diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 0000000..2948c89 --- /dev/null +++ b/.gitmodules @@ -0,0 +1,9 @@ +[submodule "3rdparty/LimeReport"] + path = 3rdparty/LimeReport + url = https://github.com/fralx/LimeReport.git +[submodule "3rdparty/qdecimal"] + path = 3rdparty/qdecimal + url = https://github.com/semihc/qdecimal.git +[submodule "3rdparty/QxOrm"] + path = 3rdparty/QxOrm + url = https://github.com/PepaRokos/QxOrm.git diff --git a/3rdparty/CMakeLists.txt b/3rdparty/CMakeLists.txt new file mode 100644 index 0000000..01b597f --- /dev/null +++ b/3rdparty/CMakeLists.txt @@ -0,0 +1,3 @@ +add_subdirectory(qdecimal) +add_subdirectory(QxOrm) +add_subdirectory(LimeReport) \ No newline at end of file diff --git a/3rdparty/LimeReport b/3rdparty/LimeReport new file mode 160000 index 0000000..289ad33 --- /dev/null +++ b/3rdparty/LimeReport @@ -0,0 +1 @@ +Subproject commit 289ad33c07d02d6d9d148643e6a4166a1376a124 diff --git a/3rdparty/QxOrm b/3rdparty/QxOrm new file mode 160000 index 0000000..975c3b5 --- /dev/null +++ b/3rdparty/QxOrm @@ -0,0 +1 @@ +Subproject commit 975c3b5ad3e02e3a257f28ff81071da0a17a1e64 diff --git a/3rdparty/qdecimal b/3rdparty/qdecimal new file mode 160000 index 0000000..31d650e --- /dev/null +++ b/3rdparty/qdecimal @@ -0,0 +1 @@ +Subproject commit 31d650e0e61acdef1f5b2c23b6daf26ea409c22c diff --git a/CMakeLists.txt b/CMakeLists.txt new file mode 100644 index 0000000..d306a36 --- /dev/null +++ b/CMakeLists.txt @@ -0,0 +1,17 @@ +cmake_minimum_required(VERSION 3.24) +project(prodejna-root) + +add_subdirectory(3rdparty/qdecimal) +add_subdirectory(3rdparty/QxOrm) +add_subdirectory(3rdparty/LimeReport) + +add_subdirectory(core) +add_subdirectory(application) +add_subdirectory(countryregister) +add_subdirectory(addressbook) +add_subdirectory(postregister) +add_subdirectory(services) +add_subdirectory(shop) +add_subdirectory(commodity) +add_subdirectory(camp) + diff --git a/accommodation/accform.cpp b/accommodation/accform.cpp deleted file mode 100644 index 66e90de..0000000 --- a/accommodation/accform.cpp +++ /dev/null @@ -1,14 +0,0 @@ -#include "accform.h" -#include "ui_accform.h" - -AccForm::AccForm(QWidget *parent) : - QWidget(parent), - ui(new Ui::AccForm) -{ - ui->setupUi(this); -} - -AccForm::~AccForm() -{ - delete ui; -} diff --git a/accommodation/accgrid.cpp b/accommodation/accgrid.cpp deleted file mode 100644 index ee4a4d2..0000000 --- a/accommodation/accgrid.cpp +++ /dev/null @@ -1,14 +0,0 @@ -#include "accgrid.h" - -#include "tablemodel.h" - -AccGrid::AccGrid(QWidget *parent) : - GridForm(parent) -{ - setTableModel(new TableModel()); -} - -AccGrid::~AccGrid() -{ -} - diff --git a/accommodation/accgrid.h b/accommodation/accgrid.h deleted file mode 100644 index 5f6959c..0000000 --- a/accommodation/accgrid.h +++ /dev/null @@ -1,18 +0,0 @@ -#ifndef ACCGRID_H -#define ACCGRID_H - -#include -#include "data/person.h" - -#include "accommodation-odb.hxx" - -class AccGrid : public GridForm -{ - Q_OBJECT - -public: - explicit AccGrid(QWidget *parent = NULL); - ~AccGrid(); -}; - -#endif // ACCGRID_H diff --git a/accommodation/accommodation.cpp b/accommodation/accommodation.cpp deleted file mode 100644 index 87f8ff4..0000000 --- a/accommodation/accommodation.cpp +++ /dev/null @@ -1,41 +0,0 @@ -#include - -#include "accommodation.h" -#include - -#include "data/person.h" -#include "accommodationservice.h" - -#include "accgrid.h" -#include "acform.h" - -Accommodation::Accommodation() -{ -} - -void Accommodation::initServiceUi() -{ - AccGrid *grid = new AccGrid(); - AcForm *form = new AcForm(); - - grid->setForm(form); - AccommodationService *service = new AccommodationService(); - m_service = service; - m_ui = grid; -} - -QIcon Accommodation::pluginIcon() -{ - return QIcon(":/icons/accPlugin.svg"); -} -/* -QWidget *Accommodation::ui() -{ - QWidget *ui = IPlugin::ui(); - AccGrid *form = qobject_cast(ui); - - form->fillData(); - - return ui; -} -*/ diff --git a/accommodation/accommodation.h b/accommodation/accommodation.h deleted file mode 100644 index 505f642..0000000 --- a/accommodation/accommodation.h +++ /dev/null @@ -1,37 +0,0 @@ -#ifndef ACCOMMODATION_H -#define ACCOMMODATION_H - -#include "accommodation_global.h" -#include -#include -#include - -class ACCOMMODATIONSHARED_EXPORT Accommodation : public QObject, IMetaDataPlugin -{ - Q_OBJECT - - Q_PLUGIN_METADATA(IID PluginInterface_iid FILE "accommodation.json") - Q_INTERFACES(IPlugin) - -public: - Accommodation(); - - // QString pluginName() Q_DECL_OVERRIDE; - // void init(const QJsonObject &metaData) Q_DECL_OVERRIDE; - // QString pluginId() Q_DECL_OVERRIDE; - -protected: - void initServiceUi() Q_DECL_OVERRIDE; - - - // IPlugin interface -public: - //QWidget *ui(); - - // IPlugin interface -public: - virtual QIcon pluginIcon(); - -}; - -#endif // ACCOMMODATION_H diff --git a/accommodation/accommodation.json b/accommodation/accommodation.json deleted file mode 100644 index dbe0e59..0000000 --- a/accommodation/accommodation.json +++ /dev/null @@ -1,20 +0,0 @@ -{ - "id" : "ACCOMMODATION", - "name" : { - "default" : "Accommodation", - "CZ" : "Kemp" - }, - "descriptoin" : { - "default" : "", - "CZ" : "" - }, - "schemaVersion" : 1, - "sql" : [ - "CREATE TABLE \"Person\" ( - \"id\" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, - \"firstName\" TEXT NULL, - \"lastName\" TEXT NULL);" - - ], - "dependencies" : [] -} diff --git a/accommodation/accommodation.pro b/accommodation/accommodation.pro deleted file mode 100644 index 938552f..0000000 --- a/accommodation/accommodation.pro +++ /dev/null @@ -1,46 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2015-10-28T15:27:14 -# -#------------------------------------------------- - -QT += widgets sql - -TARGET = accommodation -TEMPLATE = lib - -DEFINES += ACCOMMODATION_LIBRARY - -SOURCES += accommodation.cpp \ - data/person.cpp \ - accommodationservice.cpp \ - tablemodel.cpp \ - acform.cpp \ - accgrid.cpp \ - data/address.cpp - -HEADERS += accommodation.h\ - accommodation_global.h \ - data/person.h \ - accommodationservice.h \ - tablemodel.h \ - acform.h \ - accgrid.h \ - data/address.h \ - data/accommodation-data.h - -include(../config_plugin.pri) - -OTHER_FILES += \ - accommodation.json - -FORMS += \ - acform.ui - -ODB_FILES = accommodation/data/accommodation-data.h -H_DIR = $$PWD/data/*.h -include(../odb.pri) - -RESOURCES += \ - accrc.qrc - diff --git a/accommodation/accommodation_global.h b/accommodation/accommodation_global.h deleted file mode 100644 index c5dddf9..0000000 --- a/accommodation/accommodation_global.h +++ /dev/null @@ -1,12 +0,0 @@ -#ifndef ACCOMMODATION_GLOBAL_H -#define ACCOMMODATION_GLOBAL_H - -#include - -#if defined(ACCOMMODATION_LIBRARY) -# define ACCOMMODATIONSHARED_EXPORT Q_DECL_EXPORT -#else -# define ACCOMMODATIONSHARED_EXPORT Q_DECL_IMPORT -#endif - -#endif // ACCOMMODATION_GLOBAL_H diff --git a/accommodation/accommodationservice.cpp b/accommodation/accommodationservice.cpp deleted file mode 100644 index 6febbe5..0000000 --- a/accommodation/accommodationservice.cpp +++ /dev/null @@ -1,28 +0,0 @@ -#include "accommodationservice.h" - -#include -#include - -#include "accommodation-odb.hxx" - -AccommodationService::AccommodationService() - :Service("ACCOMMODATION") -{ -} - -AccommodationService::~AccommodationService() -{ - -} - -void AccommodationService::pokus(QSharedPointer entity) -{ - odb::database *db = Context::instance().db(); - //odb::transaction tr(db->begin()); - - Transaction tr; - this->all(); - db->persist(entity); - tr.commit(); -} - diff --git a/accommodation/accommodationservice.h b/accommodation/accommodationservice.h deleted file mode 100644 index db333fb..0000000 --- a/accommodation/accommodationservice.h +++ /dev/null @@ -1,19 +0,0 @@ -#ifndef ACCOMMODATIONSERVICE_H -#define ACCOMMODATIONSERVICE_H - -#include "data/person.h" -#include - -#include "accommodation_global.h" -#include "accommodation-odb.hxx" - -class ACCOMMODATIONSHARED_EXPORT AccommodationService : public Service -{ -public: - AccommodationService(); - ~AccommodationService(); - - void pokus(QSharedPointer entity); -}; - -#endif // ACCOMMODATIONSERVICE_H diff --git a/accommodation/accrc.qrc b/accommodation/accrc.qrc deleted file mode 100644 index 4ac8ed9..0000000 --- a/accommodation/accrc.qrc +++ /dev/null @@ -1,5 +0,0 @@ - - - icons/accPlugin.svg - - diff --git a/accommodation/acform.cpp b/accommodation/acform.cpp deleted file mode 100644 index a8a9044..0000000 --- a/accommodation/acform.cpp +++ /dev/null @@ -1,34 +0,0 @@ -#include "acform.h" -#include "ui_acform.h" -#include - -#include -#include - -#include "accommodation-odb.hxx" - -AcForm::AcForm(QWidget *parent) : - AutoForm(parent), - ui(new Ui::AcForm) -{ - ui->setupUi(this); - - registerBinding(ui->firstName); - registerBinding(ui->lastName); -} - -AcForm::~AcForm() -{ - delete ui; -} - -void AcForm::registerCombos() -{ - QList cbData; - Service
srv; - foreach (QSharedPointer
adr, srv.all()) { - cbData.append(ComboData(adr)); - } - - registerBinding(ui->address, cbData); -} diff --git a/accommodation/acform.h b/accommodation/acform.h deleted file mode 100644 index 1b23103..0000000 --- a/accommodation/acform.h +++ /dev/null @@ -1,30 +0,0 @@ -#ifndef ACFORM_H -#define ACFORM_H - -#include -#include - -#include "data/person.h" -#include "accommodation-odb.hxx" - -namespace Ui { -class AcForm; -} - -class AcForm : public AutoForm -{ - Q_OBJECT - -public: - explicit AcForm(QWidget *parent = 0); - ~AcForm(); - -private: - Ui::AcForm *ui; - - // AutoForm interface -protected: - virtual void registerCombos(); -}; - -#endif // ACFORM_H diff --git a/accommodation/acform.ui b/accommodation/acform.ui deleted file mode 100644 index f1b3c3d..0000000 --- a/accommodation/acform.ui +++ /dev/null @@ -1,62 +0,0 @@ - - - AcForm - - - - 0 - 0 - 833 - 536 - - - - Form - - - - - 90 - 60 - 191 - 20 - - - - - - - 90 - 110 - 191 - 20 - - - - - - - 610 - 410 - 81 - 22 - - - - PushButton - - - - - - 110 - 170 - 191 - 22 - - - - - - - diff --git a/accommodation/data/accommodation-data.h b/accommodation/data/accommodation-data.h deleted file mode 100644 index bf6ad45..0000000 --- a/accommodation/data/accommodation-data.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef ACCOMMODATIONDATA_H -#define ACCOMMODATIONDATA_H - -#include "address.h" -#include "person.h" - -#endif // ACCOMMODATIONDATA_H - diff --git a/accommodation/data/address.cpp b/accommodation/data/address.cpp deleted file mode 100644 index ba7cb5b..0000000 --- a/accommodation/data/address.cpp +++ /dev/null @@ -1,58 +0,0 @@ -#include "address.h" - -Address::Address(QObject *parent) : ComboItem(parent) -{ - -} - -Address::~Address() -{ - -} -QString Address::city() const -{ - return m_city; -} - -void Address::setCity(const QString &city) -{ - m_city = city; -} -QString Address::street() const -{ - return m_street; -} - -void Address::setStreet(const QString &street) -{ - m_street = street; -} -QString Address::houseNumber() const -{ - return m_houseNumber; -} - -void Address::setHouseNumber(const QString &houseNumber) -{ - m_houseNumber = houseNumber; -} -int Address::id() const -{ - return m_id; -} - -void Address::setId(int id) -{ - m_id = id; -} - -bool Address::eq(ComboItem *other) -{ - Address *addr = qobject_cast(other); - return addr != NULL && m_id == addr->id(); -} - -QString Address::toString() -{ - return m_street + ", " + m_houseNumber + ", " + m_city; -} diff --git a/accommodation/data/address.h b/accommodation/data/address.h deleted file mode 100644 index c81bbfd..0000000 --- a/accommodation/data/address.h +++ /dev/null @@ -1,55 +0,0 @@ -#ifndef ADDRESS_H -#define ADDRESS_H - -#include -#include - -#include - -#include - -#pragma db object -class Address : public ComboItem -{ - Q_OBJECT - - Q_PROPERTY(QString city READ city WRITE setCity) - Q_PROPERTY(QString street READ street WRITE setStreet) - Q_PROPERTY(QString houseNumber READ houseNumber WRITE setHouseNumber) - -public: - explicit Address(QObject *parent = 0); - ~Address(); - - QString city() const; - void setCity(const QString &city); - - QString street() const; - void setStreet(const QString &street); - - QString houseNumber() const; - void setHouseNumber(const QString &houseNumber); - - int id() const; - void setId(int id); - -private: - friend class odb::access; - -#pragma db id auto - int m_id; - QString m_city; - QString m_street; - QString m_houseNumber; - -signals: - -public slots: - - // ComboItem interface -public: - virtual bool eq(ComboItem *other); - virtual QString toString(); -}; - -#endif // ADDRESS_H diff --git a/accommodation/data/person.cpp b/accommodation/data/person.cpp deleted file mode 100644 index 850df47..0000000 --- a/accommodation/data/person.cpp +++ /dev/null @@ -1,49 +0,0 @@ -#include -#include "person.h" - -Person::Person() -{ -} -int Person::id() const -{ - return m_id; -} - -void Person::setId(int value) -{ - m_id = value; -} -QString Person::getFirstName() const -{ - return firstName; -} - -void Person::setFirstName(const QString &value) -{ - firstName = value; -} -QString Person::getLastName() const -{ - return lastName; -} - -void Person::setLastName(const QString &value) -{ - lastName = value; -} -QSharedPointer Person::address() const -{ - return m_address; -} - -void Person::setAddress(const QSharedPointer &address) -{ - if (qobject_cast(address.data()) != NULL) - { - m_address = qSharedPointerDynamicCast(address); - } -} - - - - diff --git a/accommodation/data/person.h b/accommodation/data/person.h deleted file mode 100644 index a2d3659..0000000 --- a/accommodation/data/person.h +++ /dev/null @@ -1,44 +0,0 @@ -#ifndef PERSON_H -#define PERSON_H - -#include -#include - -#include "address.h" - -#include - -#pragma db object -class Person : public QObject -{ - Q_OBJECT - - Q_PROPERTY(QString firstName READ getFirstName WRITE setFirstName) - Q_PROPERTY(QString lastName READ getLastName WRITE setLastName) - Q_PROPERTY(QSharedPointer address READ address WRITE setAddress) -public: - Person(); - - int id() const; - void setId(int value); - - QString getFirstName() const; - void setFirstName(const QString &value); - - QString getLastName() const; - void setLastName(const QString &value); - - QSharedPointer address() const; - void setAddress(const QSharedPointer &address); - -private: - friend class odb::access; -#pragma db id auto - int m_id; - QString firstName; - QString lastName; - QSharedPointer
m_address; - -}; - -#endif // PERSON_H diff --git a/accommodation/icons/accPlugin.svg b/accommodation/icons/accPlugin.svg deleted file mode 100644 index 88f894a..0000000 --- a/accommodation/icons/accPlugin.svg +++ /dev/null @@ -1,7 +0,0 @@ - \ No newline at end of file diff --git a/accommodation/tablemodel.cpp b/accommodation/tablemodel.cpp deleted file mode 100644 index 531eeab..0000000 --- a/accommodation/tablemodel.cpp +++ /dev/null @@ -1,8 +0,0 @@ -#include "tablemodel.h" - -TableModel::TableModel(QObject *parent) - :AutoTableModel(parent) -{ - -} - diff --git a/accommodation/tablemodel.h b/accommodation/tablemodel.h deleted file mode 100644 index bfde631..0000000 --- a/accommodation/tablemodel.h +++ /dev/null @@ -1,18 +0,0 @@ -#ifndef TABLEMODEL_H -#define TABLEMODEL_H - -#include -#include - -#include "data/person.h" - -class TableModel : public AutoTableModel -{ - Q_OBJECT - -public: - explicit TableModel(QObject *parent = NULL); - -}; - -#endif // TABLEMODEL_H diff --git a/addressbook/CMakeLists.txt b/addressbook/CMakeLists.txt new file mode 100644 index 0000000..622f49b --- /dev/null +++ b/addressbook/CMakeLists.txt @@ -0,0 +1,53 @@ +cmake_minimum_required(VERSION 3.24) +project(addressbook) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set (CMAKE_LIBRARY_OUTPUT_DIRECTORY ../plugins) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + REQUIRED) + +add_library(addressbook SHARED + addressbook.cpp + addressbook.h + addressbookrc.qrc + addressbook_global.h + addressbookform.cpp + addressbookform.h + addressbookform.ui + addressbookgrid.cpp + addressbookgrid.h + addressbookservice.cpp + addressbookservice.h + addressbooktablemodel.cpp + addressbooktablemodel.h + data/addressbookdata.cpp + data/addressbookdata.h) + +target_compile_definitions(addressbook PRIVATE -DADDRESSBOOK_LIBRARY) + +include_directories(../core) +include_directories(../countryregister) + +target_link_libraries(addressbook + Qt::Core + Qt::Gui + Qt::Widgets + qdecimal + decnumber + QxOrm + core + countryregister + ) + +install(TARGETS addressbook + LIBRARY DESTINATION ../plugins) \ No newline at end of file diff --git a/addressbook/addressbook.h b/addressbook/addressbook.h index ae965a8..933d08f 100644 --- a/addressbook/addressbook.h +++ b/addressbook/addressbook.h @@ -26,8 +26,8 @@ protected: // IPlugin interface public: - virtual QIcon pluginIcon(); - QTranslator *translator(); + QIcon pluginIcon() override; + QTranslator *translator() override; }; diff --git a/addressbook/addressbook.pro b/addressbook/addressbook.pro deleted file mode 100644 index f88dd05..0000000 --- a/addressbook/addressbook.pro +++ /dev/null @@ -1,54 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2016-02-09T21:27:28 -# -#------------------------------------------------- - -QT += widgets sql - -QT -= gui - -TARGET = addressbook -TEMPLATE = lib - -DEFINES += ADDRESSBOOK_LIBRARY - -SOURCES += addressbook.cpp \ - data/addressbookdata.cpp \ - addressbookform.cpp \ - addressbookgrid.cpp \ - addressbooktablemodel.cpp \ - addressbookservice.cpp - -HEADERS += addressbook.h\ - addressbook_global.h \ - data/addressbookdata.h \ - addressbookform.h \ - addressbookgrid.h \ - addressbooktablemodel.h \ - addressbookservice.h - -include(../config_plugin.pri) - -ODB_FILES = addressbook/data/addressbookdata.h -H_DIR = $$PWD/data/*.h -ODB_OTHER_INCLUDES = -I $$PWD/../countryregister/data -include(../odb.pri) - -OTHER_FILES += \ - addressbook.json - -FORMS += \ - addressbookform.ui - -RESOURCES += \ - addressbookrc.qrc -TRANSLATIONS = translations/addressbook_cs_CZ.ts - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lcountryregister -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lcountryregister -else:unix: LIBS += -L$$OUT_PWD/../plugins/ -lcountryregister - -INCLUDEPATH += $$PWD/../countryregister/data -INCLUDEPATH += $$PWD/../countryregister - diff --git a/addressbook/addressbook_global.h b/addressbook/addressbook_global.h index 795f959..dd8cc17 100644 --- a/addressbook/addressbook_global.h +++ b/addressbook/addressbook_global.h @@ -2,6 +2,7 @@ #define ADDRESSBOOK_GLOBAL_H #include +#include #if defined(ADDRESSBOOK_LIBRARY) # define ADDRESSBOOKSHARED_EXPORT Q_DECL_EXPORT @@ -9,4 +10,12 @@ # define ADDRESSBOOKSHARED_EXPORT Q_DECL_IMPORT #endif +#ifdef ADDRESSBOOK_LIBRARY +#define QX_REGISTER_HPP_ADDR QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_ADDR QX_REGISTER_CPP_EXPORT_DLL +#else // ADDRESSBOOK_LIBRARY +#define QX_REGISTER_HPP_ADDR QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_ADDR QX_REGISTER_CPP_IMPORT_DLL +#endif + #endif // ADDRESSBOOK_GLOBAL_H diff --git a/addressbook/addressbookform.cpp b/addressbook/addressbookform.cpp index e6d30f9..0847cd7 100644 --- a/addressbook/addressbookform.cpp +++ b/addressbook/addressbookform.cpp @@ -1,6 +1,7 @@ +#include #include "addressbookform.h" #include "ui_addressbookform.h" -#include +#include AddressbookForm::AddressbookForm(QWidget *parent) : AutoForm(parent), diff --git a/addressbook/addressbookform.h b/addressbook/addressbookform.h index 85eb79c..47b1411 100644 --- a/addressbook/addressbookform.h +++ b/addressbook/addressbookform.h @@ -4,7 +4,6 @@ #include #include #include "data/addressbookdata.h" -#include "addressbook-odb.hxx" namespace Ui { class AddressbookForm; @@ -16,14 +15,14 @@ class AddressbookForm : public AutoForm public: explicit AddressbookForm(QWidget *parent = 0); - ~AddressbookForm(); + ~AddressbookForm() override; private: Ui::AddressbookForm *ui; // FormBinder interface protected: - void registerCombos(); + void registerCombos() override; }; diff --git a/addressbook/addressbookform.ui b/addressbook/addressbookform.ui index 853d121..85ee832 100644 --- a/addressbook/addressbookform.ui +++ b/addressbook/addressbookform.ui @@ -6,14 +6,17 @@ 0 0 - 610 - 407 + 624 + 363 Form + + QFormLayout::ExpandingFieldsGrow + diff --git a/addressbook/addressbookgrid.h b/addressbook/addressbookgrid.h index 04cd4f1..54fae55 100644 --- a/addressbook/addressbookgrid.h +++ b/addressbook/addressbookgrid.h @@ -3,7 +3,6 @@ #include #include "data/addressbookdata.h" -#include "addressbook-odb.hxx" class AddressbookGrid : public GridForm { diff --git a/addressbook/addressbookservice.cpp b/addressbook/addressbookservice.cpp index 97a6979..6df3af7 100644 --- a/addressbook/addressbookservice.cpp +++ b/addressbook/addressbookservice.cpp @@ -1,6 +1,5 @@ #include #include "addressbookservice.h" -#include "addressbook-odb.hxx" AddressBookService::AddressBookService() { @@ -24,7 +23,7 @@ AddressbookDataPtr AddressBookService::copyAddress(AddressbookDataPtr address) newAddress->setAddressHouseNumber(address->addressHouseNumber()); newAddress->setAddressZipCode(address->addressZipCode()); newAddress->setAddressCity(address->addressCity()); - newAddress->setCountry(address->country()); + //newAddress->setCountry(address->country()); return newAddress; } diff --git a/addressbook/data/addressbookdata.cpp b/addressbook/data/addressbookdata.cpp index 71ca016..a753db3 100644 --- a/addressbook/data/addressbookdata.cpp +++ b/addressbook/data/addressbookdata.cpp @@ -1,5 +1,26 @@ +#include #include "addressbookdata.h" +QX_REGISTER_CPP_ADDR(AddressbookData) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("AddressbookData"); + t.id(&AddressbookData::m_id, "id"); + t.data(&AddressbookData::m_title, "title"); + t.data(&AddressbookData::m_firstName, "firstName"); + t.data(&AddressbookData::m_lastName, "lastName"); + t.data(&AddressbookData::m_birthDate, "birthDate"); + t.data(&AddressbookData::m_idCardNumber, "idCardNumber"); + t.data(&AddressbookData::m_ztp, "ztp"); + t.data(&AddressbookData::m_addressCity, "addressCity"); + t.data(&AddressbookData::m_addressHouseNumber, "addressHouseNumber"); + t.data(&AddressbookData::m_addressZipCode, "addressZipCode"); + + t.relationManyToOne(&AddressbookData::m_country, "country"); + } +} + AddressbookData::AddressbookData(QObject * parent) :ComboItem(parent) { @@ -96,12 +117,12 @@ void AddressbookData::setAddressZipCode(const QString &addressZipCode) { m_addressZipCode = addressZipCode; } -int AddressbookData::id() const +long AddressbookData::id() const { return m_id; } -void AddressbookData::setId(int id) +void AddressbookData::setId(long id) { m_id = id; } @@ -122,7 +143,7 @@ void AddressbookData::setCountry(const QSharedPointer &country) bool AddressbookData::eq(ComboItem *other) { AddressbookData *adb = qobject_cast(other); - return adb != NULL && adb->id() == this->id(); + return adb != nullptr && adb->id() == this->id(); } QString AddressbookData::toString() @@ -130,4 +151,8 @@ QString AddressbookData::toString() return m_lastName + " " + m_firstName + ", " + m_addressStreet + " " + m_addressHouseNumber + ", " + m_addressCity; } +QStringList AddressbookData::eagerLoad() { + return { "country" }; +} + diff --git a/addressbook/data/addressbookdata.h b/addressbook/data/addressbookdata.h index 4a250aa..da62e82 100644 --- a/addressbook/data/addressbookdata.h +++ b/addressbook/data/addressbookdata.h @@ -1,26 +1,22 @@ #ifndef ADDRESSBOOKDATA_H #define ADDRESSBOOKDATA_H +#include "../addressbook_global.h" +#include +#include + #include #include #include -#include #include #include -#include -#include - -#if defined(ADDRESSBOOK_LIBRARY) -# define ADDRESSBOOKSHARED_EXPORT Q_DECL_EXPORT -#else -# define ADDRESSBOOKSHARED_EXPORT Q_DECL_IMPORT -#endif +#include -#pragma db object class ADDRESSBOOKSHARED_EXPORT AddressbookData : public ComboItem { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(AddressbookData) Q_PROPERTY(QString title READ title WRITE setTitle) Q_PROPERTY(QString firstName READ firstName WRITE setFirstName) Q_PROPERTY(QString lastName READ lastName WRITE setLastName) @@ -35,6 +31,7 @@ class ADDRESSBOOKSHARED_EXPORT AddressbookData : public ComboItem public: AddressbookData(QObject *parent = 0); + QString title() const; void setTitle(const QString &title); @@ -65,16 +62,16 @@ public: QString addressZipCode() const; void setAddressZipCode(const QString &addressZipCode); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QSharedPointer country() const; void setCountry(const QSharedPointer &country); + Q_INVOKABLE QStringList eagerLoad(); + private: - friend class odb::access; - #pragma db id auto - int m_id; + long m_id{0}; QString m_title; QString m_firstName; QString m_lastName; @@ -89,10 +86,12 @@ private: // ComboItem interface public: - virtual bool eq(ComboItem *other); - virtual QString toString(); + bool eq(ComboItem *other) override; + QString toString() override; }; typedef QSharedPointer AddressbookDataPtr; +QX_REGISTER_HPP_ADDR(AddressbookData, ComboItem, 0) + #endif // ADDRESSBOOKDATA_H diff --git a/application/CMakeLists.txt b/application/CMakeLists.txt new file mode 100644 index 0000000..a8734c7 --- /dev/null +++ b/application/CMakeLists.txt @@ -0,0 +1,38 @@ +cmake_minimum_required(VERSION 3.24) +project(prodejna) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + Sql + REQUIRED) + +include_directories(../core) + +add_executable(prodejna + main.cpp + appRc.qrc + application.cpp + application.h + logindialog.cpp + logindialog.h + logindialog.ui + mainwindow.cpp + mainwindow.h + mainwindow.ui) + +target_link_libraries(prodejna + Qt::Core + Qt::Gui + Qt::Widgets + Qt::Sql + core + ) \ No newline at end of file diff --git a/application/application.pro b/application/application.pro deleted file mode 100644 index d7edcc3..0000000 --- a/application/application.pro +++ /dev/null @@ -1,92 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2015-10-28T15:23:55 -# -#------------------------------------------------- - -QT += core gui sql - -greaterThan(QT_MAJOR_VERSION, 4): QT += widgets - -TARGET = prodejna -TEMPLATE = app - -DEFINES += _GLIBCXX_USE_CXX11_ABI=1 - -CONFIG += c++11 - -include(../config_odb.pri) - -win32 { - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/libodb-2.4.0 - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/libodb-qt-2.4.0 - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/libodb-sqlite-2.4.0 - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/sqlite - - RC_FILE = shop.rc -} - -SOURCES += main.cpp\ - mainwindow.cpp \ - logindialog.cpp \ - application.cpp - -HEADERS += mainwindow.h \ - logindialog.h \ - application.h - -FORMS += mainwindow.ui \ - logindialog.ui - - -unix{ - ARCH_TYPE = unix - macx{ - ARCH_TYPE = macx - } - linux{ - !contains(QT_ARCH, x86_64){ - ARCH_TYPE = linux32 - }else{ - ARCH_TYPE = linux64 - } - } -} - -unix { - QMAKE_CXXFLAGS += -Wno-unknown-pragmas - - CONFIG(debug, debug|release) { - LIBS += -L$$PWD/../../LimeReport/build/$${QT_VERSION}/$${ARCH_TYPE}/debug/lib/ -llimereport -lQtZint - #QMAKE_CXXFLAGS += -Wl,-rpath-link,$$PWD/../../LimeReport/build/$${QT_VERSION}/$${ARCH_TYPE}/debug/lib/ - } else { - LIBS += -L$$PWD/../../LimeReport/build/$${QT_VERSION}/$${ARCH_TYPE}/release/lib/ -llimereport -lQtZint - #QMAKE_CXXFLAGS += -Wl,-rpath-link,$$PWD/../../LimeReport/build/$${QT_VERSION}/$${ARCH_TYPE}/release/lib/ - } -} - -win32 { - QMAKE_CXXFLAGS += -wd4995 -wd4068 -} - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../core/release/ -lcore -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../core/debug/ -lcore -else:unix: LIBS += -L$$OUT_PWD/../core/ -lcore - -INCLUDEPATH += $$PWD/../core -DEPENDPATH += $$PWD/../core - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber -else:unix: LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber - -INCLUDEPATH += $$PWD/../qdecimal/src -INCLUDEPATH += $$PWD/../qdecimal/decnumber - -RESOURCES += \ - appRc.qrc - -TRANSLATIONS = translations/prodejna_cs_CZ.ts - -DISTFILES += \ - shop.rc diff --git a/application/logindialog.ui b/application/logindialog.ui index 56111cb..1836969 100644 --- a/application/logindialog.ui +++ b/application/logindialog.ui @@ -6,8 +6,8 @@ 0 0 - 408 - 220 + 427 + 260 @@ -64,6 +64,9 @@ + + QFormLayout::ExpandingFieldsGrow + diff --git a/application/main.cpp b/application/main.cpp index 4fda4ee..e363b32 100644 --- a/application/main.cpp +++ b/application/main.cpp @@ -1,6 +1,7 @@ #include "mainwindow.h" #include -#include +//#include +#include #include #include #include @@ -17,7 +18,7 @@ int main(int argc, char *argv[]) if (!a.lock()) { - QMessageBox::warning(NULL, "Prodejna is running", "Prodejna is allready running. Only one instance can be started."); + QMessageBox::warning(nullptr, "Prodejna is running", "Prodejna is allready running. Only one instance can be started."); return -42; } @@ -34,16 +35,19 @@ int main(int argc, char *argv[]) #endif QTranslator qtTranslator; - qtTranslator.load("qt_" + QLocale::system().name(), - QLibraryInfo::location(QLibraryInfo::TranslationsPath)); + if (qtTranslator.load("qt_" + QLocale::system().name(), + QLibraryInfo::path(QLibraryInfo::TranslationsPath))) { + qDebug() << "Cannot load translation"; + } a.installTranslator(&qtTranslator); QTranslator myappTranslator; - myappTranslator.load(":/translations/prodejna_" + QLocale::system().name()); + if (myappTranslator.load(":/translations/prodejna_" + QLocale::system().name())) { + qDebug() << "Cannot load translation"; + } a.installTranslator(&myappTranslator); MainWindow w; - w.move(QApplication::desktop()->screen()->rect().center() - w.rect().center()); w.showMaximized(); return a.exec(); diff --git a/application/mainwindow.cpp b/application/mainwindow.cpp index e7ea1ff..2abb963 100644 --- a/application/mainwindow.cpp +++ b/application/mainwindow.cpp @@ -8,6 +8,7 @@ #include #include #include +#include MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent), @@ -61,11 +62,7 @@ MainWindow::MainWindow(QWidget *parent) : } ((QVBoxLayout*)ui->navigation->layout())->addStretch(1); - - if (Context::instance().db() != NULL) - { - ui->navigation->setEnabled(true); - } + ui->navigation->setEnabled(true); } MainWindow::~MainWindow() @@ -89,7 +86,7 @@ void MainWindow::openPlugin() void MainWindow::on_actionOpen_database_triggered() { - closaAllTabs(); + closeAllTabs(); closeDashboard(); QString dbFile = QFileDialog::getOpenFileName(this, "Open Database", "", "Database Files (*.db)"); @@ -116,7 +113,7 @@ void MainWindow::on_tabWidget_tabCloseRequested(int index) void MainWindow::on_actionLogin_triggered() { - closaAllTabs(); + closeAllTabs(); closeDashboard(); QSharedPointer u; @@ -128,7 +125,7 @@ void MainWindow::on_actionLogin_triggered() void MainWindow::showEvent(QShowEvent *evt) { QWidget::showEvent(evt); - if (Context::instance().db() != NULL && Context::instance().currentUser().data() == NULL) + if (Context::instance().dbOpened() && Context::instance().currentUser().data() == nullptr) { m_loginDialog->show(); } @@ -150,7 +147,7 @@ void MainWindow::on_actionPost_register_triggered() { IPlugin *plugZipCodes = Context::instance().plugin("POSTREGISTER"); - if (plugZipCodes != NULL) + if (plugZipCodes != nullptr) { openPlugin(plugZipCodes); } @@ -160,6 +157,9 @@ void MainWindow::openPlugin(IPlugin *plugin) { ui->tabWidget->setVisible(true); ui->dashboard->setVisible(false); +#ifdef Q_OS_MAC + ui->tabWidget->setStyleSheet("QTabBar::tab { width: 150px; }"); +#endif for (int i = 0; i < ui->tabWidget->count(); i++) { if (ui->tabWidget->widget(i)->objectName() == plugin->pluginId()) { @@ -168,7 +168,7 @@ void MainWindow::openPlugin(IPlugin *plugin) } } - if (plugin->ui() != NULL) + if (plugin->ui() != nullptr) { ui->tabWidget->addTab(plugin->ui(), plugin->pluginIcon(), plugin->pluginName()); ui->tabWidget->widget(ui->tabWidget->count() - 1)->setObjectName(plugin->pluginId()); @@ -180,7 +180,7 @@ void MainWindow::on_actionCountry_register_triggered() { IPlugin *plugCountryReg = Context::instance().plugin("COUNTRYREGISTER"); - if (plugCountryReg != NULL) + if (plugCountryReg != nullptr) { openPlugin(plugCountryReg); } @@ -236,7 +236,7 @@ void MainWindow::refreshDashboard() } } -void MainWindow::closaAllTabs() +void MainWindow::closeAllTabs() { ui->tabWidget->setVisible(false); ui->dashboard->setVisible(true); diff --git a/application/mainwindow.h b/application/mainwindow.h index 1afc806..7fa2f84 100644 --- a/application/mainwindow.h +++ b/application/mainwindow.h @@ -53,11 +53,11 @@ private: void closeDashboard(); void openDashboard(); void refreshDashboard(); - void closaAllTabs(); + void closeAllTabs(); // QWidget interface protected: - void showEvent(QShowEvent *evt); + void showEvent(QShowEvent *evt) override; void closeEvent(QCloseEvent *evt) override; }; diff --git a/application/mainwindow.ui b/application/mainwindow.ui index a96634f..1ed7db4 100644 --- a/application/mainwindow.ui +++ b/application/mainwindow.ui @@ -137,7 +137,7 @@ 0 0 1000 - 20 + 42 diff --git a/application/style.css b/application/style.css index b06b460..092ef23 100644 --- a/application/style.css +++ b/application/style.css @@ -16,6 +16,7 @@ } #navigation QToolButton { + background-color: dimgray; color: white; font-weight: bold; min-width: 90px; @@ -23,5 +24,9 @@ } #dashboard { - background-color: qlineargradient(spread:pad, x1:0.507, y1:1, x2:0.518, y2:0.291, stop:0 rgba(83, 145, 169, 255), stop:1 rgba(255, 255, 255, 255)); + background-color: qlineargradient(spread:pad, x1:0.507, y1:1, x2:0.518, y2:0.291, stop:0 rgba(83, 145, 169, 255), stop:1 rgba(255, 255, 255, 255));; +} + +#dashboard QLabel { + color: black; } diff --git a/camp/CMakeLists.txt b/camp/CMakeLists.txt new file mode 100644 index 0000000..a6939b9 --- /dev/null +++ b/camp/CMakeLists.txt @@ -0,0 +1,83 @@ +cmake_minimum_required(VERSION 3.24) +project(camp) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set (CMAKE_LIBRARY_OUTPUT_DIRECTORY ../plugins) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + REQUIRED) + +add_library(camp SHARED + addservicedialog.cpp + addservicedialog.h + addservicedialog.ui + camp.cpp + camp.h + camp_global.h + campform.cpp + campform.h + campform.ui + campgrid.cpp + campgrid.h + camprc.qrc + campseller.cpp + campseller.h + campservice.cpp + campservice.h + campshopitem.cpp + campshopitem.h + campwizard.cpp + campwizard.h + campwizard.ui + detailwidget.cpp + detailwidget.h + detailwidget.ui + data/addressitem.cpp + data/addressitem.h + data/camp-data.h + data/campdata.cpp + data/campdata.h + data/personprice.cpp + data/personprice.h + data/sale.cpp + data/sale.h + data/serviceitem.cpp + data/serviceitem.h + settings/campsettings.cpp + settings/campsettings.h + settings/campsettingsform.cpp + settings/campsettingsform.h + settings/campsettingsform.ui) + +target_compile_definitions(camp PRIVATE -DCAMP_LIBRARY) + +include_directories(../core) +include_directories(../countryregister + ../addressbook + ../services + ../shop) + +target_link_libraries(camp + Qt::Core + Qt::Gui + Qt::Widgets + qdecimal + decnumber + QxOrm + core + addressbook + services + shop + ) + +install(TARGETS addressbook + LIBRARY DESTINATION ../plugins) \ No newline at end of file diff --git a/camp/addservicedialog.h b/camp/addservicedialog.h index 31ba935..c73f2bd 100644 --- a/camp/addservicedialog.h +++ b/camp/addservicedialog.h @@ -14,8 +14,8 @@ class AddServiceDialog : public QDialog Q_OBJECT public: - explicit AddServiceDialog(AccServicePtr service, QWidget *parent = 0); - ~AddServiceDialog(); + explicit AddServiceDialog(AccServicePtr service, QWidget *parent = nullptr); + ~AddServiceDialog() override; QString description(); QDecDouble price(); diff --git a/camp/camp.cpp b/camp/camp.cpp index 7c11e23..e9dfb13 100644 --- a/camp/camp.cpp +++ b/camp/camp.cpp @@ -5,10 +5,6 @@ #include "campservice.h" #include "settings/campsettingsform.h" -Camp::Camp() -{ -} - void Camp::initServiceUi() { m_service = new CampService(); diff --git a/camp/camp.h b/camp/camp.h index a27fd14..c44d76a 100644 --- a/camp/camp.h +++ b/camp/camp.h @@ -14,16 +14,16 @@ class CAMPSHARED_EXPORT Camp : public QObject, IMetaDataPlugin Q_INTERFACES(IPlugin) public: - Camp(); + Camp() = default; protected: void initServiceUi() Q_DECL_OVERRIDE; // IPlugin interface public: - virtual QIcon pluginIcon(); - QTranslator *translator(); - bool hasNumberSeries(); + QIcon pluginIcon() override; + QTranslator *translator() override; + bool hasNumberSeries() override; }; #endif // CAMP_H diff --git a/camp/camp.pro b/camp/camp.pro deleted file mode 100644 index 39cc5a5..0000000 --- a/camp/camp.pro +++ /dev/null @@ -1,110 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2017-04-19T09:20:32 -# -#------------------------------------------------- - -QT += widgets sql - -TARGET = camp -TEMPLATE = lib - -DEFINES += CAMP_LIBRARY - -# The following define makes your compiler emit warnings if you use -# any feature of Qt which as been marked as deprecated (the exact warnings -# depend on your compiler). Please consult the documentation of the -# deprecated API in order to know how to port your code away from it. -DEFINES += QT_DEPRECATED_WARNINGS - -# You can also make your code fail to compile if you use deprecated APIs. -# In order to do so, uncomment the following line. -# You can also select to disable deprecated APIs only up to a certain version of Qt. -#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000 # disables all the APIs deprecated before Qt 6.0.0 - -SOURCES += camp.cpp \ - data/campdata.cpp \ - data/addressitem.cpp \ - data/serviceitem.cpp \ - campgrid.cpp \ - campform.cpp \ - data/sale.cpp \ - settings/campsettingsform.cpp \ - data/personprice.cpp \ - settings/campsettings.cpp \ - campwizard.cpp \ - campservice.cpp \ - addservicedialog.cpp \ - campshopitem.cpp \ - campseller.cpp \ - detailwidget.cpp - -HEADERS += camp.h\ - camp_global.h \ - data/campdata.h \ - data/addressitem.h \ - data/serviceitem.h \ - data/camp-data.h \ - campgrid.h \ - campform.h \ - data/sale.h \ - settings/campsettingsform.h \ - data/personprice.h \ - settings/campsettings.h \ - campwizard.h \ - campservice.h \ - addservicedialog.h \ - campshopitem.h \ - campseller.h \ - detailwidget.h - -include(../config_plugin.pri) - -ODB_FILES = camp/data/camp-data.h -H_DIR = $$PWD/data/*.h -ODB_OTHER_INCLUDES = -I $$PWD/../shop -I $$PWD/../addressbook/data -I $$PWD/../countryregister/data -I $$PWD/../services/data -include(../odb.pri) - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lshop -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lshop -else:unix: LIBS += -L$$OUT_PWD/../plugins/ -lshop - -INCLUDEPATH += $$PWD/../shop -DEPENDPATH += $$PWD/../shop - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -laddressbook -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -laddressbook -else:unix: LIBS += -L$$OUT_PWD/../plugins/ -laddressbook - -INCLUDEPATH += $$PWD/../addressbook -INCLUDEPATH += $$PWD/../addressbook/data -DEPENDPATH += $$PWD/../addressbook - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lcountryregister -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lcountryregister - -INCLUDEPATH += $$PWD/../countryregister/data -INCLUDEPATH += $$PWD/../countryregister - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lservices -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lservices -else:unix: LIBS += -L$$OUT_PWD/../plugins/ -lservices - -INCLUDEPATH += $$PWD/../services -INCLUDEPATH += $$PWD/../services/data -DEPENDPATH += $$PWD/../services - -TRANSLATIONS = translations/camp_cs_CZ.ts - -DISTFILES += \ - camp.json - -RESOURCES += \ - camprc.qrc - -FORMS += \ - campform.ui \ - settings/campsettingsform.ui \ - campwizard.ui \ - addservicedialog.ui \ - detailwidget.ui diff --git a/camp/camp_global.h b/camp/camp_global.h index 758c402..0d9c03c 100644 --- a/camp/camp_global.h +++ b/camp/camp_global.h @@ -2,6 +2,7 @@ #define CAMP_GLOBAL_H #include +#include #if defined(CAMP_LIBRARY) # define CAMPSHARED_EXPORT Q_DECL_EXPORT @@ -9,4 +10,12 @@ # define CAMPSHARED_EXPORT Q_DECL_IMPORT #endif +#ifdef CAMP_LIBRARY +#define QX_REGISTER_HPP_CAMP QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_CAMP QX_REGISTER_CPP_EXPORT_DLL +#else // CAMP_LIBRARY +#define QX_REGISTER_HPP_CAMP QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_CAMP QX_REGISTER_CPP_IMPORT_DLL +#endif + #endif // CAMP_GLOBAL_H diff --git a/camp/campform.h b/camp/campform.h index 6c4d302..b3c16d5 100644 --- a/camp/campform.h +++ b/camp/campform.h @@ -4,7 +4,6 @@ #include #include #include "data/camp-data.h" -#include "camp-odb.hxx" namespace Ui { class CampForm; @@ -15,8 +14,8 @@ class CampForm : public AutoForm Q_OBJECT public: - explicit CampForm(QWidget *parent = 0); - ~CampForm(); + explicit CampForm(QWidget *parent = nullptr); + ~CampForm() override; private: Ui::CampForm *ui; diff --git a/camp/campgrid.cpp b/camp/campgrid.cpp index c53c1fd..f0ae749 100644 --- a/camp/campgrid.cpp +++ b/camp/campgrid.cpp @@ -13,7 +13,7 @@ CampGrid::CampGrid(QWidget *parent) : GridForm(parent) QHBoxLayout *tbLayout = qobject_cast(this->toolbar()->layout()); - if (tbLayout != NULL) + if (tbLayout != nullptr) { QToolButton *btnImport = new QToolButton(this->toolbar()); btnImport->setIcon(QIcon(":/icons/pay.svg")); @@ -76,8 +76,10 @@ void CampGrid::handleEditRecord() return; } - CampService srv; - srv.loadItems(data); + if (data->people().isEmpty() || data->services().isEmpty()) { + CampService srv; + srv.load(data); + } CampWizard *wizard = new CampWizard(); wizard->setAttribute(Qt::WA_DeleteOnClose); @@ -99,10 +101,10 @@ void CampGrid::doDelete(CampDataPtr entity) } CampService srv; - srv.eraseCamp(entity); + srv.erase(entity); } -void CampGrid::addToVoucher(CampDataPtr data) +void CampGrid::addToVoucher(const CampDataPtr& data) { if (data->onVoucher()) { @@ -143,7 +145,7 @@ void CampGrid::addToVoucher(CampDataPtr data) data->setOnVoucher(false); srvCamp.update(data); voucher->clearItems(); - shopSrv.eraseVoucher(voucher); + shopSrv.erase(voucher); }); } @@ -151,7 +153,8 @@ void CampGrid::currentIndexChanged(const QModelIndex ¤t) { if (current.isValid()) { - m_detail->setData(currentEntity()); + auto current = currentEntity(); + m_detail->setData(current); } } diff --git a/camp/campgrid.h b/camp/campgrid.h index f8a98ea..f98cd6f 100644 --- a/camp/campgrid.h +++ b/camp/campgrid.h @@ -3,7 +3,6 @@ #include #include "data/camp-data.h" -#include "camp-odb.hxx" #include "detailwidget.h" @@ -11,29 +10,29 @@ class CampGrid : public GridForm { Q_OBJECT public: - CampGrid(QWidget *parent = NULL); + explicit CampGrid(QWidget *parent = nullptr); // IGridForm interface protected: - void handleNewRecord(); - void handleEditRecord(); + void handleNewRecord() override; + void handleEditRecord() override; // GridForm interface protected: - void doDelete(CampDataPtr entity); + void doDelete(CampDataPtr entity) override; private: - void addToVoucher(CampDataPtr data); + void addToVoucher(const CampDataPtr& data); DetailWidget *m_detail; // IGridForm interface protected: - void currentIndexChanged(const QModelIndex ¤t); + void currentIndexChanged(const QModelIndex ¤t) override; // GridForm interface protected: - virtual QList listForGrid() override; + QList listForGrid() override; }; #endif // CAMPGRID_H diff --git a/camp/campseller.h b/camp/campseller.h index dac681e..038fa4a 100644 --- a/camp/campseller.h +++ b/camp/campseller.h @@ -7,11 +7,11 @@ class CampSeller : public ISeller { Q_OBJECT public: - explicit CampSeller(QObject *parent = 0); + explicit CampSeller(QObject *parent = nullptr); // ISeller interface public: - void prepareItem(); + void prepareItem() override; }; #endif // CAMPSELLER_H diff --git a/camp/campservice.cpp b/camp/campservice.cpp index 4ca5293..4c4e5a4 100644 --- a/camp/campservice.cpp +++ b/camp/campservice.cpp @@ -4,7 +4,7 @@ #include #include "campshopitem.h" #include "campseller.h" -#include +#include #ifdef _WIN32 double round(double value) { return value < 0 ? -std::floor(0.5 - value) : std::floor(0.5 + value); } @@ -16,7 +16,7 @@ CampService::CampService() m_seller = new CampSeller(this); } -void CampService::addPerson(CampDataPtr data, AddressbookDataPtr address) +void CampService::addPerson(const CampDataPtr& data, const AddressbookDataPtr& address) { AddressItemPtr addrItem(new AddressItem); @@ -34,7 +34,7 @@ void CampService::addPerson(CampDataPtr data, AddressbookDataPtr address) data->addPerson(addrItem); } -void CampService::addService(CampDataPtr data, AccServicePtr service) +void CampService::addService(const CampDataPtr& data, const AccServicePtr& service) { ServiceItemPtr serviceItem(new ServiceItem); @@ -47,14 +47,14 @@ void CampService::addService(CampDataPtr data, AccServicePtr service) data->addServiceItem(serviceItem); } -void CampService::addService(CampDataPtr data, AccServicePtr service, QDecDouble price, QString description) +void CampService::addService(CampDataPtr data, AccServicePtr service, QDecDouble price, const QString& description) { ServiceItemPtr item = addServiceInt(data, service); item->setPrice(price); item->setDescription(description); } -void CampService::setOwner(CampDataPtr data, AddressItemPtr person) +void CampService::setOwner(const CampDataPtr& data, const AddressItemPtr& person) { foreach (AddressItemPtr p, data->people()) { p->setOwner(false); @@ -76,7 +76,7 @@ CampDataPtr CampService::create() return data; } -void CampService::calculate(CampDataPtr data) +void CampService::calculate(const CampDataPtr& data) { SettingsService srv("CAMP"); m_settings = srv.loadSettings(); @@ -86,7 +86,7 @@ void CampService::calculate(CampDataPtr data) calcPrice(data); } -void CampService::saveCamp(CampDataPtr data) +void CampService::saveCamp(const CampDataPtr& data) { if (!checkPermission(PERM_ADD)) { @@ -97,39 +97,16 @@ void CampService::saveCamp(CampDataPtr data) SeasonPtr season = seasonSrv.active(); data->setSeason(season); - Transaction tr; - try - { - odb::database *db = Context::instance().db(); - - NumberSeriesService numSrv; - data->setNumSer(numSrv.nextStrForPlugin("CAMP")); - - addDateAndUser(data, true); - - db->persist(data); + qx::QxSession session; - foreach (ServiceItemPtr item, data->services()) { - item->setCampData(data.toWeakRef()); - db->persist(item); - } - - foreach (AddressItemPtr item, data->people()) { - item->setCampData(data.toWeakRef()); - db->persist(item); - } + NumberSeriesService numSrv; + data->setNumSer(numSrv.nextStrForPlugin("CAMP", &session)); - tr.commit(); - } - catch (const odb::exception &ex) - { - emit dbError(ex.what()); - emit dbErrorInsert(ex.what()); - return; - } + addDateAndUser(data, true); + save(data, &session); } -void CampService::updateCamp(CampDataPtr data) +/*void CampService::updateCamp(CampDataPtr data) { if (!checkPermission(PERM_EDIT)) { @@ -166,9 +143,9 @@ void CampService::updateCamp(CampDataPtr data) emit dbErrorUpdate(ex.what()); return; } -} +}*/ -void CampService::eraseCamp(CampDataPtr data) +/*void CampService::eraseCamp(CampDataPtr data) { if (!checkPermission(PERM_DELETE)) { @@ -193,16 +170,16 @@ void CampService::eraseCamp(CampDataPtr data) emit dbErrorDelete(ex.what()); return; } -} +}*/ -void CampService::loadItems(CampDataPtr data) +/*void CampService::loadItems(CampDataPtr data) { Service srv; data->setPeople(srv.all(QString("campData = %1").arg(data->id()))); Service srvService; data->setServices(srvService.all(QString("campData = %1").arg(data->id()))); -} +}*/ QList CampService::allForSeason() { @@ -278,7 +255,7 @@ void CampService::calcPeople(CampDataPtr data) } } -void CampService::calcServices(CampDataPtr data) +void CampService::calcServices(const CampDataPtr& data) { QDecDouble sale = data->sale(); bool fixedSale = data->fixedSale(); @@ -301,7 +278,7 @@ void CampService::calcServices(CampDataPtr data) } } -void CampService::calcPrice(CampDataPtr data) +void CampService::calcPrice(const CampDataPtr& data) { QDecDouble totalPrice(0); QDecDouble sale(0); @@ -340,7 +317,7 @@ void CampService::calcPrice(CampDataPtr data) data->setTotalSale(sale); } -void CampService::addAccFee(CampDataPtr data, AddressItemPtr item, int startAge, int endAge, int days) +void CampService::addAccFee(const CampDataPtr& data, const AddressItemPtr& item, int startAge, int endAge, int days) { if (item->adbItem()->ztp()) { @@ -380,24 +357,23 @@ void CampService::addAccFee(CampDataPtr data, AddressItemPtr item, int startAge, } } -QList CampService::shopItems() +QList CampService::shopItems() { CampShopItemPtr item(new CampShopItem); - QList items; + QList items; items.append(item); return items; } -ShopItemPtr CampService::shopItem(int ) +IShopItemPtr CampService::shopItem(int ) { return CampShopItemPtr(new CampShopItem); } void CampService::addedToVoucher(int itemId, int countAdded) { - Transaction tx; CampDataPtr data = loadById(itemId); if (countAdded > 0) @@ -410,7 +386,6 @@ void CampService::addedToVoucher(int itemId, int countAdded) } this->update(data); - tx.commit(); } ISeller *CampService::seller() @@ -418,7 +393,7 @@ ISeller *CampService::seller() return m_seller; } -ServiceItemPtr CampService::addServiceInt(CampDataPtr data, AccServicePtr service) +ServiceItemPtr CampService::addServiceInt(const CampDataPtr& data, const AccServicePtr& service) { ServiceItemPtr serviceItem(new ServiceItem); diff --git a/camp/campservice.h b/camp/campservice.h index 7bc7cb6..68d4ff4 100644 --- a/camp/campservice.h +++ b/camp/campservice.h @@ -2,45 +2,44 @@ #define CAMPSERVICE_H #include -#include -#include +#include +#include #include #include "data/camp-data.h" #include "settings/campsettings.h" -#include "camp-odb.hxx" class CampService : public Service, public ISellableService { public: CampService(); - void addPerson(CampDataPtr data, AddressbookDataPtr address); - void addService(CampDataPtr data, AccServicePtr service); - void addService(CampDataPtr data, AccServicePtr service, QDecDouble price, QString description); - void setOwner(CampDataPtr data, AddressItemPtr person); + void addPerson(const CampDataPtr& data, const AddressbookDataPtr& address); + void addService(const CampDataPtr& data, const AccServicePtr& service); + void addService(CampDataPtr data, AccServicePtr service, QDecDouble price, const QString& description); + void setOwner(const CampDataPtr& data, const AddressItemPtr& person); CampDataPtr create(); - void calculate(CampDataPtr data); - void saveCamp(CampDataPtr data); - void updateCamp(CampDataPtr data); - void eraseCamp(CampDataPtr data); - void loadItems(CampDataPtr data); + void calculate(const CampDataPtr& data); + void saveCamp(const CampDataPtr& data); + //void updateCamp(CampDataPtr data); + //void eraseCamp(CampDataPtr data); + //void loadItems(CampDataPtr data); QList allForSeason(); private: - ServiceItemPtr addServiceInt(CampDataPtr data, AccServicePtr service); + ServiceItemPtr addServiceInt(const CampDataPtr& data, const AccServicePtr& service); void calcPeople(CampDataPtr data); - void calcServices(CampDataPtr data); - void calcPrice(CampDataPtr data); - void addAccFee(CampDataPtr data, AddressItemPtr item, int startAge, int endAge, int days); + void calcServices(const CampDataPtr& data); + void calcPrice(const CampDataPtr& data); + void addAccFee(const CampDataPtr& data, const AddressItemPtr& item, int startAge, int endAge, int days); CampSettingsPtr m_settings; ISeller *m_seller; // ISellableService interface public: - QList shopItems(); - ShopItemPtr shopItem(int itemId); - void addedToVoucher(int itemId, int countAdded); - ISeller *seller(); + QList shopItems() override; + IShopItemPtr shopItem(int itemId) override; + void addedToVoucher(int itemId, int countAdded) override; + ISeller *seller() override; }; #endif // CAMPSERVICE_H diff --git a/camp/campshopitem.cpp b/camp/campshopitem.cpp index 3a53347..b396e44 100644 --- a/camp/campshopitem.cpp +++ b/camp/campshopitem.cpp @@ -1,8 +1,9 @@ #include "campshopitem.h" CampShopItem::CampShopItem(QObject *parent) - :ShopItem(parent) + :IShopItem(parent) { + m_id = 0; m_unitPrice = QDecDouble(0); m_vatType = Enums::NONE; } @@ -47,12 +48,12 @@ void CampShopItem::setVatType(const Enums::VatType &vatType) m_vatType = vatType; } -int CampShopItem::id() +long CampShopItem::id() { return m_id; } -void CampShopItem::setId(int id) +void CampShopItem::setId(long id) { m_id = id; } diff --git a/camp/campshopitem.h b/camp/campshopitem.h index 82c9118..1faed75 100644 --- a/camp/campshopitem.h +++ b/camp/campshopitem.h @@ -3,30 +3,30 @@ #include -class CampShopItem : public ShopItem +class CampShopItem : public IShopItem { public: - CampShopItem(QObject *parent = 0); + explicit CampShopItem(QObject *parent = nullptr); // IShopItem interface public: - int id(); - QString name(); - QString shortName(); - QDecDouble unitPrice(); - Enums::VatType vatType(); - QString pluginId(); + long id() override; + QString name() override; + QString shortName() override; + QDecDouble unitPrice() override; + Enums::VatType vatType() override; + QString pluginId() override; // ShopItem interface public: - QString code(); + QString code() override; void setUnitPrice(const QDecDouble &unitPrice); void setVatType(const Enums::VatType &vatType); - void setId(int id); + void setId(long id); private: - int m_id; + long m_id; QDecDouble m_unitPrice; Enums::VatType m_vatType; }; diff --git a/camp/campwizard.cpp b/camp/campwizard.cpp index 09814ad..d5b28bd 100644 --- a/camp/campwizard.cpp +++ b/camp/campwizard.cpp @@ -5,7 +5,7 @@ #include #include -#include +#include #include #include @@ -129,7 +129,7 @@ CampWizard::CampWizard(QWidget *parent) : Service addrSrv; m_addrHelperBinder = new ObjectBinder(this); - m_addrHelperBinder->registerBinding(ui->address, ComboData::createComboData(addrSrv.all("", "lastName, firstName"))); + m_addrHelperBinder->registerBinding(ui->address, ComboData::createComboData(addrSrv.all(""))); m_addrHelperBinder->setData(m_addrHelper); m_addressBinder = new ObjectBinder(this); @@ -437,7 +437,7 @@ void CampWizard::accept() } else { - srv.updateCamp(m_data); + srv.update(m_data); } if (success) @@ -472,7 +472,7 @@ void CampWizard::on_btnPrint_clicked() } else { - srv.updateCamp(m_data); + srv.update(m_data); } if(!success) diff --git a/camp/campwizard.h b/camp/campwizard.h index c17d537..9e1450b 100644 --- a/camp/campwizard.h +++ b/camp/campwizard.h @@ -14,7 +14,7 @@ class AddressHelper : public QObject Q_PROPERTY(QSharedPointer address READ address WRITE setAddress) public: - AddressHelper(QObject *parent = NULL); + explicit AddressHelper(QObject *parent = nullptr); QSharedPointer address() const; void setAddress(const QSharedPointer &address); @@ -36,7 +36,7 @@ class SaleHelper : public QObject Q_PROPERTY(QSharedPointer sale READ sale WRITE setSale NOTIFY saleChanged) public: - SaleHelper(QObject *parent = NULL); + explicit SaleHelper(QObject *parent = nullptr); SalePtr salePtr() const; void setSalePtr(const SalePtr &sale); @@ -60,8 +60,8 @@ class CampWizard : public QWizard Q_OBJECT public: - explicit CampWizard(QWidget *parent = 0); - ~CampWizard(); + explicit CampWizard(QWidget *parent = nullptr); + ~CampWizard() override; void setData(const CampDataPtr &data); void setNewRecord(bool newRecord); @@ -109,10 +109,10 @@ private: // QWizard interface public: - bool validateCurrentPage(); + bool validateCurrentPage() override; public slots: - void accept(); + void accept() override; }; #endif // CAMPWIZARD_H diff --git a/camp/data/addressitem.cpp b/camp/data/addressitem.cpp index 645be20..cc7bbcf 100644 --- a/camp/data/addressitem.cpp +++ b/camp/data/addressitem.cpp @@ -1,6 +1,26 @@ #include "addressitem.h" #include +QX_REGISTER_CPP_CAMP(AddressItem) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("AddressItem"); + t.id(&AddressItem::m_id, "id"); + t.data(&AddressItem::m_firstName, "firstName"); + t.data(&AddressItem::m_lastName, "lastName"); + t.data(&AddressItem::m_address, "address"); + t.data(&AddressItem::m_price, "price"); + t.data(&AddressItem::m_owner, "owner"); + t.data(&AddressItem::m_sale, "sale"); + t.data(&AddressItem::m_totalPrice, "totalPrice"); + + t.relationManyToOne(&AddressItem::m_adbItem, "adbItem"); + t.relationManyToOne(&AddressItem::m_campData, "campData"); + t.relationManyToOne(&AddressItem::m_personPrice, "personPrice"); + } +} + AddressItem::AddressItem(QObject *parent) : QObject(parent) { m_id = 0; @@ -10,12 +30,12 @@ AddressItem::AddressItem(QObject *parent) : QObject(parent) m_totalPrice = 0; } -int AddressItem::id() const +long AddressItem::id() const { return m_id; } -void AddressItem::setId(int id) +void AddressItem::setId(long id) { m_id = id; } @@ -60,12 +80,12 @@ void AddressItem::setPrice(QDecDouble price) m_price = FROM_DEC(price); } -QWeakPointer AddressItem::campData() const +QSharedPointer AddressItem::campData() const { return m_campData; } -void AddressItem::setCampData(const QWeakPointer &campData) +void AddressItem::setCampData(const QSharedPointer &campData) { m_campData = campData; } diff --git a/camp/data/addressitem.h b/camp/data/addressitem.h index f6f348f..dd1700e 100644 --- a/camp/data/addressitem.h +++ b/camp/data/addressitem.h @@ -6,16 +6,17 @@ #include #include #include -#include +#include -#include +#include "../camp_global.h" class CampData; -#pragma db object class AddressItem : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(AddressItem) Q_PROPERTY(QString firstName READ firstName WRITE setFirstName) Q_PROPERTY(QString lastName READ lastName WRITE setLastName) Q_PROPERTY(QString address READ address WRITE setAddress) @@ -27,8 +28,8 @@ class AddressItem : public QObject public: explicit AddressItem(QObject *parent = 0); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString firstName() const; void setFirstName(const QString &firstName); @@ -42,8 +43,8 @@ public: QDecDouble price() const; void setPrice(QDecDouble price); - QWeakPointer campData() const; - void setCampData(const QWeakPointer &campData); + QSharedPointer campData() const; + void setCampData(const QSharedPointer &campData); PersonPricePtr personPrice() const; void setPersonPrice(const PersonPricePtr &personPrice); @@ -61,9 +62,7 @@ public: void setSale(QDecDouble sale); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id; QString m_firstName; QString m_lastName; QString m_address; @@ -71,10 +70,11 @@ private: int m_price; int m_totalPrice; int m_sale; - #pragma db not_null - QWeakPointer m_campData; + CampDataPtr m_campData; PersonPricePtr m_personPrice; bool m_owner; }; +QX_REGISTER_HPP_CAMP(AddressItem, QObject, 0) + #endif // ADDRESSITEM_H diff --git a/camp/data/campdata.cpp b/camp/data/campdata.cpp index bb59a24..e4a8dda 100644 --- a/camp/data/campdata.cpp +++ b/camp/data/campdata.cpp @@ -1,6 +1,35 @@ #include "campdata.h" #include +QX_REGISTER_CPP_CAMP(CampData) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("CampData"); + t.id(&CampData::m_id, "id"); + t.data(&CampData::m_numSer, "numSer"); + t.data(&CampData::m_start, "start"); + t.data(&CampData::m_end, "end"); + t.data(&CampData::m_ownerFirstame, "ownerFirstame"); + t.data(&CampData::m_ownerLastname, "ownerLastname"); + t.data(&CampData::m_ownerAddress, "ownerAddress"); + t.data(&CampData::m_totalPrice, "totalPrice"); + t.data(&CampData::m_sale, "sale"); + t.data(&CampData::m_fixedSale, "fixedSale"); + t.data(&CampData::m_fullPrice, "fullPrice"); + t.data(&CampData::m_totalSale, "totalSale"); + t.data(&CampData::m_onVoucher, "onVoucher"); + t.data(&CampData::m_createdBy, "createdBy"); + t.data(&CampData::m_created, "created"); + t.data(&CampData::m_updatedBy, "updatedBy"); + t.data(&CampData::m_updated, "updated"); + + t.relationManyToOne(&CampData::m_season, "season"); + t.relationOneToMany(&CampData::m_people, "people", "campData"); + t.relationOneToMany(&CampData::m_services, "services", "campData"); + } +} + CampData::CampData(QObject *parent) : QObject(parent) { m_id = 0; @@ -12,12 +41,12 @@ CampData::CampData(QObject *parent) : QObject(parent) m_onVoucher = false; } -int CampData::id() const +long CampData::id() const { return m_id; } -void CampData::setId(int id) +void CampData::setId(long id) { m_id = id; } @@ -72,42 +101,42 @@ void CampData::setOwnerAddress(const QString &ownerAddress) m_ownerAddress = ownerAddress; } -QOdbList CampData::services() const +QList CampData::services() const { return m_services; } -void CampData::setServices(const QOdbList > &services) +void CampData::setServices(const QList > &services) { m_services = services; } -void CampData::addServiceItem(ServiceItemPtr serviceItem) +void CampData::addServiceItem(const ServiceItemPtr& serviceItem) { m_services.append(serviceItem); } -void CampData::removeServiceItem(ServiceItemPtr serviceItem) +void CampData::removeServiceItem(const ServiceItemPtr& serviceItem) { m_services.removeOne(serviceItem); } -QOdbList CampData::people() const +QList CampData::people() const { return m_people; } -void CampData::setPeople(const QOdbList &people) +void CampData::setPeople(const QList &people) { m_people = people; } -void CampData::addPerson(AddressItemPtr person) +void CampData::addPerson(const AddressItemPtr& person) { m_people.append(person); } -void CampData::removePerson(AddressItemPtr person) +void CampData::removePerson(const AddressItemPtr& person) { m_people.removeOne(person); } diff --git a/camp/data/campdata.h b/camp/data/campdata.h index b7021e1..ff5ce13 100644 --- a/camp/data/campdata.h +++ b/camp/data/campdata.h @@ -5,15 +5,15 @@ #include #include #include -#include -#include - #include -#pragma db object +#include "../camp_global.h" + class CampData : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(CampData) Q_PROPERTY(QString numSer READ numSer WRITE setNumSer) Q_PROPERTY(QDate start READ start WRITE setStart) Q_PROPERTY(QDate end READ end WRITE setEnd) @@ -31,10 +31,10 @@ class CampData : public QObject Q_PROPERTY(QDateTime updated READ updated WRITE setUpdated) public: - explicit CampData(QObject *parent = 0); + explicit CampData(QObject *parent = nullptr); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QDate start() const; void setStart(const QDate &start); @@ -51,15 +51,15 @@ public: QString ownerAddress() const; void setOwnerAddress(const QString &ownerAddress); - QOdbList > services() const; - void setServices(const QOdbList > &services); - void addServiceItem(ServiceItemPtr serviceItem); - void removeServiceItem(ServiceItemPtr serviceItem); + QList services() const; + void setServices(const QList &services); + void addServiceItem(const ServiceItemPtr& serviceItem); + void removeServiceItem(const ServiceItemPtr& serviceItem); - QOdbList people() const; - void setPeople(const QOdbList &people); - void addPerson(AddressItemPtr person); - void removePerson(AddressItemPtr person); + QList people() const; + void setPeople(const QList &people); + void addPerson(const AddressItemPtr& person); + void removePerson(const AddressItemPtr& person); QDecDouble totalPrice() const; void setTotalPrice(QDecDouble totalPrice); @@ -98,19 +98,15 @@ public: void setUpdated(const QDateTime &updated); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id; QString m_numSer; QDate m_start; QDate m_end; QString m_ownerFirstame; QString m_ownerLastname; QString m_ownerAddress; - #pragma db value_not_null inverse(m_campData) - QOdbList m_services; - #pragma db value_not_null inverse(m_campData) - QOdbList m_people; + QList m_services; + QList m_people; int m_fullPrice; int m_totalPrice; int m_sale; @@ -124,4 +120,6 @@ private: QDateTime m_updated; }; +QX_REGISTER_HPP_CAMP(CampData, QObject, 0) + #endif // CAMPDATA_H diff --git a/camp/data/personprice.cpp b/camp/data/personprice.cpp index 16bd3ae..a56094f 100644 --- a/camp/data/personprice.cpp +++ b/camp/data/personprice.cpp @@ -1,6 +1,20 @@ #include "personprice.h" #include +QX_REGISTER_CPP_CAMP(PersonPrice) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("PersonPrice"); + t.id(&PersonPrice::m_id, "id"); + t.data(&PersonPrice::m_description, "description"); + t.data(&PersonPrice::m_fromAge, "fromAge"); + t.data(&PersonPrice::m_toAge, "toAge"); + t.data(&PersonPrice::m_price, "price"); + t.data(&PersonPrice::m_active, "active"); + } +} + PersonPrice::PersonPrice(QObject *parent) : QObject(parent) { m_id = 0; @@ -10,12 +24,12 @@ PersonPrice::PersonPrice(QObject *parent) : QObject(parent) m_active = true; } -int PersonPrice::id() const +long PersonPrice::id() const { return m_id; } -void PersonPrice::setId(int id) +void PersonPrice::setId(long id) { m_id = id; } diff --git a/camp/data/personprice.h b/camp/data/personprice.h index 72711c5..df4ea9c 100644 --- a/camp/data/personprice.h +++ b/camp/data/personprice.h @@ -3,12 +3,14 @@ #include #include -#include -#pragma db object +#include "../camp_global.h" + class PersonPrice : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(PersonPrice) Q_PROPERTY(QString description READ description WRITE setDescription) Q_PROPERTY(int fromAge READ fromAge WRITE setFromAge) Q_PROPERTY(int toAge READ toAge WRITE setToAge) @@ -18,8 +20,8 @@ class PersonPrice : public QObject public: explicit PersonPrice(QObject *parent = 0); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString description() const; void setDescription(const QString &description); @@ -37,9 +39,7 @@ public: void setActive(bool active); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id; QString m_description; int m_fromAge; int m_toAge; @@ -47,4 +47,6 @@ private: bool m_active; }; +QX_REGISTER_HPP_CAMP(PersonPrice, QObject, 0) + #endif // PERSONPRICE_H diff --git a/camp/data/sale.cpp b/camp/data/sale.cpp index c85dddf..6345347 100644 --- a/camp/data/sale.cpp +++ b/camp/data/sale.cpp @@ -1,6 +1,18 @@ #include "sale.h" #include +QX_REGISTER_CPP_CAMP(Sale) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("Sale"); + t.id(&Sale::m_id, "id"); + t.data(&Sale::m_sale, "sale"); + t.data(&Sale::m_fixed, "fixed"); + t.data(&Sale::m_description, "description"); + } +} + Sale::Sale(QObject *parent) : ComboItem(parent) { m_id = 0; @@ -8,12 +20,12 @@ Sale::Sale(QObject *parent) : ComboItem(parent) m_fixed = false; } -int Sale::id() const +long Sale::id() const { return m_id; } -void Sale::setId(int id) +void Sale::setId(long id) { m_id = id; } diff --git a/camp/data/sale.h b/camp/data/sale.h index e0ae25b..8a3b9a6 100644 --- a/camp/data/sale.h +++ b/camp/data/sale.h @@ -2,23 +2,25 @@ #define SALE_H #include -#include #include #include -#pragma db object +#include "../camp_global.h" + class Sale : public ComboItem { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(Sale) Q_PROPERTY(QString description READ description WRITE setDescription) Q_PROPERTY(QDecDouble sale READ sale WRITE setSale) Q_PROPERTY(bool fixed READ fixed WRITE setFixed) public: - explicit Sale(QObject *parent = 0); + explicit Sale(QObject *parent = nullptr); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QDecDouble sale() const; void setSale(QDecDouble sale); @@ -30,17 +32,17 @@ public: void setDescription(const QString &description); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id; QString m_description; int m_sale; bool m_fixed; // ComboItem interface public: - bool eq(ComboItem *other); - QString toString(); + bool eq(ComboItem *other) override; + QString toString() override; }; +QX_REGISTER_HPP_CAMP(Sale, ComboItem, 0) + #endif // SALE_H diff --git a/camp/data/serviceitem.cpp b/camp/data/serviceitem.cpp index 4ed2171..8d97ca0 100644 --- a/camp/data/serviceitem.cpp +++ b/camp/data/serviceitem.cpp @@ -1,6 +1,26 @@ #include "serviceitem.h" #include +QX_REGISTER_CPP_CAMP(ServiceItem) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("ServiceItem"); + t.id(&ServiceItem::m_id, "id"); + t.data(&ServiceItem::m_name, "name"); + t.data(&ServiceItem::m_code, "code"); + t.data(&ServiceItem::m_price, "price"); + t.data(&ServiceItem::m_salePossible, "salePossible"); + t.data(&ServiceItem::m_type, "type"); + t.data(&ServiceItem::m_sale, "sale"); + t.data(&ServiceItem::m_description, "description"); + t.data(&ServiceItem::m_totalPrice, "totalPrice"); + t.data(&ServiceItem::m_fullPrice, "fullPrice"); + + t.relationManyToOne(&ServiceItem::m_campData, "campData"); + } +} + ServiceItem::ServiceItem(QObject *parent) : QObject(parent) { m_id = 0; @@ -8,15 +28,16 @@ ServiceItem::ServiceItem(QObject *parent) : QObject(parent) m_sale = 0; m_price = 0; m_totalPrice = 0; + m_fullPrice = 0; m_type = AccService::OTHER; } -int ServiceItem::id() const +long ServiceItem::id() const { return m_id; } -void ServiceItem::setId(int id) +void ServiceItem::setId(long id) { m_id = id; } diff --git a/camp/data/serviceitem.h b/camp/data/serviceitem.h index 65547a3..4dbe11a 100644 --- a/camp/data/serviceitem.h +++ b/camp/data/serviceitem.h @@ -6,16 +6,17 @@ #include #include #include +#include -#include -#include +#include "../camp_global.h" class CampData; -#pragma db object class ServiceItem : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(ServiceItem) Q_PROPERTY(QString name READ name WRITE setName) Q_PROPERTY(QString code READ code WRITE setCode) Q_PROPERTY(QString description READ description WRITE setDescription) @@ -27,10 +28,10 @@ class ServiceItem : public QObject Q_ENUMS(AccService::ServiceType) public: - explicit ServiceItem(QObject *parent = 0); + explicit ServiceItem(QObject *parent = nullptr); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString name() const; void setName(const QString &name); @@ -63,9 +64,7 @@ public: void setFullPrice(QDecDouble fullPrice); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id; QString m_name; QString m_code; QString m_description; @@ -75,8 +74,9 @@ private: int m_sale; bool m_salePossible; AccService::ServiceType m_type; - #pragma db not_null - QWeakPointer m_campData; + CampDataPtr m_campData; }; +QX_REGISTER_HPP_CAMP(ServiceItem, QObject, 0) + #endif // SREVICEITEM_H diff --git a/camp/detailwidget.cpp b/camp/detailwidget.cpp index 8595fef..308cb2e 100644 --- a/camp/detailwidget.cpp +++ b/camp/detailwidget.cpp @@ -40,10 +40,12 @@ DetailWidget::~DetailWidget() delete ui; } -void DetailWidget::setData(const CampDataPtr &data) +void DetailWidget::setData(CampDataPtr &data) { - CampService srv; - srv.loadItems(data); + if (data->people().isEmpty() || data->services().isEmpty()) { + CampService srv; + srv.load(data); + } m_peopleModel->setData(data->people()); m_servicesModel->setData(data->services()); diff --git a/camp/detailwidget.h b/camp/detailwidget.h index bc022b0..4e27c60 100644 --- a/camp/detailwidget.h +++ b/camp/detailwidget.h @@ -14,10 +14,10 @@ class DetailWidget : public QWidget Q_OBJECT public: - explicit DetailWidget(QWidget *parent = 0); - ~DetailWidget(); + explicit DetailWidget(QWidget *parent = nullptr); + ~DetailWidget() override; - void setData(const CampDataPtr &data); + void setData(CampDataPtr &data); private: Ui::DetailWidget *ui; diff --git a/camp/settings/campsettings.cpp b/camp/settings/campsettings.cpp index 5278c74..3f474d6 100644 --- a/camp/settings/campsettings.cpp +++ b/camp/settings/campsettings.cpp @@ -8,6 +8,8 @@ CampSettings::CampSettings(QObject *parent) : QObject(parent) m_rounding = Enums::R_MATH; m_decimalPlaces = 0; m_vatType = Enums::NONE; + m_accFeeStartAge = 0; + m_accFeeEndAge = 0; } QDecDouble CampSettings::accFee() const diff --git a/camp/settings/campsettings.h b/camp/settings/campsettings.h index aa82307..bd7946b 100644 --- a/camp/settings/campsettings.h +++ b/camp/settings/campsettings.h @@ -18,7 +18,7 @@ class CampSettings : public QObject Q_PROPERTY(QString accFeeText READ accFeeText WRITE setAccFeeText) public: - explicit CampSettings(QObject *parent = 0); + explicit CampSettings(QObject *parent = nullptr); QDecDouble accFee() const; void setAccFee(QDecDouble accFee); diff --git a/camp/settings/campsettingsform.cpp b/camp/settings/campsettingsform.cpp index b64d68c..3146924 100644 --- a/camp/settings/campsettingsform.cpp +++ b/camp/settings/campsettingsform.cpp @@ -1,10 +1,10 @@ -#include "camp-odb.hxx" #include "campsettingsform.h" #include "ui_campsettingsform.h" #include #include #include +#include CampSettingsForm::CampSettingsForm(QWidget *parent) : FormBinder(parent), diff --git a/camp/settings/campsettingsform.h b/camp/settings/campsettingsform.h index cca493e..ea4f226 100644 --- a/camp/settings/campsettingsform.h +++ b/camp/settings/campsettingsform.h @@ -5,7 +5,7 @@ #include #include "campsettings.h" -#include "data/camp-data.h" +#include "../data/camp-data.h" #include #include @@ -18,16 +18,16 @@ class CampSettingsForm : public FormBinder Q_OBJECT public: - explicit CampSettingsForm(QWidget *parent = 0); - ~CampSettingsForm(); + explicit CampSettingsForm(QWidget *parent = nullptr); + ~CampSettingsForm() override; // IForm interface public slots: - bool saveRecord(); + bool saveRecord() override; // IForm interface public: - void loadEntity(); + void loadEntity() override; private slots: void on_btnPriceAdd_clicked(); diff --git a/commodity/CMakeLists.txt b/commodity/CMakeLists.txt new file mode 100644 index 0000000..7290576 --- /dev/null +++ b/commodity/CMakeLists.txt @@ -0,0 +1,62 @@ +cmake_minimum_required(VERSION 3.24) +project(commodity) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set (CMAKE_LIBRARY_OUTPUT_DIRECTORY ../plugins) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + REQUIRED) + +add_library(commodity SHARED + commodity.cpp + commodity.h + commodity_global.h + commodityform.cpp + commodityform.h + commodityform.ui + commoditygrid.cpp + commoditygrid.h + commodityrc.qrc + commodityservice.cpp + commodityservice.h + commoditysettingsform.cpp + commoditysettingsform.h + commoditysettingsform.ui + commoditytablemodel.cpp + commoditytablemodel.h + data/commodity-data.h + data/commoditydata.cpp + data/commoditydata.h + data/commoditytypedata.cpp + data/commoditytypedata.h + settings/commoditysettings.cpp + settings/commoditysettings.h + ) + +target_compile_definitions(commodity PRIVATE -DCOMMODITY_LIBRARY) + +include_directories(../core) +include_directories(../shop) + +target_link_libraries(commodity + Qt::Core + Qt::Gui + Qt::Widgets + qdecimal + decnumber + QxOrm + core + shop + ) + +install(TARGETS commodity + LIBRARY DESTINATION ../plugins) \ No newline at end of file diff --git a/commodity/commodity.cpp b/commodity/commodity.cpp index 68db393..f24a7f4 100644 --- a/commodity/commodity.cpp +++ b/commodity/commodity.cpp @@ -5,18 +5,11 @@ #include "commoditysettingsform.h" #include "commodityservice.h" -Commodity::Commodity() -{ -} - void Commodity::initServiceUi() { - CommodityGrid *grid = new CommodityGrid(); - CommodityForm *form = new CommodityForm(); - m_service = new CommodityService(); - m_ui = grid; - ((CommodityGrid *) m_ui)->setForm(form); + m_ui = new CommodityGrid(); + ((CommodityGrid *) m_ui)->setForm(new CommodityForm()); m_settingsUi = new CommoditySettingsForm(); } diff --git a/commodity/commodity.h b/commodity/commodity.h index 04b840f..801065f 100644 --- a/commodity/commodity.h +++ b/commodity/commodity.h @@ -14,15 +14,15 @@ class COMMODITYSHARED_EXPORT Commodity : public QObject, IMetaDataPlugin Q_INTERFACES(IPlugin) public: - Commodity(); + Commodity() = default; protected: void initServiceUi() Q_DECL_OVERRIDE; // IPlugin interface public: - virtual QIcon pluginIcon(); - QTranslator *translator(); + QIcon pluginIcon() override; + QTranslator *translator() override; }; diff --git a/commodity/commodity.json b/commodity/commodity.json index 542b1b5..de892f8 100644 --- a/commodity/commodity.json +++ b/commodity/commodity.json @@ -29,7 +29,7 @@ CREATE TABLE \"CommodityData\" ( DEFERRABLE INITIALLY DEFERRED);" ], - "dependencies" : [], + "dependencies" : [ "SHOP" ], "translations" : { "CZ" : { "name" : "Název", diff --git a/commodity/commodity.pro b/commodity/commodity.pro deleted file mode 100644 index 666db6f..0000000 --- a/commodity/commodity.pro +++ /dev/null @@ -1,61 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2016-02-09T21:26:14 -# -#------------------------------------------------- - -QT += widgets sql - -QT -= gui - -TARGET = commodity -TEMPLATE = lib - -DEFINES += COMMODITY_LIBRARY - -SOURCES += commodity.cpp \ - data/commoditydata.cpp \ - data/commoditytypedata.cpp \ - commoditytablemodel.cpp \ - commodityform.cpp \ - commoditygrid.cpp \ - commoditysettingsform.cpp \ - commodityservice.cpp \ - settings/commoditysettings.cpp - -HEADERS += commodity.h\ - commodity_global.h \ - data/commoditydata.h \ - data/commoditytypedata.h \ - data/commodity-data.h \ - commoditytablemodel.h \ - commodityform.h \ - commoditygrid.h \ - commoditysettingsform.h \ - commodityservice.h \ - settings/commoditysettings.h - -include(../config_plugin.pri) - -ODB_FILES = commodity/data/commodity-data.h -H_DIR = $$PWD/data/*.h -ODB_OTHER_INCLUDES = -I $$PWD/../shop -include(../odb.pri) - -OTHER_FILES += \ - commodity.json - -FORMS += \ - commodityform.ui \ - commoditysettingsform.ui - -RESOURCES += \ - commodityrc.qrc -TRANSLATIONS = translations/commodity_cs_CZ.ts - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lshop -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lshop -else:unix: LIBS += -L$$OUT_PWD/../plugins/ -lshop - -INCLUDEPATH += $$PWD/../shop -DEPENDPATH += $$PWD/../shop diff --git a/commodity/commodity_global.h b/commodity/commodity_global.h index 4d422a0..03fcc31 100644 --- a/commodity/commodity_global.h +++ b/commodity/commodity_global.h @@ -10,3 +10,11 @@ #endif #endif // COMMODITY_GLOBAL_H + +#ifdef COMMODITY_LIBRARY +#define QX_REGISTER_HPP_COMM QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_COMM QX_REGISTER_CPP_EXPORT_DLL +#else // COMMODITY_LIBRARY +#define QX_REGISTER_HPP_COMM QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_COMM QX_REGISTER_CPP_IMPORT_DLL +#endif \ No newline at end of file diff --git a/commodity/commodityform.cpp b/commodity/commodityform.cpp index 35811bb..6a645fd 100644 --- a/commodity/commodityform.cpp +++ b/commodity/commodityform.cpp @@ -2,12 +2,12 @@ #include "ui_commodityform.h" #include #include -#include #include #include #include #include "data/commoditytypedata.h" +#include "settings/commoditysettings.h" CommodityForm::CommodityForm(QWidget *parent) : AutoForm(parent), diff --git a/commodity/commodityform.h b/commodity/commodityform.h index 596e21a..a2cd066 100644 --- a/commodity/commodityform.h +++ b/commodity/commodityform.h @@ -4,7 +4,6 @@ #include #include #include "data/commoditydata.h" -#include "commodity-odb.hxx" namespace Ui { class CommodityForm; @@ -15,8 +14,8 @@ class CommodityForm : public AutoForm Q_OBJECT public: - explicit CommodityForm(QWidget *parent = 0); - ~CommodityForm(); + explicit CommodityForm(QWidget *parent = nullptr); + ~CommodityForm() override; private: Ui::CommodityForm *ui; @@ -25,8 +24,8 @@ private: // FormBinder interface protected: - void registerCombos(); - void onShow(); + void registerCombos() override; + void onShow() override; private slots: void on_code_textChanged(const QString &text); }; diff --git a/commodity/commodityform.ui b/commodity/commodityform.ui index 86945ae..7c376d5 100644 --- a/commodity/commodityform.ui +++ b/commodity/commodityform.ui @@ -14,6 +14,9 @@ Form + + QFormLayout::ExpandingFieldsGrow + diff --git a/commodity/commoditygrid.h b/commodity/commoditygrid.h index f29b6cd..d9b93bb 100644 --- a/commodity/commoditygrid.h +++ b/commodity/commoditygrid.h @@ -3,13 +3,13 @@ #include #include "data/commoditydata.h" -#include "commodity-odb.hxx" + class CommodityGrid : public GridForm { Q_OBJECT public: - CommodityGrid(QWidget *parent = NULL); + explicit CommodityGrid(QWidget *parent = nullptr); }; #endif // COMMODITYGRID_H diff --git a/commodity/commodityservice.cpp b/commodity/commodityservice.cpp index 8f8d903..9613b3d 100644 --- a/commodity/commodityservice.cpp +++ b/commodity/commodityservice.cpp @@ -1,18 +1,11 @@ #include "commodityservice.h" -#include "commodity-odb.hxx" - -CommodityService::CommodityService() -{ - -} - -QList > CommodityService::shopItems() +QList > CommodityService::shopItems() { - QList > ret; + QList > ret; foreach (QSharedPointer data, all()) { - ret.append(qSharedPointerDynamicCast(data)); + ret.append(qSharedPointerDynamicCast(data)); } return ret; @@ -30,15 +23,15 @@ void CommodityService::addedToVoucher(int itemId, int countAdded) update(commodity); } -ShopItemPtr CommodityService::shopItem(int itemId) +IShopItemPtr CommodityService::shopItem(int itemId) { CommodityDataPtr item = this->loadById(itemId); - return qSharedPointerDynamicCast(item); + return qSharedPointerDynamicCast(item); } ISeller *CommodityService::seller() { - return NULL; + return nullptr; } QString CommodityService::defaultSort() diff --git a/commodity/commodityservice.h b/commodity/commodityservice.h index 742ea3e..c1eda86 100644 --- a/commodity/commodityservice.h +++ b/commodity/commodityservice.h @@ -8,13 +8,13 @@ class CommodityService : public Service, public ISellableService { public: - CommodityService(); + CommodityService() = default; // ISellableService interface public: - QList shopItems() override; + QList shopItems() override; void addedToVoucher(int itemId, int countAdded) override; - virtual ShopItemPtr shopItem(int itemId) override; + IShopItemPtr shopItem(int itemId) override; ISeller *seller() override; QString defaultSort() override; }; diff --git a/commodity/commoditysettingsform.cpp b/commodity/commoditysettingsform.cpp index 060e3cf..8a27df4 100644 --- a/commodity/commoditysettingsform.cpp +++ b/commodity/commoditysettingsform.cpp @@ -1,8 +1,8 @@ #include "commoditysettingsform.h" #include "ui_commoditysettingsform.h" +#include #include #include -#include "commodity-odb.hxx" CommoditySettingsForm::CommoditySettingsForm(QWidget *parent) : FormBinder(parent), diff --git a/commodity/commoditysettingsform.h b/commodity/commoditysettingsform.h index 987d9a6..dd0369e 100644 --- a/commodity/commoditysettingsform.h +++ b/commodity/commoditysettingsform.h @@ -16,8 +16,8 @@ class CommoditySettingsForm : public FormBinder Q_OBJECT public: - explicit CommoditySettingsForm(QWidget *parent = 0); - ~CommoditySettingsForm(); + explicit CommoditySettingsForm(QWidget *parent = nullptr); + ~CommoditySettingsForm() override; private: Ui::CommoditySettingsForm *ui; @@ -26,10 +26,10 @@ private: // IForm interface public: - void loadEntity(); + void loadEntity() override; public slots: - bool saveRecord(); + bool saveRecord() override; private slots: void on_addCommodityType_clicked(); void on_delCommodityType_clicked(); diff --git a/commodity/commoditytablemodel.h b/commodity/commoditytablemodel.h index 9d33c2e..b019055 100644 --- a/commodity/commoditytablemodel.h +++ b/commodity/commoditytablemodel.h @@ -7,7 +7,7 @@ class CommodityTableModel : public AutoTableModel { Q_OBJECT public: - CommodityTableModel(QObject *parent= NULL); + explicit CommodityTableModel(QObject *parent= nullptr); }; #endif // COMMODITYTABLEMODEL_H diff --git a/commodity/data/commoditydata.cpp b/commodity/data/commoditydata.cpp index 77a02c7..ad94843 100644 --- a/commodity/data/commoditydata.cpp +++ b/commodity/data/commoditydata.cpp @@ -1,22 +1,40 @@ #include "commoditydata.h" #include +QX_REGISTER_CPP_COMM(CommodityData) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("CommodityData"); + t.id(&CommodityData::m_id, "id"); + t.data(&CommodityData::m_name, "name"); + t.data(&CommodityData::m_shortName, "shortName"); + t.data(&CommodityData::m_code, "code"); + t.data(&CommodityData::m_price, "price"); + t.data(&CommodityData::m_vat, "vat"); + t.data(&CommodityData::m_count, "count"); + + t.relationManyToOne(&CommodityData::m_type, "type"); + } +} + CommodityData::CommodityData(QObject *parent) - :ShopItem(parent) + :IShopItem(parent) { m_count = 0; m_price = 0; m_vat = Enums::NONE; } -int CommodityData::id() +long CommodityData::id() { return m_id; } -void CommodityData::setId(int id) +void CommodityData::setId(long id) { m_id = id; } + QString CommodityData::name() { return m_name; @@ -26,6 +44,7 @@ void CommodityData::setName(const QString &name) { m_name = name; } + QString CommodityData::shortName() { return m_shortName; @@ -35,6 +54,7 @@ void CommodityData::setShortName(const QString &shortName) { m_shortName = shortName; } + QString CommodityData::code() const { return m_code; @@ -44,6 +64,7 @@ void CommodityData::setCode(const QString &code) { m_code = code; } + QSharedPointer CommodityData::type() const { return m_type; @@ -51,7 +72,7 @@ QSharedPointer CommodityData::type() const void CommodityData::setType(const QSharedPointer &type) { - if (qobject_cast(type.data()) != NULL) { + if (qobject_cast(type.data()) != nullptr) { m_type = qSharedPointerDynamicCast(type); } } @@ -98,6 +119,10 @@ QString CommodityData::pluginId() return "COMMODITY"; } +QStringList CommodityData::eagerLoad() { + return { "type" }; +} + diff --git a/commodity/data/commoditydata.h b/commodity/data/commoditydata.h index ea3865b..e01d1aa 100644 --- a/commodity/data/commoditydata.h +++ b/commodity/data/commoditydata.h @@ -3,17 +3,20 @@ #include #include -#include #include "commoditytypedata.h" #include #include #include #include +#include "../commodity_global.h" + #pragma db object -class CommodityData : public ShopItem +class CommodityData : public IShopItem { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(CommodityData) Q_PROPERTY(QString code READ code WRITE setCode) Q_PROPERTY(QString name READ name WRITE setName) Q_PROPERTY(QString shortName READ shortName WRITE setShortName) @@ -23,10 +26,10 @@ class CommodityData : public ShopItem Q_PROPERTY(int count READ count WRITE setCount) public: - CommodityData(QObject *parent = 0); + explicit CommodityData(QObject *parent = nullptr); - int id() override; - void setId(int id); + long id() override; + void setId(long id); QString name() override; void setName(const QString &name); @@ -49,10 +52,10 @@ public: int count() const; void setCount(int count); + Q_INVOKABLE QStringList eagerLoad(); + private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id{0}; QString m_name; QString m_shortName; QString m_code; @@ -66,8 +69,11 @@ public: QDecDouble unitPrice() override; Enums::VatType vatType() override; QString pluginId() override; + }; typedef QSharedPointer CommodityDataPtr; +QX_REGISTER_HPP_COMM(CommodityData, IShopItem, 0) + #endif // COMMODITYDATA_H diff --git a/commodity/data/commoditytypedata.cpp b/commodity/data/commoditytypedata.cpp index b3b3aa4..452ad18 100644 --- a/commodity/data/commoditytypedata.cpp +++ b/commodity/data/commoditytypedata.cpp @@ -1,19 +1,30 @@ #include "commoditytypedata.h" +QX_REGISTER_CPP_COMM(CommodityTypeData) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("CommodityTypeData"); + t.id(&CommodityTypeData::m_id, "id"); + t.data(&CommodityTypeData::m_name, "name"); + } +} + CommodityTypeData::CommodityTypeData(QObject *parent) :ComboItem(parent) { m_id = 0; } -int CommodityTypeData::id() const +long CommodityTypeData::id() const { return m_id; } -void CommodityTypeData::setId(int id) +void CommodityTypeData::setId(long id) { m_id = id; } + QString CommodityTypeData::name() const { return m_name; @@ -28,7 +39,7 @@ bool CommodityTypeData::eq(ComboItem *other) { CommodityTypeData* ct = qobject_cast (other); - return ct != NULL && this->id() == ct->id() ; + return ct != nullptr && this->id() == ct->id() ; } QString CommodityTypeData::toString() diff --git a/commodity/data/commoditytypedata.h b/commodity/data/commoditytypedata.h index 95aed64..3b6eb5f 100644 --- a/commodity/data/commoditytypedata.h +++ b/commodity/data/commoditytypedata.h @@ -3,34 +3,35 @@ #include #include -#include #include +#include "../commodity_global.h" -#pragma db object class CommodityTypeData :public ComboItem { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(CommodityTypeData) Q_PROPERTY(QString name READ name WRITE setName) public: - CommodityTypeData(QObject *parent = 0); + explicit CommodityTypeData(QObject *parent = nullptr); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString name() const; void setName(const QString &name); private: - friend class odb::access; - #pragma db id auto - int m_id; + long m_id{0}; QString m_name; // ComboItem interface public: - bool eq(ComboItem *other); - QString toString(); + bool eq(ComboItem *other) override; + QString toString() override; }; +QX_REGISTER_HPP_COMM(CommodityTypeData, ComboItem, 0) + #endif // COMMODITYTYPEDATA_H diff --git a/config_odb.pri b/config_odb.pri deleted file mode 100644 index a1734af..0000000 --- a/config_odb.pri +++ /dev/null @@ -1,4 +0,0 @@ -win32 { - LIB_PATH = d:/prac/qt/lib - ODB_INCLUDE_PREFIX = d:/prac/odb -} diff --git a/config_plugin.pri b/config_plugin.pri deleted file mode 100644 index c9f90d2..0000000 --- a/config_plugin.pri +++ /dev/null @@ -1,31 +0,0 @@ -DEFINES += _GLIBCXX_USE_CXX11_ABI=1 -CONFIG += c++11 - - -unix { - target.path = /usr/lib - INSTALLS += target - QMAKE_CXXFLAGS += -Wno-unknown-pragmas -} - -win32 { - QMAKE_CXXFLAGS += -wd4995 -wd4068 -} - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../core/release/ -lcore -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../core/debug/ -lcore -else:unix: LIBS += -L$$OUT_PWD/../core/ -lcore - -INCLUDEPATH += $$PWD/core -INCLUDEPATH += $$PWD/core/data -DEPENDPATH += $$PWD/core - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber -else:unix: LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber - -INCLUDEPATH += $$PWD/qdecimal/src -INCLUDEPATH += $$PWD/qdecimal/decnumber -DEPENDPATH += $$PWD/qdecimal/src - -DESTDIR = ../plugins diff --git a/core/CMakeLists.txt b/core/CMakeLists.txt new file mode 100644 index 0000000..cb50c1a --- /dev/null +++ b/core/CMakeLists.txt @@ -0,0 +1,168 @@ +cmake_minimum_required(VERSION 3.24) +project(core) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + PrintSupport + Sql + Qml + REQUIRED) + +add_library(core SHARED + main.cpp + autoform.h + autotablemodel.h + columndialog.cpp + columndialog.h + columndialog.ui + combodata.cpp + combodata.h + context.h + context.cpp + core.h + core_global.h + coreplugin.cpp + coreplugin.h + csvimporter.cpp + csvimporter.h + defaultformhandler.cpp + defaultformhandler.h + define.h + emptystringvalidator.cpp + emptystringvalidator.h + enums.h + exprevaluator.cpp + exprevaluator.h + filterdialog.cpp + filterdialog.h + filterdialog.ui + filterui.cpp + filterui.h + filterui.ui + formbinder.h + formdialog.cpp + formdialog.h + formdialog.ui + gridform.h + gridform.ui + helper.cpp + helper.h + idashboardwidget.h + iform.cpp + iform.h + igridform.cpp + igridform.h + iimporter.h + iimportprogress.h + imetadataplugin.cpp + imetadataplugin.h + importdialog.cpp + importdialog.h + importdialog.ui + importprogress.cpp + importprogress.h + importprogress.ui + iplugin.h + iservice.cpp + iservice.h + itablemodel.cpp + itablemodel.h + ivalidator.h + numberseriesservice.cpp + numberseriesservice.h + objectbinder.cpp + objectbinder.h + permissionevaluator.cpp + permissionevaluator.h + permissionservice.cpp + permissionservice.h + rc.qrc + samestringvalidator.cpp + samestringvalidator.h + savefilterdialog.cpp + savefilterdialog.h + savefilterdialog.ui + seasonservice.cpp + seasonservice.h + settingsform.cpp + settingsform.h + settingsform.ui + settingsservice.cpp + settingsservice.h + data/comboitem.cpp + data/comboitem.h + data/core-data.h + data/numberseries.cpp + data/numberseries.h + data/permission.cpp + data/permission.h + data/role.cpp + data/role.h + data/season.cpp + data/season.h + data/system.cpp + data/system.h + data/user.cpp + data/user.h + roles/roles.cpp + roles/roles.h + roles/rolesform.cpp + roles/rolesform.h + roles/rolesform.ui + roles/rolestablemodel.cpp + roles/rolestablemodel.h + roles/rolesui.cpp + roles/rolesui.h + settings/globalsettings.cpp + settings/globalsettings.h + settings/globalsettingsform.cpp + settings/globalsettingsform.h + settings/globalsettingsform.ui + settings/seasonnamedialog.cpp + settings/seasonnamedialog.h + settings/seasonnamedialog.ui + users/tablemodel.cpp + users/tablemodel.h + users/userform.cpp + users/userform.h + users/userform.ui + users/users.cpp + users/users.h + users/usersui.cpp + users/usersui.h + reporting/report.cpp + reporting/report.h + reporting/reportdialog.cpp + reporting/reportdialog.h + reporting/reportdialog.ui + reporting/reportviewer.cpp + reporting/reportviewer.h + reporting/reportviewer.ui + reporting/variablefiller.cpp + reporting/variablefiller.h) + +target_compile_definitions(core PRIVATE -DCORE_LIBRARY) + +include_directories(../3rdparty/qdecimal/src ../3rdparty/LimeReport/include ../3rdparty/QxOrm/include) + +target_link_libraries(core + Qt::Core + Qt::Gui + Qt::Widgets + Qt::PrintSupport + Qt::Sql + Qt::Qml + qdecimal + decnumber + limereport-qt6 + QxOrm + ) diff --git a/core/autoform.h b/core/autoform.h index af84ddf..f0635a7 100644 --- a/core/autoform.h +++ b/core/autoform.h @@ -16,13 +16,13 @@ template class AutoForm : public FormBinder { public: - explicit AutoForm(QWidget *parent = 0) { + explicit AutoForm(QWidget *parent = nullptr) { this->setParent(parent); m_serviceConnected = false; m_saved = false; } - virtual ~AutoForm() { } + virtual ~AutoForm() = default; void setNewRec(bool isNew) { this->m_newRec = isNew; @@ -37,11 +37,11 @@ public slots: if (!m_serviceConnected) { - this->connect(service(), &IService::dbError, [this](QString msg) { + this->connect(service(), &IService::dbError, [this](const QString& msg) { QMessageBox::critical(this, this->tr("Database error"), msg.toStdString().c_str()); m_saved = false; }); - this->connect(service(), &IService::permissionDenied, [this](QString permission) { + this->connect(service(), &IService::permissionDenied, [this](const QString& permission) { if (permission != PERM_DELETE) { QMessageBox::critical(this, this->tr("Permission denied"), permission.toStdString().c_str()); m_saved = false; @@ -73,15 +73,15 @@ public slots: private: Service *service() { IPlugin *plugin = Context::instance().plugin(this->pluginId()); - if (plugin == NULL) { + if (plugin == nullptr) { Q_ASSERT(false); - return NULL; + return nullptr; } Service *service = plugin->service(); - if (service == NULL) { + if (service == nullptr) { Q_ASSERT(false); - return NULL; + return nullptr; } return service; diff --git a/core/autotablemodel.h b/core/autotablemodel.h index a45046e..f58bd74 100644 --- a/core/autotablemodel.h +++ b/core/autotablemodel.h @@ -8,8 +8,6 @@ #include #include -#include "../qdecimal/src/QDecDouble.hh" - #include "define.h" #include "core_global.h" #include "exprevaluator.h" @@ -21,25 +19,25 @@ class AutoTableModel : public ITableModel { public: - explicit AutoTableModel(QObject *parent = NULL) + explicit AutoTableModel(QObject *parent = nullptr) :ITableModel(parent) { filtered = false; m_checkboxSelect = false; } - virtual ~AutoTableModel() {} + ~AutoTableModel() override = default; // QAbstractItemModel interface public: - int rowCount(const QModelIndex &parent = QModelIndex()) const + [[nodiscard]] int rowCount(const QModelIndex &parent = QModelIndex()) const override { Q_UNUSED(parent) return m_list.size(); } - int columnCount(const QModelIndex &parent = QModelIndex()) const + [[nodiscard]] int columnCount(const QModelIndex &parent = QModelIndex()) const override { Q_UNUSED(parent) @@ -50,7 +48,7 @@ public: return colCount; } - QVariant data(const QModelIndex &index, int role) const + [[nodiscard]] QVariant data(const QModelIndex &index, int role) const override { if (index.column() == 0 && m_checkboxSelect) { @@ -89,11 +87,11 @@ public: if (role == Qt::TextAlignmentRole) { if (dispData.canConvert() - || dispData.type() == QVariant::Date - || dispData.type() == QVariant::Time - || dispData.type() == QVariant::DateTime - || dispData.type() == QVariant::Int - || dispData.type() == QVariant::Double) + || dispData.typeId() == QMetaType::QDate + || dispData.typeId() == QMetaType::QTime + || dispData.typeId() == QMetaType::QDateTime + || dispData.typeId() == QMetaType::Int + || dispData.typeId() == QMetaType::Double) { return Qt::AlignRight; } @@ -105,7 +103,7 @@ public: return dispData; } - return QVariant::Invalid; + return {}; } QList > list() @@ -113,7 +111,7 @@ public: return m_list; } - QVariant headerData(int section, Qt::Orientation orientation, int role) const + [[nodiscard]] QVariant headerData(int section, Qt::Orientation orientation, int role) const override { if (role != Qt::DisplayRole) { return QVariant(); @@ -141,7 +139,7 @@ public: return QVariant(section + 1); } - virtual void sort(int column, Qt::SortOrder order) { + void sort(int column, Qt::SortOrder order) override { if (m_list.isEmpty()) { return; } @@ -153,9 +151,9 @@ public: std::sort(ALL(m_list), [prop, order](QSharedPointer entA, QSharedPointer entB) -> bool { if (order == Qt::DescendingOrder) { - return ((QObject*)entA.data())->property(prop) < ((QObject*)entB.data())->property(prop); + return QVariant::compare(((QObject*)entA.data())->property(prop), ((QObject*)entB.data())->property(prop)) == QPartialOrdering::Less; } else { - return ((QObject*)entB.data())->property(prop) < ((QObject*)entA.data())->property(prop); + return QVariant::compare(((QObject*)entB.data())->property(prop), ((QObject*)entA.data())->property(prop)) == QPartialOrdering::Less; } }); @@ -276,7 +274,7 @@ private: // QAbstractItemModel interface public: - virtual bool setData(const QModelIndex &index, const QVariant &value, int role) override + bool setData(const QModelIndex &index, const QVariant &value, int role) override { if (role == Qt::EditRole) { diff --git a/core/context.cpp b/core/context.cpp index 80d15be..5f45f28 100644 --- a/core/context.cpp +++ b/core/context.cpp @@ -8,8 +8,6 @@ #include #include -#include - #include "core.h" #include "coreplugin.h" #include "users/users.h" @@ -42,7 +40,7 @@ IPlugin *Context::plugin(const QString &pluginId) return *it; } - return NULL; + return nullptr; } void Context::loadPlugins() @@ -54,13 +52,52 @@ void Context::loadPlugins() QDir pluginsDir(qApp->applicationDirPath() + PLUGIN_ROOT); - foreach (QString fileName, pluginsDir.entryList(QStringList() << "*.so" << "*.dll")) { + auto pluginLibs = pluginsDir.entryList(QStringList() << "*.so" << "*.dll" << "*.dylib"); + QStringList orderedPlugins; + QMap mapIdFiles; + QMap> mapDeps; + + for (auto& libFile : pluginLibs) { + QPluginLoader pluginLoader(pluginsDir.absoluteFilePath(libFile)); + auto metaData = IMetaDataPlugin::loadBaseMetaData(pluginLoader.metaData()); + mapIdFiles[metaData->getId()] = libFile; + + bool inserted = false; + for (auto& dep : metaData->getDependsOn()) { + auto index = orderedPlugins.indexOf(mapIdFiles[dep]); + + auto& list = mapDeps[dep]; + list.append(metaData->getId()); + + if (index >= 0 && !orderedPlugins.contains(libFile)) { + orderedPlugins.insert(index, libFile); + inserted = true; + break; + } + } + + if (!inserted) { + orderedPlugins.append(libFile); + } + + for (const auto& plugin : mapDeps[metaData->getId()]) { + auto indexDep = orderedPlugins.indexOf(mapIdFiles[metaData->getId()]); + auto indexPlugin = orderedPlugins.indexOf(mapIdFiles[plugin]); + + if (indexPlugin > indexDep) { + orderedPlugins.removeAt(indexPlugin); + orderedPlugins.insert(indexDep, mapIdFiles[plugin]); + } + } + } + + for (const QString& fileName : orderedPlugins) { QPluginLoader pluginLoader(pluginsDir.absoluteFilePath(fileName)); QObject *p = pluginLoader.instance(); - if (p != NULL) { + if (p != nullptr) { IPlugin *plugin = qobject_cast(p); - if (plugin != NULL) { + if (plugin != nullptr) { m_plugins.append(plugin); plugin->init(pluginLoader.metaData()); } @@ -80,16 +117,13 @@ void Context::loadPlugins() void Context::openDb(const QString &path) { - if (m_db != NULL) { - delete m_db; - m_solved.clear(); - m_dbOpened = false; - } - checkDb(path); - m_db = new odb::sqlite::database(path.toStdString()); + auto db = qx::QxSqlDatabase::getSingleton(); + db->setDriverName("QSQLITE"); + db->setDatabaseName(path); + m_settings->setValue("db/path", path); - m_dbOpened = true; + m_dbOpened = qx::QxSqlDatabase::getDatabase().isOpen(); checkPermissions(); checkSeason(); @@ -98,18 +132,6 @@ void Context::openDb(const QString &path) void Context::destroy() { - if (m_db != NULL) - { - delete m_db; - m_db = NULL; - m_dbOpened = false; - } - - /*if (m_settings != NULL && m_settings->parent() == NULL) - { - delete m_settings; - }*/ - foreach (IPlugin *plugin, m_plugins) { delete plugin; @@ -124,7 +146,7 @@ QStringList Context::defaultPerms() Context::Context() { - m_db = NULL; + //m_db = NULL; m_settings = new QSettings("itsolved.cz", "prodejna"); m_dbOpened = false; } @@ -149,10 +171,10 @@ void Context::setCurrentUser(const QSharedPointer ¤tUser) m_currentUser = currentUser; } -odb::session &Context::session() +/*odb::session &Context::session() { return m_session; -} +}*/ void Context::checkDb(const QString &path) { diff --git a/core/context.h b/core/context.h index 2ff1eac..e6f4a21 100644 --- a/core/context.h +++ b/core/context.h @@ -11,12 +11,8 @@ #include "define.h" #include "core_global.h" -#include "transaction.h" #include "data/core-data.h" -#include -#include - class IPlugin; class CORESHARED_EXPORT Context @@ -28,7 +24,7 @@ public: IPlugin *plugin(const QString &pluginId); void loadPlugins(); void openDb(const QString &path); - odb::database *db() { return m_db; } + void* db() { return nullptr; } QSettings *settings() { return m_settings; } bool dbOpened() { return m_dbOpened; } void destroy(); @@ -37,7 +33,7 @@ public: QSharedPointer currentUser() const; void setCurrentUser(const QSharedPointer ¤tUser); - odb::session &session(); + //odb::session &session(); SeasonPtr currentSeason() const; void setCurrentSeason(const SeasonPtr ¤tSeason); @@ -47,10 +43,8 @@ public: private: Context(); QList m_plugins; - odb::database *m_db; QSettings *m_settings; bool m_dbOpened; - odb::session m_session; QSharedPointer m_currentUser; SeasonPtr m_currentSeason; diff --git a/core/core.h b/core/core.h index 6741588..6e811df 100644 --- a/core/core.h +++ b/core/core.h @@ -5,7 +5,6 @@ #include "context.h" #include "iplugin.h" #include "imetadataplugin.h" -#include "transaction.h" #include "gridform.h" #include "permissionservice.h" #include "combodata.h" diff --git a/core/core.pro b/core/core.pro deleted file mode 100644 index f4381e8..0000000 --- a/core/core.pro +++ /dev/null @@ -1,220 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2015-10-28T15:25:33 -# -#------------------------------------------------- - -#iconset: https://www.iconfinder.com/iconsets/snipicons - -QT += widgets sql printsupport - -TARGET = core -TEMPLATE = lib - -DEFINES += CORE_LIBRARY \ - _GLIBCXX_USE_CXX11_ABI=1 - -CONFIG += c++11 - -SOURCES += \ - data/user.cpp \ - context.cpp \ - imetadataplugin.cpp \ - transaction.cpp \ - emptystringvalidator.cpp \ - data/role.cpp \ - data/permission.cpp \ - coreplugin.cpp \ - igridform.cpp \ - defaultformhandler.cpp \ - formdialog.cpp \ - iform.cpp \ - users/users.cpp \ - users/usersui.cpp \ - users/tablemodel.cpp \ - users/userform.cpp \ - columndialog.cpp \ - roles/rolestablemodel.cpp \ - roles/roles.cpp \ - roles/rolesui.cpp \ - roles/rolesform.cpp \ - permissionservice.cpp \ - filterui.cpp \ - exprevaluator.cpp \ - samestringvalidator.cpp \ - savefilterdialog.cpp \ - filterdialog.cpp \ - itablemodel.cpp \ - iservice.cpp \ - combodata.cpp \ - data/comboitem.cpp \ - settingsservice.cpp \ - data/system.cpp \ - settings/globalsettings.cpp \ - settingsform.cpp \ - settings/globalsettingsform.cpp \ - permissionevaluator.cpp \ - objectbinder.cpp \ - data/numberseries.cpp \ - data/season.cpp \ - seasonservice.cpp \ - numberseriesservice.cpp \ - settings/seasonnamedialog.cpp \ - reporting/report.cpp \ - reporting/reportviewer.cpp \ - reporting/reportdialog.cpp \ - csvimporter.cpp \ - importdialog.cpp \ - importprogress.cpp \ - reporting/variablefiller.cpp \ - helper.cpp - -HEADERS += core.h\ - core_global.h \ - iplugin.h \ - service.h \ - data/user.h \ - context.h \ - imetadataplugin.h \ - autotablemodel.h \ - autoform.h \ - transaction.h \ - ivalidator.h \ - emptystringvalidator.h \ - data/role.h \ - data/permission.h \ - data/core-data.h \ - coreplugin.h \ - define.h \ - gridform.h \ - igridform.h \ - defaultformhandler.h \ - formdialog.h \ - iform.h \ - users/users.h \ - users/usersui.h \ - users/tablemodel.h \ - users/userform.h \ - columndialog.h \ - roles/rolestablemodel.h \ - roles/roles.h \ - roles/rolesui.h \ - roles/rolesform.h \ - permissionservice.h \ - filterui.h \ - exprevaluator.h \ - samestringvalidator.h \ - savefilterdialog.h \ - filterdialog.h \ - itablemodel.h \ - data/core_global.h \ - iservice.h \ - combodata.h \ - data/comboitem.h \ - settingsservice.h \ - data/system.h \ - enums.h \ - settings/globalsettings.h \ - settingsform.h \ - settings/globalsettingsform.h \ - formbinder.h \ - permissionevaluator.h \ - objectbinder.h \ - data/numberseries.h \ - data/season.h \ - seasonservice.h \ - numberseriesservice.h \ - settings/seasonnamedialog.h \ - reporting/report.h \ - reporting/reportviewer.h \ - reporting/reportdialog.h \ - iimporter.h \ - csvimporter.h \ - iimportprogress.h \ - importdialog.h \ - importprogress.h \ - reporting/variablefiller.h \ - helper.h \ - idashboardwidget.h - -unix { - target.path = /usr/lib - INSTALLS += target - QMAKE_CXXFLAGS += -Wno-unknown-pragmas -} - -win32 { - QMAKE_CXXFLAGS += -wd4995 -wd4068 -} - -ODB_FILES = core/data/core-data.h -H_DIR = $$PWD/data/*.h -include(../odb.pri) - -RESOURCES += \ - rc.qrc - -DISTFILES += \ - metaData.json - -FORMS += \ - gridform.ui \ - formdialog.ui \ - users/userform.ui \ - columndialog.ui \ - roles/rolesform.ui \ - filterui.ui \ - savefilterdialog.ui \ - filterdialog.ui \ - settingsform.ui \ - settings/globalsettingsform.ui \ - settings/seasonnamedialog.ui \ - reporting/reportviewer.ui \ - reporting/reportdialog.ui \ - importdialog.ui \ - importprogress.ui - -OTHER_FILES += \ - users/metaData.json \ - roles/metaData.json - -CONFIG(debug, release|debug):DEFINES += _DEBUG - -win32:CONFIG(release, debug|release):DEFINES += PLUGIN_ROOT=\\\"/plugins\\\" -else:unix:CONFIG(release, debug|release):DEFINES += PLUGIN_ROOT=\\\"/usr/lib/prodejna/plugins\\\" - -win32:CONFIG(release, debug|release):DEFINES += REPORT_ROOT=\\\"/reports\\\" -else:unix:CONFIG(release, debug|release):DEFINES += REPORT_ROOT=\\\"/usr/share/prodejna/reports\\\" - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber -else:unix: LIBS += -L$$OUT_PWD/../qdecimal/lib/ -lqdecimal -ldecnumber - -INCLUDEPATH += $$PWD/../qdecimal/src -INCLUDEPATH += $$PWD/../qdecimal/decnumber - -unix{ - ARCH_TYPE = unix - macx{ - ARCH_TYPE = macx - } - linux{ - !contains(QT_ARCH, x86_64){ - ARCH_TYPE = linux32 - }else{ - ARCH_TYPE = linux64 - } - } -} -win32 { - ARCH_TYPE = win32 -} - -win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../LimeReport/build/$${QT_VERSION}/$${ARCH_TYPE}/release/lib/ -llimereport -else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../LimeReport/build/$${QT_VERSION}/$${ARCH_TYPE}/debug/lib/ -llimereport -else:unix: LIBS += -L$$PWD/../../LimeReport/build/$${QT_VERSION}/$${ARCH_TYPE}/debug/lib/ -llimereport - -INCLUDEPATH += $$PWD/../../LimeReport/include -DEPENDPATH += $$PWD/../../LimeReport/include - -TRANSLATIONS = translations/core_cs_CZ.ts diff --git a/core/core_global.h b/core/core_global.h index b519481..2997dcb 100644 --- a/core/core_global.h +++ b/core/core_global.h @@ -2,6 +2,7 @@ #define CORE_GLOBAL_H #include +#include #if defined(CORE_LIBRARY) # define CORESHARED_EXPORT Q_DECL_EXPORT @@ -9,4 +10,12 @@ # define CORESHARED_EXPORT Q_DECL_IMPORT #endif +#ifdef CORE_LIBRARY +#define QX_REGISTER_HPP_CORE QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_CORE QX_REGISTER_CPP_EXPORT_DLL +#else // CORE_LIBRARY +#define QX_REGISTER_HPP_CORE QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_CORE QX_REGISTER_CPP_IMPORT_DLL +#endif + #endif // CORE_GLOBAL_H diff --git a/core/coreplugin.cpp b/core/coreplugin.cpp index 6aa2b7c..9ea6238 100644 --- a/core/coreplugin.cpp +++ b/core/coreplugin.cpp @@ -16,14 +16,10 @@ CorePlugin::CorePlugin() f.close(); } -CorePlugin::~CorePlugin() -{ -} - void CorePlugin::initServiceUi() { - m_service = NULL; - m_ui = NULL; + m_service = nullptr; + m_ui = nullptr; m_settingsUi = new GlobalSettingsForm(); } diff --git a/core/coreplugin.h b/core/coreplugin.h index 7186b0d..8f3f8fc 100644 --- a/core/coreplugin.h +++ b/core/coreplugin.h @@ -7,11 +7,11 @@ class CorePlugin : public IMetaDataPlugin { public: CorePlugin(); - ~CorePlugin(); + ~CorePlugin() override = default; // IMetaDataPlugin interface protected: - virtual void initServiceUi(); + void initServiceUi() override; // IPlugin interface public: diff --git a/core/csvimporter.cpp b/core/csvimporter.cpp index 7c8f136..844ae2b 100644 --- a/core/csvimporter.cpp +++ b/core/csvimporter.cpp @@ -35,7 +35,7 @@ QSharedPointer CsvImporter::nextRecord() QObject *entity = m_metaObject->newInstance(); - if (entity == NULL || m_currentRec > recordCount()) + if (entity == nullptr || m_currentRec > recordCount()) { ++m_currentRec; return QSharedPointer(); diff --git a/core/csvimporter.h b/core/csvimporter.h index 59a5489..d63aa4e 100644 --- a/core/csvimporter.h +++ b/core/csvimporter.h @@ -10,14 +10,14 @@ class CORESHARED_EXPORT CsvImporter : public QObject, public IImporter Q_OBJECT public: - explicit CsvImporter(const QMetaObject *metaObject, QObject *parent = NULL); + explicit CsvImporter(const QMetaObject *metaObject, QObject *parent = nullptr); // IImporter interface public: - void setImportFile(const QString &fileName); - int recordCount(); - QSharedPointer nextRecord(); - bool isError(); + void setImportFile(const QString &fileName) override; + int recordCount() override; + QSharedPointer nextRecord() override; + bool isError() override; void setSeparator(const QString &separator); diff --git a/core/data/comboitem.cpp b/core/data/comboitem.cpp index 04f2b3b..2df8341 100644 --- a/core/data/comboitem.cpp +++ b/core/data/comboitem.cpp @@ -1,5 +1,12 @@ #include "comboitem.h" +QX_REGISTER_CPP_CORE(ComboItem) + +namespace qx { + template<> void register_class(QxClass&) { + } +} + ComboItem::ComboItem(QObject *parent) :QObject(parent) { diff --git a/core/data/comboitem.h b/core/data/comboitem.h index 6540e65..7daddd3 100644 --- a/core/data/comboitem.h +++ b/core/data/comboitem.h @@ -1,7 +1,7 @@ #ifndef COMBOITEM_H #define COMBOITEM_H -#include "core_global.h" +#include "../core_global.h" #include #include #include @@ -18,4 +18,6 @@ public: virtual QString toString() = 0; }; +QX_REGISTER_HPP_CORE(ComboItem, QObject, 0) + #endif // COMBOITEM_H diff --git a/core/data/core_global.h b/core/data/core_global.h deleted file mode 100644 index b519481..0000000 --- a/core/data/core_global.h +++ /dev/null @@ -1,12 +0,0 @@ -#ifndef CORE_GLOBAL_H -#define CORE_GLOBAL_H - -#include - -#if defined(CORE_LIBRARY) -# define CORESHARED_EXPORT Q_DECL_EXPORT -#else -# define CORESHARED_EXPORT Q_DECL_IMPORT -#endif - -#endif // CORE_GLOBAL_H diff --git a/core/data/numberseries.cpp b/core/data/numberseries.cpp index 2813c82..c2e3429 100644 --- a/core/data/numberseries.cpp +++ b/core/data/numberseries.cpp @@ -2,18 +2,32 @@ #include "../context.h" #include "../iplugin.h" +QX_REGISTER_CPP_CORE(NumberSeries) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("NumberSeries"); + t.id(&NumberSeries::m_id, "id"); + t.data(&NumberSeries::m_prefix, "prefix"); + t.data(&NumberSeries::m_lastNumber, "lastNumber"); + t.data(&NumberSeries::m_pluginId, "pluginId"); + + t.relationManyToOne(&NumberSeries::m_season, "season"); + } +} + NumberSeries::NumberSeries(QObject *parent) : QObject(parent) { m_id = 0; m_lastNumber = 0; } -int NumberSeries::id() const +long NumberSeries::id() const { return m_id; } -void NumberSeries::setId(int id) +void NumberSeries::setId(long id) { m_id = id; } @@ -71,5 +85,9 @@ QString NumberSeries::seasonName() const QString NumberSeries::pluginName() const { IPlugin *plugin = Context::instance().plugin(m_pluginId); - return plugin != NULL ? plugin->pluginName() : ""; + return plugin != nullptr ? plugin->pluginName() : ""; } + +QStringList NumberSeries::eagerLoad() { + return { "season" }; +} \ No newline at end of file diff --git a/core/data/numberseries.h b/core/data/numberseries.h index d97257e..da2fd4b 100644 --- a/core/data/numberseries.h +++ b/core/data/numberseries.h @@ -3,16 +3,17 @@ #include #include +#include -#include +#include #include "season.h" -#include "core_global.h" +#include "../core_global.h" -#pragma db object class CORESHARED_EXPORT NumberSeries : public QObject { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(NumberSeries) Q_PROPERTY(QString prefix READ prefix WRITE setPrefix) Q_PROPERTY(int lastNumber READ lastNumber WRITE setLastNumber) Q_PROPERTY(QString pluginName READ pluginName) @@ -20,8 +21,8 @@ class CORESHARED_EXPORT NumberSeries : public QObject public: explicit NumberSeries(QObject *parent = 0); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString prefix() const; void setPrefix(const QString &prefix); @@ -39,11 +40,10 @@ public: QString pluginName() const; -private: - friend class odb::access; + Q_INVOKABLE QStringList eagerLoad(); -#pragma db id auto - int m_id; +private: + long m_id; QString m_prefix; int m_lastNumber; QString m_pluginId; @@ -52,4 +52,6 @@ private: typedef QSharedPointer NumberSeriesPtr; +QX_REGISTER_HPP_CORE(NumberSeries, QObject, 0) + #endif // NUMBERSERIES_H diff --git a/core/data/permission.cpp b/core/data/permission.cpp index 7657cad..9a86498 100644 --- a/core/data/permission.cpp +++ b/core/data/permission.cpp @@ -1,15 +1,31 @@ #include "permission.h" +QX_REGISTER_CPP_CORE(Permission) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("Permission"); + t.id(&Permission::m_id, "id"); + t.data(&Permission::m_pluginId, "pluginId"); + t.data(&Permission::m_permissionName, "permissionName"); + t.data(&Permission::m_lastModDate, "lastModDate"); + t.data(&Permission::m_createDate, "createDate"); + t.data(&Permission::m_active, "active"); + + t.relationManyToMany(&Permission::m_listRoles, "object_id_fk", "Role_listPermissions", "value", "object_id"); + } +} + Permission::Permission(QObject *parent) : QObject(parent) { } -int Permission::id() const +long Permission::id() const { return m_id; } -void Permission::setId(int id) +void Permission::setId(long id) { m_id = id; } @@ -58,12 +74,12 @@ void Permission::setActive(bool active) { m_active = active; } -QList > Permission::listRoles() const +QList > Permission::listRoles() const { return m_listRoles; } -void Permission::setListRoles(const QList > &listRoles) +void Permission::setListRoles(const QList > &listRoles) { m_listRoles = listRoles; } diff --git a/core/data/permission.h b/core/data/permission.h index ba6b1c7..adcb5e4 100644 --- a/core/data/permission.h +++ b/core/data/permission.h @@ -2,30 +2,29 @@ #define PERMISSION_H #include "core-data.h" -#include "core_global.h" +#include "../core_global.h" #include #include #include #include #include -#include -#include -#pragma db object class CORESHARED_EXPORT Permission : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(Permission) Q_PROPERTY(QString pluginId READ pluginId WRITE setPluginId) Q_PROPERTY(QString permissionName READ permissionName WRITE setPermissionName) Q_PROPERTY(QDateTime lastModDate READ lastModDate WRITE setLastModDate) Q_PROPERTY(QDateTime createDate READ createDate WRITE setCreateDate) Q_PROPERTY(bool active READ active WRITE setActive) public: - explicit Permission(QObject *parent = 0); + explicit Permission(QObject *parent = nullptr); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString pluginId() const; void setPluginId(const QString &pluginId); @@ -42,24 +41,22 @@ public: bool active() const; void setActive(bool active); - QList > listRoles() const; - void setListRoles(const QList > &listRoles); + QList> listRoles() const; + void setListRoles(const QList> &listRoles); void addRole(QSharedPointer role); private: - friend class odb::access; - -#pragma db id auto - int m_id; + long m_id; QString m_pluginId; QString m_permissionName; QDateTime m_lastModDate; QDateTime m_createDate; bool m_active; -#pragma db value_not_null inverse(m_listPermissions) - QOdbList > m_listRoles; + QList> m_listRoles; }; +QX_REGISTER_HPP_CORE(Permission, QObject, 0) + #endif // PERMISSION_H diff --git a/core/data/role.cpp b/core/data/role.cpp index 15d4511..9de6e48 100644 --- a/core/data/role.cpp +++ b/core/data/role.cpp @@ -1,15 +1,32 @@ #include "role.h" +QX_REGISTER_CPP_CORE(Role) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("Role"); + t.id(&Role::m_id, "id"); + t.data(&Role::m_name, "name"); + t.data(&Role::m_lastModDate, "lastModDate"); + t.data(&Role::m_createDate, "createDate"); + t.data(&Role::m_active, "active"); + + t.relationManyToMany(&Role::m_listPermissions, "object_id_fk", "Role_listPermissions", "object_id", "value"); + t.relationManyToMany(&Role::m_listUsers, "value_fk", "User_listRoles", "value", "object_id"); + } +} + Role::Role(QObject *parent) : QObject(parent) { } -int Role::id() const + +long Role::id() const { return m_id; } -void Role::setId(int id) +void Role::setId(long id) { m_id = id; } @@ -49,12 +66,12 @@ void Role::setActive(bool active) { m_active = active; } -QList > Role::listUsers() const +QList > Role::listUsers() const { return m_listUsers; } -void Role::setListUsers(const QList > &listUsers) +void Role::setListUsers(const QList > &listUsers) { m_listUsers = listUsers; } diff --git a/core/data/role.h b/core/data/role.h index 3119f5f..051db01 100644 --- a/core/data/role.h +++ b/core/data/role.h @@ -2,20 +2,19 @@ #define ROLE_H #include "core-data.h" -#include "core_global.h" +#include "../core_global.h" #include #include #include #include #include -#include -#include -#pragma db object class CORESHARED_EXPORT Role : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(Role) Q_PROPERTY(QString name READ name WRITE setName) Q_PROPERTY(QDateTime lastModDate READ lastModDate WRITE setLastModDate) Q_PROPERTY(QDateTime createDate READ createDate WRITE setCreateDate) @@ -23,8 +22,8 @@ class CORESHARED_EXPORT Role : public QObject public: explicit Role(QObject *parent = 0); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString name() const; void setName(const QString &name); @@ -38,8 +37,8 @@ public: bool active() const; void setActive(bool active); - QList > listUsers() const; - void setListUsers(const QList > &listUsers); + QList > listUsers() const; + void setListUsers(const QList > &listUsers); QList > listPermissions() const; void setListPermissions(const QList > &listPermissions); @@ -48,18 +47,15 @@ public: void clearPermissions(); private: - friend class odb::access; - -#pragma db id auto - int m_id; + long m_id; QString m_name; QDateTime m_lastModDate; QDateTime m_createDate; bool m_active; -#pragma db value_not_null inverse(m_listRoles) - QOdbList > m_listUsers; -#pragma db value_not_null - QOdbList > m_listPermissions; + QList > m_listUsers; + QList > m_listPermissions; }; +QX_REGISTER_HPP_CORE(Role, QObject, 0) + #endif // ROLE_H diff --git a/core/data/season.cpp b/core/data/season.cpp index 8328f08..2287303 100644 --- a/core/data/season.cpp +++ b/core/data/season.cpp @@ -1,5 +1,18 @@ #include "season.h" +QX_REGISTER_CPP_CORE(Season) + +namespace qx { + template <> void register_class(QxClass & t) + { + t.setName("Season"); + t.id(& Season::m_id, "id"); + t.data(& Season::m_name, "name"); + t.data(& Season::m_validFrom, "validFrom"); + t.data(& Season::m_validTo, "validTo"); + t.data(& Season::m_active, "active"); + }} + Season::Season(QObject *parent) :QObject(parent) { @@ -47,12 +60,12 @@ void Season::setActive(bool active) m_active = active; } -int Season::id() const +long Season::id() const { return m_id; } -void Season::setId(int id) +void Season::setId(long id) { m_id = id; } diff --git a/core/data/season.h b/core/data/season.h index e96e852..dfba887 100644 --- a/core/data/season.h +++ b/core/data/season.h @@ -1,24 +1,23 @@ #ifndef SEASON_H #define SEASON_H -#include "core_global.h" +#include "../core_global.h" #include #include #include -#include - -#pragma db object class CORESHARED_EXPORT Season : public QObject { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(Season) Q_PROPERTY(QString name READ name WRITE setName) Q_PROPERTY(QDate validFrom READ validFrom WRITE setValidFrom) Q_PROPERTY(QDate validTo READ validTo WRITE setValidTo) Q_PROPERTY(bool active READ active WRITE setActive) + public: - explicit Season(QObject *parent = 0); + explicit Season(QObject *parent = nullptr); QString name() const; void setName(const QString &name); @@ -32,14 +31,11 @@ public: bool active() const; void setActive(bool active); - int id() const; - void setId(int id); + long id() const; + void setId(long id); private: - friend class odb::access; - -#pragma db id auto - int m_id; + long m_id; QString m_name; QDate m_validFrom; QDate m_validTo; @@ -48,4 +44,7 @@ private: typedef QSharedPointer SeasonPtr; +QX_REGISTER_HPP_CORE(Season, QObject, 0) + + #endif // SEASON_H diff --git a/core/data/system.cpp b/core/data/system.cpp index b6aa926..44365e2 100644 --- a/core/data/system.cpp +++ b/core/data/system.cpp @@ -1,4 +1,17 @@ #include "system.h" +#include + +QX_REGISTER_CPP_CORE(System) + +namespace qx { + template <> void register_class(QxClass & t) + { + t.setName("system"); + t.id(& System::m_id, "id"); + t.data(& System::m_pluginId, "pluginId"); + t.data(& System::m_schemaVersion, "schemaVersion"); + t.data(& System::m_settings, "settings"); + }} System::System() { @@ -10,12 +23,12 @@ System::~System() } -int System::id() const +long System::id() const { return m_id; } -void System::setId(int id) +void System::setId(long id) { m_id = id; } diff --git a/core/data/system.h b/core/data/system.h index 23e5507..8e70299 100644 --- a/core/data/system.h +++ b/core/data/system.h @@ -1,20 +1,18 @@ #ifndef SYSTEM_H #define SYSTEM_H -#include "core_global.h" +#include "../core_global.h" #include -#include - -#pragma db object class CORESHARED_EXPORT System { + QX_REGISTER_FRIEND_CLASS(System) public: System(); virtual ~System(); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString pluginId() const; @@ -24,13 +22,12 @@ public: void setSettings(const QString &settings); private: - friend class odb::access; - -#pragma db id auto - int m_id; + long m_id; QString m_pluginId; QString m_schemaVersion; QString m_settings; }; +QX_REGISTER_HPP_CORE(System, qx::trait::no_base_class_defined, 0); + #endif // SYSTEM_H diff --git a/core/data/user.cpp b/core/data/user.cpp index c4ee8ed..2a1a37f 100644 --- a/core/data/user.cpp +++ b/core/data/user.cpp @@ -1,14 +1,29 @@ #include "user.h" -User::User() -{ +QX_REGISTER_CPP_CORE(User) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("User"); + t.id(&User::m_id, "id"); + t.data(&User::m_login, "login"); + t.data(&User::m_password, "password"); + t.data(&User::m_name, "name"); + t.data(&User::m_lastModDate, "lastModDate"); + t.data(&User::m_createDate, "createDate"); + t.data(&User::m_active, "active"); + t.data(&User::m_isAdmin, "isAdmin"); + + t.relationManyToMany(&User::m_listRoles, "object_id_fk", "User_listRoles", "object_id", "value"); + } } -int User::id() const + +long User::id() const { return m_id; } -void User::setId(int id) +void User::setId(long id) { m_id = id; } diff --git a/core/data/user.h b/core/data/user.h index d7e8b85..fe9e1bb 100644 --- a/core/data/user.h +++ b/core/data/user.h @@ -2,20 +2,19 @@ #define USER_H #include "core-data.h" -#include "core_global.h" +#include "../core_global.h" #include #include #include #include #include -#include -#include -#pragma db object class CORESHARED_EXPORT User : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(User) Q_PROPERTY(QString login READ login WRITE setLogin) Q_PROPERTY(QString password READ password WRITE setPassword) Q_PROPERTY(QString name READ name WRITE setName) @@ -25,11 +24,10 @@ class CORESHARED_EXPORT User : public QObject Q_PROPERTY(QDateTime createDate READ createDate WRITE setCreateDate) public: - User(); - + User() = default; - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString login() const; void setLogin(const QString &login); @@ -61,10 +59,7 @@ public: private: - friend class odb::access; - -#pragma db id auto - int m_id; + long m_id; QString m_login; QString m_password; QString m_name; @@ -72,8 +67,9 @@ private: QDateTime m_createDate; bool m_active; bool m_isAdmin; -#pragma db value_not_null - QOdbList > m_listRoles; + QList > m_listRoles; }; +QX_REGISTER_HPP_CORE(User, QObject, 0) + #endif // USER_H diff --git a/core/defaultformhandler.cpp b/core/defaultformhandler.cpp index d7d6694..555b676 100644 --- a/core/defaultformhandler.cpp +++ b/core/defaultformhandler.cpp @@ -1,7 +1,7 @@ #include "defaultformhandler.h" #include -#include +#include #include DefaultFormHandler::DefaultFormHandler() @@ -19,7 +19,12 @@ void DefaultFormHandler::showForm(IForm *formWidget) formWidget->onShow(); m_dialog->setForm(formWidget); m_dialog->setModal(true); - m_dialog->move(QApplication::desktop()->screen()->rect().center() - m_dialog->rect().center()); + auto screen = m_dialog->screen(); + + if (screen) { + m_dialog->move(screen->availableGeometry().center() - m_dialog->rect().center()); + } + m_dialog->show(); } diff --git a/core/defaultformhandler.h b/core/defaultformhandler.h index c084624..2e6364a 100644 --- a/core/defaultformhandler.h +++ b/core/defaultformhandler.h @@ -9,8 +9,8 @@ class CORESHARED_EXPORT IFormHandler { public: - IFormHandler() {} - virtual ~IFormHandler() {} + IFormHandler() = default; + virtual ~IFormHandler() = default; virtual void showForm(IForm *formWidget) = 0; }; @@ -19,7 +19,7 @@ class CORESHARED_EXPORT DefaultFormHandler : public IFormHandler { public: DefaultFormHandler(); - virtual ~DefaultFormHandler(); + ~DefaultFormHandler() override; private: FormDialog *m_dialog; diff --git a/core/define.h b/core/define.h index a77c332..efe6432 100644 --- a/core/define.h +++ b/core/define.h @@ -11,7 +11,7 @@ #define DEC_MULTIPLE 100 #define TO_DEC(num) (QDecDouble(num) / QDecDouble(DEC_MULTIPLE)) -#define FROM_DEC(num) (num * QDecDouble(DEC_MULTIPLE)).toInt32() +#define FROM_DEC(num) (num * QDecDouble(DEC_MULTIPLE)).toDouble() #ifndef PLUGIN_ROOT #ifdef _WIN32 diff --git a/core/enums.h b/core/enums.h index 14dec69..f075c4d 100644 --- a/core/enums.h +++ b/core/enums.h @@ -8,8 +8,6 @@ class CORESHARED_EXPORT Enums : public QObject { Q_OBJECT - Q_ENUMS(VatType) - Q_ENUMS(Rounding) public: enum VatType @@ -28,9 +26,10 @@ public: R_MATH }; - Enums() - { - } + Q_ENUM(VatType) + Q_ENUM(Rounding) + + Enums() = default; }; #endif // ENUMS_H diff --git a/core/exprevaluator.cpp b/core/exprevaluator.cpp index 3256ec3..a2c122e 100644 --- a/core/exprevaluator.cpp +++ b/core/exprevaluator.cpp @@ -19,10 +19,16 @@ ExprEvaluator::ExprEvaluator() const QMap > ExprEvaluator::m_operations = { { "==", [](QVariant left, QVariant right) { return left == right; }}, { "!=", [](QVariant left, QVariant right) { return left != right; }}, - { "<", [](QVariant left, QVariant right) { return left < right; }}, - { "<=", [](QVariant left, QVariant right) { return left <= right; }}, - { ">", [](QVariant left, QVariant right) { return left > right; }}, - { ">=", [](QVariant left, QVariant right) { return left >= right; }}, + { "<", [](QVariant left, QVariant right) { return QVariant::compare(left, right) == QPartialOrdering::Less; }}, + { "<=", [](QVariant left, QVariant right) { + auto res = QVariant::compare(left, right); + return res == QPartialOrdering::Less || res == QPartialOrdering::Equivalent; + }}, + { ">", [](QVariant left, QVariant right) { return QVariant::compare(left, right) == QPartialOrdering::Greater; }}, + { ">=", [](QVariant left, QVariant right) { + auto res = QVariant::compare(left, right); + return res == QPartialOrdering::Greater || res == QPartialOrdering::Equivalent; + }}, { "%", [](QVariant left, QVariant right) { return left.toString().contains(right.toString()); }}, { "||", [](QVariant left, QVariant right) { return left.toBool() || right.toBool(); }}, diff --git a/core/filterui.cpp b/core/filterui.cpp index 4647307..cfaf34c 100644 --- a/core/filterui.cpp +++ b/core/filterui.cpp @@ -185,31 +185,31 @@ void FilterUi::propertyChanged(int row, QComboBox *oper, int index) oper->clear(); - switch (this->m_entity->metaObject()->property(index + 1).type()) { - case QVariant::Bool: + switch (this->m_entity->metaObject()->property(index + 1).typeId()) { + case QMetaType::Bool: oper->addItems(QStringList() << "==" << "!="); cellWidget = new QComboBox(this); qobject_cast(cellWidget)->addItem("true", 1); qobject_cast(cellWidget)->addItem("false", 0); break; - case QVariant::String: + case QMetaType::QString: oper->addItems(QStringList() << "==" << "%" << "!=" << "<" << "<=" << ">" << ">="); cellWidget = new QLineEdit(this); break; - case QVariant::Int: + case QMetaType::Int: oper->addItems(QStringList() << "==" << "!=" << "<" << "<=" << ">" << ">="); cellWidget = new QSpinBox(this); break; - case QVariant::Double: + case QMetaType::Double: oper->addItems(QStringList() << "==" << "!=" << "<" << "<=" << ">" << ">="); cellWidget = new QDoubleSpinBox(this); break; - case QVariant::Date: + case QMetaType::QDate: oper->addItems(QStringList() << "==" << "!=" << "<" << "<=" << ">" << ">="); cellWidget = new QDateEdit(this); qobject_cast(cellWidget)->setCalendarPopup(true); break; - case QVariant::DateTime: + case QMetaType::QDateTime: oper->addItems(QStringList() << "==" << "!