prodejna/qdecimal/test/tc_full/subtract.decTest

874 lines
43 KiB
Plaintext

------------------------------------------------------------------------
-- subtract.decTest -- decimal subtraction --
-- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
-- these testcases. --
-- --
-- These testcases are experimental ('beta' versions), and they --
-- may contain errors. They are offered on an as-is basis. In --
-- particular, achieving the same results as the tests here is not --
-- a guarantee that an implementation complies with any Standard --
-- or specification. The tests are not exhaustive. --
-- --
-- Please send comments, suggestions, and corrections to the author: --
-- Mike Cowlishaw, IBM Fellow --
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
version: 2.58
extended: 1
precision: 9
rounding: half_up
maxExponent: 384
minexponent: -383
-- [first group are 'quick confidence check']
subx001 subtract 0 0 -> '0'
subx002 subtract 1 1 -> '0'
subx003 subtract 1 2 -> '-1'
subx004 subtract 2 1 -> '1'
subx005 subtract 2 2 -> '0'
subx006 subtract 3 2 -> '1'
subx007 subtract 2 3 -> '-1'
subx011 subtract -0 0 -> '-0'
subx012 subtract -1 1 -> '-2'
subx013 subtract -1 2 -> '-3'
subx014 subtract -2 1 -> '-3'
subx015 subtract -2 2 -> '-4'
subx016 subtract -3 2 -> '-5'
subx017 subtract -2 3 -> '-5'
subx021 subtract 0 -0 -> '0'
subx022 subtract 1 -1 -> '2'
subx023 subtract 1 -2 -> '3'
subx024 subtract 2 -1 -> '3'
subx025 subtract 2 -2 -> '4'
subx026 subtract 3 -2 -> '5'
subx027 subtract 2 -3 -> '5'
subx030 subtract 11 1 -> 10
subx031 subtract 10 1 -> 9
subx032 subtract 9 1 -> 8
subx033 subtract 1 1 -> 0
subx034 subtract 0 1 -> -1
subx035 subtract -1 1 -> -2
subx036 subtract -9 1 -> -10
subx037 subtract -10 1 -> -11
subx038 subtract -11 1 -> -12
subx040 subtract '5.75' '3.3' -> '2.45'
subx041 subtract '5' '-3' -> '8'
subx042 subtract '-5' '-3' -> '-2'
subx043 subtract '-7' '2.5' -> '-9.5'
subx044 subtract '0.7' '0.3' -> '0.4'
subx045 subtract '1.3' '0.3' -> '1.0'
subx046 subtract '1.25' '1.25' -> '0.00'
subx050 subtract '1.23456789' '1.00000000' -> '0.23456789'
subx051 subtract '1.23456789' '1.00000089' -> '0.23456700'
subx052 subtract '0.5555555559' '0.0000000001' -> '0.555555556' Inexact Rounded
subx053 subtract '0.5555555559' '0.0000000005' -> '0.555555555' Inexact Rounded
subx054 subtract '0.4444444444' '0.1111111111' -> '0.333333333' Inexact Rounded
subx055 subtract '1.0000000000' '0.00000001' -> '0.999999990' Rounded
subx056 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded
subx057 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded
subx060 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
subx061 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
subx062 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded
subx063 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded
subx064 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded
-- symmetry:
subx065 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded
subx066 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded
subx067 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded
subx068 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded
subx069 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded
-- change precision
subx080 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded
precision: 6
subx081 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded
precision: 9
-- some of the next group are really constructor tests
subx090 subtract '00.0' '0.0' -> '0.0'
subx091 subtract '00.0' '0.00' -> '0.00'
subx092 subtract '0.00' '00.0' -> '0.00'
subx093 subtract '00.0' '0.00' -> '0.00'
subx094 subtract '0.00' '00.0' -> '0.00'
subx095 subtract '3' '.3' -> '2.7'
subx096 subtract '3.' '.3' -> '2.7'
subx097 subtract '3.0' '.3' -> '2.7'
subx098 subtract '3.00' '.3' -> '2.70'
subx099 subtract '3' '3' -> '0'
subx100 subtract '3' '+3' -> '0'
subx101 subtract '3' '-3' -> '6'
subx102 subtract '3' '0.3' -> '2.7'
subx103 subtract '3.' '0.3' -> '2.7'
subx104 subtract '3.0' '0.3' -> '2.7'
subx105 subtract '3.00' '0.3' -> '2.70'
subx106 subtract '3' '3.0' -> '0.0'
subx107 subtract '3' '+3.0' -> '0.0'
subx108 subtract '3' '-3.0' -> '6.0'
-- the above all from add; massaged and extended. Now some new ones...
-- [particularly important for comparisons]
-- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7
-- with input rounding.
