break; // all done
|
|
}
|
|
// a NaN expected
|
|
// 2003.09.10 NaNs are now permitted to have a sign
|
|
dn->bits=bits | DECNAN; // assume simple NaN
|
|
if (*c=='s' || *c=='S') { // looks like an sNaN
|
|
c++;
|
|
dn->bits=bits | DECSNAN;
|
|
}
|
|
if (*c!='n' && *c!='N') break; // check caseless "NaN"
|
|
c++;
|
|
if (*c!='a' && *c!='A') break; // ..
|
|
c++;
|
|
if (*c!='n' && *c!='N') break; // ..
|
|
c++;
|
|
// now either nothing, or nnnn payload, expected
|
|
// -> start of integer and skip leading 0s [including plain 0]
|
|
for (cfirst=c; *cfirst=='0';) cfirst++;
|
|
if (*cfirst=='\0') { // "NaN" or "sNaN", maybe with all 0s
|
|
status=0; // it's good
|
|
break; // ..
|
|
}
|
|
// something other than 0s; setup last and d as usual [no dots]
|
|
for (c=cfirst;; c++, d++) {
|
|
if (*c<'0' || *c>'9') break; // test for Arabic digit
|
|
last=c;
|
|
}
|
|
if (*c!='\0') break; // not all digits
|
|
if (d>set->digits-1) {
|
|
// [NB: payload in a decNumber can be full length unless
|
|
// clamped, in which case can only be digits-1]
|
|
if (set->clamp) break;
|
|
if (d>set->digits) break;
|
|
} // too many digits?
|
|
// good; drop through to convert the integer to coefficient
|
|
status=0; // syntax is OK
|
|
bits=dn->bits; // for copy-back
|
|
} // last==NULL
|
|
|
|
else if (*c!='\0') { // more to process...
|
|
// had some digits; exponent is only valid sequence now
|
|
Flag nege; // 1=negative exponent
|
|
const char *firstexp; // -> first significant exponent digit
|
|
status=DEC_Conversion_syntax;// assume the worst
|
|
if (*c!='e' && *c!='E') break;
|
|
/* Found 'e' or 'E' -- now process explicit exponent */
|
|
// 1998.07.11: sign no longer required
|
|
nege=0;
|
|
c++; // to (possible) sign
|
|
if (*c=='-') {nege=1; c++;}
|
|
else if (*c=='+') c++;
|
|
if (*c=='\0') break;
|
|
|
|
for (; *c=='0' && *(c+1)!='\0';) c++; // strip insignificant zeros
|
|
firstexp=c; // save exponent digit place
|
|
for (; ;c++) {
|
|
if (*c<'0' || *c>'9') break; // not a digit
|
|
exponent=X10(exponent)+(Int)*c-(Int)'0';
|
|
} // c
|
|
// if not now on a '\0', *c must not be a digit
|
|
if (*c!='\0') break;
|
|
|
|
// (this next test must be after the syntax checks)
|
|
// if it was too long the exponent may have wrapped, so check
|
|
// carefully and set it to a certain overflow if wrap possible
|
|
if (c>=firstexp+9+1) {
|
|
if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
|
|
// [up to 1999999999 is OK, for example 1E-1000000998]
|
|
}
|
|
if (nege) exponent=-exponent; // was negative
|
|
status=0; // is OK
|
|
} // stuff after digits
|
|
|
|
// Here when whole string has been inspected; syntax is good
|
|
// cfirst->first digit (never dot), last->last digit (ditto)
|
|
|
|
// strip leading zeros/dot [leave final 0 if all 0's]
|
|
if (*cfirst=='0') { // [cfirst has stepped over .]
|
|
for (c=cfirst; c<last; c++, cfirst++) {
|
|
if (*c=='.') continue; // ignore dots
|
|
if (*c!='0') break; // non-zero found
|
|
d--; // 0 stripped
|
|
} // c
|
|
#if DECSUBSET
|
|
// make a rapid exit for easy zeros if !extended
|
|
if (*cfirst=='0' && !set->extended) {
|
|
decNumberZero(dn); // clean result
|
|
break; // [could be return]
|
|
}
|
|
#endif
|
|
} // at least one leading 0
|
|
|
|
// Handle decimal point...
|
|
if (dotchar!=NULL && dotchar<last) // non-trailing '.' found?
|
|
exponent-=(last-dotchar); // adjust exponent
|
|
// [we can now ignore the .]
|
|
|
|
// OK, the digits string is good. Assemble in the decNumber, or in
|
|
// a temporary units array if rounding is needed
|
|
if (d<=set->digits) res=dn->lsu; // fits into supplied decNumber
|
|
else { // rounding needed
|
|
Int needbytes=D2U(d)*sizeof(Unit);// bytes needed
|
|
res=resbuff; // assume use local buffer
|
|
if (needbytes>(Int)sizeof(resbuff)) { // too big for local
|
|
allocres=(Unit *)malloc(needbytes);
|
|
if (allocres==NULL) {status|=DEC_Insufficient_storage; break;}
|
|
res=allocres;
|
|
}
|
|
}
|
|
// res now -> number lsu, buffer, or allocated storage for Unit array
|
|
|
|
// Place the coefficient into the selected Unit array
|
|
// [this is often 70% of the cost of this function when DECDPUN>1]
|
|
#if DECDPUN>1
|
|
out=0; // accumulator
|
|
up=res+D2U(d)-1; // -> msu
|
|
cut=d-(up-res)*DECDPUN; // digits in top unit
|
|
for (c=cfirst;; c++) { // along the digits
|
|
if (*c=='.') continue; // ignore '.' [don't decrement cut]
|
|
out=X10(out)+(Int)*c-(Int)'0';
|
|
if (c==last) break; // done [never get to trailing '.']
|
|
cut--;
|
|
if (cut>0) continue; // more for this unit
|
|
*up=(Unit)out; // write unit
|
|
up--; // prepare for unit below..
|
|
cut=DECDPUN; // ..
|
|
out=0; // ..
|
|
} // c
|
|
*up=(Unit)out; // write lsu
|
|
|
|
#else
|
|
// DECDPUN==1
|
|
up=res; // -> lsu
|
|
for (c=last; c>=cfirst; c--) { // over each character, from least
|
|
if (*c=='.') continue; // ignore . [don't step up]
|
|
*up=(Unit)((Int)*c-(Int)'0');
|
|
up++;
|
|
} // c
|
|
#endif
|
|
|
|
dn->bits=bits;
|
|
dn->exponent=exponent;
|
|
dn->digits=d;
|
|
|
|
// if not in number (too long) shorten into the number
|
|
if (d>set->digits) {
|
|
residue=0;
|
|
decSetCoeff(dn, set, res, d, &residue, &status);
|
|
// always check for overflow or subnormal and round as needed
|
|
decFinalize(dn, set, &residue, &status);
|
|
}
|
|
else { // no rounding, but may still have overflow or subnormal
|
|
// [these tests are just for performance; finalize repeats them]
|
|
if ((dn->exponent-1<set->emin-dn->digits)
|
|
|| (dn->exponent-1>set->emax-set->digits)) {
|
|
residue=0;
|
|
decFinalize(dn, set, &residue, &status);
|
|
}
|
|
}
|
|
// decNumberShow(dn);
|
|
} while(0); // [for break]
|
|
|
|
if (allocres!=NULL) free(allocres); // drop any storage used
|
|
if (status!=0) decStatus(dn, status, set);
|
|
return dn;
|
|
} /* decNumberFromString */
|
|
|
|
/* ================================================================== */
|
|
/* Operators */
|
|
/* ================================================================== */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberAbs -- absolute value operator */
|
|
/* */
|
|
/* This computes C = abs(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context */
|
|
/* */
|
|
/* See also decNumberCopyAbs for a quiet bitwise version of this. */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This has the same effect as decNumberPlus unless A is negative, */
|
|
/* in which case it has the same effect as decNumberMinus. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberAbs(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decNumber dzero; // for 0
|
|
uInt status=0; // accumulator
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
decNumberZero(&dzero); // set 0
|
|
dzero.exponent=rhs->exponent; // [no coefficient expansion]
|
|
decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberAbs
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberAdd -- add two Numbers */
|
|
/* */
|
|
/* This computes C = A + B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This just calls the routine shared with Subtract */
|
|
decNumber * decNumberAdd(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decAddOp(res, lhs, rhs, set, 0, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberAdd
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberAnd -- AND two Numbers, digitwise */
|
|
/* */
|
|
/* This computes C = A & B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X&X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context (used for result length and error report) */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberAnd(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
const Unit *ua, *ub; // -> operands
|
|
const Unit *msua, *msub; // -> operand msus
|
|
Unit *uc, *msuc; // -> result and its msu
|
|
Int msudigs; // digits in res msu
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|
|
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
|
|
// operands are valid
|
|
ua=lhs->lsu; // bottom-up
|
|
ub=rhs->lsu; // ..
|
|
uc=res->lsu; // ..
|
|
msua=ua+D2U(lhs->digits)-1; // -> msu of lhs
|
|
msub=ub+D2U(rhs->digits)-1; // -> msu of rhs
|
|
msuc=uc+D2U(set->digits)-1; // -> msu of result
|
|
msudigs=MSUDIGITS(set->digits); // [faster than remainder]
|
|
for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop
|
|
Unit a, b; // extract units
|
|
if (ua>msua) a=0;
|
|
else a=*ua;
|
|
if (ub>msub) b=0;
|
|
else b=*ub;
|
|
*uc=0; // can now write back
|
|
if (a|b) { // maybe 1 bits to examine
|
|
Int i, j;
|
|
*uc=0; // can now write back
|
|
// This loop could be unrolled and/or use BIN2BCD tables
|
|
for (i=0; i<DECDPUN; i++) {
|
|
if (a&b&1) *uc=*uc+(Unit)powers[i]; // effect AND
|
|
j=a%10;
|
|
a=a/10;
|
|
j|=b%10;
|
|
b=b/10;
|
|
if (j>1) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
if (uc==msuc && i==msudigs-1) break; // just did final digit
|
|
} // each digit
|
|
} // both OK
|
|
} // each unit
|
|
// [here uc-1 is the msu of the result]
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
|
res->exponent=0; // integer
|
|
res->bits=0; // sign=0
|
|
return res; // [no status to set]
|
|
} // decNumberAnd
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCompare -- compare two Numbers */
|
|
/* */
|
|
/* This computes C = A ? B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for one digit (or NaN). */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCompare(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decCompareOp(res, lhs, rhs, set, COMPARE, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberCompare
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCompareSignal -- compare, signalling on all NaNs */
|
|
/* */
|
|
/* This computes C = A ? B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for one digit (or NaN). */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberCompareSignal
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCompareTotal -- compare two Numbers, using total ordering */
|
|
/* */
|
|
/* This computes C = A ? B, under total ordering */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for one digit; the result will always be one of */
|
|
/* -1, 0, or 1. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberCompareTotal
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCompareTotalMag -- compare, total ordering of magnitudes */
|
|
/* */
|
|
/* This computes C = |A| ? |B|, under total ordering */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for one digit; the result will always be one of */
|
|
/* -1, 0, or 1. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
uInt needbytes; // for space calculations
|
|
decNumber bufa[D2N(DECBUFFER+1)];// +1 in case DECBUFFER=0
|
|
decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated
|
|
decNumber bufb[D2N(DECBUFFER+1)];
|
|
decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated
|
|
decNumber *a, *b; // temporary pointers
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
// if either is negative, take a copy and absolute
|
|
if (decNumberIsNegative(lhs)) { // lhs<0
|
|
a=bufa;
|
|
needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufa)) { // need malloc space
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
|
if (allocbufa==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
a=allocbufa; // use the allocated space
|
|
}
|
|
decNumberCopy(a, lhs); // copy content
|
|
a->bits&=~DECNEG; // .. and clear the sign
|
|
lhs=a; // use copy from here on
|
|
}
|
|
if (decNumberIsNegative(rhs)) { // rhs<0
|
|
b=bufb;
|
|
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufb)) { // need malloc space
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
|
if (allocbufb==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
b=allocbufb; // use the allocated space
|
|
}
|
|
decNumberCopy(b, rhs); // copy content
|
|
b->bits&=~DECNEG; // .. and clear the sign
|
|
rhs=b; // use copy from here on
|
|
}
|
|
decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
|
|
} while(0); // end protected
|
|
|
|
if (allocbufa!=NULL) free(allocbufa); // drop any storage used
|
|
if (allocbufb!=NULL) free(allocbufb); // ..
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberCompareTotalMag
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberDivide -- divide one number by another */
|
|
/* */
|
|
/* This computes C = A / B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberDivide(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberDivide
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberDivideInteger -- divide and return integer quotient */
|
|
/* */
|
|
/* This computes C = A # B, where # is the integer divide operator */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberDivideInteger
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberExp -- exponentiation */
|
|
/* */
|
|
/* This computes C = exp(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context; note that rounding mode has no effect */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* */
|
|
/* Finite results will always be full precision and Inexact, except */
|
|
/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
|
|
/* */
|
|
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
|
/* error in rare cases. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This is a wrapper for decExpOp which can handle the slightly wider */
|
|
/* (double) range needed by Ln (which has to be able to calculate */
|
|
/* exp(-a) where a can be the tiniest number (Ntiny). */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberExp(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
uInt status=0; // accumulator
|
|
#if DECSUBSET
|
|
decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated
|
|
#endif
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
// Check restrictions; these restrictions ensure that if h=8 (see
|
|
// decExpOp) then the result will either overflow or underflow to 0.
|
|
// Other math functions restrict the input range, too, for inverses.
|
|
// If not violated then carry out the operation.
|
|
if (!decCheckMath(rhs, set, &status)) do { // protect allocation
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operand and set lostDigits status, as needed
|
|
if (rhs->digits>set->digits) {
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
decExpOp(res, rhs, set, &status);
|
|
} while(0); // end protected
|
|
|
|
#if DECSUBSET
|
|
if (allocrhs !=NULL) free(allocrhs); // drop any storage used
|
|
#endif
|
|
// apply significant status
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberExp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberFMA -- fused multiply add */
|
|
/* */
|
|
/* This computes D = (A * B) + C with only one rounding */
|
|
/* */
|
|
/* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* fhs is C [far hand side] */
|
|
/* set is the context */
|
|
/* */
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberFMA(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, const decNumber *fhs,
|
|
decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decContext dcmul; // context for the multiplication
|
|
uInt needbytes; // for space calculations
|
|
decNumber bufa[D2N(DECBUFFER*2+1)];
|
|
decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated
|
|
decNumber *acc; // accumulator pointer
|
|
decNumber dzero; // work
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) { // [undefined if subset]
|
|
status|=DEC_Invalid_operation;
|
|
break;}
|
|
#endif
|
|
// Check math restrictions [these ensure no overflow or underflow]
|
|
if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
|
|
|| (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
|
|
|| (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
|
|
// set up context for multiply
|
|
dcmul=*set;
|
|
dcmul.digits=lhs->digits+rhs->digits; // just enough
|
|
// [The above may be an over-estimate for subset arithmetic, but that's OK]
|
|
dcmul.emax=DEC_MAX_EMAX; // effectively unbounded ..
|
|
dcmul.emin=DEC_MIN_EMIN; // [thanks to Math restrictions]
|
|
// set up decNumber space to receive the result of the multiply
|
|
acc=bufa; // may fit
|
|
needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufa)) { // need malloc space
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
|
if (allocbufa==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
acc=allocbufa; // use the allocated space
|
|
}
|
|
// multiply with extended range and necessary precision
|
|
//printf("emin=%ld\n", dcmul.emin);
|
|
decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
|
|
// Only Invalid operation (from sNaN or Inf * 0) is possible in
|
|
// status; if either is seen than ignore fhs (in case it is
|
|
// another sNaN) and set acc to NaN unless we had an sNaN
|
|
// [decMultiplyOp leaves that to caller]
|
|
// Note sNaN has to go through addOp to shorten payload if
|
|
// necessary
|
|
if ((status&DEC_Invalid_operation)!=0) {
|
|
if (!(status&DEC_sNaN)) { // but be true invalid
|
|
decNumberZero(res); // acc not yet set
|
|
res->bits=DECNAN;
|
|
break;
|
|
}
|
|
decNumberZero(&dzero); // make 0 (any non-NaN would do)
|
|
fhs=&dzero; // use that
|
|
}
|
|
#if DECCHECK
|
|
else { // multiply was OK
|
|
if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status);
|
|
}
|
|
#endif
|
|
// add the third operand and result -> res, and all is done
|
|
decAddOp(res, acc, fhs, set, 0, &status);
|
|
} while(0); // end protected
|
|
|
|
if (allocbufa!=NULL) free(allocbufa); // drop any storage used
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberFMA
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberInvert -- invert a Number, digitwise */
|
|
/* */
|
|
/* This computes C = ~A */
|
|
/* */
|
|
/* res is C, the result. C may be A (e.g., X=~X) */
|
|
/* rhs is A */
|
|
/* set is the context (used for result length and error report) */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberInvert(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
const Unit *ua, *msua; // -> operand and its msu
|
|
Unit *uc, *msuc; // -> result and its msu
|
|
Int msudigs; // digits in res msu
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
// operand is valid
|
|
ua=rhs->lsu; // bottom-up
|
|
uc=res->lsu; // ..
|
|
msua=ua+D2U(rhs->digits)-1; // -> msu of rhs
|
|
msuc=uc+D2U(set->digits)-1; // -> msu of result
|
|
msudigs=MSUDIGITS(set->digits); // [faster than remainder]
|
|
for (; uc<=msuc; ua++, uc++) { // Unit loop
|
|
Unit a; // extract unit
|
|
Int i, j; // work
|
|
if (ua>msua) a=0;
|
|
else a=*ua;
|
|
*uc=0; // can now write back
|
|
// always need to examine all bits in rhs
|
|
// This loop could be unrolled and/or use BIN2BCD tables
|
|
for (i=0; i<DECDPUN; i++) {
|
|
if ((~a)&1) *uc=*uc+(Unit)powers[i]; // effect INVERT
|
|
j=a%10;
|
|
a=a/10;
|
|
if (j>1) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
if (uc==msuc && i==msudigs-1) break; // just did final digit
|
|
} // each digit
|
|
} // each unit
|
|
// [here uc-1 is the msu of the result]
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
|
res->exponent=0; // integer
|
|
res->bits=0; // sign=0
|
|
return res; // [no status to set]
|
|
} // decNumberInvert
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberLn -- natural logarithm */
|
|
/* */
|
|
/* This computes C = ln(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context; note that rounding mode has no effect */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Notable cases: */
|
|
/* A<0 -> Invalid */
|
|
/* A=0 -> -Infinity (Exact) */
|
|
/* A=+Infinity -> +Infinity (Exact) */
|
|
/* A=1 exactly -> 0 (Exact) */
|
|
/* */
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* */
|
|
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
|
/* error in rare cases. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This is a wrapper for decLnOp which can handle the slightly wider */
|
|
/* (+11) range needed by Ln, Log10, etc. (which may have to be able */
|
|
/* to calculate at p+e+2). */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberLn(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
uInt status=0; // accumulator
|
|
#if DECSUBSET
|
|
decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated
|
|
#endif
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
// Check restrictions; this is a math function; if not violated
|
|
// then carry out the operation.
|
|
if (!decCheckMath(rhs, set, &status)) do { // protect allocation
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operand and set lostDigits status, as needed
|
|
if (rhs->digits>set->digits) {
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
// special check in subset for rhs=0
|
|
if (ISZERO(rhs)) { // +/- zeros -> error
|
|
status|=DEC_Invalid_operation;
|
|
break;}
|
|
} // extended=0
|
|
#endif
|
|
decLnOp(res, rhs, set, &status);
|
|
} while(0); // end protected
|
|
|
|
#if DECSUBSET
|
|
if (allocrhs !=NULL) free(allocrhs); // drop any storage used
|
|
#endif
|
|
// apply significant status
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberLn
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberLogB - get adjusted exponent, by 754 rules */
|
|
/* */
|
|
/* This computes C = adjustedexponent(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context, used only for digits and status */
|
|
/* */
|
|
/* For an unrounded result, digits may need to be 10 (A might have */
|
|
/* 10**9 digits and an exponent of +999999999, or one digit and an */
|
|
/* exponent of -1999999999). */
|
|
/* */
|
|
/* This returns the adjusted exponent of A after (in theory) padding */
|
|
/* with zeros on the right to set->digits digits while keeping the */
|
|
/* same value. The exponent is not limited by emin/emax. */
|
|
/* */
|
|
/* Notable cases: */
|
|
/* A<0 -> Use |A| */
|
|
/* A=0 -> -Infinity (Division by zero) */
|
|
/* A=Infinite -> +Infinity (Exact) */
|
|
/* A=1 exactly -> 0 (Exact) */
|
|
/* NaNs are propagated as usual */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberLogB(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
uInt status=0; // accumulator
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
// NaNs as usual; Infinities return +Infinity; 0->oops
|
|
if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);
|
|
else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs);
|
|
else if (decNumberIsZero(rhs)) {
|
|
decNumberZero(res); // prepare for Infinity
|
|
res->bits=DECNEG|DECINF; // -Infinity
|
|
status|=DEC_Division_by_zero; // as per 754
|
|
}
|
|
else { // finite non-zero
|
|
Int ae=rhs->exponent+rhs->digits-1; // adjusted exponent
|
|
if (set->digits>=10) decNumberFromInt32(res, ae); // lay it out
|
|
else {
|
|
decNumber buft[D2N(10)]; // temporary number
|
|
decNumber *t=buft; // ..
|
|
decNumberFromInt32(t, ae); // lay it out
|
|
decNumberPlus(res, t, set); // round as necessary
|
|
}
|
|
}
|
|
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberLogB
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberLog10 -- logarithm in base 10 */
|
|
/* */
|
|
/* This computes C = log10(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context; note that rounding mode has no effect */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Notable cases: */
|
|
/* A<0 -> Invalid */
|
|
/* A=0 -> -Infinity (Exact) */
|
|
/* A=+Infinity -> +Infinity (Exact) */
|
|
/* A=10**n (if n is an integer) -> n (Exact) */
|
|
/* */
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* */
|
|
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
|
/* error in rare cases. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This calculates ln(A)/ln(10) using appropriate precision. For */
|
|
/* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */
|
|
/* requested digits and t is the number of digits in the exponent */
|
|
/* (maximum 6). For ln(10) it is p + 3; this is often handled by the */
|
|
/* fastpath in decLnOp. The final division is done to the requested */
|
|
/* precision. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberLog10(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
uInt status=0, ignore=0; // status accumulators
|
|
uInt needbytes; // for space calculations
|
|
Int p; // working precision
|
|
Int t; // digits in exponent of A
|
|
|
|
// buffers for a and b working decimals
|
|
// (adjustment calculator, same size)
|
|
decNumber bufa[D2N(DECBUFFER+2)];
|
|
decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated
|
|
decNumber *a=bufa; // temporary a
|
|
decNumber bufb[D2N(DECBUFFER+2)];
|
|
decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated
|
|
decNumber *b=bufb; // temporary b
|
|
decNumber bufw[D2N(10)]; // working 2-10 digit number
|
|
decNumber *w=bufw; // ..
|
|
#if DECSUBSET
|
|
decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated
|
|
#endif
|
|
|
|
decContext aset; // working context
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
// Check restrictions; this is a math function; if not violated
|
|
// then carry out the operation.
|
|
if (!decCheckMath(rhs, set, &status)) do { // protect malloc
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operand and set lostDigits status, as needed
|
|
if (rhs->digits>set->digits) {
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
// special check in subset for rhs=0
|
|
if (ISZERO(rhs)) { // +/- zeros -> error
|
|
status|=DEC_Invalid_operation;
|
|
break;}
|
|
} // extended=0
|
|
#endif
|
|
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64); // clean context
|
|
|
|
// handle exact powers of 10; only check if +ve finite
|
|
if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
|
|
Int residue=0; // (no residue)
|
|
uInt copystat=0; // clean status
|
|
|
|
// round to a single digit...
|
|
aset.digits=1;
|
|
decCopyFit(w, rhs, &aset, &residue, ©stat); // copy & shorten
|
|
// if exact and the digit is 1, rhs is a power of 10
|
|
if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
|
|
// the exponent, conveniently, is the power of 10; making
|
|
// this the result needs a little care as it might not fit,
|
|
// so first convert it into the working number, and then move
|
|
// to res
|
|
decNumberFromInt32(w, w->exponent);
|
|
residue=0;
|
|
decCopyFit(res, w, set, &residue, &status); // copy & round
|
|
decFinish(res, set, &residue, &status); // cleanup/set flags
|
|
break;
|
|
} // not a power of 10
|
|
} // not a candidate for exact
|
|
|
|
// simplify the information-content calculation to use 'total
|
|
// number of digits in a, including exponent' as compared to the
|
|
// requested digits, as increasing this will only rarely cost an
|
|
// iteration in ln(a) anyway
|
|
t=6; // it can never be >6
|
|
|
|
// allocate space when needed...
|
|
p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
|
|
needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufa)) { // need malloc space
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
|
if (allocbufa==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
a=allocbufa; // use the allocated space
|
|
}
|
|
aset.digits=p; // as calculated
|
|
aset.emax=DEC_MAX_MATH; // usual bounds
|
|
aset.emin=-DEC_MAX_MATH; // ..
|
|
aset.clamp=0; // and no concrete format
|
|
decLnOp(a, rhs, &aset, &status); // a=ln(rhs)
|
|
|
|
// skip the division if the result so far is infinite, NaN, or
|
|
// zero, or there was an error; note NaN from sNaN needs copy
|
|
if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
|
|
if (a->bits&DECSPECIAL || ISZERO(a)) {
|
|
decNumberCopy(res, a); // [will fit]
|
|
break;}
|
|
|
|
// for ln(10) an extra 3 digits of precision are needed
|
|
p=set->digits+3;
|
|
needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufb)) { // need malloc space
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
|
if (allocbufb==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
b=allocbufb; // use the allocated space
|
|
}
|
|
decNumberZero(w); // set up 10...
|
|
#if DECDPUN==1
|
|
w->lsu[1]=1; w->lsu[0]=0; // ..
|
|
#else
|
|
w->lsu[0]=10; // ..
|
|
#endif
|
|
w->digits=2; // ..
|
|
|
|
aset.digits=p;
|
|
decLnOp(b, w, &aset, &ignore); // b=ln(10)
|
|
|
|
aset.digits=set->digits; // for final divide
|
|
decDivideOp(res, a, b, &aset, DIVIDE, &status); // into result
|
|
} while(0); // [for break]
|
|
|
|
if (allocbufa!=NULL) free(allocbufa); // drop any storage used
|
|
if (allocbufb!=NULL) free(allocbufb); // ..
|
|
#if DECSUBSET
|
|
if (allocrhs !=NULL) free(allocrhs); // ..
|
|
#endif
|
|
// apply significant status
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberLog10
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberMax -- compare two Numbers and return the maximum */
|
|
/* */
|
|
/* This computes C = A ? B, returning the maximum by 754 rules */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberMax(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberMax
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberMaxMag -- compare and return the maximum by magnitude */
|
|
/* */
|
|
/* This computes C = A ? B, returning the maximum by 754 rules */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberMaxMag
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberMin -- compare two Numbers and return the minimum */
|
|
/* */
|
|
/* This computes C = A ? B, returning the minimum by 754 rules */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberMin(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberMin
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberMinMag -- compare and return the minimum by magnitude */
|
|
/* */
|
|
/* This computes C = A ? B, returning the minimum by 754 rules */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberMinMag
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberMinus -- prefix minus operator */
|
|
/* */
|
|
/* This computes C = 0 - A */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context */
|
|
/* */
|
|
/* See also decNumberCopyNegate for a quiet bitwise version of this. */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* Simply use AddOp for the subtract, which will do the necessary. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberMinus(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decNumber dzero;
|
|
uInt status=0; // accumulator
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
decNumberZero(&dzero); // make 0
|
|
dzero.exponent=rhs->exponent; // [no coefficient expansion]
|
|
decAddOp(res, &dzero, rhs, set, DECNEG, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberMinus
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberNextMinus -- next towards -Infinity */
|
|
/* */
|
|
/* This computes C = A - infinitesimal, rounded towards -Infinity */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context */
|
|
/* */
|
|
/* This is a generalization of 754 NextDown. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decNumber dtiny; // constant
|
|
decContext workset=*set; // work
|
|
uInt status=0; // accumulator
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
// +Infinity is the special case
|
|
if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
|
|
decSetMaxValue(res, set); // is +ve
|
|
// there is no status to set
|
|
return res;
|
|
}
|
|
decNumberZero(&dtiny); // start with 0
|
|
dtiny.lsu[0]=1; // make number that is ..
|
|
dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest
|
|
workset.round=DEC_ROUND_FLOOR;
|
|
decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
|
|
status&=DEC_Invalid_operation|DEC_sNaN; // only sNaN Invalid please
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberNextMinus
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberNextPlus -- next towards +Infinity */
|
|
/* */
|
|
/* This computes C = A + infinitesimal, rounded towards +Infinity */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context */
|
|
/* */
|
|
/* This is a generalization of 754 NextUp. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decNumber dtiny; // constant
|
|
decContext workset=*set; // work
|
|
uInt status=0; // accumulator
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
// -Infinity is the special case
|
|
if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
|
|
decSetMaxValue(res, set);
|
|
res->bits=DECNEG; // negative
|
|
// there is no status to set
|
|
return res;
|
|
}
|
|
decNumberZero(&dtiny); // start with 0
|
|
dtiny.lsu[0]=1; // make number that is ..
|
|
dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest
|
|
workset.round=DEC_ROUND_CEILING;
|
|
decAddOp(res, rhs, &dtiny, &workset, 0, &status);
|
|
status&=DEC_Invalid_operation|DEC_sNaN; // only sNaN Invalid please
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberNextPlus
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberNextToward -- next towards rhs */
|
|
/* */
|
|
/* This computes C = A +/- infinitesimal, rounded towards */
|
|
/* +/-Infinity in the direction of B, as per 754-1985 nextafter */
|
|
/* modified during revision but dropped from 754-2008. */
|
|
/* */
|
|
/* res is C, the result. C may be A or B. */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* This is a generalization of 754-1985 NextAfter. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
decNumber dtiny; // constant
|
|
decContext workset=*set; // work
|
|
Int result; // ..
|
|
uInt status=0; // accumulator
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
|
|
decNaNs(res, lhs, rhs, set, &status);
|
|
}
|
|
else { // Is numeric, so no chance of sNaN Invalid, etc.
|
|
result=decCompare(lhs, rhs, 0); // sign matters
|
|
if (result==BADINT) status|=DEC_Insufficient_storage; // rare
|
|
else { // valid compare
|
|
if (result==0) decNumberCopySign(res, lhs, rhs); // easy
|
|
else { // differ: need NextPlus or NextMinus
|
|
uByte sub; // add or subtract
|
|
if (result<0) { // lhs<rhs, do nextplus
|
|
// -Infinity is the special case
|
|
if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
|
|
decSetMaxValue(res, set);
|
|
res->bits=DECNEG; // negative
|
|
return res; // there is no status to set
|
|
}
|
|
workset.round=DEC_ROUND_CEILING;
|
|
sub=0; // add, please
|
|
} // plus
|
|
else { // lhs>rhs, do nextminus
|
|
// +Infinity is the special case
|
|
if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
|
|
decSetMaxValue(res, set);
|
|
return res; // there is no status to set
|
|
}
|
|
workset.round=DEC_ROUND_FLOOR;
|
|
sub=DECNEG; // subtract, please
|
|
} // minus
|
|
decNumberZero(&dtiny); // start with 0
|
|
dtiny.lsu[0]=1; // make number that is ..
|
|
dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest
|
|
decAddOp(res, lhs, &dtiny, &workset, sub, &status); // + or -
|
|
// turn off exceptions if the result is a normal number
|
|
// (including Nmin), otherwise let all status through
|
|
if (decNumberIsNormal(res, set)) status=0;
|
|
} // unequal
|
|
} // compare OK
|
|
} // numeric
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberNextToward
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberOr -- OR two Numbers, digitwise */
|
|
/* */
|
|
/* This computes C = A | B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X|X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context (used for result length and error report) */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberOr(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
const Unit *ua, *ub; // -> operands
|
|
const Unit *msua, *msub; // -> operand msus
|
|
Unit *uc, *msuc; // -> result and its msu
|
|
Int msudigs; // digits in res msu
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|
|
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
// operands are valid
|
|
ua=lhs->lsu; // bottom-up
|
|
ub=rhs->lsu; // ..
|
|
uc=res->lsu; // ..
|
|
msua=ua+D2U(lhs->digits)-1; // -> msu of lhs
|
|
msub=ub+D2U(rhs->digits)-1; // -> msu of rhs
|
|
msuc=uc+D2U(set->digits)-1; // -> msu of result
|
|
msudigs=MSUDIGITS(set->digits); // [faster than remainder]
|
|
for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop
|
|
Unit a, b; // extract units
|
|
if (ua>msua) a=0;
|
|
else a=*ua;
|
|
if (ub>msub) b=0;
|
|
else b=*ub;
|
|
*uc=0; // can now write back
|
|
if (a|b) { // maybe 1 bits to examine
|
|
Int i, j;
|
|
// This loop could be unrolled and/or use BIN2BCD tables
|
|
for (i=0; i<DECDPUN; i++) {
|
|
if ((a|b)&1) *uc=*uc+(Unit)powers[i]; // effect OR
|
|
j=a%10;
|
|
a=a/10;
|
|
j|=b%10;
|
|
b=b/10;
|
|
if (j>1) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
if (uc==msuc && i==msudigs-1) break; // just did final digit
|
|
} // each digit
|
|
} // non-zero
|
|
} // each unit
|
|
// [here uc-1 is the msu of the result]
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
|
res->exponent=0; // integer
|
|
res->bits=0; // sign=0
|
|
return res; // [no status to set]
|
|
} // decNumberOr
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberPlus -- prefix plus operator */
|
|
/* */
|
|
/* This computes C = 0 + A */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context */
|
|
/* */
|
|
/* See also decNumberCopy for a quiet bitwise version of this. */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This simply uses AddOp; Add will take fast path after preparing A. */
|
|
/* Performance is a concern here, as this routine is often used to */
|
|
/* check operands and apply rounding and overflow/underflow testing. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberPlus(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decNumber dzero;
|
|
uInt status=0; // accumulator
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
decNumberZero(&dzero); // make 0
|
|
dzero.exponent=rhs->exponent; // [no coefficient expansion]
|
|
decAddOp(res, &dzero, rhs, set, 0, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberPlus
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberMultiply -- multiply two Numbers */
|
|
/* */
|
|
/* This computes C = A x B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decMultiplyOp(res, lhs, rhs, set, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberMultiply
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberPower -- raise a number to a power */
|
|
/* */
|
|
/* This computes C = A ** B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* */
|
|
/* However, if 1999999997<=B<=999999999 and B is an integer then the */
|
|
/* restrictions on A and the context are relaxed to the usual bounds, */
|
|
/* for compatibility with the earlier (integer power only) version */
|
|
/* of this function. */
|
|
/* */
|
|
/* When B is an integer, the result may be exact, even if rounded. */
|
|
/* */
|
|
/* The final result is rounded according to the context; it will */
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
|
/* error in rare cases. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberPower(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
#if DECSUBSET
|
|
decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated
|
|
decNumber *allocrhs=NULL; // .., rhs
|
|
#endif
|
|
decNumber *allocdac=NULL; // -> allocated acc buffer, iff used
|
|
decNumber *allocinv=NULL; // -> allocated 1/x buffer, iff used
|
|
Int reqdigits=set->digits; // requested DIGITS
|
|
Int n; // rhs in binary
|
|
Flag rhsint=0; // 1 if rhs is an integer
|
|
Flag useint=0; // 1 if can use integer calculation
|
|
Flag isoddint=0; // 1 if rhs is an integer and odd
|
|
Int i; // work
|
|
#if DECSUBSET
|
|
Int dropped; // ..