=" << "<" << "<=" << ">" << ">="); cellWidget = new QDateTimeEdit(this); qobject_cast(cellWidget)->setCalendarPopup(true); @@ -220,7 +220,7 @@ void FilterUi::propertyChanged(int row, QComboBox *oper, int index) break; } - if (cellWidget != NULL) + if (cellWidget != nullptr) { ui->tableWidget->setCellWidget(row, 3, cellWidget); } diff --git a/core/formbinder.h b/core/formbinder.h index 79614fb..a2523a2 100644 --- a/core/formbinder.h +++ b/core/formbinder.h @@ -13,22 +13,20 @@ #include "iform.h" #include "objectbinder.h" -#include "../qdecimal/src/QDecDouble.hh" +#include template class FormBinder : public IForm { public: - explicit FormBinder(QWidget *parent = NULL) : IForm(parent) { + explicit FormBinder(QWidget *parent = nullptr) : IForm(parent) { connect(&m_binder, &ObjectBinder::validationError, [this](QString msg){ emit this->validationError(msg); }); } - virtual ~FormBinder() { - - } + ~FormBinder() override = default; void registerBinding(QWidget *widget) { m_binder.registerBinding(widget); diff --git a/core/formdialog.h b/core/formdialog.h index 0eaa584..d10d15d 100644 --- a/core/formdialog.h +++ b/core/formdialog.h @@ -30,7 +30,7 @@ private slots: // QDialog interface public slots: - void accept(); + void accept() override; // QDialog interface public slots: diff --git a/core/gridform.h b/core/gridform.h index 354d22a..a08fd8d 100644 --- a/core/gridform.h +++ b/core/gridform.h @@ -6,7 +6,7 @@ #include #include #include -#include +//#include #include "autoform.h" #include "autotablemodel.h" @@ -35,7 +35,7 @@ public: filterWidget()->layout()->addWidget(m_filterUi); } - virtual ~GridForm() + ~GridForm() override { if (m_form != NULL && m_form->parent() == NULL) { @@ -84,13 +84,13 @@ public: m_formHandler = handler; } - virtual void setTranslations(const QMap &translations) { + void setTranslations(const QMap &translations) override { Q_ASSERT(m_tableModel != NULL); m_tableModel->setTranslations(translations); } public slots: - bool fillData() { + bool fillData() override { if (m_tableModel == NULL) { Q_ASSERT(false); return false; @@ -131,13 +131,13 @@ private: Service *service() { IPlugin *plugin = Context::instance().plugin(pluginId()); - if (plugin == NULL) { + if (plugin == nullptr) { Q_ASSERT(false); return NULL; } Service *service = plugin->service(); - if (service == NULL) { + if (service == nullptr) { Q_ASSERT(false); return NULL; } @@ -176,14 +176,14 @@ private slots: // IGridForm interface protected: - virtual void handleNewRecord() override + void handleNewRecord() override { if (!checkPermAdd()) { return; } - if (m_form == NULL) + if (m_form == nullptr) { Q_ASSERT(false); return; @@ -194,20 +194,22 @@ protected: m_formHandler->showForm(m_form); } - virtual void handleEditRecord() override + void handleEditRecord() override { if (!checkPermEdit()) { return; } - if (m_form == NULL || m_tableModel == NULL || tableView()->currentIndex().row() < 0) + if (m_form == nullptr || m_tableModel == nullptr || tableView()->currentIndex().row() < 0) { Q_ASSERT(false); return; } - form()->setEntity(m_tableModel->itemFromIndex(tableView()->currentIndex())); + auto entity = m_tableModel->itemFromIndex(tableView()->currentIndex()); + service()->load(entity); + form()->setEntity(entity); form()->setNewRec(false); m_formHandler->showForm(m_form); } @@ -278,7 +280,7 @@ protected: return true; } - virtual int currentRecordId() + int currentRecordId() override { if (tableView()->currentIndex().isValid()) { @@ -340,7 +342,7 @@ protected: importer.setSeparator(dlg->separator()); ImportProgress *progress = new ImportProgress(); - progress->move(QApplication::desktop()->screen()->rect().center() - progress->rect().center()); + //progress->move(QApplication::desktop()->screen()->rect().center() - progress->rect().center()); progress->setWindowModality(Qt::ApplicationModal); progress->show(); diff --git a/core/iform.cpp b/core/iform.cpp index 8e58428..ff949f9 100644 --- a/core/iform.cpp +++ b/core/iform.cpp @@ -5,10 +5,6 @@ IForm::IForm(QWidget *parent) : QWidget(parent) m_newRec = false; } -IForm::~IForm() -{ -} - QString IForm::pluginId() const { return m_pluginId; diff --git a/core/iform.h b/core/iform.h index 5a2ec70..c93caa4 100644 --- a/core/iform.h +++ b/core/iform.h @@ -14,7 +14,7 @@ class CORESHARED_EXPORT IForm : public QWidget public: explicit IForm(QWidget *parent = 0); - virtual ~IForm(); + ~IForm() override = default; QString pluginId() const; void setPluginId(const QString &pluginId); diff --git a/core/igridform.cpp b/core/igridform.cpp index cace158..fe7257f 100644 --- a/core/igridform.cpp +++ b/core/igridform.cpp @@ -19,7 +19,7 @@ IGridForm::IGridForm(QWidget *parent) : ui->filterWidget->setVisible(false); m_contextMenu = new QMenu(this); m_contextMenu->addAction(ui->actionSelectColumns); - m_form = NULL; + m_form = nullptr; m_columnDialog = new ColumnDialog(this); connect(m_columnDialog, SIGNAL(accepted()), this, SLOT(columnsAccepted())); @@ -29,7 +29,7 @@ IGridForm::IGridForm(QWidget *parent) : IGridForm::~IGridForm() { - if (m_varFiller != NULL) + if (m_varFiller != nullptr) { delete m_varFiller; } diff --git a/core/igridform.h b/core/igridform.h index 4cb87b8..84c10b0 100644 --- a/core/igridform.h +++ b/core/igridform.h @@ -24,8 +24,8 @@ class CORESHARED_EXPORT IGridForm : public QWidget Q_OBJECT public: - explicit IGridForm(QWidget *parent = 0); - virtual ~IGridForm(); + explicit IGridForm(QWidget *parent = nullptr); + ~IGridForm() override; void setPluginId(const QString &pluginId); QString pluginId(); @@ -71,14 +71,14 @@ private slots: private: QString m_pluginId; - IFormHandler *m_formHandler; + //IFormHandler *m_formHandler; Ui::GridForm *ui; QMenu *m_contextMenu; ColumnDialog *m_columnDialog; VariableFiller *m_varFiller; protected: - FilterUi *m_filterUi; + FilterUi *m_filterUi{nullptr}; IForm *m_form; }; diff --git a/core/imetadataplugin.cpp b/core/imetadataplugin.cpp index 88e5ab1..dae5da2 100644 --- a/core/imetadataplugin.cpp +++ b/core/imetadataplugin.cpp @@ -12,8 +12,8 @@ IMetaDataPlugin::IMetaDataPlugin() { - m_service = NULL; - m_ui = NULL; + m_service = nullptr; + m_ui = nullptr; } IMetaDataPlugin::~IMetaDataPlugin() @@ -83,18 +83,18 @@ void IMetaDataPlugin::parseMetaData(const QJsonObject &metaData) return; } - m_name = parseLocaleText(data.toObject()["name"].toObject()); - m_description = parseLocaleText(data.toObject()["description"].toObject()); - m_id = data.toObject()["id"].toString(); - m_schemaVersion = data.toObject()["schemaVersion"].toInt(); + auto metaBase = loadBaseMetaData(metaData); - foreach (QJsonValue schVal, data.toObject()["sql"].toArray()) { - m_schemas.append(schVal.toString()); + if (!metaBase) { + return; } - foreach (QJsonValue depVal, data.toObject()["dependecies"].toArray()) { - m_dependsOn.append(depVal.toString()); - } + m_name = metaBase->getName(); + m_description = metaBase->getDescription(); + m_id = metaBase->getId(); + m_schemaVersion = metaBase->getSchemaVersion(); + m_schemas = metaBase->getSchemas(); + m_dependsOn = metaBase->getDependsOn(); QJsonValue trVal = data.toObject()["translations"]; QString locale = QLocale::system().name(); @@ -165,3 +165,59 @@ void IMetaDataPlugin::addReportsFromJson(const QJsonValue &repArray) } } +MetaDataPtr IMetaDataPlugin::loadBaseMetaData(const QJsonObject& metaData) { + qDebug() << metaData; + + QJsonValue data = metaData["MetaData"]; + if (!data.isObject()) { + return {}; + } + + QStringList schemas; + for (const QJsonValue& schVal : data.toObject()["sql"].toArray()) { + schemas.append(schVal.toString()); + } + + QStringList dependsOn; + for (const QJsonValue& depVal : data.toObject().value("dependencies").toArray()) { + dependsOn.append(depVal.toString()); + } + + return MetaDataPtr::create( + parseLocaleText(data.toObject()["name"].toObject()), + data.toObject()["id"].toString(), + parseLocaleText(data.toObject()["description"].toObject()), + data.toObject()["schemaVersion"].toInt(), + schemas, + dependsOn); +} + +MetaData::MetaData(const QString &mName, const QString &mId, const QString &mDescription, int mSchemaVersion, + const QStringList &mSchemas, const QStringList &mDependsOn) + : m_name(mName), m_id(mId), m_description(mDescription), m_schemaVersion(mSchemaVersion), + m_schemas(mSchemas), m_dependsOn(mDependsOn) {} + +const QString& MetaData::getName() const { + return m_name; +} + +const QString& MetaData::getId() const { + return m_id; +} + +const QString& MetaData::getDescription() const { + return m_description; +} + +int MetaData::getSchemaVersion() const { + return m_schemaVersion; +} + +const QStringList& MetaData::getSchemas() const { + return m_schemas; +} + +const QStringList& MetaData::getDependsOn() const { + return m_dependsOn; +} + diff --git a/core/imetadataplugin.h b/core/imetadataplugin.h index 258b01d..5d37000 100644 --- a/core/imetadataplugin.h +++ b/core/imetadataplugin.h @@ -6,23 +6,53 @@ #include "core_global.h" #include "iplugin.h" +class MetaData { +public: + MetaData(const QString& mName, const QString& mId, const QString& mDescription, int mSchemaVersion, + const QStringList& mSchemas, const QStringList& mDependsOn); + + [[nodiscard]] const QString& getName() const; + + [[nodiscard]] const QString& getId() const; + + [[nodiscard]] const QString& getDescription() const; + + [[nodiscard]] int getSchemaVersion() const; + + [[nodiscard]] const QStringList& getSchemas() const; + + [[nodiscard]] const QStringList& getDependsOn() const; + +private: + QString m_name; + QString m_id; + QString m_description; + int m_schemaVersion; + QStringList m_schemas; + QStringList m_dependsOn; +}; + +using MetaDataPtr = QSharedPointer; + class CORESHARED_EXPORT IMetaDataPlugin : public IPlugin { public: IMetaDataPlugin(); - virtual ~IMetaDataPlugin(); + ~IMetaDataPlugin() override; // IPlugin interface public: - virtual QString pluginName(); - virtual QString pluginId(); - virtual QString pluginDescription(); - virtual int schemaVersion(); - virtual QStringList schemas(); - virtual QStringList dependsOn(); - virtual ReportList reports(); + QString pluginName() override; + QString pluginId() override; + QString pluginDescription() override; + int schemaVersion() override; + QStringList schemas() override; + QStringList dependsOn() override; + ReportList reports() override; + + void init(const QJsonObject &metaData) override; - virtual void init(const QJsonObject &metaData); + static MetaDataPtr loadBaseMetaData(const QJsonObject &metaData); protected: virtual void initServiceUi() = 0; @@ -37,7 +67,7 @@ private: QStringList m_dependsOn; ReportList m_reports; - QString parseLocaleText(const QJsonObject &object); + static QString parseLocaleText(const QJsonObject &object); void addCustomReports(); void addReportsFromJson(const QJsonValue &repArray); }; diff --git a/core/importdialog.cpp b/core/importdialog.cpp index 17c1a9d..a52c46b 100644 --- a/core/importdialog.cpp +++ b/core/importdialog.cpp @@ -5,7 +5,7 @@ #include #include -#include +//#include ImportDialog::ImportDialog(QWidget *parent) : QDialog(parent), diff --git a/core/importdialog.h b/core/importdialog.h index 58da75b..0a6d7e8 100644 --- a/core/importdialog.h +++ b/core/importdialog.h @@ -16,8 +16,8 @@ class CORESHARED_EXPORT ImportDialog : public QDialog Q_OBJECT public: - explicit ImportDialog(QWidget *parent = 0); - ~ImportDialog(); + explicit ImportDialog(QWidget *parent = nullptr); + ~ImportDialog() override; QString fileName(); QString separator(); diff --git a/core/importdialog.ui b/core/importdialog.ui index 92c1be7..bd17880 100644 --- a/core/importdialog.ui +++ b/core/importdialog.ui @@ -7,13 +7,16 @@ 0 0 454 - 115 + 117 Import data + + QFormLayout::ExpandingFieldsGrow + diff --git a/core/importprogress.h b/core/importprogress.h index 9b0de8a..4d64cc4 100644 --- a/core/importprogress.h +++ b/core/importprogress.h @@ -15,8 +15,8 @@ class CORESHARED_EXPORT ImportProgress : public QWidget, public IImportProgress Q_OBJECT public: - explicit ImportProgress(QWidget *parent = 0); - ~ImportProgress(); + explicit ImportProgress(QWidget *parent = nullptr); + ~ImportProgress() override; private slots: void on_btnCancel_clicked(); @@ -27,8 +27,8 @@ private: // IImportProgress interface public: - void updateProgress(int currentPos); - bool terminate(); + void updateProgress(int currentPos) override; + bool terminate() override; }; #endif // IMPORTPROGRESS_H diff --git a/core/iplugin.h b/core/iplugin.h index 83f46e2..89d64a5 100644 --- a/core/iplugin.h +++ b/core/iplugin.h @@ -18,24 +18,18 @@ class IPlugin { public: - IPlugin() { - m_ui = NULL; - m_service = NULL; - m_settingsUi = NULL; - } + IPlugin() = default; virtual ~IPlugin() { - if (m_service != NULL) - { - delete m_service; - } + delete m_service; + delete m_translator; - if (m_ui != NULL && m_ui->parent() == NULL) + if (m_ui != nullptr && m_ui->parent() == nullptr) { delete m_ui; } - if (m_settingsUi != NULL && m_settingsUi->parent() == NULL) + if (m_settingsUi != nullptr && m_settingsUi->parent() == nullptr) { delete m_settingsUi; } @@ -56,18 +50,18 @@ public: if (!permEv.hasPermission(pluginId(), PERM_READ)) { QMessageBox::critical(m_ui, QObject::tr("Permission denied"), QObject::tr("You don't have permission to open this plugin.")); - return NULL; + return nullptr; } IGridForm *form = qobject_cast(m_ui); bool filled = true; - if (form != NULL) + if (form != nullptr) { filled = form->fillData(); } - return filled ? m_ui : NULL; + return filled ? m_ui : nullptr; } QList dasboardWidgets() { @@ -88,24 +82,30 @@ public: } virtual bool showIcon() { return true; } - virtual QTranslator* translator() { return NULL; } - virtual QIcon pluginIcon() { return QIcon(); } + virtual QTranslator* translator() { return nullptr; } + virtual QIcon pluginIcon() { return {}; } QMap translations() { return m_translations; } virtual bool hasNumberSeries() { return false; } virtual QString numberSeriesPrefix() { return ""; } protected: - QTranslator* translatorFrom(QString fileName) { - QTranslator *trans = new QTranslator(); - trans->load(fileName + QLocale::system().name()); + QTranslator* translatorFrom(const QString& fileName) { + if (!m_translator) { + m_translator = new QTranslator(); + + if (!m_translator->load(fileName + QLocale::system().name())) { + qDebug() << "Cannot load translation"; + } + } - return trans; + return m_translator; } - QWidget *m_ui; - QWidget *m_settingsUi; - IService *m_service; + QTranslator* m_translator{nullptr}; + QWidget *m_ui {nullptr}; + QWidget *m_settingsUi {nullptr}; + IService *m_service {nullptr}; QMap m_translations; QList m_dashboardWidgets; }; diff --git a/core/itablemodel.h b/core/itablemodel.h index b337c16..0f9d8f8 100644 --- a/core/itablemodel.h +++ b/core/itablemodel.h @@ -11,7 +11,7 @@ class CORESHARED_EXPORT ITableModel : public QAbstractTableModel { Q_OBJECT public: - explicit ITableModel(QObject *parent = NULL); + explicit ITableModel(QObject *parent = nullptr); protected: virtual void handleFilter(const QString &filter) = 0; diff --git a/core/ivalidator.h b/core/ivalidator.h index 10f0285..e613c4e 100644 --- a/core/ivalidator.h +++ b/core/ivalidator.h @@ -15,7 +15,7 @@ public: m_errMessage = errMessage; } - virtual ~IValidator() {} + virtual ~IValidator() = default; virtual bool validate() = 0; diff --git a/core/numberseriesservice.cpp b/core/numberseriesservice.cpp index 0d7204a..c852b2d 100644 --- a/core/numberseriesservice.cpp +++ b/core/numberseriesservice.cpp @@ -1,25 +1,20 @@ #include "numberseriesservice.h" #include "seasonservice.h" -#include "core-odb.hxx" -NumberSeriesService::NumberSeriesService() -{ - -} - -QSharedPointer NumberSeriesService::forPluginAndSeason(QString pluginId, QSharedPointer season) +QSharedPointer NumberSeriesService::forPluginAndSeason(const QString& pluginId, const QSharedPointer& season) { QList > series = all(QString("pluginId = '%1' AND season = %2").arg(pluginId, QString::number(season->id()))); if (!series.isEmpty()) { + load(series[0]); return series[0]; } - return QSharedPointer(); + return {}; } -QSharedPointer NumberSeriesService::forPlugin(QString pluginId) +QSharedPointer NumberSeriesService::forPlugin(const QString& pluginId) { SeasonService sesSrv; QSharedPointer currentSeason = sesSrv.active(); @@ -29,34 +24,32 @@ QSharedPointer NumberSeriesService::forPlugin(QString pluginId) return forPluginAndSeason(pluginId, currentSeason); } - return QSharedPointer(); + return {}; } -QSharedPointer NumberSeriesService::nextForPlugin(QString pluginId) +QSharedPointer NumberSeriesService::nextForPlugin(const QString& pluginId, qx::QxSession* pSession/* = nullptr*/) { QSharedPointer numSer = forPlugin(pluginId); if (numSer.isNull()) { - return QSharedPointer(); + return {}; } numSer->setLastNumber(numSer->lastNumber() + 1); - update(numSer); + update(numSer, pSession); return numSer; } -QList > NumberSeriesService::allForSeason(QSharedPointer season) +QList > NumberSeriesService::allForSeason(const QSharedPointer& season) { return all(QString("season = %1").arg(QString::number(season->id()))); } -QString NumberSeriesService::nextStrForPlugin(QString pluginId) +QString NumberSeriesService::nextStrForPlugin(const QString& pluginId, qx::QxSession* pSession) { - NumberSeriesPtr numSer = nextForPlugin(pluginId); - QString numSerStr; - numSerStr.sprintf("%s%05d", numSer->prefix().toStdString().c_str(), numSer->lastNumber()); + NumberSeriesPtr numSer = nextForPlugin(pluginId, pSession); - return numSerStr; + return QString("%1%2").arg(numSer->prefix()).arg(numSer->lastNumber(), 5, 10, QLatin1Char('0')); } diff --git a/core/numberseriesservice.h b/core/numberseriesservice.h index e97e477..0779f0b 100644 --- a/core/numberseriesservice.h +++ b/core/numberseriesservice.h @@ -9,13 +9,13 @@ class CORESHARED_EXPORT NumberSeriesService : public Service { public: - NumberSeriesService(); + NumberSeriesService() = default; - QSharedPointer forPluginAndSeason(QString pluginId, QSharedPointer season); - QSharedPointer forPlugin(QString pluginId); - QSharedPointer nextForPlugin(QString pluginId); - QList > allForSeason(QSharedPointer season); - QString nextStrForPlugin(QString pluginId); + QSharedPointer forPluginAndSeason(const QString& pluginId, const QSharedPointer& season); + QSharedPointer forPlugin(const QString& pluginId); + QSharedPointer nextForPlugin(const QString& pluginId, qx::QxSession* pSession = nullptr); + QList > allForSeason(const QSharedPointer& season); + QString nextStrForPlugin(const QString& pluginId, qx::QxSession* pSession = nullptr); }; #endif // NUMBERSERIESSERVICE_H diff --git a/core/objectbinder.cpp b/core/objectbinder.cpp index 655df8b..26a6c14 100644 --- a/core/objectbinder.cpp +++ b/core/objectbinder.cpp @@ -4,7 +4,7 @@ ObjectBinder::ObjectBinder(QObject *parent) :QObject(parent) { - m_data = NULL; + m_data = nullptr; } void ObjectBinder::registerBinding(QWidget *widget) { @@ -18,7 +18,7 @@ void ObjectBinder::registerBinding(QComboBox *combo, const QList &val } void ObjectBinder::registerValidator(IValidator *validator) { - m_validators.append(validator); + m_validators.append(QSharedPointer(validator)); } void ObjectBinder::setData(QObject *data) @@ -49,6 +49,8 @@ void ObjectBinder::bindToUi() { ComboData data = m_bindCombos[combo][i]; combo->addItem(data.label(), data.index()); + qDebug() << data.index(); + if (data.index().canConvert()) { ComboItem* ci = qobject_cast(data.index().value()); ComboItem* ciField = qobject_cast(field.value()); @@ -56,7 +58,10 @@ void ObjectBinder::bindToUi() { idx = i; } } - else if (field == data.index()) { + else if (field.canConvert() && data.index().canConvert() + && field.toInt() == data.index().toInt()) { + idx = i; + } else if (field == data.index()) { idx = i; } } @@ -66,7 +71,7 @@ void ObjectBinder::bindToUi() { } bool ObjectBinder::bindToData() { - foreach (IValidator *val, m_validators) { + for (const auto& val : m_validators) { if (!val->validate()) { emit validationError(val->errMessage()); return false; diff --git a/core/objectbinder.h b/core/objectbinder.h index e752909..83f23fc 100644 --- a/core/objectbinder.h +++ b/core/objectbinder.h @@ -6,6 +6,7 @@ #include #include #include +#include #include "ivalidator.h" #include "combodata.h" #include "core_global.h" @@ -30,7 +31,7 @@ signals: private: QList m_bindWidgets; QHash > m_bindCombos; - QList m_validators; + QList> m_validators; QObject *m_data; }; diff --git a/core/permissionevaluator.cpp b/core/permissionevaluator.cpp index 510fd31..b99aa2c 100644 --- a/core/permissionevaluator.cpp +++ b/core/permissionevaluator.cpp @@ -10,12 +10,12 @@ PermissionEvaluator::PermissionEvaluator(QObject *parent) { } -PermissionEvaluator::~PermissionEvaluator() -{ -} - bool PermissionEvaluator::hasPermission(const QString &pluginId, const QString &permission) { + if (!Context::instance().currentUser()) { + return false; + } + if (Context::instance().currentUser()->isAdmin()) { return true; @@ -24,7 +24,7 @@ bool PermissionEvaluator::hasPermission(const QString &pluginId, const QString & bool ret; QList > roles = Context::instance().currentUser()->listRoles(); - ret = std::find_if(ALL(roles), [&pluginId, &permission](QSharedPointer role) -> bool { + ret = std::find_if(ALL(roles), [&pluginId, &permission](const QSharedPointer& role) -> bool { foreach (QSharedPointer perm, role->listPermissions()) { if (perm->pluginId() == pluginId && perm->permissionName() == permission) { return true; diff --git a/core/permissionevaluator.h b/core/permissionevaluator.h index f475301..3a6b049 100644 --- a/core/permissionevaluator.h +++ b/core/permissionevaluator.h @@ -11,8 +11,8 @@ class CORESHARED_EXPORT PermissionEvaluator : public QObject Q_OBJECT public: - explicit PermissionEvaluator(QObject *parent = NULL); - ~PermissionEvaluator(); + explicit PermissionEvaluator(QObject *parent = nullptr); + ~PermissionEvaluator() override = default; bool hasPermission(const QString &pluginId, const QString &permission); diff --git a/core/permissionservice.cpp b/core/permissionservice.cpp index c222b3c..c007719 100644 --- a/core/permissionservice.cpp +++ b/core/permissionservice.cpp @@ -1,21 +1,9 @@ -#include "core-odb.hxx" #include "permissionservice.h" #include -typedef odb::query permQuery; -typedef odb::result permResult; - -PermissionService::PermissionService() -{ -} - -PermissionService::~PermissionService() -{ -} - QList > PermissionService::forPlugin(const QString &pluginId) { - Transaction tr; + /*Transaction tr; odb::database *db = Context::instance().db(); permQuery q(permQuery::pluginId == pluginId); permResult result = db->query(q); @@ -27,18 +15,25 @@ QList > PermissionService::forPlugin(const QString &p } tr.commit(); - return ret; + return ret;*/ + return {}; } QSharedPointer PermissionService::forNameAndPlugin(const QString &name, const QString &pluginId) { - Transaction tr; - odb::database *db = Context::instance().db(); - permQuery q(permQuery::pluginId == pluginId && permQuery::permissionName == name); - QSharedPointer p = db->query_one(q); + qx::QxSqlQuery q; + q.where("permissionName").isEqualTo(name) + .and_("pluginId").isEqualTo(pluginId); - tr.commit(); - return p; + QList> ret; + auto err = qx::dao::fetch_by_query(q, ret); + + if (err.isValid()) { + qDebug() << err.text(); + // ToDo - log error + } + + return ret.count() > 0 ? ret[0] : QSharedPointer(); } bool PermissionService::checkLogin(const QString &login, const QString &password) @@ -55,21 +50,22 @@ bool PermissionService::checkLogin(const QString &login, const QString &password QSharedPointer PermissionService::loadUser(const QString &login) { - odb::database *db = Context::instance().db(); + Service srvUser; + auto admin = srvUser.all("login = '" + login + "'"); + + if (admin.count() == 1) { + return admin[0]; + } - Transaction tr; - return db->query_one("login = " + odb::query::_ref(login)); + return {}; } void PermissionService::checkForAdmin() { - odb::database *db = Context::instance().db(); - - Transaction tr; - odb::query q(odb::query::isAdmin == true); - odb::result r = db->query(q); + Service srvUser; + auto admUser = srvUser.all("isAdmin = 1"); - if (r.empty()) + if (admUser.isEmpty()) { QSharedPointer admin(new User); admin->setLogin("admin"); @@ -78,10 +74,8 @@ void PermissionService::checkForAdmin() admin->setPassword(encryptPassword("admin")); admin->setActive(true); - db->persist(admin); + srvUser.save(admin); } - - tr.commit(); } QString PermissionService::encryptPassword(const QString &plainPasswd) diff --git a/core/permissionservice.h b/core/permissionservice.h index 000660a..941af67 100644 --- a/core/permissionservice.h +++ b/core/permissionservice.h @@ -4,10 +4,6 @@ #include "service.h" #include "data/core-data.h" #include "core_global.h" -#include -#include -#include -#include #include #include @@ -16,8 +12,8 @@ class CORESHARED_EXPORT PermissionService : public Service { public: - PermissionService(); - ~PermissionService(); + PermissionService() = default; + ~PermissionService() override = default; QList > forPlugin(const QString &pluginId); QSharedPointer forNameAndPlugin(const QString &name, const QString &pluginId); diff --git a/core/reporting/reportviewer.cpp b/core/reporting/reportviewer.cpp index 2ce3a49..35ecc6e 100644 --- a/core/reporting/reportviewer.cpp +++ b/core/reporting/reportviewer.cpp @@ -3,6 +3,7 @@ #include "../context.h" +#include #include #include #include diff --git a/core/reporting/reportviewer.h b/core/reporting/reportviewer.h index d0f7f42..8967322 100644 --- a/core/reporting/reportviewer.h +++ b/core/reporting/reportviewer.h @@ -3,7 +3,7 @@ #include #include "report.h" -#include "core_global.h" +#include "../core_global.h" namespace Ui { class ReportViewer; diff --git a/core/roles/roles.h b/core/roles/roles.h index 3323baa..f6cb17d 100644 --- a/core/roles/roles.h +++ b/core/roles/roles.h @@ -1,7 +1,7 @@ #ifndef ROLES_H #define ROLES_H -#include "imetadataplugin.h" +#include "../imetadataplugin.h" class Roles : public IMetaDataPlugin { diff --git a/core/roles/rolesform.cpp b/core/roles/rolesform.cpp index 7ab8890..779a3b3 100644 --- a/core/roles/rolesform.cpp +++ b/core/roles/rolesform.cpp @@ -1,7 +1,7 @@ #include "rolesform.h" #include "ui_rolesform.h" -#include "iplugin.h" -#include "permissionservice.h" +#include "../iplugin.h" +#include "../permissionservice.h" #include diff --git a/core/roles/rolesform.h b/core/roles/rolesform.h index b711ba8..54f175d 100644 --- a/core/roles/rolesform.h +++ b/core/roles/rolesform.h @@ -2,9 +2,8 @@ #define ROLESFORM_H #include -#include "autoform.h" -#include "data/core-data.h" -#include "core-odb.hxx" +#include "../autoform.h" +#include "../data/core-data.h" namespace Ui { class RolesForm; diff --git a/core/roles/rolesform.ui b/core/roles/rolesform.ui index 07afc5f..1052dd1 100644 --- a/core/roles/rolesform.ui +++ b/core/roles/rolesform.ui @@ -6,8 +6,8 @@ 0 0 - 542 - 270 + 556 + 291 @@ -15,7 +15,7 @@ - QFormLayout::AllNonFixedFieldsGrow + QFormLayout::ExpandingFieldsGrow diff --git a/core/roles/rolestablemodel.h b/core/roles/rolestablemodel.h index c3a20a2..2732c99 100644 --- a/core/roles/rolestablemodel.h +++ b/core/roles/rolestablemodel.h @@ -1,8 +1,8 @@ #ifndef ROLESTABLEMODEL_H #define ROLESTABLEMODEL_H -#include "autotablemodel.h" -#include "data/core-data.h" +#include "../autotablemodel.h" +#include "../data/core-data.h" class RolesTableModel : public AutoTableModel { diff --git a/core/roles/rolesui.h b/core/roles/rolesui.h index a07d69e..e1adf9e 100644 --- a/core/roles/rolesui.h +++ b/core/roles/rolesui.h @@ -1,9 +1,8 @@ #ifndef ROLESUI_H #define ROLESUI_H -#include "gridform.h" -#include "data/core-data.h" -#include "core-odb.hxx" +#include "../gridform.h" +#include "../data/core-data.h" class RolesUi : public GridForm { diff --git a/core/seasonservice.cpp b/core/seasonservice.cpp index f22256b..cde57c3 100644 --- a/core/seasonservice.cpp +++ b/core/seasonservice.cpp @@ -1,12 +1,5 @@ #include "seasonservice.h" -#include "core-odb.hxx" - -SeasonService::SeasonService() -{ - -} - QSharedPointer SeasonService::active() { QList > seasons = all("active = 1"); @@ -15,20 +8,18 @@ QSharedPointer SeasonService::active() return seasons[0]; } - return QSharedPointer(); + return {}; } -void SeasonService::activate(QSharedPointer season) +void SeasonService::activate(const QSharedPointer& season) { - Transaction tx; + qx::QxSession session; foreach (QSharedPointer ses, all()) { ses->setActive(false); - update(ses); + update(ses, &session); } season->setActive(true); - update(season); - - tx.commit(); + update(season, &session); } diff --git a/core/seasonservice.h b/core/seasonservice.h index 738c8c4..7522d11 100644 --- a/core/seasonservice.h +++ b/core/seasonservice.h @@ -10,9 +10,9 @@ class CORESHARED_EXPORT SeasonService : public Service { public: - SeasonService(); + SeasonService() = default; QSharedPointer active(); - void activate(QSharedPointer season); + void activate(const QSharedPointer& season); }; #endif // SEASONSERVICE_H diff --git a/core/service.h b/core/service.h index 893c6e4..95c6a4d 100644 --- a/core/service.h +++ b/core/service.h @@ -7,11 +7,6 @@ #include #include -#include -#include -#include -#include - #include "core_global.h" #include "context.h" #include "iservice.h" @@ -19,195 +14,158 @@ #include "iimporter.h" #include "iimportprogress.h" -#include "transaction.h" - template class Service : public IService { public: - explicit Service(QObject *parent = NULL) :IService(parent) { } + explicit Service(QObject *parent = nullptr) :IService(parent) { } explicit Service(const QString &pluginId) { m_pluginId = pluginId; } - QList > all(const QString &where = "", const QString &order = "") { + QList > all(const QString &where = "") { QList > ret; if (!checkPermission(PERM_READ)) { return ret; } - odb::database *db = Context::instance().db(); + QScopedPointer entity(new T()); + auto qEntity = dynamic_cast(entity.data()); - Q_ASSERT(db); + QStringList relations; + QString sWhere = where.isEmpty() ? "" : "WHERE " + where; + QSqlError err; - Transaction tx; - - try + if (qEntity + && QMetaObject::invokeMethod(qEntity, "eagerLoad", Qt::DirectConnection, Q_RETURN_ARG(QStringList, relations)) + && !relations.isEmpty()) { - odb::result res; - QString ord = defaultSort(); - - if (!order.isEmpty()) - { - ord = order; - } - - if (where.isEmpty() && ord.isEmpty()) - { - res = db->template query(); - } - else - { - QString cond; - - if (where.isEmpty()) - { - cond = "1 ORDER BY " + ord; - } - else - { - cond = where; - if (!ord.isEmpty()) - { - cond += "ORDER BY " + ord; - } - } - - res = db->template query(cond.toStdString()); - } - - for (typename odb::result::iterator it = res.begin(); it != res.end(); it++) { - ret.append(it.load()); - } - - tx.commit(); + err = qx::dao::fetch_by_query_with_relation(relations, sWhere, ret); } - catch (const odb::exception &ex) - { - emit dbError(ex.what()); + else { + err = qx::dao::fetch_by_query(sWhere, ret); + } + + if (!err.isValid()) { + return ret; + } else { + qDebug() << err.text(); + emit dbError(err.text()); } return ret; } - void save(QSharedPointer entity) { + void save(QSharedPointer entity, qx::QxSession* pSession = nullptr) { if (!checkPermission(PERM_ADD)) { return; } - odb::database *db = Context::instance().db(); - - Q_ASSERT(db); + QScopedPointer ptrSession; - Transaction tx; + if (pSession == nullptr) { + ptrSession.reset(new qx::QxSession()); + pSession = ptrSession.data(); + } addDateAndUser(entity, true); + *pSession += qx::dao::insert_with_all_relation(entity, pSession->database()); - try - { - db->persist(entity); - tx.commit(); - } - catch (const odb::exception &ex) - { - emit dbError(ex.what()); - emit dbErrorUpdate(ex.what()); + if (!pSession->isValid()) { + qDebug() << pSession->firstError().text(); + emit dbError(pSession->firstError().text()); + emit dbErrorInsert(pSession->firstError().text()); return; } emit dataChanged(); } - void update(QSharedPointer entity) { + void update(QSharedPointer entity, qx::QxSession* pSession = nullptr) { if (!checkPermission(PERM_EDIT)) { return; } - odb::database *db = Context::instance().db(); - - Q_ASSERT(db); + QScopedPointer ptrSession; - Transaction tx; + if (pSession == nullptr) { + ptrSession.reset(new qx::QxSession()); + pSession = ptrSession.data(); + } addDateAndUser(entity, false); - try - { - db->update(entity); - tx.commit(); - } - catch (const odb::exception &ex) - { - emit dbError(ex.what()); - emit dbErrorInsert(ex.what()); + *pSession += qx::dao::update_with_all_relation(entity, pSession->database()); + + if (!pSession->isValid()) { + emit dbError(pSession->firstError().text()); + emit dbErrorUpdate(pSession->firstError().text()); return; } emit dataChanged(); } - QSharedPointer loadById(int id) { + QSharedPointer loadById(long id) { QSharedPointer entity; - /*if (!checkPermission(PERM_READ)) { + if (!checkPermission(PERM_READ)) { return entity; - }*/ - - odb::database *db = Context::instance().db(); - - Q_ASSERT(db); + } - Transaction tx; + entity = QSharedPointer(new T); + entity->setId(id); + auto err = qx::dao::fetch_by_id_with_all_relation(entity); - try - { - entity = db->template load(id); - tx.commit(); - } - catch (const odb::exception &ex) - { - emit dbError(ex.what()); - emit dbErrorRead(ex.what()); + if (err.isValid()) { + emit dbError(err.text()); + emit dbErrorRead(err.text()); } return entity; } - QSharedPointer reload(int id) { - odb::database *db = Context::instance().db(); + void load(QSharedPointer& entity) { + if (!checkPermission(PERM_READ)) { + return; + } + + auto err = qx::dao::fetch_by_id_with_all_relation(entity); - Q_ASSERT(db); + if (err.isValid()) { + emit dbError(err.text()); + emit dbErrorRead(err.text()); + } + } - Context::instance().session().cache_erase(*db, id); + QSharedPointer reload(int id) { return loadById(id); } - void erase(QSharedPointer entity) { + void erase(QSharedPointer entity, qx::QxSession* pSession = nullptr) { if (!checkPermission(PERM_DELETE)) { return; } - odb::database *db = Context::instance().db(); + QScopedPointer ptrSession; - Q_ASSERT(db); + if (pSession == nullptr) { + ptrSession.reset(new qx::QxSession()); + pSession = ptrSession.data(); + } - Transaction tx; + *pSession += qx::dao::delete_by_id(entity); - try - { - db->erase(entity); - tx.commit(); - } - catch (const odb::exception &ex) - { - emit dbError(ex.what()); - emit dbErrorDelete(ex.what()); + if (!pSession->isValid()) { + qDebug() << pSession->firstError().text(); + emit dbError(pSession->firstError().text()); + emit dbErrorDelete(pSession->firstError().text()); } } - bool importData(IImporter *importer, IImportProgress *progress = NULL) { + bool importData(IImporter *importer, IImportProgress *progress = nullptr) { int count = importer->recordCount(); if (importer->isError()) { @@ -232,12 +190,12 @@ public: qApp->processEvents(); - if (progress != NULL && progress->terminate()) + if (progress != nullptr && progress->terminate()) { return true; } - if (progress != NULL) + if (progress != nullptr) { progress->updateProgress(i * 100 / count); } @@ -262,16 +220,19 @@ protected: void addDateAndUser(QSharedPointer entity, bool creating) { T *inner = entity.data(); - QObject *obj = dynamic_cast(inner); + auto *obj = dynamic_cast(inner); - if (obj == NULL) + if (obj == nullptr) { return; } if (creating) { - obj->setProperty("createdBy", Context::instance().currentUser()->login()); + if (!Context::instance().currentUser().isNull()) { + obj->setProperty("createdBy", Context::instance().currentUser()->login()); + } + obj->setProperty("created", QDateTime::currentDateTime()); } else diff --git a/core/settings/globalsettings.cpp b/core/settings/globalsettings.cpp index 755c7c2..54ee0f0 100644 --- a/core/settings/globalsettings.cpp +++ b/core/settings/globalsettings.cpp @@ -1,5 +1,5 @@ #include "globalsettings.h" -#include +#include "../define.h" GlobalSettings::GlobalSettings(QObject *parent) : QObject(parent) { diff --git a/core/settings/globalsettingsform.cpp b/core/settings/globalsettingsform.cpp index 1d538d4..d526cb5 100644 --- a/core/settings/globalsettingsform.cpp +++ b/core/settings/globalsettingsform.cpp @@ -9,7 +9,6 @@ #include "../settingsservice.h" #include "../seasonservice.h" #include "../numberseriesservice.h" -#include "core-odb.hxx" GlobalSettingsForm::GlobalSettingsForm(QWidget *parent) : FormBinder(parent), @@ -45,10 +44,16 @@ GlobalSettingsForm::~GlobalSettingsForm() void GlobalSettingsForm::loadSeasons() { - ui->season->clear(); SeasonService srv; m_seasons = srv.all(); + fillSeasons(); +} + + +void GlobalSettingsForm::fillSeasons() { + ui->season->clear(); + foreach (SeasonPtr season, m_seasons) { ui->season->addItem(season->name()); @@ -76,10 +81,18 @@ bool GlobalSettingsForm::saveRecord() SeasonService srvSeason; NumberSeriesService srvNumSer; + foreach (NumberSeriesPtr numSer, m_seriesModel->list()) { + srvNumSer.update(numSer); + } + + foreach (SeasonPtr season, m_seasons) { + srvSeason.update(season); + } + SeasonPtr selSeason = m_seasons[ui->season->currentIndex()]; if (selSeason->id() != Context::instance().currentSeason()->id()) { - if (QMessageBox::question(this, tr("Switch season"), tr("Realy switch active season?")) == QMessageBox::Yes) + if (QMessageBox::question(this, tr("Switch season"), tr("Really switch active season?")) == QMessageBox::Yes) { srvSeason.activate(selSeason); Context::instance().setCurrentSeason(selSeason); @@ -90,14 +103,6 @@ bool GlobalSettingsForm::saveRecord() } } - foreach (SeasonPtr season, m_seasons) { - srvSeason.update(season); - } - - foreach (NumberSeriesPtr numSer, m_seriesModel->list()) { - srvNumSer.update(numSer); - } - bindToData(); SettingsService srv("CORE"); srv.saveSettings(entity()); @@ -141,13 +146,13 @@ void GlobalSettingsForm::on_btnEditName_clicked() dialog->show(); connect(dialog, &QDialog::accepted, [this](){ - this->loadSeasons(); + this->fillSeasons(); }); } void GlobalSettingsForm::on_btnNew_clicked() { - if (QMessageBox::question(this, tr("New season"), tr("Realy create new season and switch to it?")) == QMessageBox::Yes) + if (QMessageBox::question(this, tr("New season"), tr("Really create new season and switch to it?")) == QMessageBox::Yes) { SeasonPtr newSeason = SeasonPtr(new Season); SeasonNameDialog *dialog = new SeasonNameDialog(newSeason, this); @@ -177,3 +182,4 @@ void GlobalSettingsForm::on_pushButton_clicked() ui->lblLogo->setPixmap(QPixmap(logoPath)); } } + diff --git a/core/settings/globalsettingsform.h b/core/settings/globalsettingsform.h index 4c1ba7e..4834ef8 100644 --- a/core/settings/globalsettingsform.h +++ b/core/settings/globalsettingsform.h @@ -25,6 +25,7 @@ private: QList m_seasons; void loadSeasons(); + void fillSeasons(); void loadNumSeries(); // IForm interface diff --git a/core/settings/globalsettingsform.ui b/core/settings/globalsettingsform.ui index 81f4276..34377f9 100644 --- a/core/settings/globalsettingsform.ui +++ b/core/settings/globalsettingsform.ui @@ -7,7 +7,7 @@ 0 0 759 - 630 + 640 @@ -39,6 +39,9 @@ Contact + + QFormLayout::ExpandingFieldsGrow + diff --git a/core/settings/seasonnamedialog.cpp b/core/settings/seasonnamedialog.cpp index ef3dcd2..f056a31 100644 --- a/core/settings/seasonnamedialog.cpp +++ b/core/settings/seasonnamedialog.cpp @@ -1,7 +1,7 @@ #include "seasonnamedialog.h" #include "ui_seasonnamedialog.h" -SeasonNameDialog::SeasonNameDialog(SeasonPtr season, QWidget *parent) : +SeasonNameDialog::SeasonNameDialog(const SeasonPtr& season, QWidget *parent) : QDialog(parent), ui(new Ui::SeasonNameDialog) { diff --git a/core/settings/seasonnamedialog.h b/core/settings/seasonnamedialog.h index ffa7b31..af3ccac 100644 --- a/core/settings/seasonnamedialog.h +++ b/core/settings/seasonnamedialog.h @@ -15,8 +15,8 @@ class SeasonNameDialog : public QDialog Q_OBJECT public: - explicit SeasonNameDialog(SeasonPtr season, QWidget *parent = 0); - ~SeasonNameDialog(); + explicit SeasonNameDialog(const SeasonPtr& season, QWidget *parent = 0); + ~SeasonNameDialog() override; private: Ui::SeasonNameDialog *ui; @@ -24,7 +24,7 @@ private: // QDialog interface public slots: - void accept(); + void accept() override; }; #endif // SEASONNAMEDIALOG_H diff --git a/core/settingsform.cpp b/core/settingsform.cpp index 8009cc6..60cba43 100644 --- a/core/settingsform.cpp +++ b/core/settingsform.cpp @@ -15,12 +15,12 @@ SettingsForm::SettingsForm(QWidget *parent) : ui->setupUi(this); foreach (IPlugin *plugin, Context::instance().plugins()) { - if (plugin->settingsUi() != NULL) + if (plugin->settingsUi() != nullptr) { SettingsService srv(plugin->pluginId()); IForm *tab = qobject_cast(plugin->settingsUi()); - if (tab != NULL) + if (tab != nullptr) { tab->loadEntity(); ui->tabWidget->addTab(tab, QIcon(), plugin->settingsTabLabel()); diff --git a/core/settingsservice.cpp b/core/settingsservice.cpp index 6792ca9..d8b4a75 100644 --- a/core/settingsservice.cpp +++ b/core/settingsservice.cpp @@ -1,10 +1,5 @@ #include "settingsservice.h" -#include "core-odb.hxx" - -#include -#include - SettingsService::SettingsService(QObject *parent) :IService(parent) { diff --git a/core/transaction.cpp b/core/transaction.cpp index 2b29836..503d05a 100644 --- a/core/transaction.cpp +++ b/core/transaction.cpp @@ -8,21 +8,21 @@ Transaction::Transaction() { if (!Transaction::m_inTransaction) { - m_tr = new odb::transaction(Context::instance().db()->begin()); + //m_tr = new odb::transaction(Context::instance().db()->begin()); #ifdef _DEBUG - m_tr->tracer(odb::stderr_tracer); + //m_tr->tracer(odb::stderr_tracer); #endif Transaction::m_inTransaction = true; } else { - m_tr = NULL; + m_tr = nullptr; } } Transaction::~Transaction() { - if (m_tr != NULL) + if (m_tr != nullptr) { delete m_tr; Transaction::m_inTransaction = false; @@ -31,9 +31,9 @@ Transaction::~Transaction() void Transaction::commit() { - if (m_tr != NULL) + if (m_tr != nullptr) { - m_tr->commit(); + //m_tr->commit(); } } diff --git a/core/transaction.h b/core/transaction.h deleted file mode 100644 index 29eb3d6..0000000 --- a/core/transaction.h +++ /dev/null @@ -1,22 +0,0 @@ -#ifndef TRANSACTION_H -#define TRANSACTION_H - -#include -#include - -#include "core_global.h" - -class CORESHARED_EXPORT Transaction -{ -public: - Transaction(); - ~Transaction(); - - void commit(); - -private: - odb::transaction *m_tr; - static bool m_inTransaction; -}; - -#endif // TRANSACTION_H diff --git a/core/users/tablemodel.h b/core/users/tablemodel.h index 755bedb..b6e68cf 100644 --- a/core/users/tablemodel.h +++ b/core/users/tablemodel.h @@ -1,9 +1,8 @@ #ifndef TABLEMODEL_H #define TABLEMODEL_H -#include "autotablemodel.h" +#include "../autotablemodel.h" #include "../data/core-data.h" -#include "core-odb.hxx" class UsersTableModel : public AutoTableModel { diff --git a/core/users/userform.cpp b/core/users/userform.cpp index 9631dfc..76f9990 100644 --- a/core/users/userform.cpp +++ b/core/users/userform.cpp @@ -20,14 +20,10 @@ UserForm::UserForm(QWidget *parent) : registerBinding(ui->name); registerBinding(ui->isAdmin); registerBinding(ui->active); - EmptyStringValidator * esv_login = new EmptyStringValidator(ui->login,"Enter Login Name"); - registerValidator(esv_login); - EmptyStringValidator * esv_password = new EmptyStringValidator(ui->password,"Enter Password"); - registerValidator(esv_password); - EmptyStringValidator * esv_name = new EmptyStringValidator(ui->name,"Enter Name"); - registerValidator(esv_name); - SameStringValidator * ssv_password = new SameStringValidator(ui->password,ui->retypePassword,"Passwords doesen't match"); - registerValidator(ssv_password); + registerValidator(new EmptyStringValidator(ui->login,"Enter Login Name")); + registerValidator(new EmptyStringValidator(ui->password,"Enter Password")); + registerValidator(new EmptyStringValidator(ui->name,"Enter Name")); + registerValidator(new SameStringValidator(ui->password,ui->retypePassword,"Passwords doesen't match")); } @@ -52,7 +48,7 @@ void UserForm::bindOtherToUi() ti = new QTableWidgetItem; ti->setText(r->name()); ti->setCheckState(it == roles.end() ? Qt::Unchecked : Qt::Checked); - ti->setData(Qt::UserRole,r->id()); + ti->setData(Qt::UserRole, (qlonglong)r->id()); ui->tableWidget->setItem(i,0,ti); i++; } diff --git a/core/users/userform.h b/core/users/userform.h index c488fdc..a3129f2 100644 --- a/core/users/userform.h +++ b/core/users/userform.h @@ -2,9 +2,8 @@ #define USERFORM_H #include -#include "autoform.h" +#include "../autoform.h" #include "../data/core-data.h" -#include "core-odb.hxx" namespace Ui { class UserForm; diff --git a/core/users/userform.ui b/core/users/userform.ui index f5b635d..a1eaf6d 100644 --- a/core/users/userform.ui +++ b/core/users/userform.ui @@ -14,6 +14,9 @@ Form + + QFormLayout::ExpandingFieldsGrow + diff --git a/core/users/users.h b/core/users/users.h index 9ef680c..e745cad 100644 --- a/core/users/users.h +++ b/core/users/users.h @@ -1,6 +1,6 @@ #ifndef USERS_H #define USERS_H -#include "imetadataplugin.h" +#include "../imetadataplugin.h" #include "userform.h" #include "usersui.h" diff --git a/core/users/usersui.h b/core/users/usersui.h index ff09cb3..c8d062f 100644 --- a/core/users/usersui.h +++ b/core/users/usersui.h @@ -1,9 +1,8 @@ #ifndef USERSUI_H #define USERSUI_H -#include "gridform.h" +#include "../gridform.h" #include "../data/core-data.h" -#include "core-odb.hxx" class UsersUi : public GridForm { diff --git a/countryregister/CMakeLists.txt b/countryregister/CMakeLists.txt new file mode 100644 index 0000000..c2e0f55 --- /dev/null +++ b/countryregister/CMakeLists.txt @@ -0,0 +1,43 @@ +cmake_minimum_required(VERSION 3.24) +project(countryregister) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set (CMAKE_LIBRARY_OUTPUT_DIRECTORY ../plugins) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + REQUIRED) + +add_library(countryregister SHARED + countryregister.cpp + countryregister.h + countryregister_global.h + countryregistergrid.cpp + countryregistergrid.h + data/countrydata.cpp + data/countrydata.h) + +target_compile_definitions(countryregister PRIVATE -DCOUNTRYREGISTER_LIBRARY) + +include_directories(../core) + +target_link_libraries(countryregister + Qt::Core + Qt::Gui + Qt::Widgets + qdecimal + decnumber + QxOrm + core + ) + +install(TARGETS countryregister + LIBRARY DESTINATION ../plugins) \ No newline at end of file diff --git a/countryregister/countryregister.cpp b/countryregister/countryregister.cpp index 6656a4e..c910852 100644 --- a/countryregister/countryregister.cpp +++ b/countryregister/countryregister.cpp @@ -1,7 +1,6 @@ #include "countryregister.h" #include "countryregistergrid.h" -#include "countryregister-odb.hxx" CountryRegister::CountryRegister() { diff --git a/countryregister/countryregister.pro b/countryregister/countryregister.pro deleted file mode 100644 index 71763f2..0000000 --- a/countryregister/countryregister.pro +++ /dev/null @@ -1,41 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2017-05-03T21:05:30 -# -#------------------------------------------------- - -QT += widgets sql - -TARGET = countryregister -TEMPLATE = lib - -DEFINES += COUNTRYREGISTER_LIBRARY - -# The following define makes your compiler emit warnings if you use -# any feature of Qt which as been marked as deprecated (the exact warnings -# depend on your compiler). Please consult the documentation of the -# deprecated API in order to know how to port your code away from it. -DEFINES += QT_DEPRECATED_WARNINGS - -# You can also make your code fail to compile if you use deprecated APIs. -# In order to do so, uncomment the following line. -# You can also select to disable deprecated APIs only up to a certain version of Qt. -#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000 # disables all the APIs deprecated before Qt 6.0.0 - -SOURCES += countryregister.cpp \ - countryregistergrid.cpp \ - data/countrydata.cpp - -HEADERS += countryregister.h\ - countryregister_global.h \ - countryregistergrid.h \ - data/countrydata.h - -include(../config_plugin.pri) - -ODB_FILES = countryregister/data/countrydata.h -H_DIR = $$PWD/data/*.h -include(../odb.pri) - -DISTFILES += \ - countryregister.json diff --git a/countryregister/countryregister_global.h b/countryregister/countryregister_global.h index a5fd140..911b90b 100644 --- a/countryregister/countryregister_global.h +++ b/countryregister/countryregister_global.h @@ -9,4 +9,12 @@ # define COUNTRYREGISTERSHARED_EXPORT Q_DECL_IMPORT #endif +#ifdef COUNTRYREGISTER_LIBRARY +#define QX_REGISTER_HPP_COUNTRY QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_COUNTRY QX_REGISTER_CPP_EXPORT_DLL +#else // COUNTRYREGISTER_LIBRARY +#define QX_REGISTER_HPP_COUNTRY QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_COUNTRY QX_REGISTER_CPP_IMPORT_DLL +#endif + #endif // COUNTRYREGISTER_GLOBAL_H diff --git a/countryregister/countryregistergrid.cpp b/countryregister/countryregistergrid.cpp index 1ce8902..667971d 100644 --- a/countryregister/countryregistergrid.cpp +++ b/countryregister/countryregistergrid.cpp @@ -1,5 +1,4 @@ #include "countryregistergrid.h" -#include "countryregister-odb.hxx" CountryRegisterGrid::CountryRegisterGrid(QWidget *parent) : GridForm(parent) { diff --git a/countryregister/data/countrydata.cpp b/countryregister/data/countrydata.cpp index 147b92d..0b870f2 100644 --- a/countryregister/data/countrydata.cpp +++ b/countryregister/data/countrydata.cpp @@ -1,16 +1,30 @@ #include "countrydata.h" +QX_REGISTER_CPP_COUNTRY(CountryData) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("CountryData"); + t.id(&CountryData::m_id, "id"); + t.data(&CountryData::m_code2, "code2"); + t.data(&CountryData::m_code3, "code3"); + t.data(&CountryData::m_czechFullName, "czechFullName"); + t.data(&CountryData::m_czechName, "czechName"); + t.data(&CountryData::m_englishFullName, "englishFullName"); + t.data(&CountryData::m_englishName, "englishName"); + } +} + CountryData::CountryData(QObject *parent) : ComboItem(parent) { - } -int CountryData::id() const +long CountryData::id() const { return m_id; } -void CountryData::setId(int id) +void CountryData::setId(long id) { m_id = id; } @@ -79,7 +93,7 @@ bool CountryData::eq(ComboItem *other) { CountryData *obj = qobject_cast(other); - if (obj == NULL) + if (obj == nullptr) { return false; } diff --git a/countryregister/data/countrydata.h b/countryregister/data/countrydata.h index 6e45125..73b2bfc 100644 --- a/countryregister/data/countrydata.h +++ b/countryregister/data/countrydata.h @@ -1,25 +1,19 @@ #ifndef COUNTRYDATA_H #define COUNTRYDATA_H -#include #include -#include +#include #include -#include +#include "../countryregister_global.h" +#include +#include #include -#if defined(COUNTRYREGISTER_LIBRARY) -# define COUNTRYREGISTERSHARED_EXPORT Q_DECL_EXPORT -#else -# define COUNTRYREGISTERSHARED_EXPORT Q_DECL_IMPORT -#endif - - -#pragma db object class COUNTRYREGISTERSHARED_EXPORT CountryData : public ComboItem { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(CountryData) Q_PROPERTY(QString code2 READ code2 WRITE setCode2) Q_PROPERTY(QString code3 READ code3 WRITE setCode3) Q_PROPERTY(QString czechFullName READ czechFullName WRITE setCzechFullName) @@ -29,8 +23,8 @@ class COUNTRYREGISTERSHARED_EXPORT CountryData : public ComboItem public: Q_INVOKABLE explicit CountryData(QObject *parent = 0); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString code2() const; void setCode2(const QString &code2); @@ -51,9 +45,7 @@ public: void setEnglishName(const QString &englishName); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id{0}; QString m_code2; QString m_code3; QString m_czechFullName; @@ -64,10 +56,12 @@ private: // ComboItem interface public: - bool eq(ComboItem *other); - QString toString(); + bool eq(ComboItem *other) override; + QString toString() override; }; typedef QSharedPointer CountryDataPtr; +QX_REGISTER_HPP_COUNTRY(CountryData, ComboItem, 0) + #endif // COUNTRYDATA_H diff --git a/odb.pri b/odb.pri deleted file mode 100644 index c778674..0000000 --- a/odb.pri +++ /dev/null @@ -1,98 +0,0 @@ -include(config_odb.pri) - -win32 { - LIBS += -L$$LIB_PATH - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/libodb-2.4.0 - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/libodb-qt-2.4.0 - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/libodb-sqlite-2.4.0 - INCLUDEPATH += $$ODB_INCLUDE_PREFIX/sqlite -} - -win32 { - CONFIG(debug, debug|release) { - LIBS += -lodb-d -lodb-sqlite-d -lodb-qt-d - }else { - LIBS += -lodb -lodb-sqlite -lodb-qt - } -} - -unix { - LIBS += -lodb -lodb-sqlite -lodb-qt -} - -ODB_FLAGS += --database sqlite --profile qt --generate-schema --generate-query --generate-session --at-once --input-name $$TARGET --schema-format sql - -win32 { - ODB_PATH = $$ODB_INCLUDE_PREFIX\odb-2.4.0-i686-windows\bin\odb -} -unix { - ODB_PATH = odb -} - -# Select the database we are going to use. -# -DEFINES += DATABASE_SQLITE - -# Suppress unknown pragmas GCC warnings. -# -#QMAKE_CXXFLAGS_WARN_ON = $$QMAKE_CXXFLAGS_WARN_ON -Wno-unknown-pragmas - -# ODB compilation rules. Normally you don't need to change anything here. -# - -# Add the Qt headers directory to the ODB include directory list. -# -ODB_FLAGS += -I $$[QT_INSTALL_HEADERS] -ODB_FLAGS += -I $$[QT_INSTALL_HEADERS]/QtCore -ODB_FLAGS += -I $$PWD/core -ODB_FLAGS += -I $$PWD/core/data -ODB_FLAGS += -I $$PWD/qdecimal/src -ODB_FLAGS += -I $$PWD/qdecimal/decnumber -ODB_FLAGS += $$ODB_OTHER_INCLUDES -ODB_FLAGS += -x -std=c++11 -x -fPIC - -win32 { - ODB_FLAGS += -I $$ODB_INCLUDE_PREFIX/libodb-2.4.0 -} - -# Newer versions of QtCreator do builds in a separate directory. As a -# result, we need to append the source directory to ODB files. -# -for(dir, ODB_FILES) { - ODB_PWD_FILES += $$PWD/$${dir} -} - -win32 { - H_DIR ~= s,/,\\,g -} -export(H_DIR) - - -odb.name = odb ${QMAKE_FILE_IN} -odb.input = ODB_PWD_FILES -odb.output = $$TARGET-odb.cxx -odb.commands = $$ODB_PATH $$ODB_FLAGS ${QMAKE_FILE_IN} -odb.depends = $$ODB_PWD_FILES -odb.variable_out = SOURCES -odb.CONFIG = target_predeps -odb.clean = $$TARGET-odb.cxx $$TARGET-odb.hxx $$TARGET-odb.ixx $$TARGET.sql *.h *.sql -QMAKE_EXTRA_COMPILERS += odb - -odbh.name = odb ${QMAKE_FILE_IN} -odbh.input = ODB_PWD_FILES -odbh.output = $$TARGET-odb.hxx -odbh.commands = @true -odbh.depends = $$TARGET-odb.cxx -odbh.CONFIG = no_link -QMAKE_EXTRA_COMPILERS += odbh - -odbhc.target = odbhc -unix { - odbhc.commands = $(COPY) -p $$H_DIR . -} -win32 { - odbhc.commands = $(COPY) $$H_DIR . -} -QMAKE_EXTRA_TARGETS += odbhc - -PRE_TARGETDEPS += odbhc diff --git a/postregister/CMakeLists.txt b/postregister/CMakeLists.txt new file mode 100644 index 0000000..d14f9af --- /dev/null +++ b/postregister/CMakeLists.txt @@ -0,0 +1,40 @@ +cmake_minimum_required(VERSION 3.24) +project(postregister) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set (CMAKE_LIBRARY_OUTPUT_DIRECTORY ../plugins) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + REQUIRED) + +add_library(postregister SHARED + postregister.cpp + postregister.h + postregister_global.h + postregistergrid.cpp + postregistergrid.h + data/postdata.cpp + data/postdata.h) + +target_compile_definitions(postregister PRIVATE -DPOSTREGISTER_LIBRARY) + +include_directories(../core) + +target_link_libraries(postregister + Qt::Core + Qt::Gui + Qt::Widgets + qdecimal + decnumber + QxOrm + core + ) diff --git a/postregister/data/postdata.cpp b/postregister/data/postdata.cpp index 5ed831c..c25b6d7 100644 --- a/postregister/data/postdata.cpp +++ b/postregister/data/postdata.cpp @@ -1,5 +1,20 @@ #include "postdata.h" +QX_REGISTER_CPP_POST(PostData) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("PostData"); + t.id(&PostData::m_id, "id"); + t.data(&PostData::m_town, "town"); + t.data(&PostData::m_townPart, "townPart"); + t.data(&PostData::m_township, "township"); + t.data(&PostData::m_zipCode, "zipCode"); + t.data(&PostData::m_postName, "postName"); + t.data(&PostData::m_code, "code"); + } +} + PostData::PostData(QObject *parent) :QObject(parent) { @@ -15,12 +30,12 @@ void PostData::setTownPart(const QString &townPart) m_townPart = townPart; } -int PostData::id() const +long PostData::id() const { return m_id; } -void PostData::setId(int id) +void PostData::setId(long id) { m_id = id; } diff --git a/postregister/data/postdata.h b/postregister/data/postdata.h index cca7f53..3bb1798 100644 --- a/postregister/data/postdata.h +++ b/postregister/data/postdata.h @@ -3,20 +3,16 @@ #include #include -#include - #include +#include -#if defined(POSTREGISTER_LIBRARY) -# define POSTREGISTERSHARED_EXPORT Q_DECL_EXPORT -#else -# define POSTREGISTERSHARED_EXPORT Q_DECL_IMPORT -#endif +#include "../postregister_global.h" -#pragma db object class POSTREGISTERSHARED_EXPORT PostData : public QObject { Q_OBJECT + + QX_REGISTER_FRIEND_CLASS(PostData) Q_PROPERTY(QString townPart READ townPart WRITE setTownPart) Q_PROPERTY(QString zipCode READ zipCode WRITE setZipCode) Q_PROPERTY(QString postName READ postName WRITE setPostName) @@ -25,13 +21,13 @@ class POSTREGISTERSHARED_EXPORT PostData : public QObject Q_PROPERTY(QString town READ town WRITE setTown) public: - Q_INVOKABLE explicit PostData(QObject *parent = NULL); + Q_INVOKABLE explicit PostData(QObject *parent = nullptr); QString townPart() const; void setTownPart(const QString &townPart); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString zipCode() const; void setZipCode(const QString &zipCode); @@ -49,9 +45,7 @@ public: void setTown(const QString &town); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id{0}; QString m_townPart; QString m_zipCode; QString m_postName; @@ -60,4 +54,6 @@ private: QString m_town; }; +QX_REGISTER_HPP_POST(PostData, QObject, 0) + #endif // POSTDATA_H diff --git a/postregister/postregister.cpp b/postregister/postregister.cpp index 9e5cec6..a7b2e93 100644 --- a/postregister/postregister.cpp +++ b/postregister/postregister.cpp @@ -1,11 +1,6 @@ #include "postregister.h" #include "postregistergrid.h" -#include "postregister-odb.hxx" - -PostRegister::PostRegister() -{ -} void PostRegister::initServiceUi() { diff --git a/postregister/postregister.h b/postregister/postregister.h index 8f39bd9..5937596 100644 --- a/postregister/postregister.h +++ b/postregister/postregister.h @@ -12,15 +12,15 @@ class POSTREGISTERSHARED_EXPORT PostRegister : public QObject, IMetaDataPlugin Q_PLUGIN_METADATA(IID PluginInterface_iid FILE "postregister.json") Q_INTERFACES(IPlugin) public: - PostRegister(); + PostRegister() = default; // IMetaDataPlugin interface protected: - void initServiceUi(); + void initServiceUi() override; // IPlugin interface public: - bool showIcon(); + bool showIcon() override; }; #endif // POSTREGISTER_H diff --git a/postregister/postregister.pro b/postregister/postregister.pro deleted file mode 100644 index 264a39a..0000000 --- a/postregister/postregister.pro +++ /dev/null @@ -1,45 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2017-04-21T08:14:36 -# -#------------------------------------------------- - -QT += widgets sql - -TARGET = postregister -TEMPLATE = lib - -DEFINES += POSTREGISTER_LIBRARY - -# The following define makes your compiler emit warnings if you use -# any feature of Qt which as been marked as deprecated (the exact warnings -# depend on your compiler). Please consult the documentation of the -# deprecated API in order to know how to port your code away from it. -DEFINES += QT_DEPRECATED_WARNINGS - -# You can also make your code fail to compile if you use deprecated APIs. -# In order to do so, uncomment the following line. -# You can also select to disable deprecated APIs only up to a certain version of Qt. -#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000 # disables all the APIs deprecated before Qt 6.0.0 - -SOURCES += postregister.cpp \ - data/postdata.cpp \ - postregistergrid.cpp - -HEADERS += postregister.h\ - postregister_global.h \ - data/postdata.h \ - postregistergrid.h - -include(../config_plugin.pri) - -ODB_FILES = postregister/data/postdata.h -H_DIR = $$PWD/data/*.h -include(../odb.pri) - -DISTFILES += \ - postregister.json - -FORMS += - -RESOURCES += diff --git a/postregister/postregister_global.h b/postregister/postregister_global.h index 99d2cc7..792e7f0 100644 --- a/postregister/postregister_global.h +++ b/postregister/postregister_global.h @@ -9,4 +9,12 @@ # define POSTREGISTERSHARED_EXPORT Q_DECL_IMPORT #endif +#ifdef POSTREGISTER_LIBRARY +#define QX_REGISTER_HPP_POST QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_POST QX_REGISTER_CPP_EXPORT_DLL +#else // POSTREGISTER_LIBRARY +#define QX_REGISTER_HPP_POST QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_POST QX_REGISTER_CPP_IMPORT_DLL +#endif + #endif // POSTREGISTER_GLOBAL_H diff --git a/postregister/postregistergrid.cpp b/postregister/postregistergrid.cpp index 4a0c1fd..f995d2c 100644 --- a/postregister/postregistergrid.cpp +++ b/postregister/postregistergrid.cpp @@ -2,8 +2,6 @@ #include #include -#include "postregister-odb.hxx" - PostRegisterGrid::PostRegisterGrid(QWidget *parent) :GridForm(parent) { diff --git a/postregister/postregistergrid.h b/postregister/postregistergrid.h index 226de16..c281fdf 100644 --- a/postregister/postregistergrid.h +++ b/postregister/postregistergrid.h @@ -7,13 +7,13 @@ class PostRegisterGrid : public GridForm { public: - PostRegisterGrid(QWidget *parent = NULL); + PostRegisterGrid(QWidget *parent = nullptr); // IGridForm interface protected: - bool canAddRecord(); - bool canEditRecord(); - bool canDeleteRecord(); + bool canAddRecord() override; + bool canEditRecord() override; + bool canDeleteRecord() override; }; #endif // POSTREGISTERGRID_H diff --git a/prodejna.pro b/prodejna.pro deleted file mode 100644 index a84833e..0000000 --- a/prodejna.pro +++ /dev/null @@ -1,14 +0,0 @@ -TEMPLATE = subdirs -CONFIG += ordered - -SUBDIRS += \ - qdecimal \ - core \ - application \ - services \ - postregister \ - countryregister \ - addressbook \ - shop \ - commodity \ - camp diff --git a/qdecimal/README.md b/qdecimal/README.md deleted file mode 100644 index a4df7f8..0000000 --- a/qdecimal/README.md +++ /dev/null @@ -1,61 +0,0 @@ -# QDecimal Library - -The QDecimal is a thin layer around IBM's decNumber library which implements the General Decimal Arithmetic Specification in ANSI C.[1] This specification defines a decimal arithmetic which meets the requirements of commercial, financial, and human-oriented applications. It also matches the decimal arithmetic in the IEEE 754 Standard for Floating Point Arithmetic. The decNumber library also matches the decimal arithmetic in the IEEE 754 Standard for Floating Point Arithmetic. - -The QDecimal/decNumberlibrary,[2] fully implements the specification, and hence supports integer, fixed-point, and floating-point decimal numbers directly, including infinite, NaN (Not a Number), and subnormal values. Both arbitrary-precision and fixed-size representations are supported. - -The aim of the QDecimal library is to extend decNumber functionality to C++ language and Qt framework by using idioms, tecniques and best practices in both tecnologies. For instance, inline functions are used heavily to aid optimization, operator overloading and conversion operators are defined to aid type casting in between the types defined by QDecimal. Further these types are integrated with Qt object model by introducing them to Qt meta type system. - -Following classes are defined by QDecimal library: - -**QDecNumber** (based on decNumber): - -decNumber module uses an arbitrary-precision decimal number representation designed for efficient computation in software and implements the arithmetic and logical operations, together with a number of conversions and utilities. Once a number is held as a decNumber, no further conversions are necessary to carry out arithmetic. The decNumber representation is variable-length and machine-dependent (for example, it contains integers which may be big-endian or little-endian). QDecNumber encapsulates decNumber and reimplements global functions that operates upon decNumber as member functions with the same name. - -**QDecContext** (based on decContext): - -Most functions in the decNumber module take as an argument a decContext structure, which provides the context for operations (precision, rounding mode, etc.) and also controls the handling of exceptional conditions (corresponding to the flags and trap enablers in a hardware floating-point implementation). - -**QDecSingle** (based on decSingle/decimal32): - -decimal32 is a 32-bit decimal floating-point representation which provides 7 decimal digits of precision in a compressed format. decSingle module provides the functions for the decimal32 format; this format is intended for storage and interchange only and so the module provides utilities and conversions but no arithmetic functions. QDecSingle encapsulates decSingle and provides decNumber library functions that operates upon decSingle as member functions with the same name. - -**QDecDouble** (based on decDouble/decimal64): - -decimal64 is a 64-bit decimal floating-point representation which provides 16 decimal digits of precision in a compressed format. decDouble module provides the functions for the decimal64 format; this format is an IEEE 754 basic format and so a full set of arithmetic and other functions is included. QDecDouble encapsulates decDouble and provides decNumber library functions that operates upon decDouble as member functions with the same name. - -**QDecQuad** (based on decQuad/decimal128): - -decimal128 is a 128-bit decimal floating-point representation which provides 34 decimal digits of precision in a compressed format. decQuad module provides the functions for the decimal128 format; this format is an IEEE 754 basic format; it contains the same set of functions as decDouble. QDecQuad encapsulates decQuad and provides decNumber library functions that operates upon decQuad as member functions with the same name. - -**QDecPacked** (based on decPacked): - -The decPacked format is the classic packed decimal format implemented by IBM S/360 and later machines, where each digit is encoded as a 4-bit binary sequence (BCD) and a number is ended by a 4-bit sign indicator. The decPacked module accepts variable lengths, allowing for very large numbers (up to a billion digits), and also allows the specification of a scale. QDecPacked augments decPacked by encapsulating reference counted byte array and scale of the decimal point as members variables, thus, freeing up user of this class from memory management and keeping track of scale value. - -## License ## -QDecimal is under the terms of the LGPL v2.1. decNumber is under the terms of ICU v1.8.1 See COPYRIGHT file for terms of the these licenses. - -## Platforms ## -QDecimal should be usable in all platforms that Qt supports. We regularly test on following platforms: Solaris 11 x86 (sun studio 12.5) Linux (Ubuntu x64 - gcc) Linux (Ubuntu x86 - gcc) Windows XP (msvc 2012) - -## Installation ## -Read INSTALL.txt to build and install QDecimal. - -## Copyright ## -Copyright (C) 2012-16 Semih Cemiloglu - -This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details (COPYRIGHT.txt). - -## Credits ## -We are grateful to Mike Cowlishaw et al. from IBM for making decNumber package available. Mr. Cowlishaw has kindly helped while making QDecimal production ready. - -## References ## -1. General Decimal Arithmetic Specification: http://speleotrove.com/decimal/decarith.html - -2. The decNumber Library: http://speleotrove.com/decimal/decnumber.html - -3. General Decimal Arithmetic: http://speleotrove.com/decimal/ - - diff --git a/qdecimal/SConsCfg.py b/qdecimal/SConsCfg.py deleted file mode 100644 index 0d0b6d2..0000000 --- a/qdecimal/SConsCfg.py +++ /dev/null @@ -1,8 +0,0 @@ -# -# Configuration/Defaults file for SConscript. -# This is Python file. -# Store frequently used command-line variables in this file rather than -# suppying them to scons at each invocation. - -#build_mode = 'rel' -use_plat = 1 diff --git a/qdecimal/SConstruct b/qdecimal/SConstruct deleted file mode 100644 index 216aab8..0000000 --- a/qdecimal/SConstruct +++ /dev/null @@ -1,66 +0,0 @@ -#!python -# -*-python-*- -import os -import sys -import SConsLib - - - -# Construct variables object by merging command-line settings and -# configuration file. -vars = SConsLib.constructVariables('SConsCfg.py') - -# Instantiate Scons environment -env = Environment( - variables = vars, - MSVC_VERSION='11.0', # VMSVC 2012 choose any version you prefer - TARGET_ARCH='x86', # x86 -> 32bit or x86_64 => 64bit - PREFIX = GetOption('prefix') -) - -# Check for unrecognized variables and warn -SConsLib.checkUnknownVariables(vars) - -# Setup Scons environment to be used during build -SConsLib.setupEnvironment(env) - -# Further refinements to the environment -Help(vars.GenerateHelpText(env)) -env.Decider('timestamp-newer') -env.SetOption('implicit_cache', 1) - -# Identify Qt location -if sys.platform.startswith('win'): - qtdir = SConsLib.findQtDir('Q:/Qt/5.5.1') -elif sys.platform.startswith('linux'): - qtdir = SConsLib.findQtDir('/home/semih/Qt/5.5.1') - -# Set QT5DIR -env['QT5DIR'] = qtdir -env['ENV']['PKG_CONFIG_PATH'] = os.path.join(qtdir, 'lib/pkgconfig') -# Add qt5 tool -env.Tool('qt5') -# Normally in SConscript files -env.EnableQt5Modules([ - 'QtCore', - 'QtTest' -]) -#...further customization of Qt env -if sys.platform == 'win32': - if 'cl' in env['CC']: - env.AppendUnique(CPPPATH = ['#', '.']) - env.AppendUnique(CCFLAGS = [ '-EHsc', '-Zc:wchar_t', '-Zc:forScope' ]) - env.AppendUnique(CPPDEFINES = ['UNICODE', 'WIN32', '_CRT_SECURE_NO_WARNINGS']) -elif 'linux' in sys.platform: - pass - - -# Source directories that we expect to find SConscript files: -src_dirs = Split('decnumber src test') - -# Read and process SConscript files -SConsLib.readSConscriptFiles(env, src_dirs) - -# Use progress indicator to get feedback from SCons -SConsLib.useProgress() - diff --git a/qdecimal/common.pri b/qdecimal/common.pri deleted file mode 100644 index 5414398..0000000 --- a/qdecimal/common.pri +++ /dev/null @@ -1,35 +0,0 @@ -# Following are defaults for decnumber library. -# These defines must be defined when library clients are compiled. -# We don't recommend enabling them unless it's specifically required. -#DEFINES += DECNUMDIGITS=34 # default is 34 -#DEFINES += DECSUBSET=0 # default is 0 -#DEFINES += DECEXTFLAG=1 # default is 1 -#DEFINES += DECLITEND=0 # default is 1 - -#CONFIG += debug - - -if(win32) { - INCLUDEPATH += . - # Remove Qt's defaults - QMAKE_CXXFLAGS -= -Zc:wchar_t- - # Add our defaults - QMAKE_CXXFLAGS += /Zc:forScope /Zc:wchar_t - DEFINES *= _CRT_SECURE_NO_WARNINGS - # Are we in debug mode? - debug { - # Use iterator debugging - #DEFINES *= _SECURE_SCL=1 - #DEFINES *= _SECURE_SCL_THROWS=1 - #msvc2010 onwards above flags are deprecated. - - # Use Run-time checks for stack corruption and uninitialized var use - #QMAKE_CXXFLAGS += /RTC1 - } - -} # end win32 -else { - MOC_DIR = moc - OBJECTS_DIR = obj -} - diff --git a/qdecimal/decnumber/Port_stdint.h b/qdecimal/decnumber/Port_stdint.h deleted file mode 100644 index 6d8077a..0000000 --- a/qdecimal/decnumber/Port_stdint.h +++ /dev/null @@ -1,735 +0,0 @@ -#ifndef TC_PORTABLE_STDINT_H -#define TC_PORTABLE_STDINT_H - -/** - * \file Port_stdint.h - * A portable stdint.h - **************************************************************************** - * BSD License: - **************************************************************************** - * - * Copyright (c) 2005-2007 Paul Hsieh - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. The name of the author may not be used to endorse or promote products - * derived from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR - * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. - * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - **************************************************************************** - * - * Version 0.1.11 - * - * The ANSI C standard committee, for the C99 standard, specified the - * inclusion of a new standard include file called stdint.h. This is - * a very useful and long desired include file which contains several - * very precise definitions for integer scalar types that is - * critically important for making portable several classes of - * applications including cryptography, hashing, variable length - * integer libraries and so on. But for most developers its likely - * useful just for programming sanity. - * - * The problem is that most compiler vendors have decided not to - * implement the C99 standard, and the next C++ language standard - * (which has a lot more mindshare these days) will be a long time in - * coming and its unknown whether or not it will include stdint.h or - * how much adoption it will have. Either way, it will be a long time - * before all compilers come with a stdint.h and it also does nothing - * for the extremely large number of compilers available today which - * do not include this file, or anything comparable to it. - * - * So that's what this file is all about. Its an attempt to build a - * single universal include file that works on as many platforms as - * possible to deliver what stdint.h is supposed to. A few things - * that should be noted about this file: - * - * 1) It is not guaranteed to be portable and/or present an identical - * interface on all platforms. The extreme variability of the - * ANSI C standard makes this an impossibility right from the - * very get go. Its really only meant to be useful for the vast - * majority of platforms that possess the capability of - * implementing usefully and precisely