subx120 subtract '10.23456784' '10.23456789' -> '-5E-8'
subx121 subtract '10.23456785' '10.23456789' -> '-4E-8'
subx122 subtract '10.23456786' '10.23456789' -> '-3E-8'
subx123 subtract '10.23456787' '10.23456789' -> '-2E-8'
subx124 subtract '10.23456788' '10.23456789' -> '-1E-8'
subx125 subtract '10.23456789' '10.23456789' -> '0E-8'
subx126 subtract '10.23456790' '10.23456789' -> '1E-8'
subx127 subtract '10.23456791' '10.23456789' -> '2E-8'
subx128 subtract '10.23456792' '10.23456789' -> '3E-8'
subx129 subtract '10.23456793' '10.23456789' -> '4E-8'
subx130 subtract '10.23456794' '10.23456789' -> '5E-8'
subx131 subtract '10.23456781' '10.23456786' -> '-5E-8'
subx132 subtract '10.23456782' '10.23456786' -> '-4E-8'
subx133 subtract '10.23456783' '10.23456786' -> '-3E-8'
subx134 subtract '10.23456784' '10.23456786' -> '-2E-8'
subx135 subtract '10.23456785' '10.23456786' -> '-1E-8'
subx136 subtract '10.23456786' '10.23456786' -> '0E-8'
subx137 subtract '10.23456787' '10.23456786' -> '1E-8'
subx138 subtract '10.23456788' '10.23456786' -> '2E-8'
subx139 subtract '10.23456789' '10.23456786' -> '3E-8'
subx140 subtract '10.23456790' '10.23456786' -> '4E-8'
subx141 subtract '10.23456791' '10.23456786' -> '5E-8'
subx142 subtract '1' '0.999999999' -> '1E-9'
subx143 subtract '0.999999999' '1' -> '-1E-9'
subx144 subtract '-10.23456780' '-10.23456786' -> '6E-8'
subx145 subtract '-10.23456790' '-10.23456786' -> '-4E-8'
subx146 subtract '-10.23456791' '-10.23456786' -> '-5E-8'
precision: 3
subx150 subtract '12345678900000' '9999999999999' -> 2.35E+12 Inexact Rounded
subx151 subtract '9999999999999' '12345678900000' -> -2.35E+12 Inexact Rounded
precision: 6
subx152 subtract '12345678900000' '9999999999999' -> 2.34568E+12 Inexact Rounded
subx153 subtract '9999999999999' '12345678900000' -> -2.34568E+12 Inexact Rounded
precision: 9
subx154 subtract '12345678900000' '9999999999999' -> 2.34567890E+12 Inexact Rounded
subx155 subtract '9999999999999' '12345678900000' -> -2.34567890E+12 Inexact Rounded
precision: 12
subx156 subtract '12345678900000' '9999999999999' -> 2.34567890000E+12 Inexact Rounded
subx157 subtract '9999999999999' '12345678900000' -> -2.34567890000E+12 Inexact Rounded
precision: 15
subx158 subtract '12345678900000' '9999999999999' -> 2345678900001
subx159 subtract '9999999999999' '12345678900000' -> -2345678900001
precision: 9
-- additional scaled arithmetic tests [0.97 problem]
subx160 subtract '0' '.1' -> '-0.1'
subx161 subtract '00' '.97983' -> '-0.97983'
subx162 subtract '0' '.9' -> '-0.9'
subx163 subtract '0' '0.102' -> '-0.102'
subx164 subtract '0' '.4' -> '-0.4'
subx165 subtract '0' '.307' -> '-0.307'
subx166 subtract '0' '.43822' -> '-0.43822'
subx167 subtract '0' '.911' -> '-0.911'
subx168 subtract '.0' '.02' -> '-0.02'
subx169 subtract '00' '.392' -> '-0.392'
subx170 subtract '0' '.26' -> '-0.26'
subx171 subtract '0' '0.51' -> '-0.51'
subx172 subtract '0' '.2234' -> '-0.2234'
subx173 subtract '0' '.2' -> '-0.2'
subx174 subtract '.0' '.0008' -> '-0.0008'
-- 0. on left
subx180 subtract '0.0' '-.1' -> '0.1'
subx181 subtract '0.00' '-.97983' -> '0.97983'
subx182 subtract '0.0' '-.9' -> '0.9'
subx183 subtract '0.0' '-0.102' -> '0.102'
subx184 subtract '0.0' '-.4' -> '0.4'
subx185 subtract '0.0' '-.307' -> '0.307'
subx186 subtract '0.0' '-.43822' -> '0.43822'
subx187 subtract '0.0' '-.911' -> '0.911'
subx188 subtract '0.0' '-.02' -> '0.02'
subx189 subtract '0.00' '-.392' -> '0.392'
subx190 subtract '0.0' '-.26' -> '0.26'
subx191 subtract '0.0' '-0.51' -> '0.51'
subx192 subtract '0.0' '-.2234' -> '0.2234'
subx193 subtract '0.0' '-.2' -> '0.2'
subx194 subtract '0.0' '-.0008' -> '0.0008'
-- negatives of same
subx200 subtract '0' '-.1' -> '0.1'
subx201 subtract '00' '-.97983' -> '0.97983'
subx202 subtract '0' '-.9' -> '0.9'
subx203 subtract '0' '-0.102' -> '0.102'
subx204 subtract '0' '-.4' -> '0.4'
subx205 subtract '0' '-.307' -> '0.307'
subx206 subtract '0' '-.43822' -> '0.43822'
subx207 subtract '0' '-.911' -> '0.911'
subx208 subtract '.0' '-.02' -> '0.02'
subx209 subtract '00' '-.392' -> '0.392'
subx210 subtract '0' '-.26' -> '0.26'
subx211 subtract '0' '-0.51' -> '0.51'
subx212 subtract '0' '-.2234' -> '0.2234'
subx213 subtract '0' '-.2' -> '0.2'
subx214 subtract '.0' '-.0008' -> '0.0008'
-- more fixed, LHS swaps [really the same as testcases under add]
subx220 subtract '-56267E-12' 0 -> '-5.6267E-8'
subx221 subtract '-56267E-11' 0 -> '-5.6267E-7'
subx222 subtract '-56267E-10' 0 -> '-0.0000056267'
subx223 subtract '-56267E-9' 0 -> '-0.000056267'
subx224 subtract '-56267E-8' 0 -> '-0.00056267'
subx225 subtract '-56267E-7' 0 -> '-0.0056267'
subx226 subtract '-56267E-6' 0 -> '-0.056267'
subx227 subtract '-56267E-5' 0 -> '-0.56267'
subx228 subtract '-56267E-2' 0 -> '-562.67'
subx229 subtract '-56267E-1' 0 -> '-5626.7'
subx230 subtract '-56267E-0' 0 -> '-56267'
-- symmetry ...