|
|
#endif
|
|
uInt needbytes; // buffer size needed
|
|
Flag seenbit; // seen a bit while powering
|
|
Int residue=0; // rounding residue
|
|
uInt status=0; // accumulators
|
|
uByte bits=0; // result sign if errors
|
|
decContext aset; // working context
|
|
decNumber dnOne; // work value 1...
|
|
// local accumulator buffer [a decNumber, with digits+elength+1 digits]
|
|
decNumber dacbuff[D2N(DECBUFFER+9)];
|
|
decNumber *dac=dacbuff; // -> result accumulator
|
|
// same again for possible 1/lhs calculation
|
|
decNumber invbuff[D2N(DECBUFFER+9)];
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) { // reduce operands and set status, as needed
|
|
if (lhs->digits>reqdigits) {
|
|
alloclhs=decRoundOperand(lhs, set, &status);
|
|
if (alloclhs==NULL) break;
|
|
lhs=alloclhs;
|
|
}
|
|
if (rhs->digits>reqdigits) {
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
// handle NaNs and rhs Infinity (lhs infinity is harder)
|
|
if (SPECIALARGS) {
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { // NaNs
|
|
decNaNs(res, lhs, rhs, set, &status);
|
|
break;}
|
|
if (decNumberIsInfinite(rhs)) { // rhs Infinity
|
|
Flag rhsneg=rhs->bits&DECNEG; // save rhs sign
|
|
if (decNumberIsNegative(lhs) // lhs<0
|
|
&& !decNumberIsZero(lhs)) // ..
|
|
status|=DEC_Invalid_operation;
|
|
else { // lhs >=0
|
|
decNumberZero(&dnOne); // set up 1
|
|
dnOne.lsu[0]=1;
|
|
decNumberCompare(dac, lhs, &dnOne, set); // lhs ? 1
|
|
decNumberZero(res); // prepare for 0/1/Infinity
|
|
if (decNumberIsNegative(dac)) { // lhs<1
|
|
if (rhsneg) res->bits|=DECINF; // +Infinity [else is +0]
|
|
}
|
|
else if (dac->lsu[0]==0) { // lhs=1
|
|
// 1**Infinity is inexact, so return fully-padded 1.0000
|
|
Int shift=set->digits-1;
|
|
*res->lsu=1; // was 0, make int 1
|
|
res->digits=decShiftToMost(res->lsu, 1, shift);
|
|
res->exponent=-shift; // make 1.0000...
|
|
status|=DEC_Inexact|DEC_Rounded; // deemed inexact
|
|
}
|
|
else { // lhs>1
|
|
if (!rhsneg) res->bits|=DECINF; // +Infinity [else is +0]
|
|
}
|
|
} // lhs>=0
|
|
break;}
|
|
// [lhs infinity drops through]
|
|
} // specials
|
|
|
|
// Original rhs may be an integer that fits and is in range
|
|
n=decGetInt(rhs);
|
|
if (n!=BADINT) { // it is an integer
|
|
rhsint=1; // record the fact for 1**n
|
|
isoddint=(Flag)n&1; // [works even if big]
|
|
if (n!=BIGEVEN && n!=BIGODD) // can use integer path?
|
|
useint=1; // looks good
|
|
}
|
|
|
|
if (decNumberIsNegative(lhs) // -x ..
|
|
&& isoddint) bits=DECNEG; // .. to an odd power
|
|
|
|
// handle LHS infinity
|
|
if (decNumberIsInfinite(lhs)) { // [NaNs already handled]
|
|
uByte rbits=rhs->bits; // save
|
|
decNumberZero(res); // prepare
|
|
if (n==0) *res->lsu=1; // [-]Inf**0 => 1
|
|
else {
|
|
// -Inf**nonint -> error
|
|
if (!rhsint && decNumberIsNegative(lhs)) {
|
|
status|=DEC_Invalid_operation; // -Inf**nonint is error
|
|
break;}
|
|
if (!(rbits & DECNEG)) bits|=DECINF; // was not a **-n
|
|
// [otherwise will be 0 or -0]
|
|
res->bits=bits;
|
|
}
|
|
break;}
|
|
|
|
// similarly handle LHS zero
|
|
if (decNumberIsZero(lhs)) {
|
|
if (n==0) { // 0**0 => Error
|
|
#if DECSUBSET
|
|
if (!set->extended) { // [unless subset]
|
|
decNumberZero(res);
|
|
*res->lsu=1; // return 1
|
|
break;}
|
|
#endif
|
|
status|=DEC_Invalid_operation;
|
|
}
|
|
else { // 0**x
|
|
uByte rbits=rhs->bits; // save
|
|
if (rbits & DECNEG) { // was a 0**(-n)
|
|
#if DECSUBSET
|
|
if (!set->extended) { // [bad if subset]
|
|
status|=DEC_Invalid_operation;
|
|
break;}
|
|
#endif
|
|
bits|=DECINF;
|
|
}
|
|
decNumberZero(res); // prepare
|
|
// [otherwise will be 0 or -0]
|
|
res->bits=bits;
|
|
}
|
|
break;}
|
|
|
|
// here both lhs and rhs are finite; rhs==0 is handled in the
|
|
// integer path. Next handle the non-integer cases
|
|
if (!useint) { // non-integral rhs
|
|
// any -ve lhs is bad, as is either operand or context out of
|
|
// bounds
|
|
if (decNumberIsNegative(lhs)) {
|
|
status|=DEC_Invalid_operation;
|
|
break;}
|
|
if (decCheckMath(lhs, set, &status)
|
|
|| decCheckMath(rhs, set, &status)) break; // variable status
|
|
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64); // clean context
|
|
aset.emax=DEC_MAX_MATH; // usual bounds
|
|
aset.emin=-DEC_MAX_MATH; // ..
|
|
aset.clamp=0; // and no concrete format
|
|
|
|
// calculate the result using exp(ln(lhs)*rhs), which can
|
|
// all be done into the accumulator, dac. The precision needed
|
|
// is enough to contain the full information in the lhs (which
|
|
// is the total digits, including exponent), or the requested
|
|
// precision, if larger, + 4; 6 is used for the exponent
|
|
// maximum length, and this is also used when it is shorter
|
|
// than the requested digits as it greatly reduces the >0.5 ulp
|
|
// cases at little cost (because Ln doubles digits each
|
|
// iteration so a few extra digits rarely causes an extra
|
|
// iteration)
|
|
aset.digits=MAXI(lhs->digits, set->digits)+6+4;
|
|
} // non-integer rhs
|
|
|
|
else { // rhs is in-range integer
|
|
if (n==0) { // x**0 = 1
|
|
// (0**0 was handled above)
|
|
decNumberZero(res); // result=1
|
|
*res->lsu=1; // ..
|
|
break;}
|
|
// rhs is a non-zero integer
|
|
if (n<0) n=-n; // use abs(n)
|
|
|
|
aset=*set; // clone the context
|
|
aset.round=DEC_ROUND_HALF_EVEN; // internally use balanced
|
|
// calculate the working DIGITS
|
|
aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
|
|
#if DECSUBSET
|
|
if (!set->extended) aset.digits--; // use classic precision
|
|
#endif
|
|
// it's an error if this is more than can be handled
|
|
if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
|
|
} // integer path
|
|
|
|
// aset.digits is the count of digits for the accumulator needed
|
|
// if accumulator is too long for local storage, then allocate
|
|
needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
|
|
// [needbytes also used below if 1/lhs needed]
|
|
if (needbytes>sizeof(dacbuff)) {
|
|
allocdac=(decNumber *)malloc(needbytes);
|
|
if (allocdac==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
dac=allocdac; // use the allocated space
|
|
}
|
|
// here, aset is set up and accumulator is ready for use
|
|
|
|
if (!useint) { // non-integral rhs
|
|
// x ** y; special-case x=1 here as it will otherwise always
|
|
// reduce to integer 1; decLnOp has a fastpath which detects
|
|
// the case of x=1
|
|
decLnOp(dac, lhs, &aset, &status); // dac=ln(lhs)
|
|
// [no error possible, as lhs 0 already handled]
|
|
if (ISZERO(dac)) { // x==1, 1.0, etc.
|
|
// need to return fully-padded 1.0000 etc., but rhsint->1
|
|
*dac->lsu=1; // was 0, make int 1
|
|
if (!rhsint) { // add padding
|
|
Int shift=set->digits-1;
|
|
dac->digits=decShiftToMost(dac->lsu, 1, shift);
|
|
dac->exponent=-shift; // make 1.0000...
|
|
status|=DEC_Inexact|DEC_Rounded; // deemed inexact
|
|
}
|
|
}
|
|
else {
|
|
decMultiplyOp(dac, dac, rhs, &aset, &status); // dac=dac*rhs
|
|
decExpOp(dac, dac, &aset, &status); // dac=exp(dac)
|
|
}
|
|
// and drop through for final rounding
|
|
} // non-integer rhs
|
|
|
|
else { // carry on with integer
|
|
decNumberZero(dac); // acc=1
|
|
*dac->lsu=1; // ..
|
|
|
|
// if a negative power the constant 1 is needed, and if not subset
|
|
// invert the lhs now rather than inverting the result later
|
|
if (decNumberIsNegative(rhs)) { // was a **-n [hence digits>0]
|
|
decNumber *inv=invbuff; // asssume use fixed buffer
|
|
decNumberCopy(&dnOne, dac); // dnOne=1; [needed now or later]
|
|
#if DECSUBSET
|
|
if (set->extended) { // need to calculate 1/lhs
|
|
#endif
|
|
// divide lhs into 1, putting result in dac [dac=1/dac]
|
|
decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
|
|
// now locate or allocate space for the inverted lhs
|
|
if (needbytes>sizeof(invbuff)) {
|
|
allocinv=(decNumber *)malloc(needbytes);
|
|
if (allocinv==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
inv=allocinv; // use the allocated space
|
|
}
|
|
// [inv now points to big-enough buffer or allocated storage]
|
|
decNumberCopy(inv, dac); // copy the 1/lhs
|
|
decNumberCopy(dac, &dnOne); // restore acc=1
|
|
lhs=inv; // .. and go forward with new lhs
|
|
#if DECSUBSET
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Raise-to-the-power loop...
|
|
seenbit=0; // set once a 1-bit is encountered
|
|
for (i=1;;i++){ // for each bit [top bit ignored]
|
|
// abandon if had overflow or terminal underflow
|
|
if (status & (DEC_Overflow|DEC_Underflow)) { // interesting?
|
|
if (status&DEC_Overflow || ISZERO(dac)) break;
|
|
}
|
|
// [the following two lines revealed an optimizer bug in a C++
|
|
// compiler, with symptom: 5**3 -> 25, when n=n+n was used]
|
|
n=n<<1; // move next bit to testable position
|
|
if (n<0) { // top bit is set
|
|
seenbit=1; // OK, significant bit seen
|
|
decMultiplyOp(dac, dac, lhs, &aset, &status); // dac=dac*x
|
|
}
|
|
if (i==31) break; // that was the last bit
|
|
if (!seenbit) continue; // no need to square 1
|
|
decMultiplyOp(dac, dac, dac, &aset, &status); // dac=dac*dac [square]
|
|
} /*i*/ // 32 bits
|
|
|
|
// complete internal overflow or underflow processing
|
|
if (status & (DEC_Overflow|DEC_Underflow)) {
|
|
#if DECSUBSET
|
|
// If subset, and power was negative, reverse the kind of -erflow
|
|
// [1/x not yet done]
|
|
if (!set->extended && decNumberIsNegative(rhs)) {
|
|
if (status & DEC_Overflow)
|
|
status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
|
|
else { // trickier -- Underflow may or may not be set
|
|
status&=~(DEC_Underflow | DEC_Subnormal); // [one or both]
|
|
status|=DEC_Overflow;
|
|
}
|
|
}
|
|
#endif
|
|
dac->bits=(dac->bits & ~DECNEG) | bits; // force correct sign
|
|
// round subnormals [to set.digits rather than aset.digits]
|
|
// or set overflow result similarly as required
|
|
decFinalize(dac, set, &residue, &status);
|
|
decNumberCopy(res, dac); // copy to result (is now OK length)
|
|
break;
|
|
}
|
|
|
|
#if DECSUBSET
|
|
if (!set->extended && // subset math
|
|
decNumberIsNegative(rhs)) { // was a **-n [hence digits>0]
|
|
// so divide result into 1 [dac=1/dac]
|
|
decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
|
|
}
|
|
#endif
|
|
} // rhs integer path
|
|
|
|
// reduce result to the requested length and copy to result
|
|
decCopyFit(res, dac, set, &residue, &status);
|
|
decFinish(res, set, &residue, &status); // final cleanup
|
|
#if DECSUBSET
|
|
if (!set->extended) decTrim(res, set, 0, 1, &dropped); // trailing zeros
|
|
#endif
|
|
} while(0); // end protected
|
|
|
|
if (allocdac!=NULL) free(allocdac); // drop any storage used
|
|
if (allocinv!=NULL) free(allocinv); // ..
|
|
#if DECSUBSET
|
|
if (alloclhs!=NULL) free(alloclhs); // ..
|
|
if (allocrhs!=NULL) free(allocrhs); // ..
|
|
#endif
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberPower
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberQuantize -- force exponent to requested value */
|
|
/* */
|
|
/* This computes C = op(A, B), where op adjusts the coefficient */
|
|
/* of C (by rounding or shifting) such that the exponent (-scale) */
|
|
/* of C has exponent of B. The numerical value of C will equal A, */
|
|
/* except for the effects of any rounding that occurred. */
|
|
/* */
|
|
/* res is C, the result. C may be A or B */
|
|
/* lhs is A, the number to adjust */
|
|
/* rhs is B, the number with exponent to match */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Unless there is an error or the result is infinite, the exponent */
|
|
/* after the operation is guaranteed to be equal to that of B. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decQuantizeOp(res, lhs, rhs, set, 1, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberQuantize
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberReduce -- remove trailing zeros */
|
|
/* */
|
|
/* This computes C = 0 + A, and normalizes the result */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
// Previously known as Normalize
|
|
decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
return decNumberReduce(res, rhs, set);
|
|
} // decNumberNormalize
|
|
|
|
decNumber * decNumberReduce(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
#if DECSUBSET
|
|
decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated
|
|
#endif
|
|
uInt status=0; // as usual
|
|
Int residue=0; // as usual
|
|
Int dropped; // work
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operand and set lostDigits status, as needed
|
|
if (rhs->digits>set->digits) {
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
// Infinities copy through; NaNs need usual treatment
|
|
if (decNumberIsNaN(rhs)) {
|
|
decNaNs(res, rhs, NULL, set, &status);
|
|
break;
|
|
}
|
|
|
|
// reduce result to the requested length and copy to result
|
|
decCopyFit(res, rhs, set, &residue, &status); // copy & round
|
|
decFinish(res, set, &residue, &status); // cleanup/set flags
|
|
decTrim(res, set, 1, 0, &dropped); // normalize in place
|
|
// [may clamp]
|
|
} while(0); // end protected
|
|
|
|
#if DECSUBSET
|
|
if (allocrhs !=NULL) free(allocrhs); // ..
|
|
#endif
|
|
if (status!=0) decStatus(res, status, set);// then report status
|
|
return res;
|
|
} // decNumberReduce
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberRescale -- force exponent to requested value */
|
|
/* */
|
|
/* This computes C = op(A, B), where op adjusts the coefficient */
|
|
/* of C (by rounding or shifting) such that the exponent (-scale) */
|
|
/* of C has the value B. The numerical value of C will equal A, */
|
|
/* except for the effects of any rounding that occurred. */
|
|
/* */
|
|
/* res is C, the result. C may be A or B */
|
|
/* lhs is A, the number to adjust */
|
|
/* rhs is B, the requested exponent */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Unless there is an error or the result is infinite, the exponent */
|
|
/* after the operation is guaranteed to be equal to B. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberRescale(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decQuantizeOp(res, lhs, rhs, set, 0, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberRescale
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberRemainder -- divide and return remainder */
|
|
/* */
|
|
/* This computes C = A % B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberRemainder
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberRemainderNear -- divide and return remainder from nearest */
|
|
/* */
|
|
/* This computes C = A % B, where % is the IEEE remainder operator */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberRemainderNear
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberRotate -- rotate the coefficient of a Number left/right */
|
|
/* */
|
|
/* This computes C = A rot B (in base ten and rotating set->digits */
|
|
/* digits). */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=XrotX) */
|
|
/* lhs is A */
|
|
/* rhs is B, the number of digits to rotate (-ve to right) */
|
|
/* set is the context */
|
|
/* */
|
|
/* The digits of the coefficient of A are rotated to the left (if B */
|
|
/* is positive) or to the right (if B is negative) without adjusting */
|
|
/* the exponent or the sign of A. If lhs->digits is less than */
|
|
/* set->digits the coefficient is padded with zeros on the left */
|
|
/* before the rotate. Any leading zeros in the result are removed */
|
|
/* as usual. */
|
|
/* */
|
|
/* B must be an integer (q=0) and in the range -set->digits through */
|
|
/* +set->digits. */
|
|
/* C must have space for set->digits digits. */
|
|
/* NaNs are propagated as usual. Infinities are unaffected (but */
|
|
/* B must be valid). No status is set unless B is invalid or an */
|
|
/* operand is an sNaN. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberRotate(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
Int rotate; // rhs as an Int
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
// NaNs propagate as normal
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
|
|
decNaNs(res, lhs, rhs, set, &status);
|
|
// rhs must be an integer
|
|
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
|
|
status=DEC_Invalid_operation;
|
|
else { // both numeric, rhs is an integer
|
|
rotate=decGetInt(rhs); // [cannot fail]
|
|
if (rotate==BADINT // something bad ..
|
|
|| rotate==BIGODD || rotate==BIGEVEN // .. very big ..
|
|
|| abs(rotate)>set->digits) // .. or out of range
|
|
status=DEC_Invalid_operation;
|
|
else { // rhs is OK
|
|
decNumberCopy(res, lhs);
|
|
// convert -ve rotate to equivalent positive rotation
|
|
if (rotate<0) rotate=set->digits+rotate;
|
|
if (rotate!=0 && rotate!=set->digits // zero or full rotation
|
|
&& !decNumberIsInfinite(res)) { // lhs was infinite
|
|
// left-rotate to do; 0 < rotate < set->digits
|
|
uInt units, shift; // work
|
|
uInt msudigits; // digits in result msu
|
|
Unit *msu=res->lsu+D2U(res->digits)-1; // current msu
|
|
Unit *msumax=res->lsu+D2U(set->digits)-1; // rotation msu
|
|
for (msu++; msu<=msumax; msu++) *msu=0; // ensure high units=0
|
|
res->digits=set->digits; // now full-length
|
|
msudigits=MSUDIGITS(res->digits); // actual digits in msu
|
|
|
|
// rotation here is done in-place, in three steps
|
|
// 1. shift all to least up to one unit to unit-align final
|
|
// lsd [any digits shifted out are rotated to the left,
|
|
// abutted to the original msd (which may require split)]
|
|
//
|
|
// [if there are no whole units left to rotate, the
|
|
// rotation is now complete]
|
|
//
|
|
// 2. shift to least, from below the split point only, so that
|
|
// the final msd is in the right place in its Unit [any
|
|
// digits shifted out will fit exactly in the current msu,
|
|
// left aligned, no split required]
|
|
//
|
|
// 3. rotate all the units by reversing left part, right
|
|
// part, and then whole
|
|
//
|
|
// example: rotate right 8 digits (2 units + 2), DECDPUN=3.
|
|
//
|
|
// start: 00a bcd efg hij klm npq
|
|
//
|
|
// 1a 000 0ab cde fgh|ijk lmn [pq saved]
|
|
// 1b 00p qab cde fgh|ijk lmn
|
|
//
|
|
// 2a 00p qab cde fgh|00i jkl [mn saved]
|
|
// 2b mnp qab cde fgh|00i jkl
|
|
//
|
|
// 3a fgh cde qab mnp|00i jkl
|
|
// 3b fgh cde qab mnp|jkl 00i
|
|
// 3c 00i jkl mnp qab cde fgh
|
|
|
|
// Step 1: amount to shift is the partial right-rotate count
|
|
rotate=set->digits-rotate; // make it right-rotate
|
|
units=rotate/DECDPUN; // whole units to rotate
|
|
shift=rotate%DECDPUN; // left-over digits count
|
|
if (shift>0) { // not an exact number of units
|
|
uInt save=res->lsu[0]%powers[shift]; // save low digit(s)
|
|
decShiftToLeast(res->lsu, D2U(res->digits), shift);
|
|
if (shift>msudigits) { // msumax-1 needs >0 digits
|
|
uInt rem=save%powers[shift-msudigits];// split save
|
|
*msumax=(Unit)(save/powers[shift-msudigits]); // and insert
|
|
*(msumax-1)=*(msumax-1)
|
|
+(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); // ..
|
|
}
|
|
else { // all fits in msumax
|
|
*msumax=*msumax+(Unit)(save*powers[msudigits-shift]); // [maybe *1]
|
|
}
|
|
} // digits shift needed
|
|
|
|
// If whole units to rotate...
|
|
if (units>0) { // some to do
|
|
// Step 2: the units to touch are the whole ones in rotate,
|
|
// if any, and the shift is DECDPUN-msudigits (which may be
|
|
// 0, again)
|
|
shift=DECDPUN-msudigits;
|
|
if (shift>0) { // not an exact number of units
|
|
uInt save=res->lsu[0]%powers[shift]; // save low digit(s)
|
|
decShiftToLeast(res->lsu, units, shift);
|
|
*msumax=*msumax+(Unit)(save*powers[msudigits]);
|
|
} // partial shift needed
|
|
|
|
// Step 3: rotate the units array using triple reverse
|
|
// (reversing is easy and fast)
|
|
decReverse(res->lsu+units, msumax); // left part
|
|
decReverse(res->lsu, res->lsu+units-1); // right part
|
|
decReverse(res->lsu, msumax); // whole
|
|
} // whole units to rotate
|
|
// the rotation may have left an undetermined number of zeros
|
|
// on the left, so true length needs to be calculated
|
|
res->digits=decGetDigits(res->lsu, msumax-res->lsu+1);
|
|
} // rotate needed
|
|
} // rhs OK
|
|
} // numerics
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberRotate
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberSameQuantum -- test for equal exponents */
|
|
/* */
|
|
/* res is the result number, which will contain either 0 or 1 */
|
|
/* lhs is a number to test */
|
|
/* rhs is the second (usually a pattern) */
|
|
/* */
|
|
/* No errors are possible and no context is needed. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs) {
|
|
Unit ret=0; // return value
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
|
|
#endif
|
|
|
|
if (SPECIALARGS) {
|
|
if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
|
|
else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
|
|
// [anything else with a special gives 0]
|
|
}
|
|
else if (lhs->exponent==rhs->exponent) ret=1;
|
|
|
|
decNumberZero(res); // OK to overwrite an operand now
|
|
*res->lsu=ret;
|
|
return res;
|
|
} // decNumberSameQuantum
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberScaleB -- multiply by a power of 10 */
|
|
/* */
|
|
/* This computes C = A x 10**B where B is an integer (q=0) with */
|
|
/* maximum magnitude 2*(emax+digits) */
|
|
/* */
|
|
/* res is C, the result. C may be A or B */
|
|
/* lhs is A, the number to adjust */
|
|
/* rhs is B, the requested power of ten to use */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* The result may underflow or overflow. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
Int reqexp; // requested exponent change [B]
|
|
uInt status=0; // accumulator
|
|
Int residue; // work
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
// Handle special values except lhs infinite
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
|
|
decNaNs(res, lhs, rhs, set, &status);
|
|
// rhs must be an integer
|
|
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
|
|
status=DEC_Invalid_operation;
|
|
else {
|
|
// lhs is a number; rhs is a finite with q==0
|
|
reqexp=decGetInt(rhs); // [cannot fail]
|
|
// maximum range is larger than getInt can handle, so this is
|
|
// more restrictive than the specification
|
|
if (reqexp==BADINT // something bad ..
|
|
|| reqexp==BIGODD || reqexp==BIGEVEN // it was huge
|
|
|| (abs(reqexp)+1)/2>(set->digits+set->emax)) // .. or out of range
|
|
status=DEC_Invalid_operation;
|
|
else { // rhs is OK
|
|
decNumberCopy(res, lhs); // all done if infinite lhs
|
|
if (!decNumberIsInfinite(res)) { // prepare to scale
|
|
Int exp=res->exponent; // save for overflow test
|
|
res->exponent+=reqexp; // adjust the exponent
|
|
if (((exp^reqexp)>=0) // same sign ...
|
|
&& ((exp^res->exponent)<0)) { // .. but result had different
|
|
// the calculation overflowed, so force right treatment
|
|
if (exp<0) res->exponent=DEC_MIN_EMIN-DEC_MAX_DIGITS;
|
|
else res->exponent=DEC_MAX_EMAX+1;
|
|
}
|
|
residue=0;
|
|
decFinalize(res, set, &residue, &status); // final check
|
|
} // finite LHS
|
|
} // rhs OK
|
|
} // rhs finite
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberScaleB
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberShift -- shift the coefficient of a Number left or right */
|
|
/* */
|
|
/* This computes C = A << B or C = A >> -B (in base ten). */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X<<X) */
|
|
/* lhs is A */
|
|
/* rhs is B, the number of digits to shift (-ve to right) */
|
|
/* set is the context */
|
|
/* */
|
|
/* The digits of the coefficient of A are shifted to the left (if B */
|
|
/* is positive) or to the right (if B is negative) without adjusting */
|
|
/* the exponent or the sign of A. */
|
|
/* */
|
|
/* B must be an integer (q=0) and in the range -set->digits through */
|
|
/* +set->digits. */
|
|
/* C must have space for set->digits digits. */
|
|
/* NaNs are propagated as usual. Infinities are unaffected (but */
|
|
/* B must be valid). No status is set unless B is invalid or an */
|
|
/* operand is an sNaN. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberShift(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
Int shift; // rhs as an Int
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
// NaNs propagate as normal
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
|
|
decNaNs(res, lhs, rhs, set, &status);
|
|
// rhs must be an integer
|
|
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
|
|
status=DEC_Invalid_operation;
|
|
else { // both numeric, rhs is an integer
|
|
shift=decGetInt(rhs); // [cannot fail]
|
|
if (shift==BADINT // something bad ..
|
|
|| shift==BIGODD || shift==BIGEVEN // .. very big ..
|
|
|| abs(shift)>set->digits) // .. or out of range
|
|
status=DEC_Invalid_operation;
|
|
else { // rhs is OK
|
|
decNumberCopy(res, lhs);
|
|
if (shift!=0 && !decNumberIsInfinite(res)) { // something to do
|
|
if (shift>0) { // to left
|
|
if (shift==set->digits) { // removing all
|
|
*res->lsu=0; // so place 0
|
|
res->digits=1; // ..
|
|
}
|
|
else { //
|
|
// first remove leading digits if necessary
|
|
if (res->digits+shift>set->digits) {
|
|
decDecap(res, res->digits+shift-set->digits);
|
|
// that updated res->digits; may have gone to 1 (for a
|
|
// single digit or for zero
|
|
}
|
|
if (res->digits>1 || *res->lsu) // if non-zero..
|
|
res->digits=decShiftToMost(res->lsu, res->digits, shift);
|
|
} // partial left
|
|
} // left
|
|
else { // to right
|
|
if (-shift>=res->digits) { // discarding all
|
|
*res->lsu=0; // so place 0
|
|
res->digits=1; // ..
|
|
}
|
|
else {
|
|
decShiftToLeast(res->lsu, D2U(res->digits), -shift);
|
|
res->digits-=(-shift);
|
|
}
|
|
} // to right
|
|
} // non-0 non-Inf shift
|
|
} // rhs OK
|
|
} // numerics
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberShift
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberSquareRoot -- square root operator */
|
|
/* */
|
|
/* This computes C = squareroot(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context; note that rounding mode has no effect */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This uses the following varying-precision algorithm in: */
|
|
/* */
|
|
/* Properly Rounded Variable Precision Square Root, T. E. Hull and */
|
|
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
|
|
/* pp229-237, ACM, September 1985. */
|
|
/* */
|
|
/* The square-root is calculated using Newton's method, after which */
|
|
/* a check is made to ensure the result is correctly rounded. */
|
|
/* */
|
|
/* % [Reformatted original Numerical Turing source code follows.] */
|
|
/* function sqrt(x : real) : real */
|
|
/* % sqrt(x) returns the properly rounded approximation to the square */
|
|
/* % root of x, in the precision of the calling environment, or it */
|
|
/* % fails if x < 0. */
|
|
/* % t e hull and a abrham, august, 1984 */
|
|
/* if x <= 0 then */
|
|
/* if x < 0 then */
|
|
/* assert false */
|
|
/* else */
|
|
/* result 0 */
|
|
/* end if */
|
|
/* end if */
|
|
/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
|
|
/* var e := getexp(x) % exponent part of x */
|
|
/* var approx : real */
|
|
/* if e mod 2 = 0 then */
|
|
/* approx := .259 + .819 * f % approx to root of f */
|
|
/* else */
|
|
/* f := f/l0 % adjustments */
|
|
/* e := e + 1 % for odd */
|
|
/* approx := .0819 + 2.59 * f % exponent */
|
|
/* end if */
|
|
/* */
|
|
/* var p:= 3 */
|
|
/* const maxp := currentprecision + 2 */
|
|
/* loop */
|
|
/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
|
|
/* precision p */
|
|
/* approx := .5 * (approx + f/approx) */
|
|
/* exit when p = maxp */
|
|
/* end loop */
|
|
/* */
|
|
/* % approx is now within 1 ulp of the properly rounded square root */
|
|
/* % of f; to ensure proper rounding, compare squares of (approx - */
|
|
/* % l/2 ulp) and (approx + l/2 ulp) with f. */
|
|
/* p := currentprecision */
|
|
/* begin */
|
|
/* precision p + 2 */
|
|
/* const approxsubhalf := approx - setexp(.5, -p) */
|
|
/* if mulru(approxsubhalf, approxsubhalf) > f then */
|
|
/* approx := approx - setexp(.l, -p + 1) */
|
|
/* else */
|
|
/* const approxaddhalf := approx + setexp(.5, -p) */
|
|
/* if mulrd(approxaddhalf, approxaddhalf) < f then */
|
|
/* approx := approx + setexp(.l, -p + 1) */
|
|
/* end if */
|
|
/* end if */
|
|
/* end */
|
|
/* result setexp(approx, e div 2) % fix exponent */
|
|
/* end sqrt */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decContext workset, approxset; // work contexts
|
|
decNumber dzero; // used for constant zero
|
|
Int maxp; // largest working precision
|
|
Int workp; // working precision
|
|
Int residue=0; // rounding residue
|
|
uInt status=0, ignore=0; // status accumulators
|
|
uInt rstatus; // ..
|
|
Int exp; // working exponent
|
|
Int ideal; // ideal (preferred) exponent
|
|
Int needbytes; // work
|
|
Int dropped; // ..
|
|
|
|
#if DECSUBSET
|
|
decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated
|
|
#endif
|
|
// buffer for f [needs +1 in case DECBUFFER 0]
|
|
decNumber buff[D2N(DECBUFFER+1)];
|
|
// buffer for a [needs +2 to match likely maxp]
|
|
decNumber bufa[D2N(DECBUFFER+2)];
|
|
// buffer for temporary, b [must be same size as a]
|
|
decNumber bufb[D2N(DECBUFFER+2)];
|
|
decNumber *allocbuff=NULL; // -> allocated buff, iff allocated
|
|
decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated
|
|
decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated
|
|
decNumber *f=buff; // reduced fraction
|
|
decNumber *a=bufa; // approximation to result
|
|
decNumber *b=bufb; // intermediate result
|
|
// buffer for temporary variable, up to 3 digits
|
|
decNumber buft[D2N(3)];
|
|
decNumber *t=buft; // up-to-3-digit constant or work
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operand and set lostDigits status, as needed
|
|
if (rhs->digits>set->digits) {
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
|
if (allocrhs==NULL) break;
|
|
// [Note: 'f' allocation below could reuse this buffer if
|
|
// used, but as this is rare they are kept separate for clarity.]