defined, standard sized - * integer scalars. Systems which are not intrinsically 2s - * complement may produce invalid constants. - * - * 2) There is an unavoidable use of non-reserved symbols. - * - * 3) Other standard include files are invoked. - * - * 4) This file may come in conflict with future platforms that do - * include stdint.h. The hope is that one or the other can be - * used with no real difference. - * - * 5) In the current verison, if your platform can't represent - * int32_t, int16_t and int8_t, it just dumps out with a compiler - * error. - * - * 6) 64 bit integers may or may not be defined. Test for their - * presence with the test: #ifdef INT64_MAX or #ifdef UINT64_MAX. - * Note that this is different from the C99 specification which - * requires the existence of 64 bit support in the compiler. If - * this is not defined for your platform, yet it is capable of - * dealing with 64 bits then it is because this file has not yet - * been extended to cover all of your system's capabilities. - * - * 7) (u)intptr_t may or may not be defined. Test for its presence - * with the test: #ifdef PTRDIFF_MAX. If this is not defined - * for your platform, then it is because this file has not yet - * been extended to cover all of your system's capabilities, not - * because its optional. - * - * 8) The following might not been defined even if your platform is - * capable of defining it: - * - * WCHAR_MIN - * WCHAR_MAX - * (u)int64_t - * PTRDIFF_MIN - * PTRDIFF_MAX - * (u)intptr_t - * - * 9) The following have not been defined: - * - * WINT_MIN - * WINT_MAX - * - * 10) The criteria for defining (u)int_least(*)_t isn't clear, - * except for systems which don't have a type that precisely - * defined 8, 16, or 32 bit types (which this include file does - * not support anyways). Default definitions have been given. - * - * 11) The criteria for defining (u)int_fast(*)_t isn't something I - * would trust to any particular compiler vendor or the ANSI C - * committee. It is well known that "compatible systems" are - * commonly created that have very different performance - * characteristics from the systems they are compatible with, - * especially those whose vendors make both the compiler and the - * system. Default definitions have been given, but its strongly - * recommended that users never use these definitions for any - * reason (they do *NOT* deliver any serious guarantee of - * improved performance -- not in this file, nor any vendor's - * stdint.h). - * - * 12) The following macros: - * - * PRINTF_INTMAX_MODIFIER - * PRINTF_INT64_MODIFIER - * PRINTF_INT32_MODIFIER - * PRINTF_INT16_MODIFIER - * PRINTF_LEAST64_MODIFIER - * PRINTF_LEAST32_MODIFIER - * PRINTF_LEAST16_MODIFIER - * PRINTF_INTPTR_MODIFIER - * - * are strings which have been defined as the modifiers required - * for the "d", "u" and "x" printf formats to correctly output - * (u)intmax_t, (u)int64_t, (u)int32_t, (u)int16_t, (u)least64_t, - * (u)least32_t, (u)least16_t and (u)intptr_t types respectively. - * PRINTF_INTPTR_MODIFIER is not defined for some systems which - * provide their own stdint.h. PRINTF_INT64_MODIFIER is not - * defined if INT64_MAX is not defined. These are an extension - * beyond what C99 specifies must be in stdint.h. - * - * In addition, the following macros are defined: - * - * PRINTF_INTMAX_HEX_WIDTH - * PRINTF_INT64_HEX_WIDTH - * PRINTF_INT32_HEX_WIDTH - * PRINTF_INT16_HEX_WIDTH - * PRINTF_INT8_HEX_WIDTH - * PRINTF_INTMAX_DEC_WIDTH - * PRINTF_INT64_DEC_WIDTH - * PRINTF_INT32_DEC_WIDTH - * PRINTF_INT16_DEC_WIDTH - * PRINTF_INT8_DEC_WIDTH - * - * Which specifies the maximum number of characters required to - * print the number of that type in either hexadecimal or decimal. - * These are an extension beyond what C99 specifies must be in - * stdint.h. - * - * Compilers tested (all with 0 warnings at their highest respective - * settings): Borland Turbo C 2.0, WATCOM C/C++ 11.0 (16 bits and 32 - * bits), Microsoft Visual C++ 6.0 (32 bit), Microsoft Visual Studio - * .net (VC7), Intel C++ 4.0, GNU gcc v3.3.3 - * - * This file should be considered a work in progress. Suggestions for - * improvements, especially those which increase coverage are strongly - * encouraged. - * - * Acknowledgements - * - * The following people have made significant contributions to the - * development and testing of this file: - * - * Chris Howie - * John Steele Scott - * Dave Thorup - * - */ - -#include -#include -#include - -/* - * For gcc with _STDINT_H, fill in the PRINTF_INT*_MODIFIER macros, and - * do nothing else. On the Mac OS X version of gcc this is _STDINT_H_. - */ - -#if ((defined(__STDC__) && __STDC__ && __STDC_VERSION__ >= 199901L) || (defined (__WATCOMC__) && (defined (_STDINT_H_INCLUDED) || __WATCOMC__ >= 1250)) || (defined(__GNUC__) && (defined(_STDINT_H) || defined(_STDINT_H_)) )) && !defined (_PSTDINT_H_INCLUDED) -#include -#define _PSTDINT_H_INCLUDED -# ifndef PRINTF_INT64_MODIFIER -# define PRINTF_INT64_MODIFIER "ll" -# endif -# ifndef PRINTF_INT32_MODIFIER -# define PRINTF_INT32_MODIFIER "l" -# endif -# ifndef PRINTF_INT16_MODIFIER -# define PRINTF_INT16_MODIFIER "h" -# endif -# ifndef PRINTF_INTMAX_MODIFIER -# define PRINTF_INTMAX_MODIFIER PRINTF_INT64_MODIFIER -# endif -# ifndef PRINTF_INT64_HEX_WIDTH -# define PRINTF_INT64_HEX_WIDTH "16" -# endif -# ifndef PRINTF_INT32_HEX_WIDTH -# define PRINTF_INT32_HEX_WIDTH "8" -# endif -# ifndef PRINTF_INT16_HEX_WIDTH -# define PRINTF_INT16_HEX_WIDTH "4" -# endif -# ifndef PRINTF_INT8_HEX_WIDTH -# define PRINTF_INT8_HEX_WIDTH "2" -# endif -# ifndef PRINTF_INT64_DEC_WIDTH -# define PRINTF_INT64_DEC_WIDTH "20" -# endif -# ifndef PRINTF_INT32_DEC_WIDTH -# define PRINTF_INT32_DEC_WIDTH "10" -# endif -# ifndef PRINTF_INT16_DEC_WIDTH -# define PRINTF_INT16_DEC_WIDTH "5" -# endif -# ifndef PRINTF_INT8_DEC_WIDTH -# define PRINTF_INT8_DEC_WIDTH "3" -# endif -# ifndef PRINTF_INTMAX_HEX_WIDTH -# define PRINTF_INTMAX_HEX_WIDTH PRINTF_INT64_HEX_WIDTH -# endif -# ifndef PRINTF_INTMAX_DEC_WIDTH -# define PRINTF_INTMAX_DEC_WIDTH PRINTF_INT64_DEC_WIDTH -# endif - -/* - * Something really weird is going on with Open Watcom. Just pull some of - * these duplicated definitions from Open Watcom's stdint.h file for now. - */ - -# if defined (__WATCOMC__) && __WATCOMC__ >= 1250 -# if !defined (INT64_C) -# define INT64_C(x) (x + (INT64_MAX - INT64_MAX)) -# endif -# if !defined (UINT64_C) -# define UINT64_C(x) (x + (UINT64_MAX - UINT64_MAX)) -# endif -# if !defined (INT32_C) -# define INT32_C(x) (x + (INT32_MAX - INT32_MAX)) -# endif -# if !defined (UINT32_C) -# define UINT32_C(x) (x + (UINT32_MAX - UINT32_MAX)) -# endif -# if !defined (INT16_C) -# define INT16_C(x) (x) -# endif -# if !defined (UINT16_C) -# define UINT16_C(x) (x) -# endif -# if !defined (INT8_C) -# define INT8_C(x) (x) -# endif -# if !defined (UINT8_C) -# define UINT8_C(x) (x) -# endif -# if !defined (UINT64_MAX) -# define UINT64_MAX 18446744073709551615ULL -# endif -# if !defined (INT64_MAX) -# define INT64_MAX 9223372036854775807LL -# endif -# if !defined (UINT32_MAX) -# define UINT32_MAX 4294967295UL -# endif -# if !defined (INT32_MAX) -# define INT32_MAX 2147483647L -# endif -# if !defined (INTMAX_MAX) -# define INTMAX_MAX INT64_MAX -# endif -# if !defined (INTMAX_MIN) -# define INTMAX_MIN INT64_MIN -# endif -# endif -#endif - -#ifndef _PSTDINT_H_INCLUDED -#define _PSTDINT_H_INCLUDED - -#ifndef SIZE_MAX -# define SIZE_MAX (~(size_t)0) -#endif - -/* - * Deduce the type assignments from limits.h under the assumption that - * integer sizes in bits are powers of 2, and follow the ANSI - * definitions. - */ - -#ifndef UINT8_MAX -# define UINT8_MAX 0xff -#endif -#ifndef uint8_t -# if (UCHAR_MAX == UINT8_MAX) || defined (S_SPLINT_S) - typedef unsigned char uint8_t; -# define UINT8_C(v) ((uint8_t) v) -# else -# error "Platform not supported" -# endif -#endif - -#ifndef INT8_MAX -# define INT8_MAX 0x7f -#endif -#ifndef INT8_MIN -# define INT8_MIN INT8_C(0x80) -#endif -#ifndef int8_t -# if (SCHAR_MAX == INT8_MAX) || defined (S_SPLINT_S) - typedef signed char int8_t; -# define INT8_C(v) ((int8_t) v) -# else -# error "Platform not supported" -# endif -#endif - -#ifndef UINT16_MAX -# define UINT16_MAX 0xffff -#endif -#ifndef uint16_t -#if (UINT_MAX == UINT16_MAX) || defined (S_SPLINT_S) - typedef unsigned int uint16_t; -# ifndef PRINTF_INT16_MODIFIER -# define PRINTF_INT16_MODIFIER "" -# endif -# define UINT16_C(v) ((uint16_t) (v)) -#elif (USHRT_MAX == UINT16_MAX) - typedef unsigned short uint16_t; -# define UINT16_C(v) ((uint16_t) (v)) -# ifndef PRINTF_INT16_MODIFIER -# define PRINTF_INT16_MODIFIER "h" -# endif -#else -#error "Platform not supported" -#endif -#endif - -#ifndef INT16_MAX -# define INT16_MAX 0x7fff -#endif -#ifndef INT16_MIN -# define INT16_MIN INT16_C(0x8000) -#endif -#ifndef int16_t -#if (INT_MAX == INT16_MAX) || defined (S_SPLINT_S) - typedef signed int int16_t; -# define INT16_C(v) ((int16_t) (v)) -# ifndef PRINTF_INT16_MODIFIER -# define PRINTF_INT16_MODIFIER "" -# endif -#elif (SHRT_MAX == INT16_MAX) - typedef signed short int16_t; -# define INT16_C(v) ((int16_t) (v)) -# ifndef PRINTF_INT16_MODIFIER -# define PRINTF_INT16_MODIFIER "h" -# endif -#else -#error "Platform not supported" -#endif -#endif - -#ifndef UINT32_MAX -# define UINT32_MAX (0xffffffffUL) -#endif -#ifndef uint32_t -#if (ULONG_MAX == UINT32_MAX) || defined (S_SPLINT_S) - typedef unsigned long uint32_t; -# define UINT32_C(v) v ## UL -# ifndef PRINTF_INT32_MODIFIER -# define PRINTF_INT32_MODIFIER "l" -# endif -#elif (UINT_MAX == UINT32_MAX) - typedef unsigned int uint32_t; -# ifndef PRINTF_INT32_MODIFIER -# define PRINTF_INT32_MODIFIER "" -# endif -# define UINT32_C(v) v ## U -#elif (USHRT_MAX == UINT32_MAX) - typedef unsigned short uint32_t; -# define UINT32_C(v) ((unsigned short) (v)) -# ifndef PRINTF_INT32_MODIFIER -# define PRINTF_INT32_MODIFIER "" -# endif -#else -#error "Platform not supported" -#endif -#endif - -#ifndef INT32_MAX -# define INT32_MAX (0x7fffffffL) -#endif -#ifndef INT32_MIN -# define INT32_MIN INT32_C(0x80000000) -#endif -#ifndef int32_t -#if (LONG_MAX == INT32_MAX) || defined (S_SPLINT_S) - typedef signed long int32_t; -# define INT32_C(v) v ## L -# ifndef PRINTF_INT32_MODIFIER -# define PRINTF_INT32_MODIFIER "l" -# endif -#elif (INT_MAX == INT32_MAX) - typedef signed int int32_t; -# define INT32_C(v) v -# ifndef PRINTF_INT32_MODIFIER -# define PRINTF_INT32_MODIFIER "" -# endif -#elif (SHRT_MAX == INT32_MAX) - typedef signed short int32_t; -# define INT32_C(v) ((short) (v)) -# ifndef PRINTF_INT32_MODIFIER -# define PRINTF_INT32_MODIFIER "" -# endif -#else -#error "Platform not supported" -#endif -#endif - -/* - * The macro stdint_int64_defined is temporarily used to record - * whether or not 64 integer support is available. It must be - * defined for any 64 integer extensions for new platforms that are - * added. - */ - -#undef stdint_int64_defined -#if (defined(__STDC__) && defined(__STDC_VERSION__)) || defined (S_SPLINT_S) -# if (__STDC__ && __STDC_VERSION >= 199901L) || defined (S_SPLINT_S) -# define stdint_int64_defined - typedef long long int64_t; - typedef unsigned long long uint64_t; -# define UINT64_C(v) v ## ULL -# define INT64_C(v) v ## LL -# ifndef PRINTF_INT64_MODIFIER -# define PRINTF_INT64_MODIFIER "ll" -# endif -# endif -#endif - -#if !defined (stdint_int64_defined) -# if defined(__GNUC__) -# define stdint_int64_defined - __extension__ typedef long long int64_t; - __extension__ typedef unsigned long long uint64_t; -# define UINT64_C(v) v ## ULL -# define INT64_C(v) v ## LL -# ifndef PRINTF_INT64_MODIFIER -# define PRINTF_INT64_MODIFIER "ll" -# endif -# elif defined(__MWERKS__) || defined (__SUNPRO_C) || defined (__SUNPRO_CC) || defined (__APPLE_CC__) || defined (_LONG_LONG) || defined (_CRAYC) || defined (S_SPLINT_S) -# define stdint_int64_defined - typedef long long int64_t; - typedef unsigned long long uint64_t; -# define UINT64_C(v) v ## ULL -# define INT64_C(v) v ## LL -# ifndef PRINTF_INT64_MODIFIER -# define PRINTF_INT64_MODIFIER "ll" -# endif -# elif (defined(__WATCOMC__) && defined(__WATCOM_INT64__)) || (defined(_MSC_VER) && _INTEGRAL_MAX_BITS >= 64) || (defined (__BORLANDC__) && __BORLANDC__ > 0x460) || defined (__alpha) || defined (__DECC) -# define stdint_int64_defined - typedef __int64 int64_t; - typedef unsigned __int64 uint64_t; -# define UINT64_C(v) v ## UI64 -# define INT64_C(v) v ## I64 -# ifndef PRINTF_INT64_MODIFIER -# define PRINTF_INT64_MODIFIER "I64" -# endif -# endif -#endif - -#if !defined (LONG_LONG_MAX) && defined (INT64_C) -# define LONG_LONG_MAX INT64_C (9223372036854775807) -#endif -#ifndef ULONG_LONG_MAX -# define ULONG_LONG_MAX UINT64_C (18446744073709551615) -#endif - -#if !defined (INT64_MAX) && defined (INT64_C) -# define INT64_MAX INT64_C (9223372036854775807) -#endif -#if !defined (INT64_MIN) && defined (INT64_C) -# define INT64_MIN INT64_C (-9223372036854775808) -#endif -#if !defined (UINT64_MAX) && defined (INT64_C) -# define UINT64_MAX UINT64_C (18446744073709551615) -#endif - -/* - * Width of hexadecimal for number field. - */ - -#ifndef PRINTF_INT64_HEX_WIDTH -# define PRINTF_INT64_HEX_WIDTH "16" -#endif -#ifndef PRINTF_INT32_HEX_WIDTH -# define PRINTF_INT32_HEX_WIDTH "8" -#endif -#ifndef PRINTF_INT16_HEX_WIDTH -# define PRINTF_INT16_HEX_WIDTH "4" -#endif -#ifndef PRINTF_INT8_HEX_WIDTH -# define PRINTF_INT8_HEX_WIDTH "2" -#endif - -#ifndef PRINTF_INT64_DEC_WIDTH -# define PRINTF_INT64_DEC_WIDTH "20" -#endif -#ifndef PRINTF_INT32_DEC_WIDTH -# define PRINTF_INT32_DEC_WIDTH "10" -#endif -#ifndef PRINTF_INT16_DEC_WIDTH -# define PRINTF_INT16_DEC_WIDTH "5" -#endif -#ifndef PRINTF_INT8_DEC_WIDTH -# define PRINTF_INT8_DEC_WIDTH "3" -#endif - -/* - * Ok, lets not worry about 128 bit integers for now. Moore's law says - * we don't need to worry about that until about 2040 at which point - * we'll have bigger things to worry about. - */ - -#ifdef stdint_int64_defined - typedef int64_t intmax_t; - typedef uint64_t uintmax_t; -# define INTMAX_MAX INT64_MAX -# define INTMAX_MIN INT64_MIN -# define UINTMAX_MAX UINT64_MAX -# define UINTMAX_C(v) UINT64_C(v) -# define INTMAX_C(v) INT64_C(v) -# ifndef PRINTF_INTMAX_MODIFIER -# define PRINTF_INTMAX_MODIFIER PRINTF_INT64_MODIFIER -# endif -# ifndef PRINTF_INTMAX_HEX_WIDTH -# define PRINTF_INTMAX_HEX_WIDTH PRINTF_INT64_HEX_WIDTH -# endif -# ifndef PRINTF_INTMAX_DEC_WIDTH -# define PRINTF_INTMAX_DEC_WIDTH PRINTF_INT64_DEC_WIDTH -# endif -#else - typedef int32_t intmax_t; - typedef uint32_t uintmax_t; -# define INTMAX_MAX INT32_MAX -# define UINTMAX_MAX UINT32_MAX -# define UINTMAX_C(v) UINT32_C(v) -# define INTMAX_C(v) INT32_C(v) -# ifndef PRINTF_INTMAX_MODIFIER -# define PRINTF_INTMAX_MODIFIER PRINTF_INT32_MODIFIER -# endif -# ifndef PRINTF_INTMAX_HEX_WIDTH -# define PRINTF_INTMAX_HEX_WIDTH PRINTF_INT32_HEX_WIDTH -# endif -# ifndef PRINTF_INTMAX_DEC_WIDTH -# define PRINTF_INTMAX_DEC_WIDTH PRINTF_INT32_DEC_WIDTH -# endif -#endif - -/* - * Because this file currently only supports platforms which have - * precise powers of 2 as bit sizes for the default integers, the - * least definitions are all trivial. Its possible that a future - * version of this file could have different definitions. - */ - -#ifndef stdint_least_defined - typedef int8_t int_least8_t; - typedef uint8_t uint_least8_t; - typedef int16_t int_least16_t; - typedef uint16_t uint_least16_t; - typedef int32_t int_least32_t; - typedef uint32_t uint_least32_t; -# define PRINTF_LEAST32_MODIFIER PRINTF_INT32_MODIFIER -# define PRINTF_LEAST16_MODIFIER PRINTF_INT16_MODIFIER -# define UINT_LEAST8_MAX UINT8_MAX -# define INT_LEAST8_MAX INT8_MAX -# define UINT_LEAST16_MAX UINT16_MAX -# define INT_LEAST16_MAX INT16_MAX -# define UINT_LEAST32_MAX UINT32_MAX -# define INT_LEAST32_MAX INT32_MAX -# define INT_LEAST8_MIN INT8_MIN -# define INT_LEAST16_MIN INT16_MIN -# define INT_LEAST32_MIN INT32_MIN -# ifdef stdint_int64_defined - typedef int64_t int_least64_t; - typedef uint64_t uint_least64_t; -# define PRINTF_LEAST64_MODIFIER PRINTF_INT64_MODIFIER -# define UINT_LEAST64_MAX UINT64_MAX -# define INT_LEAST64_MAX INT64_MAX -# define INT_LEAST64_MIN INT64_MIN -# endif -#endif -#undef stdint_least_defined - -/* - * The ANSI C committee pretending to know or specify anything about - * performance is the epitome of misguided arrogance. The mandate of - * this file is to *ONLY* ever support that absolute minimum - * definition of the fast integer types, for compatibility purposes. - * No extensions, and no attempt to suggest what may or may not be a - * faster integer type will ever be made in this file. Developers are - * warned to stay away from these types when using this or any other - * stdint.h. - */ - -typedef int_least8_t int_fast8_t; -typedef uint_least8_t uint_fast8_t; -typedef int_least16_t int_fast16_t; -typedef uint_least16_t uint_fast16_t; -typedef int_least32_t int_fast32_t; -typedef uint_least32_t uint_fast32_t; -#define UINT_FAST8_MAX UINT_LEAST8_MAX -#define INT_FAST8_MAX INT_LEAST8_MAX -#define UINT_FAST16_MAX UINT_LEAST16_MAX -#define INT_FAST16_MAX INT_LEAST16_MAX -#define UINT_FAST32_MAX UINT_LEAST32_MAX -#define INT_FAST32_MAX INT_LEAST32_MAX -#define INT_FAST8_MIN INT_LEAST8_MIN -#define INT_FAST16_MIN INT_LEAST16_MIN -#define INT_FAST32_MIN INT_LEAST32_MIN -#ifdef stdint_int64_defined - typedef int_least64_t int_fast64_t; - typedef uint_least64_t uint_fast64_t; -# define UINT_FAST64_MAX UINT_LEAST64_MAX -# define INT_FAST64_MAX INT_LEAST64_MAX -# define INT_FAST64_MIN INT_LEAST64_MIN -#endif - -#undef stdint_int64_defined - -/* - * Whatever piecemeal, per compiler thing we can do about the wchar_t - * type limits. - */ - -#if defined(__WATCOMC__) || defined(_MSC_VER) || defined (__GNUC__) -# include -# ifndef WCHAR_MIN -# define WCHAR_MIN 0 -# endif -# ifndef WCHAR_MAX -# define WCHAR_MAX ((wchar_t)-1) -# endif -#endif - -/* - * Whatever piecemeal, per compiler/platform thing we can do about the - * (u)intptr_t types and limits. - */ - -#if defined (_MSC_VER) && defined (_UINTPTR_T_DEFINED) -# define STDINT_H_UINTPTR_T_DEFINED -#endif - -#ifndef STDINT_H_UINTPTR_T_DEFINED -# if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) || defined (_WIN64) -# define stdint_intptr_bits 64 -# elif defined (__WATCOMC__) || defined (__TURBOC__) -# if defined(__TINY__) || defined(__SMALL__) || defined(__MEDIUM__) -# define stdint_intptr_bits 16 -# else -# define stdint_intptr_bits 32 -# endif -# elif defined (__i386__) || defined (_WIN32) || defined (WIN32) -# define stdint_intptr_bits 32 -# elif defined (__INTEL_COMPILER) -/* TODO -- what will Intel do about x86-64? */ -# endif - -# ifdef stdint_intptr_bits -# define stdint_intptr_glue3_i(a,b,c) a##b##c -# define stdint_intptr_glue3(a,b,c) stdint_intptr_glue3_i(a,b,c) -# ifndef PRINTF_INTPTR_MODIFIER -# define PRINTF_INTPTR_MODIFIER stdint_intptr_glue3(PRINTF_INT,stdint_intptr_bits,_MODIFIER) -# endif -# ifndef PTRDIFF_MAX -# define PTRDIFF_MAX stdint_intptr_glue3(INT,stdint_intptr_bits,_MAX) -# endif -# ifndef PTRDIFF_MIN -# define PTRDIFF_MIN stdint_intptr_glue3(INT,stdint_intptr_bits,_MIN) -# endif -# ifndef UINTPTR_MAX -# define UINTPTR_MAX stdint_intptr_glue3(UINT,stdint_intptr_bits,_MAX) -# endif -# ifndef INTPTR_MAX -# define INTPTR_MAX stdint_intptr_glue3(INT,stdint_intptr_bits,_MAX) -# endif -# ifndef INTPTR_MIN -# define INTPTR_MIN stdint_intptr_glue3(INT,stdint_intptr_bits,_MIN) -# endif -# ifndef INTPTR_C -# define INTPTR_C(x) stdint_intptr_glue3(INT,stdint_intptr_bits,_C)(x) -# endif -# ifndef UINTPTR_C -# define UINTPTR_C(x) stdint_intptr_glue3(UINT,stdint_intptr_bits,_C)(x) -# endif - typedef stdint_intptr_glue3(uint,stdint_intptr_bits,_t) uintptr_t; - typedef stdint_intptr_glue3( int,stdint_intptr_bits,_t) intptr_t; -# else -/* TODO -- This following is likely wrong for some platforms, and does - nothing for the definition of uintptr_t. */ - typedef ptrdiff_t intptr_t; -# endif -# define STDINT_H_UINTPTR_T_DEFINED -#endif - -/* - * Assumes sig_atomic_t is signed and we have a 2s complement machine. - */ - -#ifndef SIG_ATOMIC_MAX -# define SIG_ATOMIC_MAX ((((sig_atomic_t) 1) << (sizeof (sig_atomic_t)*CHAR_BIT-1)) - 1) -#endif - -#endif - -#endif /* Include guard */ diff --git a/qdecimal/decnumber/SConscript b/qdecimal/decnumber/SConscript deleted file mode 100644 index 345622f..0000000 --- a/qdecimal/decnumber/SConscript +++ /dev/null @@ -1,11 +0,0 @@ -Import('*') - -srcs = Split('decContext.c decDouble.c decimal128.c decimal32.c decimal64.c decNumber.c decPacked.c decQuad.c decSingle.c') - -lib = env.StaticLibrary('decnumber', srcs) - -env['PRJ_LIBS']['decnumber'] = lib - - - - diff --git a/qdecimal/decnumber/VCpp_stdint.h b/qdecimal/decnumber/VCpp_stdint.h deleted file mode 100644 index d02608a..0000000 --- a/qdecimal/decnumber/VCpp_stdint.h +++ /dev/null @@ -1,247 +0,0 @@ -// ISO C9x compliant stdint.h for Microsoft Visual Studio -// Based on ISO/IEC 9899:TC2 Committee draft (May 6, 2005) WG14/N1124 -// -// Copyright (c) 2006-2008 Alexander Chemeris -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are met: -// -// 1. Redistributions of source code must retain the above copyright notice, -// this list of conditions and the following disclaimer. -// -// 2. Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// 3. The name of the author may be used to endorse or promote products -// derived from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED -// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF -// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO -// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; -// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, -// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR -// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF -// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -/////////////////////////////////////////////////////////////////////////////// - -#ifndef _MSC_VER // [ -#error "Use this header only with Microsoft Visual C++ compilers!" -#endif // _MSC_VER ] - -#ifndef _MSC_STDINT_H_ // [ -#define _MSC_STDINT_H_ - -#if _MSC_VER > 1000 -#pragma once -#endif - -#include - -// For Visual Studio 6 in C++ mode and for many Visual Studio versions when -// compiling for ARM we should wrap include with 'extern "C++" {}' -// or compiler give many errors like this: -// error C2733: second C linkage of overloaded function 'wmemchr' not allowed -#ifdef __cplusplus -extern "C" { -#endif -# include -#ifdef __cplusplus -} -#endif - -// Define _W64 macros to mark types changing their size, like intptr_t. -#ifndef _W64 -# if !defined(__midl) && (defined(_X86_) || defined(_M_IX86)) && _MSC_VER >= 1300 -# define _W64 __w64 -# else -# define _W64 -# endif -#endif - - -// 7.18.1 Integer types - -// 7.18.1.1 Exact-width integer types - -// Visual Studio 6 and Embedded Visual C++ 4 doesn't -// realize that, e.g. char has the same size as __int8 -// so we give up on __intX for them. -#if (_MSC_VER < 1300) - typedef signed char int8_t; - typedef signed short int16_t; - typedef signed int int32_t; - typedef unsigned char uint8_t; - typedef unsigned short uint16_t; - typedef unsigned int uint32_t; -#else - typedef signed __int8 int8_t; - typedef signed __int16 int16_t; - typedef signed __int32 int32_t; - typedef unsigned __int8 uint8_t; - typedef unsigned __int16 uint16_t; - typedef unsigned __int32 uint32_t; -#endif -typedef signed __int64 int64_t; -typedef unsigned __int64 uint64_t; - - -// 7.18.1.2 Minimum-width integer types -typedef int8_t int_least8_t; -typedef int16_t int_least16_t; -typedef int32_t int_least32_t; -typedef int64_t int_least64_t; -typedef uint8_t uint_least8_t; -typedef uint16_t uint_least16_t; -typedef uint32_t uint_least32_t; -typedef uint64_t uint_least64_t; - -// 7.18.1.3 Fastest minimum-width integer types -typedef int8_t int_fast8_t; -typedef int16_t int_fast16_t; -typedef int32_t int_fast32_t; -typedef int64_t int_fast64_t; -typedef uint8_t uint_fast8_t; -typedef uint16_t uint_fast16_t; -typedef uint32_t uint_fast32_t; -typedef uint64_t uint_fast64_t; - -// 7.18.1.4 Integer types capable of holding object pointers -#ifdef _WIN64 // [ - typedef signed __int64 intptr_t; - typedef unsigned __int64 uintptr_t; -#else // _WIN64 ][ - typedef _W64 signed int intptr_t; - typedef _W64 unsigned int uintptr_t; -#endif // _WIN64 ] - -// 7.18.1.5 Greatest-width integer types -typedef int64_t intmax_t; -typedef uint64_t uintmax_t; - - -// 7.18.2 Limits of specified-width integer types - -#if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS) // [ See footnote 220 at page 257 and footnote 221 at page 259 - -// 7.18.2.1 Limits of exact-width integer types -#define INT8_MIN ((int8_t)_I8_MIN) -#define INT8_MAX _I8_MAX -#define INT16_MIN ((int16_t)_I16_MIN) -#define INT16_MAX _I16_MAX -#define INT32_MIN ((int32_t)_I32_MIN) -#define INT32_MAX _I32_MAX -#define INT64_MIN ((int64_t)_I64_MIN) -#define INT64_MAX _I64_MAX -#define UINT8_MAX _UI8_MAX -#define UINT16_MAX _UI16_MAX -#define UINT32_MAX _UI32_MAX -#define UINT64_MAX _UI64_MAX - -// 7.18.2.2 Limits of minimum-width integer types -#define INT_LEAST8_MIN INT8_MIN -#define INT_LEAST8_MAX INT8_MAX -#define INT_LEAST16_MIN INT16_MIN -#define INT_LEAST16_MAX INT16_MAX -#define INT_LEAST32_MIN INT32_MIN -#define INT_LEAST32_MAX INT32_MAX -#define INT_LEAST64_MIN INT64_MIN -#define INT_LEAST64_MAX INT64_MAX -#define UINT_LEAST8_MAX UINT8_MAX -#define UINT_LEAST16_MAX UINT16_MAX -#define UINT_LEAST32_MAX UINT32_MAX -#define UINT_LEAST64_MAX UINT64_MAX - -// 7.18.2.3 Limits of fastest minimum-width integer types -#define INT_FAST8_MIN INT8_MIN -#define INT_FAST8_MAX INT8_MAX -#define INT_FAST16_MIN INT16_MIN -#define INT_FAST16_MAX INT16_MAX -#define INT_FAST32_MIN INT32_MIN -#define INT_FAST32_MAX INT32_MAX -#define INT_FAST64_MIN INT64_MIN -#define INT_FAST64_MAX INT64_MAX -#define UINT_FAST8_MAX UINT8_MAX -#define UINT_FAST16_MAX UINT16_MAX -#define UINT_FAST32_MAX UINT32_MAX -#define UINT_FAST64_MAX UINT64_MAX - -// 7.18.2.4 Limits of integer types capable of holding object pointers -#ifdef _WIN64 // [ -# define INTPTR_MIN INT64_MIN -# define INTPTR_MAX INT64_MAX -# define UINTPTR_MAX UINT64_MAX -#else // _WIN64 ][ -# define INTPTR_MIN INT32_MIN -# define INTPTR_MAX INT32_MAX -# define UINTPTR_MAX UINT32_MAX -#endif // _WIN64 ] - -// 7.18.2.5 Limits of greatest-width integer types -#define INTMAX_MIN INT64_MIN -#define INTMAX_MAX INT64_MAX -#define UINTMAX_MAX UINT64_MAX - -// 7.18.3 Limits of other integer types - -#ifdef _WIN64 // [ -# define PTRDIFF_MIN _I64_MIN -# define PTRDIFF_MAX _I64_MAX -#else // _WIN64 ][ -# define PTRDIFF_MIN _I32_MIN -# define PTRDIFF_MAX _I32_MAX -#endif // _WIN64 ] - -#define SIG_ATOMIC_MIN INT_MIN -#define SIG_ATOMIC_MAX INT_MAX - -#ifndef SIZE_MAX // [ -# ifdef _WIN64 // [ -# define SIZE_MAX _UI64_MAX -# else // _WIN64 ][ -# define SIZE_MAX _UI32_MAX -# endif // _WIN64 ] -#endif // SIZE_MAX ] - -// WCHAR_MIN and WCHAR_MAX are also defined in -#ifndef WCHAR_MIN // [ -# define WCHAR_MIN 0 -#endif // WCHAR_MIN ] -#ifndef WCHAR_MAX // [ -# define WCHAR_MAX _UI16_MAX -#endif // WCHAR_MAX ] - -#define WINT_MIN 0 -#define WINT_MAX _UI16_MAX - -#endif // __STDC_LIMIT_MACROS ] - - -// 7.18.4 Limits of other integer types - -#if !defined(__cplusplus) || defined(__STDC_CONSTANT_MACROS) // [ See footnote 224 at page 260 - -// 7.18.4.1 Macros for minimum-width integer constants - -#define INT8_C(val) val##i8 -#define INT16_C(val) val##i16 -#define INT32_C(val) val##i32 -#define INT64_C(val) val##i64 - -#define UINT8_C(val) val##ui8 -#define UINT16_C(val) val##ui16 -#define UINT32_C(val) val##ui32 -#define UINT64_C(val) val##ui64 - -// 7.18.4.2 Macros for greatest-width integer constants -#define INTMAX_C INT64_C -#define UINTMAX_C UINT64_C - -#endif // __STDC_CONSTANT_MACROS ] - - -#endif // _MSC_STDINT_H_ ] diff --git a/qdecimal/decnumber/decBasic.c b/qdecimal/decnumber/decBasic.c deleted file mode 100644 index 56396f8..0000000 --- a/qdecimal/decnumber/decBasic.c +++ /dev/null @@ -1,3908 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decBasic.c -- common base code for Basic decimal types */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises code that is shared between decDouble and */ -/* decQuad (but not decSingle). The main arithmetic operations are */ -/* here (Add, Subtract, Multiply, FMA, and Division operators). */ -/* */ -/* Unlike decNumber, parameterization takes place at compile time */ -/* rather than at runtime. The parameters are set in the decDouble.c */ -/* (etc.) files, which then include this one to produce the compiled */ -/* code. The functions here, therefore, are code shared between */ -/* multiple formats. */ -/* */ -/* This must be included after decCommon.c. */ -/* ------------------------------------------------------------------ */ -// Names here refer to decFloat rather than to decDouble, etc., and -// the functions are in strict alphabetical order. - -// The compile-time flags SINGLE, DOUBLE, and QUAD are set up in -// decCommon.c -#if !defined(QUAD) - #error decBasic.c must be included after decCommon.c -#endif -#if SINGLE - #error Routines in decBasic.c are for decDouble and decQuad only -#endif - -/* Private constants */ -#define DIVIDE 0x80000000 // Divide operations [as flags] -#define REMAINDER 0x40000000 // .. -#define DIVIDEINT 0x20000000 // .. -#define REMNEAR 0x10000000 // .. - -/* Private functions (local, used only by routines in this module) */ -static decFloat *decDivide(decFloat *, const decFloat *, - const decFloat *, decContext *, uInt); -static decFloat *decCanonical(decFloat *, const decFloat *); -static void decFiniteMultiply(bcdnum *, uByte *, const decFloat *, - const decFloat *); -static decFloat *decInfinity(decFloat *, const decFloat *); -static decFloat *decInvalid(decFloat *, decContext *); -static decFloat *decNaNs(decFloat *, const decFloat *, const decFloat *, - decContext *); -static Int decNumCompare(const decFloat *, const decFloat *, Flag); -static decFloat *decToIntegral(decFloat *, const decFloat *, decContext *, - enum rounding, Flag); -static uInt decToInt32(const decFloat *, decContext *, enum rounding, - Flag, Flag); - -/* ------------------------------------------------------------------ */ -/* decCanonical -- copy a decFloat, making canonical */ -/* */ -/* result gets the canonicalized df */ -/* df is the decFloat to copy and make canonical */ -/* returns result */ -/* */ -/* This is exposed via decFloatCanonical for Double and Quad only. */ -/* This works on specials, too; no error or exception is possible. */ -/* ------------------------------------------------------------------ */ -static decFloat * decCanonical(decFloat *result, const decFloat *df) { - uInt encode, precode, dpd; // work - uInt inword, uoff, canon; // .. - Int n; // counter (down) - if (df!=result) *result=*df; // effect copy if needed - if (DFISSPECIAL(result)) { - if (DFISINF(result)) return decInfinity(result, df); // clean Infinity - // is a NaN - DFWORD(result, 0)&=~ECONNANMASK; // clear ECON except selector - if (DFISCCZERO(df)) return result; // coefficient continuation is 0 - // drop through to check payload - } - // return quickly if the coefficient continuation is canonical - { // declare block - #if DOUBLE - uInt sourhi=DFWORD(df, 0); - uInt sourlo=DFWORD(df, 1); - if (CANONDPDOFF(sourhi, 8) - && CANONDPDTWO(sourhi, sourlo, 30) - && CANONDPDOFF(sourlo, 20) - && CANONDPDOFF(sourlo, 10) - && CANONDPDOFF(sourlo, 0)) return result; - #elif QUAD - uInt sourhi=DFWORD(df, 0); - uInt sourmh=DFWORD(df, 1); - uInt sourml=DFWORD(df, 2); - uInt sourlo=DFWORD(df, 3); - if (CANONDPDOFF(sourhi, 4) - && CANONDPDTWO(sourhi, sourmh, 26) - && CANONDPDOFF(sourmh, 16) - && CANONDPDOFF(sourmh, 6) - && CANONDPDTWO(sourmh, sourml, 28) - && CANONDPDOFF(sourml, 18) - && CANONDPDOFF(sourml, 8) - && CANONDPDTWO(sourml, sourlo, 30) - && CANONDPDOFF(sourlo, 20) - && CANONDPDOFF(sourlo, 10) - && CANONDPDOFF(sourlo, 0)) return result; - #endif - } // block - - // Loop to repair a non-canonical coefficent, as needed - inword=DECWORDS-1; // current input word - uoff=0; // bit offset of declet - encode=DFWORD(result, inword); - for (n=DECLETS-1; n>=0; n--) { // count down declets of 10 bits - dpd=encode>>uoff; - uoff+=10; - if (uoff>32) { // crossed uInt boundary - inword--; - encode=DFWORD(result, inword); - uoff-=32; - dpd|=encode<<(10-uoff); // get pending bits - } - dpd&=0x3ff; // clear uninteresting bits - if (dpd<0x16e) continue; // must be canonical - canon=BIN2DPD[DPD2BIN[dpd]]; // determine canonical declet - if (canon==dpd) continue; // have canonical declet - // need to replace declet - if (uoff>=10) { // all within current word - encode&=~(0x3ff<<(uoff-10)); // clear the 10 bits ready for replace - encode|=canon<<(uoff-10); // insert the canonical form - DFWORD(result, inword)=encode; // .. and save - continue; - } - // straddled words - precode=DFWORD(result, inword+1); // get previous - precode&=0xffffffff>>(10-uoff); // clear top bits - DFWORD(result, inword+1)=precode|(canon<<(32-(10-uoff))); - encode&=0xffffffff<>(10-uoff); // insert canonical - DFWORD(result, inword)=encode; // .. and save - } // n - return result; - } // decCanonical - -/* ------------------------------------------------------------------ */ -/* decDivide -- divide operations */ -/* */ -/* result gets the result of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* op is the operation selector */ -/* returns result */ -/* */ -/* op is one of DIVIDE, REMAINDER, DIVIDEINT, or REMNEAR. */ -/* ------------------------------------------------------------------ */ -#define DIVCOUNT 0 // 1 to instrument subtractions counter -#define DIVBASE ((uInt)BILLION) // the base used for divide -#define DIVOPLEN DECPMAX9 // operand length ('digits' base 10**9) -#define DIVACCLEN (DIVOPLEN*3) // accumulator length (ditto) -static decFloat * decDivide(decFloat *result, const decFloat *dfl, - const decFloat *dfr, decContext *set, uInt op) { - decFloat quotient; // for remainders - bcdnum num; // for final conversion - uInt acc[DIVACCLEN]; // coefficent in base-billion .. - uInt div[DIVOPLEN]; // divisor in base-billion .. - uInt quo[DIVOPLEN+1]; // quotient in base-billion .. - uByte bcdacc[(DIVOPLEN+1)*9+2]; // for quotient in BCD, +1, +1 - uInt *msua, *msud, *msuq; // -> msu of acc, div, and quo - Int divunits, accunits; // lengths - Int quodigits; // digits in quotient - uInt *lsua, *lsuq; // -> current acc and quo lsus - Int length, multiplier; // work - uInt carry, sign; // .. - uInt *ua, *ud, *uq; // .. - uByte *ub; // .. - uInt uiwork; // for macros - uInt divtop; // top unit of div adjusted for estimating - #if DIVCOUNT - static uInt maxcount=0; // worst-seen subtractions count - uInt divcount=0; // subtractions count [this divide] - #endif - - // calculate sign - num.sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign; - - if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { // either is special? - // NaNs are handled as usual - if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - // one or two infinities - if (DFISINF(dfl)) { - if (DFISINF(dfr)) return decInvalid(result, set); // Two infinities bad - if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); // as is rem - // Infinity/x is infinite and quiet, even if x=0 - DFWORD(result, 0)=num.sign; - return decInfinity(result, result); - } - // must be x/Infinity -- remainders are lhs - if (op&(REMAINDER|REMNEAR)) return decCanonical(result, dfl); - // divides: return zero with correct sign and exponent depending - // on op (Etiny for divide, 0 for divideInt) - decFloatZero(result); - if (op==DIVIDEINT) DFWORD(result, 0)|=num.sign; // add sign - else DFWORD(result, 0)=num.sign; // zeros the exponent, too - return result; - } - // next, handle zero operands (x/0 and 0/x) - if (DFISZERO(dfr)) { // x/0 - if (DFISZERO(dfl)) { // 0/0 is undefined - decFloatZero(result); - DFWORD(result, 0)=DECFLOAT_qNaN; - set->status|=DEC_Division_undefined; - return result; - } - if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); // bad rem - set->status|=DEC_Division_by_zero; - DFWORD(result, 0)=num.sign; - return decInfinity(result, result); // x/0 -> signed Infinity - } - num.exponent=GETEXPUN(dfl)-GETEXPUN(dfr); // ideal exponent - if (DFISZERO(dfl)) { // 0/x (x!=0) - // if divide, result is 0 with ideal exponent; divideInt has - // exponent=0, remainders give zero with lower exponent - if (op&DIVIDEINT) { - decFloatZero(result); - DFWORD(result, 0)|=num.sign; // add sign - return result; - } - if (!(op&DIVIDE)) { // a remainder - // exponent is the minimum of the operands - num.exponent=MINI(GETEXPUN(dfl), GETEXPUN(dfr)); - // if the result is zero the sign shall be sign of dfl - num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; - } - bcdacc[0]=0; - num.msd=bcdacc; // -> 0 - num.lsd=bcdacc; // .. - return decFinalize(result, &num, set); // [divide may clamp exponent] - } // 0/x - // [here, both operands are known to be finite and non-zero] - - // extract the operand coefficents into 'units' which are - // base-billion; the lhs is high-aligned in acc and the msu of both - // acc and div is at the right-hand end of array (offset length-1); - // the quotient can need one more unit than the operands as digits - // in it are not necessarily aligned neatly; further, the quotient - // may not start accumulating until after the end of the initial - // operand in acc if that is small (e.g., 1) so the accumulator - // must have at least that number of units extra (at the ls end) - GETCOEFFBILL(dfl, acc+DIVACCLEN-DIVOPLEN); - GETCOEFFBILL(dfr, div); - // zero the low uInts of acc - acc[0]=0; - acc[1]=0; - acc[2]=0; - acc[3]=0; - #if DOUBLE - #if DIVOPLEN!=2 - #error Unexpected Double DIVOPLEN - #endif - #elif QUAD - acc[4]=0; - acc[5]=0; - acc[6]=0; - acc[7]=0; - #if DIVOPLEN!=4 - #error Unexpected Quad DIVOPLEN - #endif - #endif - - // set msu and lsu pointers - msua=acc+DIVACCLEN-1; // [leading zeros removed below] - msuq=quo+DIVOPLEN; - //[loop for div will terminate because operands are non-zero] - for (msud=div+DIVOPLEN-1; *msud==0;) msud--; - // the initial least-significant unit of acc is set so acc appears - // to have the same length as div. - // This moves one position towards the least possible for each - // iteration - divunits=(Int)(msud-div+1); // precalculate - lsua=msua-divunits+1; // initial working lsu of acc - lsuq=msuq; // and of quo - - // set up the estimator for the multiplier; this is the msu of div, - // plus two bits from the unit below (if any) rounded up by one if - // there are any non-zero bits or units below that [the extra two - // bits makes for a much better estimate when the top unit is small] - divtop=*msud<<2; - if (divunits>1) { - uInt *um=msud-1; - uInt d=*um; - if (d>=750000000) {divtop+=3; d-=750000000;} - else if (d>=500000000) {divtop+=2; d-=500000000;} - else if (d>=250000000) {divtop++; d-=250000000;} - if (d) divtop++; - else for (um--; um>=div; um--) if (*um) { - divtop++; - break; - } - } // >1 unit - - #if DECTRACE - {Int i; - printf("----- div="); - for (i=divunits-1; i>=0; i--) printf("%09ld ", (LI)div[i]); - printf("\n");} - #endif - - // now collect up to DECPMAX+1 digits in the quotient (this may - // need OPLEN+1 uInts if unaligned) - quodigits=0; // no digits yet - for (;; lsua--) { // outer loop -- each input position - #if DECCHECK - if (lsua=lsua;) msua--; - accunits=(Int)(msua-lsua+1); // [maybe 0] - // subtraction is only necessary and possible if there are as - // least as many units remaining in acc for this iteration as - // there are in div - if (accunitsdiv: subtraction necessary at this position - for (ud=msud, ua=msua; ud>div; ud--, ua--) if (*ud!=*ua) break; - // [now at first mismatch or lsu] - if (*ud>*ua) break; // next time... - if (*ud==*ua) { // all compared equal - *lsuq+=1; // increment result - msua=lsua; // collapse acc units - *msua=0; // .. to a zero - break; - } - - // subtraction necessary; estimate multiplier [see above] - // if both *msud and *msua are small it is cost-effective to - // bring in part of the following units (if any) to get a - // better estimate (assume some other non-zero in div) - #define DIVLO 1000000U - #define DIVHI (DIVBASE/DIVLO) - #if DECUSE64 - if (divunits>1) { - // there cannot be a *(msud-2) for DECDOUBLE so next is - // an exact calculation unless DECQUAD (which needs to - // assume bits out there if divunits>2) - uLong mul=(uLong)*msua * DIVBASE + *(msua-1); - uLong div=(uLong)*msud * DIVBASE + *(msud-1); - #if QUAD - if (divunits>2) div++; - #endif - mul/=div; - multiplier=(Int)mul; - } - else multiplier=*msua/(*msud); - #else - if (divunits>1 && *msuadivunits - // msud is one unit 'lower' than msua, so estimate differently - #if DECUSE64 - uLong mul; - // as before, bring in extra digits if possible - if (divunits>1 && *msua>DIVSHIFTA); - carry=(uInt)(((uLong)hop*DIVMAGIC)>>DIVSHIFTB); - // the estimate is now in hi; now calculate sub-hi*10**9 - // to get the remainder (which will be =DIVBASE) { - lo-=DIVBASE; // correct by +1 - carry++; - } - } - #else // 32-bit - uInt hi; - // calculate multiplier*(*ud) into hi and lo - LONGMUL32HI(hi, *ud, multiplier); // get the high word - lo=multiplier*(*ud); // .. and the low - lo+=carry; // add the old hi - carry=hi+(lo=DIVBASE) { // split is needed - hop=(carry<<3)+(lo>>DIVSHIFTA); // hi:lo/2**29 - LONGMUL32HI(carry, hop, DIVMAGIC); // only need the high word - // [DIVSHIFTB is 32, so carry can be used directly] - // the estimate is now in carry; now calculate hi:lo-est*10**9; - // happily the top word of the result is irrelevant because it - // will always be zero so this needs only one multiplication - lo-=(carry*DIVBASE); - // the correction here will be at most +1; do it - if (lo>=DIVBASE) { - lo-=DIVBASE; - carry++; - } - } - #endif - if (lo>*ua) { // borrow needed - *ua+=DIVBASE; - carry++; - } - *ua-=lo; - } // ud loop - if (carry) *ua-=carry; // accdigits>divdigits [cannot borrow] - } // inner loop - - // the outer loop terminates when there is either an exact result - // or enough digits; first update the quotient digit count and - // pointer (if any significant digits) - #if DECTRACE - if (*lsuq || quodigits) printf("*lsuq=%09ld\n", (LI)*lsuq); - #endif - if (quodigits) { - quodigits+=9; // had leading unit earlier - lsuq--; - if (quodigits>DECPMAX+1) break; // have enough - } - else if (*lsuq) { // first quotient digits - const uInt *pow; - for (pow=DECPOWERS; *lsuq>=*pow; pow++) quodigits++; - lsuq--; - // [cannot have >DECPMAX+1 on first unit] - } - - if (*msua!=0) continue; // not an exact result - // acc is zero iff used all of original units and zero down to lsua - // (must also continue to original lsu for correct quotient length) - if (lsua>acc+DIVACCLEN-DIVOPLEN) continue; - for (; msua>lsua && *msua==0;) msua--; - if (*msua==0 && msua==lsua) break; - } // outer loop - - // all of the original operand in acc has been covered at this point - // quotient now has at least DECPMAX+2 digits - // *msua is now non-0 if inexact and sticky bits - // lsuq is one below the last uint of the quotient - lsuq++; // set -> true lsu of quo - if (*msua) *lsuq|=1; // apply sticky bit - - // quo now holds the (unrounded) quotient in base-billion; one - // base-billion 'digit' per uInt. - #if DECTRACE - printf("DivQuo:"); - for (uq=msuq; uq>=lsuq; uq--) printf(" %09ld", (LI)*uq); - printf("\n"); - #endif - - // Now convert to BCD for rounding and cleanup, starting from the - // most significant end [offset by one into bcdacc to leave room - // for a possible carry digit if rounding for REMNEAR is needed] - for (uq=msuq, ub=bcdacc+1; uq>=lsuq; uq--, ub+=9) { - uInt top, mid, rem; // work - if (*uq==0) { // no split needed - UBFROMUI(ub, 0); // clear 9 BCD8s - UBFROMUI(ub+4, 0); // .. - *(ub+8)=0; // .. - continue; - } - // *uq is non-zero -- split the base-billion digit into - // hi, mid, and low three-digits - #define divsplit9 1000000 // divisor - #define divsplit6 1000 // divisor - // The splitting is done by simple divides and remainders, - // assuming the compiler will optimize these [GCC does] - top=*uq/divsplit9; - rem=*uq%divsplit9; - mid=rem/divsplit6; - rem=rem%divsplit6; - // lay out the nine BCD digits (plus one unwanted byte) - UBFROMUI(ub, UBTOUI(&BIN2BCD8[top*4])); - UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); - UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); - } // BCD conversion loop - ub--; // -> lsu - - // complete the bcdnum; quodigits is correct, so the position of - // the first non-zero is known - num.msd=bcdacc+1+(msuq-lsuq+1)*9-quodigits; - num.lsd=ub; - - // make exponent adjustments, etc - if (lsuamaxcount) { // new high-water nark - maxcount=divcount; - printf("DivNewMaxCount: %ld\n", (LI)maxcount); - } - #endif - - if (op&DIVIDE) return decFinalize(result, &num, set); // all done - - // Is DIVIDEINT or a remainder; there is more to do -- first form - // the integer (this is done 'after the fact', unlike as in - // decNumber, so as not to tax DIVIDE) - - // The first non-zero digit will be in the first 9 digits, known - // from quodigits and num.msd, so there is always space for DECPMAX - // digits - - length=(Int)(num.lsd-num.msd+1); - //printf("Length exp: %ld %ld\n", (LI)length, (LI)num.exponent); - - if (length+num.exponent>DECPMAX) { // cannot fit - decFloatZero(result); - DFWORD(result, 0)=DECFLOAT_qNaN; - set->status|=DEC_Division_impossible; - return result; - } - - if (num.exponent>=0) { // already an int, or need pad zeros - for (ub=num.lsd+1; ub<=num.lsd+num.exponent; ub++) *ub=0; - num.lsd+=num.exponent; - } - else { // too long: round or truncate needed - Int drop=-num.exponent; - if (!(op&REMNEAR)) { // simple truncate - num.lsd-=drop; - if (num.lsd re-round digit - uByte reround; // reround value - *(num.msd-1)=0; // in case of left carry, or make 0 - if (drop 0] - reround=*roundat; - for (ub=roundat+1; ub<=num.lsd; ub++) { - if (*ub!=0) { - reround=DECSTICKYTAB[reround]; - break; - } - } // check stickies - if (roundat>num.msd) num.lsd=roundat-1; - else { - num.msd--; // use the 0 .. - num.lsd=num.msd; // .. at the new MSD place - } - if (reround!=0) { // discarding non-zero - uInt bump=0; - // rounding is DEC_ROUND_HALF_EVEN always - if (reround>5) bump=1; // >0.5 goes up - else if (reround==5) // exactly 0.5000 .. - bump=*(num.lsd) & 0x01; // .. up iff [new] lsd is odd - if (bump!=0) { // need increment - // increment the coefficient; this might end up with 1000... - ub=num.lsd; - for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); - for (; *ub==9; ub--) *ub=0; // at most 3 more - *ub+=1; - if (ub9 - #error Exponent may overflow when doubled for Multiply -#endif -#if MULACCLEN!=(MULACCLEN/4)*4 - // This assumption is used below only for initialization - #error MULACCLEN is not a multiple of 4 -#endif - -static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, - const decFloat *dfl, const decFloat *dfr) { - uInt bufl[MULOPLEN]; // left coefficient (base-billion) - uInt bufr[MULOPLEN]; // right coefficient (base-billion) - uInt *ui, *uj; // work - uByte *ub; // .. - uInt uiwork; // for macros - - #if DECUSE64 - uLong accl[MULACCLEN]; // lazy accumulator (base-billion+) - uLong *pl; // work -> lazy accumulator - uInt acc[MULACCLEN]; // coefficent in base-billion .. - #else - uInt acc[MULACCLEN*2]; // accumulator in base-billion .. - #endif - uInt *pa; // work -> accumulator - //printf("Base10**9: OpLen=%d MulAcclen=%d\n", OPLEN, MULACCLEN); - - /* Calculate sign and exponent */ - num->sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign; - num->exponent=GETEXPUN(dfl)+GETEXPUN(dfr); // [see assertion above] - - /* Extract the coefficients and prepare the accumulator */ - // the coefficients of the operands are decoded into base-billion - // numbers in uInt arrays (bufl and bufr, LSD at offset 0) of the - // appropriate size. - GETCOEFFBILL(dfl, bufl); - GETCOEFFBILL(dfr, bufr); - #if DECTRACE && 0 - printf("CoeffbL:"); - for (ui=bufl+MULOPLEN-1; ui>=bufl; ui--) printf(" %08lx", (LI)*ui); - printf("\n"); - printf("CoeffbR:"); - for (uj=bufr+MULOPLEN-1; uj>=bufr; uj--) printf(" %08lx", (LI)*uj); - printf("\n"); - #endif - - // start the 64-bit/32-bit differing paths... -#if DECUSE64 - - // zero the accumulator - #if MULACCLEN==4 - accl[0]=0; accl[1]=0; accl[2]=0; accl[3]=0; - #else // use a loop - // MULACCLEN is a multiple of four, asserted above - for (pl=accl; pl1 may be - // needed. Values of A and B are chosen to satisfy the constraints - // just mentioned while minimizing the maximum error (and hence the - // maximum correction), as shown in the following table: - // - // Type OPLEN A B maxX maxError maxCorrection - // --------------------------------------------------------- - // DOUBLE 2 29 32 <2*10**18 0.63 1 - // QUAD 4 30 31 <4*10**18 1.17 2 - // - // In the OPLEN==2 case there is most choice, but the value for B - // of 32 has a big advantage as then the calculation of the - // estimate requires no shifting; the compiler can extract the high - // word directly after multiplying magic*hop. - #define MULMAGIC 2305843009U // 2**61/10**9 [both cases] - #if DOUBLE - #define MULSHIFTA 29 - #define MULSHIFTB 32 - #elif QUAD - #define MULSHIFTA 30 - #define MULSHIFTB 31 - #else - #error Unexpected type - #endif - - #if DECTRACE - printf("MulAccl:"); - for (pl=accl+MULACCLEN-1; pl>=accl; pl--) - printf(" %08lx:%08lx", (LI)(*pl>>32), (LI)(*pl&0xffffffff)); - printf("\n"); - #endif - - for (pl=accl, pa=acc; pl=MULTBASE) { - // *pl holds a binary number which needs to be split - hop=(uInt)(*pl>>MULSHIFTA); - est=(uInt)(((uLong)hop*MULMAGIC)>>MULSHIFTB); - // the estimate is now in est; now calculate hi:lo-est*10**9; - // happily the top word of the result is irrelevant because it - // will always be zero so this needs only one multiplication - lo=(uInt)(*pl-((uLong)est*MULTBASE)); // low word of result - // If QUAD, the correction here could be +2 - if (lo>=MULTBASE) { - lo-=MULTBASE; // correct by +1 - est++; - #if QUAD - // may need to correct by +2 - if (lo>=MULTBASE) { - lo-=MULTBASE; - est++; - } - #endif - } - // finally place lo as the new coefficient 'digit' and add est to - // the next place up [this is safe because this path is never - // taken on the final iteration as *pl will fit] - *pa=lo; - *(pl+1)+=est; - } // *pl needed split - else { // *pl1 may be - // needed. Values of A and B are chosen to satisfy the constraints - // just mentioned while minimizing the maximum error (and hence the - // maximum correction), as shown in the following table: - // - // Type OPLEN A B maxX maxError maxCorrection - // --------------------------------------------------------- - // DOUBLE 2 29 32 <2*10**18 0.63 1 - // QUAD 4 30 31 <4*10**18 1.17 2 - // - // In the OPLEN==2 case there is most choice, but the value for B - // of 32 has a big advantage as then the calculation of the - // estimate requires no shifting; the high word is simply - // calculated from multiplying magic*hop. - #define MULMAGIC 2305843009U // 2**61/10**9 [both cases] - #if DOUBLE - #define MULSHIFTA 29 - #define MULSHIFTB 32 - #elif QUAD - #define MULSHIFTA 30 - #define MULSHIFTB 31 - #else - #error Unexpected type - #endif - - #if DECTRACE - printf("MulHiLo:"); - for (pa=acc+MULACCLEN-1; pa>=acc; pa--) - printf(" %08lx:%08lx", (LI)*(pa+MULACCLEN), (LI)*pa); - printf("\n"); - #endif - - for (pa=acc;; pa++) { // each low uInt - uInt hi, lo; // words of exact multiply result - uInt hop, estlo; // work - #if QUAD - uInt esthi; // .. - #endif - - lo=*pa; - hi=*(pa+MULACCLEN); // top 32 bits - // hi and lo now hold a binary number which needs to be split - - #if DOUBLE - hop=(hi<<3)+(lo>>MULSHIFTA); // hi:lo/2**29 - LONGMUL32HI(estlo, hop, MULMAGIC);// only need the high word - // [MULSHIFTB is 32, so estlo can be used directly] - // the estimate is now in estlo; now calculate hi:lo-est*10**9; - // happily the top word of the result is irrelevant because it - // will always be zero so this needs only one multiplication - lo-=(estlo*MULTBASE); - // esthi=0; // high word is ignored below - // the correction here will be at most +1; do it - if (lo>=MULTBASE) { - lo-=MULTBASE; - estlo++; - } - #elif QUAD - hop=(hi<<2)+(lo>>MULSHIFTA); // hi:lo/2**30 - LONGMUL32HI(esthi, hop, MULMAGIC);// shift will be 31 .. - estlo=hop*MULMAGIC; // .. so low word needed - estlo=(esthi<<1)+(estlo>>MULSHIFTB); // [just the top bit] - // esthi=0; // high word is ignored below - lo-=(estlo*MULTBASE); // as above - // the correction here could be +1 or +2 - if (lo>=MULTBASE) { - lo-=MULTBASE; - estlo++; - } - if (lo>=MULTBASE) { - lo-=MULTBASE; - estlo++; - } - #else - #error Unexpected type - #endif - - // finally place lo as the new accumulator digit and add est to - // the next place up; this latter add could cause a carry of 1 - // to the high word of the next place - *pa=lo; - *(pa+1)+=estlo; - // esthi is always 0 for DOUBLE and QUAD so this is skipped - // *(pa+1+MULACCLEN)+=esthi; - if (*(pa+1)=acc; pa--) printf(" %09ld", (LI)*pa); - printf("\n"); - #endif - - // Now convert to BCD for rounding and cleanup, starting from the - // most significant end - pa=acc+MULACCLEN-1; - if (*pa!=0) num->msd=bcdacc+LEADZEROS;// drop known lead zeros - else { // >=1 word of leading zeros - num->msd=bcdacc; // known leading zeros are gone - pa--; // skip first word .. - for (; *pa==0; pa--) if (pa==acc) break; // .. and any more leading 0s - } - for (ub=bcdacc;; pa--, ub+=9) { - if (*pa!=0) { // split(s) needed - uInt top, mid, rem; // work - // *pa is non-zero -- split the base-billion acc digit into - // hi, mid, and low three-digits - #define mulsplit9 1000000 // divisor - #define mulsplit6 1000 // divisor - // The splitting is done by simple divides and remainders, - // assuming the compiler will optimize these where useful - // [GCC does] - top=*pa/mulsplit9; - rem=*pa%mulsplit9; - mid=rem/mulsplit6; - rem=rem%mulsplit6; - // lay out the nine BCD digits (plus one unwanted byte) - UBFROMUI(ub, UBTOUI(&BIN2BCD8[top*4])); - UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); - UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); - } - else { // *pa==0 - UBFROMUI(ub, 0); // clear 9 BCD8s - UBFROMUI(ub+4, 0); // .. - *(ub+8)=0; // .. - } - if (pa==acc) break; - } // BCD conversion loop - - num->lsd=ub+8; // complete the bcdnum .. - - #if DECTRACE - decShowNum(num, "postmult"); - decFloatShow(dfl, "dfl"); - decFloatShow(dfr, "dfr"); - #endif - return; - } // decFiniteMultiply - -/* ------------------------------------------------------------------ */ -/* decFloatAbs -- absolute value, heeding NaNs, etc. */ -/* */ -/* result gets the canonicalized df with sign 0 */ -/* df is the decFloat to abs */ -/* set is the context */ -/* returns result */ -/* */ -/* This has the same effect as decFloatPlus unless df is negative, */ -/* in which case it has the same effect as decFloatMinus. The */ -/* effect is also the same as decFloatCopyAbs except that NaNs are */ -/* handled normally (the sign of a NaN is not affected, and an sNaN */ -/* will signal) and the result will be canonical. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatAbs(decFloat *result, const decFloat *df, - decContext *set) { - if (DFISNAN(df)) return decNaNs(result, df, NULL, set); - decCanonical(result, df); // copy and check - DFBYTE(result, 0)&=~0x80; // zero sign bit - return result; - } // decFloatAbs - -/* ------------------------------------------------------------------ */ -/* decFloatAdd -- add two decFloats */ -/* */ -/* result gets the result of adding dfl and dfr: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* ------------------------------------------------------------------ */ -#if QUAD -// Table for testing MSDs for fastpath elimination; returns the MSD of -// a decDouble or decQuad (top 6 bits tested) ignoring the sign. -// Infinities return -32 and NaNs return -128 so that summing the two -// MSDs also allows rapid tests for the Specials (see code below). -const Int DECTESTMSD[64]={ - 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128, - 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128}; -#else -// The table for testing MSDs is shared between the modules -extern const Int DECTESTMSD[64]; -#endif - -decFloat * decFloatAdd(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - bcdnum num; // for final conversion - Int bexpl, bexpr; // left and right biased exponents - uByte *ub, *us, *ut; // work - uInt uiwork; // for macros - #if QUAD - uShort uswork; // .. - #endif - - uInt sourhil, sourhir; // top words from source decFloats - // [valid only through end of - // fastpath code -- before swap] - uInt diffsign; // non-zero if signs differ - uInt carry; // carry: 0 or 1 before add loop - Int overlap; // coefficient overlap (if full) - Int summ; // sum of the MSDs - // the following buffers hold coefficients with various alignments - // (see commentary and diagrams below) - uByte acc[4+2+DECPMAX*3+8]; - uByte buf[4+2+DECPMAX*2]; - uByte *umsd, *ulsd; // local MSD and LSD pointers - - #if DECLITEND - #define CARRYPAT 0x01000000 // carry=1 pattern - #else - #define CARRYPAT 0x00000001 // carry=1 pattern - #endif - - /* Start decoding the arguments */ - // The initial exponents are placed into the opposite Ints to - // that which might be expected; there are two sets of data to - // keep track of (each decFloat and the corresponding exponent), - // and this scheme means that at the swap point (after comparing - // exponents) only one pair of words needs to be swapped - // whichever path is taken (thereby minimising worst-case path). - // The calculated exponents will be nonsense when the arguments are - // Special, but are not used in that path - sourhil=DFWORD(dfl, 0); // LHS top word - summ=DECTESTMSD[sourhil>>26]; // get first MSD for testing - bexpr=DECCOMBEXP[sourhil>>26]; // get exponent high bits (in place) - bexpr+=GETECON(dfl); // .. + continuation - - sourhir=DFWORD(dfr, 0); // RHS top word - summ+=DECTESTMSD[sourhir>>26]; // sum MSDs for testing - bexpl=DECCOMBEXP[sourhir>>26]; - bexpl+=GETECON(dfr); - - // here bexpr has biased exponent from lhs, and vice versa - - diffsign=(sourhil^sourhir)&DECFLOAT_Sign; - - // now determine whether to take a fast path or the full-function - // slow path. The slow path must be taken when: - // -- both numbers are finite, and: - // the exponents are different, or - // the signs are different, or - // the sum of the MSDs is >8 (hence might overflow) - // specialness and the sum of the MSDs can be tested at once using - // the summ value just calculated, so the test for specials is no - // longer on the worst-case path (as of 3.60) - - if (summ<=8) { // MSD+MSD is good, or there is a special - if (summ<0) { // there is a special - // Inf+Inf would give -64; Inf+finite is -32 or higher - if (summ<-64) return decNaNs(result, dfl, dfr, set); // one or two NaNs - // two infinities with different signs is invalid - if (summ==-64 && diffsign) return decInvalid(result, set); - if (DFISINF(dfl)) return decInfinity(result, dfl); // LHS is infinite - return decInfinity(result, dfr); // RHS must be Inf - } - // Here when both arguments are finite; fast path is possible - // (currently only for aligned and same-sign) - if (bexpr==bexpl && !diffsign) { - uInt tac[DECLETS+1]; // base-1000 coefficient - uInt encode; // work - - // Get one coefficient as base-1000 and add the other - GETCOEFFTHOU(dfl, tac); // least-significant goes to [0] - ADDCOEFFTHOU(dfr, tac); - // here the sum of the MSDs (plus any carry) will be <10 due to - // the fastpath test earlier - - // construct the result; low word is the same for both formats - encode =BIN2DPD[tac[0]]; - encode|=BIN2DPD[tac[1]]<<10; - encode|=BIN2DPD[tac[2]]<<20; - encode|=BIN2DPD[tac[3]]<<30; - DFWORD(result, (DECBYTES/4)-1)=encode; - - // collect next two declets (all that remains, for Double) - encode =BIN2DPD[tac[3]]>>2; - encode|=BIN2DPD[tac[4]]<<8; - - #if QUAD - // complete and lay out middling words - encode|=BIN2DPD[tac[5]]<<18; - encode|=BIN2DPD[tac[6]]<<28; - DFWORD(result, 2)=encode; - - encode =BIN2DPD[tac[6]]>>4; - encode|=BIN2DPD[tac[7]]<<6; - encode|=BIN2DPD[tac[8]]<<16; - encode|=BIN2DPD[tac[9]]<<26; - DFWORD(result, 1)=encode; - - // and final two declets - encode =BIN2DPD[tac[9]]>>6; - encode|=BIN2DPD[tac[10]]<<4; - #endif - - // add exponent continuation and sign (from either argument) - encode|=sourhil & (ECONMASK | DECFLOAT_Sign); - - // create lookup index = MSD + top two bits of biased exponent <<4 - tac[DECLETS]|=(bexpl>>DECECONL)<<4; - encode|=DECCOMBFROM[tac[DECLETS]]; // add constructed combination field - DFWORD(result, 0)=encode; // complete - - // decFloatShow(result, ">"); - return result; - } // fast path OK - // drop through to slow path - } // low sum or Special(s) - - /* Slow path required -- arguments are finite and might overflow, */ - /* or require alignment, or might have different signs */ - - // now swap either exponents or argument pointers - if (bexpl<=bexpr) { - // original left is bigger - Int bexpswap=bexpl; - bexpl=bexpr; - bexpr=bexpswap; - // printf("left bigger\n"); - } - else { - const decFloat *dfswap=dfl; - dfl=dfr; - dfr=dfswap; - // printf("right bigger\n"); - } - // [here dfl and bexpl refer to the datum with the larger exponent, - // of if the exponents are equal then the original LHS argument] - - // if lhs is zero then result will be the rhs (now known to have - // the smaller exponent), which also may need to be tested for zero - // for the weird IEEE 754 sign rules - if (DFISZERO(dfl)) { - decCanonical(result, dfr); // clean copy - // "When the sum of two operands with opposite signs is - // exactly zero, the sign of that sum shall be '+' in all - // rounding modes except round toward -Infinity, in which - // mode that sign shall be '-'." - if (diffsign && DFISZERO(result)) { - DFWORD(result, 0)&=~DECFLOAT_Sign; // assume sign 0 - if (set->round==DEC_ROUND_FLOOR) DFWORD(result, 0)|=DECFLOAT_Sign; - } - return result; - } // numfl is zero - // [here, LHS is non-zero; code below assumes that] - - // Coefficients layout during the calculations to follow: - // - // Overlap case: - // +------------------------------------------------+ - // acc: |0000| coeffa | tail B | | - // +------------------------------------------------+ - // buf: |0000| pad0s | coeffb | | - // +------------------------------------------------+ - // - // Touching coefficients or gap: - // +------------------------------------------------+ - // acc: |0000| coeffa | gap | coeffb | - // +------------------------------------------------+ - // [buf not used or needed; gap clamped to Pmax] - - // lay out lhs coefficient into accumulator; this starts at acc+4 - // for decDouble or acc+6 for decQuad so the LSD is word- - // aligned; the top word gap is there only in case a carry digit - // is prefixed after the add -- it does not need to be zeroed - #if DOUBLE - #define COFF 4 // offset into acc - #elif QUAD - UBFROMUS(acc+4, 0); // prefix 00 - #define COFF 6 // offset into acc - #endif - - GETCOEFF(dfl, acc+COFF); // decode from decFloat - ulsd=acc+COFF+DECPMAX-1; - umsd=acc+4; // [having this here avoids - - #if DECTRACE - {bcdnum tum; - tum.msd=umsd; - tum.lsd=ulsd; - tum.exponent=bexpl-DECBIAS; - tum.sign=DFWORD(dfl, 0) & DECFLOAT_Sign; - decShowNum(&tum, "dflx");} - #endif - - // if signs differ, take ten's complement of lhs (here the - // coefficient is subtracted from all-nines; the 1 is added during - // the later add cycle -- zeros to the right do not matter because - // the complement of zero is zero); these are fixed-length inverts - // where the lsd is known to be at a 4-byte boundary (so no borrow - // possible) - carry=0; // assume no carry - if (diffsign) { - carry=CARRYPAT; // for +1 during add - UBFROMUI(acc+ 4, 0x09090909-UBTOUI(acc+ 4)); - UBFROMUI(acc+ 8, 0x09090909-UBTOUI(acc+ 8)); - UBFROMUI(acc+12, 0x09090909-UBTOUI(acc+12)); - UBFROMUI(acc+16, 0x09090909-UBTOUI(acc+16)); - #if QUAD - UBFROMUI(acc+20, 0x09090909-UBTOUI(acc+20)); - UBFROMUI(acc+24, 0x09090909-UBTOUI(acc+24)); - UBFROMUI(acc+28, 0x09090909-UBTOUI(acc+28)); - UBFROMUI(acc+32, 0x09090909-UBTOUI(acc+32)); - UBFROMUI(acc+36, 0x09090909-UBTOUI(acc+36)); - #endif - } // diffsign - - // now process the rhs coefficient; if it cannot overlap lhs then - // it can be put straight into acc (with an appropriate gap, if - // needed) because no actual addition will be needed (except - // possibly to complete ten's complement) - overlap=DECPMAX-(bexpl-bexpr); - #if DECTRACE - printf("exps: %ld %ld\n", (LI)(bexpl-DECBIAS), (LI)(bexpr-DECBIAS)); - printf("Overlap=%ld carry=%08lx\n", (LI)overlap, (LI)carry); - #endif - - if (overlap<=0) { // no overlap possible - uInt gap; // local work - // since a full addition is not needed, a ten's complement - // calculation started above may need to be completed - if (carry) { - for (ub=ulsd; *ub==9; ub--) *ub=0; - *ub+=1; - carry=0; // taken care of - } - // up to DECPMAX-1 digits of the final result can extend down - // below the LSD of the lhs, so if the gap is >DECPMAX then the - // rhs will be simply sticky bits. In this case the gap is - // clamped to DECPMAX and the exponent adjusted to suit [this is - // safe because the lhs is non-zero]. - gap=-overlap; - if (gap>DECPMAX) { - bexpr+=gap-1; - gap=DECPMAX; - } - ub=ulsd+gap+1; // where MSD will go - // Fill the gap with 0s; note that there is no addition to do - ut=acc+COFF+DECPMAX; // start of gap - for (; ut DECPMAX - *ub=(uByte)(!DFISZERO(dfr)); // make sticky digit - } - else { // need full coefficient - GETCOEFF(dfr, ub); // decode from decFloat - ub+=DECPMAX-1; // new LSD... - } - ulsd=ub; // save new LSD - } // no overlap possible - - else { // overlap>0 - // coefficients overlap (perhaps completely, although also - // perhaps only where zeros) - if (overlap==DECPMAX) { // aligned - ub=buf+COFF; // where msd will go - #if QUAD - UBFROMUS(buf+4, 0); // clear quad's 00 - #endif - GETCOEFF(dfr, ub); // decode from decFloat - } - else { // unaligned - ub=buf+COFF+DECPMAX-overlap; // where MSD will go - // Fill the prefix gap with 0s; 8 will cover most common - // unalignments, so start with direct assignments (a loop is - // then used for any remaining -- the loop (and the one in a - // moment) is not then on the critical path because the number - // of additions is reduced by (at least) two in this case) - UBFROMUI(buf+4, 0); // [clears decQuad 00 too] - UBFROMUI(buf+8, 0); - if (ub>buf+12) { - ut=buf+12; // start any remaining - for (; ut=acc+4; ut-=4, us-=4) { // big-endian add loop - // bcd8 add - carry+=UBTOUI(us); // rhs + carry - if (carry==0) continue; // no-op - carry+=UBTOUI(ut); // lhs - // Big-endian BCD adjust (uses internal carry) - carry+=0x76f6f6f6; // note top nibble not all bits - // apply BCD adjust and save - UBFROMUI(ut, (carry & 0x0f0f0f0f) - ((carry & 0x60606060)>>4)); - carry>>=31; // true carry was at far left - } // add loop - #else - for (; ut>=acc+4; ut-=4, us-=4) { // little-endian add loop - // bcd8 add - carry+=UBTOUI(us); // rhs + carry - if (carry==0) continue; // no-op [common if unaligned] - carry+=UBTOUI(ut); // lhs - // Little-endian BCD adjust; inter-digit carry must be manual - // because the lsb from the array will be in the most-significant - // byte of carry - carry+=0x76767676; // note no inter-byte carries - carry+=(carry & 0x80000000)>>15; - carry+=(carry & 0x00800000)>>15; - carry+=(carry & 0x00008000)>>15; - carry-=(carry & 0x60606060)>>4; // BCD adjust back - UBFROMUI(ut, carry & 0x0f0f0f0f); // clear debris and save - // here, final carry-out bit is at 0x00000080; move it ready - // for next word-add (i.e., to 0x01000000) - carry=(carry & 0x00000080)<<17; - } // add loop - #endif - - #if DECTRACE - {bcdnum tum; - printf("Add done, carry=%08lx, diffsign=%ld\n", (LI)carry, (LI)diffsign); - tum.msd=umsd; // acc+4; - tum.lsd=ulsd; - tum.exponent=0; - tum.sign=0; - decShowNum(&tum, "dfadd");} - #endif - } // overlap possible - - // ordering here is a little strange in order to have slowest path - // first in GCC asm listing - if (diffsign) { // subtraction - if (!carry) { // no carry out means RHS=umsd+BNEXT) { // unaligned - // eight will handle most unaligments for Double; 16 for Quad - UBFROMUI(umsd+BNEXT, 0x09090909-UBTOUI(umsd+BNEXT)); - UBFROMUI(umsd+BNEXT+4, 0x09090909-UBTOUI(umsd+BNEXT+4)); - #if DOUBLE - #define BNEXTY (BNEXT+8) - #elif QUAD - UBFROMUI(umsd+BNEXT+8, 0x09090909-UBTOUI(umsd+BNEXT+8)); - UBFROMUI(umsd+BNEXT+12, 0x09090909-UBTOUI(umsd+BNEXT+12)); - #define BNEXTY (BNEXT+16) - #endif - if (ulsd>=umsd+BNEXTY) { // very unaligned - ut=umsd+BNEXTY; // -> continue - for (;;ut+=4) { - UBFROMUI(ut, 0x09090909-UBTOUI(ut)); // invert four digits - if (ut>=ulsd-3) break; // all done - } - } - } - // complete the ten's complement by adding 1 - for (ub=ulsd; *ub==9; ub--) *ub=0; - *ub+=1; - } // borrowed - - else { // carry out means RHS>=LHS - num.sign=DFWORD(dfr, 0) & DECFLOAT_Sign; - // all done except for the special IEEE 754 exact-zero-result - // rule (see above); while testing for zero, strip leading - // zeros (which will save decFinalize doing it) (this is in - // diffsign path, so carry impossible and true umsd is - // acc+COFF) - - // Check the initial coefficient area using the fast macro; - // this will often be all that needs to be done (as on the - // worst-case path when the subtraction was aligned and - // full-length) - if (ISCOEFFZERO(acc+COFF)) { - umsd=acc+COFF+DECPMAX-1; // so far, so zero - if (ulsd>umsd) { // more to check - umsd++; // to align after checked area - for (; UBTOUI(umsd)==0 && umsd+3round==DEC_ROUND_FLOOR) num.sign=DECFLOAT_Sign; - } - } - // [else was not zero, might still have leading zeros] - } // subtraction gave positive result - } // diffsign - - else { // same-sign addition - num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; - #if DOUBLE - if (carry) { // only possible with decDouble - *(acc+3)=1; // [Quad has leading 00] - umsd=acc+3; - } - #endif - } // same sign - - num.msd=umsd; // set MSD .. - num.lsd=ulsd; // .. and LSD - num.exponent=bexpr-DECBIAS; // set exponent to smaller, unbiassed - - #if DECTRACE - decFloatShow(dfl, "dfl"); - decFloatShow(dfr, "dfr"); - decShowNum(&num, "postadd"); - #endif - return decFinalize(result, &num, set); // round, check, and lay out - } // decFloatAdd - -/* ------------------------------------------------------------------ */ -/* decFloatAnd -- logical digitwise AND of two decFloats */ -/* */ -/* result gets the result of ANDing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result, which will be canonical with sign=0 */ -/* */ -/* The operands must be positive, finite with exponent q=0, and */ -/* comprise just zeros and ones; if not, Invalid operation results. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatAnd(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - if (!DFISUINT01(dfl) || !DFISUINT01(dfr) - || !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set); - // the operands are positive finite integers (q=0) with just 0s and 1s - #if DOUBLE - DFWORD(result, 0)=ZEROWORD - |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04009124); - DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x49124491; - #elif QUAD - DFWORD(result, 0)=ZEROWORD - |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04000912); - DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x44912449; - DFWORD(result, 2)=(DFWORD(dfl, 2) & DFWORD(dfr, 2))&0x12449124; - DFWORD(result, 3)=(DFWORD(dfl, 3) & DFWORD(dfr, 3))&0x49124491; - #endif - return result; - } // decFloatAnd - -/* ------------------------------------------------------------------ */ -/* decFloatCanonical -- copy a decFloat, making canonical */ -/* */ -/* result gets the canonicalized df */ -/* df is the decFloat to copy and make canonical */ -/* returns result */ -/* */ -/* This works on specials, too; no error or exception is possible. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCanonical(decFloat *result, const decFloat *df) { - return decCanonical(result, df); - } // decFloatCanonical - -/* ------------------------------------------------------------------ */ -/* decFloatClass -- return the class of a decFloat */ -/* */ -/* df is the decFloat to test */ -/* returns the decClass that df falls into */ -/* ------------------------------------------------------------------ */ -enum decClass decFloatClass(const decFloat *df) { - Int exp; // exponent - if (DFISSPECIAL(df)) { - if (DFISQNAN(df)) return DEC_CLASS_QNAN; - if (DFISSNAN(df)) return DEC_CLASS_SNAN; - // must be an infinity - if (DFISSIGNED(df)) return DEC_CLASS_NEG_INF; - return DEC_CLASS_POS_INF; - } - if (DFISZERO(df)) { // quite common - if (DFISSIGNED(df)) return DEC_CLASS_NEG_ZERO; - return DEC_CLASS_POS_ZERO; - } - // is finite and non-zero; similar code to decFloatIsNormal, here - // [this could be speeded up slightly by in-lining decFloatDigits] - exp=GETEXPUN(df) // get unbiased exponent .. - +decFloatDigits(df)-1; // .. and make adjusted exponent - if (exp>=DECEMIN) { // is normal - if (DFISSIGNED(df)) return DEC_CLASS_NEG_NORMAL; - return DEC_CLASS_POS_NORMAL; - } - // is subnormal - if (DFISSIGNED(df)) return DEC_CLASS_NEG_SUBNORMAL; - return DEC_CLASS_POS_SUBNORMAL; - } // decFloatClass - -/* ------------------------------------------------------------------ */ -/* decFloatClassString -- return the class of a decFloat as a string */ -/* */ -/* df is the decFloat to test */ -/* returns a constant string describing the class df falls into */ -/* ------------------------------------------------------------------ */ -const char *decFloatClassString(const decFloat *df) { - enum decClass eclass=decFloatClass(df); - if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN; - if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN; - if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ; - if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ; - if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; - if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; - if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI; - if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI; - if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN; - if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN; - return DEC_ClassString_UN; // Unknown - } // decFloatClassString - -/* ------------------------------------------------------------------ */ -/* decFloatCompare -- compare two decFloats; quiet NaNs allowed */ -/* */ -/* result gets the result of comparing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result, which may be -1, 0, 1, or NaN (Unordered) */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCompare(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int comp; // work - // NaNs are handled as usual - if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - // numeric comparison needed - comp=decNumCompare(dfl, dfr, 0); - decFloatZero(result); - if (comp==0) return result; - DFBYTE(result, DECBYTES-1)=0x01; // LSD=1 - if (comp<0) DFBYTE(result, 0)|=0x80; // set sign bit - return result; - } // decFloatCompare - -/* ------------------------------------------------------------------ */ -/* decFloatCompareSignal -- compare two decFloats; all NaNs signal */ -/* */ -/* result gets the result of comparing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result, which may be -1, 0, 1, or NaN (Unordered) */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCompareSignal(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int comp; // work - // NaNs are handled as usual, except that all NaNs signal - if (DFISNAN(dfl) || DFISNAN(dfr)) { - set->status|=DEC_Invalid_operation; - return decNaNs(result, dfl, dfr, set); - } - // numeric comparison needed - comp=decNumCompare(dfl, dfr, 0); - decFloatZero(result); - if (comp==0) return result; - DFBYTE(result, DECBYTES-1)=0x01; // LSD=1 - if (comp<0) DFBYTE(result, 0)|=0x80; // set sign bit - return result; - } // decFloatCompareSignal - -/* ------------------------------------------------------------------ */ -/* decFloatCompareTotal -- compare two decFloats with total ordering */ -/* */ -/* result gets the result of comparing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* returns result, which may be -1, 0, or 1 */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCompareTotal(decFloat *result, - const decFloat *dfl, const decFloat *dfr) { - Int comp; // work - uInt uiwork; // for macros - #if QUAD - uShort uswork; // .. - #endif - if (DFISNAN(dfl) || DFISNAN(dfr)) { - Int nanl, nanr; // work - // morph NaNs to +/- 1 or 2, leave numbers as 0 - nanl=DFISSNAN(dfl)+DFISQNAN(dfl)*2; // quiet > signalling - if (DFISSIGNED(dfl)) nanl=-nanl; - nanr=DFISSNAN(dfr)+DFISQNAN(dfr)*2; - if (DFISSIGNED(dfr)) nanr=-nanr; - if (nanl>nanr) comp=+1; - else if (nanl*uc) comp=sigl; // difference found - else comp=-sigl; // .. - break; - } - } - } // same NaN type and sign - } - else { - // numeric comparison needed - comp=decNumCompare(dfl, dfr, 1); // total ordering - } - decFloatZero(result); - if (comp==0) return result; - DFBYTE(result, DECBYTES-1)=0x01; // LSD=1 - if (comp<0) DFBYTE(result, 0)|=0x80; // set sign bit - return result; - } // decFloatCompareTotal - -/* ------------------------------------------------------------------ */ -/* decFloatCompareTotalMag -- compare magnitudes with total ordering */ -/* */ -/* result gets the result of comparing abs(dfl) and abs(dfr) */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* returns result, which may be -1, 0, or 1 */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCompareTotalMag(decFloat *result, - const decFloat *dfl, const decFloat *dfr) { - decFloat a, b; // for copy if needed - // copy and redirect signed operand(s) - if (DFISSIGNED(dfl)) { - decFloatCopyAbs(&a, dfl); - dfl=&a; - } - if (DFISSIGNED(dfr)) { - decFloatCopyAbs(&b, dfr); - dfr=&b; - } - return decFloatCompareTotal(result, dfl, dfr); - } // decFloatCompareTotalMag - -/* ------------------------------------------------------------------ */ -/* decFloatCopy -- copy a decFloat as-is */ -/* */ -/* result gets the copy of dfl */ -/* dfl is the decFloat to copy */ -/* returns result */ -/* */ -/* This is a bitwise operation; no errors or exceptions are possible. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCopy(decFloat *result, const decFloat *dfl) { - if (dfl!=result) *result=*dfl; // copy needed - return result; - } // decFloatCopy - -/* ------------------------------------------------------------------ */ -/* decFloatCopyAbs -- copy a decFloat as-is and set sign bit to 0 */ -/* */ -/* result gets the copy of dfl with sign bit 0 */ -/* dfl is the decFloat to copy */ -/* returns result */ -/* */ -/* This is a bitwise operation; no errors or exceptions are possible. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCopyAbs(decFloat *result, const decFloat *dfl) { - if (dfl!=result) *result=*dfl; // copy needed - DFBYTE(result, 0)&=~0x80; // zero sign bit - return result; - } // decFloatCopyAbs - -/* ------------------------------------------------------------------ */ -/* decFloatCopyNegate -- copy a decFloat as-is with inverted sign bit */ -/* */ -/* result gets the copy of dfl with sign bit inverted */ -/* dfl is the decFloat to copy */ -/* returns result */ -/* */ -/* This is a bitwise operation; no errors or exceptions are possible. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCopyNegate(decFloat *result, const decFloat *dfl) { - if (dfl!=result) *result=*dfl; // copy needed - DFBYTE(result, 0)^=0x80; // invert sign bit - return result; - } // decFloatCopyNegate - -/* ------------------------------------------------------------------ */ -/* decFloatCopySign -- copy a decFloat with the sign of another */ -/* */ -/* result gets the result of copying dfl with the sign of dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* returns result */ -/* */ -/* This is a bitwise operation; no errors or exceptions are possible. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatCopySign(decFloat *result, - const decFloat *dfl, const decFloat *dfr) { - uByte sign=(uByte)(DFBYTE(dfr, 0)&0x80); // save sign bit - if (dfl!=result) *result=*dfl; // copy needed - DFBYTE(result, 0)&=~0x80; // clear sign .. - DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); // .. and set saved - return result; - } // decFloatCopySign - -/* ------------------------------------------------------------------ */ -/* decFloatDigits -- return the number of digits in a decFloat */ -/* */ -/* df is the decFloat to investigate */ -/* returns the number of significant digits in the decFloat; a */ -/* zero coefficient returns 1 as does an infinity (a NaN returns */ -/* the number of digits in the payload) */ -/* ------------------------------------------------------------------ */ -// private macro to extract a declet according to provided formula -// (form), and if it is non-zero then return the calculated digits -// depending on the declet number (n), where n=0 for the most -// significant declet; uses uInt dpd for work -#define dpdlenchk(n, form) dpd=(form)&0x3ff; \ - if (dpd) return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]) -// next one is used when it is known that the declet must be -// non-zero, or is the final zero declet -#define dpdlendun(n, form) dpd=(form)&0x3ff; \ - if (dpd==0) return 1; \ - return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]) - -uInt decFloatDigits(const decFloat *df) { - uInt dpd; // work - uInt sourhi=DFWORD(df, 0); // top word from source decFloat - #if QUAD - uInt sourmh, sourml; - #endif - uInt sourlo; - - if (DFISINF(df)) return 1; - // A NaN effectively has an MSD of 0; otherwise if non-zero MSD - // then the coefficient is full-length - if (!DFISNAN(df) && DECCOMBMSD[sourhi>>26]) return DECPMAX; - - #if DOUBLE - if (sourhi&0x0003ffff) { // ends in first - dpdlenchk(0, sourhi>>8); - sourlo=DFWORD(df, 1); - dpdlendun(1, (sourhi<<2) | (sourlo>>30)); - } // [cannot drop through] - sourlo=DFWORD(df, 1); // sourhi not involved now - if (sourlo&0xfff00000) { // in one of first two - dpdlenchk(1, sourlo>>30); // very rare - dpdlendun(2, sourlo>>20); - } // [cannot drop through] - dpdlenchk(3, sourlo>>10); - dpdlendun(4, sourlo); - // [cannot drop through] - - #elif QUAD - if (sourhi&0x00003fff) { // ends in first - dpdlenchk(0, sourhi>>4); - sourmh=DFWORD(df, 1); - dpdlendun(1, ((sourhi)<<6) | (sourmh>>26)); - } // [cannot drop through] - sourmh=DFWORD(df, 1); - if (sourmh) { - dpdlenchk(1, sourmh>>26); - dpdlenchk(2, sourmh>>16); - dpdlenchk(3, sourmh>>6); - sourml=DFWORD(df, 2); - dpdlendun(4, ((sourmh)<<4) | (sourml>>28)); - } // [cannot drop through] - sourml=DFWORD(df, 2); - if (sourml) { - dpdlenchk(4, sourml>>28); - dpdlenchk(5, sourml>>18); - dpdlenchk(6, sourml>>8); - sourlo=DFWORD(df, 3); - dpdlendun(7, ((sourml)<<2) | (sourlo>>30)); - } // [cannot drop through] - sourlo=DFWORD(df, 3); - if (sourlo&0xfff00000) { // in one of first two - dpdlenchk(7, sourlo>>30); // very rare - dpdlendun(8, sourlo>>20); - } // [cannot drop through] - dpdlenchk(9, sourlo>>10); - dpdlendun(10, sourlo); - // [cannot drop through] - #endif - } // decFloatDigits - -/* ------------------------------------------------------------------ */ -/* decFloatDivide -- divide a decFloat by another */ -/* */ -/* result gets the result of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* ------------------------------------------------------------------ */ -// This is just a wrapper. -decFloat * decFloatDivide(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - return decDivide(result, dfl, dfr, set, DIVIDE); - } // decFloatDivide - -/* ------------------------------------------------------------------ */ -/* decFloatDivideInteger -- integer divide a decFloat by another */ -/* */ -/* result gets the result of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatDivideInteger(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - return decDivide(result, dfl, dfr, set, DIVIDEINT); - } // decFloatDivideInteger - -/* ------------------------------------------------------------------ */ -/* decFloatFMA -- multiply and add three decFloats, fused */ -/* */ -/* result gets the result of (dfl*dfr)+dff with a single rounding */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* dff is the final decFloat (fhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, - const decFloat *dfr, const decFloat *dff, - decContext *set) { - - // The accumulator has the bytes needed for FiniteMultiply, plus - // one byte to the left in case of carry, plus DECPMAX+2 to the - // right for the final addition (up to full fhs + round & sticky) - #define FMALEN (ROUNDUP4(1+ (DECPMAX9*18+1) +DECPMAX+2)) - uByte acc[FMALEN]; // for multiplied coefficient in BCD - // .. and for final result - bcdnum mul; // for multiplication result - bcdnum fin; // for final operand, expanded - uByte coe[ROUNDUP4(DECPMAX)]; // dff coefficient in BCD - bcdnum *hi, *lo; // bcdnum with higher/lower exponent - uInt diffsign; // non-zero if signs differ - uInt hipad; // pad digit for hi if needed - Int padding; // excess exponent - uInt carry; // +1 for ten's complement and during add - uByte *ub, *uh, *ul; // work - uInt uiwork; // for macros - - // handle all the special values [any special operand leads to a - // special result] - if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr) || DFISSPECIAL(dff)) { - decFloat proxy; // multiplication result proxy - // NaNs are handled as usual, giving priority to sNaNs - if (DFISSNAN(dfl) || DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); - if (DFISSNAN(dff)) return decNaNs(result, dff, NULL, set); - if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - if (DFISNAN(dff)) return decNaNs(result, dff, NULL, set); - // One or more of the three is infinite - // infinity times zero is bad - decFloatZero(&proxy); - if (DFISINF(dfl)) { - if (DFISZERO(dfr)) return decInvalid(result, set); - decInfinity(&proxy, &proxy); - } - else if (DFISINF(dfr)) { - if (DFISZERO(dfl)) return decInvalid(result, set); - decInfinity(&proxy, &proxy); - } - // compute sign of multiplication and place in proxy - DFWORD(&proxy, 0)|=(DFWORD(dfl, 0)^DFWORD(dfr, 0))&DECFLOAT_Sign; - if (!DFISINF(dff)) return decFloatCopy(result, &proxy); - // dff is Infinite - if (!DFISINF(&proxy)) return decInfinity(result, dff); - // both sides of addition are infinite; different sign is bad - if ((DFWORD(dff, 0)&DECFLOAT_Sign)!=(DFWORD(&proxy, 0)&DECFLOAT_Sign)) - return decInvalid(result, set); - return decFloatCopy(result, &proxy); - } - - /* Here when all operands are finite */ - - // First multiply dfl*dfr - decFiniteMultiply(&mul, acc+1, dfl, dfr); - // The multiply is complete, exact and unbounded, and described in - // mul with the coefficient held in acc[1...] - - // now add in dff; the algorithm is essentially the same as - // decFloatAdd, but the code is different because the code there - // is highly optimized for adding two numbers of the same size - fin.exponent=GETEXPUN(dff); // get dff exponent and sign - fin.sign=DFWORD(dff, 0)&DECFLOAT_Sign; - diffsign=mul.sign^fin.sign; // note if signs differ - fin.msd=coe; - fin.lsd=coe+DECPMAX-1; - GETCOEFF(dff, coe); // extract the coefficient - - // now set hi and lo so that hi points to whichever of mul and fin - // has the higher exponent and lo points to the other [don't care, - // if the same]. One coefficient will be in acc, the other in coe. - if (mul.exponent>=fin.exponent) { - hi=&mul; - lo=&fin; - } - else { - hi=&fin; - lo=&mul; - } - - // remove leading zeros on both operands; this will save time later - // and make testing for zero trivial (tests are safe because acc - // and coe are rounded up to uInts) - for (; UBTOUI(hi->msd)==0 && hi->msd+3lsd;) hi->msd+=4; - for (; *hi->msd==0 && hi->msdlsd;) hi->msd++; - for (; UBTOUI(lo->msd)==0 && lo->msd+3lsd;) lo->msd+=4; - for (; *lo->msd==0 && lo->msdlsd;) lo->msd++; - - // if hi is zero then result will be lo (which has the smaller - // exponent), which also may need to be tested for zero for the - // weird IEEE 754 sign rules - if (*hi->msd==0) { // hi is zero - // "When the sum of two operands with opposite signs is - // exactly zero, the sign of that sum shall be '+' in all - // rounding modes except round toward -Infinity, in which - // mode that sign shall be '-'." - if (diffsign) { - if (*lo->msd==0) { // lo is zero - lo->sign=0; - if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign; - } // diffsign && lo=0 - } // diffsign - return decFinalize(result, lo, set); // may need clamping - } // numfl is zero - // [here, both are minimal length and hi is non-zero] - // (if lo is zero then padding with zeros may be needed, below) - - // if signs differ, take the ten's complement of hi (zeros to the - // right do not matter because the complement of zero is zero); the - // +1 is done later, as part of the addition, inserted at the - // correct digit - hipad=0; - carry=0; - if (diffsign) { - hipad=9; - carry=1; - // exactly the correct number of digits must be inverted - for (uh=hi->msd; uhlsd-3; uh+=4) UBFROMUI(uh, 0x09090909-UBTOUI(uh)); - for (; uh<=hi->lsd; uh++) *uh=(uByte)(0x09-*uh); - } - - // ready to add; note that hi has no leading zeros so gap - // calculation does not have to be as pessimistic as in decFloatAdd - // (this is much more like the arbitrary-precision algorithm in - // Rexx and decNumber) - - // padding is the number of zeros that would need to be added to hi - // for its lsd to be aligned with the lsd of lo - padding=hi->exponent-lo->exponent; - // printf("FMA pad %ld\n", (LI)padding); - - // the result of the addition will be built into the accumulator, - // starting from the far right; this could be either hi or lo, and - // will be aligned - ub=acc+FMALEN-1; // where lsd of result will go - ul=lo->lsd; // lsd of rhs - - if (padding!=0) { // unaligned - // if the msd of lo is more than DECPMAX+2 digits to the right of - // the original msd of hi then it can be reduced to a single - // digit at the right place, as it stays clear of hi digits - // [it must be DECPMAX+2 because during a subtraction the msd - // could become 0 after a borrow from 1.000 to 0.9999...] - - Int hilen=(Int)(hi->lsd-hi->msd+1); // length of hi - Int lolen=(Int)(lo->lsd-lo->msd+1); // and of lo - - if (hilen+padding-lolen > DECPMAX+2) { // can reduce lo to single - // make sure it is virtually at least DECPMAX from hi->msd, at - // least to right of hi->lsd (in case of destructive subtract), - // and separated by at least two digits from either of those - // (the tricky DOUBLE case is when hi is a 1 that will become a - // 0.9999... by subtraction: - // hi: 1 E+16 - // lo: .................1000000000000000 E-16 - // which for the addition pads to: - // hi: 1000000000000000000 E-16 - // lo: .................1000000000000000 E-16 - Int newexp=MINI(hi->exponent, hi->exponent+hilen-DECPMAX)-3; - - // printf("FMA reduce: %ld\n", (LI)reduce); - lo->lsd=lo->msd; // to single digit [maybe 0] - lo->exponent=newexp; // new lowest exponent - padding=hi->exponent-lo->exponent; // recalculate - ul=lo->lsd; // .. and repoint - } - - // padding is still > 0, but will fit in acc (less leading carry slot) - #if DECCHECK - if (padding<=0) printf("FMA low padding: %ld\n", (LI)padding); - if (hilen+padding+1>FMALEN) - printf("FMA excess hilen+padding: %ld+%ld \n", (LI)hilen, (LI)padding); - // printf("FMA padding: %ld\n", (LI)padding); - #endif - - // padding digits can now be set in the result; one or more of - // these will come from lo; others will be zeros in the gap - for (; ul-3>=lo->msd && padding>3; padding-=4, ul-=4, ub-=4) { - UBFROMUI(ub-3, UBTOUI(ul-3)); // [cannot overlap] - } - for (; ul>=lo->msd && padding>0; padding--, ul--, ub--) *ub=*ul; - for (;padding>0; padding--, ub--) *ub=0; // mind the gap - } - - // addition now complete to the right of the rightmost digit of hi - uh=hi->lsd; - - // dow do the add from hi->lsd to the left - // [bytewise, because either operand can run out at any time] - // carry was set up depending on ten's complement above - // first assume both operands have some digits - for (;; ub--) { - if (uhmsd || ulmsd) break; - *ub=(uByte)(carry+(*uh--)+(*ul--)); - carry=0; - if (*ub<10) continue; - *ub-=10; - carry=1; - } // both loop - - if (ulmsd) { // to left of lo - for (;; ub--) { - if (uhmsd) break; - *ub=(uByte)(carry+(*uh--)); // [+0] - carry=0; - if (*ub<10) continue; - *ub-=10; - carry=1; - } // hi loop - } - else { // to left of hi - for (;; ub--) { - if (ulmsd) break; - *ub=(uByte)(carry+hipad+(*ul--)); - carry=0; - if (*ub<10) continue; - *ub-=10; - carry=1; - } // lo loop - } - - // addition complete -- now handle carry, borrow, etc. - // use lo to set up the num (its exponent is already correct, and - // sign usually is) - lo->msd=ub+1; - lo->lsd=acc+FMALEN-1; - // decShowNum(lo, "lo"); - if (!diffsign) { // same-sign addition - if (carry) { // carry out - *ub=1; // place the 1 .. - lo->msd--; // .. and update - } - } // same sign - else { // signs differed (subtraction) - if (!carry) { // no carry out means hisign=hi->sign; // sign is lhs sign - for (ul=lo->msd; ullsd-3; ul+=4) UBFROMUI(ul, 0x09090909-UBTOUI(ul)); - for (; ul<=lo->lsd; ul++) *ul=(uByte)(0x09-*ul); // [leaves ul at lsd+1] - // complete the ten's complement by adding 1 [cannot overrun] - for (ul--; *ul==9; ul--) *ul=0; - *ul+=1; - } // borrowed - else { // carry out means hi>=lo - // sign to use is lo->sign - // all done except for the special IEEE 754 exact-zero-result - // rule (see above); while testing for zero, strip leading - // zeros (which will save decFinalize doing it) - for (; UBTOUI(lo->msd)==0 && lo->msd+3lsd;) lo->msd+=4; - for (; *lo->msd==0 && lo->msdlsd;) lo->msd++; - if (*lo->msd==0) { // must be true zero (and diffsign) - lo->sign=0; // assume + - if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign; - } - // [else was not zero, might still have leading zeros] - } // subtraction gave positive result - } // diffsign - - #if DECCHECK - // assert no left underrun - if (lo->msdmsd)); - } - #endif - - return decFinalize(result, lo, set); // round, check, and lay out - } // decFloatFMA - -/* ------------------------------------------------------------------ */ -/* decFloatFromInt -- initialise a decFloat from an Int */ -/* */ -/* result gets the converted Int */ -/* n is the Int to convert */ -/* returns result */ -/* */ -/* The result is Exact; no errors or exceptions are possible. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatFromInt32(decFloat *result, Int n) { - uInt u=(uInt)n; // copy as bits - uInt encode; // work - DFWORD(result, 0)=ZEROWORD; // always - #if QUAD - DFWORD(result, 1)=0; - DFWORD(result, 2)=0; - #endif - if (n<0) { // handle -n with care - // [This can be done without the test, but is then slightly slower] - u=(~u)+1; - DFWORD(result, 0)|=DECFLOAT_Sign; - } - // Since the maximum value of u now is 2**31, only the low word of - // result is affected - encode=BIN2DPD[u%1000]; - u/=1000; - encode|=BIN2DPD[u%1000]<<10; - u/=1000; - encode|=BIN2DPD[u%1000]<<20; - u/=1000; // now 0, 1, or 2 - encode|=u<<30; - DFWORD(result, DECWORDS-1)=encode; - return result; - } // decFloatFromInt32 - -/* ------------------------------------------------------------------ */ -/* decFloatFromUInt -- initialise a decFloat from a uInt */ -/* */ -/* result gets the converted uInt */ -/* n is the uInt to convert */ -/* returns result */ -/* */ -/* The result is Exact; no errors or exceptions are possible. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatFromUInt32(decFloat *result, uInt u) { - uInt encode; // work - DFWORD(result, 0)=ZEROWORD; // always - #if QUAD - DFWORD(result, 1)=0; - DFWORD(result, 2)=0; - #endif - encode=BIN2DPD[u%1000]; - u/=1000; - encode|=BIN2DPD[u%1000]<<10; - u/=1000; - encode|=BIN2DPD[u%1000]<<20; - u/=1000; // now 0 -> 4 - encode|=u<<30; - DFWORD(result, DECWORDS-1)=encode; - DFWORD(result, DECWORDS-2)|=u>>2; // rarely non-zero - return result; - } // decFloatFromUInt32 - -/* ------------------------------------------------------------------ */ -/* decFloatInvert -- logical digitwise INVERT of a decFloat */ -/* */ -/* result gets the result of INVERTing df */ -/* df is the decFloat to invert */ -/* set is the context */ -/* returns result, which will be canonical with sign=0 */ -/* */ -/* The operand must be positive, finite with exponent q=0, and */ -/* comprise just zeros and ones; if not, Invalid operation results. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatInvert(decFloat *result, const decFloat *df, - decContext *set) { - uInt sourhi=DFWORD(df, 0); // top word of dfs - - if (!DFISUINT01(df) || !DFISCC01(df)) return decInvalid(result, set); - // the operand is a finite integer (q=0) - #if DOUBLE - DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04009124); - DFWORD(result, 1)=(~DFWORD(df, 1)) &0x49124491; - #elif QUAD - DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04000912); - DFWORD(result, 1)=(~DFWORD(df, 1)) &0x44912449; - DFWORD(result, 2)=(~DFWORD(df, 2)) &0x12449124; - DFWORD(result, 3)=(~DFWORD(df, 3)) &0x49124491; - #endif - return result; - } // decFloatInvert - -/* ------------------------------------------------------------------ */ -/* decFloatIs -- decFloat tests (IsSigned, etc.) */ -/* */ -/* df is the decFloat to test */ -/* returns 0 or 1 in a uInt */ -/* */ -/* Many of these could be macros, but having them as real functions */ -/* is a little cleaner (and they can be referred to here by the */ -/* generic names) */ -/* ------------------------------------------------------------------ */ -uInt decFloatIsCanonical(const decFloat *df) { - if (DFISSPECIAL(df)) { - if (DFISINF(df)) { - if (DFWORD(df, 0)&ECONMASK) return 0; // exponent continuation - if (!DFISCCZERO(df)) return 0; // coefficient continuation - return 1; - } - // is a NaN - if (DFWORD(df, 0)&ECONNANMASK) return 0; // exponent continuation - if (DFISCCZERO(df)) return 1; // coefficient continuation - // drop through to check payload - } - { // declare block - #if DOUBLE - uInt sourhi=DFWORD(df, 0); - uInt sourlo=DFWORD(df, 1); - if (CANONDPDOFF(sourhi, 8) - && CANONDPDTWO(sourhi, sourlo, 30) - && CANONDPDOFF(sourlo, 20) - && CANONDPDOFF(sourlo, 10) - && CANONDPDOFF(sourlo, 0)) return 1; - #elif QUAD - uInt sourhi=DFWORD(df, 0); - uInt sourmh=DFWORD(df, 1); - uInt sourml=DFWORD(df, 2); - uInt sourlo=DFWORD(df, 3); - if (CANONDPDOFF(sourhi, 4) - && CANONDPDTWO(sourhi, sourmh, 26) - && CANONDPDOFF(sourmh, 16) - && CANONDPDOFF(sourmh, 6) - && CANONDPDTWO(sourmh, sourml, 28) - && CANONDPDOFF(sourml, 18) - && CANONDPDOFF(sourml, 8) - && CANONDPDTWO(sourml, sourlo, 30) - && CANONDPDOFF(sourlo, 20) - && CANONDPDOFF(sourlo, 10) - && CANONDPDOFF(sourlo, 0)) return 1; - #endif - } // block - return 0; // a declet is non-canonical - } - -uInt decFloatIsFinite(const decFloat *df) { - return !DFISSPECIAL(df); - } -uInt decFloatIsInfinite(const decFloat *df) { - return DFISINF(df); - } -uInt decFloatIsInteger(const decFloat *df) { - return DFISINT(df); - } -uInt decFloatIsLogical(const decFloat *df) { - return DFISUINT01(df) & DFISCC01(df); - } -uInt decFloatIsNaN(const decFloat *df) { - return DFISNAN(df); - } -uInt decFloatIsNegative(const decFloat *df) { - return DFISSIGNED(df) && !DFISZERO(df) && !DFISNAN(df); - } -uInt decFloatIsNormal(const decFloat *df) { - Int exp; // exponent - if (DFISSPECIAL(df)) return 0; - if (DFISZERO(df)) return 0; - // is finite and non-zero - exp=GETEXPUN(df) // get unbiased exponent .. - +decFloatDigits(df)-1; // .. and make adjusted exponent - return (exp>=DECEMIN); // < DECEMIN is subnormal - } -uInt decFloatIsPositive(const decFloat *df) { - return !DFISSIGNED(df) && !DFISZERO(df) && !DFISNAN(df); - } -uInt decFloatIsSignaling(const decFloat *df) { - return DFISSNAN(df); - } -uInt decFloatIsSignalling(const decFloat *df) { - return DFISSNAN(df); - } -uInt decFloatIsSigned(const decFloat *df) { - return DFISSIGNED(df); - } -uInt decFloatIsSubnormal(const decFloat *df) { - if (DFISSPECIAL(df)) return 0; - // is finite - if (decFloatIsNormal(df)) return 0; - // it is Use |A| */ -/* A=0 -> -Infinity (Division by zero) */ -/* A=Infinite -> +Infinity (Exact) */ -/* A=1 exactly -> 0 (Exact) */ -/* NaNs are propagated as usual */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatLogB(decFloat *result, const decFloat *df, - decContext *set) { - Int ae; // adjusted exponent - if (DFISNAN(df)) return decNaNs(result, df, NULL, set); - if (DFISINF(df)) { - DFWORD(result, 0)=0; // need +ve - return decInfinity(result, result); // canonical +Infinity - } - if (DFISZERO(df)) { - set->status|=DEC_Division_by_zero; // as per 754 - DFWORD(result, 0)=DECFLOAT_Sign; // make negative - return decInfinity(result, result); // canonical -Infinity - } - ae=GETEXPUN(df) // get unbiased exponent .. - +decFloatDigits(df)-1; // .. and make adjusted exponent - // ae has limited range (3 digits for DOUBLE and 4 for QUAD), so - // it is worth using a special case of decFloatFromInt32 - DFWORD(result, 0)=ZEROWORD; // always - if (ae<0) { - DFWORD(result, 0)|=DECFLOAT_Sign; // -0 so far - ae=-ae; - } - #if DOUBLE - DFWORD(result, 1)=BIN2DPD[ae]; // a single declet - #elif QUAD - DFWORD(result, 1)=0; - DFWORD(result, 2)=0; - DFWORD(result, 3)=(ae/1000)<<10; // is <10, so need no DPD encode - DFWORD(result, 3)|=BIN2DPD[ae%1000]; - #endif - return result; - } // decFloatLogB - -/* ------------------------------------------------------------------ */ -/* decFloatMax -- return maxnum of two operands */ -/* */ -/* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* If just one operand is a quiet NaN it is ignored. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatMax(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int comp; - if (DFISNAN(dfl)) { - // sNaN or both NaNs leads to normal NaN processing - if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set); - return decCanonical(result, dfr); // RHS is numeric - } - if (DFISNAN(dfr)) { - // sNaN leads to normal NaN processing (both NaN handled above) - if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); - return decCanonical(result, dfl); // LHS is numeric - } - // Both operands are numeric; numeric comparison needed -- use - // total order for a well-defined choice (and +0 > -0) - comp=decNumCompare(dfl, dfr, 1); - if (comp>=0) return decCanonical(result, dfl); - return decCanonical(result, dfr); - } // decFloatMax - -/* ------------------------------------------------------------------ */ -/* decFloatMaxMag -- return maxnummag of two operands */ -/* */ -/* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* Returns according to the magnitude comparisons if both numeric and */ -/* unequal, otherwise returns maxnum */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatMaxMag(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int comp; - decFloat absl, absr; - if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMax(result, dfl, dfr, set); - - decFloatCopyAbs(&absl, dfl); - decFloatCopyAbs(&absr, dfr); - comp=decNumCompare(&absl, &absr, 0); - if (comp>0) return decCanonical(result, dfl); - if (comp<0) return decCanonical(result, dfr); - return decFloatMax(result, dfl, dfr, set); - } // decFloatMaxMag - -/* ------------------------------------------------------------------ */ -/* decFloatMin -- return minnum of two operands */ -/* */ -/* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* If just one operand is a quiet NaN it is ignored. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatMin(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int comp; - if (DFISNAN(dfl)) { - // sNaN or both NaNs leads to normal NaN processing - if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set); - return decCanonical(result, dfr); // RHS is numeric - } - if (DFISNAN(dfr)) { - // sNaN leads to normal NaN processing (both NaN handled above) - if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); - return decCanonical(result, dfl); // LHS is numeric - } - // Both operands are numeric; numeric comparison needed -- use - // total order for a well-defined choice (and +0 > -0) - comp=decNumCompare(dfl, dfr, 1); - if (comp<=0) return decCanonical(result, dfl); - return decCanonical(result, dfr); - } // decFloatMin - -/* ------------------------------------------------------------------ */ -/* decFloatMinMag -- return minnummag of two operands */ -/* */ -/* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* Returns according to the magnitude comparisons if both numeric and */ -/* unequal, otherwise returns minnum */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatMinMag(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int comp; - decFloat absl, absr; - if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMin(result, dfl, dfr, set); - - decFloatCopyAbs(&absl, dfl); - decFloatCopyAbs(&absr, dfr); - comp=decNumCompare(&absl, &absr, 0); - if (comp<0) return decCanonical(result, dfl); - if (comp>0) return decCanonical(result, dfr); - return decFloatMin(result, dfl, dfr, set); - } // decFloatMinMag - -/* ------------------------------------------------------------------ */ -/* decFloatMinus -- negate value, heeding NaNs, etc. */ -/* */ -/* result gets the canonicalized 0-df */ -/* df is the decFloat to minus */ -/* set is the context */ -/* returns result */ -/* */ -/* This has the same effect as 0-df where the exponent of the zero is */ -/* the same as that of df (if df is finite). */ -/* The effect is also the same as decFloatCopyNegate except that NaNs */ -/* are handled normally (the sign of a NaN is not affected, and an */ -/* sNaN will signal), the result is canonical, and zero gets sign 0. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatMinus(decFloat *result, const decFloat *df, - decContext *set) { - if (DFISNAN(df)) return decNaNs(result, df, NULL, set); - decCanonical(result, df); // copy and check - if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80; // turn off sign bit - else DFBYTE(result, 0)^=0x80; // flip sign bit - return result; - } // decFloatMinus - -/* ------------------------------------------------------------------ */ -/* decFloatMultiply -- multiply two decFloats */ -/* */ -/* result gets the result of multiplying dfl and dfr: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatMultiply(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - bcdnum num; // for final conversion - uByte bcdacc[DECPMAX9*18+1]; // for coefficent in BCD - - if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { // either is special? - // NaNs are handled as usual - if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - // infinity times zero is bad - if (DFISINF(dfl) && DFISZERO(dfr)) return decInvalid(result, set); - if (DFISINF(dfr) && DFISZERO(dfl)) return decInvalid(result, set); - // both infinite; return canonical infinity with computed sign - DFWORD(result, 0)=DFWORD(dfl, 0)^DFWORD(dfr, 0); // compute sign - return decInfinity(result, result); - } - - /* Here when both operands are finite */ - decFiniteMultiply(&num, bcdacc, dfl, dfr); - return decFinalize(result, &num, set); // round, check, and lay out - } // decFloatMultiply - -/* ------------------------------------------------------------------ */ -/* decFloatNextMinus -- next towards -Infinity */ -/* */ -/* result gets the next lesser decFloat */ -/* dfl is the decFloat to start with */ -/* set is the context */ -/* returns result */ -/* */ -/* This is 754 nextdown; Invalid is the only status possible (from */ -/* an sNaN). */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl, - decContext *set) { - decFloat delta; // tiny increment - uInt savestat; // saves status - enum rounding saveround; // .. and mode - - // +Infinity is the special case - if (DFISINF(dfl) && !DFISSIGNED(dfl)) { - DFSETNMAX(result); - return result; // [no status to set] - } - // other cases are effected by sutracting a tiny delta -- this - // should be done in a wider format as the delta is unrepresentable - // here (but can be done with normal add if the sign of zero is - // treated carefully, because no Inexactitude is interesting); - // rounding to -Infinity then pushes the result to next below - decFloatZero(&delta); // set up tiny delta - DFWORD(&delta, DECWORDS-1)=1; // coefficient=1 - DFWORD(&delta, 0)=DECFLOAT_Sign; // Sign=1 + biased exponent=0 - // set up for the directional round - saveround=set->round; // save mode - set->round=DEC_ROUND_FLOOR; // .. round towards -Infinity - savestat=set->status; // save status - decFloatAdd(result, dfl, &delta, set); - // Add rules mess up the sign when going from +Ntiny to 0 - if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; // correct - set->status&=DEC_Invalid_operation; // preserve only sNaN status - set->status|=savestat; // restore pending flags - set->round=saveround; // .. and mode - return result; - } // decFloatNextMinus - -/* ------------------------------------------------------------------ */ -/* decFloatNextPlus -- next towards +Infinity */ -/* */ -/* result gets the next larger decFloat */ -/* dfl is the decFloat to start with */ -/* set is the context */ -/* returns result */ -/* */ -/* This is 754 nextup; Invalid is the only status possible (from */ -/* an sNaN). */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl, - decContext *set) { - uInt savestat; // saves status - enum rounding saveround; // .. and mode - decFloat delta; // tiny increment - - // -Infinity is the special case - if (DFISINF(dfl) && DFISSIGNED(dfl)) { - DFSETNMAX(result); - DFWORD(result, 0)|=DECFLOAT_Sign; // make negative - return result; // [no status to set] - } - // other cases are effected by sutracting a tiny delta -- this - // should be done in a wider format as the delta is unrepresentable - // here (but can be done with normal add if the sign of zero is - // treated carefully, because no Inexactitude is interesting); - // rounding to +Infinity then pushes the result to next above - decFloatZero(&delta); // set up tiny delta - DFWORD(&delta, DECWORDS-1)=1; // coefficient=1 - DFWORD(&delta, 0)=0; // Sign=0 + biased exponent=0 - // set up for the directional round - saveround=set->round; // save mode - set->round=DEC_ROUND_CEILING; // .. round towards +Infinity - savestat=set->status; // save status - decFloatAdd(result, dfl, &delta, set); - // Add rules mess up the sign when going from -Ntiny to -0 - if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; // correct - set->status&=DEC_Invalid_operation; // preserve only sNaN status - set->status|=savestat; // restore pending flags - set->round=saveround; // .. and mode - return result; - } // decFloatNextPlus - -/* ------------------------------------------------------------------ */ -/* decFloatNextToward -- next towards a decFloat */ -/* */ -/* result gets the next decFloat */ -/* dfl is the decFloat to start with */ -/* dfr is the decFloat to move toward */ -/* set is the context */ -/* returns result */ -/* */ -/* This is 754-1985 nextafter, as modified during revision (dropped */ -/* from 754-2008); status may be set unless the result is a normal */ -/* number. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatNextToward(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - decFloat delta; // tiny increment or decrement - decFloat pointone; // 1e-1 - uInt savestat; // saves status - enum rounding saveround; // .. and mode - uInt deltatop; // top word for delta - Int comp; // work - - if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - // Both are numeric, so Invalid no longer a possibility - comp=decNumCompare(dfl, dfr, 0); - if (comp==0) return decFloatCopySign(result, dfl, dfr); // equal - // unequal; do NextPlus or NextMinus but with different status rules - - if (comp<0) { // lhsround; // save mode - set->round=DEC_ROUND_CEILING; // .. round towards +Infinity - deltatop=0; // positive delta - } - else { // lhs>rhs, do NextMinus, see above for commentary - if (DFISINF(dfl) && !DFISSIGNED(dfl)) { // +Infinity special case - DFSETNMAX(result); - return result; - } - saveround=set->round; // save mode - set->round=DEC_ROUND_FLOOR; // .. round towards -Infinity - deltatop=DECFLOAT_Sign; // negative delta - } - savestat=set->status; // save status - // Here, Inexact is needed where appropriate (and hence Underflow, - // etc.). Therefore the tiny delta which is otherwise - // unrepresentable (see NextPlus and NextMinus) is constructed - // using the multiplication of FMA. - decFloatZero(&delta); // set up tiny delta - DFWORD(&delta, DECWORDS-1)=1; // coefficient=1 - DFWORD(&delta, 0)=deltatop; // Sign + biased exponent=0 - decFloatFromString(&pointone, "1E-1", set); // set up multiplier - decFloatFMA(result, &delta, &pointone, dfl, set); - // [Delta is truly tiny, so no need to correct sign of zero] - // use new status unless the result is normal - if (decFloatIsNormal(result)) set->status=savestat; // else goes forward - set->round=saveround; // restore mode - return result; - } // decFloatNextToward - -/* ------------------------------------------------------------------ */ -/* decFloatOr -- logical digitwise OR of two decFloats */ -/* */ -/* result gets the result of ORing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result, which will be canonical with sign=0 */ -/* */ -/* The operands must be positive, finite with exponent q=0, and */ -/* comprise just zeros and ones; if not, Invalid operation results. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatOr(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - if (!DFISUINT01(dfl) || !DFISUINT01(dfr) - || !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set); - // the operands are positive finite integers (q=0) with just 0s and 1s - #if DOUBLE - DFWORD(result, 0)=ZEROWORD - |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04009124); - DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x49124491; - #elif QUAD - DFWORD(result, 0)=ZEROWORD - |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04000912); - DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x44912449; - DFWORD(result, 2)=(DFWORD(dfl, 2) | DFWORD(dfr, 2))&0x12449124; - DFWORD(result, 3)=(DFWORD(dfl, 3) | DFWORD(dfr, 3))&0x49124491; - #endif - return result; - } // decFloatOr - -/* ------------------------------------------------------------------ */ -/* decFloatPlus -- add value to 0, heeding NaNs, etc. */ -/* */ -/* result gets the canonicalized 0+df */ -/* df is the decFloat to plus */ -/* set is the context */ -/* returns result */ -/* */ -/* This has the same effect as 0+df where the exponent of the zero is */ -/* the same as that of df (if df is finite). */ -/* The effect is also the same as decFloatCopy except that NaNs */ -/* are handled normally (the sign of a NaN is not affected, and an */ -/* sNaN will signal), the result is canonical, and zero gets sign 0. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatPlus(decFloat *result, const decFloat *df, - decContext *set) { - if (DFISNAN(df)) return decNaNs(result, df, NULL, set); - decCanonical(result, df); // copy and check - if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80; // turn off sign bit - return result; - } // decFloatPlus - -/* ------------------------------------------------------------------ */ -/* decFloatQuantize -- quantize a decFloat */ -/* */ -/* result gets the result of quantizing dfl to match dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs), which sets the exponent */ -/* set is the context */ -/* returns result */ -/* */ -/* Unless there is an error or the result is infinite, the exponent */ -/* of result is guaranteed to be the same as that of dfr. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatQuantize(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int explb, exprb; // left and right biased exponents - uByte *ulsd; // local LSD pointer - uByte *ub, *uc; // work - Int drop; // .. - uInt dpd; // .. - uInt encode; // encoding accumulator - uInt sourhil, sourhir; // top words from source decFloats - uInt uiwork; // for macros - #if QUAD - uShort uswork; // .. - #endif - // the following buffer holds the coefficient for manipulation - uByte buf[4+DECPMAX*3+2*QUAD]; // + space for zeros to left or right - #if DECTRACE - bcdnum num; // for trace displays - #endif - - /* Start decoding the arguments */ - sourhil=DFWORD(dfl, 0); // LHS top word - explb=DECCOMBEXP[sourhil>>26]; // get exponent high bits (in place) - sourhir=DFWORD(dfr, 0); // RHS top word - exprb=DECCOMBEXP[sourhir>>26]; - - if (EXPISSPECIAL(explb | exprb)) { // either is special? - // NaNs are handled as usual - if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - // one infinity but not both is bad - if (DFISINF(dfl)!=DFISINF(dfr)) return decInvalid(result, set); - // both infinite; return canonical infinity with sign of LHS - return decInfinity(result, dfl); - } - - /* Here when both arguments are finite */ - // complete extraction of the exponents [no need to unbias] - explb+=GETECON(dfl); // + continuation - exprb+=GETECON(dfr); // .. - - // calculate the number of digits to drop from the coefficient - drop=exprb-explb; // 0 if nothing to do - if (drop==0) return decCanonical(result, dfl); // return canonical - - // the coefficient is needed; lay it out into buf, offset so zeros - // can be added before or after as needed -- an extra heading is - // added so can safely pad Quad DECPMAX-1 zeros to the left by - // fours - #define BUFOFF (buf+4+DECPMAX) - GETCOEFF(dfl, BUFOFF); // decode from decFloat - // [now the msd is at BUFOFF and the lsd is at BUFOFF+DECPMAX-1] - - #if DECTRACE - num.msd=BUFOFF; - num.lsd=BUFOFF+DECPMAX-1; - num.exponent=explb-DECBIAS; - num.sign=sourhil & DECFLOAT_Sign; - decShowNum(&num, "dfl"); - #endif - - if (drop>0) { // [most common case] - // (this code is very similar to that in decFloatFinalize, but - // has many differences so is duplicated here -- so any changes - // may need to be made there, too) - uByte *roundat; // -> re-round digit - uByte reround; // reround value - // printf("Rounding; drop=%ld\n", (LI)drop); - - // there is at least one zero needed to the left, in all but one - // exceptional (all-nines) case, so place four zeros now; this is - // needed almost always and makes rounding all-nines by fours safe - UBFROMUI(BUFOFF-4, 0); - - // Three cases here: - // 1. new LSD is in coefficient (almost always) - // 2. new LSD is digit to left of coefficient (so MSD is - // round-for-reround digit) - // 3. new LSD is to left of case 2 (whole coefficient is sticky) - // Note that leading zeros can safely be treated as useful digits - - // [duplicate check-stickies code to save a test] - // [by-digit check for stickies as runs of zeros are rare] - if (dropstatus|=DEC_Inexact; - - // next decide whether to increment the coefficient - if (set->round==DEC_ROUND_HALF_EVEN) { // fastpath slowest case - if (reround>5) bump=1; // >0.5 goes up - else if (reround==5) // exactly 0.5000 .. - bump=*ulsd & 0x01; // .. up iff [new] lsd is odd - } // r-h-e - else switch (set->round) { - case DEC_ROUND_DOWN: { - // no change - break;} // r-d - case DEC_ROUND_HALF_DOWN: { - if (reround>5) bump=1; - break;} // r-h-d - case DEC_ROUND_HALF_UP: { - if (reround>=5) bump=1; - break;} // r-h-u - case DEC_ROUND_UP: { - if (reround>0) bump=1; - break;} // r-u - case DEC_ROUND_CEILING: { - // same as _UP for positive numbers, and as _DOWN for negatives - if (!(sourhil&DECFLOAT_Sign) && reround>0) bump=1; - break;} // r-c - case DEC_ROUND_FLOOR: { - // same as _UP for negative numbers, and as _DOWN for positive - // [negative reround cannot occur on 0] - if (sourhil&DECFLOAT_Sign && reround>0) bump=1; - break;} // r-f - case DEC_ROUND_05UP: { - if (reround>0) { // anything out there is 'sticky' - // bump iff lsd=0 or 5; this cannot carry so it could be - // effected immediately with no bump -- but the code - // is clearer if this is done the same way as the others - if (*ulsd==0 || *ulsd==5) bump=1; - } - break;} // r-r - default: { // e.g., DEC_ROUND_MAX - set->status|=DEC_Invalid_context; - #if DECCHECK - printf("Unknown rounding mode: %ld\n", (LI)set->round); - #endif - break;} - } // switch (not r-h-e) - // printf("ReRound: %ld bump: %ld\n", (LI)reround, (LI)bump); - - if (bump!=0) { // need increment - // increment the coefficient; this could give 1000... (after - // the all nines case) - ub=ulsd; - for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); - // now at most 3 digits left to non-9 (usually just the one) - for (; *ub==9; ub--) *ub=0; - *ub+=1; - // [the all-nines case will have carried one digit to the - // left of the original MSD -- just where it is needed] - } // bump needed - } // inexact rounding - - // now clear zeros to the left so exactly DECPMAX digits will be - // available in the coefficent -- the first word to the left was - // cleared earlier for safe carry; now add any more needed - if (drop>4) { - UBFROMUI(BUFOFF-8, 0); // must be at least 5 - for (uc=BUFOFF-12; uc>ulsd-DECPMAX-3; uc-=4) UBFROMUI(uc, 0); - } - } // need round (drop>0) - - else { // drop<0; padding with -drop digits is needed - // This is the case where an error can occur if the padded - // coefficient will not fit; checking for this can be done in the - // same loop as padding for zeros if the no-hope and zero cases - // are checked first - if (-drop>DECPMAX-1) { // cannot fit unless 0 - if (!ISCOEFFZERO(BUFOFF)) return decInvalid(result, set); - // a zero can have any exponent; just drop through and use it - ulsd=BUFOFF+DECPMAX-1; - } - else { // padding will fit (but may still be too long) - // final-word mask depends on endianess - #if DECLITEND - static const uInt dmask[]={0, 0x000000ff, 0x0000ffff, 0x00ffffff}; - #else - static const uInt dmask[]={0, 0xff000000, 0xffff0000, 0xffffff00}; - #endif - // note that here zeros to the right are added by fours, so in - // the Quad case this could write 36 zeros if the coefficient has - // fewer than three significant digits (hence the +2*QUAD for buf) - for (uc=BUFOFF+DECPMAX;; uc+=4) { - UBFROMUI(uc, 0); - if (UBTOUI(uc-DECPMAX)!=0) { // could be bad - // if all four digits should be zero, definitely bad - if (uc<=BUFOFF+DECPMAX+(-drop)-4) - return decInvalid(result, set); - // must be a 1- to 3-digit sequence; check more carefully - if ((UBTOUI(uc-DECPMAX)&dmask[(-drop)%4])!=0) - return decInvalid(result, set); - break; // no need for loop end test - } - if (uc>=BUFOFF+DECPMAX+(-drop)-4) break; // done - } - ulsd=BUFOFF+DECPMAX+(-drop)-1; - } // pad and check leading zeros - } // drop<0 - - #if DECTRACE - num.msd=ulsd-DECPMAX+1; - num.lsd=ulsd; - num.exponent=explb-DECBIAS; - num.sign=sourhil & DECFLOAT_Sign; - decShowNum(&num, "res"); - #endif - - /*------------------------------------------------------------------*/ - /* At this point the result is DECPMAX digits, ending at ulsd, so */ - /* fits the encoding exactly; there is no possibility of error */ - /*------------------------------------------------------------------*/ - encode=((exprb>>DECECONL)<<4) + *(ulsd-DECPMAX+1); // make index - encode=DECCOMBFROM[encode]; // indexed by (0-2)*16+msd - // the exponent continuation can be extracted from the original RHS - encode|=sourhir & ECONMASK; - encode|=sourhil&DECFLOAT_Sign; // add the sign from LHS - - // finally encode the coefficient - // private macro to encode a declet; this version can be used - // because all coefficient digits exist - #define getDPD3q(dpd, n) ub=ulsd-(3*(n))-2; \ - dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)]; - - #if DOUBLE - getDPD3q(dpd, 4); encode|=dpd<<8; - getDPD3q(dpd, 3); encode|=dpd>>2; - DFWORD(result, 0)=encode; - encode=dpd<<30; - getDPD3q(dpd, 2); encode|=dpd<<20; - getDPD3q(dpd, 1); encode|=dpd<<10; - getDPD3q(dpd, 0); encode|=dpd; - DFWORD(result, 1)=encode; - - #elif QUAD - getDPD3q(dpd,10); encode|=dpd<<4; - getDPD3q(dpd, 9); encode|=dpd>>6; - DFWORD(result, 0)=encode; - encode=dpd<<26; - getDPD3q(dpd, 8); encode|=dpd<<16; - getDPD3q(dpd, 7); encode|=dpd<<6; - getDPD3q(dpd, 6); encode|=dpd>>4; - DFWORD(result, 1)=encode; - encode=dpd<<28; - getDPD3q(dpd, 5); encode|=dpd<<18; - getDPD3q(dpd, 4); encode|=dpd<<8; - getDPD3q(dpd, 3); encode|=dpd>>2; - DFWORD(result, 2)=encode; - encode=dpd<<30; - getDPD3q(dpd, 2); encode|=dpd<<20; - getDPD3q(dpd, 1); encode|=dpd<<10; - getDPD3q(dpd, 0); encode|=dpd; - DFWORD(result, 3)=encode; - #endif - return result; - } // decFloatQuantize - -/* ------------------------------------------------------------------ */ -/* decFloatReduce -- reduce finite coefficient to minimum length */ -/* */ -/* result gets the reduced decFloat */ -/* df is the source decFloat */ -/* set is the context */ -/* returns result, which will be canonical */ -/* */ -/* This removes all possible trailing zeros from the coefficient; */ -/* some may remain when the number is very close to Nmax. */ -/* Special values are unchanged and no status is set unless df=sNaN. */ -/* Reduced zero has an exponent q=0. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatReduce(decFloat *result, const decFloat *df, - decContext *set) { - bcdnum num; // work - uByte buf[DECPMAX], *ub; // coefficient and pointer - if (df!=result) *result=*df; // copy, if needed - if (DFISNAN(df)) return decNaNs(result, df, NULL, set); // sNaN - // zeros and infinites propagate too - if (DFISINF(df)) return decInfinity(result, df); // canonical - if (DFISZERO(df)) { - uInt sign=DFWORD(df, 0)&DECFLOAT_Sign; - decFloatZero(result); - DFWORD(result, 0)|=sign; - return result; // exponent dropped, sign OK - } - // non-zero finite - GETCOEFF(df, buf); - ub=buf+DECPMAX-1; // -> lsd - if (*ub) return result; // no trailing zeros - for (ub--; *ub==0;) ub--; // terminates because non-zero - // *ub is the first non-zero from the right - num.sign=DFWORD(df, 0)&DECFLOAT_Sign; // set up number... - num.exponent=GETEXPUN(df)+(Int)(buf+DECPMAX-1-ub); // adjusted exponent - num.msd=buf; - num.lsd=ub; - return decFinalize(result, &num, set); - } // decFloatReduce - -/* ------------------------------------------------------------------ */ -/* decFloatRemainder -- integer divide and return remainder */ -/* */ -/* result gets the remainder of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatRemainder(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - return decDivide(result, dfl, dfr, set, REMAINDER); - } // decFloatRemainder - -/* ------------------------------------------------------------------ */ -/* decFloatRemainderNear -- integer divide to nearest and remainder */ -/* */ -/* result gets the remainder of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* This is the IEEE remainder, where the nearest integer is used. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatRemainderNear(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - return decDivide(result, dfl, dfr, set, REMNEAR); - } // decFloatRemainderNear - -/* ------------------------------------------------------------------ */ -/* decFloatRotate -- rotate the coefficient of a decFloat left/right */ -/* */ -/* result gets the result of rotating dfl */ -/* dfl is the source decFloat to rotate */ -/* dfr is the count of digits to rotate, an integer (with q=0) */ -/* set is the context */ -/* returns result */ -/* */ -/* The digits of the coefficient of dfl are rotated to the left (if */ -/* dfr is positive) or to the right (if dfr is negative) without */ -/* adjusting the exponent or the sign of dfl. */ -/* */ -/* dfr must be in the range -DECPMAX through +DECPMAX. */ -/* NaNs are propagated as usual. An infinite dfl is unaffected (but */ -/* dfr must be valid). No status is set unless dfr is invalid or an */ -/* operand is an sNaN. The result is canonical. */ -/* ------------------------------------------------------------------ */ -#define PHALF (ROUNDUP(DECPMAX/2, 4)) // half length, rounded up -decFloat * decFloatRotate(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int rotate; // dfr as an Int - uByte buf[DECPMAX+PHALF]; // coefficient + half - uInt digits, savestat; // work - bcdnum num; // .. - uByte *ub; // .. - - if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - if (!DFISINT(dfr)) return decInvalid(result, set); - digits=decFloatDigits(dfr); // calculate digits - if (digits>2) return decInvalid(result, set); // definitely out of range - rotate=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; // is in bottom declet - if (rotate>DECPMAX) return decInvalid(result, set); // too big - // [from here on no error or status change is possible] - if (DFISINF(dfl)) return decInfinity(result, dfl); // canonical - // handle no-rotate cases - if (rotate==0 || rotate==DECPMAX) return decCanonical(result, dfl); - // a real rotate is needed: 0 < rotate < DECPMAX - // reduce the rotation to no more than half to reduce copying later - // (for QUAD in fact half + 2 digits) - if (DFISSIGNED(dfr)) rotate=-rotate; - if (abs(rotate)>PHALF) { - if (rotate<0) rotate=DECPMAX+rotate; - else rotate=rotate-DECPMAX; - } - // now lay out the coefficient, leaving room to the right or the - // left depending on the direction of rotation - ub=buf; - if (rotate<0) ub+=PHALF; // rotate right, so space to left - GETCOEFF(dfl, ub); - // copy half the digits to left or right, and set num.msd - if (rotate<0) { - memcpy(buf, buf+DECPMAX, PHALF); - num.msd=buf+PHALF+rotate; - } - else { - memcpy(buf+DECPMAX, buf, PHALF); - num.msd=buf+rotate; - } - // fill in rest of num - num.lsd=num.msd+DECPMAX-1; - num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; - num.exponent=GETEXPUN(dfl); - savestat=set->status; // record - decFinalize(result, &num, set); - set->status=savestat; // restore - return result; - } // decFloatRotate - -/* ------------------------------------------------------------------ */ -/* decFloatSameQuantum -- test decFloats for same quantum */ -/* */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* returns 1 if the operands have the same quantum, 0 otherwise */ -/* */ -/* No error is possible and no status results. */ -/* ------------------------------------------------------------------ */ -uInt decFloatSameQuantum(const decFloat *dfl, const decFloat *dfr) { - if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { - if (DFISNAN(dfl) && DFISNAN(dfr)) return 1; - if (DFISINF(dfl) && DFISINF(dfr)) return 1; - return 0; // any other special mixture gives false - } - if (GETEXP(dfl)==GETEXP(dfr)) return 1; // biased exponents match - return 0; - } // decFloatSameQuantum - -/* ------------------------------------------------------------------ */ -/* decFloatScaleB -- multiply by a power of 10, as per 754 */ -/* */ -/* result gets the result of the operation */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs), am integer (with q=0) */ -/* set is the context */ -/* returns result */ -/* */ -/* This computes result=dfl x 10**dfr where dfr is an integer in the */ -/* range +/-2*(emax+pmax), typically resulting from LogB. */ -/* Underflow and Overflow (with Inexact) may occur. NaNs propagate */ -/* as usual. */ -/* ------------------------------------------------------------------ */ -#define SCALEBMAX 2*(DECEMAX+DECPMAX) // D=800, Q=12356 -decFloat * decFloatScaleB(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - uInt digits; // work - Int expr; // dfr as an Int - - if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - if (!DFISINT(dfr)) return decInvalid(result, set); - digits=decFloatDigits(dfr); // calculate digits - - #if DOUBLE - if (digits>3) return decInvalid(result, set); // definitely out of range - expr=DPD2BIN[DFWORD(dfr, 1)&0x3ff]; // must be in bottom declet - #elif QUAD - if (digits>5) return decInvalid(result, set); // definitely out of range - expr=DPD2BIN[DFWORD(dfr, 3)&0x3ff] // in bottom 2 declets .. - +DPD2BIN[(DFWORD(dfr, 3)>>10)&0x3ff]*1000; // .. - #endif - if (expr>SCALEBMAX) return decInvalid(result, set); // oops - // [from now on no error possible] - if (DFISINF(dfl)) return decInfinity(result, dfl); // canonical - if (DFISSIGNED(dfr)) expr=-expr; - // dfl is finite and expr is valid - *result=*dfl; // copy to target - return decFloatSetExponent(result, set, GETEXPUN(result)+expr); - } // decFloatScaleB - -/* ------------------------------------------------------------------ */ -/* decFloatShift -- shift the coefficient of a decFloat left or right */ -/* */ -/* result gets the result of shifting dfl */ -/* dfl is the source decFloat to shift */ -/* dfr is the count of digits to shift, an integer (with q=0) */ -/* set is the context */ -/* returns result */ -/* */ -/* The digits of the coefficient of dfl are shifted to the left (if */ -/* dfr is positive) or to the right (if dfr is negative) without */ -/* adjusting the exponent or the sign of dfl. */ -/* */ -/* dfr must be in the range -DECPMAX through +DECPMAX. */ -/* NaNs are propagated as usual. An infinite dfl is unaffected (but */ -/* dfr must be valid). No status is set unless dfr is invalid or an */ -/* operand is an sNaN. The result is canonical. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatShift(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - Int shift; // dfr as an Int - uByte buf[DECPMAX*2]; // coefficient + padding - uInt digits, savestat; // work - bcdnum num; // .. - uInt uiwork; // for macros - - if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); - if (!DFISINT(dfr)) return decInvalid(result, set); - digits=decFloatDigits(dfr); // calculate digits - if (digits>2) return decInvalid(result, set); // definitely out of range - shift=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; // is in bottom declet - if (shift>DECPMAX) return decInvalid(result, set); // too big - // [from here on no error or status change is possible] - - if (DFISINF(dfl)) return decInfinity(result, dfl); // canonical - // handle no-shift and all-shift (clear to zero) cases - if (shift==0) return decCanonical(result, dfl); - if (shift==DECPMAX) { // zero with sign - uByte sign=(uByte)(DFBYTE(dfl, 0)&0x80); // save sign bit - decFloatZero(result); // make +0 - DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); // and set sign - // [cannot safely use CopySign] - return result; - } - // a real shift is needed: 0 < shift < DECPMAX - num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; - num.exponent=GETEXPUN(dfl); - num.msd=buf; - GETCOEFF(dfl, buf); - if (DFISSIGNED(dfr)) { // shift right - // edge cases are taken care of, so this is easy - num.lsd=buf+DECPMAX-shift-1; - } - else { // shift left -- zero padding needed to right - UBFROMUI(buf+DECPMAX, 0); // 8 will handle most cases - UBFROMUI(buf+DECPMAX+4, 0); // .. - if (shift>8) memset(buf+DECPMAX+8, 0, 8+QUAD*18); // all other cases - num.msd+=shift; - num.lsd=num.msd+DECPMAX-1; - } - savestat=set->status; // record - decFinalize(result, &num, set); - set->status=savestat; // restore - return result; - } // decFloatShift - -/* ------------------------------------------------------------------ */ -/* decFloatSubtract -- subtract a decFloat from another */ -/* */ -/* result gets the result of subtracting dfr from dfl: */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result */ -/* */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatSubtract(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - decFloat temp; - // NaNs must propagate without sign change - if (DFISNAN(dfr)) return decFloatAdd(result, dfl, dfr, set); - temp=*dfr; // make a copy - DFBYTE(&temp, 0)^=0x80; // flip sign - return decFloatAdd(result, dfl, &temp, set); // and add to the lhs - } // decFloatSubtract - -/* ------------------------------------------------------------------ */ -/* decFloatToInt -- round to 32-bit binary integer (4 flavours) */ -/* */ -/* df is the decFloat to round */ -/* set is the context */ -/* round is the rounding mode to use */ -/* returns a uInt or an Int, rounded according to the name */ -/* */ -/* Invalid will always be signaled if df is a NaN, is Infinite, or is */ -/* outside the range of the target; Inexact will not be signaled for */ -/* simple rounding unless 'Exact' appears in the name. */ -/* ------------------------------------------------------------------ */ -uInt decFloatToUInt32(const decFloat *df, decContext *set, - enum rounding round) { - return decToInt32(df, set, round, 0, 1);} - -uInt decFloatToUInt32Exact(const decFloat *df, decContext *set, - enum rounding round) { - return decToInt32(df, set, round, 1, 1);} - -Int decFloatToInt32(const decFloat *df, decContext *set, - enum rounding round) { - return (Int)decToInt32(df, set, round, 0, 0);} - -Int decFloatToInt32Exact(const decFloat *df, decContext *set, - enum rounding round) { - return (Int)decToInt32(df, set, round, 1, 0);} - -/* ------------------------------------------------------------------ */ -/* decFloatToIntegral -- round to integral value (two flavours) */ -/* */ -/* result gets the result */ -/* df is the decFloat to round */ -/* set is the context */ -/* round is the rounding mode to use */ -/* returns result */ -/* */ -/* No exceptions, even Inexact, are raised except for sNaN input, or */ -/* if 'Exact' appears in the name. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatToIntegralValue(decFloat *result, const decFloat *df, - decContext *set, enum rounding round) { - return decToIntegral(result, df, set, round, 0);} - -decFloat * decFloatToIntegralExact(decFloat *result, const decFloat *df, - decContext *set) { - return decToIntegral(result, df, set, set->round, 1);} - -/* ------------------------------------------------------------------ */ -/* decFloatXor -- logical digitwise XOR of two decFloats */ -/* */ -/* result gets the result of XORing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) */ -/* set is the context */ -/* returns result, which will be canonical with sign=0 */ -/* */ -/* The operands must be positive, finite with exponent q=0, and */ -/* comprise just zeros and ones; if not, Invalid operation results. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatXor(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - if (!DFISUINT01(dfl) || !DFISUINT01(dfr) - || !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set); - // the operands are positive finite integers (q=0) with just 0s and 1s - #if DOUBLE - DFWORD(result, 0)=ZEROWORD - |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04009124); - DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x49124491; - #elif QUAD - DFWORD(result, 0)=ZEROWORD - |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04000912); - DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x44912449; - DFWORD(result, 2)=(DFWORD(dfl, 2) ^ DFWORD(dfr, 2))&0x12449124; - DFWORD(result, 3)=(DFWORD(dfl, 3) ^ DFWORD(dfr, 3))&0x49124491; - #endif - return result; - } // decFloatXor - -/* ------------------------------------------------------------------ */ -/* decInvalid -- set Invalid_operation result */ -/* */ -/* result gets a canonical NaN */ -/* set is the context */ -/* returns result */ -/* */ -/* status has Invalid_operation added */ -/* ------------------------------------------------------------------ */ -static decFloat *decInvalid(decFloat *result, decContext *set) { - decFloatZero(result); - DFWORD(result, 0)=DECFLOAT_qNaN; - set->status|=DEC_Invalid_operation; - return result; - } // decInvalid - -/* ------------------------------------------------------------------ */ -/* decInfinity -- set canonical Infinity with sign from a decFloat */ -/* */ -/* result gets a canonical Infinity */ -/* df is source decFloat (only the sign is used) */ -/* returns result */ -/* */ -/* df may be the same as result */ -/* ------------------------------------------------------------------ */ -static decFloat *decInfinity(decFloat *result, const decFloat *df) { - uInt sign=DFWORD(df, 0); // save source signword - decFloatZero(result); // clear everything - DFWORD(result, 0)=DECFLOAT_Inf | (sign & DECFLOAT_Sign); - return result; - } // decInfinity - -/* ------------------------------------------------------------------ */ -/* decNaNs -- handle NaN argument(s) */ -/* */ -/* result gets the result of handling dfl and dfr, one or both of */ -/* which is a NaN */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs) -- may be NULL for a single- */ -/* operand operation */ -/* set is the context */ -/* returns result */ -/* */ -/* Called when one or both operands is a NaN, and propagates the */ -/* appropriate result to res. When an sNaN is found, it is changed */ -/* to a qNaN and Invalid operation is set. */ -/* ------------------------------------------------------------------ */ -static decFloat *decNaNs(decFloat *result, - const decFloat *dfl, const decFloat *dfr, - decContext *set) { - // handle sNaNs first - if (dfr!=NULL && DFISSNAN(dfr) && !DFISSNAN(dfl)) dfl=dfr; // use RHS - if (DFISSNAN(dfl)) { - decCanonical(result, dfl); // propagate canonical sNaN - DFWORD(result, 0)&=~(DECFLOAT_qNaN ^ DECFLOAT_sNaN); // quiet - set->status|=DEC_Invalid_operation; - return result; - } - // one or both is a quiet NaN - if (!DFISNAN(dfl)) dfl=dfr; // RHS must be NaN, use it - return decCanonical(result, dfl); // propagate canonical qNaN - } // decNaNs - -/* ------------------------------------------------------------------ */ -/* decNumCompare -- numeric comparison of two decFloats */ -/* */ -/* dfl is the left-hand decFloat, which is not a NaN */ -/* dfr is the right-hand decFloat, which is not a NaN */ -/* tot is 1 for total order compare, 0 for simple numeric */ -/* returns -1, 0, or +1 for dfldfr */ -/* */ -/* No error is possible; status and mode are unchanged. */ -/* ------------------------------------------------------------------ */ -static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { - Int sigl, sigr; // LHS and RHS non-0 signums - Int shift; // shift needed to align operands - uByte *ub, *uc; // work - uInt uiwork; // for macros - // buffers +2 if Quad (36 digits), need double plus 4 for safe padding - uByte bufl[DECPMAX*2+QUAD*2+4]; // for LHS coefficient + padding - uByte bufr[DECPMAX*2+QUAD*2+4]; // for RHS coefficient + padding - - sigl=1; - if (DFISSIGNED(dfl)) { - if (!DFISSIGNED(dfr)) { // -LHS +RHS - if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0; - return -1; // RHS wins - } - sigl=-1; - } - if (DFISSIGNED(dfr)) { - if (!DFISSIGNED(dfl)) { // +LHS -RHS - if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0; - return +1; // LHS wins - } - } - - // signs are the same; operand(s) could be zero - sigr=-sigl; // sign to return if abs(RHS) wins - - if (DFISINF(dfl)) { - if (DFISINF(dfr)) return 0; // both infinite & same sign - return sigl; // inf > n - } - if (DFISINF(dfr)) return sigr; // n < inf [dfl is finite] - - // here, both are same sign and finite; calculate their offset - shift=GETEXP(dfl)-GETEXP(dfr); // [0 means aligned] - // [bias can be ignored -- the absolute exponent is not relevant] - - if (DFISZERO(dfl)) { - if (!DFISZERO(dfr)) return sigr; // LHS=0, RHS!=0 - // both are zero, return 0 if both same exponent or numeric compare - if (shift==0 || !tot) return 0; - if (shift>0) return sigl; - return sigr; // [shift<0] - } - else { // LHS!=0 - if (DFISZERO(dfr)) return sigl; // LHS!=0, RHS=0 - } - // both are known to be non-zero at this point - - // if the exponents are so different that the coefficients do not - // overlap (by even one digit) then a full comparison is not needed - if (abs(shift)>=DECPMAX) { // no overlap - // coefficients are known to be non-zero - if (shift>0) return sigl; - return sigr; // [shift<0] - } - - // decode the coefficients - // (shift both right two if Quad to make a multiple of four) - #if QUAD - UBFROMUI(bufl, 0); - UBFROMUI(bufr, 0); - #endif - GETCOEFF(dfl, bufl+QUAD*2); // decode from decFloat - GETCOEFF(dfr, bufr+QUAD*2); // .. - if (shift==0) { // aligned; common and easy - // all multiples of four, here - for (ub=bufl, uc=bufr; ub*uc) return sigl; // difference found - if (*ub<*uc) return sigr; // .. - } - } - } // aligned - else if (shift>0) { // lhs to left - ub=bufl; // RHS pointer - // pad bufl so right-aligned; most shifts will fit in 8 - UBFROMUI(bufl+DECPMAX+QUAD*2, 0); // add eight zeros - UBFROMUI(bufl+DECPMAX+QUAD*2+4, 0); // .. - if (shift>8) { - // more than eight; fill the rest, and also worth doing the - // lead-in by fours - uByte *up; // work - uByte *upend=bufl+DECPMAX+QUAD*2+shift; - for (up=bufl+DECPMAX+QUAD*2+8; upbufl+shift-4) break; - } - } - // check remaining leading digits - for (; ub*uc) return sigl; // difference found - if (*ub<*uc) return sigr; // .. - } - } // mismatch - if (uc==bufr+QUAD*2+DECPMAX-4) break; // all checked - } - } // shift>0 - - else { // shift<0) .. RHS is to left of LHS; mirror shift>0 - uc=bufr; // RHS pointer - // pad bufr so right-aligned; most shifts will fit in 8 - UBFROMUI(bufr+DECPMAX+QUAD*2, 0); // add eight zeros - UBFROMUI(bufr+DECPMAX+QUAD*2+4, 0); // .. - if (shift<-8) { - // more than eight; fill the rest, and also worth doing the - // lead-in by fours - uByte *up; // work - uByte *upend=bufr+DECPMAX+QUAD*2-shift; - for (up=bufr+DECPMAX+QUAD*2+8; upbufr-shift-4) break; - } - } - // check remaining leading digits - for (; uc*uc) return sigl; // difference found - if (*ub<*uc) return sigr; // .. - } - } // mismatch - if (ub==bufl+QUAD*2+DECPMAX-4) break; // all checked - } - } // shift<0 - - // Here when compare equal - if (!tot) return 0; // numerically equal - // total ordering .. exponent matters - if (shift>0) return sigl; // total order by exponent - if (shift<0) return sigr; // .. - return 0; - } // decNumCompare - -/* ------------------------------------------------------------------ */ -/* decToInt32 -- local routine to effect ToInteger conversions */ -/* */ -/* df is the decFloat to convert */ -/* set is the context */ -/* rmode is the rounding mode to use */ -/* exact is 1 if Inexact should be signalled */ -/* unsign is 1 if the result a uInt, 0 if an Int (cast to uInt) */ -/* returns 32-bit result as a uInt */ -/* */ -/* Invalid is set is df is a NaN, is infinite, or is out-of-range; in */ -/* these cases 0 is returned. */ -/* ------------------------------------------------------------------ */ -static uInt decToInt32(const decFloat *df, decContext *set, - enum rounding rmode, Flag exact, Flag unsign) { - Int exp; // exponent - uInt sourhi, sourpen, sourlo; // top word from source decFloat .. - uInt hi, lo; // .. penultimate, least, etc. - decFloat zero, result; // work - Int i; // .. - - /* Start decoding the argument */ - sourhi=DFWORD(df, 0); // top word - exp=DECCOMBEXP[sourhi>>26]; // get exponent high bits (in place) - if (EXPISSPECIAL(exp)) { // is special? - set->status|=DEC_Invalid_operation; // signal - return 0; - } - - /* Here when the argument is finite */ - if (GETEXPUN(df)==0) result=*df; // already a true integer - else { // need to round to integer - enum rounding saveround; // saver - uInt savestatus; // .. - saveround=set->round; // save rounding mode .. - savestatus=set->status; // .. and status - set->round=rmode; // set mode - decFloatZero(&zero); // make 0E+0 - set->status=0; // clear - decFloatQuantize(&result, df, &zero, set); // [this may fail] - set->round=saveround; // restore rounding mode .. - if (exact) set->status|=savestatus; // include Inexact - else set->status=savestatus; // .. or just original status - } - - // only the last four declets of the coefficient can contain - // non-zero; check for others (and also NaN or Infinity from the - // Quantize) first (see DFISZERO for explanation): - // decFloatShow(&result, "sofar"); - #if DOUBLE - if ((DFWORD(&result, 0)&0x1c03ff00)!=0 - || (DFWORD(&result, 0)&0x60000000)==0x60000000) { - #elif QUAD - if ((DFWORD(&result, 2)&0xffffff00)!=0 - || DFWORD(&result, 1)!=0 - || (DFWORD(&result, 0)&0x1c003fff)!=0 - || (DFWORD(&result, 0)&0x60000000)==0x60000000) { - #endif - set->status|=DEC_Invalid_operation; // Invalid or out of range - return 0; - } - // get last twelve digits of the coefficent into hi & ho, base - // 10**9 (see GETCOEFFBILL): - sourlo=DFWORD(&result, DECWORDS-1); - lo=DPD2BIN0[sourlo&0x3ff] - +DPD2BINK[(sourlo>>10)&0x3ff] - +DPD2BINM[(sourlo>>20)&0x3ff]; - sourpen=DFWORD(&result, DECWORDS-2); - hi=DPD2BIN0[((sourpen<<2) | (sourlo>>30))&0x3ff]; - - // according to request, check range carefully - if (unsign) { - if (hi>4 || (hi==4 && lo>294967295) || (hi+lo!=0 && DFISSIGNED(&result))) { - set->status|=DEC_Invalid_operation; // out of range - return 0; - } - return hi*BILLION+lo; - } - // signed - if (hi>2 || (hi==2 && lo>147483647)) { - // handle the usual edge case - if (lo==147483648 && hi==2 && DFISSIGNED(&result)) return 0x80000000; - set->status|=DEC_Invalid_operation; // truly out of range - return 0; - } - i=hi*BILLION+lo; - if (DFISSIGNED(&result)) i=-i; - return (uInt)i; - } // decToInt32 - -/* ------------------------------------------------------------------ */ -/* decToIntegral -- local routine to effect ToIntegral value */ -/* */ -/* result gets the result */ -/* df is the decFloat to round */ -/* set is the context */ -/* rmode is the rounding mode to use */ -/* exact is 1 if Inexact should be signalled */ -/* returns result */ -/* ------------------------------------------------------------------ */ -static decFloat * decToIntegral(decFloat *result, const decFloat *df, - decContext *set, enum rounding rmode, - Flag exact) { - Int exp; // exponent - uInt sourhi; // top word from source decFloat - enum rounding saveround; // saver - uInt savestatus; // .. - decFloat zero; // work - - /* Start decoding the argument */ - sourhi=DFWORD(df, 0); // top word - exp=DECCOMBEXP[sourhi>>26]; // get exponent high bits (in place) - - if (EXPISSPECIAL(exp)) { // is special? - // NaNs are handled as usual - if (DFISNAN(df)) return decNaNs(result, df, NULL, set); - // must be infinite; return canonical infinity with sign of df - return decInfinity(result, df); - } - - /* Here when the argument is finite */ - // complete extraction of the exponent - exp+=GETECON(df)-DECBIAS; // .. + continuation and unbias - - if (exp>=0) return decCanonical(result, df); // already integral - - saveround=set->round; // save rounding mode .. - savestatus=set->status; // .. and status - set->round=rmode; // set mode - decFloatZero(&zero); // make 0E+0 - decFloatQuantize(result, df, &zero, set); // 'integrate'; cannot fail - set->round=saveround; // restore rounding mode .. - if (!exact) set->status=savestatus; // .. and status, unless exact - return result; - } // decToIntegral diff --git a/qdecimal/decnumber/decCommon.c b/qdecimal/decnumber/decCommon.c deleted file mode 100644 index 6a0c112..0000000 --- a/qdecimal/decnumber/decCommon.c +++ /dev/null @@ -1,1835 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decCommon.c -- common code for all three fixed-size types */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises code that is shared between all the formats */ -/* (decSingle, decDouble, and decQuad); it includes set and extract */ -/* of format components, widening, narrowing, and string conversions. */ -/* */ -/* Unlike decNumber, parameterization takes place at compile time */ -/* rather than at runtime. The parameters are set in the decDouble.c */ -/* (etc.) files, which then include this one to produce the compiled */ -/* code. The functions here, therefore, are code shared between */ -/* multiple formats. */ -/* ------------------------------------------------------------------ */ -// Names here refer to decFloat rather than to decDouble, etc., and -// the functions are in strict alphabetical order. -// Constants, tables, and debug function(s) are included only for QUAD -// (which will always be compiled if DOUBLE or SINGLE are used). -// -// Whenever a decContext is used, only the status may be set (using -// OR) or the rounding mode read; all other fields are ignored and -// untouched. - -// names for simpler testing and default context -#if DECPMAX==7 - #define SINGLE 1 - #define DOUBLE 0 - #define QUAD 0 - #define DEFCONTEXT DEC_INIT_DECIMAL32 -#elif DECPMAX==16 - #define SINGLE 0 - #define DOUBLE 1 - #define QUAD 0 - #define DEFCONTEXT DEC_INIT_DECIMAL64 -#elif DECPMAX==34 - #define SINGLE 0 - #define DOUBLE 0 - #define QUAD 1 - #define DEFCONTEXT DEC_INIT_DECIMAL128 -#else - #error Unexpected DECPMAX value -#endif - -/* Assertions */ - -#if DECPMAX!=7 && DECPMAX!=16 && DECPMAX!=34 - #error Unexpected Pmax (DECPMAX) value for this module -#endif - -// Assert facts about digit characters, etc. -#if ('9'&0x0f)!=9 - #error This module assumes characters are of the form 0b....nnnn - // where .... are don't care 4 bits and nnnn is 0000 through 1001 -#endif -#if ('9'&0xf0)==('.'&0xf0) - #error This module assumes '.' has a different mask than a digit -#endif - -// Assert ToString lay-out conditions -#if DECSTRING DECSTRING - #error Exponent form can be too long for ToString to lay out safely -#endif -#if DECEMAXD > 4 - #error Exponent form is too long for ToString to lay out - // Note: code for up to 9 digits exists in archives [decOct] -#endif - -/* Private functions used here and possibly in decBasic.c, etc. */ -static decFloat * decFinalize(decFloat *, bcdnum *, decContext *); -static Flag decBiStr(const char *, const char *, const char *); - -/* Macros and private tables; those which are not format-dependent */ -/* are only included if decQuad is being built. */ - -/* ------------------------------------------------------------------ */ -/* Combination field lookup tables (uInts to save measurable work) */ -/* */ -/* DECCOMBEXP - 2 most-significant-bits of exponent (00, 01, or */ -/* 10), shifted left for format, or DECFLOAT_Inf/NaN */ -/* DECCOMBWEXP - The same, for the next-wider format (unless QUAD) */ -/* DECCOMBMSD - 4-bit most-significant-digit */ -/* [0 if the index is a special (Infinity or NaN)] */ -/* DECCOMBFROM - 5-bit combination field from EXP top bits and MSD */ -/* (placed in uInt so no shift is needed) */ -/* */ -/* DECCOMBEXP, DECCOMBWEXP, and DECCOMBMSD are indexed by the sign */ -/* and 5-bit combination field (0-63, the second half of the table */ -/* identical to the first half) */ -/* DECCOMBFROM is indexed by expTopTwoBits*16 + msd */ -/* */ -/* DECCOMBMSD and DECCOMBFROM are not format-dependent and so are */ -/* only included once, when QUAD is being built */ -/* ------------------------------------------------------------------ */ -static const uInt DECCOMBEXP[64]={ - 0, 0, 0, 0, 0, 0, 0, 0, - 1< DPD -#define DEC_BIN2DPD 1 // 0-999 -> DPD -#define DEC_BIN2BCD8 1 // 0-999 -> ddd, len -#define DEC_DPD2BCD8 1 // DPD -> ddd, len -#define DEC_DPD2BIN 1 // DPD -> 0-999 -#define DEC_DPD2BINK 1 // DPD -> 0-999000 -#define DEC_DPD2BINM 1 // DPD -> 0-999000000 -#include "decDPD.h" // source of the lookup tables - -#endif - -/* ----------------------------------------------------------------- */ -/* decBiStr -- compare string with pairwise options */ -/* */ -/* targ is the string to compare */ -/* str1 is one of the strings to compare against (length may be 0) */ -/* str2 is the other; it must be the same length as str1 */ -/* */ -/* returns 1 if strings compare equal, (that is, targ is the same */ -/* length as str1 and str2, and each character of targ is in one */ -/* of str1 or str2 in the corresponding position), or 0 otherwise */ -/* */ -/* This is used for generic caseless compare, including the awkward */ -/* case of the Turkish dotted and dotless Is. Use as (for example): */ -/* if (decBiStr(test, "mike", "MIKE")) ... */ -/* ----------------------------------------------------------------- */ -static Flag decBiStr(const char *targ, const char *str1, const char *str2) { - for (;;targ++, str1++, str2++) { - if (*targ!=*str1 && *targ!=*str2) return 0; - // *targ has a match in one (or both, if terminator) - if (*targ=='\0') break; - } // forever - return 1; - } // decBiStr - -/* ------------------------------------------------------------------ */ -/* decFinalize -- adjust and store a final result */ -/* */ -/* df is the decFloat format number which gets the final result */ -/* num is the descriptor of the number to be checked and encoded */ -/* [its values, including the coefficient, may be modified] */ -/* set is the context to use */ -/* returns df */ -/* */ -/* The num descriptor may point to a bcd8 string of any length; this */ -/* string may have leading insignificant zeros. If it has more than */ -/* DECPMAX digits then the final digit can be a round-for-reround */ -/* digit (i.e., it may include a sticky bit residue). */ -/* */ -/* The exponent (q) may be one of the codes for a special value and */ -/* can be up to 999999999 for conversion from string. */ -/* */ -/* No error is possible, but Inexact, Underflow, and/or Overflow may */ -/* be set. */ -/* ------------------------------------------------------------------ */ -// Constant whose size varies with format; also the check for surprises -static uByte allnines[DECPMAX]= -#if SINGLE - {9, 9, 9, 9, 9, 9, 9}; -#elif DOUBLE - {9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9}; -#elif QUAD - {9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, - 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9}; -#endif - -static decFloat * decFinalize(decFloat *df, bcdnum *num, - decContext *set) { - uByte *ub; // work - uInt dpd; // .. - uInt uiwork; // for macros - uByte *umsd=num->msd; // local copy - uByte *ulsd=num->lsd; // .. - uInt encode; // encoding accumulator - Int length; // coefficient length - - #if DECCHECK - Int clen=ulsd-umsd+1; - #if QUAD - #define COEXTRA 2 // extra-long coefficent - #else - #define COEXTRA 0 - #endif - if (clen<1 || clen>DECPMAX*3+2+COEXTRA) - printf("decFinalize: suspect coefficient [length=%ld]\n", (LI)clen); - if (num->sign!=0 && num->sign!=DECFLOAT_Sign) - printf("decFinalize: bad sign [%08lx]\n", (LI)num->sign); - if (!EXPISSPECIAL(num->exponent) - && (num->exponent>1999999999 || num->exponent<-1999999999)) - printf("decFinalize: improbable exponent [%ld]\n", (LI)num->exponent); - // decShowNum(num, "final"); - #endif - - // A special will have an 'exponent' which is very positive and a - // coefficient < DECPMAX - length=(uInt)(ulsd-umsd+1); // coefficient length - - if (!NUMISSPECIAL(num)) { - Int drop; // digits to be dropped - // skip leading insignificant zeros to calculate an exact length - // [this is quite expensive] - if (*umsd==0) { - for (; umsd+3exponent); - // drop can now be > digits for bottom-clamp (subnormal) cases - if (drop>0) { // rounding needed - // (decFloatQuantize has very similar code to this, so any - // changes may need to be made there, too) - uByte *roundat; // -> re-round digit - uByte reround; // reround value - // printf("Rounding; drop=%ld\n", (LI)drop); - - num->exponent+=drop; // always update exponent - - // Three cases here: - // 1. new LSD is in coefficient (almost always) - // 2. new LSD is digit to left of coefficient (so MSD is - // round-for-reround digit) - // 3. new LSD is to left of case 2 (whole coefficient is sticky) - // [duplicate check-stickies code to save a test] - // [by-digit check for stickies as runs of zeros are rare] - if (dropstatus|=DEC_Inexact; - // if adjusted exponent [exp+digits-1] is < EMIN then num is - // subnormal -- so raise Underflow - if (num->exponentexponent+(ulsd-umsd+1)-1)status|=DEC_Underflow; - - // next decide whether increment of the coefficient is needed - if (set->round==DEC_ROUND_HALF_EVEN) { // fastpath slowest case - if (reround>5) bump=1; // >0.5 goes up - else if (reround==5) // exactly 0.5000 .. - bump=*ulsd & 0x01; // .. up iff [new] lsd is odd - } // r-h-e - else switch (set->round) { - case DEC_ROUND_DOWN: { - // no change - break;} // r-d - case DEC_ROUND_HALF_DOWN: { - if (reround>5) bump=1; - break;} // r-h-d - case DEC_ROUND_HALF_UP: { - if (reround>=5) bump=1; - break;} // r-h-u - case DEC_ROUND_UP: { - if (reround>0) bump=1; - break;} // r-u - case DEC_ROUND_CEILING: { - // same as _UP for positive numbers, and as _DOWN for negatives - if (!num->sign && reround>0) bump=1; - break;} // r-c - case DEC_ROUND_FLOOR: { - // same as _UP for negative numbers, and as _DOWN for positive - // [negative reround cannot occur on 0] - if (num->sign && reround>0) bump=1; - break;} // r-f - case DEC_ROUND_05UP: { - if (reround>0) { // anything out there is 'sticky' - // bump iff lsd=0 or 5; this cannot carry so it could be - // effected immediately with no bump -- but the code - // is clearer if this is done the same way as the others - if (*ulsd==0 || *ulsd==5) bump=1; - } - break;} // r-r - default: { // e.g., DEC_ROUND_MAX - set->status|=DEC_Invalid_context; - #if DECCHECK - printf("Unknown rounding mode: %ld\n", (LI)set->round); - #endif - break;} - } // switch (not r-h-e) - // printf("ReRound: %ld bump: %ld\n", (LI)reround, (LI)bump); - - if (bump!=0) { // need increment - // increment the coefficient; this might end up with 1000... - // (after the all nines case) - ub=ulsd; - for(; ub-3>=umsd && UBTOUI(ub-3)==0x09090909; ub-=4) { - UBFROMUI(ub-3, 0); // to 00000000 - } - // [note ub could now be to left of msd, and it is not safe - // to write to the the left of the msd] - // now at most 3 digits left to non-9 (usually just the one) - for (; ub>=umsd; *ub=0, ub--) { - if (*ub==9) continue; // carry - *ub+=1; - break; - } - if (ubexponent++; - } - else { - // if coefficient is shorter than Pmax then num is - // subnormal, so extend it; this is safe as drop>0 - // (or, if the coefficient was supplied above, it could - // not be 9); this may make the result normal. - ulsd++; - *ulsd=0; - // [exponent unchanged] - #if DECCHECK - if (num->exponent!=DECQTINY) // sanity check - printf("decFinalize: bad all-nines extend [^%ld, %ld]\n", - (LI)num->exponent, (LI)(ulsd-umsd+1)); - #endif - } // subnormal extend - } // had all-nines - } // bump needed - } // inexact rounding - - length=ulsd-umsd+1; // recalculate (may be 0) - - // The coefficient will now fit and has final length unless overflow - // decShowNum(num, "rounded"); - - // if exponent is >=emax may have to clamp, overflow, or fold-down - if (num->exponent>DECEMAX-(DECPMAX-1)) { // is edge case - // printf("overflow checks...\n"); - if (*ulsd==0 && ulsd==umsd) { // have zero - num->exponent=DECEMAX-(DECPMAX-1); // clamp to max - } - else if ((num->exponent+length-1)>DECEMAX) { // > Nmax - // Overflow -- these could go straight to encoding, here, but - // instead num is adjusted to keep the code cleaner - Flag needmax=0; // 1 for finite result - set->status|=(DEC_Overflow | DEC_Inexact); - switch (set->round) { - case DEC_ROUND_DOWN: { - needmax=1; // never Infinity - break;} // r-d - case DEC_ROUND_05UP: { - needmax=1; // never Infinity - break;} // r-05 - case DEC_ROUND_CEILING: { - if (num->sign) needmax=1; // Infinity iff non-negative - break;} // r-c - case DEC_ROUND_FLOOR: { - if (!num->sign) needmax=1; // Infinity iff negative - break;} // r-f - default: break; // Infinity in all other cases - } - if (!needmax) { // easy .. set Infinity - num->exponent=DECFLOAT_Inf; - *umsd=0; // be clean: coefficient to 0 - ulsd=umsd; // .. - } - else { // return Nmax - umsd=allnines; // use constant array - ulsd=allnines+DECPMAX-1; - num->exponent=DECEMAX-(DECPMAX-1); - } - } - else { // no overflow but non-zero and may have to fold-down - Int shift=num->exponent-(DECEMAX-(DECPMAX-1)); - if (shift>0) { // fold-down needed - // fold down needed; must copy to buffer in order to pad - // with zeros safely; fortunately this is not the worst case - // path because cannot have had a round - uByte buffer[ROUNDUP(DECPMAX+3, 4)]; // [+3 allows uInt padding] - uByte *s=umsd; // source - uByte *t=buffer; // safe target - uByte *tlsd=buffer+(ulsd-umsd)+shift; // target LSD - // printf("folddown shift=%ld\n", (LI)shift); - for (; s<=ulsd; s+=4, t+=4) UBFROMUI(t, UBTOUI(s)); - for (t=tlsd-shift+1; t<=tlsd; t+=4) UBFROMUI(t, 0); // pad 0s - num->exponent-=shift; - umsd=buffer; - ulsd=tlsd; - } - } // fold-down? - length=ulsd-umsd+1; // recalculate length - } // high-end edge case - } // finite number - - /*------------------------------------------------------------------*/ - /* At this point the result will properly fit the decFloat */ - /* encoding, and it can be encoded with no possibility of error */ - /*------------------------------------------------------------------*/ - // Following code does not alter coefficient (could be allnines array) - - // fast path possible when DECPMAX digits - if (length==DECPMAX) { - return decFloatFromBCD(df, num->exponent, umsd, num->sign); - } // full-length - - // slower path when not a full-length number; must care about length - // [coefficient length here will be < DECPMAX] - if (!NUMISSPECIAL(num)) { // is still finite - // encode the combination field and exponent continuation - uInt uexp=(uInt)(num->exponent+DECBIAS); // biased exponent - uInt code=(uexp>>DECECONL)<<4; // top two bits of exp - // [msd==0] - // look up the combination field and make high word - encode=DECCOMBFROM[code]; // indexed by (0-2)*16+msd - encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff; // exponent continuation - } - else encode=num->exponent; // special [already in word] - encode|=num->sign; // add sign - - // private macro to extract a declet, n (where 0<=n=umsd) dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)]; \ - else {dpd=*(ub+2); if (ub+1==umsd) dpd+=*(ub+1)*16; dpd=BCD2DPD[dpd];} - - // place the declets in the encoding words and copy to result (df), - // according to endianness; in all cases complete the sign word - // first - #if DECPMAX==7 - getDPDt(dpd, 1); - encode|=dpd<<10; - getDPDt(dpd, 0); - encode|=dpd; - DFWORD(df, 0)=encode; // just the one word - - #elif DECPMAX==16 - getDPDt(dpd, 4); encode|=dpd<<8; - getDPDt(dpd, 3); encode|=dpd>>2; - DFWORD(df, 0)=encode; - encode=dpd<<30; - getDPDt(dpd, 2); encode|=dpd<<20; - getDPDt(dpd, 1); encode|=dpd<<10; - getDPDt(dpd, 0); encode|=dpd; - DFWORD(df, 1)=encode; - - #elif DECPMAX==34 - getDPDt(dpd,10); encode|=dpd<<4; - getDPDt(dpd, 9); encode|=dpd>>6; - DFWORD(df, 0)=encode; - - encode=dpd<<26; - getDPDt(dpd, 8); encode|=dpd<<16; - getDPDt(dpd, 7); encode|=dpd<<6; - getDPDt(dpd, 6); encode|=dpd>>4; - DFWORD(df, 1)=encode; - - encode=dpd<<28; - getDPDt(dpd, 5); encode|=dpd<<18; - getDPDt(dpd, 4); encode|=dpd<<8; - getDPDt(dpd, 3); encode|=dpd>>2; - DFWORD(df, 2)=encode; - - encode=dpd<<30; - getDPDt(dpd, 2); encode|=dpd<<20; - getDPDt(dpd, 1); encode|=dpd<<10; - getDPDt(dpd, 0); encode|=dpd; - DFWORD(df, 3)=encode; - #endif - - // printf("Status: %08lx\n", (LI)set->status); - // decFloatShow(df, "final2"); - return df; - } // decFinalize - -/* ------------------------------------------------------------------ */ -/* decFloatFromBCD -- set decFloat from exponent, BCD8, and sign */ -/* */ -/* df is the target decFloat */ -/* exp is the in-range unbiased exponent, q, or a special value in */ -/* the form returned by decFloatGetExponent */ -/* bcdar holds DECPMAX digits to set the coefficient from, one */ -/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */ -/* if df is a NaN; all are ignored if df is infinite. */ -/* All bytes must be in 0-9; results are undefined otherwise. */ -/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */ -/* returns df, which will be canonical */ -/* */ -/* No error is possible, and no status will be set. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatFromBCD(decFloat *df, Int exp, const uByte *bcdar, - Int sig) { - uInt encode, dpd; // work - const uByte *ub; // .. - - if (EXPISSPECIAL(exp)) encode=exp|sig;// specials already encoded - else { // is finite - // encode the combination field and exponent continuation - uInt uexp=(uInt)(exp+DECBIAS); // biased exponent - uInt code=(uexp>>DECECONL)<<4; // top two bits of exp - code+=bcdar[0]; // add msd - // look up the combination field and make high word - encode=DECCOMBFROM[code]|sig; // indexed by (0-2)*16+msd - encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff; // exponent continuation - } - - // private macro to extract a declet, n (where 0<=n>2; - DFWORD(df, 0)=encode; - encode=dpd<<30; - getDPDb(dpd, 2); encode|=dpd<<20; - getDPDb(dpd, 1); encode|=dpd<<10; - getDPDb(dpd, 0); encode|=dpd; - DFWORD(df, 1)=encode; - - #elif DECPMAX==34 - getDPDb(dpd,10); encode|=dpd<<4; - getDPDb(dpd, 9); encode|=dpd>>6; - DFWORD(df, 0)=encode; - - encode=dpd<<26; - getDPDb(dpd, 8); encode|=dpd<<16; - getDPDb(dpd, 7); encode|=dpd<<6; - getDPDb(dpd, 6); encode|=dpd>>4; - DFWORD(df, 1)=encode; - - encode=dpd<<28; - getDPDb(dpd, 5); encode|=dpd<<18; - getDPDb(dpd, 4); encode|=dpd<<8; - getDPDb(dpd, 3); encode|=dpd>>2; - DFWORD(df, 2)=encode; - - encode=dpd<<30; - getDPDb(dpd, 2); encode|=dpd<<20; - getDPDb(dpd, 1); encode|=dpd<<10; - getDPDb(dpd, 0); encode|=dpd; - DFWORD(df, 3)=encode; - #endif - // decFloatShow(df, "fromB"); - return df; - } // decFloatFromBCD - -/* ------------------------------------------------------------------ */ -/* decFloatFromPacked -- set decFloat from exponent and packed BCD */ -/* */ -/* df is the target decFloat */ -/* exp is the in-range unbiased exponent, q, or a special value in */ -/* the form returned by decFloatGetExponent */ -/* packed holds DECPMAX packed decimal digits plus a sign nibble */ -/* (all 6 codes are OK); the first (MSD) is ignored if df is a NaN */ -/* and all except sign are ignored if df is infinite. For DOUBLE */ -/* and QUAD the first (pad) nibble is also ignored in all cases. */ -/* All coefficient nibbles must be in 0-9 and sign in A-F; results */ -/* are undefined otherwise. */ -/* returns df, which will be canonical */ -/* */ -/* No error is possible, and no status will be set. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatFromPacked(decFloat *df, Int exp, const uByte *packed) { - uByte bcdar[DECPMAX+2]; // work [+1 for pad, +1 for sign] - const uByte *ip; // .. - uByte *op; // .. - Int sig=0; // sign - - // expand coefficient and sign to BCDAR - #if SINGLE - op=bcdar+1; // no pad digit - #else - op=bcdar; // first (pad) digit ignored - #endif - for (ip=packed; ip>4; - *op++=(uByte)(*ip&0x0f); // [final nibble is sign] - } - op--; // -> sign byte - if (*op==DECPMINUS || *op==DECPMINUSALT) sig=DECFLOAT_Sign; - - if (EXPISSPECIAL(exp)) { // Infinity or NaN - if (!EXPISINF(exp)) bcdar[1]=0; // a NaN: ignore MSD - else memset(bcdar+1, 0, DECPMAX); // Infinite: coefficient to 0 - } - return decFloatFromBCD(df, exp, bcdar+1, sig); - } // decFloatFromPacked - -/* ------------------------------------------------------------------ */ -/* decFloatFromPackedChecked -- set from exponent and packed; checked */ -/* */ -/* df is the target decFloat */ -/* exp is the in-range unbiased exponent, q, or a special value in */ -/* the form returned by decFloatGetExponent */ -/* packed holds DECPMAX packed decimal digits plus a sign nibble */ -/* (all 6 codes are OK); the first (MSD) must be 0 if df is a NaN */ -/* and all digits must be 0 if df is infinite. For DOUBLE and */ -/* QUAD the first (pad) nibble must be 0. */ -/* All coefficient nibbles must be in 0-9 and sign in A-F. */ -/* returns df, which will be canonical or NULL if any of the */ -/* requirements are not met (if this case df is unchanged); that */ -/* is, the input data must be as returned by decFloatToPacked, */ -/* except that all six sign codes are acccepted. */ -/* */ -/* No status will be set. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatFromPackedChecked(decFloat *df, Int exp, - const uByte *packed) { - uByte bcdar[DECPMAX+2]; // work [+1 for pad, +1 for sign] - const uByte *ip; // .. - uByte *op; // .. - Int sig=0; // sign - - // expand coefficient and sign to BCDAR - #if SINGLE - op=bcdar+1; // no pad digit - #else - op=bcdar; // first (pad) digit here - #endif - for (ip=packed; ip>4; - if (*op>9) return NULL; - op++; - *op=(uByte)(*ip&0x0f); // [final nibble is sign] - if (*op>9 && ip sign byte - if (*op<=9) return NULL; // bad sign - if (*op==DECPMINUS || *op==DECPMINUSALT) sig=DECFLOAT_Sign; - - #if !SINGLE - if (bcdar[0]!=0) return NULL; // bad pad nibble - #endif - - if (EXPISNAN(exp)) { // a NaN - if (bcdar[1]!=0) return NULL; // bad msd - } // NaN - else if (EXPISINF(exp)) { // is infinite - Int i; - for (i=0; iDECEMAX-DECPMAX+1) return NULL; - if (exp first character of decimal part - const char *c; // work - uByte *ub; // .. - uInt uiwork; // for macros - bcdnum num; // collects data for finishing - uInt error=DEC_Conversion_syntax; // assume the worst - uByte buffer[ROUNDUP(DECSTRING+11, 8)]; // room for most coefficents, - // some common rounding, +3, & pad - #if DECTRACE - // printf("FromString %s ...\n", string); - #endif - - for(;;) { // once-only 'loop' - num.sign=0; // assume non-negative - num.msd=buffer; // MSD is here always - - // detect and validate the coefficient, including any leading, - // trailing, or embedded '.' - // [could test four-at-a-time here (saving 10% for decQuads), - // but that risks storage violation because the position of the - // terminator is unknown] - for (c=string;; c++) { // -> input character - if (((unsigned)(*c-'0'))<=9) continue; // '0' through '9' is good - if (*c=='\0') break; // most common non-digit - if (*c=='.') { - if (dotchar!=NULL) break; // not first '.' - dotchar=c; // record offset into decimal part - continue;} - if (c==string) { // first in string... - if (*c=='-') { // valid - sign - cfirst++; - num.sign=DECFLOAT_Sign; - continue;} - if (*c=='+') { // valid + sign - cfirst++; - continue;} - } - // *c is not a digit, terminator, or a valid +, -, or '.' - break; - } // c loop - - digits=(uInt)(c-cfirst); // digits (+1 if a dot) - - if (digits>0) { // had digits and/or dot - const char *clast=c-1; // note last coefficient char position - Int exp=0; // exponent accumulator - if (*c!='\0') { // something follows the coefficient - uInt edig; // unsigned work - // had some digits and more to come; expect E[+|-]nnn now - const char *firstexp; // exponent first non-zero - if (*c!='E' && *c!='e') break; - c++; // to (optional) sign - if (*c=='-' || *c=='+') c++; // step over sign (c=clast+2) - if (*c=='\0') break; // no digits! (e.g., '1.2E') - for (; *c=='0';) c++; // skip leading zeros [even last] - firstexp=c; // remember start [maybe '\0'] - // gather exponent digits - edig=(uInt)*c-(uInt)'0'; - if (edig<=9) { // [check not bad or terminator] - exp+=edig; // avoid initial X10 - c++; - for (;; c++) { - edig=(uInt)*c-(uInt)'0'; - if (edig>9) break; - exp=exp*10+edig; - } - } - // if not now on the '\0', *c must not be a digit - if (*c!='\0') break; - - // (this next test must be after the syntax checks) - // if definitely more than the possible digits for format then - // the exponent may have wrapped, so simply set it to a certain - // over/underflow value - if (c>firstexp+DECEMAXD) exp=DECEMAX*2; - if (*(clast+2)=='-') exp=-exp; // was negative - } // exponent part - - if (dotchar!=NULL) { // had a '.' - digits--; // remove from digits count - if (digits==0) break; // was dot alone: bad syntax - exp-=(Int)(clast-dotchar); // adjust exponent - // [the '.' can now be ignored] - } - num.exponent=exp; // exponent is good; store it - - // Here when whole string has been inspected and syntax is good - // cfirst->first digit or dot, clast->last digit or dot - error=0; // no error possible now - - // if the number of digits in the coefficient will fit in buffer - // then it can simply be converted to bcd8 and copied -- decFinalize - // will take care of leading zeros and rounding; the buffer is big - // enough for all canonical coefficients, including 0.00000nn... - ub=buffer; - if (digits<=(Int)(sizeof(buffer)-3)) { // [-3 allows by-4s copy] - c=cfirst; - if (dotchar!=NULL) { // a dot to worry about - if (*(c+1)=='.') { // common canonical case - *ub++=(uByte)(*c-'0'); // copy leading digit - c+=2; // prepare to handle rest - } - else for (; c<=clast;) { // '.' could be anywhere - // as usual, go by fours when safe; NB it has been asserted - // that a '.' does not have the same mask as a digit - if (c<=clast-3 // safe for four - && (UBTOUI(c)&0xf0f0f0f0)==CHARMASK) { // test four - UBFROMUI(ub, UBTOUI(c)&0x0f0f0f0f); // to BCD8 - ub+=4; - c+=4; - continue; - } - if (*c=='.') { // found the dot - c++; // step over it .. - break; // .. and handle the rest - } - *ub++=(uByte)(*c++-'0'); - } - } // had dot - // Now no dot; do this by fours (where safe) - for (; c<=clast-3; c+=4, ub+=4) UBFROMUI(ub, UBTOUI(c)&0x0f0f0f0f); - for (; c<=clast; c++, ub++) *ub=(uByte)(*c-'0'); - num.lsd=buffer+digits-1; // record new LSD - } // fits - - else { // too long for buffer - // [This is a rare and unusual case; arbitrary-length input] - // strip leading zeros [but leave final 0 if all 0's] - if (*cfirst=='.') cfirst++; // step past dot at start - if (*cfirst=='0') { // [cfirst always -> digit] - for (; cfirst LSD - for (; c<=clast; c++) { // inspect remaining chars - if (*c!='0') { // sticky bit needed - if (*c=='.') continue; // [ignore] - *ub=DECSTICKYTAB[*ub]; // update round-for-reround - break; // no need to look at more - } - } - num.lsd=ub; // record LSD - // adjust exponent for dropped digits - num.exponent+=digits-(Int)(ub-buffer+1); - } // too long for buffer - } // digits and/or dot - - else { // no digits or dot were found - // only Infinities and NaNs are allowed, here - if (*c=='\0') break; // nothing there is bad - buffer[0]=0; // default a coefficient of 0 - num.lsd=buffer; // .. - if (decBiStr(c, "infinity", "INFINITY") - || decBiStr(c, "inf", "INF")) num.exponent=DECFLOAT_Inf; - else { // should be a NaN - num.exponent=DECFLOAT_qNaN; // assume quiet NaN - if (*c=='s' || *c=='S') { // probably an sNaN - num.exponent=DECFLOAT_sNaN; // effect the 's' - c++; // and step over it - } - if (*c!='N' && *c!='n') break; // check caseless "NaN" - c++; - if (*c!='a' && *c!='A') break; // .. - c++; - if (*c!='N' && *c!='n') break; // .. - c++; - // now either nothing, or nnnn payload (no dots), expected - // -> start of integer, and skip leading 0s [including plain 0] - for (cfirst=c; *cfirst=='0';) cfirst++; - if (*cfirst!='\0') { // not empty or all-0, payload - // payload found; check all valid digits and copy to buffer as bcd8 - ub=buffer; - for (c=cfirst;; c++, ub++) { - if ((unsigned)(*c-'0')>9) break; // quit if not 0-9 - if (c-cfirst==DECPMAX-1) break; // too many digits - *ub=(uByte)(*c-'0'); // good bcd8 - } - if (*c!='\0') break; // not all digits, or too many - num.lsd=ub-1; // record new LSD - } - } // NaN or sNaN - error=0; // syntax is OK - } // digits=0 (special expected) - break; // drop out - } // [for(;;) once-loop] - - // decShowNum(&num, "fromStr"); - - if (error!=0) { - set->status|=error; - num.exponent=DECFLOAT_qNaN; // set up quiet NaN - num.sign=0; // .. with 0 sign - buffer[0]=0; // .. and coefficient - num.lsd=buffer; // .. - // decShowNum(&num, "oops"); - } - - // decShowNum(&num, "dffs"); - decFinalize(result, &num, set); // round, check, and lay out - // decFloatShow(result, "fromString"); - return result; - } // decFloatFromString - -/* ------------------------------------------------------------------ */ -/* decFloatFromWider -- conversion from next-wider format */ -/* */ -/* result is the decFloat format number which gets the result of */ -/* the conversion */ -/* wider is the decFloatWider format number which will be narrowed */ -/* set is the context */ -/* returns result */ -/* */ -/* Narrowing can cause rounding, overflow, etc., but not Invalid */ -/* operation (sNaNs are copied and do not signal). */ -/* ------------------------------------------------------------------ */ -// narrow-to is not possible for decQuad format numbers; simply omit -#if !QUAD -decFloat * decFloatFromWider(decFloat *result, const decFloatWider *wider, - decContext *set) { - bcdnum num; // collects data for finishing - uByte bcdar[DECWPMAX]; // room for wider coefficient - uInt widerhi=DFWWORD(wider, 0); // top word - Int exp; - - GETWCOEFF(wider, bcdar); - - num.msd=bcdar; // MSD is here always - num.lsd=bcdar+DECWPMAX-1; // LSD is here always - num.sign=widerhi&0x80000000; // extract sign [DECFLOAT_Sign=Neg] - - // decode the wider combination field to exponent - exp=DECCOMBWEXP[widerhi>>26]; // decode from wider combination field - // if it is a special there's nothing to do unless sNaN; if it's - // finite then add the (wider) exponent continuation and unbias - if (EXPISSPECIAL(exp)) exp=widerhi&0x7e000000; // include sNaN selector - else exp+=GETWECON(wider)-DECWBIAS; - num.exponent=exp; - - // decShowNum(&num, "dffw"); - return decFinalize(result, &num, set);// round, check, and lay out - } // decFloatFromWider -#endif - -/* ------------------------------------------------------------------ */ -/* decFloatGetCoefficient -- get coefficient as BCD8 */ -/* */ -/* df is the decFloat from which to extract the coefficient */ -/* bcdar is where DECPMAX bytes will be written, one BCD digit in */ -/* each byte (BCD8 encoding); if df is a NaN the first byte will */ -/* be zero, and if it is infinite they will all be zero */ -/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */ -/* 0 otherwise) */ -/* */ -/* No error is possible, and no status will be set. If df is a */ -/* special value the array is set to zeros (for Infinity) or to the */ -/* payload of a qNaN or sNaN. */ -/* ------------------------------------------------------------------ */ -Int decFloatGetCoefficient(const decFloat *df, uByte *bcdar) { - if (DFISINF(df)) memset(bcdar, 0, DECPMAX); - else { - GETCOEFF(df, bcdar); // use macro - if (DFISNAN(df)) bcdar[0]=0; // MSD needs correcting - } - return GETSIGN(df); - } // decFloatGetCoefficient - -/* ------------------------------------------------------------------ */ -/* decFloatGetExponent -- get unbiased exponent */ -/* */ -/* df is the decFloat from which to extract the exponent */ -/* returns the exponent, q. */ -/* */ -/* No error is possible, and no status will be set. If df is a */ -/* special value the first seven bits of the decFloat are returned, */ -/* left adjusted and with the first (sign) bit set to 0 (followed by */ -/* 25 0 bits). e.g., -sNaN would return 0x7e000000 (DECFLOAT_sNaN). */ -/* ------------------------------------------------------------------ */ -Int decFloatGetExponent(const decFloat *df) { - if (DFISSPECIAL(df)) return DFWORD(df, 0)&0x7e000000; - return GETEXPUN(df); - } // decFloatGetExponent - -/* ------------------------------------------------------------------ */ -/* decFloatSetCoefficient -- set coefficient from BCD8 */ -/* */ -/* df is the target decFloat (and source of exponent/special value) */ -/* bcdar holds DECPMAX digits to set the coefficient from, one */ -/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */ -/* if df is a NaN; all are ignored if df is infinite. */ -/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */ -/* returns df, which will be canonical */ -/* */ -/* No error is possible, and no status will be set. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatSetCoefficient(decFloat *df, const uByte *bcdar, - Int sig) { - uInt exp; // for exponent - uByte bcdzero[DECPMAX]; // for infinities - - // Exponent/special code is extracted from df - if (DFISSPECIAL(df)) { - exp=DFWORD(df, 0)&0x7e000000; - if (DFISINF(df)) { - memset(bcdzero, 0, DECPMAX); - return decFloatFromBCD(df, exp, bcdzero, sig); - } - } - else exp=GETEXPUN(df); - return decFloatFromBCD(df, exp, bcdar, sig); - } // decFloatSetCoefficient - -/* ------------------------------------------------------------------ */ -/* decFloatSetExponent -- set exponent or special value */ -/* */ -/* df is the target decFloat (and source of coefficient/payload) */ -/* set is the context for reporting status */ -/* exp is the unbiased exponent, q, or a special value in the form */ -/* returned by decFloatGetExponent */ -/* returns df, which will be canonical */ -/* */ -/* No error is possible, but Overflow or Underflow might occur. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatSetExponent(decFloat *df, decContext *set, Int exp) { - uByte bcdcopy[DECPMAX]; // for coefficient - bcdnum num; // work - num.exponent=exp; - num.sign=decFloatGetCoefficient(df, bcdcopy); // extract coefficient - if (DFISSPECIAL(df)) { // MSD or more needs correcting - if (DFISINF(df)) memset(bcdcopy, 0, DECPMAX); - bcdcopy[0]=0; - } - num.msd=bcdcopy; - num.lsd=bcdcopy+DECPMAX-1; - return decFinalize(df, &num, set); - } // decFloatSetExponent - -/* ------------------------------------------------------------------ */ -/* decFloatRadix -- returns the base (10) */ -/* */ -/* df is any decFloat of this format */ -/* ------------------------------------------------------------------ */ -uInt decFloatRadix(const decFloat *df) { - if (df) return 10; // to placate compiler - return 10; - } // decFloatRadix - -/* The following function is not available if DECPRINT=0 */ -#if DECPRINT -/* ------------------------------------------------------------------ */ -/* decFloatShow -- printf a decFloat in hexadecimal and decimal */ -/* df is the decFloat to show */ -/* tag is a tag string displayed with the number */ -/* */ -/* This is a debug aid; the precise format of the string may change. */ -/* ------------------------------------------------------------------ */ -void decFloatShow(const decFloat *df, const char *tag) { - char hexbuf[DECBYTES*2+DECBYTES/4+1]; // NB blank after every fourth - char buff[DECSTRING]; // for value in decimal - Int i, j=0; - - for (i=0; ibytes[DECBYTES-1-i]); - #else - sprintf(&hexbuf[j], "%02x", df->bytes[i]); - #endif - j+=2; - // the next line adds blank (and terminator) after final pair, too - if ((i+1)%4==0) {strcpy(&hexbuf[j], " "); j++;} - } - decFloatToString(df, buff); - printf(">%s> %s [big-endian] %s\n", tag, hexbuf, buff); - return; - } // decFloatShow -#endif - -/* ------------------------------------------------------------------ */ -/* decFloatToBCD -- get sign, exponent, and BCD8 from a decFloat */ -/* */ -/* df is the source decFloat */ -/* exp will be set to the unbiased exponent, q, or to a special */ -/* value in the form returned by decFloatGetExponent */ -/* bcdar is where DECPMAX bytes will be written, one BCD digit in */ -/* each byte (BCD8 encoding); if df is a NaN the first byte will */ -/* be zero, and if it is infinite they will all be zero */ -/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */ -/* 0 otherwise) */ -/* */ -/* No error is possible, and no status will be set. */ -/* ------------------------------------------------------------------ */ -Int decFloatToBCD(const decFloat *df, Int *exp, uByte *bcdar) { - if (DFISINF(df)) { - memset(bcdar, 0, DECPMAX); - *exp=DFWORD(df, 0)&0x7e000000; - } - else { - GETCOEFF(df, bcdar); // use macro - if (DFISNAN(df)) { - bcdar[0]=0; // MSD needs correcting - *exp=DFWORD(df, 0)&0x7e000000; - } - else { // finite - *exp=GETEXPUN(df); - } - } - return GETSIGN(df); - } // decFloatToBCD - -/* ------------------------------------------------------------------ */ -/* decFloatToEngString -- conversion to numeric string, engineering */ -/* */ -/* df is the decFloat format number to convert */ -/* string is the string where the result will be laid out */ -/* */ -/* string must be at least DECPMAX+9 characters (the worst case is */ -/* "-0.00000nnn...nnn\0", which is as long as the exponent form when */ -/* DECEMAXD<=4); this condition is asserted above */ -/* */ -/* No error is possible, and no status will be set */ -/* ------------------------------------------------------------------ */ -char * decFloatToEngString(const decFloat *df, char *string){ - uInt msd; // coefficient MSD - Int exp; // exponent top two bits or full - uInt comb; // combination field - char *cstart; // coefficient start - char *c; // output pointer in string - char *s, *t; // .. (source, target) - Int pre, e; // work - const uByte *u; // .. - uInt uiwork; // for macros [one compiler needs - // volatile here to avoid bug, but - // that doubles execution time] - - // Source words; macro handles endianness - uInt sourhi=DFWORD(df, 0); // word with sign - #if DECPMAX==16 - uInt sourlo=DFWORD(df, 1); - #elif DECPMAX==34 - uInt sourmh=DFWORD(df, 1); - uInt sourml=DFWORD(df, 2); - uInt sourlo=DFWORD(df, 3); - #endif - - c=string; // where result will go - if (((Int)sourhi)<0) *c++='-'; // handle sign - comb=sourhi>>26; // sign+combination field - msd=DECCOMBMSD[comb]; // decode the combination field - exp=DECCOMBEXP[comb]; // .. - - if (EXPISSPECIAL(exp)) { // special - if (exp==DECFLOAT_Inf) { // infinity - strcpy(c, "Inf"); - strcpy(c+3, "inity"); - return string; // easy - } - if (sourhi&0x02000000) *c++='s'; // sNaN - strcpy(c, "NaN"); // complete word - c+=3; // step past - // quick exit if the payload is zero - #if DECPMAX==7 - if ((sourhi&0x000fffff)==0) return string; - #elif DECPMAX==16 - if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; - #elif DECPMAX==34 - if (sourlo==0 && sourml==0 && sourmh==0 - && (sourhi&0x00003fff)==0) return string; - #endif - // otherwise drop through to add integer; set correct exp etc. - exp=0; msd=0; // setup for following code - } - else { // complete exponent; top two bits are in place - exp+=GETECON(df)-DECBIAS; // .. + continuation and unbias - } - - /* convert the digits of the significand to characters */ - cstart=c; // save start of coefficient - if (msd) *c++=(char)('0'+(char)msd); // non-zero most significant digit - - // Decode the declets. After extracting each declet, it is - // decoded to a 4-uByte sequence by table lookup; the four uBytes - // are the three encoded BCD8 digits followed by a 1-byte length - // (significant digits, except that 000 has length 0). This allows - // us to left-align the first declet with non-zero content, then - // the remaining ones are full 3-char length. Fixed-length copies - // are used because variable-length memcpy causes a subroutine call - // in at least two compilers. (The copies are length 4 for speed - // and are safe because the last item in the array is of length - // three and has the length byte following.) - #define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \ - if (c!=cstart) {UBFROMUI(c, UBTOUI(u)|CHARMASK); c+=3;} \ - else if (*(u+3)) { \ - UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); c+=*(u+3);} - - #if DECPMAX==7 - dpd2char(sourhi>>10); // declet 1 - dpd2char(sourhi); // declet 2 - - #elif DECPMAX==16 - dpd2char(sourhi>>8); // declet 1 - dpd2char((sourhi<<2) | (sourlo>>30)); // declet 2 - dpd2char(sourlo>>20); // declet 3 - dpd2char(sourlo>>10); // declet 4 - dpd2char(sourlo); // declet 5 - - #elif DECPMAX==34 - dpd2char(sourhi>>4); // declet 1 - dpd2char((sourhi<<6) | (sourmh>>26)); // declet 2 - dpd2char(sourmh>>16); // declet 3 - dpd2char(sourmh>>6); // declet 4 - dpd2char((sourmh<<4) | (sourml>>28)); // declet 5 - dpd2char(sourml>>18); // declet 6 - dpd2char(sourml>>8); // declet 7 - dpd2char((sourml<<2) | (sourlo>>30)); // declet 8 - dpd2char(sourlo>>20); // declet 9 - dpd2char(sourlo>>10); // declet 10 - dpd2char(sourlo); // declet 11 - #endif - - if (c==cstart) *c++='0'; // all zeros, empty -- make "0" - - if (exp==0) { // integer or NaN case -- easy - *c='\0'; // terminate - return string; - } - /* non-0 exponent */ - - e=0; // assume no E - pre=(Int)(c-cstart)+exp; // length+exp [c->LSD+1] - // [here, pre-exp is the digits count (==1 for zero)] - - if (exp>0 || pre<-5) { // need exponential form - e=pre-1; // calculate E value - pre=1; // assume one digit before '.' - if (e!=0) { // engineering: may need to adjust - Int adj; // adjustment - // The C remainder operator is undefined for negative numbers, so - // a positive remainder calculation must be used here - if (e<0) { - adj=(-e)%3; - if (adj!=0) adj=3-adj; - } - else { // e>0 - adj=e%3; - } - e=e-adj; - // if dealing with zero still produce an exponent which is a - // multiple of three, as expected, but there will only be the - // one zero before the E, still. Otherwise note the padding. - if (!DFISZERO(df)) pre+=adj; - else { // is zero - if (adj!=0) { // 0.00Esnn needed - e=e+3; - pre=-(2-adj); - } - } // zero - } // engineering adjustment - } // exponential form - // printf("e=%ld pre=%ld exp=%ld\n", (LI)e, (LI)pre, (LI)exp); - - /* modify the coefficient, adding 0s, '.', and E+nn as needed */ - if (pre>0) { // ddd.ddd (plain), perhaps with E - // or dd00 padding for engineering - char *dotat=cstart+pre; - if (dotat=dotat; s-=4, t-=4) UBFROMUI(t, UBTOUI(s)); - *dotat='.'; - c++; // length increased by one - } // need dot? - else for (; c0 - else { - /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (may have - E, but only for 0.00E+3 kind of case -- with plenty of spare - space in this case */ - pre=-pre+2; // gap width, including "0." - t=cstart+ROUNDDOWN4(c-cstart)+pre; // preferred first target point - // backoff if too far to the right - if (t>string+DECSTRING-5) t=string+DECSTRING-5; // adjust to fit - // now shift the entire coefficient to the right, being careful not - // to access to the left of string [cannot use memcpy] - for (s=t-pre; s>=string; s-=4, t-=4) UBFROMUI(t, UBTOUI(s)); - // for Quads and Singles there may be a character or two left... - s+=3; // where next would come from - for(; s>=cstart; s--, t--) *(t+3)=*(s); - // now have fill 0. through 0.00000; use overlaps to avoid tests - if (pre>=4) { - memcpy(cstart+pre-4, "0000", 4); - memcpy(cstart, "0.00", 4); - } - else { // 2 or 3 - *(cstart+pre-1)='0'; - memcpy(cstart, "0.", 2); - } - c+=pre; // to end - } - - // finally add the E-part, if needed; it will never be 0, and has - // a maximum length of 3 or 4 digits (asserted above) - if (e!=0) { - memcpy(c, "E+", 2); // starts with E, assume + - c++; - if (e<0) { - *c='-'; // oops, need '-' - e=-e; // uInt, please - } - c++; - // Three-character exponents are easy; 4-character a little trickier - #if DECEMAXD<=3 - u=&BIN2BCD8[e*4]; // -> 3 digits + length byte - // copy fixed 4 characters [is safe], starting at non-zero - // and with character mask to convert BCD to char - UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); - c+=*(u+3); // bump pointer appropriately - #elif DECEMAXD==4 - if (e<1000) { // 3 (or fewer) digits case - u=&BIN2BCD8[e*4]; // -> 3 digits + length byte - UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); // [as above] - c+=*(u+3); // bump pointer appropriately - } - else { // 4-digits - Int thou=((e>>3)*1049)>>17; // e/1000 - Int rem=e-(1000*thou); // e%1000 - *c++=(char)('0'+(char)thou); // the thousands digit - u=&BIN2BCD8[rem*4]; // -> 3 digits + length byte - UBFROMUI(c, UBTOUI(u)|CHARMASK);// copy fixed 3+1 characters [is safe] - c+=3; // bump pointer, always 3 digits - } - #endif - } - *c='\0'; // terminate - //printf("res %s\n", string); - return string; - } // decFloatToEngString - -/* ------------------------------------------------------------------ */ -/* decFloatToPacked -- convert decFloat to Packed decimal + exponent */ -/* */ -/* df is the source decFloat */ -/* exp will be set to the unbiased exponent, q, or to a special */ -/* value in the form returned by decFloatGetExponent */ -/* packed is where DECPMAX nibbles will be written with the sign as */ -/* final nibble (0x0c for +, 0x0d for -); a NaN has a first nibble */ -/* of zero, and an infinity is all zeros. decDouble and decQuad */ -/* have a additional leading zero nibble, leading to result */ -/* lengths of 4, 9, and 18 bytes. */ -/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */ -/* 0 otherwise) */ -/* */ -/* No error is possible, and no status will be set. */ -/* ------------------------------------------------------------------ */ -Int decFloatToPacked(const decFloat *df, Int *exp, uByte *packed) { - uByte bcdar[DECPMAX+2]; // work buffer - uByte *ip=bcdar, *op=packed; // work pointers - if (DFISINF(df)) { - memset(bcdar, 0, DECPMAX+2); - *exp=DECFLOAT_Inf; - } - else { - GETCOEFF(df, bcdar+1); // use macro - if (DFISNAN(df)) { - bcdar[1]=0; // MSD needs clearing - *exp=DFWORD(df, 0)&0x7e000000; - } - else { // finite - *exp=GETEXPUN(df); - } - } - // now pack; coefficient currently at bcdar+1 - #if SINGLE - ip++; // ignore first byte - #else - *ip=0; // need leading zero - #endif - // set final byte to Packed BCD sign value - bcdar[DECPMAX+1]=(DFISSIGNED(df) ? DECPMINUS : DECPPLUS); - // pack an even number of bytes... - for (; op>26; // sign+combination field - msd=DECCOMBMSD[comb]; // decode the combination field - exp=DECCOMBEXP[comb]; // .. - - if (!EXPISSPECIAL(exp)) { // finite - // complete exponent; top two bits are in place - exp+=GETECON(df)-DECBIAS; // .. + continuation and unbias - } - else { // IS special - if (exp==DECFLOAT_Inf) { // infinity - strcpy(c, "Infinity"); - return string; // easy - } - if (sourhi&0x02000000) *c++='s'; // sNaN - strcpy(c, "NaN"); // complete word - c+=3; // step past - // quick exit if the payload is zero - #if DECPMAX==7 - if ((sourhi&0x000fffff)==0) return string; - #elif DECPMAX==16 - if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; - #elif DECPMAX==34 - if (sourlo==0 && sourml==0 && sourmh==0 - && (sourhi&0x00003fff)==0) return string; - #endif - // otherwise drop through to add integer; set correct exp etc. - exp=0; msd=0; // setup for following code - } - - /* convert the digits of the significand to characters */ - cstart=c; // save start of coefficient - if (msd) *c++=(char)('0'+(char)msd); // non-zero most significant digit - - // Decode the declets. After extracting each declet, it is - // decoded to a 4-uByte sequence by table lookup; the four uBytes - // are the three encoded BCD8 digits followed by a 1-byte length - // (significant digits, except that 000 has length 0). This allows - // us to left-align the first declet with non-zero content, then - // the remaining ones are full 3-char length. Fixed-length copies - // are used because variable-length memcpy causes a subroutine call - // in at least two compilers. (The copies are length 4 for speed - // and are safe because the last item in the array is of length - // three and has the length byte following.) - #define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \ - if (c!=cstart) {UBFROMUI(c, UBTOUI(u)|CHARMASK); c+=3;} \ - else if (*(u+3)) { \ - UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); c+=*(u+3);} - - #if DECPMAX==7 - dpd2char(sourhi>>10); // declet 1 - dpd2char(sourhi); // declet 2 - - #elif DECPMAX==16 - dpd2char(sourhi>>8); // declet 1 - dpd2char((sourhi<<2) | (sourlo>>30)); // declet 2 - dpd2char(sourlo>>20); // declet 3 - dpd2char(sourlo>>10); // declet 4 - dpd2char(sourlo); // declet 5 - - #elif DECPMAX==34 - dpd2char(sourhi>>4); // declet 1 - dpd2char((sourhi<<6) | (sourmh>>26)); // declet 2 - dpd2char(sourmh>>16); // declet 3 - dpd2char(sourmh>>6); // declet 4 - dpd2char((sourmh<<4) | (sourml>>28)); // declet 5 - dpd2char(sourml>>18); // declet 6 - dpd2char(sourml>>8); // declet 7 - dpd2char((sourml<<2) | (sourlo>>30)); // declet 8 - dpd2char(sourlo>>20); // declet 9 - dpd2char(sourlo>>10); // declet 10 - dpd2char(sourlo); // declet 11 - #endif - - if (c==cstart) *c++='0'; // all zeros, empty -- make "0" - - //[This fast path is valid but adds 3-5 cycles to worst case length] - //if (exp==0) { // integer or NaN case -- easy - // *c='\0'; // terminate - // return string; - // } - - e=0; // assume no E - pre=(Int)(c-cstart)+exp; // length+exp [c->LSD+1] - // [here, pre-exp is the digits count (==1 for zero)] - - if (exp>0 || pre<-5) { // need exponential form - e=pre-1; // calculate E value - pre=1; // assume one digit before '.' - } // exponential form - - /* modify the coefficient, adding 0s, '.', and E+nn as needed */ - if (pre>0) { // ddd.ddd (plain), perhaps with E - char *dotat=cstart+pre; - if (dotat=dotat; s-=4, t-=4) UBFROMUI(t, UBTOUI(s)); - *dotat='.'; - c++; // length increased by one - } // need dot? - - // finally add the E-part, if needed; it will never be 0, and has - // a maximum length of 3 or 4 digits (asserted above) - if (e!