subx240 subtract 0 '-56267E-12' -> '5.6267E-8'
subx241 subtract 0 '-56267E-11' -> '5.6267E-7'
subx242 subtract 0 '-56267E-10' -> '0.0000056267'
subx243 subtract 0 '-56267E-9' -> '0.000056267'
subx244 subtract 0 '-56267E-8' -> '0.00056267'
subx245 subtract 0 '-56267E-7' -> '0.0056267'
subx246 subtract 0 '-56267E-6' -> '0.056267'
subx247 subtract 0 '-56267E-5' -> '0.56267'
subx248 subtract 0 '-56267E-2' -> '562.67'
subx249 subtract 0 '-56267E-1' -> '5626.7'
subx250 subtract 0 '-56267E-0' -> '56267'
-- now some more from the 'new' add
precision: 9
subx301 subtract '1.23456789' '1.00000000' -> '0.23456789'
subx302 subtract '1.23456789' '1.00000011' -> '0.23456778'
subx311 subtract '0.4444444444' '0.5555555555' -> '-0.111111111' Inexact Rounded
subx312 subtract '0.4444444440' '0.5555555555' -> '-0.111111112' Inexact Rounded
subx313 subtract '0.4444444444' '0.5555555550' -> '-0.111111111' Inexact Rounded
subx314 subtract '0.44444444449' '0' -> '0.444444444' Inexact Rounded
subx315 subtract '0.444444444499' '0' -> '0.444444444' Inexact Rounded
subx316 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded
subx317 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded
subx318 subtract '0.4444444445001' '0' -> '0.444444445' Inexact Rounded
subx319 subtract '0.444444444501' '0' -> '0.444444445' Inexact Rounded
subx320 subtract '0.44444444451' '0' -> '0.444444445' Inexact Rounded
-- some carrying effects
subx321 subtract '0.9998' '0.0000' -> '0.9998'
subx322 subtract '0.9998' '0.0001' -> '0.9997'
subx323 subtract '0.9998' '0.0002' -> '0.9996'
subx324 subtract '0.9998' '0.0003' -> '0.9995'
subx325 subtract '0.9998' '-0.0000' -> '0.9998'
subx326 subtract '0.9998' '-0.0001' -> '0.9999'
subx327 subtract '0.9998' '-0.0002' -> '1.0000'
subx328 subtract '0.9998' '-0.0003' -> '1.0001'
subx330 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
subx331 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
subx332 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded
subx333 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded
subx334 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded
subx335 subtract '7000000' '10000e+9' -> '-9.99999300E+12' Rounded
-- symmetry:
subx340 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded
subx341 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded
subx342 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded
subx343 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded
subx344 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded
subx345 subtract '10000e+9' '7000000' -> '9.99999300E+12' Rounded
-- same, higher precision
precision: 15
subx346 subtract '10000e+9' '7' -> '9999999999993'
subx347 subtract '10000e+9' '70' -> '9999999999930'
subx348 subtract '10000e+9' '700' -> '9999999999300'
subx349 subtract '10000e+9' '7000' -> '9999999993000'
subx350 subtract '10000e+9' '70000' -> '9999999930000'
subx351 subtract '10000e+9' '700000' -> '9999999300000'
subx352 subtract '7' '10000e+9' -> '-9999999999993'
subx353 subtract '70' '10000e+9' -> '-9999999999930'
subx354 subtract '700' '10000e+9' -> '-9999999999300'
subx355 subtract '7000' '10000e+9' -> '-9999999993000'
subx356 subtract '70000' '10000e+9' -> '-9999999930000'
subx357 subtract '700000' '10000e+9' -> '-9999999300000'
-- zero preservation
precision: 6
subx360 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded
subx361 subtract 1 '0.0001' -> '0.9999'
subx362 subtract 1 '0.00001' -> '0.99999'
subx363 subtract 1 '0.000001' -> '0.999999'
subx364 subtract 1 '0.0000001' -> '1.00000' Inexact Rounded
subx365 subtract 1 '0.00000001' -> '1.00000' Inexact Rounded
-- some funny zeros [in case of bad signum]
subx370 subtract 1 0 -> 1
subx371 subtract 1 0. -> 1
subx372 subtract 1 .0 -> 1.0
subx373 subtract 1 0.0 -> 1.0
subx374 subtract 0 1 -> -1
subx375 subtract 0. 1 -> -1