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
// handle infinities and NaNs
|
|
if (SPECIALARG) {
|
|
if (decNumberIsInfinite(rhs)) { // an infinity
|
|
if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
|
|
else decNumberCopy(res, rhs); // +Infinity
|
|
}
|
|
else decNaNs(res, rhs, NULL, set, &status); // a NaN
|
|
break;
|
|
}
|
|
|
|
// calculate the ideal (preferred) exponent [floor(exp/2)]
|
|
// [It would be nicer to write: ideal=rhs->exponent>>1, but this
|
|
// generates a compiler warning. Generated code is the same.]
|
|
ideal=(rhs->exponent&~1)/2; // target
|
|
|
|
// handle zeros
|
|
if (ISZERO(rhs)) {
|
|
decNumberCopy(res, rhs); // could be 0 or -0
|
|
res->exponent=ideal; // use the ideal [safe]
|
|
// use decFinish to clamp any out-of-range exponent, etc.
|
|
decFinish(res, set, &residue, &status);
|
|
break;
|
|
}
|
|
|
|
// any other -x is an oops
|
|
if (decNumberIsNegative(rhs)) {
|
|
status|=DEC_Invalid_operation;
|
|
break;
|
|
}
|
|
|
|
// space is needed for three working variables
|
|
// f -- the same precision as the RHS, reduced to 0.01->0.99...
|
|
// a -- Hull's approximation -- precision, when assigned, is
|
|
// currentprecision+1 or the input argument precision,
|
|
// whichever is larger (+2 for use as temporary)
|
|
// b -- intermediate temporary result (same size as a)
|
|
// if any is too long for local storage, then allocate
|
|
workp=MAXI(set->digits+1, rhs->digits); // actual rounding precision
|
|
workp=MAXI(workp, 7); // at least 7 for low cases
|
|
maxp=workp+2; // largest working precision
|
|
|
|
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
|
|
if (needbytes>(Int)sizeof(buff)) {
|
|
allocbuff=(decNumber *)malloc(needbytes);
|
|
if (allocbuff==NULL) { // hopeless -- abandon
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
f=allocbuff; // use the allocated space
|
|
}
|
|
// a and b both need to be able to hold a maxp-length number
|
|
needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
|
|
if (needbytes>(Int)sizeof(bufa)) { // [same applies to b]
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
|
if (allocbufa==NULL || allocbufb==NULL) { // hopeless
|
|
status|=DEC_Insufficient_storage;
|
|
break;}
|
|
a=allocbufa; // use the allocated spaces
|
|
b=allocbufb; // ..
|
|
}
|
|
|
|
// copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1
|
|
decNumberCopy(f, rhs);
|
|
exp=f->exponent+f->digits; // adjusted to Hull rules
|
|
f->exponent=-(f->digits); // to range
|
|
|
|
// set up working context
|
|
decContextDefault(&workset, DEC_INIT_DECIMAL64);
|
|
workset.emax=DEC_MAX_EMAX;
|
|
workset.emin=DEC_MIN_EMIN;
|
|
|
|
// [Until further notice, no error is possible and status bits
|
|
// (Rounded, etc.) should be ignored, not accumulated.]
|
|
|
|
// Calculate initial approximation, and allow for odd exponent
|
|
workset.digits=workp; // p for initial calculation
|
|
t->bits=0; t->digits=3;
|
|
a->bits=0; a->digits=3;
|
|
if ((exp & 1)==0) { // even exponent
|
|
// Set t=0.259, a=0.819
|
|
t->exponent=-3;
|
|
a->exponent=-3;
|
|
#if DECDPUN>=3
|
|
t->lsu[0]=259;
|
|
a->lsu[0]=819;
|
|
#elif DECDPUN==2
|
|
t->lsu[0]=59; t->lsu[1]=2;
|
|
a->lsu[0]=19; a->lsu[1]=8;
|
|
#else
|
|
t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
|
|
a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
|
|
#endif
|
|
}
|
|
else { // odd exponent
|
|
// Set t=0.0819, a=2.59
|
|
f->exponent--; // f=f/10
|
|
exp++; // e=e+1
|
|
t->exponent=-4;
|
|
a->exponent=-2;
|
|
#if DECDPUN>=3
|
|
t->lsu[0]=819;
|
|
a->lsu[0]=259;
|
|
#elif DECDPUN==2
|
|
t->lsu[0]=19; t->lsu[1]=8;
|
|
a->lsu[0]=59; a->lsu[1]=2;
|
|
#else
|
|
t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
|
|
a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
|
|
#endif
|
|
}
|
|
|
|
decMultiplyOp(a, a, f, &workset, &ignore); // a=a*f
|
|
decAddOp(a, a, t, &workset, 0, &ignore); // ..+t
|
|
// [a is now the initial approximation for sqrt(f), calculated with
|
|
// currentprecision, which is also a's precision.]
|
|
|
|
// the main calculation loop
|
|
decNumberZero(&dzero); // make 0
|
|
decNumberZero(t); // set t = 0.5
|
|
t->lsu[0]=5; // ..
|
|
t->exponent=-1; // ..
|
|
workset.digits=3; // initial p
|
|
for (; workset.digits<maxp;) {
|
|
// set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp]
|
|
workset.digits=MINI(workset.digits*2-2, maxp);
|
|
// a = 0.5 * (a + f/a)
|
|
// [calculated at p then rounded to currentprecision]
|
|
decDivideOp(b, f, a, &workset, DIVIDE, &ignore); // b=f/a
|
|
decAddOp(b, b, a, &workset, 0, &ignore); // b=b+a
|
|
decMultiplyOp(a, b, t, &workset, &ignore); // a=b*0.5
|
|
} // loop
|
|
|
|
// Here, 0.1 <= a < 1 [Hull], and a has maxp digits
|
|
// now reduce to length, etc.; this needs to be done with a
|
|
// having the correct exponent so as to handle subnormals
|
|
// correctly
|
|
approxset=*set; // get emin, emax, etc.
|
|
approxset.round=DEC_ROUND_HALF_EVEN;
|
|
a->exponent+=exp/2; // set correct exponent
|
|
rstatus=0; // clear status
|
|
residue=0; // .. and accumulator
|
|
decCopyFit(a, a, &approxset, &residue, &rstatus); // reduce (if needed)
|
|
decFinish(a, &approxset, &residue, &rstatus); // clean and finalize
|
|
|
|
// Overflow was possible if the input exponent was out-of-range,
|
|
// in which case quit
|
|
if (rstatus&DEC_Overflow) {
|
|
status=rstatus; // use the status as-is
|
|
decNumberCopy(res, a); // copy to result
|
|
break;
|
|
}
|
|
|
|
// Preserve status except Inexact/Rounded
|
|
status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
|
|
|
|
// Carry out the Hull correction
|
|
a->exponent-=exp/2; // back to 0.1->1
|
|
|
|
// a is now at final precision and within 1 ulp of the properly
|
|
// rounded square root of f; to ensure proper rounding, compare
|
|
// squares of (a - l/2 ulp) and (a + l/2 ulp) with f.
|
|
// Here workset.digits=maxp and t=0.5, and a->digits determines
|
|
// the ulp
|
|
workset.digits--; // maxp-1 is OK now
|
|
t->exponent=-a->digits-1; // make 0.5 ulp
|
|
decAddOp(b, a, t, &workset, DECNEG, &ignore); // b = a - 0.5 ulp
|
|
workset.round=DEC_ROUND_UP;
|
|
decMultiplyOp(b, b, b, &workset, &ignore); // b = mulru(b, b)
|
|
decCompareOp(b, f, b, &workset, COMPARE, &ignore); // b ? f, reversed
|
|
if (decNumberIsNegative(b)) { // f < b [i.e., b > f]
|
|
// this is the more common adjustment, though both are rare
|
|
t->exponent++; // make 1.0 ulp
|
|
t->lsu[0]=1; // ..
|
|
decAddOp(a, a, t, &workset, DECNEG, &ignore); // a = a - 1 ulp
|
|
// assign to approx [round to length]
|
|
approxset.emin-=exp/2; // adjust to match a
|
|
approxset.emax-=exp/2;
|
|
decAddOp(a, &dzero, a, &approxset, 0, &ignore);
|
|
}
|
|
else {
|
|
decAddOp(b, a, t, &workset, 0, &ignore); // b = a + 0.5 ulp
|
|
workset.round=DEC_ROUND_DOWN;
|
|
decMultiplyOp(b, b, b, &workset, &ignore); // b = mulrd(b, b)
|
|
decCompareOp(b, b, f, &workset, COMPARE, &ignore); // b ? f
|
|
if (decNumberIsNegative(b)) { // b < f
|
|
t->exponent++; // make 1.0 ulp
|
|
t->lsu[0]=1; // ..
|
|
decAddOp(a, a, t, &workset, 0, &ignore); // a = a + 1 ulp
|
|
// assign to approx [round to length]
|
|
approxset.emin-=exp/2; // adjust to match a
|
|
approxset.emax-=exp/2;
|
|
decAddOp(a, &dzero, a, &approxset, 0, &ignore);
|
|
}
|
|
}
|
|
// [no errors are possible in the above, and rounding/inexact during
|
|
// estimation are irrelevant, so status was not accumulated]
|
|
|
|
// Here, 0.1 <= a < 1 (still), so adjust back
|
|
a->exponent+=exp/2; // set correct exponent
|
|
|
|
// count droppable zeros [after any subnormal rounding] by
|
|
// trimming a copy
|
|
decNumberCopy(b, a);
|
|
decTrim(b, set, 1, 1, &dropped); // [drops trailing zeros]
|
|
|
|
// Set Inexact and Rounded. The answer can only be exact if
|
|
// it is short enough so that squaring it could fit in workp
|
|
// digits, so this is the only (relatively rare) condition that
|
|
// a careful check is needed
|
|
if (b->digits*2-1 > workp) { // cannot fit
|
|
status|=DEC_Inexact|DEC_Rounded;
|
|
}
|
|
else { // could be exact/unrounded
|
|
uInt mstatus=0; // local status
|
|
decMultiplyOp(b, b, b, &workset, &mstatus); // try the multiply
|
|
if (mstatus&DEC_Overflow) { // result just won't fit
|
|
status|=DEC_Inexact|DEC_Rounded;
|
|
}
|
|
else { // plausible
|
|
decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); // b ? rhs
|
|
if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; // not equal
|
|
else { // is Exact
|
|
// here, dropped is the count of trailing zeros in 'a'
|
|
// use closest exponent to ideal...
|
|
Int todrop=ideal-a->exponent; // most that can be dropped
|
|
if (todrop<0) status|=DEC_Rounded; // ideally would add 0s
|
|
else { // unrounded
|
|
// there are some to drop, but emax may not allow all
|
|
Int maxexp=set->emax-set->digits+1;
|
|
Int maxdrop=maxexp-a->exponent;
|
|
if (todrop>maxdrop && set->clamp) { // apply clamping
|
|
todrop=maxdrop;
|
|
status|=DEC_Clamped;
|
|
}
|
|
if (dropped<todrop) { // clamp to those available
|
|
todrop=dropped;
|
|
status|=DEC_Clamped;
|
|
}
|
|
if (todrop>0) { // have some to drop
|
|
decShiftToLeast(a->lsu, D2U(a->digits), todrop);
|
|
a->exponent+=todrop; // maintain numerical value
|
|
a->digits-=todrop; // new length
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// double-check Underflow, as perhaps the result could not have
|
|
// been subnormal (initial argument too big), or it is now Exact
|
|
if (status&DEC_Underflow) {
|
|
Int ae=rhs->exponent+rhs->digits-1; // adjusted exponent
|
|
// check if truly subnormal
|
|
#if DECEXTFLAG // DEC_Subnormal too
|
|
if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
|
|
#else
|
|
if (ae>=set->emin*2) status&=~DEC_Underflow;
|
|
#endif
|
|
// check if truly inexact
|
|
if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
|
|
}
|
|
|
|
decNumberCopy(res, a); // a is now the result
|
|
} while(0); // end protected
|
|
|
|
if (allocbuff!=NULL) free(allocbuff); // drop any storage used
|
|
if (allocbufa!=NULL) free(allocbufa); // ..
|
|
if (allocbufb!=NULL) free(allocbufb); // ..
|
|
#if DECSUBSET
|
|
if (allocrhs !=NULL) free(allocrhs); // ..
|
|
#endif
|
|
if (status!=0) decStatus(res, status, set);// then report status
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberSquareRoot
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberSubtract -- subtract two Numbers */
|
|
/* */
|
|
/* This computes C = A - B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
uInt status=0; // accumulator
|
|
|
|
decAddOp(res, lhs, rhs, set, DECNEG, &status);
|
|
if (status!=0) decStatus(res, status, set);
|
|
#if DECCHECK
|
|
decCheckInexact(res, set);
|
|
#endif
|
|
return res;
|
|
} // decNumberSubtract
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberToIntegralExact -- round-to-integral-value with InExact */
|
|
/* decNumberToIntegralValue -- round-to-integral-value */
|
|
/* */
|
|
/* res is the result */
|
|
/* rhs is input number */
|
|
/* set is the context */
|
|
/* */
|
|
/* res must have space for any value of rhs. */
|
|
/* */
|
|
/* This implements the IEEE special operators and therefore treats */
|
|
/* special values as valid. For finite numbers it returns */
|
|
/* rescale(rhs, 0) if rhs->exponent is <0. */
|
|
/* Otherwise the result is rhs (so no error is possible, except for */
|
|
/* sNaN). */
|
|
/* */
|
|
/* The context is used for rounding mode and status after sNaN, but */
|
|
/* the digits setting is ignored. The Exact version will signal */
|
|
/* Inexact if the result differs numerically from rhs; the other */
|
|
/* never signals Inexact. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decNumber dn;
|
|
decContext workset; // working context
|
|
uInt status=0; // accumulator
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
// handle infinities and NaNs
|
|
if (SPECIALARG) {
|
|
if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); // an Infinity
|
|
else decNaNs(res, rhs, NULL, set, &status); // a NaN
|
|
}
|
|
else { // finite
|
|
// have a finite number; no error possible (res must be big enough)
|
|
if (rhs->exponent>=0) return decNumberCopy(res, rhs);
|
|
// that was easy, but if negative exponent there is work to do...
|
|
workset=*set; // clone rounding, etc.
|
|
workset.digits=rhs->digits; // no length rounding
|
|
workset.traps=0; // no traps
|
|
decNumberZero(&dn); // make a number with exponent 0
|
|
decNumberQuantize(res, rhs, &dn, &workset);
|
|
status|=workset.status;
|
|
}
|
|
if (status!=0) decStatus(res, status, set);
|
|
return res;
|
|
} // decNumberToIntegralExact
|
|
|
|
decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
|
|
decContext *set) {
|
|
decContext workset=*set; // working context
|
|
workset.traps=0; // no traps
|
|
decNumberToIntegralExact(res, rhs, &workset);
|
|
// this never affects set, except for sNaNs; NaN will have been set
|
|
// or propagated already, so no need to call decStatus
|
|
set->status|=workset.status&DEC_Invalid_operation;
|
|
return res;
|
|
} // decNumberToIntegralValue
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberXor -- XOR two Numbers, digitwise */
|
|
/* */
|
|
/* This computes C = A ^ B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X^X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context (used for result length and error report) */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberXor(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
const Unit *ua, *ub; // -> operands
|
|
const Unit *msua, *msub; // -> operand msus
|
|
Unit *uc, *msuc; // -> result and its msu
|
|
Int msudigs; // digits in res msu
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|
|
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
// operands are valid
|
|
ua=lhs->lsu; // bottom-up
|
|
ub=rhs->lsu; // ..
|
|
uc=res->lsu; // ..
|
|
msua=ua+D2U(lhs->digits)-1; // -> msu of lhs
|
|
msub=ub+D2U(rhs->digits)-1; // -> msu of rhs
|
|
msuc=uc+D2U(set->digits)-1; // -> msu of result
|
|
msudigs=MSUDIGITS(set->digits); // [faster than remainder]
|
|
for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop
|
|
Unit a, b; // extract units
|
|
if (ua>msua) a=0;
|
|
else a=*ua;
|
|
if (ub>msub) b=0;
|
|
else b=*ub;
|
|
*uc=0; // can now write back
|
|
if (a|b) { // maybe 1 bits to examine
|
|
Int i, j;
|
|
// This loop could be unrolled and/or use BIN2BCD tables
|
|
for (i=0; i<DECDPUN; i++) {
|
|
if ((a^b)&1) *uc=*uc+(Unit)powers[i]; // effect XOR
|
|
j=a%10;
|
|
a=a/10;
|
|
j|=b%10;
|
|
b=b/10;
|
|
if (j>1) {
|
|
decStatus(res, DEC_Invalid_operation, set);
|
|
return res;
|
|
}
|
|
if (uc==msuc && i==msudigs-1) break; // just did final digit
|
|
} // each digit
|
|
} // non-zero
|
|
} // each unit
|
|
// [here uc-1 is the msu of the result]
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
|
res->exponent=0; // integer
|
|
res->bits=0; // sign=0
|
|
return res; // [no status to set]
|
|
} // decNumberXor
|
|
|
|
|
|
/* ================================================================== */
|
|
/* Utility routines */
|
|
/* ================================================================== */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberClass -- return the decClass of a decNumber */
|
|
/* dn -- the decNumber to test */
|
|
/* set -- the context to use for Emin */
|
|
/* returns the decClass enum */
|
|
/* ------------------------------------------------------------------ */
|
|
enum decClass decNumberClass(const decNumber *dn, decContext *set) {
|
|
if (decNumberIsSpecial(dn)) {
|
|
if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
|
|
if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
|
|
// must be an infinity
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
|
|
return DEC_CLASS_POS_INF;
|
|
}
|
|
// is finite
|
|
if (decNumberIsNormal(dn, set)) { // most common
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
|
|
return DEC_CLASS_POS_NORMAL;
|
|
}
|
|
// is subnormal or zero
|
|
if (decNumberIsZero(dn)) { // most common
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
|
|
return DEC_CLASS_POS_ZERO;
|
|
}
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
|
|
return DEC_CLASS_POS_SUBNORMAL;
|
|
} // decNumberClass
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberClassToString -- convert decClass to a string */
|
|
/* */
|
|
/* eclass is a valid decClass */
|
|
/* returns a constant string describing the class (max 13+1 chars) */
|
|
/* ------------------------------------------------------------------ */
|
|
const char *decNumberClassToString(enum decClass eclass) {
|
|
if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN;
|
|
if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN;
|
|
if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ;
|
|
if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ;
|
|
if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
|
|
if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
|
|
if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI;
|
|
if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI;
|
|
if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN;
|
|
if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN;
|
|
return DEC_ClassString_UN; // Unknown
|
|
} // decNumberClassToString
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCopy -- copy a number */
|
|
/* */
|
|
/* dest is the target decNumber */
|
|
/* src is the source decNumber */
|
|
/* returns dest */
|
|
/* */
|
|
/* (dest==src is allowed and is a no-op) */
|
|
/* All fields are updated as required. This is a utility operation, */
|
|
/* so special values are unchanged and no error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCopy(decNumber *dest, const decNumber *src) {
|
|
|
|
#if DECCHECK
|
|
if (src==NULL) return decNumberZero(dest);
|
|
#endif
|
|
|
|
if (dest==src) return dest; // no copy required
|
|
|
|
// Use explicit assignments here as structure assignment could copy
|
|
// more than just the lsu (for small DECDPUN). This would not affect
|
|
// the value of the results, but could disturb test harness spill
|
|
// checking.
|
|
dest->bits=src->bits;
|
|
dest->exponent=src->exponent;
|
|
dest->digits=src->digits;
|
|
dest->lsu[0]=src->lsu[0];
|
|
if (src->digits>DECDPUN) { // more Units to come
|
|
const Unit *smsup, *s; // work
|
|
Unit *d; // ..
|
|
// memcpy for the remaining Units would be safe as they cannot
|
|
// overlap. However, this explicit loop is faster in short cases.
|
|
d=dest->lsu+1; // -> first destination
|
|
smsup=src->lsu+D2U(src->digits); // -> source msu+1
|
|
for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
|
|
}
|
|
return dest;
|
|
} // decNumberCopy
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCopyAbs -- quiet absolute value operator */
|
|
/* */
|
|
/* This sets C = abs(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* No exception or error can occur; this is a quiet bitwise operation.*/
|
|
/* See also decNumberAbs for a checking version of this. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
|
|
#endif
|
|
decNumberCopy(res, rhs);
|
|
res->bits&=~DECNEG; // turn off sign
|
|
return res;
|
|
} // decNumberCopyAbs
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCopyNegate -- quiet negate value operator */
|
|
/* */
|
|
/* This sets C = negate(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* No exception or error can occur; this is a quiet bitwise operation.*/
|
|
/* See also decNumberMinus for a checking version of this. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
|
|
#endif
|
|
decNumberCopy(res, rhs);
|
|
res->bits^=DECNEG; // invert the sign
|
|
return res;
|
|
} // decNumberCopyNegate
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberCopySign -- quiet copy and set sign operator */
|
|
/* */
|
|
/* This sets C = A with the sign of B */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* No exception or error can occur; this is a quiet bitwise operation.*/
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs) {
|
|
uByte sign; // rhs sign
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
|
|
#endif
|
|
sign=rhs->bits & DECNEG; // save sign bit
|
|
decNumberCopy(res, lhs);
|
|
res->bits&=~DECNEG; // clear the sign
|
|
res->bits|=sign; // set from rhs
|
|
return res;
|
|
} // decNumberCopySign
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberGetBCD -- get the coefficient in BCD8 */
|
|
/* dn is the source decNumber */
|
|
/* bcd is the uInt array that will receive dn->digits BCD bytes, */
|
|
/* most-significant at offset 0 */
|
|
/* returns bcd */
|
|
/* */
|
|
/* bcd must have at least dn->digits bytes. No error is possible; if */
|
|
/* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */
|
|
/* ------------------------------------------------------------------ */
|
|
uByte * decNumberGetBCD(const decNumber *dn, uByte *bcd) {
|
|
uByte *ub=bcd+dn->digits-1; // -> lsd
|
|
const Unit *up=dn->lsu; // Unit pointer, -> lsu
|
|
|
|
#if DECDPUN==1 // trivial simple copy
|
|
for (; ub>=bcd; ub--, up++) *ub=*up;
|
|
#else // chopping needed
|
|
uInt u=*up; // work
|
|
uInt cut=DECDPUN; // downcounter through unit
|
|
for (; ub>=bcd; ub--) {
|
|
*ub=(uByte)(u%10); // [*6554 trick inhibits, here]
|
|
u=u/10;
|
|
cut--;
|
|
if (cut>0) continue; // more in this unit
|
|
up++;
|
|
u=*up;
|
|
cut=DECDPUN;
|
|
}
|
|
#endif
|
|
return bcd;
|
|
} // decNumberGetBCD
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberSetBCD -- set (replace) the coefficient from BCD8 */
|
|
/* dn is the target decNumber */
|
|
/* bcd is the uInt array that will source n BCD bytes, most- */
|
|
/* significant at offset 0 */
|
|
/* n is the number of digits in the source BCD array (bcd) */
|
|
/* returns dn */
|
|
/* */
|
|
/* dn must have space for at least n digits. No error is possible; */
|
|
/* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */
|
|
/* and bcd[0] zero. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
|
|
Unit *up=dn->lsu+D2U(dn->digits)-1; // -> msu [target pointer]
|
|
const uByte *ub=bcd; // -> source msd
|
|
|
|
#if DECDPUN==1 // trivial simple copy
|
|
for (; ub<bcd+n; ub++, up--) *up=*ub;
|
|
#else // some assembly needed
|
|
// calculate how many digits in msu, and hence first cut
|
|
Int cut=MSUDIGITS(n); // [faster than remainder]
|
|
for (;up>=dn->lsu; up--) { // each Unit from msu
|
|
*up=0; // will take <=DECDPUN digits
|
|
for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
|
|
cut=DECDPUN; // next Unit has all digits
|
|
}
|
|
#endif
|
|
dn->digits=n; // set digit count
|
|
return dn;
|
|
} // decNumberSetBCD
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberIsNormal -- test normality of a decNumber */
|
|
/* dn is the decNumber to test */
|
|
/* set is the context to use for Emin */
|
|
/* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */
|
|
/* ------------------------------------------------------------------ */
|
|
Int decNumberIsNormal(const decNumber *dn, decContext *set) {
|
|
Int ae; // adjusted exponent
|
|
#if DECCHECK
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
|
#endif
|
|
|
|
if (decNumberIsSpecial(dn)) return 0; // not finite
|
|
if (decNumberIsZero(dn)) return 0; // not non-zero
|
|
|
|
ae=dn->exponent+dn->digits-1; // adjusted exponent
|
|
if (ae<set->emin) return 0; // is subnormal
|
|
return 1;
|
|
} // decNumberIsNormal
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberIsSubnormal -- test subnormality of a decNumber */
|
|
/* dn is the decNumber to test */
|
|
/* set is the context to use for Emin */
|
|
/* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */
|
|
/* ------------------------------------------------------------------ */
|
|
Int decNumberIsSubnormal(const decNumber *dn, decContext *set) {
|
|
Int ae; // adjusted exponent
|
|
#if DECCHECK
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
|
#endif
|
|
|
|
if (decNumberIsSpecial(dn)) return 0; // not finite
|
|
if (decNumberIsZero(dn)) return 0; // not non-zero
|
|
|
|
ae=dn->exponent+dn->digits-1; // adjusted exponent
|
|
if (ae<set->emin) return 1; // is subnormal
|
|
return 0;
|
|
} // decNumberIsSubnormal
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberTrim -- remove insignificant zeros */
|
|
/* */
|
|
/* dn is the number to trim */
|
|
/* returns dn */
|
|
/* */
|
|
/* All fields are updated as required. This is a utility operation, */
|
|
/* so special values are unchanged and no error is possible. The */
|
|
/* zeros are removed unconditionally. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decNumberTrim(decNumber *dn) {
|
|
Int dropped; // work
|
|
decContext set; // ..
|
|
#if DECCHECK
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
|
|
#endif
|
|
decContextDefault(&set, DEC_INIT_BASE); // clamp=0
|
|
return decTrim(dn, &set, 0, 1, &dropped);
|
|
} // decNumberTrim
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberVersion -- return the name and version of this module */
|
|
/* */
|
|
/* No error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
const char * decNumberVersion(void) {
|
|
return DECVERSION;
|
|
} // decNumberVersion
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberZero -- set a number to 0 */
|
|
/* */
|
|
/* dn is the number to set, with space for one digit */
|
|
/* returns dn */
|
|
/* */
|
|
/* No error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
// Memset is not used as it is much slower in some environments.
|
|
decNumber * decNumberZero(decNumber *dn) {
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
|
|
#endif
|
|
|
|
dn->bits=0;
|
|
dn->exponent=0;
|
|
dn->digits=1;
|
|
dn->lsu[0]=0;
|
|
return dn;
|
|
} // decNumberZero
|
|
|
|
/* ================================================================== */
|
|
/* Local routines */
|
|
/* ================================================================== */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decToString -- lay out a number into a string */
|
|
/* */
|
|
/* dn is the number to lay out */
|
|
/* string is where to lay out the number */
|
|
/* eng is 1 if Engineering, 0 if Scientific */
|
|
/* */
|
|
/* string must be at least dn->digits+14 characters long */
|
|
/* No error is possible. */
|
|
/* */
|
|
/* Note that this routine can generate a -0 or 0.000. These are */
|
|
/* never generated in subset to-number or arithmetic, but can occur */
|
|
/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
|
|
/* ------------------------------------------------------------------ */
|
|
// If DECCHECK is enabled the string "?" is returned if a number is
|
|
// invalid.
|
|
static void decToString(const decNumber *dn, char *string, Flag eng) {
|
|
Int exp=dn->exponent; // local copy
|
|
Int e; // E-part value
|
|
Int pre; // digits before the '.'
|
|
Int cut; // for counting digits in a Unit
|
|
char *c=string; // work [output pointer]
|
|
const Unit *up=dn->lsu+D2U(dn->digits)-1; // -> msu [input pointer]
|
|
uInt u, pow; // work
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
|
|
strcpy(string, "?");
|
|
return;}
|
|
#endif
|
|
|
|
if (decNumberIsNegative(dn)) { // Negatives get a minus
|
|
*c='-';
|
|
c++;
|
|
}
|
|
if (dn->bits&DECSPECIAL) { // Is a special value
|
|
if (decNumberIsInfinite(dn)) {
|
|
strcpy(c, "Inf");
|
|
strcpy(c+3, "inity");
|
|
return;}
|
|
// a NaN
|
|
if (dn->bits&DECSNAN) { // signalling NaN
|
|
*c='s';
|
|
c++;
|
|
}
|
|
strcpy(c, "NaN");
|
|
c+=3; // step past
|
|
// if not a clean non-zero coefficient, that's all there is in a
|
|
// NaN string
|
|
if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
|
|
// [drop through to add integer]
|
|
}
|
|
|
|
// calculate how many digits in msu, and hence first cut
|
|
cut=MSUDIGITS(dn->digits); // [faster than remainder]
|
|
cut--; // power of ten for digit
|
|
|
|
if (exp==0) { // simple integer [common fastpath]
|
|
for (;up>=dn->lsu; up--) { // each Unit from msu
|
|
u=*up; // contains DECDPUN digits to lay out
|
|
for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
|
|
cut=DECDPUN-1; // next Unit has all digits
|
|
}
|
|
*c='\0'; // terminate the string
|
|
return;}
|
|
|
|
/* non-0 exponent -- assume plain form */
|
|
pre=dn->digits+exp; // digits before '.'
|
|
e=0; // no E
|
|
if ((exp>0) || (pre<-5)) { // need exponential form
|
|
e=exp+dn->digits-1; // calculate E value
|
|
pre=1; // assume one digit before '.'
|
|
if (eng && (e!=0)) { // engineering: may need to adjust
|
|
Int adj; // adjustment
|
|
// The C remainder operator is undefined for negative numbers, so
|
|
// a positive remainder calculation must be used here
|
|
if (e<0) {
|
|
adj=(-e)%3;
|
|
if (adj!=0) adj=3-adj;
|
|
}
|
|
else { // e>0
|
|
adj=e%3;
|
|
}
|
|
e=e-adj;
|
|
// if dealing with zero still produce an exponent which is a
|
|
// multiple of three, as expected, but there will only be the
|
|
// one zero before the E, still. Otherwise note the padding.
|
|
if (!ISZERO(dn)) pre+=adj;
|
|
else { // is zero
|
|
if (adj!=0) { // 0.00Esnn needed
|
|
e=e+3;
|
|
pre=-(2-adj);
|
|
}
|
|
} // zero
|
|
} // eng
|
|
} // need exponent
|
|
|
|
/* lay out the digits of the coefficient, adding 0s and . as needed */
|
|
u=*up;
|
|
if (pre>0) { // xxx.xxx or xx00 (engineering) form
|
|
Int n=pre;
|
|
for (; pre>0; pre--, c++, cut--) {
|
|
if (cut<0) { // need new Unit
|
|
if (up==dn->lsu) break; // out of input digits (pre>digits)
|
|
up--;
|
|
cut=DECDPUN-1;
|
|
u=*up;
|
|
}
|
|
TODIGIT(u, cut, c, pow);
|
|
}
|
|
if (n<dn->digits) { // more to come, after '.'
|
|
*c='.'; c++;
|
|
for (;; c++, cut--) {
|
|
if (cut<0) { // need new Unit
|
|
if (up==dn->lsu) break; // out of input digits
|
|
up--;
|
|
cut=DECDPUN-1;
|
|
u=*up;
|
|
}
|
|
TODIGIT(u, cut, c, pow);
|
|
}
|
|
}
|
|
else for (; pre>0; pre--, c++) *c='0'; // 0 padding (for engineering) needed
|
|
}
|
|
else { // 0.xxx or 0.000xxx form
|
|
*c='0'; c++;
|
|
*c='.'; c++;
|
|
for (; pre<0; pre++, c++) *c='0'; // add any 0's after '.'
|
|
for (; ; c++, cut--) {
|
|
if (cut<0) { // need new Unit
|
|
if (up==dn->lsu) break; // out of input digits
|
|
up--;
|
|
cut=DECDPUN-1;
|
|
u=*up;
|
|
}
|
|
TODIGIT(u, cut, c, pow);
|
|
}
|
|
}
|
|
|
|
/* Finally add the E-part, if needed. It will never be 0, has a
|
|
base maximum and minimum of +999999999 through -999999999, but
|
|
could range down to -1999999998 for anormal numbers */
|
|
if (e!=0) {
|
|
Flag had=0; // 1=had non-zero
|
|
*c='E'; c++;
|
|
*c='+'; c++; // assume positive
|
|
u=e; // ..
|
|
if (e<0) {
|
|
*(c-1)='-'; // oops, need -
|
|
u=-e; // uInt, please
|
|
}
|
|
// lay out the exponent [_itoa or equivalent is not ANSI C]
|
|
for (cut=9; cut>=0; cut--) {
|
|
TODIGIT(u, cut, c, pow);
|
|
if (*c=='0' && !had) continue; // skip leading zeros
|
|
had=1; // had non-0
|
|
c++; // step for next
|
|
} // cut
|
|
}
|
|
*c='\0'; // terminate the string (all paths)
|
|
return;
|
|
} // decToString
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decAddOp -- add/subtract operation */
|
|
/* */
|
|
/* This computes C = A + B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* negate is DECNEG if rhs should be negated, or 0 otherwise */
|
|
/* status accumulates status for the caller */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* Inexact in status must be 0 for correct Exact zero sign in result */
|
|
/* ------------------------------------------------------------------ */
|
|
/* If possible, the coefficient is calculated directly into C. */
|
|
/* However, if: */
|
|
/* -- a digits+1 calculation is needed because the numbers are */
|
|
/* unaligned and span more than set->digits digits */
|
|
/* -- a carry to digits+1 digits looks possible */
|
|
/* -- C is the same as A or B, and the result would destructively */
|
|
/* overlap the A or B coefficient */
|
|
/* then the result must be calculated into a temporary buffer. In */
|
|
/* this case a local (stack) buffer is used if possible, and only if */
|
|
/* too long for that does malloc become the final resort. */
|
|
/* */
|
|
/* Misalignment is handled as follows: */
|
|
/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
|
|
/* BPad: Apply the padding by a combination of shifting (whole */
|
|
/* units) and multiplication (part units). */
|
|
/* */
|
|
/* Addition, especially x=x+1, is speed-critical. */
|
|
/* The static buffer is larger than might be expected to allow for */
|
|
/* calls from higher-level funtions (notable exp). */
|
|
/* ------------------------------------------------------------------ */
|
|
static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set,
|
|
uByte negate, uInt *status) {
|
|
#if DECSUBSET
|
|
decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated
|
|
decNumber *allocrhs=NULL; // .., rhs
|
|
#endif
|
|
Int rhsshift; // working shift (in Units)
|
|
Int maxdigits; // longest logical length
|
|
Int mult; // multiplier
|
|
Int residue; // rounding accumulator
|
|
uByte bits; // result bits
|
|
Flag diffsign; // non-0 if arguments have different sign
|
|
Unit *acc; // accumulator for result
|
|
Unit accbuff[SD2U(DECBUFFER*2+20)]; // local buffer [*2+20 reduces many
|
|
// allocations when called from
|
|
// other operations, notable exp]
|
|
Unit *allocacc=NULL; // -> allocated acc buffer, iff allocated
|
|
Int reqdigits=set->digits; // local copy; requested DIGITS
|
|
Int padding; // work
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operands and set lostDigits status, as needed
|
|
if (lhs->digits>reqdigits) {
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
|
if (alloclhs==NULL) break;
|
|
lhs=alloclhs;
|
|
}
|
|
if (rhs->digits>reqdigits) {
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
// note whether signs differ [used all paths]
|
|
diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
|
|
|
|
// handle infinities and NaNs
|
|
if (SPECIALARGS) { // a special bit set
|
|
if (SPECIALARGS & (DECSNAN | DECNAN)) // a NaN
|
|
decNaNs(res, lhs, rhs, set, status);
|
|
else { // one or two infinities
|
|
if (decNumberIsInfinite(lhs)) { // LHS is infinity
|
|
// two infinities with different signs is invalid
|
|
if (decNumberIsInfinite(rhs) && diffsign) {
|
|
*status|=DEC_Invalid_operation;
|
|
break;
|
|
}
|
|
bits=lhs->bits & DECNEG; // get sign from LHS
|
|
}
|
|
else bits=(rhs->bits^negate) & DECNEG;// RHS must be Infinity
|
|
bits|=DECINF;
|
|
decNumberZero(res);
|
|
res->bits=bits; // set +/- infinity
|
|
} // an infinity
|
|
break;
|
|
}
|
|
|
|
// Quick exit for add 0s; return the non-0, modified as need be
|
|
if (ISZERO(lhs)) {
|
|
Int adjust; // work
|
|
Int lexp=lhs->exponent; // save in case LHS==RES
|
|
bits=lhs->bits; // ..