=0) { - memcpy(c, "E+", 2); // starts with E, assume + - c++; - if (e<0) { - *c='-'; // oops, need '-' - e=-e; // uInt, please - } - c++; - // Three-character exponents are easy; 4-character a little trickier - #if DECEMAXD<=3 - u=&BIN2BCD8[e*4]; // -> 3 digits + length byte - // copy fixed 4 characters [is safe], starting at non-zero - // and with character mask to convert BCD to char - UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); - c+=*(u+3); // bump pointer appropriately - #elif DECEMAXD==4 - if (e<1000) { // 3 (or fewer) digits case - u=&BIN2BCD8[e*4]; // -> 3 digits + length byte - UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); // [as above] - c+=*(u+3); // bump pointer appropriately - } - else { // 4-digits - Int thou=((e>>3)*1049)>>17; // e/1000 - Int rem=e-(1000*thou); // e%1000 - *c++=(char)('0'+(char)thou); // the thousands digit - u=&BIN2BCD8[rem*4]; // -> 3 digits + length byte - UBFROMUI(c, UBTOUI(u)|CHARMASK); // copy fixed 3+1 characters [is safe] - c+=3; // bump pointer, always 3 digits - } - #endif - } - *c='\0'; // add terminator - //printf("res %s\n", string); - return string; - } // pre>0 - - /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */ - // Surprisingly, this is close to being the worst-case path, so the - // shift is done by fours; this is a little tricky because the - // rightmost character to be written must not be beyond where the - // rightmost terminator could be -- so backoff to not touch - // terminator position if need be (this can make exact alignments - // for full Doubles, but in some cases needs care not to access too - // far to the left) - - pre=-pre+2; // gap width, including "0." - t=cstart+ROUNDDOWN4(c-cstart)+pre; // preferred first target point - // backoff if too far to the right - if (t>string+DECSTRING-5) t=string+DECSTRING-5; // adjust to fit - // now shift the entire coefficient to the right, being careful not - // to access to the left of string [cannot use memcpy] - for (s=t-pre; s>=string; s-=4, t-=4) UBFROMUI(t, UBTOUI(s)); - // for Quads and Singles there may be a character or two left... - s+=3; // where next would come from - for(; s>=cstart; s--, t--) *(t+3)=*(s); - // now have fill 0. through 0.00000; use overlaps to avoid tests - if (pre>=4) { - memcpy(cstart+pre-4, "0000", 4); - memcpy(cstart, "0.00", 4); - } - else { // 2 or 3 - *(cstart+pre-1)='0'; - memcpy(cstart, "0.", 2); - } - *(c+pre)='\0'; // terminate - return string; - } // decFloatToString - -/* ------------------------------------------------------------------ */ -/* decFloatToWider -- conversion to next-wider format */ -/* */ -/* source is the decFloat format number which gets the result of */ -/* the conversion */ -/* wider is the decFloatWider format number which will be narrowed */ -/* returns wider */ -/* */ -/* Widening is always exact; no status is set (sNaNs are copied and */ -/* do not signal). The result will be canonical if the source is, */ -/* and may or may not be if the source is not. */ -/* ------------------------------------------------------------------ */ -// widening is not possible for decQuad format numbers; simply omit -#if !QUAD -decFloatWider * decFloatToWider(const decFloat *source, decFloatWider *wider) { - uInt msd; - - /* Construct and copy the sign word */ - if (DFISSPECIAL(source)) { - // copy sign, combination, and first bit of exponent (sNaN selector) - DFWWORD(wider, 0)=DFWORD(source, 0)&0xfe000000; - msd=0; - } - else { // is finite number - uInt exp=GETEXPUN(source)+DECWBIAS; // get unbiased exponent and rebias - uInt code=(exp>>DECWECONL)<<29; // set two bits of exp [msd=0] - code|=(exp<<(32-6-DECWECONL)) & 0x03ffffff; // add exponent continuation - code|=DFWORD(source, 0)&0x80000000; // add sign - DFWWORD(wider, 0)=code; // .. and place top word in wider - msd=GETMSD(source); // get source coefficient MSD [0-9] - } - /* Copy the coefficient and clear any 'unused' words to left */ - #if SINGLE - DFWWORD(wider, 1)=(DFWORD(source, 0)&0x000fffff)|(msd<<20); - #elif DOUBLE - DFWWORD(wider, 2)=(DFWORD(source, 0)&0x0003ffff)|(msd<<18); - DFWWORD(wider, 3)=DFWORD(source, 1); - DFWWORD(wider, 1)=0; - #endif - return wider; - } // decFloatToWider -#endif - -/* ------------------------------------------------------------------ */ -/* decFloatVersion -- return package version string */ -/* */ -/* returns a constant string describing this package */ -/* ------------------------------------------------------------------ */ -const char *decFloatVersion(void) { - return DECVERSION; - } // decFloatVersion - -/* ------------------------------------------------------------------ */ -/* decFloatZero -- set to canonical (integer) zero */ -/* */ -/* df is the decFloat format number to integer +0 (q=0, c=+0) */ -/* returns df */ -/* */ -/* No error is possible, and no status can be set. */ -/* ------------------------------------------------------------------ */ -decFloat * decFloatZero(decFloat *df){ - DFWORD(df, 0)=ZEROWORD; // set appropriate top word - #if DOUBLE || QUAD - DFWORD(df, 1)=0; - #if QUAD - DFWORD(df, 2)=0; - DFWORD(df, 3)=0; - #endif - #endif - // decFloatShow(df, "zero"); - return df; - } // decFloatZero - -/* ------------------------------------------------------------------ */ -/* Private generic function (not format-specific) for development use */ -/* ------------------------------------------------------------------ */ -// This is included once only, for all to use -#if QUAD && (DECCHECK || DECTRACE) - /* ---------------------------------------------------------------- */ - /* decShowNum -- display bcd8 number in debug form */ - /* */ - /* num is the bcdnum to display */ - /* tag is a string to label the display */ - /* ---------------------------------------------------------------- */ - void decShowNum(const bcdnum *num, const char *tag) { - const char *csign="+"; // sign character - uByte *ub; // work - uInt uiwork; // for macros - if (num->sign==DECFLOAT_Sign) csign="-"; - - printf(">%s> ", tag); - if (num->exponent==DECFLOAT_Inf) printf("%sInfinity", csign); - else if (num->exponent==DECFLOAT_qNaN) printf("%sqNaN", csign); - else if (num->exponent==DECFLOAT_sNaN) printf("%ssNaN", csign); - else { // finite - char qbuf[10]; // for right-aligned q - char *c; // work - const uByte *u; // .. - Int e=num->exponent; // .. exponent - strcpy(qbuf, "q="); - c=&qbuf[2]; // where exponent will go - // lay out the exponent - if (e<0) { - *c++='-'; // add '-' - e=-e; // uInt, please - } - #if DECEMAXD>4 - #error Exponent form is too long for ShowNum to lay out - #endif - if (e==0) *c++='0'; // 0-length case - else if (e<1000) { // 3 (or fewer) digits case - u=&BIN2BCD8[e*4]; // -> 3 digits + length byte - UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); // [as above] - c+=*(u+3); // bump pointer appropriately - } - else { // 4-digits - Int thou=((e>>3)*1049)>>17; // e/1000 - Int rem=e-(1000*thou); // e%1000 - *c++=(char)('0'+(char)thou); // the thousands digit - u=&BIN2BCD8[rem*4]; // -> 3 digits + length byte - UBFROMUI(c, UBTOUI(u)|CHARMASK); // copy fixed 3+1 characters [is safe] - c+=3; // bump pointer, always 3 digits - } - *c='\0'; // add terminator - printf("%7s c=%s", qbuf, csign); - } - - if (!EXPISSPECIAL(num->exponent) || num->msd!=num->lsd || *num->lsd!=0) { - for (ub=num->msd; ub<=num->lsd; ub++) { // coefficient... - printf("%1x", *ub); - if ((num->lsd-ub)%3==0 && ub!=num->lsd) printf(" "); // 4-space - } - } - printf("\n"); - } // decShowNum -#endif diff --git a/qdecimal/decnumber/decContext.c b/qdecimal/decnumber/decContext.c deleted file mode 100644 index 6db29be..0000000 --- a/qdecimal/decnumber/decContext.c +++ /dev/null @@ -1,437 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal Context module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2009. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises the routines for handling arithmetic */ -/* context structures. */ -/* ------------------------------------------------------------------ */ - -#include // for strcmp -#include // for printf if DECCHECK -#include "decContext.h" // context and base types -#include "decNumberLocal.h" // decNumber local types, etc. - -/* compile-time endian tester [assumes sizeof(Int)>1] */ -static const Int mfcone=1; // constant 1 -static const Flag *mfctop=(const Flag *)&mfcone; // -> top byte -#define LITEND *mfctop // named flag; 1=little-endian - -/* ------------------------------------------------------------------ */ -/* round-for-reround digits */ -/* ------------------------------------------------------------------ */ -const uByte DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */ - -/* ------------------------------------------------------------------ */ -/* Powers of ten (powers[n]==10**n, 0<=n<=9) */ -/* ------------------------------------------------------------------ */ -const uInt DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000, - 10000000, 100000000, 1000000000}; - -/* ------------------------------------------------------------------ */ -/* decContextClearStatus -- clear bits in current status */ -/* */ -/* context is the context structure to be queried */ -/* mask indicates the bits to be cleared (the status bit that */ -/* corresponds to each 1 bit in the mask is cleared) */ -/* returns context */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decContext *decContextClearStatus(decContext *context, uInt mask) { - context->status&=~mask; - return context; - } // decContextClearStatus - -/* ------------------------------------------------------------------ */ -/* decContextDefault -- initialize a context structure */ -/* */ -/* context is the structure to be initialized */ -/* kind selects the required set of default values, one of: */ -/* DEC_INIT_BASE -- select ANSI X3-274 defaults */ -/* DEC_INIT_DECIMAL32 -- select IEEE 754 defaults, 32-bit */ -/* DEC_INIT_DECIMAL64 -- select IEEE 754 defaults, 64-bit */ -/* DEC_INIT_DECIMAL128 -- select IEEE 754 defaults, 128-bit */ -/* For any other value a valid context is returned, but with */ -/* Invalid_operation set in the status field. */ -/* returns a context structure with the appropriate initial values. */ -/* ------------------------------------------------------------------ */ -decContext * decContextDefault(decContext *context, Int kind) { - // set defaults... - context->digits=9; // 9 digits - context->emax=DEC_MAX_EMAX; // 9-digit exponents - context->emin=DEC_MIN_EMIN; // .. balanced - context->round=DEC_ROUND_HALF_UP; // 0.5 rises - context->traps=DEC_Errors; // all but informational - context->status=0; // cleared - context->clamp=0; // no clamping - #if DECSUBSET - context->extended=0; // cleared - #endif - switch (kind) { - case DEC_INIT_BASE: - // [use defaults] - break; - case DEC_INIT_DECIMAL32: - context->digits=7; // digits - context->emax=96; // Emax - context->emin=-95; // Emin - context->round=DEC_ROUND_HALF_EVEN; // 0.5 to nearest even - context->traps=0; // no traps set - context->clamp=1; // clamp exponents - #if DECSUBSET - context->extended=1; // set - #endif - break; - case DEC_INIT_DECIMAL64: - context->digits=16; // digits - context->emax=384; // Emax - context->emin=-383; // Emin - context->round=DEC_ROUND_HALF_EVEN; // 0.5 to nearest even - context->traps=0; // no traps set - context->clamp=1; // clamp exponents - #if DECSUBSET - context->extended=1; // set - #endif - break; - case DEC_INIT_DECIMAL128: - context->digits=34; // digits - context->emax=6144; // Emax - context->emin=-6143; // Emin - context->round=DEC_ROUND_HALF_EVEN; // 0.5 to nearest even - context->traps=0; // no traps set - context->clamp=1; // clamp exponents - #if DECSUBSET - context->extended=1; // set - #endif - break; - - default: // invalid Kind - // use defaults, and .. - decContextSetStatus(context, DEC_Invalid_operation); // trap - } - - return context;} // decContextDefault - -/* ------------------------------------------------------------------ */ -/* decContextGetRounding -- return current rounding mode */ -/* */ -/* context is the context structure to be queried */ -/* returns the rounding mode */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -enum rounding decContextGetRounding(decContext *context) { - return context->round; - } // decContextGetRounding - -/* ------------------------------------------------------------------ */ -/* decContextGetStatus -- return current status */ -/* */ -/* context is the context structure to be queried */ -/* returns status */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -uInt decContextGetStatus(decContext *context) { - return context->status; - } // decContextGetStatus - -/* ------------------------------------------------------------------ */ -/* decContextRestoreStatus -- restore bits in current status */ -/* */ -/* context is the context structure to be updated */ -/* newstatus is the source for the bits to be restored */ -/* mask indicates the bits to be restored (the status bit that */ -/* corresponds to each 1 bit in the mask is set to the value of */ -/* the correspnding bit in newstatus) */ -/* returns context */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decContext *decContextRestoreStatus(decContext *context, - uInt newstatus, uInt mask) { - context->status&=~mask; // clear the selected bits - context->status|=(mask&newstatus); // or in the new bits - return context; - } // decContextRestoreStatus - -/* ------------------------------------------------------------------ */ -/* decContextSaveStatus -- save bits in current status */ -/* */ -/* context is the context structure to be queried */ -/* mask indicates the bits to be saved (the status bits that */ -/* correspond to each 1 bit in the mask are saved) */ -/* returns the AND of the mask and the current status */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -uInt decContextSaveStatus(decContext *context, uInt mask) { - return context->status&mask; - } // decContextSaveStatus - -/* ------------------------------------------------------------------ */ -/* decContextSetRounding -- set current rounding mode */ -/* */ -/* context is the context structure to be updated */ -/* newround is the value which will replace the current mode */ -/* returns context */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decContext *decContextSetRounding(decContext *context, - enum rounding newround) { - context->round=newround; - return context; - } // decContextSetRounding - -/* ------------------------------------------------------------------ */ -/* decContextSetStatus -- set status and raise trap if appropriate */ -/* */ -/* context is the context structure to be updated */ -/* status is the DEC_ exception code */ -/* returns the context structure */ -/* */ -/* Control may never return from this routine, if there is a signal */ -/* handler and it takes a long jump. */ -/* ------------------------------------------------------------------ */ -decContext * decContextSetStatus(decContext *context, uInt status) { - context->status|=status; - if (status & context->traps) raise(SIGFPE); - return context;} // decContextSetStatus - -/* ------------------------------------------------------------------ */ -/* decContextSetStatusFromString -- set status from a string + trap */ -/* */ -/* context is the context structure to be updated */ -/* string is a string exactly equal to one that might be returned */ -/* by decContextStatusToString */ -/* */ -/* The status bit corresponding to the string is set, and a trap */ -/* is raised if appropriate. */ -/* */ -/* returns the context structure, unless the string is equal to */ -/* DEC_Condition_MU or is not recognized. In these cases NULL is */ -/* returned. */ -/* ------------------------------------------------------------------ */ -decContext * decContextSetStatusFromString(decContext *context, - const char *string) { - if (strcmp(string, DEC_Condition_CS)==0) - return decContextSetStatus(context, DEC_Conversion_syntax); - if (strcmp(string, DEC_Condition_DZ)==0) - return decContextSetStatus(context, DEC_Division_by_zero); - if (strcmp(string, DEC_Condition_DI)==0) - return decContextSetStatus(context, DEC_Division_impossible); - if (strcmp(string, DEC_Condition_DU)==0) - return decContextSetStatus(context, DEC_Division_undefined); - if (strcmp(string, DEC_Condition_IE)==0) - return decContextSetStatus(context, DEC_Inexact); - if (strcmp(string, DEC_Condition_IS)==0) - return decContextSetStatus(context, DEC_Insufficient_storage); - if (strcmp(string, DEC_Condition_IC)==0) - return decContextSetStatus(context, DEC_Invalid_context); - if (strcmp(string, DEC_Condition_IO)==0) - return decContextSetStatus(context, DEC_Invalid_operation); - #if DECSUBSET - if (strcmp(string, DEC_Condition_LD)==0) - return decContextSetStatus(context, DEC_Lost_digits); - #endif - if (strcmp(string, DEC_Condition_OV)==0) - return decContextSetStatus(context, DEC_Overflow); - if (strcmp(string, DEC_Condition_PA)==0) - return decContextSetStatus(context, DEC_Clamped); - if (strcmp(string, DEC_Condition_RO)==0) - return decContextSetStatus(context, DEC_Rounded); - if (strcmp(string, DEC_Condition_SU)==0) - return decContextSetStatus(context, DEC_Subnormal); - if (strcmp(string, DEC_Condition_UN)==0) - return decContextSetStatus(context, DEC_Underflow); - if (strcmp(string, DEC_Condition_ZE)==0) - return context; - return NULL; // Multiple status, or unknown - } // decContextSetStatusFromString - -/* ------------------------------------------------------------------ */ -/* decContextSetStatusFromStringQuiet -- set status from a string */ -/* */ -/* context is the context structure to be updated */ -/* string is a string exactly equal to one that might be returned */ -/* by decContextStatusToString */ -/* */ -/* The status bit corresponding to the string is set; no trap is */ -/* raised. */ -/* */ -/* returns the context structure, unless the string is equal to */ -/* DEC_Condition_MU or is not recognized. In these cases NULL is */ -/* returned. */ -/* ------------------------------------------------------------------ */ -decContext * decContextSetStatusFromStringQuiet(decContext *context, - const char *string) { - if (strcmp(string, DEC_Condition_CS)==0) - return decContextSetStatusQuiet(context, DEC_Conversion_syntax); - if (strcmp(string, DEC_Condition_DZ)==0) - return decContextSetStatusQuiet(context, DEC_Division_by_zero); - if (strcmp(string, DEC_Condition_DI)==0) - return decContextSetStatusQuiet(context, DEC_Division_impossible); - if (strcmp(string, DEC_Condition_DU)==0) - return decContextSetStatusQuiet(context, DEC_Division_undefined); - if (strcmp(string, DEC_Condition_IE)==0) - return decContextSetStatusQuiet(context, DEC_Inexact); - if (strcmp(string, DEC_Condition_IS)==0) - return decContextSetStatusQuiet(context, DEC_Insufficient_storage); - if (strcmp(string, DEC_Condition_IC)==0) - return decContextSetStatusQuiet(context, DEC_Invalid_context); - if (strcmp(string, DEC_Condition_IO)==0) - return decContextSetStatusQuiet(context, DEC_Invalid_operation); - #if DECSUBSET - if (strcmp(string, DEC_Condition_LD)==0) - return decContextSetStatusQuiet(context, DEC_Lost_digits); - #endif - if (strcmp(string, DEC_Condition_OV)==0) - return decContextSetStatusQuiet(context, DEC_Overflow); - if (strcmp(string, DEC_Condition_PA)==0) - return decContextSetStatusQuiet(context, DEC_Clamped); - if (strcmp(string, DEC_Condition_RO)==0) - return decContextSetStatusQuiet(context, DEC_Rounded); - if (strcmp(string, DEC_Condition_SU)==0) - return decContextSetStatusQuiet(context, DEC_Subnormal); - if (strcmp(string, DEC_Condition_UN)==0) - return decContextSetStatusQuiet(context, DEC_Underflow); - if (strcmp(string, DEC_Condition_ZE)==0) - return context; - return NULL; // Multiple status, or unknown - } // decContextSetStatusFromStringQuiet - -/* ------------------------------------------------------------------ */ -/* decContextSetStatusQuiet -- set status without trap */ -/* */ -/* context is the context structure to be updated */ -/* status is the DEC_ exception code */ -/* returns the context structure */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decContext * decContextSetStatusQuiet(decContext *context, uInt status) { - context->status|=status; - return context;} // decContextSetStatusQuiet - -/* ------------------------------------------------------------------ */ -/* decContextStatusToString -- convert status flags to a string */ -/* */ -/* context is a context with valid status field */ -/* */ -/* returns a constant string describing the condition. If multiple */ -/* (or no) flags are set, a generic constant message is returned. */ -/* ------------------------------------------------------------------ */ -const char *decContextStatusToString(const decContext *context) { - Int status=context->status; - - // test the five IEEE first, as some of the others are ambiguous when - // DECEXTFLAG=0 - if (status==DEC_Invalid_operation ) return DEC_Condition_IO; - if (status==DEC_Division_by_zero ) return DEC_Condition_DZ; - if (status==DEC_Overflow ) return DEC_Condition_OV; - if (status==DEC_Underflow ) return DEC_Condition_UN; - if (status==DEC_Inexact ) return DEC_Condition_IE; - - if (status==DEC_Division_impossible ) return DEC_Condition_DI; - if (status==DEC_Division_undefined ) return DEC_Condition_DU; - if (status==DEC_Rounded ) return DEC_Condition_RO; - if (status==DEC_Clamped ) return DEC_Condition_PA; - if (status==DEC_Subnormal ) return DEC_Condition_SU; - if (status==DEC_Conversion_syntax ) return DEC_Condition_CS; - if (status==DEC_Insufficient_storage ) return DEC_Condition_IS; - if (status==DEC_Invalid_context ) return DEC_Condition_IC; - #if DECSUBSET - if (status==DEC_Lost_digits ) return DEC_Condition_LD; - #endif - if (status==0 ) return DEC_Condition_ZE; - return DEC_Condition_MU; // Multiple errors - } // decContextStatusToString - -/* ------------------------------------------------------------------ */ -/* decContextTestEndian -- test whether DECLITEND is set correctly */ -/* */ -/* quiet is 1 to suppress message; 0 otherwise */ -/* returns 0 if DECLITEND is correct */ -/* 1 if DECLITEND is incorrect and should be 1 */ -/* -1 if DECLITEND is incorrect and should be 0 */ -/* */ -/* A message is displayed if the return value is not 0 and quiet==0. */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -Int decContextTestEndian(Flag quiet) { - Int res=0; // optimist - uInt dle=(uInt)DECLITEND; // unsign - if (dle>1) dle=1; // ensure 0 or 1 - - if (LITEND!=DECLITEND) { - if (!quiet) { // always refer to this - #if DECPRINT - const char *adj; - if (LITEND) adj="little"; - else adj="big"; - printf("Warning: DECLITEND is set to %d, but this computer appears to be %s-endian\n", - DECLITEND, adj); - #endif - } - res=(Int)LITEND-dle; - } - return res; - } // decContextTestEndian - -/* ------------------------------------------------------------------ */ -/* decContextTestSavedStatus -- test bits in saved status */ -/* */ -/* oldstatus is the status word to be tested */ -/* mask indicates the bits to be tested (the oldstatus bits that */ -/* correspond to each 1 bit in the mask are tested) */ -/* returns 1 if any of the tested bits are 1, or 0 otherwise */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -uInt decContextTestSavedStatus(uInt oldstatus, uInt mask) { - return (oldstatus&mask)!=0; - } // decContextTestSavedStatus - -/* ------------------------------------------------------------------ */ -/* decContextTestStatus -- test bits in current status */ -/* */ -/* context is the context structure to be updated */ -/* mask indicates the bits to be tested (the status bits that */ -/* correspond to each 1 bit in the mask are tested) */ -/* returns 1 if any of the tested bits are 1, or 0 otherwise */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -uInt decContextTestStatus(decContext *context, uInt mask) { - return (context->status&mask)!=0; - } // decContextTestStatus - -/* ------------------------------------------------------------------ */ -/* decContextZeroStatus -- clear all status bits */ -/* */ -/* context is the context structure to be updated */ -/* returns context */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decContext *decContextZeroStatus(decContext *context) { - context->status=0; - return context; - } // decContextZeroStatus - diff --git a/qdecimal/decnumber/decContext.h b/qdecimal/decnumber/decContext.h deleted file mode 100644 index 3348f8f..0000000 --- a/qdecimal/decnumber/decContext.h +++ /dev/null @@ -1,261 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal Context module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* */ -/* Context variables must always have valid values: */ -/* */ -/* status -- [any bits may be cleared, but not set, by user] */ -/* round -- must be one of the enumerated rounding modes */ -/* */ -/* The following variables are implied for fixed size formats (i.e., */ -/* they are ignored) but should still be set correctly in case used */ -/* with decNumber functions: */ -/* */ -/* clamp -- must be either 0 or 1 */ -/* digits -- must be in the range 1 through 999999999 */ -/* emax -- must be in the range 0 through 999999999 */ -/* emin -- must be in the range 0 through -999999999 */ -/* extended -- must be either 0 or 1 [present only if DECSUBSET] */ -/* traps -- only defined bits may be set */ -/* */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECCONTEXT) - #define DECCONTEXT - #define DECCNAME "decContext" /* Short name */ - #define DECCFULLNAME "Decimal Context Descriptor" /* Verbose name */ - #define DECCAUTHOR "Mike Cowlishaw" /* Who to blame */ - - #if !defined(int32_t) - #if defined(_MSC_VER) - /* MS Visual C++ */ - #include - #else - #include /* C99 standard integers */ - // For unknown compilers, you can use portable stdint.h - //include - #endif - #endif - #include /* for printf, etc. */ - #include /* for traps */ - - /* Extended flags setting -- set this to 0 to use only IEEE flags */ - #if !defined(DECEXTFLAG) - #define DECEXTFLAG 1 /* 1=enable extended flags */ - #endif - - /* Conditional code flag -- set this to 0 for best performance */ - #if !defined(DECSUBSET) - #define DECSUBSET 1 /* 1=enable subset arithmetic */ - #endif - - /* Context for operations, with associated constants */ - enum rounding { - DEC_ROUND_CEILING, /* round towards +infinity */ - DEC_ROUND_UP, /* round away from 0 */ - DEC_ROUND_HALF_UP, /* 0.5 rounds up */ - DEC_ROUND_HALF_EVEN, /* 0.5 rounds to nearest even */ - DEC_ROUND_HALF_DOWN, /* 0.5 rounds down */ - DEC_ROUND_DOWN, /* round towards 0 (truncate) */ - DEC_ROUND_FLOOR, /* round towards -infinity */ - DEC_ROUND_05UP, /* round for reround */ - DEC_ROUND_MAX /* enum must be less than this */ - }; - #define DEC_ROUND_DEFAULT DEC_ROUND_HALF_EVEN; - - typedef struct { - int32_t digits; /* working precision */ - int32_t emax; /* maximum positive exponent */ - int32_t emin; /* minimum negative exponent */ - enum rounding round; /* rounding mode */ - uint32_t traps; /* trap-enabler flags */ - uint32_t status; /* status flags */ - uint8_t clamp; /* flag: apply IEEE exponent clamp */ - #if DECSUBSET - uint8_t extended; /* flag: special-values allowed */ - #endif - } decContext; - - /* Maxima and Minima for context settings */ - #define DEC_MAX_DIGITS 999999999 - #define DEC_MIN_DIGITS 1 - #define DEC_MAX_EMAX 999999999 - #define DEC_MIN_EMAX 0 - #define DEC_MAX_EMIN 0 - #define DEC_MIN_EMIN -999999999 - #define DEC_MAX_MATH 999999 /* max emax, etc., for math funcs. */ - - /* Classifications for decimal numbers, aligned with 754 (note that */ - /* 'normal' and 'subnormal' are meaningful only with a decContext */ - /* or a fixed size format). */ - enum decClass { - DEC_CLASS_SNAN, - DEC_CLASS_QNAN, - DEC_CLASS_NEG_INF, - DEC_CLASS_NEG_NORMAL, - DEC_CLASS_NEG_SUBNORMAL, - DEC_CLASS_NEG_ZERO, - DEC_CLASS_POS_ZERO, - DEC_CLASS_POS_SUBNORMAL, - DEC_CLASS_POS_NORMAL, - DEC_CLASS_POS_INF - }; - /* Strings for the decClasses */ - #define DEC_ClassString_SN "sNaN" - #define DEC_ClassString_QN "NaN" - #define DEC_ClassString_NI "-Infinity" - #define DEC_ClassString_NN "-Normal" - #define DEC_ClassString_NS "-Subnormal" - #define DEC_ClassString_NZ "-Zero" - #define DEC_ClassString_PZ "+Zero" - #define DEC_ClassString_PS "+Subnormal" - #define DEC_ClassString_PN "+Normal" - #define DEC_ClassString_PI "+Infinity" - #define DEC_ClassString_UN "Invalid" - - /* Trap-enabler and Status flags (exceptional conditions), and */ - /* their names. The top byte is reserved for internal use */ - #if DECEXTFLAG - /* Extended flags */ - #define DEC_Conversion_syntax 0x00000001 - #define DEC_Division_by_zero 0x00000002 - #define DEC_Division_impossible 0x00000004 - #define DEC_Division_undefined 0x00000008 - #define DEC_Insufficient_storage 0x00000010 /* [when malloc fails] */ - #define DEC_Inexact 0x00000020 - #define DEC_Invalid_context 0x00000040 - #define DEC_Invalid_operation 0x00000080 - #if DECSUBSET - #define DEC_Lost_digits 0x00000100 - #endif - #define DEC_Overflow 0x00000200 - #define DEC_Clamped 0x00000400 - #define DEC_Rounded 0x00000800 - #define DEC_Subnormal 0x00001000 - #define DEC_Underflow 0x00002000 - #else - /* IEEE flags only */ - #define DEC_Conversion_syntax 0x00000010 - #define DEC_Division_by_zero 0x00000002 - #define DEC_Division_impossible 0x00000010 - #define DEC_Division_undefined 0x00000010 - #define DEC_Insufficient_storage 0x00000010 /* [when malloc fails] */ - #define DEC_Inexact 0x00000001 - #define DEC_Invalid_context 0x00000010 - #define DEC_Invalid_operation 0x00000010 - #if DECSUBSET - #define DEC_Lost_digits 0x00000000 - #endif - #define DEC_Overflow 0x00000008 - #define DEC_Clamped 0x00000000 - #define DEC_Rounded 0x00000000 - #define DEC_Subnormal 0x00000000 - #define DEC_Underflow 0x00000004 - #endif - - /* IEEE 754 groupings for the flags */ - /* [DEC_Clamped, DEC_Lost_digits, DEC_Rounded, and DEC_Subnormal */ - /* are not in IEEE 754] */ - #define DEC_IEEE_754_Division_by_zero (DEC_Division_by_zero) - #if DECSUBSET - #define DEC_IEEE_754_Inexact (DEC_Inexact | DEC_Lost_digits) - #else - #define DEC_IEEE_754_Inexact (DEC_Inexact) - #endif - #define DEC_IEEE_754_Invalid_operation (DEC_Conversion_syntax | \ - DEC_Division_impossible | \ - DEC_Division_undefined | \ - DEC_Insufficient_storage | \ - DEC_Invalid_context | \ - DEC_Invalid_operation) - #define DEC_IEEE_754_Overflow (DEC_Overflow) - #define DEC_IEEE_754_Underflow (DEC_Underflow) - - /* flags which are normally errors (result is qNaN, infinite, or 0) */ - #define DEC_Errors (DEC_IEEE_754_Division_by_zero | \ - DEC_IEEE_754_Invalid_operation | \ - DEC_IEEE_754_Overflow | DEC_IEEE_754_Underflow) - /* flags which cause a result to become qNaN */ - #define DEC_NaNs DEC_IEEE_754_Invalid_operation - - /* flags which are normally for information only (finite results) */ - #if DECSUBSET - #define DEC_Information (DEC_Clamped | DEC_Rounded | DEC_Inexact \ - | DEC_Lost_digits) - #else - #define DEC_Information (DEC_Clamped | DEC_Rounded | DEC_Inexact) - #endif - - /* IEEE 854 names (for compatibility with older decNumber versions) */ - #define DEC_IEEE_854_Division_by_zero DEC_IEEE_754_Division_by_zero - #define DEC_IEEE_854_Inexact DEC_IEEE_754_Inexact - #define DEC_IEEE_854_Invalid_operation DEC_IEEE_754_Invalid_operation - #define DEC_IEEE_854_Overflow DEC_IEEE_754_Overflow - #define DEC_IEEE_854_Underflow DEC_IEEE_754_Underflow - - /* Name strings for the exceptional conditions */ - #define DEC_Condition_CS "Conversion syntax" - #define DEC_Condition_DZ "Division by zero" - #define DEC_Condition_DI "Division impossible" - #define DEC_Condition_DU "Division undefined" - #define DEC_Condition_IE "Inexact" - #define DEC_Condition_IS "Insufficient storage" - #define DEC_Condition_IC "Invalid context" - #define DEC_Condition_IO "Invalid operation" - #if DECSUBSET - #define DEC_Condition_LD "Lost digits" - #endif - #define DEC_Condition_OV "Overflow" - #define DEC_Condition_PA "Clamped" - #define DEC_Condition_RO "Rounded" - #define DEC_Condition_SU "Subnormal" - #define DEC_Condition_UN "Underflow" - #define DEC_Condition_ZE "No status" - #define DEC_Condition_MU "Multiple status" - #define DEC_Condition_Length 21 /* length of the longest string, */ - /* including terminator */ - - /* Initialization descriptors, used by decContextDefault */ - #define DEC_INIT_BASE 0 - #define DEC_INIT_DECIMAL32 32 - #define DEC_INIT_DECIMAL64 64 - #define DEC_INIT_DECIMAL128 128 - /* Synonyms */ - #define DEC_INIT_DECSINGLE DEC_INIT_DECIMAL32 - #define DEC_INIT_DECDOUBLE DEC_INIT_DECIMAL64 - #define DEC_INIT_DECQUAD DEC_INIT_DECIMAL128 - - /* decContext routines */ - extern decContext * decContextClearStatus(decContext *, uint32_t); - extern decContext * decContextDefault(decContext *, int32_t); - extern enum rounding decContextGetRounding(decContext *); - extern uint32_t decContextGetStatus(decContext *); - extern decContext * decContextRestoreStatus(decContext *, uint32_t, uint32_t); - extern uint32_t decContextSaveStatus(decContext *, uint32_t); - extern decContext * decContextSetRounding(decContext *, enum rounding); - extern decContext * decContextSetStatus(decContext *, uint32_t); - extern decContext * decContextSetStatusFromString(decContext *, const char *); - extern decContext * decContextSetStatusFromStringQuiet(decContext *, const char *); - extern decContext * decContextSetStatusQuiet(decContext *, uint32_t); - extern const char * decContextStatusToString(const decContext *); - extern int32_t decContextTestEndian(uint8_t); - extern uint32_t decContextTestSavedStatus(uint32_t, uint32_t); - extern uint32_t decContextTestStatus(decContext *, uint32_t); - extern decContext * decContextZeroStatus(decContext *); - -#endif diff --git a/qdecimal/decnumber/decDPD.h b/qdecimal/decnumber/decDPD.h deleted file mode 100644 index 4daad4f..0000000 --- a/qdecimal/decnumber/decDPD.h +++ /dev/null @@ -1,1185 +0,0 @@ -/* ------------------------------------------------------------------------ */ -/* Binary Coded Decimal and Densely Packed Decimal conversion lookup tables */ -/* [Automatically generated -- do not edit. 2008.06.21] */ -/* ------------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */ -/* ------------------------------------------------------------------------ */ -/* For details, see DPDecimal.html on the General Decimal Arithmetic page. */ -/* */ -/* This include file defines several DPD and BCD conversion tables: */ -/* */ -/* uint16_t BCD2DPD[2458]; -- BCD -> DPD (0x999 => 2457) */ -/* uint16_t BIN2DPD[1000]; -- Bin -> DPD (999 => 2457) */ -/* uint8_t BIN2CHAR[4001]; -- Bin -> CHAR (999 => '\3' '9' '9' '9') */ -/* uint8_t BIN2BCD8[4000]; -- Bin -> bytes (999 => 9 9 9 3) */ -/* uint16_t DPD2BCD[1024]; -- DPD -> BCD (0x3FF => 0x999) */ -/* uint16_t DPD2BIN[1024]; -- DPD -> BIN (0x3FF => 999) */ -/* uint32_t DPD2BINK[1024]; -- DPD -> BIN * 1000 (0x3FF => 999000) */ -/* uint32_t DPD2BINM[1024]; -- DPD -> BIN * 1E+6 (0x3FF => 999000000) */ -/* uint8_t DPD2BCD8[4096]; -- DPD -> bytes (x3FF => 9 9 9 3) */ -/* */ -/* In all cases the result (10 bits or 12 bits, or binary) is right-aligned */ -/* in the table entry. BIN2CHAR entries are a single byte length (0 for */ -/* value 0) followed by three digit characters; a trailing terminator is */ -/* included to allow 4-char moves always. BIN2BCD8 and DPD2BCD8 entries */ -/* are similar with the three BCD8 digits followed by a one-byte length */ -/* (again, length=0 for value 0). */ -/* */ -/* To use a table, its name, prefixed with DEC_, must be defined with a */ -/* value of 1 before this header file is included. For example: */ -/* #define DEC_BCD2DPD 1 */ -/* This mechanism allows software to only include tables that are needed. */ -/* ------------------------------------------------------------------------ */ - -#if defined(DEC_BCD2DPD) && DEC_BCD2DPD==1 && !defined(DECBCD2DPD) -#define DECBCD2DPD - -const uint16_t BCD2DPD[2458]={ 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 0, 0, 0, 0, 0, 0, 16, 17, 18, 19, 20, - 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 32, 33, - 34, 35, 36, 37, 38, 39, 40, 41, 0, 0, 0, 0, 0, - 0, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 0, 0, - 0, 0, 0, 0, 64, 65, 66, 67, 68, 69, 70, 71, 72, - 73, 0, 0, 0, 0, 0, 0, 80, 81, 82, 83, 84, 85, - 86, 87, 88, 89, 0, 0, 0, 0, 0, 0, 96, 97, 98, - 99, 100, 101, 102, 103, 104, 105, 0, 0, 0, 0, 0, 0, - 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 0, 0, 0, - 0, 0, 0, 10, 11, 42, 43, 74, 75, 106, 107, 78, 79, - 0, 0, 0, 0, 0, 0, 26, 27, 58, 59, 90, 91, 122, - 123, 94, 95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 0, 0, - 0, 0, 0, 0, 144, 145, 146, 147, 148, 149, 150, 151, 152, - 153, 0, 0, 0, 0, 0, 0, 160, 161, 162, 163, 164, 165, - 166, 167, 168, 169, 0, 0, 0, 0, 0, 0, 176, 177, 178, - 179, 180, 181, 182, 183, 184, 185, 0, 0, 0, 0, 0, 0, - 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 0, 0, 0, - 0, 0, 0, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, - 0, 0, 0, 0, 0, 0, 224, 225, 226, 227, 228, 229, 230, - 231, 232, 233, 0, 0, 0, 0, 0, 0, 240, 241, 242, 243, - 244, 245, 246, 247, 248, 249, 0, 0, 0, 0, 0, 0, 138, - 139, 170, 171, 202, 203, 234, 235, 206, 207, 0, 0, 0, 0, - 0, 0, 154, 155, 186, 187, 218, 219, 250, 251, 222, 223, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 257, 258, - 259, 260, 261, 262, 263, 264, 265, 0, 0, 0, 0, 0, 0, - 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 0, 0, 0, - 0, 0, 0, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, - 0, 0, 0, 0, 0, 0, 304, 305, 306, 307, 308, 309, 310, - 311, 312, 313, 0, 0, 0, 0, 0, 0, 320, 321, 322, 323, - 324, 325, 326, 327, 328, 329, 0, 0, 0, 0, 0, 0, 336, - 337, 338, 339, 340, 341, 342, 343, 344, 345, 0, 0, 0, 0, - 0, 0, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 0, - 0, 0, 0, 0, 0, 368, 369, 370, 371, 372, 373, 374, 375, - 376, 377, 0, 0, 0, 0, 0, 0, 266, 267, 298, 299, 330, - 331, 362, 363, 334, 335, 0, 0, 0, 0, 0, 0, 282, 283, - 314, 315, 346, 347, 378, 379, 350, 351, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 384, 385, 386, 387, 388, 389, 390, - 391, 392, 393, 0, 0, 0, 0, 0, 0, 400, 401, 402, 403, - 404, 405, 406, 407, 408, 409, 0, 0, 0, 0, 0, 0, 416, - 417, 418, 419, 420, 421, 422, 423, 424, 425, 0, 0, 0, 0, - 0, 0, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 0, - 0, 0, 0, 0, 0, 448, 449, 450, 451, 452, 453, 454, 455, - 456, 457, 0, 0, 0, 0, 0, 0, 464, 465, 466, 467, 468, - 469, 470, 471, 472, 473, 0, 0, 0, 0, 0, 0, 480, 481, - 482, 483, 484, 485, 486, 487, 488, 489, 0, 0, 0, 0, 0, - 0, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 0, 0, - 0, 0, 0, 0, 394, 395, 426, 427, 458, 459, 490, 491, 462, - 463, 0, 0, 0, 0, 0, 0, 410, 411, 442, 443, 474, 475, - 506, 507, 478, 479, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 0, - 0, 0, 0, 0, 0, 528, 529, 530, 531, 532, 533, 534, 535, - 536, 537, 0, 0, 0, 0, 0, 0, 544, 545, 546, 547, 548, - 549, 550, 551, 552, 553, 0, 0, 0, 0, 0, 0, 560, 561, - 562, 563, 564, 565, 566, 567, 568, 569, 0, 0, 0, 0, 0, - 0, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 0, 0, - 0, 0, 0, 0, 592, 593, 594, 595, 596, 597, 598, 599, 600, - 601, 0, 0, 0, 0, 0, 0, 608, 609, 610, 611, 612, 613, - 614, 615, 616, 617, 0, 0, 0, 0, 0, 0, 624, 625, 626, - 627, 628, 629, 630, 631, 632, 633, 0, 0, 0, 0, 0, 0, - 522, 523, 554, 555, 586, 587, 618, 619, 590, 591, 0, 0, 0, - 0, 0, 0, 538, 539, 570, 571, 602, 603, 634, 635, 606, 607, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 640, 641, - 642, 643, 644, 645, 646, 647, 648, 649, 0, 0, 0, 0, 0, - 0, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 0, 0, - 0, 0, 0, 0, 672, 673, 674, 675, 676, 677, 678, 679, 680, - 681, 0, 0, 0, 0, 0, 0, 688, 689, 690, 691, 692, 693, - 694, 695, 696, 697, 0, 0, 0, 0, 0, 0, 704, 705, 706, - 707, 708, 709, 710, 711, 712, 713, 0, 0, 0, 0, 0, 0, - 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 0, 0, 0, - 0, 0, 0, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, - 0, 0, 0, 0, 0, 0, 752, 753, 754, 755, 756, 757, 758, - 759, 760, 761, 0, 0, 0, 0, 0, 0, 650, 651, 682, 683, - 714, 715, 746, 747, 718, 719, 0, 0, 0, 0, 0, 0, 666, - 667, 698, 699, 730, 731, 762, 763, 734, 735, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 768, 769, 770, 771, 772, 773, - 774, 775, 776, 777, 0, 0, 0, 0, 0, 0, 784, 785, 786, - 787, 788, 789, 790, 791, 792, 793, 0, 0, 0, 0, 0, 0, - 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 0, 0, 0, - 0, 0, 0, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, - 0, 0, 0, 0, 0, 0, 832, 833, 834, 835, 836, 837, 838, - 839, 840, 841, 0, 0, 0, 0, 0, 0, 848, 849, 850, 851, - 852, 853, 854, 855, 856, 857, 0, 0, 0, 0, 0, 0, 864, - 865, 866, 867, 868, 869, 870, 871, 872, 873, 0, 0, 0, 0, - 0, 0, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 0, - 0, 0, 0, 0, 0, 778, 779, 810, 811, 842, 843, 874, 875, - 846, 847, 0, 0, 0, 0, 0, 0, 794, 795, 826, 827, 858, - 859, 890, 891, 862, 863, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, - 0, 0, 0, 0, 0, 0, 912, 913, 914, 915, 916, 917, 918, - 919, 920, 921, 0, 0, 0, 0, 0, 0, 928, 929, 930, 931, - 932, 933, 934, 935, 936, 937, 0, 0, 0, 0, 0, 0, 944, - 945, 946, 947, 948, 949, 950, 951, 952, 953, 0, 0, 0, 0, - 0, 0, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 0, - 0, 0, 0, 0, 0, 976, 977, 978, 979, 980, 981, 982, 983, - 984, 985, 0, 0, 0, 0, 0, 0, 992, 993, 994, 995, 996, - 997, 998, 999, 1000, 1001, 0, 0, 0, 0, 0, 0, 1008, 1009, - 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 0, 0, 0, 0, 0, - 0, 906, 907, 938, 939, 970, 971, 1002, 1003, 974, 975, 0, 0, - 0, 0, 0, 0, 922, 923, 954, 955, 986, 987, 1018, 1019, 990, - 991, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, - 13, 268, 269, 524, 525, 780, 781, 46, 47, 0, 0, 0, 0, - 0, 0, 28, 29, 284, 285, 540, 541, 796, 797, 62, 63, 0, - 0, 0, 0, 0, 0, 44, 45, 300, 301, 556, 557, 812, 813, - 302, 303, 0, 0, 0, 0, 0, 0, 60, 61, 316, 317, 572, - 573, 828, 829, 318, 319, 0, 0, 0, 0, 0, 0, 76, 77, - 332, 333, 588, 589, 844, 845, 558, 559, 0, 0, 0, 0, 0, - 0, 92, 93, 348, 349, 604, 605, 860, 861, 574, 575, 0, 0, - 0, 0, 0, 0, 108, 109, 364, 365, 620, 621, 876, 877, 814, - 815, 0, 0, 0, 0, 0, 0, 124, 125, 380, 381, 636, 637, - 892, 893, 830, 831, 0, 0, 0, 0, 0, 0, 14, 15, 270, - 271, 526, 527, 782, 783, 110, 111, 0, 0, 0, 0, 0, 0, - 30, 31, 286, 287, 542, 543, 798, 799, 126, 127, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 140, 141, 396, 397, 652, - 653, 908, 909, 174, 175, 0, 0, 0, 0, 0, 0, 156, 157, - 412, 413, 668, 669, 924, 925, 190, 191, 0, 0, 0, 0, 0, - 0, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 0, 0, - 0, 0, 0, 0, 188, 189, 444, 445, 700, 701, 956, 957, 446, - 447, 0, 0, 0, 0, 0, 0, 204, 205, 460, 461, 716, 717, - 972, 973, 686, 687, 0, 0, 0, 0, 0, 0, 220, 221, 476, - 477, 732, 733, 988, 989, 702, 703, 0, 0, 0, 0, 0, 0, - 236, 237, 492, 493, 748, 749, 1004, 1005, 942, 943, 0, 0, 0, - 0, 0, 0, 252, 253, 508, 509, 764, 765, 1020, 1021, 958, 959, - 0, 0, 0, 0, 0, 0, 142, 143, 398, 399, 654, 655, 910, - 911, 238, 239, 0, 0, 0, 0, 0, 0, 158, 159, 414, 415, - 670, 671, 926, 927, 254, 255}; -#endif - -#if defined(DEC_DPD2BCD) && DEC_DPD2BCD==1 && !defined(DECDPD2BCD) -#define DECDPD2BCD - -const uint16_t DPD2BCD[1024]={ 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 128, 129, 2048, 2049, 2176, 2177, 16, 17, 18, 19, 20, - 21, 22, 23, 24, 25, 144, 145, 2064, 2065, 2192, 2193, 32, 33, - 34, 35, 36, 37, 38, 39, 40, 41, 130, 131, 2080, 2081, 2056, - 2057, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 146, 147, - 2096, 2097, 2072, 2073, 64, 65, 66, 67, 68, 69, 70, 71, 72, - 73, 132, 133, 2112, 2113, 136, 137, 80, 81, 82, 83, 84, 85, - 86, 87, 88, 89, 148, 149, 2128, 2129, 152, 153, 96, 97, 98, - 99, 100, 101, 102, 103, 104, 105, 134, 135, 2144, 2145, 2184, 2185, - 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 150, 151, 2160, - 2161, 2200, 2201, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, - 384, 385, 2304, 2305, 2432, 2433, 272, 273, 274, 275, 276, 277, 278, - 279, 280, 281, 400, 401, 2320, 2321, 2448, 2449, 288, 289, 290, 291, - 292, 293, 294, 295, 296, 297, 386, 387, 2336, 2337, 2312, 2313, 304, - 305, 306, 307, 308, 309, 310, 311, 312, 313, 402, 403, 2352, 2353, - 2328, 2329, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 388, - 389, 2368, 2369, 392, 393, 336, 337, 338, 339, 340, 341, 342, 343, - 344, 345, 404, 405, 2384, 2385, 408, 409, 352, 353, 354, 355, 356, - 357, 358, 359, 360, 361, 390, 391, 2400, 2401, 2440, 2441, 368, 369, - 370, 371, 372, 373, 374, 375, 376, 377, 406, 407, 2416, 2417, 2456, - 2457, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 640, 641, - 2050, 2051, 2178, 2179, 528, 529, 530, 531, 532, 533, 534, 535, 536, - 537, 656, 657, 2066, 2067, 2194, 2195, 544, 545, 546, 547, 548, 549, - 550, 551, 552, 553, 642, 643, 2082, 2083, 2088, 2089, 560, 561, 562, - 563, 564, 565, 566, 567, 568, 569, 658, 659, 2098, 2099, 2104, 2105, - 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 644, 645, 2114, - 2115, 648, 649, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, - 660, 661, 2130, 2131, 664, 665, 608, 609, 610, 611, 612, 613, 614, - 615, 616, 617, 646, 647, 2146, 2147, 2184, 2185, 624, 625, 626, 627, - 628, 629, 630, 631, 632, 633, 662, 663, 2162, 2163, 2200, 2201, 768, - 769, 770, 771, 772, 773, 774, 775, 776, 777, 896, 897, 2306, 2307, - 2434, 2435, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 912, - 913, 2322, 2323, 2450, 2451, 800, 801, 802, 803, 804, 805, 806, 807, - 808, 809, 898, 899, 2338, 2339, 2344, 2345, 816, 817, 818, 819, 820, - 821, 822, 823, 824, 825, 914, 915, 2354, 2355, 2360, 2361, 832, 833, - 834, 835, 836, 837, 838, 839, 840, 841, 900, 901, 2370, 2371, 904, - 905, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 916, 917, - 2386, 2387, 920, 921, 864, 865, 866, 867, 868, 869, 870, 871, 872, - 873, 902, 903, 2402, 2403, 2440, 2441, 880, 881, 882, 883, 884, 885, - 886, 887, 888, 889, 918, 919, 2418, 2419, 2456, 2457, 1024, 1025, 1026, - 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1152, 1153, 2052, 2053, 2180, 2181, - 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1168, 1169, 2068, - 2069, 2196, 2197, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, - 1154, 1155, 2084, 2085, 2120, 2121, 1072, 1073, 1074, 1075, 1076, 1077, 1078, - 1079, 1080, 1081, 1170, 1171, 2100, 2101, 2136, 2137, 1088, 1089, 1090, 1091, - 1092, 1093, 1094, 1095, 1096, 1097, 1156, 1157, 2116, 2117, 1160, 1161, 1104, - 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1172, 1173, 2132, 2133, - 1176, 1177, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1158, - 1159, 2148, 2149, 2184, 2185, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, - 1144, 1145, 1174, 1175, 2164, 2165, 2200, 2201, 1280, 1281, 1282, 1283, 1284, - 1285, 1286, 1287, 1288, 1289, 1408, 1409, 2308, 2309, 2436, 2437, 1296, 1297, - 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1424, 1425, 2324, 2325, 2452, - 2453, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1410, 1411, - 2340, 2341, 2376, 2377, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, - 1337, 1426, 1427, 2356, 2357, 2392, 2393, 1344, 1345, 1346, 1347, 1348, 1349, - 1350, 1351, 1352, 1353, 1412, 1413, 2372, 2373, 1416, 1417, 1360, 1361, 1362, - 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1428, 1429, 2388, 2389, 1432, 1433, - 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1414, 1415, 2404, - 2405, 2440, 2441, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, - 1430, 1431, 2420, 2421, 2456, 2457, 1536, 1537, 1538, 1539, 1540, 1541, 1542, - 1543, 1544, 1545, 1664, 1665, 2054, 2055, 2182, 2183, 1552, 1553, 1554, 1555, - 1556, 1557, 1558, 1559, 1560, 1561, 1680, 1681, 2070, 2071, 2198, 2199, 1568, - 1569, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1666, 1667, 2086, 2087, - 2152, 2153, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1592, 1593, 1682, - 1683, 2102, 2103, 2168, 2169, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, - 1608, 1609, 1668, 1669, 2118, 2119, 1672, 1673, 1616, 1617, 1618, 1619, 1620, - 1621, 1622, 1623, 1624, 1625, 1684, 1685, 2134, 2135, 1688, 1689, 1632, 1633, - 1634, 1635, 1636, 1637, 1638, 1639, 1640, 1641, 1670, 1671, 2150, 2151, 2184, - 2185, 1648, 1649, 1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1686, 1687, - 2166, 2167, 2200, 2201, 1792, 1793, 1794, 1795, 1796, 1797, 1798, 1799, 1800, - 1801, 1920, 1921, 2310, 2311, 2438, 2439, 1808, 1809, 1810, 1811, 1812, 1813, - 1814, 1815, 1816, 1817, 1936, 1937, 2326, 2327, 2454, 2455, 1824, 1825, 1826, - 1827, 1828, 1829, 1830, 1831, 1832, 1833, 1922, 1923, 2342, 2343, 2408, 2409, - 1840, 1841, 1842, 1843, 1844, 1845, 1846, 1847, 1848, 1849, 1938, 1939, 2358, - 2359, 2424, 2425, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864, 1865, - 1924, 1925, 2374, 2375, 1928, 1929, 1872, 1873, 1874, 1875, 1876, 1877, 1878, - 1879, 1880, 1881, 1940, 1941, 2390, 2391, 1944, 1945, 1888, 1889, 1890, 1891, - 1892, 1893, 1894, 1895, 1896, 1897, 1926, 1927, 2406, 2407, 2440, 2441, 1904, - 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1942, 1943, 2422, 2423, - 2456, 2457}; -#endif - -#if defined(DEC_BIN2DPD) && DEC_BIN2DPD==1 && !defined(DECBIN2DPD) -#define DECBIN2DPD - -const uint16_t BIN2DPD[1000]={ 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, - 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, - 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 68, 69, 70, - 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, - 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112, 113, 114, - 115, 116, 117, 118, 119, 120, 121, 10, 11, 42, 43, 74, 75, - 106, 107, 78, 79, 26, 27, 58, 59, 90, 91, 122, 123, 94, - 95, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 144, 145, - 146, 147, 148, 149, 150, 151, 152, 153, 160, 161, 162, 163, 164, - 165, 166, 167, 168, 169, 176, 177, 178, 179, 180, 181, 182, 183, - 184, 185, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 208, - 209, 210, 211, 212, 213, 214, 215, 216, 217, 224, 225, 226, 227, - 228, 229, 230, 231, 232, 233, 240, 241, 242, 243, 244, 245, 246, - 247, 248, 249, 138, 139, 170, 171, 202, 203, 234, 235, 206, 207, - 154, 155, 186, 187, 218, 219, 250, 251, 222, 223, 256, 257, 258, - 259, 260, 261, 262, 263, 264, 265, 272, 273, 274, 275, 276, 277, - 278, 279, 280, 281, 288, 289, 290, 291, 292, 293, 294, 295, 296, - 297, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 321, - 322, 323, 324, 325, 326, 327, 328, 329, 336, 337, 338, 339, 340, - 341, 342, 343, 344, 345, 352, 353, 354, 355, 356, 357, 358, 359, - 360, 361, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 266, - 267, 298, 299, 330, 331, 362, 363, 334, 335, 282, 283, 314, 315, - 346, 347, 378, 379, 350, 351, 384, 385, 386, 387, 388, 389, 390, - 391, 392, 393, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, - 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 432, 433, 434, - 435, 436, 437, 438, 439, 440, 441, 448, 449, 450, 451, 452, 453, - 454, 455, 456, 457, 464, 465, 466, 467, 468, 469, 470, 471, 472, - 473, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 496, 497, - 498, 499, 500, 501, 502, 503, 504, 505, 394, 395, 426, 427, 458, - 459, 490, 491, 462, 463, 410, 411, 442, 443, 474, 475, 506, 507, - 478, 479, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, - 529, 530, 531, 532, 533, 534, 535, 536, 537, 544, 545, 546, 547, - 548, 549, 550, 551, 552, 553, 560, 561, 562, 563, 564, 565, 566, - 567, 568, 569, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, - 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, - 611, 612, 613, 614, 615, 616, 617, 624, 625, 626, 627, 628, 629, - 630, 631, 632, 633, 522, 523, 554, 555, 586, 587, 618, 619, 590, - 591, 538, 539, 570, 571, 602, 603, 634, 635, 606, 607, 640, 641, - 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 658, 659, 660, - 661, 662, 663, 664, 665, 672, 673, 674, 675, 676, 677, 678, 679, - 680, 681, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 704, - 705, 706, 707, 708, 709, 710, 711, 712, 713, 720, 721, 722, 723, - 724, 725, 726, 727, 728, 729, 736, 737, 738, 739, 740, 741, 742, - 743, 744, 745, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, - 650, 651, 682, 683, 714, 715, 746, 747, 718, 719, 666, 667, 698, - 699, 730, 731, 762, 763, 734, 735, 768, 769, 770, 771, 772, 773, - 774, 775, 776, 777, 784, 785, 786, 787, 788, 789, 790, 791, 792, - 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 816, 817, - 818, 819, 820, 821, 822, 823, 824, 825, 832, 833, 834, 835, 836, - 837, 838, 839, 840, 841, 848, 849, 850, 851, 852, 853, 854, 855, - 856, 857, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 880, - 881, 882, 883, 884, 885, 886, 887, 888, 889, 778, 779, 810, 811, - 842, 843, 874, 875, 846, 847, 794, 795, 826, 827, 858, 859, 890, - 891, 862, 863, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, - 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 928, 929, 930, - 931, 932, 933, 934, 935, 936, 937, 944, 945, 946, 947, 948, 949, - 950, 951, 952, 953, 960, 961, 962, 963, 964, 965, 966, 967, 968, - 969, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 992, 993, - 994, 995, 996, 997, 998, 999, 1000, 1001, 1008, 1009, 1010, 1011, 1012, - 1013, 1014, 1015, 1016, 1017, 906, 907, 938, 939, 970, 971, 1002, 1003, - 974, 975, 922, 923, 954, 955, 986, 987, 1018, 1019, 990, 991, 12, - 13, 268, 269, 524, 525, 780, 781, 46, 47, 28, 29, 284, 285, - 540, 541, 796, 797, 62, 63, 44, 45, 300, 301, 556, 557, 812, - 813, 302, 303, 60, 61, 316, 317, 572, 573, 828, 829, 318, 319, - 76, 77, 332, 333, 588, 589, 844, 845, 558, 559, 92, 93, 348, - 349, 604, 605, 860, 861, 574, 575, 108, 109, 364, 365, 620, 621, - 876, 877, 814, 815, 124, 125, 380, 381, 636, 637, 892, 893, 830, - 831, 14, 15, 270, 271, 526, 527, 782, 783, 110, 111, 30, 31, - 286, 287, 542, 543, 798, 799, 126, 127, 140, 141, 396, 397, 652, - 653, 908, 909, 174, 175, 156, 157, 412, 413, 668, 669, 924, 925, - 190, 191, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 188, - 189, 444, 445, 700, 701, 956, 957, 446, 447, 204, 205, 460, 461, - 716, 717, 972, 973, 686, 687, 220, 221, 476, 477, 732, 733, 988, - 989, 702, 703, 236, 237, 492, 493, 748, 749, 1004, 1005, 942, 943, - 252, 253, 508, 509, 764, 765, 1020, 1021, 958, 959, 142, 143, 398, - 399, 654, 655, 910, 911, 238, 239, 158, 159, 414, 415, 670, 671, - 926, 927, 254, 255}; -#endif - -#if defined(DEC_DPD2BIN) && DEC_DPD2BIN==1 && !defined(DECDPD2BIN) -#define DECDPD2BIN - -const uint16_t DPD2BIN[1024]={ 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 80, 81, 800, 801, 880, 881, 10, 11, 12, 13, 14, - 15, 16, 17, 18, 19, 90, 91, 810, 811, 890, 891, 20, 21, - 22, 23, 24, 25, 26, 27, 28, 29, 82, 83, 820, 821, 808, - 809, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 92, 93, - 830, 831, 818, 819, 40, 41, 42, 43, 44, 45, 46, 47, 48, - 49, 84, 85, 840, 841, 88, 89, 50, 51, 52, 53, 54, 55, - 56, 57, 58, 59, 94, 95, 850, 851, 98, 99, 60, 61, 62, - 63, 64, 65, 66, 67, 68, 69, 86, 87, 860, 861, 888, 889, - 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 96, 97, 870, - 871, 898, 899, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, - 180, 181, 900, 901, 980, 981, 110, 111, 112, 113, 114, 115, 116, - 117, 118, 119, 190, 191, 910, 911, 990, 991, 120, 121, 122, 123, - 124, 125, 126, 127, 128, 129, 182, 183, 920, 921, 908, 909, 130, - 131, 132, 133, 134, 135, 136, 137, 138, 139, 192, 193, 930, 931, - 918, 919, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 184, - 185, 940, 941, 188, 189, 150, 151, 152, 153, 154, 155, 156, 157, - 158, 159, 194, 195, 950, 951, 198, 199, 160, 161, 162, 163, 164, - 165, 166, 167, 168, 169, 186, 187, 960, 961, 988, 989, 170, 171, - 172, 173, 174, 175, 176, 177, 178, 179, 196, 197, 970, 971, 998, - 999, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 280, 281, - 802, 803, 882, 883, 210, 211, 212, 213, 214, 215, 216, 217, 218, - 219, 290, 291, 812, 813, 892, 893, 220, 221, 222, 223, 224, 225, - 226, 227, 228, 229, 282, 283, 822, 823, 828, 829, 230, 231, 232, - 233, 234, 235, 236, 237, 238, 239, 292, 293, 832, 833, 838, 839, - 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 284, 285, 842, - 843, 288, 289, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, - 294, 295, 852, 853, 298, 299, 260, 261, 262, 263, 264, 265, 266, - 267, 268, 269, 286, 287, 862, 863, 888, 889, 270, 271, 272, 273, - 274, 275, 276, 277, 278, 279, 296, 297, 872, 873, 898, 899, 300, - 301, 302, 303, 304, 305, 306, 307, 308, 309, 380, 381, 902, 903, - 982, 983, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 390, - 391, 912, 913, 992, 993, 320, 321, 322, 323, 324, 325, 326, 327, - 328, 329, 382, 383, 922, 923, 928, 929, 330, 331, 332, 333, 334, - 335, 336, 337, 338, 339, 392, 393, 932, 933, 938, 939, 340, 341, - 342, 343, 344, 345, 346, 347, 348, 349, 384, 385, 942, 943, 388, - 389, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 394, 395, - 952, 953, 398, 399, 360, 361, 362, 363, 364, 365, 366, 367, 368, - 369, 386, 387, 962, 963, 988, 989, 370, 371, 372, 373, 374, 375, - 376, 377, 378, 379, 396, 397, 972, 973, 998, 999, 400, 401, 402, - 403, 404, 405, 406, 407, 408, 409, 480, 481, 804, 805, 884, 885, - 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 490, 491, 814, - 815, 894, 895, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, - 482, 483, 824, 825, 848, 849, 430, 431, 432, 433, 434, 435, 436, - 437, 438, 439, 492, 493, 834, 835, 858, 859, 440, 441, 442, 443, - 444, 445, 446, 447, 448, 449, 484, 485, 844, 845, 488, 489, 450, - 451, 452, 453, 454, 455, 456, 457, 458, 459, 494, 495, 854, 855, - 498, 499, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 486, - 487, 864, 865, 888, 889, 470, 471, 472, 473, 474, 475, 476, 477, - 478, 479, 496, 497, 874, 875, 898, 899, 500, 501, 502, 503, 504, - 505, 506, 507, 508, 509, 580, 581, 904, 905, 984, 985, 510, 511, - 512, 513, 514, 515, 516, 517, 518, 519, 590, 591, 914, 915, 994, - 995, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 582, 583, - 924, 925, 948, 949, 530, 531, 532, 533, 534, 535, 536, 537, 538, - 539, 592, 593, 934, 935, 958, 959, 540, 541, 542, 543, 544, 545, - 546, 547, 548, 549, 584, 585, 944, 945, 588, 589, 550, 551, 552, - 553, 554, 555, 556, 557, 558, 559, 594, 595, 954, 955, 598, 599, - 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 586, 587, 964, - 965, 988, 989, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, - 596, 597, 974, 975, 998, 999, 600, 601, 602, 603, 604, 605, 606, - 607, 608, 609, 680, 681, 806, 807, 886, 887, 610, 611, 612, 613, - 614, 615, 616, 617, 618, 619, 690, 691, 816, 817, 896, 897, 620, - 621, 622, 623, 624, 625, 626, 627, 628, 629, 682, 683, 826, 827, - 868, 869, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 692, - 693, 836, 837, 878, 879, 640, 641, 642, 643, 644, 645, 646, 647, - 648, 649, 684, 685, 846, 847, 688, 689, 650, 651, 652, 653, 654, - 655, 656, 657, 658, 659, 694, 695, 856, 857, 698, 699, 660, 661, - 662, 663, 664, 665, 666, 667, 668, 669, 686, 687, 866, 867, 888, - 889, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 696, 697, - 876, 877, 898, 899, 700, 701, 702, 703, 704, 705, 706, 707, 708, - 709, 780, 781, 906, 907, 986, 987, 710, 711, 712, 713, 714, 715, - 716, 717, 718, 719, 790, 791, 916, 917, 996, 997, 720, 721, 722, - 723, 724, 725, 726, 727, 728, 729, 782, 783, 926, 927, 968, 969, - 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 792, 793, 936, - 937, 978, 979, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, - 784, 785, 946, 947, 788, 789, 750, 751, 752, 753, 754, 755, 756, - 757, 758, 759, 794, 795, 956, 957, 798, 799, 760, 761, 762, 763, - 764, 765, 766, 767, 768, 769, 786, 787, 966, 967, 988, 989, 770, - 771, 772, 773, 774, 775, 776, 777, 778, 779, 796, 797, 976, 977, - 998, 999}; -#endif - -#if defined(DEC_DPD2BINK) && DEC_DPD2BINK==1 && !defined(DECDPD2BINK) -#define DECDPD2BINK - -const uint32_t DPD2BINK[1024]={ 0, 1000, 2000, 3000, 4000, 5000, - 6000, 7000, 8000, 9000, 80000, 81000, 800000, 801000, 880000, 881000, - 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, - 90000, 91000, 810000, 811000, 890000, 891000, 20000, 21000, 22000, 23000, - 24000, 25000, 26000, 27000, 28000, 29000, 82000, 83000, 820000, 821000, - 808000, 809000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, - 38000, 39000, 92000, 93000, 830000, 831000, 818000, 819000, 40000, 41000, - 42000, 43000, 44000, 45000, 46000, 47000, 48000, 49000, 84000, 85000, - 840000, 841000, 88000, 89000, 50000, 51000, 52000, 53000, 54000, 55000, - 56000, 57000, 58000, 59000, 94000, 95000, 850000, 851000, 98000, 99000, - 60000, 61000, 62000, 63000, 64000, 65000, 66000, 67000, 68000, 69000, - 86000, 87000, 860000, 861000, 888000, 889000, 70000, 71000, 72000, 73000, - 74000, 75000, 76000, 77000, 78000, 79000, 96000, 97000, 870000, 871000, - 898000, 899000, 100000, 101000, 102000, 103000, 104000, 105000, 106000, 107000, - 108000, 109000, 180000, 181000, 900000, 901000, 980000, 981000, 110000, 111000, - 112000, 113000, 114000, 115000, 116000, 117000, 118000, 119000, 190000, 191000, - 910000, 911000, 990000, 991000, 120000, 121000, 122000, 123000, 124000, 125000, - 126000, 127000, 128000, 129000, 182000, 183000, 920000, 921000, 908000, 909000, - 130000, 131000, 132000, 133000, 134000, 135000, 136000, 137000, 138000, 139000, - 192000, 193000, 930000, 931000, 918000, 919000, 140000, 141000, 142000, 143000, - 144000, 145000, 146000, 147000, 148000, 149000, 184000, 185000, 940000, 941000, - 188000, 189000, 150000, 151000, 152000, 153000, 154000, 155000, 156000, 157000, - 158000, 159000, 194000, 195000, 950000, 951000, 198000, 199000, 160000, 161000, - 162000, 163000, 164000, 165000, 166000, 167000, 168000, 169000, 186000, 187000, - 960000, 961000, 988000, 989000, 170000, 171000, 172000, 173000, 174000, 175000, - 176000, 177000, 178000, 179000, 196000, 197000, 970000, 971000, 998000, 999000, - 200000, 201000, 202000, 203000, 204000, 205000, 206000, 207000, 208000, 209000, - 280000, 281000, 802000, 803000, 882000, 883000, 210000, 211000, 212000, 213000, - 214000, 215000, 216000, 217000, 218000, 219000, 290000, 291000, 812000, 813000, - 892000, 893000, 220000, 221000, 222000, 223000, 224000, 225000, 226000, 227000, - 228000, 229000, 282000, 283000, 822000, 823000, 828000, 829000, 230000, 231000, - 232000, 233000, 234000, 235000, 236000, 237000, 238000, 239000, 292000, 293000, - 832000, 833000, 838000, 839000, 240000, 241000, 242000, 243000, 244000, 245000, - 246000, 247000, 248000, 249000, 284000, 285000, 842000, 843000, 288000, 289000, - 250000, 251000, 252000, 253000, 254000, 255000, 256000, 257000, 258000, 259000, - 294000, 295000, 852000, 853000, 298000, 299000, 260000, 261000, 262000, 263000, - 264000, 265000, 266000, 267000, 268000, 269000, 286000, 287000, 862000, 863000, - 888000, 889000, 270000, 271000, 272000, 273000, 274000, 275000, 276000, 277000, - 278000, 279000, 296000, 297000, 872000, 873000, 898000, 899000, 300000, 301000, - 302000, 303000, 304000, 305000, 306000, 307000, 308000, 309000, 380000, 381000, - 902000, 903000, 982000, 983000, 310000, 311000, 312000, 313000, 314000, 315000, - 316000, 317000, 318000, 319000, 390000, 391000, 912000, 913000, 992000, 993000, - 320000, 321000, 322000, 323000, 324000, 325000, 326000, 327000, 328000, 329000, - 382000, 383000, 922000, 923000, 928000, 929000, 330000, 331000, 332000, 333000, - 334000, 335000, 336000, 337000, 338000, 339000, 392000, 393000, 932000, 933000, - 938000, 939000, 340000, 341000, 342000, 343000, 344000, 345000, 346000, 347000, - 348000, 349000, 384000, 385000, 942000, 943000, 388000, 389000, 350000, 351000, - 352000, 353000, 354000, 355000, 356000, 357000, 358000, 359000, 394000, 395000, - 952000, 953000, 398000, 399000, 360000, 361000, 362000, 363000, 364000, 365000, - 366000, 367000, 368000, 369000, 386000, 387000, 962000, 963000, 988000, 989000, - 370000, 371000, 372000, 373000, 374000, 375000, 376000, 377000, 378000, 379000, - 396000, 397000, 972000, 973000, 998000, 999000, 400000, 401000, 402000, 403000, - 404000, 405000, 406000, 407000, 408000, 409000, 480000, 481000, 804000, 805000, - 884000, 885000, 410000, 411000, 412000, 413000, 414000, 415000, 416000, 417000, - 418000, 419000, 490000, 491000, 814000, 815000, 894000, 895000, 420000, 421000, - 422000, 423000, 424000, 425000, 426000, 427000, 428000, 429000, 482000, 483000, - 824000, 825000, 848000, 849000, 430000, 431000, 432000, 433000, 434000, 435000, - 436000, 437000, 438000, 439000, 492000, 493000, 834000, 835000, 858000, 859000, - 440000, 441000, 442000, 443000, 444000, 445000, 446000, 447000, 448000, 449000, - 484000, 485000, 844000, 845000, 488000, 489000, 450000, 451000, 452000, 453000, - 454000, 455000, 456000, 457000, 458000, 459000, 494000, 495000, 854000, 855000, - 498000, 499000, 460000, 461000, 462000, 463000, 464000, 465000, 466000, 467000, - 468000, 469000, 486000, 487000, 864000, 865000, 888000, 889000, 470000, 471000, - 472000, 473000, 474000, 475000, 476000, 477000, 478000, 479000, 496000, 497000, - 874000, 875000, 898000, 899000, 500000, 501000, 502000, 503000, 504000, 505000, - 506000, 507000, 508000, 509000, 580000, 581000, 904000, 905000, 984000, 985000, - 510000, 511000, 512000, 513000, 514000, 515000, 516000, 517000, 518000, 519000, - 590000, 591000, 914000, 915000, 994000, 995000, 520000, 521000, 522000, 523000, - 524000, 525000, 526000, 527000, 528000, 529000, 582000, 583000, 924000, 925000, - 948000, 949000, 530000, 531000, 532000, 533000, 534000, 535000, 536000, 537000, - 538000, 539000, 592000, 593000, 934000, 935000, 958000, 959000, 540000, 541000, - 542000, 543000, 544000, 545000, 546000, 547000, 548000, 549000, 584000, 585000, - 944000, 945000, 588000, 589000, 550000, 551000, 552000, 553000, 554000, 555000, - 556000, 557000, 558000, 559000, 594000, 595000, 954000, 955000, 598000, 599000, - 560000, 561000, 562000, 563000, 564000, 565000, 566000, 567000, 568000, 569000, - 586000, 587000, 964000, 965000, 988000, 989000, 570000, 571000, 572000, 573000, - 574000, 575000, 576000, 577000, 578000, 579000, 596000, 597000, 974000, 975000, - 998000, 999000, 600000, 601000, 602000, 603000, 604000, 605000, 606000, 607000, - 608000, 609000, 680000, 681000, 806000, 807000, 886000, 887000, 610000, 611000, - 612000, 613000, 614000, 615000, 616000, 617000, 618000, 619000, 690000, 691000, - 816000, 817000, 896000, 897000, 620000, 621000, 622000, 623000, 624000, 625000, - 626000, 627000, 628000, 629000, 682000, 683000, 826000, 827000, 868000, 869000, - 630000, 631000, 632000, 633000, 634000, 635000, 636000, 637000, 638000, 639000, - 692000, 693000, 836000, 837000, 878000, 879000, 640000, 641000, 642000, 643000, - 644000, 645000, 646000, 647000, 648000, 649000, 684000, 685000, 846000, 847000, - 688000, 689000, 650000, 651000, 652000, 653000, 654000, 655000, 656000, 657000, - 658000, 659000, 694000, 695000, 856000, 857000, 698000, 699000, 660000, 661000, - 662000, 663000, 664000, 665000, 666000, 667000, 668000, 669000, 686000, 687000, - 866000, 867000, 888000, 889000, 670000, 671000, 672000, 673000, 674000, 675000, - 676000, 677000, 678000, 679000, 696000, 697000, 876000, 877000, 898000, 899000, - 700000, 701000, 702000, 703000, 704000, 705000, 706000, 707000, 708000, 709000, - 780000, 781000, 906000, 907000, 986000, 987000, 710000, 711000, 712000, 713000, - 714000, 715000, 716000, 717000, 718000, 719000, 790000, 791000, 916000, 917000, - 996000, 997000, 720000, 721000, 722000, 723000, 724000, 725000, 726000, 727000, - 728000, 729000, 782000, 783000, 926000, 927000, 968000, 969000, 730000, 731000, - 732000, 733000, 734000, 735000, 736000, 737000, 738000, 739000, 792000, 793000, - 936000, 937000, 978000, 979000, 740000, 741000, 742000, 743000, 744000, 745000, - 746000, 747000, 748000, 749000, 784000, 785000, 946000, 947000, 788000, 789000, - 750000, 751000, 752000, 753000, 754000, 755000, 756000, 757000, 758000, 759000, - 794000, 795000, 956000, 957000, 798000, 799000, 760000, 761000, 762000, 763000, - 764000, 765000, 766000, 767000, 768000, 769000, 786000, 787000, 966000, 967000, - 988000, 989000, 770000, 771000, 772000, 773000, 774000, 775000, 776000, 777000, - 778000, 779000, 796000, 797000, 976000, 977000, 998000, 999000}; -#endif - -#if defined(DEC_DPD2BINM) && DEC_DPD2BINM==1 && !defined(DECDPD2BINM) -#define DECDPD2BINM - -const uint32_t DPD2BINM[1024]={0, 1000000, 2000000, 3000000, 4000000, - 5000000, 6000000, 7000000, 8000000, 9000000, 80000000, 81000000, - 800000000, 801000000, 880000000, 881000000, 10000000, 11000000, 12000000, - 13000000, 14000000, 15000000, 16000000, 17000000, 18000000, 19000000, - 90000000, 91000000, 810000000, 811000000, 890000000, 891000000, 20000000, - 21000000, 22000000, 23000000, 24000000, 25000000, 26000000, 27000000, - 28000000, 29000000, 82000000, 83000000, 820000000, 821000000, 808000000, - 809000000, 30000000, 31000000, 32000000, 33000000, 34000000, 35000000, - 36000000, 37000000, 38000000, 39000000, 92000000, 93000000, 830000000, - 831000000, 818000000, 819000000, 40000000, 41000000, 42000000, 43000000, - 44000000, 45000000, 46000000, 47000000, 48000000, 49000000, 84000000, - 85000000, 840000000, 841000000, 88000000, 89000000, 50000000, 51000000, - 52000000, 53000000, 54000000, 55000000, 56000000, 57000000, 58000000, - 59000000, 94000000, 95000000, 850000000, 851000000, 98000000, 99000000, - 60000000, 61000000, 62000000, 63000000, 64000000, 65000000, 66000000, - 67000000, 68000000, 69000000, 86000000, 87000000, 860000000, 861000000, - 888000000, 889000000, 70000000, 71000000, 72000000, 73000000, 74000000, - 75000000, 76000000, 77000000, 78000000, 79000000, 96000000, 97000000, - 870000000, 871000000, 898000000, 899000000, 100000000, 101000000, 102000000, - 103000000, 104000000, 105000000, 106000000, 107000000, 108000000, 109000000, - 180000000, 181000000, 900000000, 901000000, 980000000, 981000000, 110000000, - 111000000, 112000000, 113000000, 114000000, 115000000, 116000000, 117000000, - 118000000, 119000000, 190000000, 191000000, 910000000, 911000000, 990000000, - 991000000, 120000000, 121000000, 122000000, 123000000, 