subx376 subtract .0 1 -> -1.0
subx377 subtract 0.0 1 -> -1.0
precision: 9
-- leading 0 digit before round
subx910 subtract -103519362 -51897955.3 -> -51621406.7
subx911 subtract 159579.444 89827.5229 -> 69751.9211
subx920 subtract 333.123456 33.1234566 -> 299.999999 Inexact Rounded
subx921 subtract 333.123456 33.1234565 -> 300.000000 Inexact Rounded
subx922 subtract 133.123456 33.1234565 -> 99.9999995
subx923 subtract 133.123456 33.1234564 -> 99.9999996
subx924 subtract 133.123456 33.1234540 -> 100.000002 Rounded
subx925 subtract 133.123456 43.1234560 -> 90.0000000
subx926 subtract 133.123456 43.1234561 -> 89.9999999
subx927 subtract 133.123456 43.1234566 -> 89.9999994
subx928 subtract 101.123456 91.1234566 -> 9.9999994
subx929 subtract 101.123456 99.1234566 -> 1.9999994
-- more of the same; probe for cluster boundary problems
precision: 1
subx930 subtract 11 2 -> 9
precision: 2
subx932 subtract 101 2 -> 99
precision: 3
subx934 subtract 101 2.1 -> 98.9
subx935 subtract 101 92.01 -> 8.99
precision: 4
subx936 subtract 101 2.01 -> 98.99
subx937 subtract 101 92.01 -> 8.99
subx938 subtract 101 92.006 -> 8.994
precision: 5
subx939 subtract 101 2.001 -> 98.999
subx940 subtract 101 92.001 -> 8.999
subx941 subtract 101 92.0006 -> 8.9994
precision: 6
subx942 subtract 101 2.0001 -> 98.9999
subx943 subtract 101 92.0001 -> 8.9999
subx944 subtract 101 92.00006 -> 8.99994
precision: 7
subx945 subtract 101 2.00001 -> 98.99999
subx946 subtract 101 92.00001 -> 8.99999
subx947 subtract 101 92.000006 -> 8.999994
precision: 8
subx948 subtract 101 2.000001 -> 98.999999
subx949 subtract 101 92.000001 -> 8.999999
subx950 subtract 101 92.0000006 -> 8.9999994
precision: 9
subx951 subtract 101 2.0000001 -> 98.9999999
subx952 subtract 101 92.0000001 -> 8.9999999
subx953 subtract 101 92.00000006 -> 8.99999994
precision: 9
-- more LHS swaps [were fixed]
subx390 subtract '-56267E-10' 0 -> '-0.0000056267'
subx391 subtract '-56267E-6' 0 -> '-0.056267'
subx392 subtract '-56267E-5' 0 -> '-0.56267'
subx393 subtract '-56267E-4' 0 -> '-5.6267'
subx394 subtract '-56267E-3' 0 -> '-56.267'
subx395 subtract '-56267E-2' 0 -> '-562.67'
subx396 subtract '-56267E-1' 0 -> '-5626.7'
subx397 subtract '-56267E-0' 0 -> '-56267'
subx398 subtract '-5E-10' 0 -> '-5E-10'
subx399 subtract '-5E-7' 0 -> '-5E-7'
subx400 subtract '-5E-6' 0 -> '-0.000005'
subx401 subtract '-5E-5' 0 -> '-0.00005'
subx402 subtract '-5E-4' 0 -> '-0.0005'
subx403 subtract '-5E-1' 0 -> '-0.5'
subx404 subtract '-5E0' 0 -> '-5'
subx405 subtract '-5E1' 0 -> '-50'
subx406 subtract '-5E5' 0 -> '-500000'
subx407 subtract '-5E8' 0 -> '-500000000'
subx408 subtract '-5E9' 0 -> '-5.00000000E+9' Rounded
subx409 subtract '-5E10' 0 -> '-5.00000000E+10' Rounded
subx410 subtract '-5E11' 0 -> '-5.00000000E+11' Rounded
subx411 subtract '-5E100' 0 -> '-5.00000000E+100' Rounded
-- more RHS swaps [were fixed]
subx420 subtract 0 '-56267E-10' -> '0.0000056267'
subx421 subtract 0 '-56267E-6' -> '0.056267'
subx422 subtract 0 '-56267E-5' -> '0.56267'
subx423 subtract 0 '-56267E-4' -> '5.6267'
subx424 subtract 0 '-56267E-3' -> '56.267'
subx425 subtract 0 '-56267E-2' -> '562.67'
subx426 subtract 0 '-56267E-1' -> '5626.7'
subx427 subtract 0 '-56267E-0' -> '56267'
subx428 subtract 0 '-5E-10' -> '5E-10'
subx429 subtract 0 '-5E-7' -> '5E-7'
subx430 subtract 0 '-5E-6' -> '0.000005'
subx431 subtract 0 '-5E-5' -> '0.00005'
subx432 subtract 0 '-5E-4' -> '0.0005'
subx433 subtract 0 '-5E-1' -> '0.5'
subx434 subtract 0 '-5E0' -> '5'
subx435 subtract 0 '-5E1' -> '50'
subx436 subtract 0 '-5E5' -> '500000'
subx437 subtract 0 '-5E8' -> '500000000'
subx438 subtract 0 '-5E9' -> '5.00000000E+9' Rounded
subx439 subtract 0 '-5E10' -> '5.00000000E+10' Rounded
subx440 subtract 0 '-5E11' -> '5.00000000E+11' Rounded
subx441 subtract 0 '-5E100' -> '5.00000000E+100' Rounded
-- try borderline precision, with carries, etc.