|
|
residue=0; // clear accumulator
|
|
decCopyFit(res, rhs, set, &residue, status); // copy (as needed)
|
|
res->bits^=negate; // flip if rhs was negated
|
|
#if DECSUBSET
|
|
if (set->extended) { // exponents on zeros count
|
|
#endif
|
|
// exponent will be the lower of the two
|
|
adjust=lexp-res->exponent; // adjustment needed [if -ve]
|
|
if (ISZERO(res)) { // both 0: special IEEE 754 rules
|
|
if (adjust<0) res->exponent=lexp; // set exponent
|
|
// 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0
|
|
if (diffsign) {
|
|
if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
|
|
else res->bits=DECNEG; // preserve 0 sign
|
|
}
|
|
}
|
|
else { // non-0 res
|
|
if (adjust<0) { // 0-padding needed
|
|
if ((res->digits-adjust)>set->digits) {
|
|
adjust=res->digits-set->digits; // to fit exactly
|
|
*status|=DEC_Rounded; // [but exact]
|
|
}
|
|
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
|
|
res->exponent+=adjust; // set the exponent.
|
|
}
|
|
} // non-0 res
|
|
#if DECSUBSET
|
|
} // extended
|
|
#endif
|
|
decFinish(res, set, &residue, status); // clean and finalize
|
|
break;}
|
|
|
|
if (ISZERO(rhs)) { // [lhs is non-zero]
|
|
Int adjust; // work
|
|
Int rexp=rhs->exponent; // save in case RHS==RES
|
|
bits=rhs->bits; // be clean
|
|
residue=0; // clear accumulator
|
|
decCopyFit(res, lhs, set, &residue, status); // copy (as needed)
|
|
#if DECSUBSET
|
|
if (set->extended) { // exponents on zeros count
|
|
#endif
|
|
// exponent will be the lower of the two
|
|
// [0-0 case handled above]
|
|
adjust=rexp-res->exponent; // adjustment needed [if -ve]
|
|
if (adjust<0) { // 0-padding needed
|
|
if ((res->digits-adjust)>set->digits) {
|
|
adjust=res->digits-set->digits; // to fit exactly
|
|
*status|=DEC_Rounded; // [but exact]
|
|
}
|
|
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
|
|
res->exponent+=adjust; // set the exponent.
|
|
}
|
|
#if DECSUBSET
|
|
} // extended
|
|
#endif
|
|
decFinish(res, set, &residue, status); // clean and finalize
|
|
break;}
|
|
|
|
// [NB: both fastpath and mainpath code below assume these cases
|
|
// (notably 0-0) have already been handled]
|
|
|
|
// calculate the padding needed to align the operands
|
|
padding=rhs->exponent-lhs->exponent;
|
|
|
|
// Fastpath cases where the numbers are aligned and normal, the RHS
|
|
// is all in one unit, no operand rounding is needed, and no carry,
|
|
// lengthening, or borrow is needed
|
|
if (padding==0
|
|
&& rhs->digits<=DECDPUN
|
|
&& rhs->exponent>=set->emin // [some normals drop through]
|
|
&& rhs->exponent<=set->emax-set->digits+1 // [could clamp]
|
|
&& rhs->digits<=reqdigits
|
|
&& lhs->digits<=reqdigits) {
|
|
Int partial=*lhs->lsu;
|
|
if (!diffsign) { // adding
|
|
partial+=*rhs->lsu;
|
|
if ((partial<=DECDPUNMAX) // result fits in unit
|
|
&& (lhs->digits>=DECDPUN || // .. and no digits-count change
|
|
partial<(Int)powers[lhs->digits])) { // ..
|
|
if (res!=lhs) decNumberCopy(res, lhs); // not in place
|
|
*res->lsu=(Unit)partial; // [copy could have overwritten RHS]
|
|
break;
|
|
}
|
|
// else drop out for careful add
|
|
}
|
|
else { // signs differ
|
|
partial-=*rhs->lsu;
|
|
if (partial>0) { // no borrow needed, and non-0 result
|
|
if (res!=lhs) decNumberCopy(res, lhs); // not in place
|
|
*res->lsu=(Unit)partial;
|
|
// this could have reduced digits [but result>0]
|
|
res->digits=decGetDigits(res->lsu, D2U(res->digits));
|
|
break;
|
|
}
|
|
// else drop out for careful subtract
|
|
}
|
|
}
|
|
|
|
// Now align (pad) the lhs or rhs so they can be added or
|
|
// subtracted, as necessary. If one number is much larger than
|
|
// the other (that is, if in plain form there is a least one
|
|
// digit between the lowest digit of one and the highest of the
|
|
// other) padding with up to DIGITS-1 trailing zeros may be
|
|
// needed; then apply rounding (as exotic rounding modes may be
|
|
// affected by the residue).
|
|
rhsshift=0; // rhs shift to left (padding) in Units
|
|
bits=lhs->bits; // assume sign is that of LHS
|
|
mult=1; // likely multiplier
|
|
|
|
// [if padding==0 the operands are aligned; no padding is needed]
|
|
if (padding!=0) {
|
|
// some padding needed; always pad the RHS, as any required
|
|
// padding can then be effected by a simple combination of
|
|
// shifts and a multiply
|
|
Flag swapped=0;
|
|
if (padding<0) { // LHS needs the padding
|
|
const decNumber *t;
|
|
padding=-padding; // will be +ve
|
|
bits=(uByte)(rhs->bits^negate); // assumed sign is now that of RHS
|
|
t=lhs; lhs=rhs; rhs=t;
|
|
swapped=1;
|
|
}
|
|
|
|
// If, after pad, rhs would be longer than lhs by digits+1 or
|
|
// more then lhs cannot affect the answer, except as a residue,
|
|
// so only need to pad up to a length of DIGITS+1.
|
|
if (rhs->digits+padding > lhs->digits+reqdigits+1) {
|
|
// The RHS is sufficient
|
|
// for residue use the relative sign indication...
|
|
Int shift=reqdigits-rhs->digits; // left shift needed
|
|
residue=1; // residue for rounding
|
|
if (diffsign) residue=-residue; // signs differ
|
|
// copy, shortening if necessary
|
|
decCopyFit(res, rhs, set, &residue, status);
|
|
// if it was already shorter, then need to pad with zeros
|
|
if (shift>0) {
|
|
res->digits=decShiftToMost(res->lsu, res->digits, shift);
|
|
res->exponent-=shift; // adjust the exponent.
|
|
}
|
|
// flip the result sign if unswapped and rhs was negated
|
|
if (!swapped) res->bits^=negate;
|
|
decFinish(res, set, &residue, status); // done
|
|
break;}
|
|
|
|
// LHS digits may affect result
|
|
rhsshift=D2U(padding+1)-1; // this much by Unit shift ..
|
|
mult=powers[padding-(rhsshift*DECDPUN)]; // .. this by multiplication
|
|
} // padding needed
|
|
|
|
if (diffsign) mult=-mult; // signs differ
|
|
|
|
// determine the longer operand
|
|
maxdigits=rhs->digits+padding; // virtual length of RHS
|
|
if (lhs->digits>maxdigits) maxdigits=lhs->digits;
|
|
|
|
// Decide on the result buffer to use; if possible place directly
|
|
// into result.
|
|
acc=res->lsu; // assume add direct to result
|
|
// If destructive overlap, or the number is too long, or a carry or
|
|
// borrow to DIGITS+1 might be possible, a buffer must be used.
|
|
// [Might be worth more sophisticated tests when maxdigits==reqdigits]
|
|
if ((maxdigits>=reqdigits) // is, or could be, too large
|
|
|| (res==rhs && rhsshift>0)) { // destructive overlap
|
|
// buffer needed, choose it; units for maxdigits digits will be
|
|
// needed, +1 Unit for carry or borrow
|
|
Int need=D2U(maxdigits)+1;
|
|
acc=accbuff; // assume use local buffer
|
|
if (need*sizeof(Unit)>sizeof(accbuff)) {
|
|
// printf("malloc add %ld %ld\n", need, sizeof(accbuff));
|
|
allocacc=(Unit *)malloc(need*sizeof(Unit));
|
|
if (allocacc==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
acc=allocacc;
|
|
}
|
|
}
|
|
|
|
res->bits=(uByte)(bits&DECNEG); // it's now safe to overwrite..
|
|
res->exponent=lhs->exponent; // .. operands (even if aliased)
|
|
|
|
#if DECTRACE
|
|
decDumpAr('A', lhs->lsu, D2U(lhs->digits));
|
|
decDumpAr('B', rhs->lsu, D2U(rhs->digits));
|
|
printf(" :h: %ld %ld\n", rhsshift, mult);
|
|
#endif
|
|
|
|
// add [A+B*m] or subtract [A+B*(-m)]
|
|
res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
|
|
rhs->lsu, D2U(rhs->digits),
|
|
rhsshift, acc, mult)
|
|
*DECDPUN; // [units -> digits]
|
|
if (res->digits<0) { // borrowed...
|
|
res->digits=-res->digits;
|
|
res->bits^=DECNEG; // flip the sign
|
|
}
|
|
#if DECTRACE
|
|
decDumpAr('+', acc, D2U(res->digits));
|
|
#endif
|
|
|
|
// If a buffer was used the result must be copied back, possibly
|
|
// shortening. (If no buffer was used then the result must have
|
|
// fit, so can't need rounding and residue must be 0.)
|
|
residue=0; // clear accumulator
|
|
if (acc!=res->lsu) {
|
|
#if DECSUBSET
|
|
if (set->extended) { // round from first significant digit
|
|
#endif
|
|
// remove leading zeros that were added due to rounding up to
|
|
// integral Units -- before the test for rounding.
|
|
if (res->digits>reqdigits)
|
|
res->digits=decGetDigits(acc, D2U(res->digits));
|
|
decSetCoeff(res, set, acc, res->digits, &residue, status);
|
|
#if DECSUBSET
|
|
}
|
|
else { // subset arithmetic rounds from original significant digit
|
|
// May have an underestimate. This only occurs when both
|
|
// numbers fit in DECDPUN digits and are padding with a
|
|
// negative multiple (-10, -100...) and the top digit(s) become
|
|
// 0. (This only matters when using X3.274 rules where the
|
|
// leading zero could be included in the rounding.)
|
|
if (res->digits<maxdigits) {
|
|
*(acc+D2U(res->digits))=0; // ensure leading 0 is there
|
|
res->digits=maxdigits;
|
|
}
|
|
else {
|
|
// remove leading zeros that added due to rounding up to
|
|
// integral Units (but only those in excess of the original
|
|
// maxdigits length, unless extended) before test for rounding.
|
|
if (res->digits>reqdigits) {
|
|
res->digits=decGetDigits(acc, D2U(res->digits));
|
|
if (res->digits<maxdigits) res->digits=maxdigits;
|
|
}
|
|
}
|
|
decSetCoeff(res, set, acc, res->digits, &residue, status);
|
|
// Now apply rounding if needed before removing leading zeros.
|
|
// This is safe because subnormals are not a possibility
|
|
if (residue!=0) {
|
|
decApplyRound(res, set, residue, status);
|
|
residue=0; // did what needed to be done
|
|
}
|
|
} // subset
|
|
#endif
|
|
} // used buffer
|
|
|
|
// strip leading zeros [these were left on in case of subset subtract]
|
|
res->digits=decGetDigits(res->lsu, D2U(res->digits));
|
|
|
|
// apply checks and rounding
|
|
decFinish(res, set, &residue, status);
|
|
|
|
// "When the sum of two operands with opposite signs is exactly
|
|
// zero, the sign of that sum shall be '+' in all rounding modes
|
|
// except round toward -Infinity, in which mode that sign shall be
|
|
// '-'." [Subset zeros also never have '-', set by decFinish.]
|
|
if (ISZERO(res) && diffsign
|
|
#if DECSUBSET
|
|
&& set->extended
|
|
#endif
|
|
&& (*status&DEC_Inexact)==0) {
|
|
if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; // sign -
|
|
else res->bits&=~DECNEG; // sign +
|
|
}
|
|
} while(0); // end protected
|
|
|
|
if (allocacc!=NULL) free(allocacc); // drop any storage used
|
|
#if DECSUBSET
|
|
if (allocrhs!=NULL) free(allocrhs); // ..
|
|
if (alloclhs!=NULL) free(alloclhs); // ..
|
|
#endif
|
|
return res;
|
|
} // decAddOp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decDivideOp -- division operation */
|
|
/* */
|
|
/* This routine performs the calculations for all four division */
|
|
/* operators (divide, divideInteger, remainder, remainderNear). */
|
|
/* */
|
|
/* C=A op B */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
|
|
/* status is the usual accumulator */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* ------------------------------------------------------------------ */
|
|
/* The underlying algorithm of this routine is the same as in the */
|
|
/* 1981 S/370 implementation, that is, non-restoring long division */
|
|
/* with bi-unit (rather than bi-digit) estimation for each unit */
|
|
/* multiplier. In this pseudocode overview, complications for the */
|
|
/* Remainder operators and division residues for exact rounding are */
|
|
/* omitted for clarity. */
|
|
/* */
|
|
/* Prepare operands and handle special values */
|
|
/* Test for x/0 and then 0/x */
|
|
/* Exp =Exp1 - Exp2 */
|
|
/* Exp =Exp +len(var1) -len(var2) */
|
|
/* Sign=Sign1 * Sign2 */
|
|
/* Pad accumulator (Var1) to double-length with 0's (pad1) */
|
|
/* Pad Var2 to same length as Var1 */
|
|
/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
|
|
/* have=0 */
|
|
/* Do until (have=digits+1 OR residue=0) */
|
|
/* if exp<0 then if integer divide/residue then leave */
|
|
/* this_unit=0 */
|
|
/* Do forever */
|
|
/* compare numbers */
|
|
/* if <0 then leave inner_loop */
|
|
/* if =0 then (* quick exit without subtract *) do */
|
|
/* this_unit=this_unit+1; output this_unit */
|
|
/* leave outer_loop; end */
|
|
/* Compare lengths of numbers (mantissae): */
|
|
/* If same then tops2=msu2pair -- {units 1&2 of var2} */
|
|
/* else tops2=msu2plus -- {0, unit 1 of var2} */
|
|
/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
|
|
/* mult=tops1/tops2 -- Good and safe guess at divisor */
|
|
/* if mult=0 then mult=1 */
|
|
/* this_unit=this_unit+mult */
|
|
/* subtract */
|
|
/* end inner_loop */
|
|
/* if have\=0 | this_unit\=0 then do */
|
|
/* output this_unit */
|
|
/* have=have+1; end */
|
|
/* var2=var2/10 */
|
|
/* exp=exp-1 */
|
|
/* end outer_loop */
|
|
/* exp=exp+1 -- set the proper exponent */
|
|
/* if have=0 then generate answer=0 */
|
|
/* Return (Result is defined by Var1) */
|
|
/* */
|
|
/* ------------------------------------------------------------------ */
|
|
/* Two working buffers are needed during the division; one (digits+ */
|
|
/* 1) to accumulate the result, and the other (up to 2*digits+1) for */
|
|
/* long subtractions. These are acc and var1 respectively. */
|
|
/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
|
|
/* The static buffers may be larger than might be expected to allow */
|
|
/* for calls from higher-level funtions (notable exp). */
|
|
/* ------------------------------------------------------------------ */
|
|
static decNumber * decDivideOp(decNumber *res,
|
|
const decNumber *lhs, const decNumber *rhs,
|
|
decContext *set, Flag op, uInt *status) {
|
|
#if DECSUBSET
|
|
decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated
|
|
decNumber *allocrhs=NULL; // .., rhs
|
|
#endif
|
|
Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; // local buffer
|
|
Unit *acc=accbuff; // -> accumulator array for result
|
|
Unit *allocacc=NULL; // -> allocated buffer, iff allocated
|
|
Unit *accnext; // -> where next digit will go
|
|
Int acclength; // length of acc needed [Units]
|
|
Int accunits; // count of units accumulated
|
|
Int accdigits; // count of digits accumulated
|
|
|
|
Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)]; // buffer for var1
|
|
Unit *var1=varbuff; // -> var1 array for long subtraction
|
|
Unit *varalloc=NULL; // -> allocated buffer, iff used
|
|
Unit *msu1; // -> msu of var1
|
|
|
|
const Unit *var2; // -> var2 array
|
|
const Unit *msu2; // -> msu of var2
|
|
Int msu2plus; // msu2 plus one [does not vary]
|
|
eInt msu2pair; // msu2 pair plus one [does not vary]
|
|
|
|
Int var1units, var2units; // actual lengths
|
|
Int var2ulen; // logical length (units)
|
|
Int var1initpad=0; // var1 initial padding (digits)
|
|
Int maxdigits; // longest LHS or required acc length
|
|
Int mult; // multiplier for subtraction
|
|
Unit thisunit; // current unit being accumulated
|
|
Int residue; // for rounding
|
|
Int reqdigits=set->digits; // requested DIGITS
|
|
Int exponent; // working exponent
|
|
Int maxexponent=0; // DIVIDE maximum exponent if unrounded
|
|
uByte bits; // working sign
|
|
Unit *target; // work
|
|
const Unit *source; // ..
|
|
uInt const *pow; // ..
|
|
Int shift, cut; // ..
|
|
#if DECSUBSET
|
|
Int dropped; // work
|
|
#endif
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operands and set lostDigits status, as needed
|
|
if (lhs->digits>reqdigits) {
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
|
if (alloclhs==NULL) break;
|
|
lhs=alloclhs;
|
|
}
|
|
if (rhs->digits>reqdigits) {
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
bits=(lhs->bits^rhs->bits)&DECNEG; // assumed sign for divisions
|
|
|
|
// handle infinities and NaNs
|
|
if (SPECIALARGS) { // a special bit set
|
|
if (SPECIALARGS & (DECSNAN | DECNAN)) { // one or two NaNs
|
|
decNaNs(res, lhs, rhs, set, status);
|
|
break;
|
|
}
|
|
// one or two infinities
|
|
if (decNumberIsInfinite(lhs)) { // LHS (dividend) is infinite
|
|
if (decNumberIsInfinite(rhs) || // two infinities are invalid ..
|
|
op & (REMAINDER | REMNEAR)) { // as is remainder of infinity
|
|
*status|=DEC_Invalid_operation;
|
|
break;
|
|
}
|
|
// [Note that infinity/0 raises no exceptions]
|
|
decNumberZero(res);
|
|
res->bits=bits|DECINF; // set +/- infinity
|
|
break;
|
|
}
|
|
else { // RHS (divisor) is infinite
|
|
residue=0;
|
|
if (op&(REMAINDER|REMNEAR)) {
|
|
// result is [finished clone of] lhs
|
|
decCopyFit(res, lhs, set, &residue, status);
|
|
}
|
|
else { // a division
|
|
decNumberZero(res);
|
|
res->bits=bits; // set +/- zero
|
|
// for DIVIDEINT the exponent is always 0. For DIVIDE, result
|
|
// is a 0 with infinitely negative exponent, clamped to minimum
|
|
if (op&DIVIDE) {
|
|
res->exponent=set->emin-set->digits+1;
|
|
*status|=DEC_Clamped;
|
|
}
|
|
}
|
|
decFinish(res, set, &residue, status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// handle 0 rhs (x/0)
|
|
if (ISZERO(rhs)) { // x/0 is always exceptional
|
|
if (ISZERO(lhs)) {
|
|
decNumberZero(res); // [after lhs test]
|
|
*status|=DEC_Division_undefined;// 0/0 will become NaN
|
|
}
|
|
else {
|
|
decNumberZero(res);
|
|
if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
|
|
else {
|
|
*status|=DEC_Division_by_zero; // x/0
|
|
res->bits=bits|DECINF; // .. is +/- Infinity
|
|
}
|
|
}
|
|
break;}
|
|
|
|
// handle 0 lhs (0/x)
|
|
if (ISZERO(lhs)) { // 0/x [x!=0]
|
|
#if DECSUBSET
|
|
if (!set->extended) decNumberZero(res);
|
|
else {
|
|
#endif
|
|
if (op&DIVIDE) {
|
|
residue=0;
|
|
exponent=lhs->exponent-rhs->exponent; // ideal exponent
|
|
decNumberCopy(res, lhs); // [zeros always fit]
|
|
res->bits=bits; // sign as computed
|
|
res->exponent=exponent; // exponent, too
|
|
decFinalize(res, set, &residue, status); // check exponent
|
|
}
|
|
else if (op&DIVIDEINT) {
|
|
decNumberZero(res); // integer 0
|
|
res->bits=bits; // sign as computed
|
|
}
|
|
else { // a remainder
|
|
exponent=rhs->exponent; // [save in case overwrite]
|
|
decNumberCopy(res, lhs); // [zeros always fit]
|
|
if (exponent<res->exponent) res->exponent=exponent; // use lower
|
|
}
|
|
#if DECSUBSET
|
|
}
|
|
#endif
|
|
break;}
|
|
|
|
// Precalculate exponent. This starts off adjusted (and hence fits
|
|
// in 31 bits) and becomes the usual unadjusted exponent as the
|
|
// division proceeds. The order of evaluation is important, here,
|
|
// to avoid wrap.
|
|
exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
|
|
|
|
// If the working exponent is -ve, then some quick exits are
|
|
// possible because the quotient is known to be <1
|
|
// [for REMNEAR, it needs to be < -1, as -0.5 could need work]
|
|
if (exponent<0 && !(op==DIVIDE)) {
|
|
if (op&DIVIDEINT) {
|
|
decNumberZero(res); // integer part is 0
|
|
#if DECSUBSET
|
|
if (set->extended)
|
|
#endif
|
|
res->bits=bits; // set +/- zero
|
|
break;}
|
|
// fastpath remainders so long as the lhs has the smaller
|
|
// (or equal) exponent
|
|
if (lhs->exponent<=rhs->exponent) {
|
|
if (op&REMAINDER || exponent<-1) {
|
|
// It is REMAINDER or safe REMNEAR; result is [finished
|
|
// clone of] lhs (r = x - 0*y)
|
|
residue=0;
|
|
decCopyFit(res, lhs, set, &residue, status);
|
|
decFinish(res, set, &residue, status);
|
|
break;
|
|
}
|
|
// [unsafe REMNEAR drops through]
|
|
}
|
|
} // fastpaths
|
|
|
|
/* Long (slow) division is needed; roll up the sleeves... */
|
|
|
|
// The accumulator will hold the quotient of the division.
|
|
// If it needs to be too long for stack storage, then allocate.
|
|
acclength=D2U(reqdigits+DECDPUN); // in Units
|
|
if (acclength*sizeof(Unit)>sizeof(accbuff)) {
|
|
// printf("malloc dvacc %ld units\n", acclength);
|
|
allocacc=(Unit *)malloc(acclength*sizeof(Unit));
|
|
if (allocacc==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
acc=allocacc; // use the allocated space
|
|
}
|
|
|
|
// var1 is the padded LHS ready for subtractions.
|
|
// If it needs to be too long for stack storage, then allocate.
|
|
// The maximum units needed for var1 (long subtraction) is:
|
|
// Enough for
|
|
// (rhs->digits+reqdigits-1) -- to allow full slide to right
|
|
// or (lhs->digits) -- to allow for long lhs
|
|
// whichever is larger
|
|
// +1 -- for rounding of slide to right
|
|
// +1 -- for leading 0s
|
|
// +1 -- for pre-adjust if a remainder or DIVIDEINT
|
|
// [Note: unused units do not participate in decUnitAddSub data]
|
|
maxdigits=rhs->digits+reqdigits-1;
|
|
if (lhs->digits>maxdigits) maxdigits=lhs->digits;
|
|
var1units=D2U(maxdigits)+2;
|
|
// allocate a guard unit above msu1 for REMAINDERNEAR
|
|
if (!(op&DIVIDE)) var1units++;
|
|
if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
|
|
// printf("malloc dvvar %ld units\n", var1units+1);
|
|
varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
|
|
if (varalloc==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
var1=varalloc; // use the allocated space
|
|
}
|
|
|
|
// Extend the lhs and rhs to full long subtraction length. The lhs
|
|
// is truly extended into the var1 buffer, with 0 padding, so a
|
|
// subtract in place is always possible. The rhs (var2) has
|
|
// virtual padding (implemented by decUnitAddSub).
|
|
// One guard unit was allocated above msu1 for rem=rem+rem in
|
|
// REMAINDERNEAR.
|
|
msu1=var1+var1units-1; // msu of var1
|
|
source=lhs->lsu+D2U(lhs->digits)-1; // msu of input array
|
|
for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
|
|
for (; target>=var1; target--) *target=0;
|
|
|
|
// rhs (var2) is left-aligned with var1 at the start
|
|
var2ulen=var1units; // rhs logical length (units)
|
|
var2units=D2U(rhs->digits); // rhs actual length (units)
|
|
var2=rhs->lsu; // -> rhs array
|
|
msu2=var2+var2units-1; // -> msu of var2 [never changes]
|
|
// now set up the variables which will be used for estimating the
|
|
// multiplication factor. If these variables are not exact, add
|
|
// 1 to make sure that the multiplier is never overestimated.
|
|
msu2plus=*msu2; // it's value ..
|
|
if (var2units>1) msu2plus++; // .. +1 if any more
|
|
msu2pair=(eInt)*msu2*(DECDPUNMAX+1);// top two pair ..
|
|
if (var2units>1) { // .. [else treat 2nd as 0]
|
|
msu2pair+=*(msu2-1); // ..
|
|
if (var2units>2) msu2pair++; // .. +1 if any more
|
|
}
|
|
|
|
// The calculation is working in units, which may have leading zeros,
|
|
// but the exponent was calculated on the assumption that they are
|
|
// both left-aligned. Adjust the exponent to compensate: add the
|
|
// number of leading zeros in var1 msu and subtract those in var2 msu.
|
|
// [This is actually done by counting the digits and negating, as
|
|
// lead1=DECDPUN-digits1, and similarly for lead2.]
|
|
for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
|
|
for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
|
|
|
|
// Now, if doing an integer divide or remainder, ensure that
|
|
// the result will be Unit-aligned. To do this, shift the var1
|
|
// accumulator towards least if need be. (It's much easier to
|
|
// do this now than to reassemble the residue afterwards, if
|
|
// doing a remainder.) Also ensure the exponent is not negative.
|
|
if (!(op&DIVIDE)) {
|
|
Unit *u; // work
|
|
// save the initial 'false' padding of var1, in digits
|
|
var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
|
|
// Determine the shift to do.
|
|
if (exponent<0) cut=-exponent;
|
|
else cut=DECDPUN-exponent%DECDPUN;
|
|
decShiftToLeast(var1, var1units, cut);
|
|
exponent+=cut; // maintain numerical value
|
|
var1initpad-=cut; // .. and reduce padding
|
|
// clean any most-significant units which were just emptied
|
|
for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
|
|
} // align
|
|
else { // is DIVIDE
|
|
maxexponent=lhs->exponent-rhs->exponent; // save
|
|
// optimization: if the first iteration will just produce 0,
|
|
// preadjust to skip it [valid for DIVIDE only]
|
|
if (*msu1<*msu2) {
|
|
var2ulen--; // shift down
|
|
exponent-=DECDPUN; // update the exponent
|
|
}
|
|
}
|
|
|
|
// ---- start the long-division loops ------------------------------
|
|
accunits=0; // no units accumulated yet
|
|
accdigits=0; // .. or digits
|
|
accnext=acc+acclength-1; // -> msu of acc [NB: allows digits+1]
|
|
for (;;) { // outer forever loop
|
|
thisunit=0; // current unit assumed 0
|
|
// find the next unit
|
|
for (;;) { // inner forever loop
|
|
// strip leading zero units [from either pre-adjust or from
|
|
// subtract last time around]. Leave at least one unit.
|
|
for (; *msu1==0 && msu1>var1; msu1--) var1units--;
|
|
|
|
if (var1units<var2ulen) break; // var1 too low for subtract
|
|
if (var1units==var2ulen) { // unit-by-unit compare needed
|
|
// compare the two numbers, from msu
|
|
const Unit *pv1, *pv2;
|
|
Unit v2; // units to compare
|
|
pv2=msu2; // -> msu
|
|
for (pv1=msu1; ; pv1--, pv2--) {
|
|
// v1=*pv1 -- always OK
|
|
v2=0; // assume in padding
|
|
if (pv2>=var2) v2=*pv2; // in range
|
|
if (*pv1!=v2) break; // no longer the same
|
|
if (pv1==var1) break; // done; leave pv1 as is
|
|
}
|
|
// here when all inspected or a difference seen
|
|
if (*pv1<v2) break; // var1 too low to subtract
|
|
if (*pv1==v2) { // var1 == var2
|
|
// reach here if var1 and var2 are identical; subtraction
|
|
// would increase digit by one, and the residue will be 0 so
|
|
// the calculation is done; leave the loop with residue=0.
|
|
thisunit++; // as though subtracted
|
|
*var1=0; // set var1 to 0
|
|
var1units=1; // ..
|
|
break; // from inner
|
|
} // var1 == var2
|
|
// *pv1>v2. Prepare for real subtraction; the lengths are equal
|
|
// Estimate the multiplier (there's always a msu1-1)...
|
|
// Bring in two units of var2 to provide a good estimate.
|
|
mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
|
|
} // lengths the same
|
|
else { // var1units > var2ulen, so subtraction is safe
|
|
// The var2 msu is one unit towards the lsu of the var1 msu,
|
|
// so only one unit for var2 can be used.
|
|
mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
|
|
}
|
|
if (mult==0) mult=1; // must always be at least 1
|
|
// subtraction needed; var1 is > var2
|
|
thisunit=(Unit)(thisunit+mult); // accumulate
|
|
// subtract var1-var2, into var1; only the overlap needs
|
|
// processing, as this is an in-place calculation
|
|
shift=var2ulen-var2units;
|
|
#if DECTRACE
|
|
decDumpAr('1', &var1[shift], var1units-shift);
|
|
decDumpAr('2', var2, var2units);
|
|
printf("m=%ld\n", -mult);
|
|
#endif
|
|
decUnitAddSub(&var1[shift], var1units-shift,
|
|
var2, var2units, 0,
|
|
&var1[shift], -mult);
|
|
#if DECTRACE
|
|
decDumpAr('#', &var1[shift], var1units-shift);
|
|
#endif
|
|
// var1 now probably has leading zeros; these are removed at the
|
|
// top of the inner loop.
|
|
} // inner loop
|
|
|
|
// The next unit has been calculated in full; unless it's a
|
|
// leading zero, add to acc
|
|
if (accunits!=0 || thisunit!=0) { // is first or non-zero
|
|
*accnext=thisunit; // store in accumulator
|
|
// account exactly for the new digits
|
|
if (accunits==0) {
|
|
accdigits++; // at least one
|
|
for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
|
|
}
|
|
else accdigits+=DECDPUN;
|
|
accunits++; // update count
|
|
accnext--; // ready for next
|
|
if (accdigits>reqdigits) break; // have enough digits
|
|
}
|
|
|
|
// if the residue is zero, the operation is done (unless divide
|
|
// or divideInteger and still not enough digits yet)
|
|
if (*var1==0 && var1units==1) { // residue is 0
|
|
if (op&(REMAINDER|REMNEAR)) break;
|
|
if ((op&DIVIDE) && (exponent<=maxexponent)) break;
|
|
// [drop through if divideInteger]
|
|
}
|
|
// also done enough if calculating remainder or integer
|
|
// divide and just did the last ('units') unit
|
|
if (exponent==0 && !(op&DIVIDE)) break;
|
|
|
|
// to get here, var1 is less than var2, so divide var2 by the per-
|
|
// Unit power of ten and go for the next digit
|
|
var2ulen--; // shift down
|
|
exponent-=DECDPUN; // update the exponent
|
|
} // outer loop
|
|
|
|
// ---- division is complete ---------------------------------------
|
|
// here: acc has at least reqdigits+1 of good results (or fewer
|
|
// if early stop), starting at accnext+1 (its lsu)
|
|
// var1 has any residue at the stopping point
|
|
// accunits is the number of digits collected in acc
|
|
if (accunits==0) { // acc is 0
|
|
accunits=1; // show have a unit ..
|
|
accdigits=1; // ..
|
|
*accnext=0; // .. whose value is 0
|
|
}
|
|
else accnext++; // back to last placed
|
|
// accnext now -> lowest unit of result
|
|
|
|
residue=0; // assume no residue
|
|
if (op&DIVIDE) {
|
|
// record the presence of any residue, for rounding
|
|
if (*var1!=0 || var1units>1) residue=1;
|
|
else { // no residue
|
|
// Had an exact division; clean up spurious trailing 0s.
|
|
// There will be at most DECDPUN-1, from the final multiply,
|
|
// and then only if the result is non-0 (and even) and the
|
|
// exponent is 'loose'.
|
|
#if DECDPUN>1
|
|
Unit lsu=*accnext;
|
|
if (!(lsu&0x01) && (lsu!=0)) {
|
|
// count the trailing zeros
|
|
Int drop=0;
|
|
for (;; drop++) { // [will terminate because lsu!=0]
|
|
if (exponent>=maxexponent) break; // don't chop real 0s
|
|
#if DECDPUN<=4
|
|
if ((lsu-QUOT10(lsu, drop+1)
|
|
*powers[drop+1])!=0) break; // found non-0 digit
|
|
#else
|
|
if (lsu%powers[drop+1]!=0) break; // found non-0 digit
|
|
#endif
|
|
exponent++;
|
|
}
|
|
if (drop>0) {
|
|
accunits=decShiftToLeast(accnext, accunits, drop);
|
|
accdigits=decGetDigits(accnext, accunits);
|
|
accunits=D2U(accdigits);
|
|
// [exponent was adjusted in the loop]
|
|
}
|
|
} // neither odd nor 0
|
|
#endif
|
|
} // exact divide
|
|
} // divide
|
|
else /* op!=DIVIDE */ {
|
|
// check for coefficient overflow
|
|
if (accdigits+exponent>reqdigits) {
|
|
*status|=DEC_Division_impossible;
|
|
break;
|
|
}
|
|
if (op & (REMAINDER|REMNEAR)) {
|
|
// [Here, the exponent will be 0, because var1 was adjusted
|
|
// appropriately.]
|
|
Int postshift; // work
|
|
Flag wasodd=0; // integer was odd
|
|
Unit *quotlsu; // for save
|
|
Int quotdigits; // ..
|
|
|
|
bits=lhs->bits; // remainder sign is always as lhs
|
|
|
|
// Fastpath when residue is truly 0 is worthwhile [and
|
|
// simplifies the code below]
|
|
if (*var1==0 && var1units==1) { // residue is 0
|
|
Int exp=lhs->exponent; // save min(exponents)
|
|
if (rhs->exponent<exp) exp=rhs->exponent;
|
|
decNumberZero(res); // 0 coefficient
|
|
#if DECSUBSET
|
|
if (set->extended)
|
|
#endif
|
|
res->exponent=exp; // .. with proper exponent
|
|
res->bits=(uByte)(bits&DECNEG); // [cleaned]
|
|
decFinish(res, set, &residue, status); // might clamp
|
|
break;
|
|
}
|
|
// note if the quotient was odd
|
|
if (*accnext & 0x01) wasodd=1; // acc is odd
|
|
quotlsu=accnext; // save in case need to reinspect
|
|
quotdigits=accdigits; // ..