precision: 15
subx461 subtract '1E+12' '1' -> '999999999999'
subx462 subtract '1E+12' '-1.11' -> '1000000000001.11'
subx463 subtract '1.11' '-1E+12' -> '1000000000001.11'
subx464 subtract '-1' '-1E+12' -> '999999999999'
subx465 subtract '7E+12' '1' -> '6999999999999'
subx466 subtract '7E+12' '-1.11' -> '7000000000001.11'
subx467 subtract '1.11' '-7E+12' -> '7000000000001.11'
subx468 subtract '-1' '-7E+12' -> '6999999999999'
-- 123456789012345 123456789012345 1 23456789012345
subx470 subtract '0.444444444444444' '-0.555555555555563' -> '1.00000000000001' Inexact Rounded
subx471 subtract '0.444444444444444' '-0.555555555555562' -> '1.00000000000001' Inexact Rounded
subx472 subtract '0.444444444444444' '-0.555555555555561' -> '1.00000000000001' Inexact Rounded
subx473 subtract '0.444444444444444' '-0.555555555555560' -> '1.00000000000000' Inexact Rounded
subx474 subtract '0.444444444444444' '-0.555555555555559' -> '1.00000000000000' Inexact Rounded
subx475 subtract '0.444444444444444' '-0.555555555555558' -> '1.00000000000000' Inexact Rounded
subx476 subtract '0.444444444444444' '-0.555555555555557' -> '1.00000000000000' Inexact Rounded
subx477 subtract '0.444444444444444' '-0.555555555555556' -> '1.00000000000000' Rounded
subx478 subtract '0.444444444444444' '-0.555555555555555' -> '0.999999999999999'
subx479 subtract '0.444444444444444' '-0.555555555555554' -> '0.999999999999998'
subx480 subtract '0.444444444444444' '-0.555555555555553' -> '0.999999999999997'
subx481 subtract '0.444444444444444' '-0.555555555555552' -> '0.999999999999996'
subx482 subtract '0.444444444444444' '-0.555555555555551' -> '0.999999999999995'
subx483 subtract '0.444444444444444' '-0.555555555555550' -> '0.999999999999994'
-- and some more, including residue effects and different roundings
precision: 9
rounding: half_up
subx500 subtract '123456789' 0 -> '123456789'
subx501 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded
subx502 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded
subx503 subtract '123456789' 0.1 -> '123456789' Inexact Rounded
subx504 subtract '123456789' 0.4 -> '123456789' Inexact Rounded
subx505 subtract '123456789' 0.49 -> '123456789' Inexact Rounded
subx506 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded
subx507 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded
subx508 subtract '123456789' 0.5 -> '123456789' Inexact Rounded
subx509 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded
subx510 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded
subx511 subtract '123456789' 0.51 -> '123456788' Inexact Rounded
subx512 subtract '123456789' 0.6 -> '123456788' Inexact Rounded
subx513 subtract '123456789' 0.9 -> '123456788' Inexact Rounded
subx514 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded
subx515 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded
subx516 subtract '123456789' 1 -> '123456788'
subx517 subtract '123456789' 1.000000001 -> '123456788' Inexact Rounded
subx518 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded
subx519 subtract '123456789' 1.1 -> '123456788' Inexact Rounded
rounding: half_even
subx520 subtract '123456789' 0 -> '123456789'
subx521 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded
subx522 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded
subx523 subtract '123456789' 0.1 -> '123456789' Inexact Rounded
subx524 subtract '123456789' 0.4 -> '123456789' Inexact Rounded
subx525 subtract '123456789' 0.49 -> '123456789' Inexact Rounded
subx526 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded
subx527 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded
subx528 subtract '123456789' 0.5 -> '123456788' Inexact Rounded
subx529 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded
subx530 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded
subx531 subtract '123456789' 0.51 -> '123456788' Inexact Rounded
subx532 subtract '123456789' 0.6 -> '123456788' Inexact Rounded
subx533 subtract '123456789' 0.9 -> '123456788' Inexact Rounded
subx534 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded
subx535 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded
subx536 subtract '123456789' 1 -> '123456788'
subx537 subtract '123456789' 1.00000001 -> '123456788' Inexact Rounded
subx538 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded
subx539 subtract '123456789' 1.1 -> '123456788' Inexact Rounded
-- critical few with even bottom digit...
subx540 subtract '123456788' 0.499999999 -> '123456788' Inexact Rounded
subx541 subtract '123456788' 0.5 -> '123456788' Inexact Rounded
subx542 subtract '123456788' 0.500000001 -> '123456787' Inexact Rounded
rounding: down
subx550 subtract '123456789' 0 -> '123456789'
subx551 subtract '123456789' 0.000000001 -> '123456788' Inexact Rounded
subx552 subtract '123456789' 0.000001 -> '123456788' Inexact Rounded
subx553 subtract '123456789' 0.1 -> '123456788' Inexact Rounded
subx554 subtract '123456789' 0.4 -> '123456788' Inexact Rounded
subx555 subtract '123456789' 0.49 -> '123456788' Inexact Rounded
subx556 subtract '123456789' 0.499999 -> '123456788' Inexact Rounded
subx557 subtract '123456789' 0.499999999 -> '123456788' Inexact Rounded
subx558 subtract '123456789' 0.5 -> '123456788' Inexact Rounded
subx559 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded
subx560 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded
subx561 subtract '123456789' 0.51 -> '123456788' Inexact Rounded
subx562 subtract '123456789' 0.6 -> '123456788' Inexact Rounded
subx563 subtract '123456789' 0.9 -> '123456788' Inexact Rounded
subx564 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded
subx565 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded
subx566 subtract '123456789' 1 -> '123456788'
subx567 subtract '123456789' 1.00000001 -> '123456787' Inexact Rounded
subx568 subtract '123456789' 1.00001 -> '123456787' Inexact Rounded
subx569 subtract '123456789' 1.1 -> '123456787' Inexact Rounded
-- symmetry...
rounding: half_up
subx600 subtract 0 '123456789' -> '-123456789'
subx601 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded
subx602 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded
subx603 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded
subx604 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded
subx605 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded
subx606 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded
subx607 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded
subx608 subtract 0.5 '123456789' -> '-123456789' Inexact Rounded
subx609 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded
subx610 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded
subx611 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded
subx612 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded
subx613 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded
subx614 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded
subx615 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded
subx616 subtract 1 '123456789' -> '-123456788'
subx617 subtract 1.000000001 '123456789' -> '-123456788' Inexact Rounded
subx618 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded
subx619 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded
rounding: half_even
subx620 subtract 0 '123456789' -> '-123456789'
subx621 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded
subx622 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded
subx623 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded
subx624 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded
subx625 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded
subx626 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded
subx627 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded
subx628 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded
subx629 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded
subx630 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded
subx631 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded
subx632 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded
subx633 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded
subx634 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded
subx635 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded
subx636 subtract 1 '123456789' -> '-123456788'
subx637 subtract 1.00000001 '123456789' -> '-123456788' Inexact Rounded
subx638 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded
subx639 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded
-- critical few with even bottom digit...
subx640 subtract 0.499999999 '123456788' -> '-123456788' Inexact Rounded
subx641 subtract 0.5 '123456788' -> '-123456788' Inexact Rounded
subx642 subtract 0.500000001 '123456788' -> '-123456787' Inexact Rounded
rounding: down
subx650 subtract 0 '123456789' -> '-123456789'
subx651 subtract 0.000000001 '123456789' -> '-123456788' Inexact Rounded
subx652 subtract 0.000001 '123456789' -> '-123456788' Inexact Rounded
subx653 subtract 0.1 '123456789' -> '-123456788' Inexact Rounded
subx654 subtract 0.4 '123456789' -> '-123456788' Inexact Rounded
subx655 subtract 0.49 '123456789' -> '-123456788' Inexact Rounded
subx656 subtract 0.499999 '123456789' -> '-123456788' Inexact Rounded
subx657 subtract 0.499999999 '123456789' -> '-123456788' Inexact Rounded
subx658 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded
subx659 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded
subx660 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded
subx661 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded
subx662 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded
subx663 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded
subx664 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded
subx665 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded
subx666 subtract 1 '123456789' -> '-123456788'
subx667 subtract 1.00000001 '123456789' -> '-123456787' Inexact Rounded
subx668 subtract 1.00001 '123456789' -> '-123456787' Inexact Rounded
subx669 subtract 1.1 '123456789' -> '-123456787' Inexact Rounded
-- lots of leading zeros in intermediate result, and showing effects of
-- input rounding would have affected the following
precision: 9
rounding: half_up
subx670 subtract '123456789' '123456788.1' -> 0.9
subx671 subtract '123456789' '123456788.9' -> 0.1
subx672 subtract '123456789' '123456789.1' -> -0.1
subx673 subtract '123456789' '123456789.5' -> -0.5
subx674 subtract '123456789' '123456789.9' -> -0.9
rounding: half_even
subx680 subtract '123456789' '123456788.1' -> 0.9
subx681 subtract '123456789' '123456788.9' -> 0.1
subx682 subtract '123456789' '123456789.1' -> -0.1
subx683 subtract '123456789' '123456789.5' -> -0.5
subx684 subtract '123456789' '123456789.9' -> -0.9
subx685 subtract '123456788' '123456787.1' -> 0.9
subx686 subtract '123456788' '123456787.9' -> 0.1
subx687 subtract '123456788' '123456788.1' -> -0.1
subx688 subtract '123456788' '123456788.5' -> -0.5
subx689 subtract '123456788' '123456788.9' -> -0.9
rounding: down
subx690 subtract '123456789' '123456788.1' -> 0.9
subx691 subtract '123456789' '123456788.9' -> 0.1
subx692 subtract '123456789' '123456789.1' -> -0.1
subx693 subtract '123456789' '123456789.5' -> -0.5
subx694 subtract '123456789' '123456789.9' -> -0.9
-- input preparation tests
rounding: half_up
precision: 3
subx700 subtract '12345678900000' -9999999999999 -> '2.23E+13' Inexact Rounded
subx701 subtract '9999999999999' -12345678900000 -> '2.23E+13' Inexact Rounded
subx702 subtract '12E+3' '-3456' -> '1.55E+4' Inexact Rounded