|
|
|
|
// treat the residue, in var1, as the value to return, via acc
|
|
// calculate the unused zero digits. This is the smaller of:
|
|
// var1 initial padding (saved above)
|
|
// var2 residual padding, which happens to be given by:
|
|
postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
|
|
// [the 'exponent' term accounts for the shifts during divide]
|
|
if (var1initpad<postshift) postshift=var1initpad;
|
|
|
|
// shift var1 the requested amount, and adjust its digits
|
|
var1units=decShiftToLeast(var1, var1units, postshift);
|
|
accnext=var1;
|
|
accdigits=decGetDigits(var1, var1units);
|
|
accunits=D2U(accdigits);
|
|
|
|
exponent=lhs->exponent; // exponent is smaller of lhs & rhs
|
|
if (rhs->exponent<exponent) exponent=rhs->exponent;
|
|
|
|
// Now correct the result if doing remainderNear; if it
|
|
// (looking just at coefficients) is > rhs/2, or == rhs/2 and
|
|
// the integer was odd then the result should be rem-rhs.
|
|
if (op&REMNEAR) {
|
|
Int compare, tarunits; // work
|
|
Unit *up; // ..
|
|
// calculate remainder*2 into the var1 buffer (which has
|
|
// 'headroom' of an extra unit and hence enough space)
|
|
// [a dedicated 'double' loop would be faster, here]
|
|
tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
|
|
0, accnext, 1);
|
|
// decDumpAr('r', accnext, tarunits);
|
|
|
|
// Here, accnext (var1) holds tarunits Units with twice the
|
|
// remainder's coefficient, which must now be compared to the
|
|
// RHS. The remainder's exponent may be smaller than the RHS's.
|
|
compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
|
|
rhs->exponent-exponent);
|
|
if (compare==BADINT) { // deep trouble
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
|
|
// now restore the remainder by dividing by two; the lsu
|
|
// is known to be even.
|
|
for (up=accnext; up<accnext+tarunits; up++) {
|
|
Int half; // half to add to lower unit
|
|
half=*up & 0x01;
|
|
*up/=2; // [shift]
|
|
if (!half) continue;
|
|
*(up-1)+=(DECDPUNMAX+1)/2;
|
|
}
|
|
// [accunits still describes the original remainder length]
|
|
|
|
if (compare>0 || (compare==0 && wasodd)) { // adjustment needed
|
|
Int exp, expunits, exprem; // work
|
|
// This is effectively causing round-up of the quotient,
|
|
// so if it was the rare case where it was full and all
|
|
// nines, it would overflow and hence division-impossible
|
|
// should be raised
|
|
Flag allnines=0; // 1 if quotient all nines
|
|
if (quotdigits==reqdigits) { // could be borderline
|
|
for (up=quotlsu; ; up++) {
|
|
if (quotdigits>DECDPUN) {
|
|
if (*up!=DECDPUNMAX) break;// non-nines
|
|
}
|
|
else { // this is the last Unit
|
|
if (*up==powers[quotdigits]-1) allnines=1;
|
|
break;
|
|
}
|
|
quotdigits-=DECDPUN; // checked those digits
|
|
} // up
|
|
} // borderline check
|
|
if (allnines) {
|
|
*status|=DEC_Division_impossible;
|
|
break;}
|
|
|
|
// rem-rhs is needed; the sign will invert. Again, var1
|
|
// can safely be used for the working Units array.
|
|
exp=rhs->exponent-exponent; // RHS padding needed
|
|
// Calculate units and remainder from exponent.
|
|
expunits=exp/DECDPUN;
|
|
exprem=exp%DECDPUN;
|
|
// subtract [A+B*(-m)]; the result will always be negative
|
|
accunits=-decUnitAddSub(accnext, accunits,
|
|
rhs->lsu, D2U(rhs->digits),
|
|
expunits, accnext, -(Int)powers[exprem]);
|
|
accdigits=decGetDigits(accnext, accunits); // count digits exactly
|
|
accunits=D2U(accdigits); // and recalculate the units for copy
|
|
// [exponent is as for original remainder]
|
|
bits^=DECNEG; // flip the sign
|
|
}
|
|
} // REMNEAR
|
|
} // REMAINDER or REMNEAR
|
|
} // not DIVIDE
|
|
|
|
// Set exponent and bits
|
|
res->exponent=exponent;
|
|
res->bits=(uByte)(bits&DECNEG); // [cleaned]
|
|
|
|
// Now the coefficient.
|
|
decSetCoeff(res, set, accnext, accdigits, &residue, status);
|
|
|
|
decFinish(res, set, &residue, status); // final cleanup
|
|
|
|
#if DECSUBSET
|
|
// If a divide then strip trailing zeros if subset [after round]
|
|
if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped);
|
|
#endif
|
|
} while(0); // end protected
|
|
|
|
if (varalloc!=NULL) free(varalloc); // drop any storage used
|
|
if (allocacc!=NULL) free(allocacc); // ..
|
|
#if DECSUBSET
|
|
if (allocrhs!=NULL) free(allocrhs); // ..
|
|
if (alloclhs!=NULL) free(alloclhs); // ..
|
|
#endif
|
|
return res;
|
|
} // decDivideOp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decMultiplyOp -- multiplication operation */
|
|
/* */
|
|
/* This routine performs the multiplication C=A x B. */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* status is the usual accumulator */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* ------------------------------------------------------------------ */
|
|
/* 'Classic' multiplication is used rather than Karatsuba, as the */
|
|
/* latter would give only a minor improvement for the short numbers */
|
|
/* expected to be handled most (and uses much more memory). */
|
|
/* */
|
|
/* There are two major paths here: the general-purpose ('old code') */
|
|
/* path which handles all DECDPUN values, and a fastpath version */
|
|
/* which is used if 64-bit ints are available, DECDPUN<=4, and more */
|
|
/* than two calls to decUnitAddSub would be made. */
|
|
/* */
|
|
/* The fastpath version lumps units together into 8-digit or 9-digit */
|
|
/* chunks, and also uses a lazy carry strategy to minimise expensive */
|
|
/* 64-bit divisions. The chunks are then broken apart again into */
|
|
/* units for continuing processing. Despite this overhead, the */
|
|
/* fastpath can speed up some 16-digit operations by 10x (and much */
|
|
/* more for higher-precision calculations). */
|
|
/* */
|
|
/* A buffer always has to be used for the accumulator; in the */
|
|
/* fastpath, buffers are also always needed for the chunked copies of */
|
|
/* of the operand coefficients. */
|
|
/* Static buffers are larger than needed just for multiply, to allow */
|
|
/* for calls from other operations (notably exp). */
|
|
/* ------------------------------------------------------------------ */
|
|
#define FASTMUL (DECUSE64 && DECDPUN<5)
|
|
static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set,
|
|
uInt *status) {
|
|
Int accunits; // Units of accumulator in use
|
|
Int exponent; // work
|
|
Int residue=0; // rounding residue
|
|
uByte bits; // result sign
|
|
Unit *acc; // -> accumulator Unit array
|
|
Int needbytes; // size calculator
|
|
void *allocacc=NULL; // -> allocated accumulator, iff allocated
|
|
Unit accbuff[SD2U(DECBUFFER*4+1)]; // buffer (+1 for DECBUFFER==0,
|
|
// *4 for calls from other operations)
|
|
const Unit *mer, *mermsup; // work
|
|
Int madlength; // Units in multiplicand
|
|
Int shift; // Units to shift multiplicand by
|
|
|
|
#if FASTMUL
|
|
// if DECDPUN is 1 or 3 work in base 10**9, otherwise
|
|
// (DECDPUN is 2 or 4) then work in base 10**8
|
|
#if DECDPUN & 1 // odd
|
|
#define FASTBASE 1000000000 // base
|
|
#define FASTDIGS 9 // digits in base
|
|
#define FASTLAZY 18 // carry resolution point [1->18]
|
|
#else
|
|
#define FASTBASE 100000000
|
|
#define FASTDIGS 8
|
|
#define FASTLAZY 1844 // carry resolution point [1->1844]
|
|
#endif
|
|
// three buffers are used, two for chunked copies of the operands
|
|
// (base 10**8 or base 10**9) and one base 2**64 accumulator with
|
|
// lazy carry evaluation
|
|
uInt zlhibuff[(DECBUFFER*2+1)/8+1]; // buffer (+1 for DECBUFFER==0)
|
|
uInt *zlhi=zlhibuff; // -> lhs array
|
|
uInt *alloclhi=NULL; // -> allocated buffer, iff allocated
|
|
uInt zrhibuff[(DECBUFFER*2+1)/8+1]; // buffer (+1 for DECBUFFER==0)
|
|
uInt *zrhi=zrhibuff; // -> rhs array
|
|
uInt *allocrhi=NULL; // -> allocated buffer, iff allocated
|
|
uLong zaccbuff[(DECBUFFER*2+1)/4+2]; // buffer (+1 for DECBUFFER==0)
|
|
// [allocacc is shared for both paths, as only one will run]
|
|
uLong *zacc=zaccbuff; // -> accumulator array for exact result
|
|
#if DECDPUN==1
|
|
Int zoff; // accumulator offset
|
|
#endif
|
|
uInt *lip, *rip; // item pointers
|
|
uInt *lmsi, *rmsi; // most significant items
|
|
Int ilhs, irhs, iacc; // item counts in the arrays
|
|
Int lazy; // lazy carry counter
|
|
uLong lcarry; // uLong carry
|
|
uInt carry; // carry (NB not uLong)
|
|
Int count; // work
|
|
const Unit *cup; // ..
|
|
Unit *up; // ..
|
|
uLong *lp; // ..
|
|
Int p; // ..
|
|
#endif
|
|
|
|
#if DECSUBSET
|
|
decNumber *alloclhs=NULL; // -> allocated buffer, iff allocated
|
|
decNumber *allocrhs=NULL; // -> allocated buffer, iff allocated
|
|
#endif
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
// precalculate result sign
|
|
bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
|
|
|
|
// handle infinities and NaNs
|
|
if (SPECIALARGS) { // a special bit set
|
|
if (SPECIALARGS & (DECSNAN | DECNAN)) { // one or two NaNs
|
|
decNaNs(res, lhs, rhs, set, status);
|
|
return res;}
|
|
// one or two infinities; Infinity * 0 is invalid
|
|
if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
|
|
||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
|
|
*status|=DEC_Invalid_operation;
|
|
return res;}
|
|
decNumberZero(res);
|
|
res->bits=bits|DECINF; // infinity
|
|
return res;}
|
|
|
|
// For best speed, as in DMSRCN [the original Rexx numerics
|
|
// module], use the shorter number as the multiplier (rhs) and
|
|
// the longer as the multiplicand (lhs) to minimise the number of
|
|
// adds (partial products)
|
|
if (lhs->digits<rhs->digits) { // swap...
|
|
const decNumber *hold=lhs;
|
|
lhs=rhs;
|
|
rhs=hold;
|
|
}
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operands and set lostDigits status, as needed
|
|
if (lhs->digits>set->digits) {
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
|
if (alloclhs==NULL) break;
|
|
lhs=alloclhs;
|
|
}
|
|
if (rhs->digits>set->digits) {
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
#if FASTMUL // fastpath can be used
|
|
// use the fast path if there are enough digits in the shorter
|
|
// operand to make the setup and takedown worthwhile
|
|
#define NEEDTWO (DECDPUN*2) // within two decUnitAddSub calls
|
|
if (rhs->digits>NEEDTWO) { // use fastpath...
|
|
// calculate the number of elements in each array
|
|
ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; // [ceiling]
|
|
irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; // ..
|
|
iacc=ilhs+irhs;
|
|
|
|
// allocate buffers if required, as usual
|
|
needbytes=ilhs*sizeof(uInt);
|
|
if (needbytes>(Int)sizeof(zlhibuff)) {
|
|
alloclhi=(uInt *)malloc(needbytes);
|
|
zlhi=alloclhi;}
|
|
needbytes=irhs*sizeof(uInt);
|
|
if (needbytes>(Int)sizeof(zrhibuff)) {
|
|
allocrhi=(uInt *)malloc(needbytes);
|
|
zrhi=allocrhi;}
|
|
|
|
// Allocating the accumulator space needs a special case when
|
|
// DECDPUN=1 because when converting the accumulator to Units
|
|
// after the multiplication each 8-byte item becomes 9 1-byte
|
|
// units. Therefore iacc extra bytes are needed at the front
|
|
// (rounded up to a multiple of 8 bytes), and the uLong
|
|
// accumulator starts offset the appropriate number of units
|
|
// to the right to avoid overwrite during the unchunking.
|
|
needbytes=iacc*sizeof(uLong);
|
|
#if DECDPUN==1
|
|
zoff=(iacc+7)/8; // items to offset by
|
|
needbytes+=zoff*8;
|
|
#endif
|
|
if (needbytes>(Int)sizeof(zaccbuff)) {
|
|
allocacc=(uLong *)malloc(needbytes);
|
|
zacc=(uLong *)allocacc;}
|
|
if (zlhi==NULL||zrhi==NULL||zacc==NULL) {
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
|
|
acc=(Unit *)zacc; // -> target Unit array
|
|
#if DECDPUN==1
|
|
zacc+=zoff; // start uLong accumulator to right
|
|
#endif
|
|
|
|
// assemble the chunked copies of the left and right sides
|
|
for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
|
|
for (p=0, *lip=0; p<FASTDIGS && count>0;
|
|
p+=DECDPUN, cup++, count-=DECDPUN)
|
|
*lip+=*cup*powers[p];
|
|
lmsi=lip-1; // save -> msi
|
|
for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
|
|
for (p=0, *rip=0; p<FASTDIGS && count>0;
|
|
p+=DECDPUN, cup++, count-=DECDPUN)
|
|
*rip+=*cup*powers[p];
|
|
rmsi=rip-1; // save -> msi
|
|
|
|
// zero the accumulator
|
|
for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
|
|
|
|
/* Start the multiplication */
|
|
// Resolving carries can dominate the cost of accumulating the
|
|
// partial products, so this is only done when necessary.
|
|
// Each uLong item in the accumulator can hold values up to
|
|
// 2**64-1, and each partial product can be as large as
|
|
// (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to
|
|
// itself 18.4 times in a uLong without overflowing, so during
|
|
// the main calculation resolution is carried out every 18th
|
|
// add -- every 162 digits. Similarly, when FASTDIGS=8, the
|
|
// partial products can be added to themselves 1844.6 times in
|
|
// a uLong without overflowing, so intermediate carry
|
|
// resolution occurs only every 14752 digits. Hence for common
|
|
// short numbers usually only the one final carry resolution
|
|
// occurs.
|
|
// (The count is set via FASTLAZY to simplify experiments to
|
|
// measure the value of this approach: a 35% improvement on a
|
|
// [34x34] multiply.)
|
|
lazy=FASTLAZY; // carry delay count
|
|
for (rip=zrhi; rip<=rmsi; rip++) { // over each item in rhs
|
|
lp=zacc+(rip-zrhi); // where to add the lhs
|
|
for (lip=zlhi; lip<=lmsi; lip++, lp++) { // over each item in lhs
|
|
*lp+=(uLong)(*lip)*(*rip); // [this should in-line]
|
|
} // lip loop
|
|
lazy--;
|
|
if (lazy>0 && rip!=rmsi) continue;
|
|
lazy=FASTLAZY; // reset delay count
|
|
// spin up the accumulator resolving overflows
|
|
for (lp=zacc; lp<zacc+iacc; lp++) {
|
|
if (*lp<FASTBASE) continue; // it fits
|
|
lcarry=*lp/FASTBASE; // top part [slow divide]
|
|
// lcarry can exceed 2**32-1, so check again; this check
|
|
// and occasional extra divide (slow) is well worth it, as
|
|
// it allows FASTLAZY to be increased to 18 rather than 4
|
|
// in the FASTDIGS=9 case
|
|
if (lcarry<FASTBASE) carry=(uInt)lcarry; // [usual]
|
|
else { // two-place carry [fairly rare]
|
|
uInt carry2=(uInt)(lcarry/FASTBASE); // top top part
|
|
*(lp+2)+=carry2; // add to item+2
|
|
*lp-=((uLong)FASTBASE*FASTBASE*carry2); // [slow]
|
|
carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); // [inline]
|
|
}
|
|
*(lp+1)+=carry; // add to item above [inline]
|
|
*lp-=((uLong)FASTBASE*carry); // [inline]
|
|
} // carry resolution
|
|
} // rip loop
|
|
|
|
// The multiplication is complete; time to convert back into
|
|
// units. This can be done in-place in the accumulator and in
|
|
// 32-bit operations, because carries were resolved after the
|
|
// final add. This needs N-1 divides and multiplies for
|
|
// each item in the accumulator (which will become up to N
|
|
// units, where 2<=N<=9).
|
|
for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
|
|
uInt item=(uInt)*lp; // decapitate to uInt
|
|
for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
|
|
uInt part=item/(DECDPUNMAX+1);
|
|
*up=(Unit)(item-(part*(DECDPUNMAX+1)));
|
|
item=part;
|
|
} // p
|
|
*up=(Unit)item; up++; // [final needs no division]
|
|
} // lp
|
|
accunits=up-acc; // count of units
|
|
}
|
|
else { // here to use units directly, without chunking ['old code']
|
|
#endif
|
|
|
|
// if accumulator will be too long for local storage, then allocate
|
|
acc=accbuff; // -> assume buffer for accumulator
|
|
needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
|
|
if (needbytes>(Int)sizeof(accbuff)) {
|
|
allocacc=(Unit *)malloc(needbytes);
|
|
if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;}
|
|
acc=(Unit *)allocacc; // use the allocated space
|
|
}
|
|
|
|
/* Now the main long multiplication loop */
|
|
// Unlike the equivalent in the IBM Java implementation, there
|
|
// is no advantage in calculating from msu to lsu. So, do it
|
|
// by the book, as it were.
|
|
// Each iteration calculates ACC=ACC+MULTAND*MULT
|
|
accunits=1; // accumulator starts at '0'
|
|
*acc=0; // .. (lsu=0)
|
|
shift=0; // no multiplicand shift at first
|
|
madlength=D2U(lhs->digits); // this won't change
|
|
mermsup=rhs->lsu+D2U(rhs->digits); // -> msu+1 of multiplier
|
|
|
|
for (mer=rhs->lsu; mer<mermsup; mer++) {
|
|
// Here, *mer is the next Unit in the multiplier to use
|
|
// If non-zero [optimization] add it...
|
|
if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
|
|
lhs->lsu, madlength, 0,
|
|
&acc[shift], *mer)
|
|
+ shift;
|
|
else { // extend acc with a 0; it will be used shortly
|
|
*(acc+accunits)=0; // [this avoids length of <=0 later]
|
|
accunits++;
|
|
}
|
|
// multiply multiplicand by 10**DECDPUN for next Unit to left
|
|
shift++; // add this for 'logical length'
|
|
} // n
|
|
#if FASTMUL
|
|
} // unchunked units
|
|
#endif
|
|
// common end-path
|
|
#if DECTRACE
|
|
decDumpAr('*', acc, accunits); // Show exact result
|
|
#endif
|
|
|
|
// acc now contains the exact result of the multiplication,
|
|
// possibly with a leading zero unit; build the decNumber from
|
|
// it, noting if any residue
|
|
res->bits=bits; // set sign
|
|
res->digits=decGetDigits(acc, accunits); // count digits exactly
|
|
|
|
// There can be a 31-bit wrap in calculating the exponent.
|
|
// This can only happen if both input exponents are negative and
|
|
// both their magnitudes are large. If there was a wrap, set a
|
|
// safe very negative exponent, from which decFinalize() will
|
|
// raise a hard underflow shortly.
|
|
exponent=lhs->exponent+rhs->exponent; // calculate exponent
|
|
if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
|
|
exponent=-2*DECNUMMAXE; // force underflow
|
|
res->exponent=exponent; // OK to overwrite now
|
|
|
|
|
|
// Set the coefficient. If any rounding, residue records
|
|
decSetCoeff(res, set, acc, res->digits, &residue, status);
|
|
decFinish(res, set, &residue, status); // final cleanup
|
|
} while(0); // end protected
|
|
|
|
if (allocacc!=NULL) free(allocacc); // drop any storage used
|
|
#if DECSUBSET
|
|
if (allocrhs!=NULL) free(allocrhs); // ..
|
|
if (alloclhs!=NULL) free(alloclhs); // ..
|
|
#endif
|
|
#if FASTMUL
|
|
if (allocrhi!=NULL) free(allocrhi); // ..
|
|
if (alloclhi!=NULL) free(alloclhi); // ..
|
|
#endif
|
|
return res;
|
|
} // decMultiplyOp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decExpOp -- effect exponentiation */
|
|
/* */
|
|
/* This computes C = exp(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context; note that rounding mode has no effect */
|
|
/* */
|
|
/* C must have space for set->digits digits. status is updated but */
|
|
/* not set. */
|
|
/* */
|
|
/* Restrictions: */
|
|
/* */
|
|
/* digits, emax, and -emin in the context must be less than */
|
|
/* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */
|
|
/* bounds or a zero. This is an internal routine, so these */
|
|
/* restrictions are contractual and not enforced. */
|
|
/* */
|
|
/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
|
/* error in rare cases. */
|
|
/* */
|
|
/* Finite results will always be full precision and Inexact, except */
|
|
/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This approach used here is similar to the algorithm described in */
|
|
/* */
|
|
/* Variable Precision Exponential Function, T. E. Hull and */
|
|
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
|
|
/* pp79-91, ACM, June 1986. */
|
|
/* */
|
|
/* with the main difference being that the iterations in the series */
|
|
/* evaluation are terminated dynamically (which does not require the */
|
|
/* extra variable-precision variables which are expensive in this */
|
|
/* context). */
|
|
/* */
|
|
/* The error analysis in Hull & Abrham's paper applies except for the */
|
|
/* round-off error accumulation during the series evaluation. This */
|
|
/* code does not precalculate the number of iterations and so cannot */
|
|
/* use Horner's scheme. Instead, the accumulation is done at double- */
|
|
/* precision, which ensures that the additions of the terms are exact */
|
|
/* and do not accumulate round-off (and any round-off errors in the */
|
|
/* terms themselves move 'to the right' faster than they can */
|
|
/* accumulate). This code also extends the calculation by allowing, */
|
|
/* in the spirit of other decNumber operators, the input to be more */
|
|
/* precise than the result (the precision used is based on the more */
|
|
/* precise of the input or requested result). */
|
|
/* */
|
|
/* Implementation notes: */
|
|
/* */
|
|
/* 1. This is separated out as decExpOp so it can be called from */
|
|
/* other Mathematical functions (notably Ln) with a wider range */
|
|
/* than normal. In particular, it can handle the slightly wider */
|
|
/* (double) range needed by Ln (which has to be able to calculate */
|
|
/* exp(-x) where x can be the tiniest number (Ntiny). */
|
|
/* */
|
|
/* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */
|
|
/* iterations by appoximately a third with additional (although */
|
|
/* diminishing) returns as the range is reduced to even smaller */
|
|
/* fractions. However, h (the power of 10 used to correct the */
|
|
/* result at the end, see below) must be kept <=8 as otherwise */
|
|
/* the final result cannot be computed. Hence the leverage is a */
|
|
/* sliding value (8-h), where potentially the range is reduced */
|
|
/* more for smaller values. */
|
|
/* */
|
|
/* The leverage that can be applied in this way is severely */
|
|
/* limited by the cost of the raise-to-the power at the end, */
|
|
/* which dominates when the number of iterations is small (less */
|
|
/* than ten) or when rhs is short. As an example, the adjustment */
|
|
/* x**10,000,000 needs 31 multiplications, all but one full-width. */
|
|
/* */
|
|
/* 3. The restrictions (especially precision) could be raised with */
|
|
/* care, but the full decNumber range seems very hard within the */
|
|
/* 32-bit limits. */
|
|
/* */
|
|
/* 4. The working precisions for the static buffers are twice the */
|
|
/* obvious size to allow for calls from decNumberPower. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decExpOp(decNumber *res, const decNumber *rhs,
|
|
decContext *set, uInt *status) {
|
|
uInt ignore=0; // working status
|
|
Int h; // adjusted exponent for 0.xxxx
|
|
Int p; // working precision
|
|
Int residue; // rounding residue
|
|
uInt needbytes; // for space calculations
|
|
const decNumber *x=rhs; // (may point to safe copy later)
|
|
decContext aset, tset, dset; // working contexts
|
|
Int comp; // work
|
|
|
|
// the argument is often copied to normalize it, so (unusually) it
|
|
// is treated like other buffers, using DECBUFFER, +1 in case
|
|
// DECBUFFER is 0
|
|
decNumber bufr[D2N(DECBUFFER*2+1)];
|
|
decNumber *allocrhs=NULL; // non-NULL if rhs buffer allocated
|
|
|
|
// the working precision will be no more than set->digits+8+1
|
|
// so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER
|
|
// is 0 (and twice that for the accumulator)
|
|
|
|
// buffer for t, term (working precision plus)
|
|
decNumber buft[D2N(DECBUFFER*2+9+1)];
|
|
decNumber *allocbuft=NULL; // -> allocated buft, iff allocated
|
|
decNumber *t=buft; // term
|
|
// buffer for a, accumulator (working precision * 2), at least 9
|
|
decNumber bufa[D2N(DECBUFFER*4+18+1)];
|
|
decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated
|
|
decNumber *a=bufa; // accumulator
|
|
// decNumber for the divisor term; this needs at most 9 digits
|
|
// and so can be fixed size [16 so can use standard context]
|
|
decNumber bufd[D2N(16)];
|
|
decNumber *d=bufd; // divisor
|
|
decNumber numone; // constant 1
|
|
|
|
#if DECCHECK
|
|
Int iterations=0; // for later sanity check
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
if (SPECIALARG) { // handle infinities and NaNs
|
|
if (decNumberIsInfinite(rhs)) { // an infinity
|
|
if (decNumberIsNegative(rhs)) // -Infinity -> +0
|
|
decNumberZero(res);
|
|
else decNumberCopy(res, rhs); // +Infinity -> self
|
|
}
|
|
else decNaNs(res, rhs, NULL, set, status); // a NaN
|
|
break;}
|
|
|
|
if (ISZERO(rhs)) { // zeros -> exact 1
|
|
decNumberZero(res); // make clean 1
|
|
*res->lsu=1; // ..
|
|
break;} // [no status to set]
|
|
|
|
// e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path
|
|
// positive and negative tiny cases which will result in inexact
|
|
// 1. This also allows the later add-accumulate to always be
|
|
// exact (because its length will never be more than twice the
|
|
// working precision).
|
|
// The comparator (tiny) needs just one digit, so use the
|
|
// decNumber d for it (reused as the divisor, etc., below); its
|
|
// exponent is such that if x is positive it will have
|
|
// set->digits-1 zeros between the decimal point and the digit,
|
|
// which is 4, and if x is negative one more zero there as the
|
|
// more precise result will be of the form 0.9999999 rather than
|
|
// 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0
|
|
// or 0.00000004 if digits=7 and x<0. If RHS not larger than
|
|
// this then the result will be 1.000000
|
|
decNumberZero(d); // clean
|
|
*d->lsu=4; // set 4 ..
|
|
d->exponent=-set->digits; // * 10**(-d)
|
|
if (decNumberIsNegative(rhs)) d->exponent--; // negative case
|
|
comp=decCompare(d, rhs, 1); // signless compare
|
|
if (comp==BADINT) {
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
if (comp>=0) { // rhs < d
|
|
Int shift=set->digits-1;
|
|
decNumberZero(res); // set 1
|
|
*res->lsu=1; // ..
|
|
res->digits=decShiftToMost(res->lsu, 1, shift);
|
|
res->exponent=-shift; // make 1.0000...
|
|
*status|=DEC_Inexact | DEC_Rounded; // .. inexactly
|
|
break;} // tiny
|
|
|
|
// set up the context to be used for calculating a, as this is
|
|
// used on both paths below
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64);
|
|
// accumulator bounds are as requested (could underflow)
|
|
aset.emax=set->emax; // usual bounds
|
|
aset.emin=set->emin; // ..
|
|
aset.clamp=0; // and no concrete format
|
|
|
|
// calculate the adjusted (Hull & Abrham) exponent (where the
|
|
// decimal point is just to the left of the coefficient msd)
|
|
h=rhs->exponent+rhs->digits;
|
|
// if h>8 then 10**h cannot be calculated safely; however, when
|
|
// h=8 then exp(|rhs|) will be at least exp(1E+7) which is at
|
|
// least 6.59E+4342944, so (due to the restriction on Emax/Emin)
|
|
// overflow (or underflow to 0) is guaranteed -- so this case can
|
|
// be handled by simply forcing the appropriate excess
|
|
if (h>8) { // overflow/underflow
|
|
// set up here so Power call below will over or underflow to
|
|
// zero; set accumulator to either 2 or 0.02
|
|
// [stack buffer for a is always big enough for this]
|
|
decNumberZero(a);
|
|
*a->lsu=2; // not 1 but < exp(1)
|
|
if (decNumberIsNegative(rhs)) a->exponent=-2; // make 0.02
|
|
h=8; // clamp so 10**h computable
|
|
p=9; // set a working precision
|
|
}
|
|
else { // h<=8
|
|
Int maxlever=(rhs->digits>8?1:0);
|
|
// [could/should increase this for precisions >40 or so, too]
|
|
|
|
// if h is 8, cannot normalize to a lower upper limit because
|
|
// the final result will not be computable (see notes above),
|
|
// but leverage can be applied whenever h is less than 8.
|
|
// Apply as much as possible, up to a MAXLEVER digits, which
|
|
// sets the tradeoff against the cost of the later a**(10**h).
|
|
// As h is increased, the working precision below also
|
|
// increases to compensate for the "constant digits at the
|
|
// front" effect.
|
|
Int lever=MINI(8-h, maxlever); // leverage attainable
|
|
Int use=-rhs->digits-lever; // exponent to use for RHS
|
|
h+=lever; // apply leverage selected
|
|
if (h<0) { // clamp
|
|
use+=h; // [may end up subnormal]
|
|
h=0;
|
|
}
|
|
// Take a copy of RHS if it needs normalization (true whenever x>=1)
|
|
if (rhs->exponent!=use) {
|
|
decNumber *newrhs=bufr; // assume will fit on stack
|
|
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufr)) { // need malloc space
|
|
allocrhs=(decNumber *)malloc(needbytes);
|
|
if (allocrhs==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
newrhs=allocrhs; // use the allocated space
|
|
}
|
|
decNumberCopy(newrhs, rhs); // copy to safe space
|
|
newrhs->exponent=use; // normalize; now <1
|
|
x=newrhs; // ready for use
|
|
// decNumberShow(x);
|
|
}
|
|
|
|
// Now use the usual power series to evaluate exp(x). The
|
|
// series starts as 1 + x + x^2/2 ... so prime ready for the
|
|
// third term by setting the term variable t=x, the accumulator
|
|
// a=1, and the divisor d=2.
|
|
|
|
// First determine the working precision. From Hull & Abrham
|
|
// this is set->digits+h+2. However, if x is 'over-precise' we
|
|
// need to allow for all its digits to potentially participate
|
|
// (consider an x where all the excess digits are 9s) so in
|
|
// this case use x->digits+h+2
|
|
p=MAXI(x->digits, set->digits)+h+2; // [h<=8]
|
|
|
|
// a and t are variable precision, and depend on p, so space
|
|
// must be allocated for them if necessary
|
|
|
|
// the accumulator needs to be able to hold 2p digits so that
|
|
// the additions on the second and subsequent iterations are
|
|
// sufficiently exact.
|
|
needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufa)) { // need malloc space
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
|
if (allocbufa==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
a=allocbufa; // use the allocated space
|
|
}
|
|
// the term needs to be able to hold p digits (which is
|
|
// guaranteed to be larger than x->digits, so the initial copy
|
|
// is safe); it may also be used for the raise-to-power
|
|
// calculation below, which needs an extra two digits
|
|
needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(buft)) { // need malloc space
|
|
allocbuft=(decNumber *)malloc(needbytes);
|
|
if (allocbuft==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
t=allocbuft; // use the allocated space
|
|
}
|
|
|
|
decNumberCopy(t, x); // term=x
|
|
decNumberZero(a); *a->lsu=1; // accumulator=1
|
|
decNumberZero(d); *d->lsu=2; // divisor=2
|
|
decNumberZero(&numone); *numone.lsu=1; // constant 1 for increment
|
|
|
|
// set up the contexts for calculating a, t, and d
|
|
decContextDefault(&tset, DEC_INIT_DECIMAL64);
|
|
dset=tset;
|
|
// accumulator bounds are set above, set precision now
|
|
aset.digits=p*2; // double
|
|
// term bounds avoid any underflow or overflow
|
|
tset.digits=p;
|
|
tset.emin=DEC_MIN_EMIN; // [emax is plenty]
|
|
// [dset.digits=16, etc., are sufficient]
|
|
|
|
// finally ready to roll
|
|
for (;;) {
|
|
#if DECCHECK
|
|
iterations++;
|
|
#endif
|
|
// only the status from the accumulation is interesting
|
|
// [but it should remain unchanged after first add]
|
|
decAddOp(a, a, t, &aset, 0, status); // a=a+t
|
|
decMultiplyOp(t, t, x, &tset, &ignore); // t=t*x
|
|
decDivideOp(t, t, d, &tset, DIVIDE, &ignore); // t=t/d
|
|
// the iteration ends when the term cannot affect the result,
|
|
// if rounded to p digits, which is when its value is smaller
|
|
// than the accumulator by p+1 digits. There must also be
|
|
// full precision in a.
|
|
if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
|
|
&& (a->digits>=p)) break;
|
|
decAddOp(d, d, &numone, &dset, 0, &ignore); // d=d+1
|
|
} // iterate
|
|
|
|
#if DECCHECK
|
|
// just a sanity check; comment out test to show always
|
|
if (iterations>p+3)
|
|
printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
|
|
(LI)iterations, (LI)*status, (LI)p, (LI)x->digits);
|
|
#endif
|
|
} // h<=8
|
|
|
|
// apply postconditioning: a=a**(10**h) -- this is calculated
|
|
// at a slightly higher precision than Hull & Abrham suggest
|
|
if (h>0) {
|
|
Int seenbit=0; // set once a 1-bit is seen
|
|
Int i; // counter
|
|
Int n=powers[h]; // always positive
|
|
aset.digits=p+2; // sufficient precision
|
|
// avoid the overhead and many extra digits of decNumberPower
|
|
// as all that is needed is the short 'multipliers' loop; here
|
|
// accumulate the answer into t
|
|
decNumberZero(t); *t->lsu=1; // acc=1
|
|
for (i=1;;i++){ // for each bit [top bit ignored]
|
|
// abandon if have had overflow or terminal underflow
|
|
if (*status & (DEC_Overflow|DEC_Underflow)) { // interesting?