subx703 subtract '12E+3' '-3446' -> '1.54E+4' Inexact Rounded
subx704 subtract '12E+3' '-3454' -> '1.55E+4' Inexact Rounded
subx705 subtract '12E+3' '-3444' -> '1.54E+4' Inexact Rounded
subx706 subtract '3456' '-12E+3' -> '1.55E+4' Inexact Rounded
subx707 subtract '3446' '-12E+3' -> '1.54E+4' Inexact Rounded
subx708 subtract '3454' '-12E+3' -> '1.55E+4' Inexact Rounded
subx709 subtract '3444' '-12E+3' -> '1.54E+4' Inexact Rounded
-- overflow and underflow tests [subnormals now possible]
maxexponent: 999999999
minexponent: -999999999
precision: 9
rounding: down
subx710 subtract 1E+999999999 -9E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded
subx711 subtract 9E+999999999 -1E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded
rounding: half_up
subx712 subtract 1E+999999999 -9E+999999999 -> Infinity Overflow Inexact Rounded
subx713 subtract 9E+999999999 -1E+999999999 -> Infinity Overflow Inexact Rounded
subx714 subtract -1.1E-999999999 -1E-999999999 -> -1E-1000000000 Subnormal
subx715 subtract 1E-999999999 +1.1e-999999999 -> -1E-1000000000 Subnormal
subx716 subtract -1E+999999999 +9E+999999999 -> -Infinity Overflow Inexact Rounded
subx717 subtract -9E+999999999 +1E+999999999 -> -Infinity Overflow Inexact Rounded
subx718 subtract +1.1E-999999999 +1E-999999999 -> 1E-1000000000 Subnormal
subx719 subtract -1E-999999999 -1.1e-999999999 -> 1E-1000000000 Subnormal
precision: 3
subx720 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded
subx721 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded
subx722 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded
subx723 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded
subx724 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded
subx725 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded
subx726 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded
subx727 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded
-- [more below]
-- long operand checks
maxexponent: 999
minexponent: -999
precision: 9
sub731 subtract 12345678000 0 -> 1.23456780E+10 Rounded
sub732 subtract 0 12345678000 -> -1.23456780E+10 Rounded
sub733 subtract 1234567800 0 -> 1.23456780E+9 Rounded
sub734 subtract 0 1234567800 -> -1.23456780E+9 Rounded
sub735 subtract 1234567890 0 -> 1.23456789E+9 Rounded
sub736 subtract 0 1234567890 -> -1.23456789E+9 Rounded
sub737 subtract 1234567891 0 -> 1.23456789E+9 Inexact Rounded
sub738 subtract 0 1234567891 -> -1.23456789E+9 Inexact Rounded
sub739 subtract 12345678901 0 -> 1.23456789E+10 Inexact Rounded
sub740 subtract 0 12345678901 -> -1.23456789E+10 Inexact Rounded
sub741 subtract 1234567896 0 -> 1.23456790E+9 Inexact Rounded
sub742 subtract 0 1234567896 -> -1.23456790E+9 Inexact Rounded
precision: 15
sub751 subtract 12345678000 0 -> 12345678000
sub752 subtract 0 12345678000 -> -12345678000
sub753 subtract 1234567800 0 -> 1234567800
sub754 subtract 0 1234567800 -> -1234567800
sub755 subtract 1234567890 0 -> 1234567890
sub756 subtract 0 1234567890 -> -1234567890
sub757 subtract 1234567891 0 -> 1234567891
sub758 subtract 0 1234567891 -> -1234567891
sub759 subtract 12345678901 0 -> 12345678901
sub760 subtract 0 12345678901 -> -12345678901
sub761 subtract 1234567896 0 -> 1234567896
sub762 subtract 0 1234567896 -> -1234567896
-- Specials
subx780 subtract -Inf Inf -> -Infinity
subx781 subtract -Inf 1000 -> -Infinity
subx782 subtract -Inf 1 -> -Infinity
subx783 subtract -Inf -0 -> -Infinity
subx784 subtract -Inf -1 -> -Infinity
subx785 subtract -Inf -1000 -> -Infinity
subx787 subtract -1000 Inf -> -Infinity
subx788 subtract -Inf Inf -> -Infinity
subx789 subtract -1 Inf -> -Infinity
subx790 subtract 0 Inf -> -Infinity
subx791 subtract 1 Inf -> -Infinity
subx792 subtract 1000 Inf -> -Infinity
subx800 subtract Inf Inf -> NaN Invalid_operation
subx801 subtract Inf 1000 -> Infinity
subx802 subtract Inf 1 -> Infinity
subx803 subtract Inf 0 -> Infinity
subx804 subtract Inf -0 -> Infinity
subx805 subtract Inf -1 -> Infinity
subx806 subtract Inf -1000 -> Infinity
subx807 subtract Inf -Inf -> Infinity
subx808 subtract -1000 -Inf -> Infinity
subx809 subtract -Inf -Inf -> NaN Invalid_operation
subx810 subtract -1 -Inf -> Infinity
subx811 subtract -0 -Inf -> Infinity
subx812 subtract 0 -Inf -> Infinity
subx813 subtract 1 -Inf -> Infinity
subx814 subtract 1000 -Inf -> Infinity
subx815 subtract Inf -Inf -> Infinity
subx821 subtract NaN Inf -> NaN
subx822 subtract -NaN 1000 -> -NaN
subx823 subtract NaN 1 -> NaN
subx824 subtract NaN 0 -> NaN
subx825 subtract NaN -0 -> NaN
subx826 subtract NaN -1 -> NaN
subx827 subtract NaN -1000 -> NaN
subx828 subtract NaN -Inf -> NaN
subx829 subtract -NaN NaN -> -NaN
subx830 subtract -Inf NaN -> NaN
subx831 subtract -1000 NaN -> NaN
subx832 subtract -1 NaN -> NaN
subx833 subtract -0 NaN -> NaN
subx834 subtract 0 NaN -> NaN
subx835 subtract 1 NaN -> NaN
subx836 subtract 1000 -NaN -> -NaN
subx837 subtract Inf NaN -> NaN
subx841 subtract sNaN Inf -> NaN Invalid_operation
subx842 subtract -sNaN 1000 -> -NaN Invalid_operation
subx843 subtract sNaN 1 -> NaN Invalid_operation
subx844 subtract sNaN 0 -> NaN Invalid_operation
subx845 subtract sNaN -0 -> NaN Invalid_operation
subx846 subtract sNaN -1 -> NaN Invalid_operation
subx847 subtract sNaN -1000 -> NaN Invalid_operation
subx848 subtract sNaN NaN -> NaN Invalid_operation
subx849 subtract sNaN sNaN -> NaN Invalid_operation
subx850 subtract NaN sNaN -> NaN Invalid_operation
subx851 subtract -Inf -sNaN -> -NaN Invalid_operation
subx852 subtract -1000 sNaN -> NaN Invalid_operation
subx853 subtract -1 sNaN -> NaN Invalid_operation
subx854 subtract -0 sNaN -> NaN Invalid_operation
subx855 subtract 0 sNaN -> NaN Invalid_operation