|
|
if (*status&DEC_Overflow || ISZERO(t)) break;}
|
|
n=n<<1; // move next bit to testable position
|
|
if (n<0) { // top bit is set
|
|
seenbit=1; // OK, have a significant bit
|
|
decMultiplyOp(t, t, a, &aset, status); // acc=acc*x
|
|
}
|
|
if (i==31) break; // that was the last bit
|
|
if (!seenbit) continue; // no need to square 1
|
|
decMultiplyOp(t, t, t, &aset, status); // acc=acc*acc [square]
|
|
} /*i*/ // 32 bits
|
|
// decNumberShow(t);
|
|
a=t; // and carry on using t instead of a
|
|
}
|
|
|
|
// Copy and round the result to res
|
|
residue=1; // indicate dirt to right ..
|
|
if (ISZERO(a)) residue=0; // .. unless underflowed to 0
|
|
aset.digits=set->digits; // [use default rounding]
|
|
decCopyFit(res, a, &aset, &residue, status); // copy & shorten
|
|
decFinish(res, set, &residue, status); // cleanup/set flags
|
|
} while(0); // end protected
|
|
|
|
if (allocrhs !=NULL) free(allocrhs); // drop any storage used
|
|
if (allocbufa!=NULL) free(allocbufa); // ..
|
|
if (allocbuft!=NULL) free(allocbuft); // ..
|
|
// [status is handled by caller]
|
|
return res;
|
|
} // decExpOp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* Initial-estimate natural logarithm table */
|
|
/* */
|
|
/* LNnn -- 90-entry 16-bit table for values from .10 through .99. */
|
|
/* The result is a 4-digit encode of the coefficient (c=the */
|
|
/* top 14 bits encoding 0-9999) and a 2-digit encode of the */
|
|
/* exponent (e=the bottom 2 bits encoding 0-3) */
|
|
/* */
|
|
/* The resulting value is given by: */
|
|
/* */
|
|
/* v = -c * 10**(-e-3) */
|
|
/* */
|
|
/* where e and c are extracted from entry k = LNnn[x-10] */
|
|
/* where x is truncated (NB) into the range 10 through 99, */
|
|
/* and then c = k>>2 and e = k&3. */
|
|
/* ------------------------------------------------------------------ */
|
|
const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208,
|
|
6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312,
|
|
5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032,
|
|
39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
|
|
29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
|
|
22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
|
|
15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
|
|
10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801,
|
|
5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
|
|
10130, 6046, 20055};
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decLnOp -- effect natural logarithm */
|
|
/* */
|
|
/* This computes C = ln(A) */
|
|
/* */
|
|
/* res is C, the result. C may be A */
|
|
/* rhs is A */
|
|
/* set is the context; note that rounding mode has no effect */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Notable cases: */
|
|
/* A<0 -> Invalid */
|
|
/* A=0 -> -Infinity (Exact) */
|
|
/* A=+Infinity -> +Infinity (Exact) */
|
|
/* A=1 exactly -> 0 (Exact) */
|
|
/* */
|
|
/* Restrictions (as for Exp): */
|
|
/* */
|
|
/* digits, emax, and -emin in the context must be less than */
|
|
/* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */
|
|
/* bounds or a zero. This is an internal routine, so these */
|
|
/* restrictions are contractual and not enforced. */
|
|
/* */
|
|
/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
|
/* error in rare cases. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* The result is calculated using Newton's method, with each */
|
|
/* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */
|
|
/* Epperson 1989. */
|
|
/* */
|
|
/* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
|
|
/* This has to be calculated at the sum of the precision of x and the */
|
|
/* working precision. */
|
|
/* */
|
|
/* Implementation notes: */
|
|
/* */
|
|
/* 1. This is separated out as decLnOp so it can be called from */
|
|
/* other Mathematical functions (e.g., Log 10) with a wider range */
|
|
/* than normal. In particular, it can handle the slightly wider */
|
|
/* (+9+2) range needed by a power function. */
|
|
/* */
|
|
/* 2. The speed of this function is about 10x slower than exp, as */
|
|
/* it typically needs 4-6 iterations for short numbers, and the */
|
|
/* extra precision needed adds a squaring effect, twice. */
|
|
/* */
|
|
/* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */
|
|
/* as these are common requests. ln(10) is used by log10(x). */
|
|
/* */
|
|
/* 4. An iteration might be saved by widening the LNnn table, and */
|
|
/* would certainly save at least one if it were made ten times */
|
|
/* bigger, too (for truncated fractions 0.100 through 0.999). */
|
|
/* However, for most practical evaluations, at least four or five */
|
|
/* iterations will be neede -- so this would only speed up by */
|
|
/* 20-25% and that probably does not justify increasing the table */
|
|
/* size. */
|
|
/* */
|
|
/* 5. The static buffers are larger than might be expected to allow */
|
|
/* for calls from decNumberPower. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decLnOp(decNumber *res, const decNumber *rhs,
|
|
decContext *set, uInt *status) {
|
|
uInt ignore=0; // working status accumulator
|
|
uInt needbytes; // for space calculations
|
|
Int residue; // rounding residue
|
|
Int r; // rhs=f*10**r [see below]
|
|
Int p; // working precision
|
|
Int pp; // precision for iteration
|
|
Int t; // work
|
|
|
|
// buffers for a (accumulator, typically precision+2) and b
|
|
// (adjustment calculator, same size)
|
|
decNumber bufa[D2N(DECBUFFER+12)];
|
|
decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated
|
|
decNumber *a=bufa; // accumulator/work
|
|
decNumber bufb[D2N(DECBUFFER*2+2)];
|
|
decNumber *allocbufb=NULL; // -> allocated bufa, iff allocated
|
|
decNumber *b=bufb; // adjustment/work
|
|
|
|
decNumber numone; // constant 1
|
|
decNumber cmp; // work
|
|
decContext aset, bset; // working contexts
|
|
|
|
#if DECCHECK
|
|
Int iterations=0; // for later sanity check
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
if (SPECIALARG) { // handle infinities and NaNs
|
|
if (decNumberIsInfinite(rhs)) { // an infinity
|
|
if (decNumberIsNegative(rhs)) // -Infinity -> error
|
|
*status|=DEC_Invalid_operation;
|
|
else decNumberCopy(res, rhs); // +Infinity -> self
|
|
}
|
|
else decNaNs(res, rhs, NULL, set, status); // a NaN
|
|
break;}
|
|
|
|
if (ISZERO(rhs)) { // +/- zeros -> -Infinity
|
|
decNumberZero(res); // make clean
|
|
res->bits=DECINF|DECNEG; // set - infinity
|
|
break;} // [no status to set]
|
|
|
|
// Non-zero negatives are bad...
|
|
if (decNumberIsNegative(rhs)) { // -x -> error
|
|
*status|=DEC_Invalid_operation;
|
|
break;}
|
|
|
|
// Here, rhs is positive, finite, and in range
|
|
|
|
// lookaside fastpath code for ln(2) and ln(10) at common lengths
|
|
if (rhs->exponent==0 && set->digits<=40) {
|
|
#if DECDPUN==1
|
|
if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { // ln(10)
|
|
#else
|
|
if (rhs->lsu[0]==10 && rhs->digits==2) { // ln(10)
|
|
#endif
|
|
aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
|
|
#define LN10 "2.302585092994045684017991454684364207601"
|
|
decNumberFromString(res, LN10, &aset);
|
|
*status|=(DEC_Inexact | DEC_Rounded); // is inexact
|
|
break;}
|
|
if (rhs->lsu[0]==2 && rhs->digits==1) { // ln(2)
|
|
aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
|
|
#define LN2 "0.6931471805599453094172321214581765680755"
|
|
decNumberFromString(res, LN2, &aset);
|
|
*status|=(DEC_Inexact | DEC_Rounded);
|
|
break;}
|
|
} // integer and short
|
|
|
|
// Determine the working precision. This is normally the
|
|
// requested precision + 2, with a minimum of 9. However, if
|
|
// the rhs is 'over-precise' then allow for all its digits to
|
|
// potentially participate (consider an rhs where all the excess
|
|
// digits are 9s) so in this case use rhs->digits+2.
|
|
p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
|
|
|
|
// Allocate space for the accumulator and the high-precision
|
|
// adjustment calculator, if necessary. The accumulator must
|
|
// be able to hold p digits, and the adjustment up to
|
|
// rhs->digits+p digits. They are also made big enough for 16
|
|
// digits so that they can be used for calculating the initial
|
|
// estimate.
|
|
needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufa)) { // need malloc space
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
|
if (allocbufa==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
a=allocbufa; // use the allocated space
|
|
}
|
|
pp=p+rhs->digits;
|
|
needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
|
|
if (needbytes>sizeof(bufb)) { // need malloc space
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
|
if (allocbufb==NULL) { // hopeless -- abandon
|
|
*status|=DEC_Insufficient_storage;
|
|
break;}
|
|
b=allocbufb; // use the allocated space
|
|
}
|
|
|
|
// Prepare an initial estimate in acc. Calculate this by
|
|
// considering the coefficient of x to be a normalized fraction,
|
|
// f, with the decimal point at far left and multiplied by
|
|
// 10**r. Then, rhs=f*10**r and 0.1<=f<1, and
|
|
// ln(x) = ln(f) + ln(10)*r
|
|
// Get the initial estimate for ln(f) from a small lookup
|
|
// table (see above) indexed by the first two digits of f,
|
|
// truncated.
|
|
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64); // 16-digit extended
|
|
r=rhs->exponent+rhs->digits; // 'normalised' exponent
|
|
decNumberFromInt32(a, r); // a=r
|
|
decNumberFromInt32(b, 2302585); // b=ln(10) (2.302585)
|
|
b->exponent=-6; // ..
|
|
decMultiplyOp(a, a, b, &aset, &ignore); // a=a*b
|
|
// now get top two digits of rhs into b by simple truncate and
|
|
// force to integer
|
|
residue=0; // (no residue)
|
|
aset.digits=2; aset.round=DEC_ROUND_DOWN;
|
|
decCopyFit(b, rhs, &aset, &residue, &ignore); // copy & shorten
|
|
b->exponent=0; // make integer
|
|
t=decGetInt(b); // [cannot fail]
|
|
if (t<10) t=X10(t); // adjust single-digit b
|
|
t=LNnn[t-10]; // look up ln(b)
|
|
decNumberFromInt32(b, t>>2); // b=ln(b) coefficient
|
|
b->exponent=-(t&3)-3; // set exponent
|
|
b->bits=DECNEG; // ln(0.10)->ln(0.99) always -ve
|
|
aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; // restore
|
|
decAddOp(a, a, b, &aset, 0, &ignore); // acc=a+b
|
|
// the initial estimate is now in a, with up to 4 digits correct.
|
|
// When rhs is at or near Nmax the estimate will be low, so we
|
|
// will approach it from below, avoiding overflow when calling exp.
|
|
|
|
decNumberZero(&numone); *numone.lsu=1; // constant 1 for adjustment
|
|
|
|
// accumulator bounds are as requested (could underflow, but
|
|
// cannot overflow)
|
|
aset.emax=set->emax;
|
|
aset.emin=set->emin;
|
|
aset.clamp=0; // no concrete format
|
|
// set up a context to be used for the multiply and subtract
|
|
bset=aset;
|
|
bset.emax=DEC_MAX_MATH*2; // use double bounds for the
|
|
bset.emin=-DEC_MAX_MATH*2; // adjustment calculation
|
|
// [see decExpOp call below]
|
|
// for each iteration double the number of digits to calculate,
|
|
// up to a maximum of p
|
|
pp=9; // initial precision
|
|
// [initially 9 as then the sequence starts 7+2, 16+2, and
|
|
// 34+2, which is ideal for standard-sized numbers]
|
|
aset.digits=pp; // working context
|
|
bset.digits=pp+rhs->digits; // wider context
|
|
for (;;) { // iterate
|
|
#if DECCHECK
|
|
iterations++;
|
|
if (iterations>24) break; // consider 9 * 2**24
|
|
#endif
|
|
// calculate the adjustment (exp(-a)*x-1) into b. This is a
|
|
// catastrophic subtraction but it really is the difference
|
|
// from 1 that is of interest.
|
|
// Use the internal entry point to Exp as it allows the double
|
|
// range for calculating exp(-a) when a is the tiniest subnormal.
|
|
a->bits^=DECNEG; // make -a
|
|
decExpOp(b, a, &bset, &ignore); // b=exp(-a)
|
|
a->bits^=DECNEG; // restore sign of a
|
|
// now multiply by rhs and subtract 1, at the wider precision
|
|
decMultiplyOp(b, b, rhs, &bset, &ignore); // b=b*rhs
|
|
decAddOp(b, b, &numone, &bset, DECNEG, &ignore); // b=b-1
|
|
|
|
// the iteration ends when the adjustment cannot affect the
|
|
// result by >=0.5 ulp (at the requested digits), which
|
|
// is when its value is smaller than the accumulator by
|
|
// set->digits+1 digits (or it is zero) -- this is a looser
|
|
// requirement than for Exp because all that happens to the
|
|
// accumulator after this is the final rounding (but note that
|
|
// there must also be full precision in a, or a=0).
|
|
|
|
if (decNumberIsZero(b) ||
|
|
(a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
|
|
if (a->digits==p) break;
|
|
if (decNumberIsZero(a)) {
|
|
decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); // rhs=1 ?
|
|
if (cmp.lsu[0]==0) a->exponent=0; // yes, exact 0
|
|
else *status|=(DEC_Inexact | DEC_Rounded); // no, inexact
|
|
break;
|
|
}
|
|
// force padding if adjustment has gone to 0 before full length
|
|
if (decNumberIsZero(b)) b->exponent=a->exponent-p;
|
|
}
|
|
|
|
// not done yet ...
|
|
decAddOp(a, a, b, &aset, 0, &ignore); // a=a+b for next estimate
|
|
if (pp==p) continue; // precision is at maximum
|
|
// lengthen the next calculation
|
|
pp=pp*2; // double precision
|
|
if (pp>p) pp=p; // clamp to maximum
|
|
aset.digits=pp; // working context
|
|
bset.digits=pp+rhs->digits; // wider context
|
|
} // Newton's iteration
|
|
|
|
#if DECCHECK
|
|
// just a sanity check; remove the test to show always
|
|
if (iterations>24)
|
|
printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
|
|
(LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits);
|
|
#endif
|
|
|
|
// Copy and round the result to res
|
|
residue=1; // indicate dirt to right
|
|
if (ISZERO(a)) residue=0; // .. unless underflowed to 0
|
|
aset.digits=set->digits; // [use default rounding]
|
|
decCopyFit(res, a, &aset, &residue, status); // copy & shorten
|
|
decFinish(res, set, &residue, status); // cleanup/set flags
|
|
} while(0); // end protected
|
|
|
|
if (allocbufa!=NULL) free(allocbufa); // drop any storage used
|
|
if (allocbufb!=NULL) free(allocbufb); // ..
|
|
// [status is handled by caller]
|
|
return res;
|
|
} // decLnOp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decQuantizeOp -- force exponent to requested value */
|
|
/* */
|
|
/* This computes C = op(A, B), where op adjusts the coefficient */
|
|
/* of C (by rounding or shifting) such that the exponent (-scale) */
|
|
/* of C has the value B or matches the exponent of B. */
|
|
/* The numerical value of C will equal A, except for the effects of */
|
|
/* any rounding that occurred. */
|
|
/* */
|
|
/* res is C, the result. C may be A or B */
|
|
/* lhs is A, the number to adjust */
|
|
/* rhs is B, the requested exponent */
|
|
/* set is the context */
|
|
/* quant is 1 for quantize or 0 for rescale */
|
|
/* status is the status accumulator (this can be called without */
|
|
/* risk of control loss) */
|
|
/* */
|
|
/* C must have space for set->digits digits. */
|
|
/* */
|
|
/* Unless there is an error or the result is infinite, the exponent */
|
|
/* after the operation is guaranteed to be that requested. */
|
|
/* ------------------------------------------------------------------ */
|
|
static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set,
|
|
Flag quant, uInt *status) {
|
|
#if DECSUBSET
|
|
decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated
|
|
decNumber *allocrhs=NULL; // .., rhs
|
|
#endif
|
|
const decNumber *inrhs=rhs; // save original rhs
|
|
Int reqdigits=set->digits; // requested DIGITS
|
|
Int reqexp; // requested exponent [-scale]
|
|
Int residue=0; // rounding residue
|
|
Int etiny=set->emin-(reqdigits-1);
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operands and set lostDigits status, as needed
|
|
if (lhs->digits>reqdigits) {
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
|
if (alloclhs==NULL) break;
|
|
lhs=alloclhs;
|
|
}
|
|
if (rhs->digits>reqdigits) { // [this only checks lostDigits]
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
|
if (allocrhs==NULL) break;
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
// Handle special values
|
|
if (SPECIALARGS) {
|
|
// NaNs get usual processing
|
|
if (SPECIALARGS & (DECSNAN | DECNAN))
|
|
decNaNs(res, lhs, rhs, set, status);
|
|
// one infinity but not both is bad
|
|
else if ((lhs->bits ^ rhs->bits) & DECINF)
|
|
*status|=DEC_Invalid_operation;
|
|
// both infinity: return lhs
|
|
else decNumberCopy(res, lhs); // [nop if in place]
|
|
break;
|
|
}
|
|
|
|
// set requested exponent
|
|
if (quant) reqexp=inrhs->exponent; // quantize -- match exponents
|
|
else { // rescale -- use value of rhs
|
|
// Original rhs must be an integer that fits and is in range,
|
|
// which could be from -1999999997 to +999999999, thanks to
|
|
// subnormals
|
|
reqexp=decGetInt(inrhs); // [cannot fail]
|
|
}
|
|
|
|
#if DECSUBSET
|
|
if (!set->extended) etiny=set->emin; // no subnormals
|
|
#endif
|
|
|
|
if (reqexp==BADINT // bad (rescale only) or ..
|
|
|| reqexp==BIGODD || reqexp==BIGEVEN // very big (ditto) or ..
|
|
|| (reqexp<etiny) // < lowest
|
|
|| (reqexp>set->emax)) { // > emax
|
|
*status|=DEC_Invalid_operation;
|
|
break;}
|
|
|
|
// the RHS has been processed, so it can be overwritten now if necessary
|
|
if (ISZERO(lhs)) { // zero coefficient unchanged
|
|
decNumberCopy(res, lhs); // [nop if in place]
|
|
res->exponent=reqexp; // .. just set exponent
|
|
#if DECSUBSET
|
|
if (!set->extended) res->bits=0; // subset specification; no -0
|
|
#endif
|
|
}
|
|
else { // non-zero lhs
|
|
Int adjust=reqexp-lhs->exponent; // digit adjustment needed
|
|
// if adjusted coefficient will definitely not fit, give up now
|
|
if ((lhs->digits-adjust)>reqdigits) {
|
|
*status|=DEC_Invalid_operation;
|
|
break;
|
|
}
|
|
|
|
if (adjust>0) { // increasing exponent
|
|
// this will decrease the length of the coefficient by adjust
|
|
// digits, and must round as it does so
|
|
decContext workset; // work
|
|
workset=*set; // clone rounding, etc.
|
|
workset.digits=lhs->digits-adjust; // set requested length
|
|
// [note that the latter can be <1, here]
|
|
decCopyFit(res, lhs, &workset, &residue, status); // fit to result
|
|
decApplyRound(res, &workset, residue, status); // .. and round
|
|
residue=0; // [used]
|
|
// If just rounded a 999s case, exponent will be off by one;
|
|
// adjust back (after checking space), if so.
|
|
if (res->exponent>reqexp) {
|
|
// re-check needed, e.g., for quantize(0.9999, 0.001) under
|
|
// set->digits==3
|
|
if (res->digits==reqdigits) { // cannot shift by 1
|
|
*status&=~(DEC_Inexact | DEC_Rounded); // [clean these]
|
|
*status|=DEC_Invalid_operation;
|
|
break;
|
|
}
|
|
res->digits=decShiftToMost(res->lsu, res->digits, 1); // shift
|
|
res->exponent--; // (re)adjust the exponent.
|
|
}
|
|
#if DECSUBSET
|
|
if (ISZERO(res) && !set->extended) res->bits=0; // subset; no -0
|
|
#endif
|
|
} // increase
|
|
else /* adjust<=0 */ { // decreasing or = exponent
|
|
// this will increase the length of the coefficient by -adjust
|
|
// digits, by adding zero or more trailing zeros; this is
|
|
// already checked for fit, above
|
|
decNumberCopy(res, lhs); // [it will fit]
|
|
// if padding needed (adjust<0), add it now...
|
|
if (adjust<0) {
|
|
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
|
|
res->exponent+=adjust; // adjust the exponent
|
|
}
|
|
} // decrease
|
|
} // non-zero
|
|
|
|
// Check for overflow [do not use Finalize in this case, as an
|
|
// overflow here is a "don't fit" situation]
|
|
if (res->exponent>set->emax-res->digits+1) { // too big
|
|
*status|=DEC_Invalid_operation;
|
|
break;
|
|
}
|
|
else {
|
|
decFinalize(res, set, &residue, status); // set subnormal flags
|
|
*status&=~DEC_Underflow; // suppress Underflow [as per 754]
|
|
}
|
|
} while(0); // end protected
|
|
|
|
#if DECSUBSET
|
|
if (allocrhs!=NULL) free(allocrhs); // drop any storage used
|
|
if (alloclhs!=NULL) free(alloclhs); // ..
|
|
#endif
|
|
return res;
|
|
} // decQuantizeOp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCompareOp -- compare, min, or max two Numbers */
|
|
/* */
|
|
/* This computes C = A ? B and carries out one of four operations: */
|
|
/* COMPARE -- returns the signum (as a number) giving the */
|
|
/* result of a comparison unless one or both */
|
|
/* operands is a NaN (in which case a NaN results) */
|
|
/* COMPSIG -- as COMPARE except that a quiet NaN raises */
|
|
/* Invalid operation. */
|
|
/* COMPMAX -- returns the larger of the operands, using the */
|
|
/* 754 maxnum operation */
|
|
/* COMPMAXMAG -- ditto, comparing absolute values */
|
|
/* COMPMIN -- the 754 minnum operation */
|
|
/* COMPMINMAG -- ditto, comparing absolute values */
|
|
/* COMTOTAL -- returns the signum (as a number) giving the */
|
|
/* result of a comparison using 754 total ordering */
|
|
/* */
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
|
/* lhs is A */
|
|
/* rhs is B */
|
|
/* set is the context */
|
|
/* op is the operation flag */
|
|
/* status is the usual accumulator */
|
|
/* */
|
|
/* C must have space for one digit for COMPARE or set->digits for */
|
|
/* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* The emphasis here is on speed for common cases, and avoiding */
|
|
/* coefficient comparison if possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set,
|
|
Flag op, uInt *status) {
|
|
#if DECSUBSET
|
|
decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated
|
|
decNumber *allocrhs=NULL; // .., rhs
|
|
#endif
|
|
Int result=0; // default result value
|
|
uByte merged; // work
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
|
#endif
|
|
|
|
do { // protect allocated storage
|
|
#if DECSUBSET
|
|
if (!set->extended) {
|
|
// reduce operands and set lostDigits status, as needed
|
|
if (lhs->digits>set->digits) {
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
|
if (alloclhs==NULL) {result=BADINT; break;}
|
|
lhs=alloclhs;
|
|
}
|
|
if (rhs->digits>set->digits) {
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
|
if (allocrhs==NULL) {result=BADINT; break;}
|
|
rhs=allocrhs;
|
|
}
|
|
}
|
|
#endif
|
|
// [following code does not require input rounding]
|
|
|
|
// If total ordering then handle differing signs 'up front'
|
|
if (op==COMPTOTAL) { // total ordering
|
|
if (decNumberIsNegative(lhs) & !decNumberIsNegative(rhs)) {
|
|
result=-1;
|
|
break;
|
|
}
|
|
if (!decNumberIsNegative(lhs) & decNumberIsNegative(rhs)) {
|
|
result=+1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// handle NaNs specially; let infinities drop through
|
|
// This assumes sNaN (even just one) leads to NaN.
|
|
merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
|
|
if (merged) { // a NaN bit set
|
|
if (op==COMPARE); // result will be NaN
|
|
else if (op==COMPSIG) // treat qNaN as sNaN
|
|
*status|=DEC_Invalid_operation | DEC_sNaN;
|
|
else if (op==COMPTOTAL) { // total ordering, always finite
|
|
// signs are known to be the same; compute the ordering here
|
|
// as if the signs are both positive, then invert for negatives
|
|
if (!decNumberIsNaN(lhs)) result=-1;
|
|
else if (!decNumberIsNaN(rhs)) result=+1;
|
|
// here if both NaNs
|
|
else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
|
|
else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
|
|
else { // both NaN or both sNaN
|
|
// now it just depends on the payload
|
|
result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
|
|
rhs->lsu, D2U(rhs->digits), 0);
|
|
// [Error not possible, as these are 'aligned']
|
|
} // both same NaNs
|
|
if (decNumberIsNegative(lhs)) result=-result;
|
|
break;
|
|
} // total order
|
|
|
|
else if (merged & DECSNAN); // sNaN -> qNaN
|
|
else { // here if MIN or MAX and one or two quiet NaNs
|
|
// min or max -- 754 rules ignore single NaN
|
|
if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
|
|
// just one NaN; force choice to be the non-NaN operand
|
|
op=COMPMAX;
|
|
if (lhs->bits & DECNAN) result=-1; // pick rhs
|
|
else result=+1; // pick lhs
|
|
break;
|
|
}
|
|
} // max or min
|
|
op=COMPNAN; // use special path
|
|
decNaNs(res, lhs, rhs, set, status); // propagate NaN
|
|
break;
|
|
}
|
|
// have numbers
|
|
if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
|
|
else result=decCompare(lhs, rhs, 0); // sign matters
|
|
} while(0); // end protected
|
|
|
|
if (result==BADINT) *status|=DEC_Insufficient_storage; // rare
|
|
else {
|
|
if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { // returning signum
|
|
if (op==COMPTOTAL && result==0) {
|
|
// operands are numerically equal or same NaN (and same sign,
|
|
// tested first); if identical, leave result 0
|
|
if (lhs->exponent!=rhs->exponent) {
|
|
if (lhs->exponent<rhs->exponent) result=-1;
|
|
else result=+1;
|
|
if (decNumberIsNegative(lhs)) result=-result;
|
|
} // lexp!=rexp
|
|
} // total-order by exponent
|
|
decNumberZero(res); // [always a valid result]
|
|
if (result!=0) { // must be -1 or +1
|
|
*res->lsu=1;
|
|
if (result<0) res->bits=DECNEG;
|
|
}
|
|
}
|
|
else if (op==COMPNAN); // special, drop through
|
|
else { // MAX or MIN, non-NaN result
|
|
Int residue=0; // rounding accumulator
|
|
// choose the operand for the result
|
|
const decNumber *choice;
|
|
if (result==0) { // operands are numerically equal
|
|
// choose according to sign then exponent (see 754)
|
|
uByte slhs=(lhs->bits & DECNEG);
|
|
uByte srhs=(rhs->bits & DECNEG);
|
|
#if DECSUBSET
|
|
if (!set->extended) { // subset: force left-hand
|
|
op=COMPMAX;
|
|
result=+1;
|
|
}
|
|
else
|
|
#endif
|
|
if (slhs!=srhs) { // signs differ
|
|
if (slhs) result=-1; // rhs is max
|
|
else result=+1; // lhs is max
|
|
}
|
|
else if (slhs && srhs) { // both negative
|
|
if (lhs->exponent<rhs->exponent) result=+1;
|
|
else result=-1;
|
|
// [if equal, use lhs, technically identical]
|
|
}
|
|
else { // both positive
|
|
if (lhs->exponent>rhs->exponent) result=+1;
|
|
else result=-1;
|
|
// [ditto]
|
|
}
|
|
} // numerically equal
|
|
// here result will be non-0; reverse if looking for MIN
|
|
if (op==COMPMIN || op==COMPMINMAG) result=-result;
|
|
choice=(result>0 ? lhs : rhs); // choose
|
|
// copy chosen to result, rounding if need be
|
|
decCopyFit(res, choice, set, &residue, status);
|
|
decFinish(res, set, &residue, status);
|
|
}
|
|
}
|
|
#if DECSUBSET
|
|
if (allocrhs!=NULL) free(allocrhs); // free any storage used
|
|
if (alloclhs!=NULL) free(alloclhs); // ..
|
|
#endif
|
|
return res;
|
|
} // decCompareOp
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCompare -- compare two decNumbers by numerical value */
|
|
/* */
|
|
/* This routine compares A ? B without altering them. */
|
|
/* */
|
|
/* Arg1 is A, a decNumber which is not a NaN */
|
|
/* Arg2 is B, a decNumber which is not a NaN */
|
|
/* Arg3 is 1 for a sign-independent compare, 0 otherwise */
|
|
/* */
|
|
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
|
|
/* (the only possible failure is an allocation error) */
|
|
/* ------------------------------------------------------------------ */
|
|
static Int decCompare(const decNumber *lhs, const decNumber *rhs,
|
|
Flag abs) {
|
|
Int result; // result value
|
|
Int sigr; // rhs signum
|
|
Int compare; // work
|
|
|
|
result=1; // assume signum(lhs)
|
|
if (ISZERO(lhs)) result=0;
|
|
if (abs) {
|
|
if (ISZERO(rhs)) return result; // LHS wins or both 0
|
|
// RHS is non-zero
|
|
if (result==0) return -1; // LHS is 0; RHS wins
|
|
// [here, both non-zero, result=1]
|
|
}
|
|
else { // signs matter
|
|
if (result && decNumberIsNegative(lhs)) result=-1;
|
|
sigr=1; // compute signum(rhs)
|
|
if (ISZERO(rhs)) sigr=0;
|
|
else if (decNumberIsNegative(rhs)) sigr=-1;
|
|
if (result > sigr) return +1; // L > R, return 1
|
|
if (result < sigr) return -1; // L < R, return -1
|
|
if (result==0) return 0; // both 0
|
|
}
|
|
|
|
// signums are the same; both are non-zero
|
|
if ((lhs->bits | rhs->bits) & DECINF) { // one or more infinities
|
|
if (decNumberIsInfinite(rhs)) {
|
|
if (decNumberIsInfinite(lhs)) result=0;// both infinite
|
|
else result=-result; // only rhs infinite
|
|
}
|
|
return result;
|
|
}
|
|
// must compare the coefficients, allowing for exponents
|
|
if (lhs->exponent>rhs->exponent) { // LHS exponent larger
|
|
// swap sides, and sign
|
|
const decNumber *temp=lhs;
|
|
lhs=rhs;
|
|
rhs=temp;
|
|
result=-result;
|
|
}
|
|
compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
|
|
rhs->lsu, D2U(rhs->digits),
|
|
rhs->exponent-lhs->exponent);
|
|
if (compare!=BADINT) compare*=result; // comparison succeeded
|
|
return compare;
|
|
} // decCompare
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decUnitCompare -- compare two >=0 integers in Unit arrays */
|
|
/* */
|
|
/* This routine compares A ? B*10**E where A and B are unit arrays */
|
|
/* A is a plain integer */
|
|
/* B has an exponent of E (which must be non-negative) */
|
|
/* */
|
|
/* Arg1 is A first Unit (lsu) */
|
|
/* Arg2 is A length in Units */
|
|
/* Arg3 is B first Unit (lsu) */
|
|
/* Arg4 is B length in Units */
|
|
/* Arg5 is E (0 if the units are aligned) */
|
|
/* */
|
|
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
|
|
/* (the only possible failure is an allocation error, which can */
|
|
/* only occur if E!=0) */
|
|
/* ------------------------------------------------------------------ */
|
|
static Int decUnitCompare(const Unit *a, Int alength,
|
|
const Unit *b, Int blength, Int exp) {
|
|
Unit *acc; // accumulator for result
|
|
Unit accbuff[SD2U(DECBUFFER*2+1)]; // local buffer
|
|
Unit *allocacc=NULL; // -> allocated acc buffer, iff allocated
|
|
Int accunits, need; // units in use or needed for acc
|
|
const Unit *l, *r, *u; // work
|
|
Int expunits, exprem, result; // ..
|
|
|
|
if (exp==0) { // aligned; fastpath
|
|
if (alength>blength) return 1;
|
|
if (alength<blength) return -1;
|
|
// same number of units in both -- need unit-by-unit compare
|
|
l=a+alength-1;
|
|
r=b+alength-1;
|
|
for (;l>=a; l--, r--) {
|
|
if (*l>*r) return 1;
|
|
if (*l<*r) return -1;
|
|
}
|
|
return 0; // all units match
|
|
} // aligned
|
|
|
|
// Unaligned. If one is >1 unit longer than the other, padded
|
|
// approximately, then can return easily
|
|
if (alength>blength+(Int)D2U(exp)) return 1;
|
|
if (alength+1<blength+(Int)D2U(exp)) return -1;
|
|
|
|
// Need to do a real subtract. For this, a result buffer is needed
|
|
// even though only the sign is of interest. Its length needs
|
|
// to be the larger of alength and padded blength, +2
|
|
need=blength+D2U(exp); // maximum real length of B
|
|
if (need<alength) need=alength;
|
|
need+=2;
|
|
acc=accbuff; // assume use local buffer
|
|
if (need*sizeof(Unit)>sizeof(accbuff)) {
|
|
allocacc=(Unit *)malloc(need*sizeof(Unit));
|
|
if (allocacc==NULL) return BADINT; // hopeless -- abandon
|
|
acc=allocacc;
|
|
}
|
|
// Calculate units and remainder from exponent.
|
|
expunits=exp/DECDPUN;
|
|
exprem=exp%DECDPUN;
|
|
// subtract [A+B*(-m)]
|
|
accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
|
|
-(Int)powers[exprem]);
|
|
// [UnitAddSub result may have leading zeros, even on zero]
|
|
if (accunits<0) result=-1; // negative result
|
|
else { // non-negative result
|
|
// check units of the result before freeing any storage
|
|
for (u=acc; u<acc+accunits-1 && *u==0;) u++;
|
|
result=(*u==0 ? 0 : +1);
|
|
}
|
|
// clean up and return the result
|
|
if (allocacc!=NULL) free(allocacc); // drop any storage used
|
|
return result;
|
|
} // decUnitCompare
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
|
|
/* */
|
|
/* This routine performs the calculation: */
|
|
/* */
|
|
/* C=A+(B*M) */
|
|
/* */
|
|
/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
|
|
/* */
|
|
/* A may be shorter or longer than B. */
|
|
/* */
|
|
/* Leading zeros are not removed after a calculation. The result is */
|
|
/* either the same length as the longer of A and B (adding any */
|
|
/* shift), or one Unit longer than that (if a Unit carry occurred). */
|
|
/* */
|
|
/* A and B content are not altered unless C is also A or B. */
|
|
/* C may be the same array as A or B, but only if no zero padding is */
|
|
/* requested (that is, C may be B only if bshift==0). */
|
|
/* C is filled from the lsu; only those units necessary to complete */
|
|
/* the calculation are referenced. */
|
|
/* */
|
|
/* Arg1 is A first Unit (lsu) */
|
|
/* Arg2 is A length in Units */
|
|
/* Arg3 is B first Unit (lsu) */
|
|
/* Arg4 is B length in Units */
|
|
/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
|
|
/* Arg6 is C first Unit (lsu) */
|
|
/* Arg7 is M, the multiplier */
|
|
/* */
|
|
/* returns the count of Units written to C, which will be non-zero */
|
|
/* and negated if the result is negative. That is, the sign of the */
|
|
/* returned Int is the sign of the result (positive for zero) and */
|
|
/* the absolute value of the Int is the count of Units. */
|
|
/* */
|
|
/* It is the caller's responsibility to make sure that C size is */
|
|
/* safe, allowing space if necessary for a one-Unit carry. */
|
|
/* */
|
|
/* This routine is severely performance-critical; *any* change here */
|
|
/* must be measured (timed) to assure no performance degradation. */
|
|
/* In particular, trickery here tends to be counter-productive, as */
|
|
/* increased complexity of code hurts register optimizations on */
|
|
/* register-poor architectures. Avoiding divisions is nearly */
|
|
/* always a Good Idea, however. */
|
|
/* */
|
|
/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
|
|
/* (IBM Warwick, UK) for some of the ideas used in this routine. */
|
|
/* ------------------------------------------------------------------ */
|
|
static Int decUnitAddSub(const Unit *a, Int alength,
|
|
const Unit *b, Int blength, Int bshift,
|
|
Unit *c, Int m) {
|
|
const Unit *alsu=a; // A lsu [need to remember it]
|
|
Unit *clsu=c; // C ditto
|
|
Unit *minC; // low water mark for C
|
|
Unit *maxC; // high water mark for C
|
|
eInt carry=0; // carry integer (could be Long)
|
|
Int add; // work
|
|
#if DECDPUN<=4 // myriadal, millenary, etc.
|
|
Int est; // estimated quotient
|
|
#endif
|
|
|
|
#if DECTRACE
|
|
if (alength<1 || blength<1)
|
|
printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
|
|
#endif
|
|
|
|
maxC=c+alength; // A is usually the longer
|
|
minC=c+blength; // .. and B the shorter
|
|
if (bshift!=0) { // B is shifted; low As copy across
|
|
minC+=bshift;
|
|
// if in place [common], skip copy unless there's a gap [rare]
|
|
if (a==c && bshift<=alength) {
|
|
c+=bshift;
|
|
a+=bshift;
|
|
}
|
|
else for (; c<clsu+bshift; a++, c++) { // copy needed
|
|
if (a<alsu+alength) *c=*a;
|
|
else *c=0;
|
|
}
|
|
}
|
|
if (minC>maxC) { // swap
|
|
Unit *hold=minC;
|
|
minC=maxC;
|
|
maxC=hold;
|
|
}
|
|
|
|
// For speed, do the addition as two loops; the first where both A
|
|
// and B contribute, and the second (if necessary) where only one or
|
|
// other of the numbers contribute.
|
|
// Carry handling is the same (i.e., duplicated) in each case.
|
|
for (; c<minC; c++) {
|
|
carry+=*a;
|
|
a++;
|
|
carry+=((eInt)*b)*m; // [special-casing m=1/-1
|
|
b++; // here is not a win]
|
|
// here carry is new Unit of digits; it could be +ve or -ve
|
|
if ((ueInt)carry<=DECDPUNMAX) { // fastpath 0-DECDPUNMAX
|
|
*c=(Unit)carry;
|
|
carry=0;
|
|
continue;
|
|
}
|
|
#if DECDPUN==4 // use divide-by-multiply
|
|
if (carry>=0) {
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder
|
|
carry=est; // likely quotient [89%]
|
|
if (*c<DECDPUNMAX+1) continue; // estimate was correct
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
|
carry=est-(DECDPUNMAX+1); // correctly negative
|
|
if (*c<DECDPUNMAX+1) continue; // was OK
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
#elif DECDPUN==3
|
|
if (carry>=0) {
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder
|
|
carry=est; // likely quotient [99%]
|
|
if (*c<DECDPUNMAX+1) continue; // estimate was correct
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
|
carry=est-(DECDPUNMAX+1); // correctly negative
|
|
if (*c<DECDPUNMAX+1) continue; // was OK
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
#elif DECDPUN<=2
|
|
// Can use QUOT10 as carry <= 4 digits
|
|
if (carry>=0) {
|
|
est=QUOT10(carry, DECDPUN);
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder
|
|
carry=est; // quotient
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
est=QUOT10(carry, DECDPUN);
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
|
carry=est-(DECDPUNMAX+1); // correctly negative
|
|
#else
|
|
// remainder operator is undefined if negative, so must test
|
|
if ((ueInt)carry<(DECDPUNMAX+1)*2) { // fastpath carry +1
|
|
*c=(Unit)(carry-(DECDPUNMAX+1)); // [helps additions]
|
|
carry=1;
|
|
continue;
|
|
}
|
|
if (carry>=0) {
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
|
carry=carry/(DECDPUNMAX+1);
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
|
carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
|
|
#endif
|
|
} // c
|
|
|
|
// now may have one or other to complete
|
|
// [pretest to avoid loop setup/shutdown]
|
|
if (c<maxC) for (; c<maxC; c++) {
|
|
if (a<alsu+alength) { // still in A
|
|
carry+=*a;
|
|
a++;
|
|
}
|
|
else { // inside B
|
|
carry+=((eInt)*b)*m;
|
|
b++;
|
|
}
|
|
// here carry is new Unit of digits; it could be +ve or -ve and
|
|
// magnitude up to DECDPUNMAX squared
|
|
if ((ueInt)carry<=DECDPUNMAX) { // fastpath 0-DECDPUNMAX
|
|
*c=(Unit)carry;
|
|
carry=0;
|
|
continue;
|
|
}
|
|
// result for this unit is negative or >DECDPUNMAX
|
|
#if DECDPUN==4 // use divide-by-multiply
|
|
if (carry>=0) {
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder
|
|
carry=est; // likely quotient [79.7%]
|
|
if (*c<DECDPUNMAX+1) continue; // estimate was correct
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
|
carry=est-(DECDPUNMAX+1); // correctly negative
|
|
if (*c<DECDPUNMAX+1) continue; // was OK
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
#elif DECDPUN==3
|
|
if (carry>=0) {
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder
|
|
carry=est; // likely quotient [99%]
|
|
if (*c<DECDPUNMAX+1) continue; // estimate was correct
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
|
carry=est-(DECDPUNMAX+1); // correctly negative
|
|
if (*c<DECDPUNMAX+1) continue; // was OK
|
|
carry++;
|
|
*c-=DECDPUNMAX+1;
|
|
#elif DECDPUN<=2
|
|
if (carry>=0) {
|
|
est=QUOT10(carry, DECDPUN);
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder
|
|
carry=est; // quotient
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
est=QUOT10(carry, DECDPUN);
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
|
carry=est-(DECDPUNMAX+1); // correctly negative
|
|
#else
|
|
if ((ueInt)carry<(DECDPUNMAX+1)*2){ // fastpath carry 1
|
|
*c=(Unit)(carry-(DECDPUNMAX+1));
|
|
carry=1;
|
|
continue;
|
|
}
|
|
// remainder operator is undefined if negative, so must test
|
|
if (carry>=0) {
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
|
carry=carry/(DECDPUNMAX+1);
|
|
continue;
|
|
}
|
|
// negative case
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
|
carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
|
|
#endif
|
|
} // c
|
|
|
|
// OK, all A and B processed; might still have carry or borrow
|
|
// return number of Units in the result, negated if a borrow
|
|
if (carry==0) return c-clsu; // no carry, so no more to do
|
|
if (carry>0) { // positive carry
|
|
*c=(Unit)carry; // place as new unit
|
|
c++; // ..
|
|
return c-clsu;
|
|
}
|
|
// -ve carry: it's a borrow; complement needed
|
|
add=1; // temporary carry...
|
|
for (c=clsu; c<maxC; c++) {
|
|
add=DECDPUNMAX+add-*c;
|
|
if (add<=DECDPUNMAX) {
|
|
*c=(Unit)add;
|
|
add=0;
|
|
}
|
|
else {
|
|
*c=0;
|
|
add=1;
|
|
}
|
|
}
|
|
// add an extra unit iff it would be non-zero
|
|
#if DECTRACE
|
|
printf("UAS borrow: add %ld, carry %ld\n", add, carry);
|
|
#endif
|
|
if ((add-carry-1)!=0) {
|
|
*c=(Unit)(add-carry-1);
|
|
c++; // interesting, include it
|
|
}
|
|
return clsu-c; // -ve result indicates borrowed
|
|
} // decUnitAddSub
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decTrim -- trim trailing zeros or normalize */
|
|
/* */
|
|
/* dn is the number to trim or normalize */
|
|
/* set is the context to use to check for clamp */
|
|
/* all is 1 to remove all trailing zeros, 0 for just fraction ones */
|
|
/* noclamp is 1 to unconditional (unclamped) trim */
|
|
/* dropped returns the number of discarded trailing zeros */
|
|
/* returns dn */
|
|
/* */
|
|
/* If clamp is set in the context then the number of zeros trimmed */
|
|
/* may be limited if the exponent is high. */
|
|
/* All fields are updated as required. This is a utility operation, */
|
|
/* so special values are unchanged and no error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
|
|
Flag noclamp, Int *dropped) {
|
|
Int d, exp; // work
|
|
uInt cut; // ..
|
|
Unit *up; // -> current Unit
|
|
|
|
#if DECCHECK
|
|
if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
|
|
#endif
|
|
|
|
*dropped=0; // assume no zeros dropped
|
|
if ((dn->bits & DECSPECIAL) // fast exit if special ..
|
|
|| (*dn->lsu & 0x01)) return dn; // .. or odd
|
|
if (ISZERO(dn)) { // .. or 0
|
|
dn->exponent=0; // (sign is preserved)
|
|
return dn;
|
|
}
|
|
|
|
// have a finite number which is even
|
|
exp=dn->exponent;
|
|
cut=1; // digit (1-DECDPUN) in Unit
|
|
up=dn->lsu; // -> current Unit
|
|
for (d=0; d<dn->digits-1; d++) { // [don't strip the final digit]
|
|
// slice by powers
|
|
#if DECDPUN<=4
|
|
uInt quot=QUOT10(*up, cut);
|
|
if ((*up-quot*powers[cut])!=0) break; // found non-0 digit
|
|
#else
|
|
if (*up%powers[cut]!=0) break; // found non-0 digit
|
|
#endif
|
|
// have a trailing 0
|
|
if (!all) { // trimming
|
|
// [if exp>0 then all trailing 0s are significant for trim]
|
|
if (exp<=0) { // if digit might be significant
|
|
if (exp==0) break; // then quit
|
|
exp++; // next digit might be significant
|
|
}
|
|
}
|
|
cut++; // next power
|
|
if (cut>DECDPUN) { // need new Unit
|
|
up++;
|
|
cut=1;
|
|
}
|
|
} // d
|
|
if (d==0) return dn; // none to drop
|
|
|
|
// may need to limit drop if clamping
|
|
if (set->clamp && !noclamp) {
|
|
Int maxd=set->emax-set->digits+1-dn->exponent;
|
|
if (maxd<=0) return dn; // nothing possible
|
|
if (d>maxd) d=maxd;
|
|
}
|
|
|
|
// effect the drop
|
|
decShiftToLeast(dn->lsu, D2U(dn->digits), d);
|
|
dn->exponent+=d; // maintain numerical value
|
|
dn->digits-=d; // new length
|
|
*dropped=d; // report the count
|
|
return dn;
|
|
} // decTrim
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decReverse -- reverse a Unit array in place */
|
|
/* */
|
|
/* ulo is the start of the array */
|
|
/* uhi is the end of the array (highest Unit to include) */
|
|
/* */
|
|
/* The units ulo through uhi are reversed in place (if the number */
|
|
/* of units is odd, the middle one is untouched). Note that the */
|
|
/* digit(s) in each unit are unaffected. */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decReverse(Unit *ulo, Unit *uhi) {
|
|
Unit temp;
|
|
for (; ulo<uhi; ulo++, uhi--) {
|
|
temp=*ulo;
|
|
*ulo=*uhi;
|
|
*uhi=temp;
|
|
}
|
|
return;
|
|
} // decReverse
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decShiftToMost -- shift digits in array towards most significant */
|
|
/* */
|
|
/* uar is the array */
|
|
/* digits is the count of digits in use in the array */
|
|
/* shift is the number of zeros to pad with (least significant); */
|
|
/* it must be zero or positive */
|
|
/* */
|
|
/* returns the new length of the integer in the array, in digits */
|
|
/* */
|
|
/* No overflow is permitted (that is, the uar array must be known to */
|
|
/* be large enough to hold the result, after shifting). */
|
|
/* ------------------------------------------------------------------ */
|
|
static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
|
|
Unit *target, *source, *first; // work
|
|
Int cut; // odd 0's to add
|
|
uInt next; // work
|
|
|
|
if (shift==0) return digits; // [fastpath] nothing to do
|
|
if ((digits+shift)<=DECDPUN) { // [fastpath] single-unit case
|
|
*uar=(Unit)(*uar*powers[shift]);
|
|
return digits+shift;
|
|
}
|
|
|
|
next=0; // all paths
|
|
source=uar+D2U(digits)-1; // where msu comes from
|
|
target=source+D2U(shift); // where upper part of first cut goes
|
|
cut=DECDPUN-MSUDIGITS(shift); // where to slice
|
|
if (cut==0) { // unit-boundary case
|
|
for (; source>=uar; source--, target--) *target=*source;
|
|
}
|
|
else {
|
|
first=uar+D2U(digits+shift)-1; // where msu of source will end up
|
|
for (; source>=uar; source--, target--) {
|
|
// split the source Unit and accumulate remainder for next
|
|
#if DECDPUN<=4
|
|
uInt quot=QUOT10(*source, cut);
|
|
uInt rem=*source-quot*powers[cut];
|
|
next+=quot;
|
|
#else
|
|
uInt rem=*source%powers[cut];
|
|
next+=*source/powers[cut];
|
|
#endif
|
|
if (target<=first) *target=(Unit)next; // write to target iff valid
|
|
next=rem*powers[DECDPUN-cut]; // save remainder for next Unit
|
|
}
|
|
} // shift-move
|
|
|
|
// propagate any partial unit to one below and clear the rest
|
|
for (; target>=uar; target--) {
|
|
*target=(Unit)next;
|
|
next=0;
|
|
}
|
|
return digits+shift;
|
|
} // decShiftToMost
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decShiftToLeast -- shift digits in array towards least significant */
|
|
/* */
|
|
/* uar is the array */
|
|
/* units is length of the array, in units */
|
|
/* shift is the number of digits to remove from the lsu end; it */
|
|
/* must be zero or positive and <= than units*DECDPUN. */
|
|
/* */
|
|
/* returns the new length of the integer in the array, in units */
|
|
/* */
|
|
/* Removed digits are discarded (lost). Units not required to hold */
|
|
/* the final result are unchanged. */
|
|
/* ------------------------------------------------------------------ */
|
|
static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
|
|
Unit *target, *up; // work
|
|
Int cut, count; // work
|
|
Int quot, rem; // for division
|
|
|
|
if (shift==0) return units; // [fastpath] nothing to do
|
|
if (shift==units*DECDPUN) { // [fastpath] little to do
|
|
*uar=0; // all digits cleared gives zero
|
|
return 1; // leaves just the one
|
|
}
|
|
|
|
target=uar; // both paths
|
|
cut=MSUDIGITS(shift);
|
|
if (cut==DECDPUN) { // unit-boundary case; easy
|
|
up=uar+D2U(shift);
|
|
for (; up<uar+units; target++, up++) *target=*up;
|
|
return target-uar;
|
|
}
|
|
|
|
// messier
|
|
up=uar+D2U(shift-cut); // source; correct to whole Units
|
|
count=units*DECDPUN-shift; // the maximum new length
|
|
#if DECDPUN<=4
|
|
quot=QUOT10(*up, cut);
|
|
#else
|
|
quot=*up/powers[cut];
|
|
#endif
|
|
for (; ; target++) {
|
|
*target=(Unit)quot;
|
|
count-=(DECDPUN-cut);
|
|
if (count<=0) break;
|
|
up++;
|
|
quot=*up;
|
|
#if DECDPUN<=4
|
|
quot=QUOT10(quot, cut);
|
|
rem=*up-quot*powers[cut];
|
|
#else
|
|
rem=quot%powers[cut];
|
|
quot=quot/powers[cut];
|
|
#endif
|
|
*target=(Unit)(*target+rem*powers[DECDPUN-cut]);
|
|
count-=cut;
|
|
if (count<=0) break;
|
|
}
|
|
return target-uar+1;
|
|
} // decShiftToLeast
|
|
|
|
#if DECSUBSET
|
|
/* ------------------------------------------------------------------ */
|
|
/* decRoundOperand -- round an operand [used for subset only] */
|
|
/* */
|
|
/* dn is the number to round (dn->digits is > set->digits) */
|
|
/* set is the relevant context */
|
|
/* status is the status accumulator */
|
|
/* */
|
|
/* returns an allocated decNumber with the rounded result. */
|
|
/* */
|
|
/* lostDigits and other status may be set by this. */
|
|
/* */
|
|
/* Since the input is an operand, it must not be modified. */
|
|
/* Instead, return an allocated decNumber, rounded as required. */
|
|
/* It is the caller's responsibility to free the allocated storage. */
|
|
/* */
|
|
/* If no storage is available then the result cannot be used, so NULL */
|
|
/* is returned. */
|
|
/* ------------------------------------------------------------------ */
|
|
static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
|
|
uInt *status) {
|
|
decNumber *res; // result structure
|
|
uInt newstatus=0; // status from round
|
|
Int residue=0; // rounding accumulator
|
|
|
|
// Allocate storage for the returned decNumber, big enough for the
|
|
// length specified by the context
|
|
res=(decNumber *)malloc(sizeof(decNumber)
|
|
+(D2U(set->digits)-1)*sizeof(Unit));
|
|
if (res==NULL) {
|
|
*status|=DEC_Insufficient_storage;
|
|
return NULL;
|
|
}
|
|
decCopyFit(res, dn, set, &residue, &newstatus);
|
|
decApplyRound(res, set, residue, &newstatus);
|
|
|
|
// If that set Inexact then "lost digits" is raised...
|
|
if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
|
|
*status|=newstatus;
|
|
return res;
|
|
} // decRoundOperand
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCopyFit -- copy a number, truncating the coefficient if needed */
|
|
/* */
|
|
/* dest is the target decNumber */
|
|
/* src is the source decNumber */
|
|
/* set is the context [used for length (digits) and rounding mode] */
|
|
/* residue is the residue accumulator */
|
|
/* status contains the current status to be updated */
|
|
/* */
|
|
/* (dest==src is allowed and will be a no-op if fits) */
|
|
/* All fields are updated as required. */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decCopyFit(decNumber *dest, const decNumber *src,
|
|
decContext *set, Int *residue, uInt *status) {
|
|
dest->bits=src->bits;
|
|
dest->exponent=src->exponent;
|
|
decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
|
|
} // decCopyFit
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decSetCoeff -- set the coefficient of a number */
|
|
/* */
|
|
/* dn is the number whose coefficient array is to be set. */
|
|
/* It must have space for set->digits digits */
|
|
/* set is the context [for size] */
|
|
/* lsu -> lsu of the source coefficient [may be dn->lsu] */
|
|
/* len is digits in the source coefficient [may be dn->digits] */
|
|
/* residue is the residue accumulator. This has values as in */
|
|
/* decApplyRound, and will be unchanged unless the */
|
|
/* target size is less than len. In this case, the */
|
|
/* coefficient is truncated and the residue is updated to */
|
|
/* reflect the previous residue and the dropped digits. */
|
|
/* status is the status accumulator, as usual */
|
|
/* */
|
|
/* The coefficient may already be in the number, or it can be an */
|
|
/* external intermediate array. If it is in the number, lsu must == */
|
|
/* dn->lsu and len must == dn->digits. */
|
|
/* */
|
|
/* Note that the coefficient length (len) may be < set->digits, and */
|
|
/* in this case this merely copies the coefficient (or is a no-op */
|
|
/* if dn->lsu==lsu). */
|
|
/* */
|
|
/* Note also that (only internally, from decQuantizeOp and */
|
|
/* decSetSubnormal) the value of set->digits may be less than one, */
|
|
/* indicating a round to left. This routine handles that case */
|
|
/* correctly; caller ensures space. */
|
|
/* */
|
|
/* dn->digits, dn->lsu (and as required), and dn->exponent are */
|
|
/* updated as necessary. dn->bits (sign) is unchanged. */
|
|
/* */
|
|
/* DEC_Rounded status is set if any digits are discarded. */
|
|
/* DEC_Inexact status is set if any non-zero digits are discarded, or */
|
|
/* incoming residue was non-0 (implies rounded) */
|
|
/* ------------------------------------------------------------------ */
|
|
// mapping array: maps 0-9 to canonical residues, so that a residue
|
|
// can be adjusted in the range [-1, +1] and achieve correct rounding
|
|
// 0 1 2 3 4 5 6 7 8 9
|
|
static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
|
|
static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
|
|
Int len, Int *residue, uInt *status) {
|
|
Int discard; // number of digits to discard
|
|
uInt cut; // cut point in Unit
|
|
const Unit *up; // work
|
|
Unit *target; // ..
|
|
Int count; // ..
|
|
#if DECDPUN<=4
|
|
uInt temp; // ..
|
|
#endif
|
|
|
|
discard=len-set->digits; // digits to discard
|
|
if (discard<=0) { // no digits are being discarded
|
|
if (dn->lsu!=lsu) { // copy needed
|
|
// copy the coefficient array to the result number; no shift needed
|
|
count=len; // avoids D2U
|
|
up=lsu;
|
|
for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
|
|
*target=*up;
|
|
dn->digits=len; // set the new length
|
|
}
|
|
// dn->exponent and residue are unchanged, record any inexactitude
|
|
if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
|
|
return;
|
|
}
|
|
|
|
// some digits must be discarded ...
|
|
dn->exponent+=discard; // maintain numerical value
|
|
*status|=DEC_Rounded; // accumulate Rounded status
|
|
if (*residue>1) *residue=1; // previous residue now to right, so reduce
|
|
|
|
if (discard>len) { // everything, +1, is being discarded
|
|
// guard digit is 0
|
|
// residue is all the number [NB could be all 0s]
|
|
if (*residue<=0) { // not already positive
|
|
count=len; // avoids D2U
|
|
for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { // found non-0
|
|
*residue=1;
|
|
break; // no need to check any others
|
|
}
|
|
}
|
|
if (*residue!=0) *status|=DEC_Inexact; // record inexactitude
|
|
*dn->lsu=0; // coefficient will now be 0
|
|
dn->digits=1; // ..
|
|
return;
|
|
} // total discard
|
|
|
|
// partial discard [most common case]
|
|
// here, at least the first (most significant) discarded digit exists
|
|
|
|
// spin up the number, noting residue during the spin, until get to
|
|
// the Unit with the first discarded digit. When reach it, extract
|
|
// it and remember its position
|
|
count=0;
|
|
for (up=lsu;; up++) {
|
|
count+=DECDPUN;
|
|
if (count>=discard) break; // full ones all checked
|
|
if (*up!=0) *residue=1;
|
|
} // up
|
|
|
|
// here up -> Unit with first discarded digit
|
|
cut=discard-(count-DECDPUN)-1;
|
|
if (cut==DECDPUN-1) { // unit-boundary case (fast)
|
|
Unit half=(Unit)powers[DECDPUN]>>1;
|
|
// set residue directly
|
|
if (*up>=half) {
|
|
if (*up>half) *residue=7;
|
|
else *residue+=5; // add sticky bit
|
|
}
|
|
else { // <half
|
|
if (*up!=0) *residue=3; // [else is 0, leave as sticky bit]
|
|
}
|
|
if (set->digits<=0) { // special for Quantize/Subnormal :-(
|
|
*dn->lsu=0; // .. result is 0
|
|
dn->digits=1; // ..
|
|
}
|
|
else { // shift to least
|
|
count=set->digits; // now digits to end up with
|
|
dn->digits=count; // set the new length
|
|
up++; // move to next
|
|
// on unit boundary, so shift-down copy loop is simple
|
|
for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
|
|
*target=*up;
|
|
}
|
|
} // unit-boundary case
|
|
|
|
else { // discard digit is in low digit(s), and not top digit
|
|
uInt discard1; // first discarded digit
|
|
uInt quot, rem; // for divisions
|
|
if (cut==0) quot=*up; // is at bottom of unit
|
|
else /* cut>0 */ { // it's not at bottom of unit
|
|
#if DECDPUN<=4
|
|
quot=QUOT10(*up, cut);
|
|
rem=*up-quot*powers[cut];
|
|
#else
|
|
rem=*up%powers[cut];
|
|
quot=*up/powers[cut];
|
|
#endif
|
|
if (rem!=0) *residue=1;
|
|
}
|
|
// discard digit is now at bottom of quot
|
|
#if DECDPUN<=4
|
|
temp=(quot*6554)>>16; // fast /10
|
|
// Vowels algorithm here not a win (9 instructions)
|
|
discard1=quot-X10(temp);
|
|
quot=temp;
|
|
#else
|
|
discard1=quot%10;
|
|
quot=quot/10;
|
|
#endif
|
|
// here, discard1 is the guard digit, and residue is everything
|
|
// else [use mapping array to accumulate residue safely]
|
|
*residue+=resmap[discard1];
|
|
cut++; // update cut
|
|
// here: up -> Unit of the array with bottom digit
|
|
// cut is the division point for each Unit
|
|
// quot holds the uncut high-order digits for the current unit
|
|
if (set->digits<=0) { // special for Quantize/Subnormal :-(
|
|
*dn->lsu=0; // .. result is 0
|
|
dn->digits=1; // ..
|
|
}
|
|
else { // shift to least needed
|
|
count=set->digits; // now digits to end up with
|
|
dn->digits=count; // set the new length
|
|
// shift-copy the coefficient array to the result number
|
|
for (target=dn->lsu; ; target++) {
|
|
*target=(Unit)quot;
|
|
count-=(DECDPUN-cut);
|
|
if (count<=0) break;
|
|
up++;
|
|
quot=*up;
|
|
#if DECDPUN<=4
|
|
quot=QUOT10(quot, cut);
|
|
rem=*up-quot*powers[cut];
|
|
#else
|
|
rem=quot%powers[cut];
|
|
quot=quot/powers[cut];
|
|
#endif
|
|
*target=(Unit)(*target+rem*powers[DECDPUN-cut]);
|
|
count-=cut;
|
|
if (count<=0) break;
|
|
} // shift-copy loop
|
|
} // shift to least
|
|
} // not unit boundary
|
|
|
|
if (*residue!=0) *status|=DEC_Inexact; // record inexactitude
|
|
return;
|
|
} // decSetCoeff
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decApplyRound -- apply pending rounding to a number */
|
|
/* */
|
|
/* dn is the number, with space for set->digits digits */
|
|
/* set is the context [for size and rounding mode] */
|
|
/* residue indicates pending rounding, being any accumulated */
|
|
/* guard and sticky information. It may be: */
|
|
/* 6-9: rounding digit is >5 */
|
|
/* 5: rounding digit is exactly half-way */
|
|
/* 1-4: rounding digit is <5 and >0 */
|
|
/* 0: the coefficient is exact */
|
|
/* -1: as 1, but the hidden digits are subtractive, that */
|
|
/* is, of the opposite sign to dn. In this case the */
|
|
/* coefficient must be non-0. This case occurs when */
|
|
/* subtracting a small number (which can be reduced to */
|
|
/* a sticky bit); see decAddOp. */
|
|
/* status is the status accumulator, as usual */
|
|
/* */
|
|
/* This routine applies rounding while keeping the length of the */
|
|
/* coefficient constant. The exponent and status are unchanged */
|
|
/* except if: */
|
|
/* */
|
|
/* -- the coefficient was increased and is all nines (in which */
|
|
/* case Overflow could occur, and is handled directly here so */
|
|
/* the caller does not need to re-test for overflow) */
|
|
/* */
|
|
/* -- the coefficient was decreased and becomes all nines (in which */
|
|
/* case Underflow could occur, and is also handled directly). */
|
|
/* */
|
|
/* All fields in dn are updated as required. */
|
|
/* */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decApplyRound(decNumber *dn, decContext *set, Int residue,
|
|
uInt *status) {
|
|
Int bump; // 1 if coefficient needs to be incremented
|
|
// -1 if coefficient needs to be decremented
|
|
|
|
if (residue==0) return; // nothing to apply
|
|
|
|
bump=0; // assume a smooth ride
|
|
|
|
// now decide whether, and how, to round, depending on mode
|
|
switch (set->round) {
|
|
case DEC_ROUND_05UP: { // round zero or five up (for reround)
|
|
// This is the same as DEC_ROUND_DOWN unless there is a
|
|
// positive residue and the lsd of dn is 0 or 5, in which case
|
|
// it is bumped; when residue is <0, the number is therefore
|
|
// bumped down unless the final digit was 1 or 6 (in which
|
|
// case it is bumped down and then up -- a no-op)
|
|
Int lsd5=*dn->lsu%5; // get lsd and quintate
|
|
if (residue<0 && lsd5!=1) bump=-1;
|
|
else if (residue>0 && lsd5==0) bump=1;
|
|
// [bump==1 could be applied directly; use common path for clarity]
|
|
break;} // r-05
|
|
|
|
case DEC_ROUND_DOWN: {
|
|
// no change, except if negative residue
|
|
if (residue<0) bump=-1;
|
|
break;} // r-d
|
|
|
|
case DEC_ROUND_HALF_DOWN: {
|
|
if (residue>5) bump=1;
|
|
break;} // r-h-d
|
|
|
|
case DEC_ROUND_HALF_EVEN: {
|
|
if (residue>5) bump=1; // >0.5 goes up
|
|
else if (residue==5) { // exactly 0.5000...
|
|
// 0.5 goes up iff [new] lsd is odd
|
|
if (*dn->lsu & 0x01) bump=1;
|
|
}
|
|
break;} // r-h-e
|
|
|
|
case DEC_ROUND_HALF_UP: {
|
|
if (residue>=5) bump=1;
|
|
break;} // r-h-u
|
|
|
|
case DEC_ROUND_UP: {
|
|
if (residue>0) bump=1;
|
|
break;} // r-u
|
|
|
|
case DEC_ROUND_CEILING: {
|
|
// same as _UP for positive numbers, and as _DOWN for negatives
|
|
// [negative residue cannot occur on 0]
|
|
if (decNumberIsNegative(dn)) {
|
|
if (residue<0) bump=-1;
|
|
}
|
|
else {
|
|
if (residue>0) bump=1;
|
|
}
|
|
break;} // r-c
|
|
|
|
case DEC_ROUND_FLOOR: {
|
|
// same as _UP for negative numbers, and as _DOWN for positive
|
|
// [negative residue cannot occur on 0]
|
|
if (!decNumberIsNegative(dn)) {
|
|
if (residue<0) bump=-1;
|
|
}
|
|
else {
|
|
if (residue>0) bump=1;
|
|
}
|
|
break;} // r-f
|
|
|
|
default: { // e.g., DEC_ROUND_MAX
|
|
*status|=DEC_Invalid_context;
|
|
#if DECTRACE || (DECCHECK && DECVERB)
|
|
printf("Unknown rounding mode: %d\n", set->round);
|
|
#endif
|
|
break;}
|
|
} // switch
|
|
|
|
// now bump the number, up or down, if need be
|
|
if (bump==0) return; // no action required
|
|
|
|
// Simply use decUnitAddSub unless bumping up and the number is
|
|
// all nines. In this special case set to 100... explicitly
|
|
// and adjust the exponent by one (as otherwise could overflow
|
|
// the array)
|
|
// Similarly handle all-nines result if bumping down.
|
|
if (bump>0) {
|
|
Unit *up; // work
|
|
uInt count=dn->digits; // digits to be checked
|
|
for (up=dn->lsu; ; up++) {
|
|
if (count<=DECDPUN) {
|
|
// this is the last Unit (the msu)
|
|
if (*up!=powers[count]-1) break; // not still 9s
|
|
// here if it, too, is all nines
|
|
*up=(Unit)powers[count-1]; // here 999 -> 100 etc.
|
|
for (up=up-1; up>=dn->lsu; up--) *up=0; // others all to 0
|
|
dn->exponent++; // and bump exponent
|
|
// [which, very rarely, could cause Overflow...]
|
|
if ((dn->exponent+dn->digits)>set->emax+1) {
|
|
decSetOverflow(dn, set, status);
|
|
}
|
|
return; // done
|
|
}
|
|
// a full unit to check, with more to come
|
|
if (*up!=DECDPUNMAX) break; // not still 9s
|
|
count-=DECDPUN;
|
|
} // up
|
|
} // bump>0
|
|
else { // -1
|
|
// here checking for a pre-bump of 1000... (leading 1, all
|
|
// other digits zero)
|
|
Unit *up, *sup; // work
|
|
uInt count=dn->digits; // digits to be checked
|
|
for (up=dn->lsu; ; up++) {
|
|
if (count<=DECDPUN) {
|
|
// this is the last Unit (the msu)
|
|
if (*up!=powers[count-1]) break; // not 100..
|
|
// here if have the 1000... case
|
|
sup=up; // save msu pointer
|
|
*up=(Unit)powers[count]-1; // here 100 in msu -> 999
|
|
// others all to all-nines, too
|
|
for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
|
|
dn->exponent--; // and bump exponent
|
|
|
|
// iff the number was at the subnormal boundary (exponent=etiny)
|
|
// then the exponent is now out of range, so it will in fact get
|
|
// clamped to etiny and the final 9 dropped.
|
|
// printf(">> emin=%d exp=%d sdig=%d\n", set->emin,
|
|
// dn->exponent, set->digits);
|
|
if (dn->exponent+1==set->emin-set->digits+1) {
|
|
if (count==1 && dn->digits==1) *sup=0; // here 9 -> 0[.9]
|
|
else {
|
|
*sup=(Unit)powers[count-1]-1; // here 999.. in msu -> 99..
|
|
dn->digits--;
|
|
}
|
|
dn->exponent++;
|
|
*status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
|
|
}
|
|
return; // done
|
|
}
|
|
|
|
// a full unit to check, with more to come
|
|
if (*up!=0) break; // not still 0s
|
|
count-=DECDPUN;
|
|
} // up
|
|
|
|
} // bump<0
|
|
|
|
// Actual bump needed. Do it.