subx856 subtract 1 sNaN -> NaN Invalid_operation
subx857 subtract 1000 sNaN -> NaN Invalid_operation
subx858 subtract Inf sNaN -> NaN Invalid_operation
subx859 subtract NaN sNaN -> NaN Invalid_operation
-- propagating NaNs
subx861 subtract NaN01 -Inf -> NaN1
subx862 subtract -NaN02 -1000 -> -NaN2
subx863 subtract NaN03 1000 -> NaN3
subx864 subtract NaN04 Inf -> NaN4
subx865 subtract NaN05 NaN61 -> NaN5
subx866 subtract -Inf -NaN71 -> -NaN71
subx867 subtract -1000 NaN81 -> NaN81
subx868 subtract 1000 NaN91 -> NaN91
subx869 subtract Inf NaN101 -> NaN101
subx871 subtract sNaN011 -Inf -> NaN11 Invalid_operation
subx872 subtract sNaN012 -1000 -> NaN12 Invalid_operation
subx873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation
subx874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation
subx875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation
subx876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation
subx877 subtract -Inf sNaN201 -> NaN201 Invalid_operation
subx878 subtract -1000 sNaN211 -> NaN211 Invalid_operation
subx879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation
subx880 subtract Inf sNaN231 -> NaN231 Invalid_operation
subx881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation
-- edge case spills
subx901 subtract 2.E-3 1.002 -> -1.000
subx902 subtract 2.0E-3 1.002 -> -1.0000
subx903 subtract 2.00E-3 1.0020 -> -1.00000
subx904 subtract 2.000E-3 1.00200 -> -1.000000
subx905 subtract 2.0000E-3 1.002000 -> -1.0000000
subx906 subtract 2.00000E-3 1.0020000 -> -1.00000000
subx907 subtract 2.000000E-3 1.00200000 -> -1.000000000
subx908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000
-- subnormals and underflows
precision: 3
maxexponent: 999
minexponent: -999
subx1010 subtract 0 1.00E-999 -> -1.00E-999
subx1011 subtract 0 0.1E-999 -> -1E-1000 Subnormal
subx1012 subtract 0 0.10E-999 -> -1.0E-1000 Subnormal
subx1013 subtract 0 0.100E-999 -> -1.0E-1000 Subnormal Rounded
subx1014 subtract 0 0.01E-999 -> -1E-1001 Subnormal
-- next is rounded to Emin
subx1015 subtract 0 0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow
subx1016 subtract 0 0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
subx1017 subtract 0 0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow
subx1018 subtract 0 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1019 subtract 0 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1020 subtract 0 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1030 subtract 0 -1.00E-999 -> 1.00E-999
subx1031 subtract 0 -0.1E-999 -> 1E-1000 Subnormal
subx1032 subtract 0 -0.10E-999 -> 1.0E-1000 Subnormal
subx1033 subtract 0 -0.100E-999 -> 1.0E-1000 Subnormal Rounded
subx1034 subtract 0 -0.01E-999 -> 1E-1001 Subnormal
-- next is rounded to Emin
subx1035 subtract 0 -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow
subx1036 subtract 0 -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
subx1037 subtract 0 -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
subx1038 subtract 0 -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1039 subtract 0 -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1040 subtract 0 -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
-- some non-zero subnormal subtracts
-- subx1056 is a tricky case
rounding: half_up
subx1050 subtract 1.00E-999 0.1E-999 -> 9.0E-1000 Subnormal
subx1051 subtract 0.1E-999 0.1E-999 -> 0E-1000
subx1052 subtract 0.10E-999 0.1E-999 -> 0E-1001
subx1053 subtract 0.100E-999 0.1E-999 -> 0E-1001 Clamped
subx1054 subtract 0.01E-999 0.1E-999 -> -9E-1001 Subnormal
subx1055 subtract 0.999E-999 0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow
subx1056 subtract 0.099E-999 0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1057 subtract 0.009E-999 0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow
subx1058 subtract 0.001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
subx1059 subtract 0.0009E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
subx1060 subtract 0.0001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
-- check for double-rounded subnormals
precision: 5
maxexponent: 79
minexponent: -79
subx1101 subtract 0 1.52444E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow
subx1102 subtract 0 1.52445E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow
subx1103 subtract 0 1.52446E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow
subx1104 subtract 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
subx1105 subtract 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
subx1106 subtract 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
subx1111 subtract 1.2345678E-80 1.2345671E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
subx1112 subtract 1.2345678E-80 1.2345618E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
subx1113 subtract 1.2345678E-80 1.2345178E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
subx1114 subtract 1.2345678E-80 1.2341678E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
subx1115 subtract 1.2345678E-80 1.2315678E-80 -> 3E-83 Rounded Subnormal
subx1116 subtract 1.2345678E-80 1.2145678E-80 -> 2.0E-82 Rounded Subnormal
subx1117 subtract 1.2345678E-80 1.1345678E-80 -> 1.00E-81 Rounded Subnormal
subx1118 subtract 1.2345678E-80 0.2345678E-80 -> 1.000E-80 Rounded Subnormal
precision: 34
rounding: half_up
maxExponent: 6144
minExponent: -6143
-- Examples from SQL proposal (Krishna Kulkarni)
subx1125 subtract 130E-2 120E-2 -> 0.10
subx1126 subtract 130E-2 12E-1 -> 0.10
subx1127 subtract 130E-2 1E0 -> 0.30
subx1128 subtract 1E2 1E4 -> -9.9E+3
-- Null tests
subx9990 subtract 10 # -> NaN Invalid_operation
subx9991 subtract # 10 -> NaN Invalid_operation