|
|
decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
|
|
} // decApplyRound
|
|
|
|
#if DECSUBSET
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFinish -- finish processing a number */
|
|
/* */
|
|
/* dn is the number */
|
|
/* set is the context */
|
|
/* residue is the rounding accumulator (as in decApplyRound) */
|
|
/* status is the accumulator */
|
|
/* */
|
|
/* This finishes off the current number by: */
|
|
/* 1. If not extended: */
|
|
/* a. Converting a zero result to clean '0' */
|
|
/* b. Reducing positive exponents to 0, if would fit in digits */
|
|
/* 2. Checking for overflow and subnormals (always) */
|
|
/* Note this is just Finalize when no subset arithmetic. */
|
|
/* All fields are updated as required. */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decFinish(decNumber *dn, decContext *set, Int *residue,
|
|
uInt *status) {
|
|
if (!set->extended) {
|
|
if ISZERO(dn) { // value is zero
|
|
dn->exponent=0; // clean exponent ..
|
|
dn->bits=0; // .. and sign
|
|
return; // no error possible
|
|
}
|
|
if (dn->exponent>=0) { // non-negative exponent
|
|
// >0; reduce to integer if possible
|
|
if (set->digits >= (dn->exponent+dn->digits)) {
|
|
dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
|
|
dn->exponent=0;
|
|
}
|
|
}
|
|
} // !extended
|
|
|
|
decFinalize(dn, set, residue, status);
|
|
} // decFinish
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFinalize -- final check, clamp, and round of a number */
|
|
/* */
|
|
/* dn is the number */
|
|
/* set is the context */
|
|
/* residue is the rounding accumulator (as in decApplyRound) */
|
|
/* status is the status accumulator */
|
|
/* */
|
|
/* This finishes off the current number by checking for subnormal */
|
|
/* results, applying any pending rounding, checking for overflow, */
|
|
/* and applying any clamping. */
|
|
/* Underflow and overflow conditions are raised as appropriate. */
|
|
/* All fields are updated as required. */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decFinalize(decNumber *dn, decContext *set, Int *residue,
|
|
uInt *status) {
|
|
Int shift; // shift needed if clamping
|
|
Int tinyexp=set->emin-dn->digits+1; // precalculate subnormal boundary
|
|
|
|
// Must be careful, here, when checking the exponent as the
|
|
// adjusted exponent could overflow 31 bits [because it may already
|
|
// be up to twice the expected].
|
|
|
|
// First test for subnormal. This must be done before any final
|
|
// round as the result could be rounded to Nmin or 0.
|
|
if (dn->exponent<=tinyexp) { // prefilter
|
|
Int comp;
|
|
decNumber nmin;
|
|
// A very nasty case here is dn == Nmin and residue<0
|
|
if (dn->exponent<tinyexp) {
|
|
// Go handle subnormals; this will apply round if needed.
|
|
decSetSubnormal(dn, set, residue, status);
|
|
return;
|
|
}
|
|
// Equals case: only subnormal if dn=Nmin and negative residue
|
|
decNumberZero(&nmin);
|
|
nmin.lsu[0]=1;
|
|
nmin.exponent=set->emin;
|
|
comp=decCompare(dn, &nmin, 1); // (signless compare)
|
|
if (comp==BADINT) { // oops
|
|
*status|=DEC_Insufficient_storage; // abandon...
|
|
return;
|
|
}
|
|
if (*residue<0 && comp==0) { // neg residue and dn==Nmin
|
|
decApplyRound(dn, set, *residue, status); // might force down
|
|
decSetSubnormal(dn, set, residue, status);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// now apply any pending round (this could raise overflow).
|
|
if (*residue!=0) decApplyRound(dn, set, *residue, status);
|
|
|
|
// Check for overflow [redundant in the 'rare' case] or clamp
|
|
if (dn->exponent<=set->emax-set->digits+1) return; // neither needed
|
|
|
|
|
|
// here when might have an overflow or clamp to do
|
|
if (dn->exponent>set->emax-dn->digits+1) { // too big
|
|
decSetOverflow(dn, set, status);
|
|
return;
|
|
}
|
|
// here when the result is normal but in clamp range
|
|
if (!set->clamp) return;
|
|
|
|
// here when need to apply the IEEE exponent clamp (fold-down)
|
|
shift=dn->exponent-(set->emax-set->digits+1);
|
|
|
|
// shift coefficient (if non-zero)
|
|
if (!ISZERO(dn)) {
|
|
dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
|
|
}
|
|
dn->exponent-=shift; // adjust the exponent to match
|
|
*status|=DEC_Clamped; // and record the dirty deed
|
|
return;
|
|
} // decFinalize
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decSetOverflow -- set number to proper overflow value */
|
|
/* */
|
|
/* dn is the number (used for sign [only] and result) */
|
|
/* set is the context [used for the rounding mode, etc.] */
|
|
/* status contains the current status to be updated */
|
|
/* */
|
|
/* This sets the sign of a number and sets its value to either */
|
|
/* Infinity or the maximum finite value, depending on the sign of */
|
|
/* dn and the rounding mode, following IEEE 754 rules. */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
|
|
Flag needmax=0; // result is maximum finite value
|
|
uByte sign=dn->bits&DECNEG; // clean and save sign bit
|
|
|
|
if (ISZERO(dn)) { // zero does not overflow magnitude
|
|
Int emax=set->emax; // limit value
|
|
if (set->clamp) emax-=set->digits-1; // lower if clamping
|
|
if (dn->exponent>emax) { // clamp required
|
|
dn->exponent=emax;
|
|
*status|=DEC_Clamped;
|
|
}
|
|
return;
|
|
}
|
|
|
|
decNumberZero(dn);
|
|
switch (set->round) {
|
|
case DEC_ROUND_DOWN: {
|
|
needmax=1; // never Infinity
|
|
break;} // r-d
|
|
case DEC_ROUND_05UP: {
|
|
needmax=1; // never Infinity
|
|
break;} // r-05
|
|
case DEC_ROUND_CEILING: {
|
|
if (sign) needmax=1; // Infinity if non-negative
|
|
break;} // r-c
|
|
case DEC_ROUND_FLOOR: {
|
|
if (!sign) needmax=1; // Infinity if negative
|
|
break;} // r-f
|
|
default: break; // Infinity in all other cases
|
|
}
|
|
if (needmax) {
|
|
decSetMaxValue(dn, set);
|
|
dn->bits=sign; // set sign
|
|
}
|
|
else dn->bits=sign|DECINF; // Value is +/-Infinity
|
|
*status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
|
|
} // decSetOverflow
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decSetMaxValue -- set number to +Nmax (maximum normal value) */
|
|
/* */
|
|
/* dn is the number to set */
|
|
/* set is the context [used for digits and emax] */
|
|
/* */
|
|
/* This sets the number to the maximum positive value. */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decSetMaxValue(decNumber *dn, decContext *set) {
|
|
Unit *up; // work
|
|
Int count=set->digits; // nines to add
|
|
dn->digits=count;
|
|
// fill in all nines to set maximum value
|
|
for (up=dn->lsu; ; up++) {
|
|
if (count>DECDPUN) *up=DECDPUNMAX; // unit full o'nines
|
|
else { // this is the msu
|
|
*up=(Unit)(powers[count]-1);
|
|
break;
|
|
}
|
|
count-=DECDPUN; // filled those digits
|
|
} // up
|
|
dn->bits=0; // + sign
|
|
dn->exponent=set->emax-set->digits+1;
|
|
} // decSetMaxValue
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decSetSubnormal -- process value whose exponent is <Emin */
|
|
/* */
|
|
/* dn is the number (used as input as well as output; it may have */
|
|
/* an allowed subnormal value, which may need to be rounded) */
|
|
/* set is the context [used for the rounding mode] */
|
|
/* residue is any pending residue */
|
|
/* status contains the current status to be updated */
|
|
/* */
|
|
/* If subset mode, set result to zero and set Underflow flags. */
|
|
/* */
|
|
/* Value may be zero with a low exponent; this does not set Subnormal */
|
|
/* but the exponent will be clamped to Etiny. */
|
|
/* */
|
|
/* Otherwise ensure exponent is not out of range, and round as */
|
|
/* necessary. Underflow is set if the result is Inexact. */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
|
|
uInt *status) {
|
|
decContext workset; // work
|
|
Int etiny, adjust; // ..
|
|
|
|
#if DECSUBSET
|
|
// simple set to zero and 'hard underflow' for subset
|
|
if (!set->extended) {
|
|
decNumberZero(dn);
|
|
// always full overflow
|
|
*status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// Full arithmetic -- allow subnormals, rounded to minimum exponent
|
|
// (Etiny) if needed
|
|
etiny=set->emin-(set->digits-1); // smallest allowed exponent
|
|
|
|
if ISZERO(dn) { // value is zero
|
|
// residue can never be non-zero here
|
|
#if DECCHECK
|
|
if (*residue!=0) {
|
|
printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
|
|
*status|=DEC_Invalid_operation;
|
|
}
|
|
#endif
|
|
if (dn->exponent<etiny) { // clamp required
|
|
dn->exponent=etiny;
|
|
*status|=DEC_Clamped;
|
|
}
|
|
return;
|
|
}
|
|
|
|
*status|=DEC_Subnormal; // have a non-zero subnormal
|
|
adjust=etiny-dn->exponent; // calculate digits to remove
|
|
if (adjust<=0) { // not out of range; unrounded
|
|
// residue can never be non-zero here, except in the Nmin-residue
|
|
// case (which is a subnormal result), so can take fast-path here
|
|
// it may already be inexact (from setting the coefficient)
|
|
if (*status&DEC_Inexact) *status|=DEC_Underflow;
|
|
return;
|
|
}
|
|
|
|
// adjust>0, so need to rescale the result so exponent becomes Etiny
|
|
// [this code is similar to that in rescale]
|
|
workset=*set; // clone rounding, etc.
|
|
workset.digits=dn->digits-adjust; // set requested length
|
|
workset.emin-=adjust; // and adjust emin to match
|
|
// [note that the latter can be <1, here, similar to Rescale case]
|
|
decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
|
|
decApplyRound(dn, &workset, *residue, status);
|
|
|
|
// Use 754 default rule: Underflow is set iff Inexact
|
|
// [independent of whether trapped]
|
|
if (*status&DEC_Inexact) *status|=DEC_Underflow;
|
|
|
|
// if rounded up a 999s case, exponent will be off by one; adjust
|
|
// back if so [it will fit, because it was shortened earlier]
|
|
if (dn->exponent>etiny) {
|
|
dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
|
|
dn->exponent--; // (re)adjust the exponent.
|
|
}
|
|
|
|
// if rounded to zero, it is by definition clamped...
|
|
if (ISZERO(dn)) *status|=DEC_Clamped;
|
|
} // decSetSubnormal
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCheckMath - check entry conditions for a math function */
|
|
/* */
|
|
/* This checks the context and the operand */
|
|
/* */
|
|
/* rhs is the operand to check */
|
|
/* set is the context to check */
|
|
/* status is unchanged if both are good */
|
|
/* */
|
|
/* returns non-zero if status is changed, 0 otherwise */
|
|
/* */
|
|
/* Restrictions enforced: */
|
|
/* */
|
|
/* digits, emax, and -emin in the context must be less than */
|
|
/* DEC_MAX_MATH (999999), and A must be within these bounds if */
|
|
/* non-zero. Invalid_operation is set in the status if a */
|
|
/* restriction is violated. */
|
|
/* ------------------------------------------------------------------ */
|
|
static uInt decCheckMath(const decNumber *rhs, decContext *set,
|
|
uInt *status) {
|
|
uInt save=*status; // record
|
|
if (set->digits>DEC_MAX_MATH
|
|
|| set->emax>DEC_MAX_MATH
|
|
|| -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
|
|
else if ((rhs->digits>DEC_MAX_MATH
|
|
|| rhs->exponent+rhs->digits>DEC_MAX_MATH+1
|
|
|| rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
|
|
&& !ISZERO(rhs)) *status|=DEC_Invalid_operation;
|
|
return (*status!=save);
|
|
} // decCheckMath
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decGetInt -- get integer from a number */
|
|
/* */
|
|
/* dn is the number [which will not be altered] */
|
|
/* */
|
|
/* returns one of: */
|
|
/* BADINT if there is a non-zero fraction */
|
|
/* the converted integer */
|
|
/* BIGEVEN if the integer is even and magnitude > 2*10**9 */
|
|
/* BIGODD if the integer is odd and magnitude > 2*10**9 */
|
|
/* */
|
|
/* This checks and gets a whole number from the input decNumber. */
|
|
/* The sign can be determined from dn by the caller when BIGEVEN or */
|
|
/* BIGODD is returned. */
|
|
/* ------------------------------------------------------------------ */
|
|
static Int decGetInt(const decNumber *dn) {
|
|
Int theInt; // result accumulator
|
|
const Unit *up; // work
|
|
Int got; // digits (real or not) processed
|
|
Int ilength=dn->digits+dn->exponent; // integral length
|
|
Flag neg=decNumberIsNegative(dn); // 1 if -ve
|
|
|
|
// The number must be an integer that fits in 10 digits
|
|
// Assert, here, that 10 is enough for any rescale Etiny
|
|
#if DEC_MAX_EMAX > 999999999
|
|
#error GetInt may need updating [for Emax]
|
|
#endif
|
|
#if DEC_MIN_EMIN < -999999999
|
|
#error GetInt may need updating [for Emin]
|
|
#endif
|
|
if (ISZERO(dn)) return 0; // zeros are OK, with any exponent
|
|
|
|
up=dn->lsu; // ready for lsu
|
|
theInt=0; // ready to accumulate
|
|
if (dn->exponent>=0) { // relatively easy
|
|
// no fractional part [usual]; allow for positive exponent
|
|
got=dn->exponent;
|
|
}
|
|
else { // -ve exponent; some fractional part to check and discard
|
|
Int count=-dn->exponent; // digits to discard
|
|
// spin up whole units until reach the Unit with the unit digit
|
|
for (; count>=DECDPUN; up++) {
|
|
if (*up!=0) return BADINT; // non-zero Unit to discard
|
|
count-=DECDPUN;
|
|
}
|
|
if (count==0) got=0; // [a multiple of DECDPUN]
|
|
else { // [not multiple of DECDPUN]
|
|
Int rem; // work
|
|
// slice off fraction digits and check for non-zero
|
|
#if DECDPUN<=4
|
|
theInt=QUOT10(*up, count);
|
|
rem=*up-theInt*powers[count];
|
|
#else
|
|
rem=*up%powers[count]; // slice off discards
|
|
theInt=*up/powers[count];
|
|
#endif
|
|
if (rem!=0) return BADINT; // non-zero fraction
|
|
// it looks good
|
|
got=DECDPUN-count; // number of digits so far
|
|
up++; // ready for next
|
|
}
|
|
}
|
|
// now it's known there's no fractional part
|
|
|
|
// tricky code now, to accumulate up to 9.3 digits
|
|
if (got==0) {theInt=*up; got+=DECDPUN; up++;} // ensure lsu is there
|
|
|
|
if (ilength<11) {
|
|
Int save=theInt;
|
|
// collect any remaining unit(s)
|
|
for (; got<ilength; up++) {
|
|
theInt+=*up*powers[got];
|
|
got+=DECDPUN;
|
|
}
|
|
if (ilength==10) { // need to check for wrap
|
|
if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
|
|
// [that test also disallows the BADINT result case]
|
|
else if (neg && theInt>1999999997) ilength=11;
|
|
else if (!neg && theInt>999999999) ilength=11;
|
|
if (ilength==11) theInt=save; // restore correct low bit
|
|
}
|
|
}
|
|
|
|
if (ilength>10) { // too big
|
|
if (theInt&1) return BIGODD; // bottom bit 1
|
|
return BIGEVEN; // bottom bit 0
|
|
}
|
|
|
|
if (neg) theInt=-theInt; // apply sign
|
|
return theInt;
|
|
} // decGetInt
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decDecap -- decapitate the coefficient of a number */
|
|
/* */
|
|
/* dn is the number to be decapitated */
|
|
/* drop is the number of digits to be removed from the left of dn; */
|
|
/* this must be <= dn->digits (if equal, the coefficient is */
|
|
/* set to 0) */
|
|
/* */
|
|
/* Returns dn; dn->digits will be <= the initial digits less drop */
|
|
/* (after removing drop digits there may be leading zero digits */
|
|
/* which will also be removed). Only dn->lsu and dn->digits change. */
|
|
/* ------------------------------------------------------------------ */
|
|
static decNumber *decDecap(decNumber *dn, Int drop) {
|
|
Unit *msu; // -> target cut point
|
|
Int cut; // work
|
|
if (drop>=dn->digits) { // losing the whole thing
|
|
#if DECCHECK
|
|
if (drop>dn->digits)
|
|
printf("decDecap called with drop>digits [%ld>%ld]\n",
|
|
(LI)drop, (LI)dn->digits);
|
|
#endif
|
|
dn->lsu[0]=0;
|
|
dn->digits=1;
|
|
return dn;
|
|
}
|
|
msu=dn->lsu+D2U(dn->digits-drop)-1; // -> likely msu
|
|
cut=MSUDIGITS(dn->digits-drop); // digits to be in use in msu
|
|
if (cut!=DECDPUN) *msu%=powers[cut]; // clear left digits
|
|
// that may have left leading zero digits, so do a proper count...
|
|
dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1);
|
|
return dn;
|
|
} // decDecap
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decBiStr -- compare string with pairwise options */
|
|
/* */
|
|
/* targ is the string to compare */
|
|
/* str1 is one of the strings to compare against (length may be 0) */
|
|
/* str2 is the other; it must be the same length as str1 */
|
|
/* */
|
|
/* returns 1 if strings compare equal, (that is, it is the same */
|
|
/* length as str1 and str2, and each character of targ is in either */
|
|
/* str1 or str2 in the corresponding position), or 0 otherwise */
|
|
/* */
|
|
/* This is used for generic caseless compare, including the awkward */
|
|
/* case of the Turkish dotted and dotless Is. Use as (for example): */
|
|
/* if (decBiStr(test, "mike", "MIKE")) ... */
|
|
/* ------------------------------------------------------------------ */
|
|
static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
|
|
for (;;targ++, str1++, str2++) {
|
|
if (*targ!=*str1 && *targ!=*str2) return 0;
|
|
// *targ has a match in one (or both, if terminator)
|
|
if (*targ=='\0') break;
|
|
} // forever
|
|
return 1;
|
|
} // decBiStr
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNaNs -- handle NaN operand or operands */
|
|
/* */
|
|
/* res is the result number */
|
|
/* lhs is the first operand */
|
|
/* rhs is the second operand, or NULL if none */
|
|
/* context is used to limit payload length */
|
|
/* status contains the current status */
|
|
/* returns res in case convenient */
|
|
/* */
|
|
/* Called when one or both operands is a NaN, and propagates the */
|
|
/* appropriate result to res. When an sNaN is found, it is changed */
|
|
/* to a qNaN and Invalid operation is set. */
|
|
/* ------------------------------------------------------------------ */
|
|
static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set,
|
|
uInt *status) {
|
|
// This decision tree ends up with LHS being the source pointer,
|
|
// and status updated if need be
|
|
if (lhs->bits & DECSNAN)
|
|
*status|=DEC_Invalid_operation | DEC_sNaN;
|
|
else if (rhs==NULL);
|
|
else if (rhs->bits & DECSNAN) {
|
|
lhs=rhs;
|
|
*status|=DEC_Invalid_operation | DEC_sNaN;
|
|
}
|
|
else if (lhs->bits & DECNAN);
|
|
else lhs=rhs;
|
|
|
|
// propagate the payload
|
|
if (lhs->digits<=set->digits) decNumberCopy(res, lhs); // easy
|
|
else { // too long
|
|
const Unit *ul;
|
|
Unit *ur, *uresp1;
|
|
// copy safe number of units, then decapitate
|
|
res->bits=lhs->bits; // need sign etc.
|
|
uresp1=res->lsu+D2U(set->digits);
|
|
for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
|
|
res->digits=D2U(set->digits)*DECDPUN;
|
|
// maybe still too long
|
|
if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
|
|
}
|
|
|
|
res->bits&=~DECSNAN; // convert any sNaN to NaN, while
|
|
res->bits|=DECNAN; // .. preserving sign
|
|
res->exponent=0; // clean exponent
|
|
// [coefficient was copied/decapitated]
|
|
return res;
|
|
} // decNaNs
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decStatus -- apply non-zero status */
|
|
/* */
|
|
/* dn is the number to set if error */
|
|
/* status contains the current status (not yet in context) */
|
|
/* set is the context */
|
|
/* */
|
|
/* If the status is an error status, the number is set to a NaN, */
|
|
/* unless the error was an overflow, divide-by-zero, or underflow, */
|
|
/* in which case the number will have already been set. */
|
|
/* */
|
|
/* The context status is then updated with the new status. Note that */
|
|
/* this may raise a signal, so control may never return from this */
|
|
/* routine (hence resources must be recovered before it is called). */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decStatus(decNumber *dn, uInt status, decContext *set) {
|
|
if (status & DEC_NaNs) { // error status -> NaN
|
|
// if cause was an sNaN, clear and propagate [NaN is already set up]
|
|
if (status & DEC_sNaN) status&=~DEC_sNaN;
|
|
else {
|
|
decNumberZero(dn); // other error: clean throughout
|
|
dn->bits=DECNAN; // and make a quiet NaN
|
|
}
|
|
}
|
|
decContextSetStatus(set, status); // [may not return]
|
|
return;
|
|
} // decStatus
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decGetDigits -- count digits in a Units array */
|
|
/* */
|
|
/* uar is the Unit array holding the number (this is often an */
|
|
/* accumulator of some sort) */
|
|
/* len is the length of the array in units [>=1] */
|
|
/* */
|
|
/* returns the number of (significant) digits in the array */
|
|
/* */
|
|
/* All leading zeros are excluded, except the last if the array has */
|
|
/* only zero Units. */
|
|
/* ------------------------------------------------------------------ */
|
|
// This may be called twice during some operations.
|
|
static Int decGetDigits(Unit *uar, Int len) {
|
|
Unit *up=uar+(len-1); // -> msu
|
|
Int digits=(len-1)*DECDPUN+1; // possible digits excluding msu
|
|
#if DECDPUN>4
|
|
uInt const *pow; // work
|
|
#endif
|
|
// (at least 1 in final msu)
|
|
#if DECCHECK
|
|
if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
|
|
#endif
|
|
|
|
for (; up>=uar; up--) {
|
|
if (*up==0) { // unit is all 0s
|
|
if (digits==1) break; // a zero has one digit
|
|
digits-=DECDPUN; // adjust for 0 unit
|
|
continue;}
|
|
// found the first (most significant) non-zero Unit
|
|
#if DECDPUN>1 // not done yet
|
|
if (*up<10) break; // is 1-9
|
|
digits++;
|
|
#if DECDPUN>2 // not done yet
|
|
if (*up<100) break; // is 10-99
|
|
digits++;
|
|
#if DECDPUN>3 // not done yet
|
|
if (*up<1000) break; // is 100-999
|
|
digits++;
|
|
#if DECDPUN>4 // count the rest ...
|
|
for (pow=&powers[4]; *up>=*pow; pow++) digits++;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
break;
|
|
} // up
|
|
return digits;
|
|
} // decGetDigits
|
|
|
|
#if DECTRACE | DECCHECK
|
|
/* ------------------------------------------------------------------ */
|
|
/* decNumberShow -- display a number [debug aid] */
|
|
/* dn is the number to show */
|
|
/* */
|
|
/* Shows: sign, exponent, coefficient (msu first), digits */
|
|
/* or: sign, special-value */
|
|
/* ------------------------------------------------------------------ */
|
|
// this is public so other modules can use it
|
|
void decNumberShow(const decNumber *dn) {
|
|
const Unit *up; // work
|
|
uInt u, d; // ..
|
|
Int cut; // ..
|
|
char isign='+'; // main sign
|
|
if (dn==NULL) {
|
|
printf("NULL\n");
|
|
return;}
|
|
if (decNumberIsNegative(dn)) isign='-';
|
|
printf(" >> %c ", isign);
|
|
if (dn->bits&DECSPECIAL) { // Is a special value
|
|
if (decNumberIsInfinite(dn)) printf("Infinity");
|
|
else { // a NaN
|
|
if (dn->bits&DECSNAN) printf("sNaN"); // signalling NaN
|
|
else printf("NaN");
|
|
}
|
|
// if coefficient and exponent are 0, no more to do
|
|
if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
|
|
printf("\n");
|
|
return;}
|
|
// drop through to report other information
|
|
printf(" ");
|
|
}
|
|
|
|
// now carefully display the coefficient
|
|
up=dn->lsu+D2U(dn->digits)-1; // msu
|
|
printf("%ld", (LI)*up);
|
|
for (up=up-1; up>=dn->lsu; up--) {
|
|
u=*up;
|
|
printf(":");
|
|
for (cut=DECDPUN-1; cut>=0; cut--) {
|
|
d=u/powers[cut];
|
|
u-=d*powers[cut];
|
|
printf("%ld", (LI)d);
|
|
} // cut
|
|
} // up
|
|
if (dn->exponent!=0) {
|
|
char esign='+';
|
|
if (dn->exponent<0) esign='-';
|
|
printf(" E%c%ld", esign, (LI)abs(dn->exponent));
|
|
}
|
|
printf(" [%ld]\n", (LI)dn->digits);
|
|
} // decNumberShow
|
|
#endif
|
|
|
|
#if DECTRACE || DECCHECK
|
|
/* ------------------------------------------------------------------ */
|
|
/* decDumpAr -- display a unit array [debug/check aid] */
|
|
/* name is a single-character tag name */
|
|
/* ar is the array to display */
|
|
/* len is the length of the array in Units */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decDumpAr(char name, const Unit *ar, Int len) {
|
|
Int i;
|
|
const char *spec;
|
|
#if DECDPUN==9
|
|
spec="%09d ";
|
|
#elif DECDPUN==8
|
|
spec="%08d ";
|
|
#elif DECDPUN==7
|
|
spec="%07d ";
|
|
#elif DECDPUN==6
|
|
spec="%06d ";
|
|
#elif DECDPUN==5
|
|
spec="%05d ";
|
|
#elif DECDPUN==4
|
|
spec="%04d ";
|
|
#elif DECDPUN==3
|
|
spec="%03d ";
|
|
#elif DECDPUN==2
|
|
spec="%02d ";
|
|
#else
|
|
spec="%d ";
|
|
#endif
|
|
printf(" :%c: ", name);
|
|
for (i=len-1; i>=0; i--) {
|
|
if (i==len-1) printf("%ld ", (LI)ar[i]);
|
|
else printf(spec, ar[i]);
|
|
}
|
|
printf("\n");
|
|
return;}
|
|
#endif
|
|
|
|
#if DECCHECK
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCheckOperands -- check operand(s) to a routine */
|
|
/* res is the result structure (not checked; it will be set to */
|
|
/* quiet NaN if error found (and it is not NULL)) */
|
|
/* lhs is the first operand (may be DECUNRESU) */
|
|
/* rhs is the second (may be DECUNUSED) */
|
|
/* set is the context (may be DECUNCONT) */
|
|
/* returns 0 if both operands, and the context are clean, or 1 */
|
|
/* otherwise (in which case the context will show an error, */
|
|
/* unless NULL). Note that res is not cleaned; caller should */
|
|
/* handle this so res=NULL case is safe. */
|
|
/* The caller is expected to abandon immediately if 1 is returned. */
|
|
/* ------------------------------------------------------------------ */
|
|
static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
|
|
const decNumber *rhs, decContext *set) {
|
|
Flag bad=0;
|
|
if (set==NULL) { // oops; hopeless
|
|
#if DECTRACE || DECVERB
|
|
printf("Reference to context is NULL.\n");
|
|
#endif
|
|
bad=1;
|
|
return 1;}
|
|
else if (set!=DECUNCONT
|
|
&& (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
|
|
bad=1;
|
|
#if DECTRACE || DECVERB
|
|
printf("Bad context [digits=%ld round=%ld].\n",
|
|
(LI)set->digits, (LI)set->round);
|
|
#endif
|
|
}
|
|
else {
|
|
if (res==NULL) {
|
|
bad=1;
|
|
#if DECTRACE
|
|
// this one not DECVERB as standard tests include NULL
|
|
printf("Reference to result is NULL.\n");
|
|
#endif
|
|
}
|
|
if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
|
|
if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
|
|
}
|
|
if (bad) {
|
|
if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation);
|
|
if (res!=DECUNRESU && res!=NULL) {
|
|
decNumberZero(res);
|
|
res->bits=DECNAN; // qNaN
|
|
}
|
|
}
|
|
return bad;
|
|
} // decCheckOperands
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCheckNumber -- check a number */
|
|
/* dn is the number to check */
|
|
/* returns 0 if the number is clean, or 1 otherwise */
|
|
/* */
|
|
/* The number is considered valid if it could be a result from some */
|
|
/* operation in some valid context. */
|
|
/* ------------------------------------------------------------------ */
|
|
static Flag decCheckNumber(const decNumber *dn) {
|
|
const Unit *up; // work
|
|
uInt maxuint; // ..
|
|
Int ae, d, digits; // ..
|
|
Int emin, emax; // ..
|
|
|
|
if (dn==NULL) { // hopeless
|
|
#if DECTRACE
|
|
// this one not DECVERB as standard tests include NULL
|
|
printf("Reference to decNumber is NULL.\n");
|
|
#endif
|
|
return 1;}
|
|
|
|
// check special values
|
|
if (dn->bits & DECSPECIAL) {
|
|
if (dn->exponent!=0) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Exponent %ld (not 0) for a special value [%02x].\n",
|
|
(LI)dn->exponent, dn->bits);
|
|
#endif
|
|
return 1;}
|
|
|
|
// 2003.09.08: NaNs may now have coefficients, so next tests Inf only
|
|
if (decNumberIsInfinite(dn)) {
|
|
if (dn->digits!=1) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
|
|
#endif
|
|
return 1;}
|
|
if (*dn->lsu!=0) {
|
|
#if DECTRACE || DECVERB
|
|
printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
|
|
#endif
|
|
decDumpAr('I', dn->lsu, D2U(dn->digits));
|
|
return 1;}
|
|
} // Inf
|
|
// 2002.12.26: negative NaNs can now appear through proposed IEEE
|
|
// concrete formats (decimal64, etc.).
|
|
return 0;
|
|
}
|
|
|
|
// check the coefficient
|
|
if (dn->digits<1 || dn->digits>DECNUMMAXP) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Digits %ld in number.\n", (LI)dn->digits);
|
|
#endif
|
|
return 1;}
|
|
|
|
d=dn->digits;
|
|
|
|
for (up=dn->lsu; d>0; up++) {
|
|
if (d>DECDPUN) maxuint=DECDPUNMAX;
|
|
else { // reached the msu
|
|
maxuint=powers[d]-1;
|
|
if (dn->digits>1 && *up<powers[d-1]) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Leading 0 in number.\n");
|
|
decNumberShow(dn);
|
|
#endif
|
|
return 1;}
|
|
}
|
|
if (*up>maxuint) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
|
|
(LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
|
|
#endif
|
|
return 1;}
|
|
d-=DECDPUN;
|
|
}
|
|
|
|
// check the exponent. Note that input operands can have exponents
|
|
// which are out of the set->emin/set->emax and set->digits range
|
|
// (just as they can have more digits than set->digits).
|
|
ae=dn->exponent+dn->digits-1; // adjusted exponent
|
|
emax=DECNUMMAXE;
|
|
emin=DECNUMMINE;
|
|
digits=DECNUMMAXP;
|
|
if (ae<emin-(digits-1)) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
|
|
decNumberShow(dn);
|
|
#endif
|
|
return 1;}
|
|
if (ae>+emax) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
|
|
decNumberShow(dn);
|
|
#endif
|
|
return 1;}
|
|
|
|
return 0; // it's OK
|
|
} // decCheckNumber
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCheckInexact -- check a normal finite inexact result has digits */
|
|
/* dn is the number to check */
|
|
/* set is the context (for status and precision) */
|
|
/* sets Invalid operation, etc., if some digits are missing */
|
|
/* [this check is not made for DECSUBSET compilation or when */
|
|
/* subnormal is not set] */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decCheckInexact(const decNumber *dn, decContext *set) {
|
|
#if !DECSUBSET && DECEXTFLAG
|
|
if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
|
|
&& (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
|
|
#if DECTRACE || DECVERB
|
|
printf("Insufficient digits [%ld] on normal Inexact result.\n",
|
|
(LI)dn->digits);
|
|
decNumberShow(dn);
|
|
#endif
|
|
decContextSetStatus(set, DEC_Invalid_operation);
|
|
}
|
|
#else
|
|
// next is a noop for quiet compiler
|
|
if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;
|
|
#endif
|
|
return;
|
|
} // decCheckInexact
|
|
#endif
|
|
|
|
#if DECALLOC
|
|
#undef malloc
|
|
#undef free
|
|
/* ------------------------------------------------------------------ */
|
|
/* decMalloc -- accountable allocation routine */
|
|
/* n is the number of bytes to allocate */
|
|
/* */
|
|
/* Semantics is the same as the stdlib malloc routine, but bytes */
|
|
/* allocated are accounted for globally, and corruption fences are */
|
|
/* added before and after the 'actual' storage. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This routine allocates storage with an extra twelve bytes; 8 are */
|
|
/* at the start and hold: */
|
|
/* 0-3 the original length requested */
|
|
/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
|
|
/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
|
|
/* ------------------------------------------------------------------ */
|
|
static void *decMalloc(size_t n) {
|
|
uInt size=n+12; // true size
|
|
void *alloc; // -> allocated storage
|
|
uByte *b, *b0; // work
|
|
uInt uiwork; // for macros
|
|
|
|
alloc=malloc(size); // -> allocated storage
|
|
if (alloc==NULL) return NULL; // out of strorage
|
|
b0=(uByte *)alloc; // as bytes
|
|
decAllocBytes+=n; // account for storage
|
|
UBFROMUI(alloc, n); // save n
|
|
// printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n);
|
|
for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
|
|
for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
|
|
return b0+8; // -> play area
|
|
} // decMalloc
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFree -- accountable free routine */
|
|
/* alloc is the storage to free */
|
|
/* */
|
|
/* Semantics is the same as the stdlib malloc routine, except that */
|
|
/* the global storage accounting is updated and the fences are */
|
|
/* checked to ensure that no routine has written 'out of bounds'. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This routine first checks that the fences have not been corrupted. */
|
|
/* It then frees the storage using the 'truw' storage address (that */
|
|
/* is, offset by 8). */
|
|
/* ------------------------------------------------------------------ */
|
|
static void decFree(void *alloc) {
|
|
uInt n; // original length
|
|
uByte *b, *b0; // work
|
|
uInt uiwork; // for macros
|
|
|
|
if (alloc==NULL) return; // allowed; it's a nop
|
|
b0=(uByte *)alloc; // as bytes
|
|
b0-=8; // -> true start of storage
|
|
n=UBTOUI(b0); // lift length
|
|
for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
|
|
printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
|
|
b-b0-8, (LI)b0);
|
|
for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
|
|
printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
|
|
b-b0-8, (LI)b0, (LI)n);
|
|
free(b0); // drop the storage
|
|
decAllocBytes-=n; // account for storage
|
|
// printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n);
|
|
} // decFree
|
|
#define malloc(a) decMalloc(a)
|
|
#define free(a) decFree(a)
|
|
#endif
|