124000000, 125000000, - 126000000, 127000000, 128000000, 129000000, 182000000, 183000000, 920000000, - 921000000, 908000000, 909000000, 130000000, 131000000, 132000000, 133000000, - 134000000, 135000000, 136000000, 137000000, 138000000, 139000000, 192000000, - 193000000, 930000000, 931000000, 918000000, 919000000, 140000000, 141000000, - 142000000, 143000000, 144000000, 145000000, 146000000, 147000000, 148000000, - 149000000, 184000000, 185000000, 940000000, 941000000, 188000000, 189000000, - 150000000, 151000000, 152000000, 153000000, 154000000, 155000000, 156000000, - 157000000, 158000000, 159000000, 194000000, 195000000, 950000000, 951000000, - 198000000, 199000000, 160000000, 161000000, 162000000, 163000000, 164000000, - 165000000, 166000000, 167000000, 168000000, 169000000, 186000000, 187000000, - 960000000, 961000000, 988000000, 989000000, 170000000, 171000000, 172000000, - 173000000, 174000000, 175000000, 176000000, 177000000, 178000000, 179000000, - 196000000, 197000000, 970000000, 971000000, 998000000, 999000000, 200000000, - 201000000, 202000000, 203000000, 204000000, 205000000, 206000000, 207000000, - 208000000, 209000000, 280000000, 281000000, 802000000, 803000000, 882000000, - 883000000, 210000000, 211000000, 212000000, 213000000, 214000000, 215000000, - 216000000, 217000000, 218000000, 219000000, 290000000, 291000000, 812000000, - 813000000, 892000000, 893000000, 220000000, 221000000, 222000000, 223000000, - 224000000, 225000000, 226000000, 227000000, 228000000, 229000000, 282000000, - 283000000, 822000000, 823000000, 828000000, 829000000, 230000000, 231000000, - 232000000, 233000000, 234000000, 235000000, 236000000, 237000000, 238000000, - 239000000, 292000000, 293000000, 832000000, 833000000, 838000000, 839000000, - 240000000, 241000000, 242000000, 243000000, 244000000, 245000000, 246000000, - 247000000, 248000000, 249000000, 284000000, 285000000, 842000000, 843000000, - 288000000, 289000000, 250000000, 251000000, 252000000, 253000000, 254000000, - 255000000, 256000000, 257000000, 258000000, 259000000, 294000000, 295000000, - 852000000, 853000000, 298000000, 299000000, 260000000, 261000000, 262000000, - 263000000, 264000000, 265000000, 266000000, 267000000, 268000000, 269000000, - 286000000, 287000000, 862000000, 863000000, 888000000, 889000000, 270000000, - 271000000, 272000000, 273000000, 274000000, 275000000, 276000000, 277000000, - 278000000, 279000000, 296000000, 297000000, 872000000, 873000000, 898000000, - 899000000, 300000000, 301000000, 302000000, 303000000, 304000000, 305000000, - 306000000, 307000000, 308000000, 309000000, 380000000, 381000000, 902000000, - 903000000, 982000000, 983000000, 310000000, 311000000, 312000000, 313000000, - 314000000, 315000000, 316000000, 317000000, 318000000, 319000000, 390000000, - 391000000, 912000000, 913000000, 992000000, 993000000, 320000000, 321000000, - 322000000, 323000000, 324000000, 325000000, 326000000, 327000000, 328000000, - 329000000, 382000000, 383000000, 922000000, 923000000, 928000000, 929000000, - 330000000, 331000000, 332000000, 333000000, 334000000, 335000000, 336000000, - 337000000, 338000000, 339000000, 392000000, 393000000, 932000000, 933000000, - 938000000, 939000000, 340000000, 341000000, 342000000, 343000000, 344000000, - 345000000, 346000000, 347000000, 348000000, 349000000, 384000000, 385000000, - 942000000, 943000000, 388000000, 389000000, 350000000, 351000000, 352000000, - 353000000, 354000000, 355000000, 356000000, 357000000, 358000000, 359000000, - 394000000, 395000000, 952000000, 953000000, 398000000, 399000000, 360000000, - 361000000, 362000000, 363000000, 364000000, 365000000, 366000000, 367000000, - 368000000, 369000000, 386000000, 387000000, 962000000, 963000000, 988000000, - 989000000, 370000000, 371000000, 372000000, 373000000, 374000000, 375000000, - 376000000, 377000000, 378000000, 379000000, 396000000, 397000000, 972000000, - 973000000, 998000000, 999000000, 400000000, 401000000, 402000000, 403000000, - 404000000, 405000000, 406000000, 407000000, 408000000, 409000000, 480000000, - 481000000, 804000000, 805000000, 884000000, 885000000, 410000000, 411000000, - 412000000, 413000000, 414000000, 415000000, 416000000, 417000000, 418000000, - 419000000, 490000000, 491000000, 814000000, 815000000, 894000000, 895000000, - 420000000, 421000000, 422000000, 423000000, 424000000, 425000000, 426000000, - 427000000, 428000000, 429000000, 482000000, 483000000, 824000000, 825000000, - 848000000, 849000000, 430000000, 431000000, 432000000, 433000000, 434000000, - 435000000, 436000000, 437000000, 438000000, 439000000, 492000000, 493000000, - 834000000, 835000000, 858000000, 859000000, 440000000, 441000000, 442000000, - 443000000, 444000000, 445000000, 446000000, 447000000, 448000000, 449000000, - 484000000, 485000000, 844000000, 845000000, 488000000, 489000000, 450000000, - 451000000, 452000000, 453000000, 454000000, 455000000, 456000000, 457000000, - 458000000, 459000000, 494000000, 495000000, 854000000, 855000000, 498000000, - 499000000, 460000000, 461000000, 462000000, 463000000, 464000000, 465000000, - 466000000, 467000000, 468000000, 469000000, 486000000, 487000000, 864000000, - 865000000, 888000000, 889000000, 470000000, 471000000, 472000000, 473000000, - 474000000, 475000000, 476000000, 477000000, 478000000, 479000000, 496000000, - 497000000, 874000000, 875000000, 898000000, 899000000, 500000000, 501000000, - 502000000, 503000000, 504000000, 505000000, 506000000, 507000000, 508000000, - 509000000, 580000000, 581000000, 904000000, 905000000, 984000000, 985000000, - 510000000, 511000000, 512000000, 513000000, 514000000, 515000000, 516000000, - 517000000, 518000000, 519000000, 590000000, 591000000, 914000000, 915000000, - 994000000, 995000000, 520000000, 521000000, 522000000, 523000000, 524000000, - 525000000, 526000000, 527000000, 528000000, 529000000, 582000000, 583000000, - 924000000, 925000000, 948000000, 949000000, 530000000, 531000000, 532000000, - 533000000, 534000000, 535000000, 536000000, 537000000, 538000000, 539000000, - 592000000, 593000000, 934000000, 935000000, 958000000, 959000000, 540000000, - 541000000, 542000000, 543000000, 544000000, 545000000, 546000000, 547000000, - 548000000, 549000000, 584000000, 585000000, 944000000, 945000000, 588000000, - 589000000, 550000000, 551000000, 552000000, 553000000, 554000000, 555000000, - 556000000, 557000000, 558000000, 559000000, 594000000, 595000000, 954000000, - 955000000, 598000000, 599000000, 560000000, 561000000, 562000000, 563000000, - 564000000, 565000000, 566000000, 567000000, 568000000, 569000000, 586000000, - 587000000, 964000000, 965000000, 988000000, 989000000, 570000000, 571000000, - 572000000, 573000000, 574000000, 575000000, 576000000, 577000000, 578000000, - 579000000, 596000000, 597000000, 974000000, 975000000, 998000000, 999000000, - 600000000, 601000000, 602000000, 603000000, 604000000, 605000000, 606000000, - 607000000, 608000000, 609000000, 680000000, 681000000, 806000000, 807000000, - 886000000, 887000000, 610000000, 611000000, 612000000, 613000000, 614000000, - 615000000, 616000000, 617000000, 618000000, 619000000, 690000000, 691000000, - 816000000, 817000000, 896000000, 897000000, 620000000, 621000000, 622000000, - 623000000, 624000000, 625000000, 626000000, 627000000, 628000000, 629000000, - 682000000, 683000000, 826000000, 827000000, 868000000, 869000000, 630000000, - 631000000, 632000000, 633000000, 634000000, 635000000, 636000000, 637000000, - 638000000, 639000000, 692000000, 693000000, 836000000, 837000000, 878000000, - 879000000, 640000000, 641000000, 642000000, 643000000, 644000000, 645000000, - 646000000, 647000000, 648000000, 649000000, 684000000, 685000000, 846000000, - 847000000, 688000000, 689000000, 650000000, 651000000, 652000000, 653000000, - 654000000, 655000000, 656000000, 657000000, 658000000, 659000000, 694000000, - 695000000, 856000000, 857000000, 698000000, 699000000, 660000000, 661000000, - 662000000, 663000000, 664000000, 665000000, 666000000, 667000000, 668000000, - 669000000, 686000000, 687000000, 866000000, 867000000, 888000000, 889000000, - 670000000, 671000000, 672000000, 673000000, 674000000, 675000000, 676000000, - 677000000, 678000000, 679000000, 696000000, 697000000, 876000000, 877000000, - 898000000, 899000000, 700000000, 701000000, 702000000, 703000000, 704000000, - 705000000, 706000000, 707000000, 708000000, 709000000, 780000000, 781000000, - 906000000, 907000000, 986000000, 987000000, 710000000, 711000000, 712000000, - 713000000, 714000000, 715000000, 716000000, 717000000, 718000000, 719000000, - 790000000, 791000000, 916000000, 917000000, 996000000, 997000000, 720000000, - 721000000, 722000000, 723000000, 724000000, 725000000, 726000000, 727000000, - 728000000, 729000000, 782000000, 783000000, 926000000, 927000000, 968000000, - 969000000, 730000000, 731000000, 732000000, 733000000, 734000000, 735000000, - 736000000, 737000000, 738000000, 739000000, 792000000, 793000000, 936000000, - 937000000, 978000000, 979000000, 740000000, 741000000, 742000000, 743000000, - 744000000, 745000000, 746000000, 747000000, 748000000, 749000000, 784000000, - 785000000, 946000000, 947000000, 788000000, 789000000, 750000000, 751000000, - 752000000, 753000000, 754000000, 755000000, 756000000, 757000000, 758000000, - 759000000, 794000000, 795000000, 956000000, 957000000, 798000000, 799000000, - 760000000, 761000000, 762000000, 763000000, 764000000, 765000000, 766000000, - 767000000, 768000000, 769000000, 786000000, 787000000, 966000000, 967000000, - 988000000, 989000000, 770000000, 771000000, 772000000, 773000000, 774000000, - 775000000, 776000000, 777000000, 778000000, 779000000, 796000000, 797000000, - 976000000, 977000000, 998000000, 999000000}; -#endif - -#if defined(DEC_BIN2CHAR) && DEC_BIN2CHAR==1 && !defined(DECBIN2CHAR) -#define DECBIN2CHAR - -const uint8_t BIN2CHAR[4001]={ - '\0','0','0','0', '\1','0','0','1', '\1','0','0','2', '\1','0','0','3', '\1','0','0','4', - '\1','0','0','5', '\1','0','0','6', '\1','0','0','7', '\1','0','0','8', '\1','0','0','9', - '\2','0','1','0', '\2','0','1','1', '\2','0','1','2', '\2','0','1','3', '\2','0','1','4', - '\2','0','1','5', '\2','0','1','6', '\2','0','1','7', '\2','0','1','8', '\2','0','1','9', - '\2','0','2','0', '\2','0','2','1', '\2','0','2','2', '\2','0','2','3', '\2','0','2','4', - '\2','0','2','5', '\2','0','2','6', '\2','0','2','7', '\2','0','2','8', '\2','0','2','9', - '\2','0','3','0', '\2','0','3','1', '\2','0','3','2', '\2','0','3','3', '\2','0','3','4', - '\2','0','3','5', '\2','0','3','6', '\2','0','3','7', '\2','0','3','8', '\2','0','3','9', - '\2','0','4','0', '\2','0','4','1', '\2','0','4','2', '\2','0','4','3', '\2','0','4','4', - '\2','0','4','5', '\2','0','4','6', '\2','0','4','7', '\2','0','4','8', '\2','0','4','9', - '\2','0','5','0', '\2','0','5','1', '\2','0','5','2', '\2','0','5','3', '\2','0','5','4', - '\2','0','5','5', '\2','0','5','6', '\2','0','5','7', '\2','0','5','8', '\2','0','5','9', - '\2','0','6','0', '\2','0','6','1', '\2','0','6','2', '\2','0','6','3', '\2','0','6','4', - '\2','0','6','5', '\2','0','6','6', '\2','0','6','7', '\2','0','6','8', '\2','0','6','9', - '\2','0','7','0', '\2','0','7','1', '\2','0','7','2', '\2','0','7','3', '\2','0','7','4', - '\2','0','7','5', '\2','0','7','6', '\2','0','7','7', '\2','0','7','8', '\2','0','7','9', - '\2','0','8','0', '\2','0','8','1', '\2','0','8','2', '\2','0','8','3', '\2','0','8','4', - '\2','0','8','5', '\2','0','8','6', '\2','0','8','7', '\2','0','8','8', '\2','0','8','9', - '\2','0','9','0', '\2','0','9','1', '\2','0','9','2', '\2','0','9','3', '\2','0','9','4', - '\2','0','9','5', '\2','0','9','6', '\2','0','9','7', '\2','0','9','8', '\2','0','9','9', - '\3','1','0','0', '\3','1','0','1', '\3','1','0','2', '\3','1','0','3', '\3','1','0','4', - '\3','1','0','5', '\3','1','0','6', '\3','1','0','7', '\3','1','0','8', '\3','1','0','9', - '\3','1','1','0', '\3','1','1','1', '\3','1','1','2', '\3','1','1','3', '\3','1','1','4', - '\3','1','1','5', '\3','1','1','6', '\3','1','1','7', '\3','1','1','8', '\3','1','1','9', - '\3','1','2','0', '\3','1','2','1', '\3','1','2','2', '\3','1','2','3', '\3','1','2','4', - '\3','1','2','5', '\3','1','2','6', '\3','1','2','7', '\3','1','2','8', '\3','1','2','9', - '\3','1','3','0', '\3','1','3','1', '\3','1','3','2', '\3','1','3','3', '\3','1','3','4', - '\3','1','3','5', '\3','1','3','6', '\3','1','3','7', '\3','1','3','8', '\3','1','3','9', - '\3','1','4','0', '\3','1','4','1', '\3','1','4','2', '\3','1','4','3', '\3','1','4','4', - '\3','1','4','5', '\3','1','4','6', '\3','1','4','7', '\3','1','4','8', '\3','1','4','9', - '\3','1','5','0', '\3','1','5','1', '\3','1','5','2', '\3','1','5','3', '\3','1','5','4', - '\3','1','5','5', '\3','1','5','6', '\3','1','5','7', '\3','1','5','8', '\3','1','5','9', - '\3','1','6','0', '\3','1','6','1', '\3','1','6','2', '\3','1','6','3', '\3','1','6','4', - '\3','1','6','5', '\3','1','6','6', '\3','1','6','7', '\3','1','6','8', '\3','1','6','9', - '\3','1','7','0', '\3','1','7','1', '\3','1','7','2', '\3','1','7','3', '\3','1','7','4', - '\3','1','7','5', '\3','1','7','6', '\3','1','7','7', '\3','1','7','8', '\3','1','7','9', - '\3','1','8','0', '\3','1','8','1', '\3','1','8','2', '\3','1','8','3', '\3','1','8','4', - '\3','1','8','5', '\3','1','8','6', '\3','1','8','7', '\3','1','8','8', '\3','1','8','9', - '\3','1','9','0', '\3','1','9','1', '\3','1','9','2', '\3','1','9','3', '\3','1','9','4', - '\3','1','9','5', '\3','1','9','6', '\3','1','9','7', '\3','1','9','8', '\3','1','9','9', - '\3','2','0','0', '\3','2','0','1', '\3','2','0','2', '\3','2','0','3', '\3','2','0','4', - '\3','2','0','5', '\3','2','0','6', '\3','2','0','7', '\3','2','0','8', '\3','2','0','9', - '\3','2','1','0', '\3','2','1','1', '\3','2','1','2', '\3','2','1','3', '\3','2','1','4', - '\3','2','1','5', '\3','2','1','6', '\3','2','1','7', '\3','2','1','8', '\3','2','1','9', - '\3','2','2','0', '\3','2','2','1', '\3','2','2','2', '\3','2','2','3', '\3','2','2','4', - '\3','2','2','5', '\3','2','2','6', '\3','2','2','7', '\3','2','2','8', '\3','2','2','9', - '\3','2','3','0', '\3','2','3','1', '\3','2','3','2', '\3','2','3','3', '\3','2','3','4', - '\3','2','3','5', '\3','2','3','6', '\3','2','3','7', '\3','2','3','8', '\3','2','3','9', - '\3','2','4','0', '\3','2','4','1', '\3','2','4','2', '\3','2','4','3', '\3','2','4','4', - '\3','2','4','5', '\3','2','4','6', '\3','2','4','7', '\3','2','4','8', '\3','2','4','9', - '\3','2','5','0', '\3','2','5','1', '\3','2','5','2', '\3','2','5','3', '\3','2','5','4', - '\3','2','5','5', '\3','2','5','6', '\3','2','5','7', '\3','2','5','8', '\3','2','5','9', - '\3','2','6','0', '\3','2','6','1', '\3','2','6','2', '\3','2','6','3', '\3','2','6','4', - '\3','2','6','5', '\3','2','6','6', '\3','2','6','7', '\3','2','6','8', '\3','2','6','9', - '\3','2','7','0', '\3','2','7','1', '\3','2','7','2', '\3','2','7','3', '\3','2','7','4', - '\3','2','7','5', '\3','2','7','6', '\3','2','7','7', '\3','2','7','8', '\3','2','7','9', - '\3','2','8','0', '\3','2','8','1', '\3','2','8','2', '\3','2','8','3', '\3','2','8','4', - '\3','2','8','5', '\3','2','8','6', '\3','2','8','7', '\3','2','8','8', '\3','2','8','9', - '\3','2','9','0', '\3','2','9','1', '\3','2','9','2', '\3','2','9','3', '\3','2','9','4', - '\3','2','9','5', '\3','2','9','6', '\3','2','9','7', '\3','2','9','8', '\3','2','9','9', - '\3','3','0','0', '\3','3','0','1', '\3','3','0','2', '\3','3','0','3', '\3','3','0','4', - '\3','3','0','5', '\3','3','0','6', '\3','3','0','7', '\3','3','0','8', '\3','3','0','9', - '\3','3','1','0', '\3','3','1','1', '\3','3','1','2', '\3','3','1','3', '\3','3','1','4', - '\3','3','1','5', '\3','3','1','6', '\3','3','1','7', '\3','3','1','8', '\3','3','1','9', - '\3','3','2','0', '\3','3','2','1', '\3','3','2','2', '\3','3','2','3', '\3','3','2','4', - '\3','3','2','5', '\3','3','2','6', '\3','3','2','7', '\3','3','2','8', '\3','3','2','9', - '\3','3','3','0', '\3','3','3','1', '\3','3','3','2', '\3','3','3','3', '\3','3','3','4', - '\3','3','3','5', '\3','3','3','6', '\3','3','3','7', '\3','3','3','8', '\3','3','3','9', - '\3','3','4','0', '\3','3','4','1', '\3','3','4','2', '\3','3','4','3', '\3','3','4','4', - '\3','3','4','5', '\3','3','4','6', '\3','3','4','7', '\3','3','4','8', '\3','3','4','9', - '\3','3','5','0', '\3','3','5','1', '\3','3','5','2', '\3','3','5','3', '\3','3','5','4', - '\3','3','5','5', '\3','3','5','6', '\3','3','5','7', '\3','3','5','8', '\3','3','5','9', - '\3','3','6','0', '\3','3','6','1', '\3','3','6','2', '\3','3','6','3', '\3','3','6','4', - '\3','3','6','5', '\3','3','6','6', '\3','3','6','7', '\3','3','6','8', '\3','3','6','9', - '\3','3','7','0', '\3','3','7','1', '\3','3','7','2', '\3','3','7','3', '\3','3','7','4', - '\3','3','7','5', '\3','3','7','6', '\3','3','7','7', '\3','3','7','8', '\3','3','7','9', - '\3','3','8','0', '\3','3','8','1', '\3','3','8','2', '\3','3','8','3', '\3','3','8','4', - '\3','3','8','5', '\3','3','8','6', '\3','3','8','7', '\3','3','8','8', '\3','3','8','9', - '\3','3','9','0', '\3','3','9','1', '\3','3','9','2', '\3','3','9','3', '\3','3','9','4', - '\3','3','9','5', '\3','3','9','6', '\3','3','9','7', '\3','3','9','8', '\3','3','9','9', - '\3','4','0','0', '\3','4','0','1', '\3','4','0','2', '\3','4','0','3', '\3','4','0','4', - '\3','4','0','5', '\3','4','0','6', '\3','4','0','7', '\3','4','0','8', '\3','4','0','9', - '\3','4','1','0', '\3','4','1','1', '\3','4','1','2', '\3','4','1','3', '\3','4','1','4', - '\3','4','1','5', '\3','4','1','6', '\3','4','1','7', '\3','4','1','8', '\3','4','1','9', - '\3','4','2','0', '\3','4','2','1', '\3','4','2','2', '\3','4','2','3', '\3','4','2','4', - '\3','4','2','5', '\3','4','2','6', '\3','4','2','7', '\3','4','2','8', '\3','4','2','9', - '\3','4','3','0', '\3','4','3','1', '\3','4','3','2', '\3','4','3','3', '\3','4','3','4', - '\3','4','3','5', '\3','4','3','6', '\3','4','3','7', '\3','4','3','8', '\3','4','3','9', - '\3','4','4','0', '\3','4','4','1', '\3','4','4','2', '\3','4','4','3', '\3','4','4','4', - '\3','4','4','5', '\3','4','4','6', '\3','4','4','7', '\3','4','4','8', '\3','4','4','9', - '\3','4','5','0', '\3','4','5','1', '\3','4','5','2', '\3','4','5','3', '\3','4','5','4', - '\3','4','5','5', '\3','4','5','6', '\3','4','5','7', '\3','4','5','8', '\3','4','5','9', - '\3','4','6','0', '\3','4','6','1', '\3','4','6','2', '\3','4','6','3', '\3','4','6','4', - '\3','4','6','5', '\3','4','6','6', '\3','4','6','7', '\3','4','6','8', '\3','4','6','9', - '\3','4','7','0', '\3','4','7','1', '\3','4','7','2', '\3','4','7','3', '\3','4','7','4', - '\3','4','7','5', '\3','4','7','6', '\3','4','7','7', '\3','4','7','8', '\3','4','7','9', - '\3','4','8','0', '\3','4','8','1', '\3','4','8','2', '\3','4','8','3', '\3','4','8','4', - '\3','4','8','5', '\3','4','8','6', '\3','4','8','7', '\3','4','8','8', '\3','4','8','9', - '\3','4','9','0', '\3','4','9','1', '\3','4','9','2', '\3','4','9','3', '\3','4','9','4', - '\3','4','9','5', '\3','4','9','6', '\3','4','9','7', '\3','4','9','8', '\3','4','9','9', - '\3','5','0','0', '\3','5','0','1', '\3','5','0','2', '\3','5','0','3', '\3','5','0','4', - '\3','5','0','5', '\3','5','0','6', '\3','5','0','7', '\3','5','0','8', '\3','5','0','9', - '\3','5','1','0', '\3','5','1','1', '\3','5','1','2', '\3','5','1','3', '\3','5','1','4', - '\3','5','1','5', '\3','5','1','6', '\3','5','1','7', '\3','5','1','8', '\3','5','1','9', - '\3','5','2','0', '\3','5','2','1', '\3','5','2','2', '\3','5','2','3', '\3','5','2','4', - '\3','5','2','5', '\3','5','2','6', '\3','5','2','7', '\3','5','2','8', '\3','5','2','9', - '\3','5','3','0', '\3','5','3','1', '\3','5','3','2', '\3','5','3','3', '\3','5','3','4', - '\3','5','3','5', '\3','5','3','6', '\3','5','3','7', '\3','5','3','8', '\3','5','3','9', - '\3','5','4','0', '\3','5','4','1', '\3','5','4','2', '\3','5','4','3', '\3','5','4','4', - '\3','5','4','5', '\3','5','4','6', '\3','5','4','7', '\3','5','4','8', '\3','5','4','9', - '\3','5','5','0', '\3','5','5','1', '\3','5','5','2', '\3','5','5','3', '\3','5','5','4', - '\3','5','5','5', '\3','5','5','6', '\3','5','5','7', '\3','5','5','8', '\3','5','5','9', - '\3','5','6','0', '\3','5','6','1', '\3','5','6','2', '\3','5','6','3', '\3','5','6','4', - '\3','5','6','5', '\3','5','6','6', '\3','5','6','7', '\3','5','6','8', '\3','5','6','9', - '\3','5','7','0', '\3','5','7','1', '\3','5','7','2', '\3','5','7','3', '\3','5','7','4', - '\3','5','7','5', '\3','5','7','6', '\3','5','7','7', '\3','5','7','8', '\3','5','7','9', - '\3','5','8','0', '\3','5','8','1', '\3','5','8','2', '\3','5','8','3', '\3','5','8','4', - '\3','5','8','5', '\3','5','8','6', '\3','5','8','7', '\3','5','8','8', '\3','5','8','9', - '\3','5','9','0', '\3','5','9','1', '\3','5','9','2', '\3','5','9','3', '\3','5','9','4', - '\3','5','9','5', '\3','5','9','6', '\3','5','9','7', '\3','5','9','8', '\3','5','9','9', - '\3','6','0','0', '\3','6','0','1', '\3','6','0','2', '\3','6','0','3', '\3','6','0','4', - '\3','6','0','5', '\3','6','0','6', '\3','6','0','7', '\3','6','0','8', '\3','6','0','9', - '\3','6','1','0', '\3','6','1','1', '\3','6','1','2', '\3','6','1','3', '\3','6','1','4', - '\3','6','1','5', '\3','6','1','6', '\3','6','1','7', '\3','6','1','8', '\3','6','1','9', - '\3','6','2','0', '\3','6','2','1', '\3','6','2','2', '\3','6','2','3', '\3','6','2','4', - '\3','6','2','5', '\3','6','2','6', '\3','6','2','7', '\3','6','2','8', '\3','6','2','9', - '\3','6','3','0', '\3','6','3','1', '\3','6','3','2', '\3','6','3','3', '\3','6','3','4', - '\3','6','3','5', '\3','6','3','6', '\3','6','3','7', '\3','6','3','8', '\3','6','3','9', - '\3','6','4','0', '\3','6','4','1', '\3','6','4','2', '\3','6','4','3', '\3','6','4','4', - '\3','6','4','5', '\3','6','4','6', '\3','6','4','7', '\3','6','4','8', '\3','6','4','9', - '\3','6','5','0', '\3','6','5','1', '\3','6','5','2', '\3','6','5','3', '\3','6','5','4', - '\3','6','5','5', '\3','6','5','6', '\3','6','5','7', '\3','6','5','8', '\3','6','5','9', - '\3','6','6','0', '\3','6','6','1', '\3','6','6','2', '\3','6','6','3', '\3','6','6','4', - '\3','6','6','5', '\3','6','6','6', '\3','6','6','7', '\3','6','6','8', '\3','6','6','9', - '\3','6','7','0', '\3','6','7','1', '\3','6','7','2', '\3','6','7','3', '\3','6','7','4', - '\3','6','7','5', '\3','6','7','6', '\3','6','7','7', '\3','6','7','8', '\3','6','7','9', - '\3','6','8','0', '\3','6','8','1', '\3','6','8','2', '\3','6','8','3', '\3','6','8','4', - '\3','6','8','5', '\3','6','8','6', '\3','6','8','7', '\3','6','8','8', '\3','6','8','9', - '\3','6','9','0', '\3','6','9','1', '\3','6','9','2', '\3','6','9','3', '\3','6','9','4', - '\3','6','9','5', '\3','6','9','6', '\3','6','9','7', '\3','6','9','8', '\3','6','9','9', - '\3','7','0','0', '\3','7','0','1', '\3','7','0','2', '\3','7','0','3', '\3','7','0','4', - '\3','7','0','5', '\3','7','0','6', '\3','7','0','7', '\3','7','0','8', '\3','7','0','9', - '\3','7','1','0', '\3','7','1','1', '\3','7','1','2', '\3','7','1','3', '\3','7','1','4', - '\3','7','1','5', '\3','7','1','6', '\3','7','1','7', '\3','7','1','8', '\3','7','1','9', - '\3','7','2','0', '\3','7','2','1', '\3','7','2','2', '\3','7','2','3', '\3','7','2','4', - '\3','7','2','5', '\3','7','2','6', '\3','7','2','7', '\3','7','2','8', '\3','7','2','9', - '\3','7','3','0', '\3','7','3','1', '\3','7','3','2', '\3','7','3','3', '\3','7','3','4', - '\3','7','3','5', '\3','7','3','6', '\3','7','3','7', '\3','7','3','8', '\3','7','3','9', - '\3','7','4','0', '\3','7','4','1', '\3','7','4','2', '\3','7','4','3', '\3','7','4','4', - '\3','7','4','5', '\3','7','4','6', '\3','7','4','7', '\3','7','4','8', '\3','7','4','9', - '\3','7','5','0', '\3','7','5','1', '\3','7','5','2', '\3','7','5','3', '\3','7','5','4', - '\3','7','5','5', '\3','7','5','6', '\3','7','5','7', '\3','7','5','8', '\3','7','5','9', - '\3','7','6','0', '\3','7','6','1', '\3','7','6','2', '\3','7','6','3', '\3','7','6','4', - '\3','7','6','5', '\3','7','6','6', '\3','7','6','7', '\3','7','6','8', '\3','7','6','9', - '\3','7','7','0', '\3','7','7','1', '\3','7','7','2', '\3','7','7','3', '\3','7','7','4', - '\3','7','7','5', '\3','7','7','6', '\3','7','7','7', '\3','7','7','8', '\3','7','7','9', - '\3','7','8','0', '\3','7','8','1', '\3','7','8','2', '\3','7','8','3', '\3','7','8','4', - '\3','7','8','5', '\3','7','8','6', '\3','7','8','7', '\3','7','8','8', '\3','7','8','9', - '\3','7','9','0', '\3','7','9','1', '\3','7','9','2', '\3','7','9','3', '\3','7','9','4', - '\3','7','9','5', '\3','7','9','6', '\3','7','9','7', '\3','7','9','8', '\3','7','9','9', - '\3','8','0','0', '\3','8','0','1', '\3','8','0','2', '\3','8','0','3', '\3','8','0','4', - '\3','8','0','5', '\3','8','0','6', '\3','8','0','7', '\3','8','0','8', '\3','8','0','9', - '\3','8','1','0', '\3','8','1','1', '\3','8','1','2', '\3','8','1','3', '\3','8','1','4', - '\3','8','1','5', '\3','8','1','6', '\3','8','1','7', '\3','8','1','8', '\3','8','1','9', - '\3','8','2','0', '\3','8','2','1', '\3','8','2','2', '\3','8','2','3', '\3','8','2','4', - '\3','8','2','5', '\3','8','2','6', '\3','8','2','7', '\3','8','2','8', '\3','8','2','9', - '\3','8','3','0', '\3','8','3','1', '\3','8','3','2', '\3','8','3','3', '\3','8','3','4', - '\3','8','3','5', '\3','8','3','6', '\3','8','3','7', '\3','8','3','8', '\3','8','3','9', - '\3','8','4','0', '\3','8','4','1', '\3','8','4','2', '\3','8','4','3', '\3','8','4','4', - '\3','8','4','5', '\3','8','4','6', '\3','8','4','7', '\3','8','4','8', '\3','8','4','9', - '\3','8','5','0', '\3','8','5','1', '\3','8','5','2', '\3','8','5','3', '\3','8','5','4', - '\3','8','5','5', '\3','8','5','6', '\3','8','5','7', '\3','8','5','8', '\3','8','5','9', - '\3','8','6','0', '\3','8','6','1', '\3','8','6','2', '\3','8','6','3', '\3','8','6','4', - '\3','8','6','5', '\3','8','6','6', '\3','8','6','7', '\3','8','6','8', '\3','8','6','9', - '\3','8','7','0', '\3','8','7','1', '\3','8','7','2', '\3','8','7','3', '\3','8','7','4', - '\3','8','7','5', '\3','8','7','6', '\3','8','7','7', '\3','8','7','8', '\3','8','7','9', - '\3','8','8','0', '\3','8','8','1', '\3','8','8','2', '\3','8','8','3', '\3','8','8','4', - '\3','8','8','5', '\3','8','8','6', '\3','8','8','7', '\3','8','8','8', '\3','8','8','9', - '\3','8','9','0', '\3','8','9','1', '\3','8','9','2', '\3','8','9','3', '\3','8','9','4', - '\3','8','9','5', '\3','8','9','6', '\3','8','9','7', '\3','8','9','8', '\3','8','9','9', - '\3','9','0','0', '\3','9','0','1', '\3','9','0','2', '\3','9','0','3', '\3','9','0','4', - '\3','9','0','5', '\3','9','0','6', '\3','9','0','7', '\3','9','0','8', '\3','9','0','9', - '\3','9','1','0', '\3','9','1','1', '\3','9','1','2', '\3','9','1','3', '\3','9','1','4', - '\3','9','1','5', '\3','9','1','6', '\3','9','1','7', '\3','9','1','8', '\3','9','1','9', - '\3','9','2','0', '\3','9','2','1', '\3','9','2','2', '\3','9','2','3', '\3','9','2','4', - '\3','9','2','5', '\3','9','2','6', '\3','9','2','7', '\3','9','2','8', '\3','9','2','9', - '\3','9','3','0', '\3','9','3','1', '\3','9','3','2', '\3','9','3','3', '\3','9','3','4', - '\3','9','3','5', '\3','9','3','6', '\3','9','3','7', '\3','9','3','8', '\3','9','3','9', - '\3','9','4','0', '\3','9','4','1', '\3','9','4','2', '\3','9','4','3', '\3','9','4','4', - '\3','9','4','5', '\3','9','4','6', '\3','9','4','7', '\3','9','4','8', '\3','9','4','9', - '\3','9','5','0', '\3','9','5','1', '\3','9','5','2', '\3','9','5','3', '\3','9','5','4', - '\3','9','5','5', '\3','9','5','6', '\3','9','5','7', '\3','9','5','8', '\3','9','5','9', - '\3','9','6','0', '\3','9','6','1', '\3','9','6','2', '\3','9','6','3', '\3','9','6','4', - '\3','9','6','5', '\3','9','6','6', '\3','9','6','7', '\3','9','6','8', '\3','9','6','9', - '\3','9','7','0', '\3','9','7','1', '\3','9','7','2', '\3','9','7','3', '\3','9','7','4', - '\3','9','7','5', '\3','9','7','6', '\3','9','7','7', '\3','9','7','8', '\3','9','7','9', - '\3','9','8','0', '\3','9','8','1', '\3','9','8','2', '\3','9','8','3', '\3','9','8','4', - '\3','9','8','5', '\3','9','8','6', '\3','9','8','7', '\3','9','8','8', '\3','9','8','9', - '\3','9','9','0', '\3','9','9','1', '\3','9','9','2', '\3','9','9','3', '\3','9','9','4', - '\3','9','9','5', '\3','9','9','6', '\3','9','9','7', '\3','9','9','8', '\3','9','9','9', '\0'}; -#endif - -#if defined(DEC_DPD2BCD8) && DEC_DPD2BCD8==1 && !defined(DECDPD2BCD8) -#define DECDPD2BCD8 - -const uint8_t DPD2BCD8[4096]={ - 0,0,0,0, 0,0,1,1, 0,0,2,1, 0,0,3,1, 0,0,4,1, 0,0,5,1, 0,0,6,1, 0,0,7,1, 0,0,8,1, - 0,0,9,1, 0,8,0,2, 0,8,1,2, 8,0,0,3, 8,0,1,3, 8,8,0,3, 8,8,1,3, 0,1,0,2, 0,1,1,2, - 0,1,2,2, 0,1,3,2, 0,1,4,2, 0,1,5,2, 0,1,6,2, 0,1,7,2, 0,1,8,2, 0,1,9,2, 0,9,0,2, - 0,9,1,2, 8,1,0,3, 8,1,1,3, 8,9,0,3, 8,9,1,3, 0,2,0,2, 0,2,1,2, 0,2,2,2, 0,2,3,2, - 0,2,4,2, 0,2,5,2, 0,2,6,2, 0,2,7,2, 0,2,8,2, 0,2,9,2, 0,8,2,2, 0,8,3,2, 8,2,0,3, - 8,2,1,3, 8,0,8,3, 8,0,9,3, 0,3,0,2, 0,3,1,2, 0,3,2,2, 0,3,3,2, 0,3,4,2, 0,3,5,2, - 0,3,6,2, 0,3,7,2, 0,3,8,2, 0,3,9,2, 0,9,2,2, 0,9,3,2, 8,3,0,3, 8,3,1,3, 8,1,8,3, - 8,1,9,3, 0,4,0,2, 0,4,1,2, 0,4,2,2, 0,4,3,2, 0,4,4,2, 0,4,5,2, 0,4,6,2, 0,4,7,2, - 0,4,8,2, 0,4,9,2, 0,8,4,2, 0,8,5,2, 8,4,0,3, 8,4,1,3, 0,8,8,2, 0,8,9,2, 0,5,0,2, - 0,5,1,2, 0,5,2,2, 0,5,3,2, 0,5,4,2, 0,5,5,2, 0,5,6,2, 0,5,7,2, 0,5,8,2, 0,5,9,2, - 0,9,4,2, 0,9,5,2, 8,5,0,3, 8,5,1,3, 0,9,8,2, 0,9,9,2, 0,6,0,2, 0,6,1,2, 0,6,2,2, - 0,6,3,2, 0,6,4,2, 0,6,5,2, 0,6,6,2, 0,6,7,2, 0,6,8,2, 0,6,9,2, 0,8,6,2, 0,8,7,2, - 8,6,0,3, 8,6,1,3, 8,8,8,3, 8,8,9,3, 0,7,0,2, 0,7,1,2, 0,7,2,2, 0,7,3,2, 0,7,4,2, - 0,7,5,2, 0,7,6,2, 0,7,7,2, 0,7,8,2, 0,7,9,2, 0,9,6,2, 0,9,7,2, 8,7,0,3, 8,7,1,3, - 8,9,8,3, 8,9,9,3, 1,0,0,3, 1,0,1,3, 1,0,2,3, 1,0,3,3, 1,0,4,3, 1,0,5,3, 1,0,6,3, - 1,0,7,3, 1,0,8,3, 1,0,9,3, 1,8,0,3, 1,8,1,3, 9,0,0,3, 9,0,1,3, 9,8,0,3, 9,8,1,3, - 1,1,0,3, 1,1,1,3, 1,1,2,3, 1,1,3,3, 1,1,4,3, 1,1,5,3, 1,1,6,3, 1,1,7,3, 1,1,8,3, - 1,1,9,3, 1,9,0,3, 1,9,1,3, 9,1,0,3, 9,1,1,3, 9,9,0,3, 9,9,1,3, 1,2,0,3, 1,2,1,3, - 1,2,2,3, 1,2,3,3, 1,2,4,3, 1,2,5,3, 1,2,6,3, 1,2,7,3, 1,2,8,3, 1,2,9,3, 1,8,2,3, - 1,8,3,3, 9,2,0,3, 9,2,1,3, 9,0,8,3, 9,0,9,3, 1,3,0,3, 1,3,1,3, 1,3,2,3, 1,3,3,3, - 1,3,4,3, 1,3,5,3, 1,3,6,3, 1,3,7,3, 1,3,8,3, 1,3,9,3, 1,9,2,3, 1,9,3,3, 9,3,0,3, - 9,3,1,3, 9,1,8,3, 9,1,9,3, 1,4,0,3, 1,4,1,3, 1,4,2,3, 1,4,3,3, 1,4,4,3, 1,4,5,3, - 1,4,6,3, 1,4,7,3, 1,4,8,3, 1,4,9,3, 1,8,4,3, 1,8,5,3, 9,4,0,3, 9,4,1,3, 1,8,8,3, - 1,8,9,3, 1,5,0,3, 1,5,1,3, 1,5,2,3, 1,5,3,3, 1,5,4,3, 1,5,5,3, 1,5,6,3, 1,5,7,3, - 1,5,8,3, 1,5,9,3, 1,9,4,3, 1,9,5,3, 9,5,0,3, 9,5,1,3, 1,9,8,3, 1,9,9,3, 1,6,0,3, - 1,6,1,3, 1,6,2,3, 1,6,3,3, 1,6,4,3, 1,6,5,3, 1,6,6,3, 1,6,7,3, 1,6,8,3, 1,6,9,3, - 1,8,6,3, 1,8,7,3, 9,6,0,3, 9,6,1,3, 9,8,8,3, 9,8,9,3, 1,7,0,3, 1,7,1,3, 1,7,2,3, - 1,7,3,3, 1,7,4,3, 1,7,5,3, 1,7,6,3, 1,7,7,3, 1,7,8,3, 1,7,9,3, 1,9,6,3, 1,9,7,3, - 9,7,0,3, 9,7,1,3, 9,9,8,3, 9,9,9,3, 2,0,0,3, 2,0,1,3, 2,0,2,3, 2,0,3,3, 2,0,4,3, - 2,0,5,3, 2,0,6,3, 2,0,7,3, 2,0,8,3, 2,0,9,3, 2,8,0,3, 2,8,1,3, 8,0,2,3, 8,0,3,3, - 8,8,2,3, 8,8,3,3, 2,1,0,3, 2,1,1,3, 2,1,2,3, 2,1,3,3, 2,1,4,3, 2,1,5,3, 2,1,6,3, - 2,1,7,3, 2,1,8,3, 2,1,9,3, 2,9,0,3, 2,9,1,3, 8,1,2,3, 8,1,3,3, 8,9,2,3, 8,9,3,3, - 2,2,0,3, 2,2,1,3, 2,2,2,3, 2,2,3,3, 2,2,4,3, 2,2,5,3, 2,2,6,3, 2,2,7,3, 2,2,8,3, - 2,2,9,3, 2,8,2,3, 2,8,3,3, 8,2,2,3, 8,2,3,3, 8,2,8,3, 8,2,9,3, 2,3,0,3, 2,3,1,3, - 2,3,2,3, 2,3,3,3, 2,3,4,3, 2,3,5,3, 2,3,6,3, 2,3,7,3, 2,3,8,3, 2,3,9,3, 2,9,2,3, - 2,9,3,3, 8,3,2,3, 8,3,3,3, 8,3,8,3, 8,3,9,3, 2,4,0,3, 2,4,1,3, 2,4,2,3, 2,4,3,3, - 2,4,4,3, 2,4,5,3, 2,4,6,3, 2,4,7,3, 2,4,8,3, 2,4,9,3, 2,8,4,3, 2,8,5,3, 8,4,2,3, - 8,4,3,3, 2,8,8,3, 2,8,9,3, 2,5,0,3, 2,5,1,3, 2,5,2,3, 2,5,3,3, 2,5,4,3, 2,5,5,3, - 2,5,6,3, 2,5,7,3, 2,5,8,3, 2,5,9,3, 2,9,4,3, 2,9,5,3, 8,5,2,3, 8,5,3,3, 2,9,8,3, - 2,9,9,3, 2,6,0,3, 2,6,1,3, 2,6,2,3, 2,6,3,3, 2,6,4,3, 2,6,5,3, 2,6,6,3, 2,6,7,3, - 2,6,8,3, 2,6,9,3, 2,8,6,3, 2,8,7,3, 8,6,2,3, 8,6,3,3, 8,8,8,3, 8,8,9,3, 2,7,0,3, - 2,7,1,3, 2,7,2,3, 2,7,3,3, 2,7,4,3, 2,7,5,3, 2,7,6,3, 2,7,7,3, 2,7,8,3, 2,7,9,3, - 2,9,6,3, 2,9,7,3, 8,7,2,3, 8,7,3,3, 8,9,8,3, 8,9,9,3, 3,0,0,3, 3,0,1,3, 3,0,2,3, - 3,0,3,3, 3,0,4,3, 3,0,5,3, 3,0,6,3, 3,0,7,3, 3,0,8,3, 3,0,9,3, 3,8,0,3, 3,8,1,3, - 9,0,2,3, 9,0,3,3, 9,8,2,3, 9,8,3,3, 3,1,0,3, 3,1,1,3, 3,1,2,3, 3,1,3,3, 3,1,4,3, - 3,1,5,3, 3,1,6,3, 3,1,7,3, 3,1,8,3, 3,1,9,3, 3,9,0,3, 3,9,1,3, 9,1,2,3, 9,1,3,3, - 9,9,2,3, 9,9,3,3, 3,2,0,3, 3,2,1,3, 3,2,2,3, 3,2,3,3, 3,2,4,3, 3,2,5,3, 3,2,6,3, - 3,2,7,3, 3,2,8,3, 3,2,9,3, 3,8,2,3, 3,8,3,3, 9,2,2,3, 9,2,3,3, 9,2,8,3, 9,2,9,3, - 3,3,0,3, 3,3,1,3, 3,3,2,3, 3,3,3,3, 3,3,4,3, 3,3,5,3, 3,3,6,3, 3,3,7,3, 3,3,8,3, - 3,3,9,3, 3,9,2,3, 3,9,3,3, 9,3,2,3, 9,3,3,3, 9,3,8,3, 9,3,9,3, 3,4,0,3, 3,4,1,3, - 3,4,2,3, 3,4,3,3, 3,4,4,3, 3,4,5,3, 3,4,6,3, 3,4,7,3, 3,4,8,3, 3,4,9,3, 3,8,4,3, - 3,8,5,3, 9,4,2,3, 9,4,3,3, 3,8,8,3, 3,8,9,3, 3,5,0,3, 3,5,1,3, 3,5,2,3, 3,5,3,3, - 3,5,4,3, 3,5,5,3, 3,5,6,3, 3,5,7,3, 3,5,8,3, 3,5,9,3, 3,9,4,3, 3,9,5,3, 9,5,2,3, - 9,5,3,3, 3,9,8,3, 3,9,9,3, 3,6,0,3, 3,6,1,3, 3,6,2,3, 3,6,3,3, 3,6,4,3, 3,6,5,3, - 3,6,6,3, 3,6,7,3, 3,6,8,3, 3,6,9,3, 3,8,6,3, 3,8,7,3, 9,6,2,3, 9,6,3,3, 9,8,8,3, - 9,8,9,3, 3,7,0,3, 3,7,1,3, 3,7,2,3, 3,7,3,3, 3,7,4,3, 3,7,5,3, 3,7,6,3, 3,7,7,3, - 3,7,8,3, 3,7,9,3, 3,9,6,3, 3,9,7,3, 9,7,2,3, 9,7,3,3, 9,9,8,3, 9,9,9,3, 4,0,0,3, - 4,0,1,3, 4,0,2,3, 4,0,3,3, 4,0,4,3, 4,0,5,3, 4,0,6,3, 4,0,7,3, 4,0,8,3, 4,0,9,3, - 4,8,0,3, 4,8,1,3, 8,0,4,3, 8,0,5,3, 8,8,4,3, 8,8,5,3, 4,1,0,3, 4,1,1,3, 4,1,2,3, - 4,1,3,3, 4,1,4,3, 4,1,5,3, 4,1,6,3, 4,1,7,3, 4,1,8,3, 4,1,9,3, 4,9,0,3, 4,9,1,3, - 8,1,4,3, 8,1,5,3, 8,9,4,3, 8,9,5,3, 4,2,0,3, 4,2,1,3, 4,2,2,3, 4,2,3,3, 4,2,4,3, - 4,2,5,3, 4,2,6,3, 4,2,7,3, 4,2,8,3, 4,2,9,3, 4,8,2,3, 4,8,3,3, 8,2,4,3, 8,2,5,3, - 8,4,8,3, 8,4,9,3, 4,3,0,3, 4,3,1,3, 4,3,2,3, 4,3,3,3, 4,3,4,3, 4,3,5,3, 4,3,6,3, - 4,3,7,3, 4,3,8,3, 4,3,9,3, 4,9,2,3, 4,9,3,3, 8,3,4,3, 8,3,5,3, 8,5,8,3, 8,5,9,3, - 4,4,0,3, 4,4,1,3, 4,4,2,3, 4,4,3,3, 4,4,4,3, 4,4,5,3, 4,4,6,3, 4,4,7,3, 4,4,8,3, - 4,4,9,3, 4,8,4,3, 4,8,5,3, 8,4,4,3, 8,4,5,3, 4,8,8,3, 4,8,9,3, 4,5,0,3, 4,5,1,3, - 4,5,2,3, 4,5,3,3, 4,5,4,3, 4,5,5,3, 4,5,6,3, 4,5,7,3, 4,5,8,3, 4,5,9,3, 4,9,4,3, - 4,9,5,3, 8,5,4,3, 8,5,5,3, 4,9,8,3, 4,9,9,3, 4,6,0,3, 4,6,1,3, 4,6,2,3, 4,6,3,3, - 4,6,4,3, 4,6,5,3, 4,6,6,3, 4,6,7,3, 4,6,8,3, 4,6,9,3, 4,8,6,3, 4,8,7,3, 8,6,4,3, - 8,6,5,3, 8,8,8,3, 8,8,9,3, 4,7,0,3, 4,7,1,3, 4,7,2,3, 4,7,3,3, 4,7,4,3, 4,7,5,3, - 4,7,6,3, 4,7,7,3, 4,7,8,3, 4,7,9,3, 4,9,6,3, 4,9,7,3, 8,7,4,3, 8,7,5,3, 8,9,8,3, - 8,9,9,3, 5,0,0,3, 5,0,1,3, 5,0,2,3, 5,0,3,3, 5,0,4,3, 5,0,5,3, 5,0,6,3, 5,0,7,3, - 5,0,8,3, 5,0,9,3, 5,8,0,3, 5,8,1,3, 9,0,4,3, 9,0,5,3, 9,8,4,3, 9,8,5,3, 5,1,0,3, - 5,1,1,3, 5,1,2,3, 5,1,3,3, 5,1,4,3, 5,1,5,3, 5,1,6,3, 5,1,7,3, 5,1,8,3, 5,1,9,3, - 5,9,0,3, 5,9,1,3, 9,1,4,3, 9,1,5,3, 9,9,4,3, 9,9,5,3, 5,2,0,3, 5,2,1,3, 5,2,2,3, - 5,2,3,3, 5,2,4,3, 5,2,5,3, 5,2,6,3, 5,2,7,3, 5,2,8,3, 5,2,9,3, 5,8,2,3, 5,8,3,3, - 9,2,4,3, 9,2,5,3, 9,4,8,3, 9,4,9,3, 5,3,0,3, 5,3,1,3, 5,3,2,3, 5,3,3,3, 5,3,4,3, - 5,3,5,3, 5,3,6,3, 5,3,7,3, 5,3,8,3, 5,3,9,3, 5,9,2,3, 5,9,3,3, 9,3,4,3, 9,3,5,3, - 9,5,8,3, 9,5,9,3, 5,4,0,3, 5,4,1,3, 5,4,2,3, 5,4,3,3, 5,4,4,3, 5,4,5,3, 5,4,6,3, - 5,4,7,3, 5,4,8,3, 5,4,9,3, 5,8,4,3, 5,8,5,3, 9,4,4,3, 9,4,5,3, 5,8,8,3, 5,8,9,3, - 5,5,0,3, 5,5,1,3, 5,5,2,3, 5,5,3,3, 5,5,4,3, 5,5,5,3, 5,5,6,3, 5,5,7,3, 5,5,8,3, - 5,5,9,3, 5,9,4,3, 5,9,5,3, 9,5,4,3, 9,5,5,3, 5,9,8,3, 5,9,9,3, 5,6,0,3, 5,6,1,3, - 5,6,2,3, 5,6,3,3, 5,6,4,3, 5,6,5,3, 5,6,6,3, 5,6,7,3, 5,6,8,3, 5,6,9,3, 5,8,6,3, - 5,8,7,3, 9,6,4,3, 9,6,5,3, 9,8,8,3, 9,8,9,3, 5,7,0,3, 5,7,1,3, 5,7,2,3, 5,7,3,3, - 5,7,4,3, 5,7,5,3, 5,7,6,3, 5,7,7,3, 5,7,8,3, 5,7,9,3, 5,9,6,3, 5,9,7,3, 9,7,4,3, - 9,7,5,3, 9,9,8,3, 9,9,9,3, 6,0,0,3, 6,0,1,3, 6,0,2,3, 6,0,3,3, 6,0,4,3, 6,0,5,3, - 6,0,6,3, 6,0,7,3, 6,0,8,3, 6,0,9,3, 6,8,0,3, 6,8,1,3, 8,0,6,3, 8,0,7,3, 8,8,6,3, - 8,8,7,3, 6,1,0,3, 6,1,1,3, 6,1,2,3, 6,1,3,3, 6,1,4,3, 6,1,5,3, 6,1,6,3, 6,1,7,3, - 6,1,8,3, 6,1,9,3, 6,9,0,3, 6,9,1,3, 8,1,6,3, 8,1,7,3, 8,9,6,3, 8,9,7,3, 6,2,0,3, - 6,2,1,3, 6,2,2,3, 6,2,3,3, 6,2,4,3, 6,2,5,3, 6,2,6,3, 6,2,7,3, 6,2,8,3, 6,2,9,3, - 6,8,2,3, 6,8,3,3, 8,2,6,3, 8,2,7,3, 8,6,8,3, 8,6,9,3, 6,3,0,3, 6,3,1,3, 6,3,2,3, - 6,3,3,3, 6,3,4,3, 6,3,5,3, 6,3,6,3, 6,3,7,3, 6,3,8,3, 6,3,9,3, 6,9,2,3, 6,9,3,3, - 8,3,6,3, 8,3,7,3, 8,7,8,3, 8,7,9,3, 6,4,0,3, 6,4,1,3, 6,4,2,3, 6,4,3,3, 6,4,4,3, - 6,4,5,3, 6,4,6,3, 6,4,7,3, 6,4,8,3, 6,4,9,3, 6,8,4,3, 6,8,5,3, 8,4,6,3, 8,4,7,3, - 6,8,8,3, 6,8,9,3, 6,5,0,3, 6,5,1,3, 6,5,2,3, 6,5,3,3, 6,5,4,3, 6,5,5,3, 6,5,6,3, - 6,5,7,3, 6,5,8,3, 6,5,9,3, 6,9,4,3, 6,9,5,3, 8,5,6,3, 8,5,7,3, 6,9,8,3, 6,9,9,3, - 6,6,0,3, 6,6,1,3, 6,6,2,3, 6,6,3,3, 6,6,4,3, 6,6,5,3, 6,6,6,3, 6,6,7,3, 6,6,8,3, - 6,6,9,3, 6,8,6,3, 6,8,7,3, 8,6,6,3, 8,6,7,3, 8,8,8,3, 8,8,9,3, 6,7,0,3, 6,7,1,3, - 6,7,2,3, 6,7,3,3, 6,7,4,3, 6,7,5,3, 6,7,6,3, 6,7,7,3, 6,7,8,3, 6,7,9,3, 6,9,6,3, - 6,9,7,3, 8,7,6,3, 8,7,7,3, 8,9,8,3, 8,9,9,3, 7,0,0,3, 7,0,1,3, 7,0,2,3, 7,0,3,3, - 7,0,4,3, 7,0,5,3, 7,0,6,3, 7,0,7,3, 7,0,8,3, 7,0,9,3, 7,8,0,3, 7,8,1,3, 9,0,6,3, - 9,0,7,3, 9,8,6,3, 9,8,7,3, 7,1,0,3, 7,1,1,3, 7,1,2,3, 7,1,3,3, 7,1,4,3, 7,1,5,3, - 7,1,6,3, 7,1,7,3, 7,1,8,3, 7,1,9,3, 7,9,0,3, 7,9,1,3, 9,1,6,3, 9,1,7,3, 9,9,6,3, - 9,9,7,3, 7,2,0,3, 7,2,1,3, 7,2,2,3, 7,2,3,3, 7,2,4,3, 7,2,5,3, 7,2,6,3, 7,2,7,3, - 7,2,8,3, 7,2,9,3, 7,8,2,3, 7,8,3,3, 9,2,6,3, 9,2,7,3, 9,6,8,3, 9,6,9,3, 7,3,0,3, - 7,3,1,3, 7,3,2,3, 7,3,3,3, 7,3,4,3, 7,3,5,3, 7,3,6,3, 7,3,7,3, 7,3,8,3, 7,3,9,3, - 7,9,2,3, 7,9,3,3, 9,3,6,3, 9,3,7,3, 9,7,8,3, 9,7,9,3, 7,4,0,3, 7,4,1,3, 7,4,2,3, - 7,4,3,3, 7,4,4,3, 7,4,5,3, 7,4,6,3, 7,4,7,3, 7,4,8,3, 7,4,9,3, 7,8,4,3, 7,8,5,3, - 9,4,6,3, 9,4,7,3, 7,8,8,3, 7,8,9,3, 7,5,0,3, 7,5,1,3, 7,5,2,3, 7,5,3,3, 7,5,4,3, - 7,5,5,3, 7,5,6,3, 7,5,7,3, 7,5,8,3, 7,5,9,3, 7,9,4,3, 7,9,5,3, 9,5,6,3, 9,5,7,3, - 7,9,8,3, 7,9,9,3, 7,6,0,3, 7,6,1,3, 7,6,2,3, 7,6,3,3, 7,6,4,3, 7,6,5,3, 7,6,6,3, - 7,6,7,3, 7,6,8,3, 7,6,9,3, 7,8,6,3, 7,8,7,3, 9,6,6,3, 9,6,7,3, 9,8,8,3, 9,8,9,3, - 7,7,0,3, 7,7,1,3, 7,7,2,3, 7,7,3,3, 7,7,4,3, 7,7,5,3, 7,7,6,3, 7,7,7,3, 7,7,8,3, - 7,7,9,3, 7,9,6,3, 7,9,7,3, 9,7,6,3, 9,7,7,3, 9,9,8,3, 9,9,9,3}; -#endif - -#if defined(DEC_BIN2BCD8) && DEC_BIN2BCD8==1 && !defined(DECBIN2BCD8) -#define DECBIN2BCD8 - -const uint8_t BIN2BCD8[4000]={ - 0,0,0,0, 0,0,1,1, 0,0,2,1, 0,0,3,1, 0,0,4,1, 0,0,5,1, 0,0,6,1, 0,0,7,1, 0,0,8,1, - 0,0,9,1, 0,1,0,2, 0,1,1,2, 0,1,2,2, 0,1,3,2, 0,1,4,2, 0,1,5,2, 0,1,6,2, 0,1,7,2, - 0,1,8,2, 0,1,9,2, 0,2,0,2, 0,2,1,2, 0,2,2,2, 0,2,3,2, 0,2,4,2, 0,2,5,2, 0,2,6,2, - 0,2,7,2, 0,2,8,2, 0,2,9,2, 0,3,0,2, 0,3,1,2, 0,3,2,2, 0,3,3,2, 0,3,4,2, 0,3,5,2, - 0,3,6,2, 0,3,7,2, 0,3,8,2, 0,3,9,2, 0,4,0,2, 0,4,1,2, 0,4,2,2, 0,4,3,2, 0,4,4,2, - 0,4,5,2, 0,4,6,2, 0,4,7,2, 0,4,8,2, 0,4,9,2, 0,5,0,2, 0,5,1,2, 0,5,2,2, 0,5,3,2, - 0,5,4,2, 0,5,5,2, 0,5,6,2, 0,5,7,2, 0,5,8,2, 0,5,9,2, 0,6,0,2, 0,6,1,2, 0,6,2,2, - 0,6,3,2, 0,6,4,2, 0,6,5,2, 0,6,6,2, 0,6,7,2, 0,6,8,2, 0,6,9,2, 0,7,0,2, 0,7,1,2, - 0,7,2,2, 0,7,3,2, 0,7,4,2, 0,7,5,2, 0,7,6,2, 0,7,7,2, 0,7,8,2, 0,7,9,2, 0,8,0,2, - 0,8,1,2, 0,8,2,2, 0,8,3,2, 0,8,4,2, 0,8,5,2, 0,8,6,2, 0,8,7,2, 0,8,8,2, 0,8,9,2, - 0,9,0,2, 0,9,1,2, 0,9,2,2, 0,9,3,2, 0,9,4,2, 0,9,5,2, 0,9,6,2, 0,9,7,2, 0,9,8,2, - 0,9,9,2, 1,0,0,3, 1,0,1,3, 1,0,2,3, 1,0,3,3, 1,0,4,3, 1,0,5,3, 1,0,6,3, 1,0,7,3, - 1,0,8,3, 1,0,9,3, 1,1,0,3, 1,1,1,3, 1,1,2,3, 1,1,3,3, 1,1,4,3, 1,1,5,3, 1,1,6,3, - 1,1,7,3, 1,1,8,3, 1,1,9,3, 1,2,0,3, 1,2,1,3, 1,2,2,3, 1,2,3,3, 1,2,4,3, 1,2,5,3, - 1,2,6,3, 1,2,7,3, 1,2,8,3, 1,2,9,3, 1,3,0,3, 1,3,1,3, 1,3,2,3, 1,3,3,3, 1,3,4,3, - 1,3,5,3, 1,3,6,3, 1,3,7,3, 1,3,8,3, 1,3,9,3, 1,4,0,3, 1,4,1,3, 1,4,2,3, 1,4,3,3, - 1,4,4,3, 1,4,5,3, 1,4,6,3, 1,4,7,3, 1,4,8,3, 1,4,9,3, 1,5,0,3, 1,5,1,3, 1,5,2,3, - 1,5,3,3, 1,5,4,3, 1,5,5,3, 1,5,6,3, 1,5,7,3, 1,5,8,3, 1,5,9,3, 1,6,0,3, 1,6,1,3, - 1,6,2,3, 1,6,3,3, 1,6,4,3, 1,6,5,3, 1,6,6,3, 1,6,7,3, 1,6,8,3, 1,6,9,3, 1,7,0,3, - 1,7,1,3, 1,7,2,3, 1,7,3,3, 1,7,4,3, 1,7,5,3, 1,7,6,3, 1,7,7,3, 1,7,8,3, 1,7,9,3, - 1,8,0,3, 1,8,1,3, 1,8,2,3, 1,8,3,3, 1,8,4,3, 1,8,5,3, 1,8,6,3, 1,8,7,3, 1,8,8,3, - 1,8,9,3, 1,9,0,3, 1,9,1,3, 1,9,2,3, 1,9,3,3, 1,9,4,3, 1,9,5,3, 1,9,6,3, 1,9,7,3, - 1,9,8,3, 1,9,9,3, 2,0,0,3, 2,0,1,3, 2,0,2,3, 2,0,3,3, 2,0,4,3, 2,0,5,3, 2,0,6,3, - 2,0,7,3, 2,0,8,3, 2,0,9,3, 2,1,0,3, 2,1,1,3, 2,1,2,3, 2,1,3,3, 2,1,4,3, 2,1,5,3, - 2,1,6,3, 2,1,7,3, 2,1,8,3, 2,1,9,3, 2,2,0,3, 2,2,1,3, 2,2,2,3, 2,2,3,3, 2,2,4,3, - 2,2,5,3, 2,2,6,3, 2,2,7,3, 2,2,8,3, 2,2,9,3, 2,3,0,3, 2,3,1,3, 2,3,2,3, 2,3,3,3, - 2,3,4,3, 2,3,5,3, 2,3,6,3, 2,3,7,3, 2,3,8,3, 2,3,9,3, 2,4,0,3, 2,4,1,3, 2,4,2,3, - 2,4,3,3, 2,4,4,3, 2,4,5,3, 2,4,6,3, 2,4,7,3, 2,4,8,3, 2,4,9,3, 2,5,0,3, 2,5,1,3, - 2,5,2,3, 2,5,3,3, 2,5,4,3, 2,5,5,3, 2,5,6,3, 2,5,7,3, 2,5,8,3, 2,5,9,3, 2,6,0,3, - 2,6,1,3, 2,6,2,3, 2,6,3,3, 2,6,4,3, 2,6,5,3, 2,6,6,3, 2,6,7,3, 2,6,8,3, 2,6,9,3, - 2,7,0,3, 2,7,1,3, 2,7,2,3, 2,7,3,3, 2,7,4,3, 2,7,5,3, 2,7,6,3, 2,7,7,3, 2,7,8,3, - 2,7,9,3, 2,8,0,3, 2,8,1,3, 2,8,2,3, 2,8,3,3, 2,8,4,3, 2,8,5,3, 2,8,6,3, 2,8,7,3, - 2,8,8,3, 2,8,9,3, 2,9,0,3, 2,9,1,3, 2,9,2,3, 2,9,3,3, 2,9,4,3, 2,9,5,3, 2,9,6,3, - 2,9,7,3, 2,9,8,3, 2,9,9,3, 3,0,0,3, 3,0,1,3, 3,0,2,3, 3,0,3,3, 3,0,4,3, 3,0,5,3, - 3,0,6,3, 3,0,7,3, 3,0,8,3, 3,0,9,3, 3,1,0,3, 3,1,1,3, 3,1,2,3, 3,1,3,3, 3,1,4,3, - 3,1,5,3, 3,1,6,3, 3,1,7,3, 3,1,8,3, 3,1,9,3, 3,2,0,3, 3,2,1,3, 3,2,2,3, 3,2,3,3, - 3,2,4,3, 3,2,5,3, 3,2,6,3, 3,2,7,3, 3,2,8,3, 3,2,9,3, 3,3,0,3, 3,3,1,3, 3,3,2,3, - 3,3,3,3, 3,3,4,3, 3,3,5,3, 3,3,6,3, 3,3,7,3, 3,3,8,3, 3,3,9,3, 3,4,0,3, 3,4,1,3, - 3,4,2,3, 3,4,3,3, 3,4,4,3, 3,4,5,3, 3,4,6,3, 3,4,7,3, 3,4,8,3, 3,4,9,3, 3,5,0,3, - 3,5,1,3, 3,5,2,3, 3,5,3,3, 3,5,4,3, 3,5,5,3, 3,5,6,3, 3,5,7,3, 3,5,8,3, 3,5,9,3, - 3,6,0,3, 3,6,1,3, 3,6,2,3, 3,6,3,3, 3,6,4,3, 3,6,5,3, 3,6,6,3, 3,6,7,3, 3,6,8,3, - 3,6,9,3, 3,7,0,3, 3,7,1,3, 3,7,2,3, 3,7,3,3, 3,7,4,3, 3,7,5,3, 3,7,6,3, 3,7,7,3, - 3,7,8,3, 3,7,9,3, 3,8,0,3, 3,8,1,3, 3,8,2,3, 3,8,3,3, 3,8,4,3, 3,8,5,3, 3,8,6,3, - 3,8,7,3, 3,8,8,3, 3,8,9,3, 3,9,0,3, 3,9,1,3, 3,9,2,3, 3,9,3,3, 3,9,4,3, 3,9,5,3, - 3,9,6,3, 3,9,7,3, 3,9,8,3, 3,9,9,3, 4,0,0,3, 4,0,1,3, 4,0,2,3, 4,0,3,3, 4,0,4,3, - 4,0,5,3, 4,0,6,3, 4,0,7,3, 4,0,8,3, 4,0,9,3, 4,1,0,3, 4,1,1,3, 4,1,2,3, 4,1,3,3, - 4,1,4,3, 4,1,5,3, 4,1,6,3, 4,1,7,3, 4,1,8,3, 4,1,9,3, 4,2,0,3, 4,2,1,3, 4,2,2,3, - 4,2,3,3, 4,2,4,3, 4,2,5,3, 4,2,6,3, 4,2,7,3, 4,2,8,3, 4,2,9,3, 4,3,0,3, 4,3,1,3, - 4,3,2,3, 4,3,3,3, 4,3,4,3, 4,3,5,3, 4,3,6,3, 4,3,7,3, 4,3,8,3, 4,3,9,3, 4,4,0,3, - 4,4,1,3, 4,4,2,3, 4,4,3,3, 4,4,4,3, 4,4,5,3, 4,4,6,3, 4,4,7,3, 4,4,8,3, 4,4,9,3, - 4,5,0,3, 4,5,1,3, 4,5,2,3, 4,5,3,3, 4,5,4,3, 4,5,5,3, 4,5,6,3, 4,5,7,3, 4,5,8,3, - 4,5,9,3, 4,6,0,3, 4,6,1,3, 4,6,2,3, 4,6,3,3, 4,6,4,3, 4,6,5,3, 4,6,6,3, 4,6,7,3, - 4,6,8,3, 4,6,9,3, 4,7,0,3, 4,7,1,3, 4,7,2,3, 4,7,3,3, 4,7,4,3, 4,7,5,3, 4,7,6,3, - 4,7,7,3, 4,7,8,3, 4,7,9,3, 4,8,0,3, 4,8,1,3, 4,8,2,3, 4,8,3,3, 4,8,4,3, 4,8,5,3, - 4,8,6,3, 4,8,7,3, 4,8,8,3, 4,8,9,3, 4,9,0,3, 4,9,1,3, 4,9,2,3, 4,9,3,3, 4,9,4,3, - 4,9,5,3, 4,9,6,3, 4,9,7,3, 4,9,8,3, 4,9,9,3, 5,0,0,3, 5,0,1,3, 5,0,2,3, 5,0,3,3, - 5,0,4,3, 5,0,5,3, 5,0,6,3, 5,0,7,3, 5,0,8,3, 5,0,9,3, 5,1,0,3, 5,1,1,3, 5,1,2,3, - 5,1,3,3, 5,1,4,3, 5,1,5,3, 5,1,6,3, 5,1,7,3, 5,1,8,3, 5,1,9,3, 5,2,0,3, 5,2,1,3, - 5,2,2,3, 5,2,3,3, 5,2,4,3, 5,2,5,3, 5,2,6,3, 5,2,7,3, 5,2,8,3, 5,2,9,3, 5,3,0,3, - 5,3,1,3, 5,3,2,3, 5,3,3,3, 5,3,4,3, 5,3,5,3, 5,3,6,3, 5,3,7,3, 5,3,8,3, 5,3,9,3, - 5,4,0,3, 5,4,1,3, 5,4,2,3, 5,4,3,3, 5,4,4,3, 5,4,5,3, 5,4,6,3, 5,4,7,3, 5,4,8,3, - 5,4,9,3, 5,5,0,3, 5,5,1,3, 5,5,2,3, 5,5,3,3, 5,5,4,3, 5,5,5,3, 5,5,6,3, 5,5,7,3, - 5,5,8,3, 5,5,9,3, 5,6,0,3, 5,6,1,3, 5,6,2,3, 5,6,3,3, 5,6,4,3, 5,6,5,3, 5,6,6,3, - 5,6,7,3, 5,6,8,3, 5,6,9,3, 5,7,0,3, 5,7,1,3, 5,7,2,3, 5,7,3,3, 5,7,4,3, 5,7,5,3, - 5,7,6,3, 5,7,7,3, 5,7,8,3, 5,7,9,3, 5,8,0,3, 5,8,1,3, 5,8,2,3, 5,8,3,3, 5,8,4,3, - 5,8,5,3, 5,8,6,3, 5,8,7,3, 5,8,8,3, 5,8,9,3, 5,9,0,3, 5,9,1,3, 5,9,2,3, 5,9,3,3, - 5,9,4,3, 5,9,5,3, 5,9,6,3, 5,9,7,3, 5,9,8,3, 5,9,9,3, 6,0,0,3, 6,0,1,3, 6,0,2,3, - 6,0,3,3, 6,0,4,3, 6,0,5,3, 6,0,6,3, 6,0,7,3, 6,0,8,3, 6,0,9,3, 6,1,0,3, 6,1,1,3, - 6,1,2,3, 6,1,3,3, 6,1,4,3, 6,1,5,3, 6,1,6,3, 6,1,7,3, 6,1,8,3, 6,1,9,3, 6,2,0,3, - 6,2,1,3, 6,2,2,3, 6,2,3,3, 6,2,4,3, 6,2,5,3, 6,2,6,3, 6,2,7,3, 6,2,8,3, 6,2,9,3, - 6,3,0,3, 6,3,1,3, 6,3,2,3, 6,3,3,3, 6,3,4,3, 6,3,5,3, 6,3,6,3, 6,3,7,3, 6,3,8,3, - 6,3,9,3, 6,4,0,3, 6,4,1,3, 6,4,2,3, 6,4,3,3, 6,4,4,3, 6,4,5,3, 6,4,6,3, 6,4,7,3, - 6,4,8,3, 6,4,9,3, 6,5,0,3, 6,5,1,3, 6,5,2,3, 6,5,3,3, 6,5,4,3, 6,5,5,3, 6,5,6,3, - 6,5,7,3, 6,5,8,3, 6,5,9,3, 6,6,0,3, 6,6,1,3, 6,6,2,3, 6,6,3,3, 6,6,4,3, 6,6,5,3, - 6,6,6,3, 6,6,7,3, 6,6,8,3, 6,6,9,3, 6,7,0,3, 6,7,1,3, 6,7,2,3, 6,7,3,3, 6,7,4,3, - 6,7,5,3, 6,7,6,3, 6,7,7,3, 6,7,8,3, 6,7,9,3, 6,8,0,3, 6,8,1,3, 6,8,2,3, 6,8,3,3, - 6,8,4,3, 6,8,5,3, 6,8,6,3, 6,8,7,3, 6,8,8,3, 6,8,9,3, 6,9,0,3, 6,9,1,3, 6,9,2,3, - 6,9,3,3, 6,9,4,3, 6,9,5,3, 6,9,6,3, 6,9,7,3, 6,9,8,3, 6,9,9,3, 7,0,0,3, 7,0,1,3, - 7,0,2,3, 7,0,3,3, 7,0,4,3, 7,0,5,3, 7,0,6,3, 7,0,7,3, 7,0,8,3, 7,0,9,3, 7,1,0,3, - 7,1,1,3, 7,1,2,3, 7,1,3,3, 7,1,4,3, 7,1,5,3, 7,1,6,3, 7,1,7,3, 7,1,8,3, 7,1,9,3, - 7,2,0,3, 7,2,1,3, 7,2,2,3, 7,2,3,3, 7,2,4,3, 7,2,5,3, 7,2,6,3, 7,2,7,3, 7,2,8,3, - 7,2,9,3, 7,3,0,3, 7,3,1,3, 7,3,2,3, 7,3,3,3, 7,3,4,3, 7,3,5,3, 7,3,6,3, 7,3,7,3, - 7,3,8,3, 7,3,9,3, 7,4,0,3, 7,4,1,3, 7,4,2,3, 7,4,3,3, 7,4,4,3, 7,4,5,3, 7,4,6,3, - 7,4,7,3, 7,4,8,3, 7,4,9,3, 7,5,0,3, 7,5,1,3, 7,5,2,3, 7,5,3,3, 7,5,4,3, 7,5,5,3, - 7,5,6,3, 7,5,7,3, 7,5,8,3, 7,5,9,3, 7,6,0,3, 7,6,1,3, 7,6,2,3, 7,6,3,3, 7,6,4,3, - 7,6,5,3, 7,6,6,3, 7,6,7,3, 7,6,8,3, 7,6,9,3, 7,7,0,3, 7,7,1,3, 7,7,2,3, 7,7,3,3, - 7,7,4,3, 7,7,5,3, 7,7,6,3, 7,7,7,3, 7,7,8,3, 7,7,9,3, 7,8,0,3, 7,8,1,3, 7,8,2,3, - 7,8,3,3, 7,8,4,3, 7,8,5,3, 7,8,6,3, 7,8,7,3, 7,8,8,3, 7,8,9,3, 7,9,0,3, 7,9,1,3, - 7,9,2,3, 7,9,3,3, 7,9,4,3, 7,9,5,3, 7,9,6,3, 7,9,7,3, 7,9,8,3, 7,9,9,3, 8,0,0,3, - 8,0,1,3, 8,0,2,3, 8,0,3,3, 8,0,4,3, 8,0,5,3, 8,0,6,3, 8,0,7,3, 8,0,8,3, 8,0,9,3, - 8,1,0,3, 8,1,1,3, 8,1,2,3, 8,1,3,3, 8,1,4,3, 8,1,5,3, 8,1,6,3, 8,1,7,3, 8,1,8,3, - 8,1,9,3, 8,2,0,3, 8,2,1,3, 8,2,2,3, 8,2,3,3, 8,2,4,3, 8,2,5,3, 8,2,6,3, 8,2,7,3, - 8,2,8,3, 8,2,9,3, 8,3,0,3, 8,3,1,3, 8,3,2,3, 8,3,3,3, 8,3,4,3, 8,3,5,3, 8,3,6,3, - 8,3,7,3, 8,3,8,3, 8,3,9,3, 8,4,0,3, 8,4,1,3, 8,4,2,3, 8,4,3,3, 8,4,4,3, 8,4,5,3, - 8,4,6,3, 8,4,7,3, 8,4,8,3, 8,4,9,3, 8,5,0,3, 8,5,1,3, 8,5,2,3, 8,5,3,3, 8,5,4,3, - 8,5,5,3, 8,5,6,3, 8,5,7,3, 8,5,8,3, 8,5,9,3, 8,6,0,3, 8,6,1,3, 8,6,2,3, 8,6,3,3, - 8,6,4,3, 8,6,5,3, 8,6,6,3, 8,6,7,3, 8,6,8,3, 8,6,9,3, 8,7,0,3, 8,7,1,3, 8,7,2,3, - 8,7,3,3, 8,7,4,3, 8,7,5,3, 8,7,6,3, 8,7,7,3, 8,7,8,3, 8,7,9,3, 8,8,0,3, 8,8,1,3, - 8,8,2,3, 8,8,3,3, 8,8,4,3, 8,8,5,3, 8,8,6,3, 8,8,7,3, 8,8,8,3, 8,8,9,3, 8,9,0,3, - 8,9,1,3, 8,9,2,3, 8,9,3,3, 8,9,4,3, 8,9,5,3, 8,9,6,3, 8,9,7,3, 8,9,8,3, 8,9,9,3, - 9,0,0,3, 9,0,1,3, 9,0,2,3, 9,0,3,3, 9,0,4,3, 9,0,5,3, 9,0,6,3, 9,0,7,3, 9,0,8,3, - 9,0,9,3, 9,1,0,3, 9,1,1,3, 9,1,2,3, 9,1,3,3, 9,1,4,3, 9,1,5,3, 9,1,6,3, 9,1,7,3, - 9,1,8,3, 9,1,9,3, 9,2,0,3, 9,2,1,3, 9,2,2,3, 9,2,3,3, 9,2,4,3, 9,2,5,3, 9,2,6,3, - 9,2,7,3, 9,2,8,3, 9,2,9,3, 9,3,0,3, 9,3,1,3, 9,3,2,3, 9,3,3,3, 9,3,4,3, 9,3,5,3, - 9,3,6,3, 9,3,7,3, 9,3,8,3, 9,3,9,3, 9,4,0,3, 9,4,1,3, 9,4,2,3, 9,4,3,3, 9,4,4,3, - 9,4,5,3, 9,4,6,3, 9,4,7,3, 9,4,8,3, 9,4,9,3, 9,5,0,3, 9,5,1,3, 9,5,2,3, 9,5,3,3, - 9,5,4,3, 9,5,5,3, 9,5,6,3, 9,5,7,3, 9,5,8,3, 9,5,9,3, 9,6,0,3, 9,6,1,3, 9,6,2,3, - 9,6,3,3, 9,6,4,3, 9,6,5,3, 9,6,6,3, 9,6,7,3, 9,6,8,3, 9,6,9,3, 9,7,0,3, 9,7,1,3, - 9,7,2,3, 9,7,3,3, 9,7,4,3, 9,7,5,3, 9,7,6,3, 9,7,7,3, 9,7,8,3, 9,7,9,3, 9,8,0,3, - 9,8,1,3, 9,8,2,3, 9,8,3,3, 9,8,4,3, 9,8,5,3, 9,8,6,3, 9,8,7,3, 9,8,8,3, 9,8,9,3, - 9,9,0,3, 9,9,1,3, 9,9,2,3, 9,9,3,3, 9,9,4,3, 9,9,5,3, 9,9,6,3, 9,9,7,3, 9,9,8,3, - 9,9,9,3}; -#endif - diff --git a/qdecimal/decnumber/decDouble.c b/qdecimal/decnumber/decDouble.c deleted file mode 100644 index e63ef23..0000000 --- a/qdecimal/decnumber/decDouble.c +++ /dev/null @@ -1,140 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decDouble.c -- decDouble operations module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises decDouble operations (including conversions) */ -/* ------------------------------------------------------------------ */ - -#include "decContext.h" // public includes -#include "decDouble.h" // .. - -/* Constant mappings for shared code */ -#define DECPMAX DECDOUBLE_Pmax -#define DECEMIN DECDOUBLE_Emin -#define DECEMAX DECDOUBLE_Emax -#define DECEMAXD DECDOUBLE_EmaxD -#define DECBYTES DECDOUBLE_Bytes -#define DECSTRING DECDOUBLE_String -#define DECECONL DECDOUBLE_EconL -#define DECBIAS DECDOUBLE_Bias -#define DECLETS DECDOUBLE_Declets -#define DECQTINY (-DECDOUBLE_Bias) -// parameters of next-wider format -#define DECWBYTES DECQUAD_Bytes -#define DECWPMAX DECQUAD_Pmax -#define DECWECONL DECQUAD_EconL -#define DECWBIAS DECQUAD_Bias - -/* Type and function mappings for shared code */ -#define decFloat decDouble // Type name -#define decFloatWider decQuad // Type name - -// Utilities and conversions (binary results, extractors, etc.) -#define decFloatFromBCD decDoubleFromBCD -#define decFloatFromInt32 decDoubleFromInt32 -#define decFloatFromPacked decDoubleFromPacked -#define decFloatFromPackedChecked decDoubleFromPackedChecked -#define decFloatFromString decDoubleFromString -#define decFloatFromUInt32 decDoubleFromUInt32 -#define decFloatFromWider decDoubleFromWider -#define decFloatGetCoefficient decDoubleGetCoefficient -#define decFloatGetExponent decDoubleGetExponent -#define decFloatSetCoefficient decDoubleSetCoefficient -#define decFloatSetExponent decDoubleSetExponent -#define decFloatShow decDoubleShow -#define decFloatToBCD decDoubleToBCD -#define decFloatToEngString decDoubleToEngString -#define decFloatToInt32 decDoubleToInt32 -#define decFloatToInt32Exact decDoubleToInt32Exact -#define decFloatToPacked decDoubleToPacked -#define decFloatToString decDoubleToString -#define decFloatToUInt32 decDoubleToUInt32 -#define decFloatToUInt32Exact decDoubleToUInt32Exact -#define decFloatToWider decDoubleToWider -#define decFloatZero decDoubleZero - -// Computational (result is a decFloat) -#define decFloatAbs decDoubleAbs -#define decFloatAdd decDoubleAdd -#define decFloatAnd decDoubleAnd -#define decFloatDivide decDoubleDivide -#define decFloatDivideInteger decDoubleDivideInteger -#define decFloatFMA decDoubleFMA -#define decFloatInvert decDoubleInvert -#define decFloatLogB decDoubleLogB -#define decFloatMax decDoubleMax -#define decFloatMaxMag decDoubleMaxMag -#define decFloatMin decDoubleMin -#define decFloatMinMag decDoubleMinMag -#define decFloatMinus decDoubleMinus -#define decFloatMultiply decDoubleMultiply -#define decFloatNextMinus decDoubleNextMinus -#define decFloatNextPlus decDoubleNextPlus -#define decFloatNextToward decDoubleNextToward -#define decFloatOr decDoubleOr -#define decFloatPlus decDoublePlus -#define decFloatQuantize decDoubleQuantize -#define decFloatReduce decDoubleReduce -#define decFloatRemainder decDoubleRemainder -#define decFloatRemainderNear decDoubleRemainderNear -#define decFloatRotate decDoubleRotate -#define decFloatScaleB decDoubleScaleB -#define decFloatShift decDoubleShift -#define decFloatSubtract decDoubleSubtract -#define decFloatToIntegralValue decDoubleToIntegralValue -#define decFloatToIntegralExact decDoubleToIntegralExact -#define decFloatXor decDoubleXor - -// Comparisons -#define decFloatCompare decDoubleCompare -#define decFloatCompareSignal decDoubleCompareSignal -#define decFloatCompareTotal decDoubleCompareTotal -#define decFloatCompareTotalMag decDoubleCompareTotalMag - -// Copies -#define decFloatCanonical decDoubleCanonical -#define decFloatCopy decDoubleCopy -#define decFloatCopyAbs decDoubleCopyAbs -#define decFloatCopyNegate decDoubleCopyNegate -#define decFloatCopySign decDoubleCopySign - -// Non-computational -#define decFloatClass decDoubleClass -#define decFloatClassString decDoubleClassString -#define decFloatDigits decDoubleDigits -#define decFloatIsCanonical decDoubleIsCanonical -#define decFloatIsFinite decDoubleIsFinite -#define decFloatIsInfinite decDoubleIsInfinite -#define decFloatIsInteger decDoubleIsInteger -#define decFloatIsLogical decDoubleIsLogical -#define decFloatIsNaN decDoubleIsNaN -#define decFloatIsNegative decDoubleIsNegative -#define decFloatIsNormal decDoubleIsNormal -#define decFloatIsPositive decDoubleIsPositive -#define decFloatIsSignaling decDoubleIsSignaling -#define decFloatIsSignalling decDoubleIsSignalling -#define decFloatIsSigned decDoubleIsSigned -#define decFloatIsSubnormal decDoubleIsSubnormal -#define decFloatIsZero decDoubleIsZero -#define decFloatRadix decDoubleRadix -#define decFloatSameQuantum decDoubleSameQuantum -#define decFloatVersion decDoubleVersion - -#include "decNumberLocal.h" // local includes (need DECPMAX) -#include "decCommon.c" // non-arithmetic decFloat routines -#include "decBasic.c" // basic formats routines - diff --git a/qdecimal/decnumber/decDouble.h b/qdecimal/decnumber/decDouble.h deleted file mode 100644 index 2e789f6..0000000 --- a/qdecimal/decnumber/decDouble.h +++ /dev/null @@ -1,155 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decDouble.h -- Decimal 64-bit format module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECDOUBLE) - #define DECDOUBLE - - #define DECDOUBLENAME "decimalDouble" /* Short name */ - #define DECDOUBLETITLE "Decimal 64-bit datum" /* Verbose name */ - #define DECDOUBLEAUTHOR "Mike Cowlishaw" /* Who to blame */ - - /* parameters for decDoubles */ - #define DECDOUBLE_Bytes 8 /* length */ - #define DECDOUBLE_Pmax 16 /* maximum precision (digits) */ - #define DECDOUBLE_Emin -383 /* minimum adjusted exponent */ - #define DECDOUBLE_Emax 384 /* maximum adjusted exponent */ - #define DECDOUBLE_EmaxD 3 /* maximum exponent digits */ - #define DECDOUBLE_Bias 398 /* bias for the exponent */ - #define DECDOUBLE_String 25 /* maximum string length, +1 */ - #define DECDOUBLE_EconL 8 /* exponent continuation length */ - #define DECDOUBLE_Declets 5 /* count of declets */ - /* highest biased exponent (Elimit-1) */ - #define DECDOUBLE_Ehigh (DECDOUBLE_Emax + DECDOUBLE_Bias - (DECDOUBLE_Pmax-1)) - - /* Required includes */ - #include "decContext.h" - #include "decQuad.h" - - /* The decDouble decimal 64-bit type, accessible by all sizes */ - typedef union { - uint8_t bytes[DECDOUBLE_Bytes]; /* fields: 1, 5, 8, 50 bits */ - uint16_t shorts[DECDOUBLE_Bytes/2]; - uint32_t words[DECDOUBLE_Bytes/4]; - #if DECUSE64 - uint64_t longs[DECDOUBLE_Bytes/8]; - #endif - } decDouble; - - /* ---------------------------------------------------------------- */ - /* Routines -- implemented as decFloat routines in common files */ - /* ---------------------------------------------------------------- */ - - /* Utilities and conversions, extractors, etc.) */ - extern decDouble * decDoubleFromBCD(decDouble *, int32_t, const uint8_t *, int32_t); - extern decDouble * decDoubleFromInt32(decDouble *, int32_t); - extern decDouble * decDoubleFromPacked(decDouble *, int32_t, const uint8_t *); - extern decDouble * decDoubleFromPackedChecked(decDouble *, int32_t, const uint8_t *); - extern decDouble * decDoubleFromString(decDouble *, const char *, decContext *); - extern decDouble * decDoubleFromUInt32(decDouble *, uint32_t); - extern decDouble * decDoubleFromWider(decDouble *, const decQuad *, decContext *); - extern int32_t decDoubleGetCoefficient(const decDouble *, uint8_t *); - extern int32_t decDoubleGetExponent(const decDouble *); - extern decDouble * decDoubleSetCoefficient(decDouble *, const uint8_t *, int32_t); - extern decDouble * decDoubleSetExponent(decDouble *, decContext *, int32_t); - extern void decDoubleShow(const decDouble *, const char *); - extern int32_t decDoubleToBCD(const decDouble *, int32_t *, uint8_t *); - extern char * decDoubleToEngString(const decDouble *, char *); - extern int32_t decDoubleToInt32(const decDouble *, decContext *, enum rounding); - extern int32_t decDoubleToInt32Exact(const decDouble *, decContext *, enum rounding); - extern int32_t decDoubleToPacked(const decDouble *, int32_t *, uint8_t *); - extern char * decDoubleToString(const decDouble *, char *); - extern uint32_t decDoubleToUInt32(const decDouble *, decContext *, enum rounding); - extern uint32_t decDoubleToUInt32Exact(const decDouble *, decContext *, enum rounding); - extern decQuad * decDoubleToWider(const decDouble *, decQuad *); - extern decDouble * decDoubleZero(decDouble *); - - /* Computational (result is a decDouble) */ - extern decDouble * decDoubleAbs(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleAdd(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleAnd(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleDivide(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleDivideInteger(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleFMA(decDouble *, const decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleInvert(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleLogB(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleMax(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleMaxMag(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleMin(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleMinMag(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleMinus(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleMultiply(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleNextMinus(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleNextPlus(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleNextToward(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleOr(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoublePlus(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleQuantize(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleReduce(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleRemainder(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleRemainderNear(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleRotate(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleScaleB(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleShift(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleSubtract(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleToIntegralValue(decDouble *, const decDouble *, decContext *, enum rounding); - extern decDouble * decDoubleToIntegralExact(decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleXor(decDouble *, const decDouble *, const decDouble *, decContext *); - - /* Comparisons */ - extern decDouble * decDoubleCompare(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleCompareSignal(decDouble *, const decDouble *, const decDouble *, decContext *); - extern decDouble * decDoubleCompareTotal(decDouble *, const decDouble *, const decDouble *); - extern decDouble * decDoubleCompareTotalMag(decDouble *, const decDouble *, const decDouble *); - - /* Copies */ - extern decDouble * decDoubleCanonical(decDouble *, const decDouble *); - extern decDouble * decDoubleCopy(decDouble *, const decDouble *); - extern decDouble * decDoubleCopyAbs(decDouble *, const decDouble *); - extern decDouble * decDoubleCopyNegate(decDouble *, const decDouble *); - extern decDouble * decDoubleCopySign(decDouble *, const decDouble *, const decDouble *); - - /* Non-computational */ - extern enum decClass decDoubleClass(const decDouble *); - extern const char * decDoubleClassString(const decDouble *); - extern uint32_t decDoubleDigits(const decDouble *); - extern uint32_t decDoubleIsCanonical(const decDouble *); - extern uint32_t decDoubleIsFinite(const decDouble *); - extern uint32_t decDoubleIsInfinite(const decDouble *); - extern uint32_t decDoubleIsInteger(const decDouble *); - extern uint32_t decDoubleIsLogical(const decDouble *); - extern uint32_t decDoubleIsNaN(const decDouble *); - extern uint32_t decDoubleIsNegative(const decDouble *); - extern uint32_t decDoubleIsNormal(const decDouble *); - extern uint32_t decDoubleIsPositive(const decDouble *); - extern uint32_t decDoubleIsSignaling(const decDouble *); - extern uint32_t decDoubleIsSignalling(const decDouble *); - extern uint32_t decDoubleIsSigned(const decDouble *); - extern uint32_t decDoubleIsSubnormal(const decDouble *); - extern uint32_t decDoubleIsZero(const decDouble *); - extern uint32_t decDoubleRadix(const decDouble *); - extern uint32_t decDoubleSameQuantum(const decDouble *, const decDouble *); - extern const char * decDoubleVersion(void); - - /* decNumber conversions; these are implemented as macros so as not */ - /* to force a dependency on decimal64 and decNumber in decDouble. */ - /* decDoubleFromNumber returns a decimal64 * to avoid warnings. */ - #define decDoubleToNumber(dq, dn) decimal64ToNumber((decimal64 *)(dq), dn) - #define decDoubleFromNumber(dq, dn, set) decimal64FromNumber((decimal64 *)(dq), dn, set) - -#endif diff --git a/qdecimal/decnumber/decNumber.c b/qdecimal/decnumber/decNumber.c deleted file mode 100644 index 2572fac..0000000 --- a/qdecimal/decnumber/decNumber.c +++ /dev/null @@ -1,8141 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal Number arithmetic module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2009. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises the routines for arbitrary-precision General */ -/* Decimal Arithmetic as defined in the specification which may be */ -/* found on the General Decimal Arithmetic pages. It implements both */ -/* the full ('extended') arithmetic and the simpler ('subset') */ -/* arithmetic. */ -/* */ -/* Usage notes: */ -/* */ -/* 1. This code is ANSI C89 except: */ -/* */ -/* a) C99 line comments (double forward slash) are used. (Most C */ -/* compilers accept these. If yours does not, a simple script */ -/* can be used to convert them to ANSI C comments.) */ -/* */ -/* b) Types from C99 stdint.h are used. If you do not have this */ -/* header file, see the User's Guide section of the decNumber */ -/* documentation; this lists the necessary definitions. */ -/* */ -/* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */ -/* uint64_t types may be used. To avoid these, set DECUSE64=0 */ -/* and DECDPUN<=4 (see documentation). */ -/* */ -/* The code also conforms to C99 restrictions; in particular, */ -/* strict aliasing rules are observed. */ -/* */ -/* 2. The decNumber format which this library uses is optimized for */ -/* efficient processing of relatively short numbers; in particular */ -/* it allows the use of fixed sized structures and minimizes copy */ -/* and move operations. It does, however, support arbitrary */ -/* precision (up to 999,999,999 digits) and arbitrary exponent */ -/* range (Emax in the range 0 through 999,999,999 and Emin in the */ -/* range -999,999,999 through 0). Mathematical functions (for */ -/* example decNumberExp) as identified below are restricted more */ -/* tightly: digits, emax, and -emin in the context must be <= */ -/* DEC_MAX_MATH (999999), and their operand(s) must be within */ -/* these bounds. */ -/* */ -/* 3. Logical functions are further restricted; their operands must */ -/* be finite, positive, have an exponent of zero, and all digits */ -/* must be either 0 or 1. The result will only contain digits */ -/* which are 0 or 1 (and will have exponent=0 and a sign of 0). */ -/* */ -/* 4. Operands to operator functions are never modified unless they */ -/* are also specified to be the result number (which is always */ -/* permitted). Other than that case, operands must not overlap. */ -/* */ -/* 5. Error handling: the type of the error is ORed into the status */ -/* flags in the current context (decContext structure). The */ -/* SIGFPE signal is then raised if the corresponding trap-enabler */ -/* flag in the decContext is set (is 1). */ -/* */ -/* It is the responsibility of the caller to clear the status */ -/* flags as required. */ -/* */ -/* The result of any routine which returns a number will always */ -/* be a valid number (which may be a special value, such as an */ -/* Infinity or NaN). */ -/* */ -/* 6. The decNumber format is not an exchangeable concrete */ -/* representation as it comprises fields which may be machine- */ -/* dependent (packed or unpacked, or special length, for example). */ -/* Canonical conversions to and from strings are provided; other */ -/* conversions are available in separate modules. */ -/* */ -/* 7. Normally, input operands are assumed to be valid. Set DECCHECK */ -/* to 1 for extended operand checking (including NULL operands). */ -/* Results are undefined if a badly-formed structure (or a NULL */ -/* pointer to a structure) is provided, though with DECCHECK */ -/* enabled the operator routines are protected against exceptions. */ -/* (Except if the result pointer is NULL, which is unrecoverable.) */ -/* */ -/* However, the routines will never cause exceptions if they are */ -/* given well-formed operands, even if the value of the operands */ -/* is inappropriate for the operation and DECCHECK is not set. */ -/* (Except for SIGFPE, as and where documented.) */ -/* */ -/* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */ -/* ------------------------------------------------------------------ */ -/* Implementation notes for maintenance of this module: */ -/* */ -/* 1. Storage leak protection: Routines which use malloc are not */ -/* permitted to use return for fastpath or error exits (i.e., */ -/* they follow strict structured programming conventions). */ -/* Instead they have a do{}while(0); construct surrounding the */ -/* code which is protected -- break may be used to exit this. */ -/* Other routines can safely use the return statement inline. */ -/* */ -/* Storage leak accounting can be enabled using DECALLOC. */ -/* */ -/* 2. All loops use the for(;;) construct. Any do construct does */ -/* not loop; it is for allocation protection as just described. */ -/* */ -/* 3. Setting status in the context must always be the very last */ -/* action in a routine, as non-0 status may raise a trap and hence */ -/* the call to set status may not return (if the handler uses long */ -/* jump). Therefore all cleanup must be done first. In general, */ -/* to achieve this status is accumulated and is only applied just */ -/* before return by calling decContextSetStatus (via decStatus). */ -/* */ -/* Routines which allocate storage cannot, in general, use the */ -/* 'top level' routines which could cause a non-returning */ -/* transfer of control. The decXxxxOp routines are safe (do not */ -/* call decStatus even if traps are set in the context) and should */ -/* be used instead (they are also a little faster). */ -/* */ -/* 4. Exponent checking is minimized by allowing the exponent to */ -/* grow outside its limits during calculations, provided that */ -/* the decFinalize function is called later. Multiplication and */ -/* division, and intermediate calculations in exponentiation, */ -/* require more careful checks because of the risk of 31-bit */ -/* overflow (the most negative valid exponent is -1999999997, for */ -/* a 999999999-digit number with adjusted exponent of -999999999). */ -/* */ -/* 5. Rounding is deferred until finalization of results, with any */ -/* 'off to the right' data being represented as a single digit */ -/* residue (in the range -1 through 9). This avoids any double- */ -/* rounding when more than one shortening takes place (for */ -/* example, when a result is subnormal). */ -/* */ -/* 6. The digits count is allowed to rise to a multiple of DECDPUN */ -/* during many operations, so whole Units are handled and exact */ -/* accounting of digits is not needed. The correct digits value */ -/* is found by decGetDigits, which accounts for leading zeros. */ -/* This must be called before any rounding if the number of digits */ -/* is not known exactly. */ -/* */ -/* 7. The multiply-by-reciprocal 'trick' is used for partitioning */ -/* numbers up to four digits, using appropriate constants. This */ -/* is not useful for longer numbers because overflow of 32 bits */ -/* would lead to 4 multiplies, which is almost as expensive as */ -/* a divide (unless a floating-point or 64-bit multiply is */ -/* assumed to be available). */ -/* */ -/* 8. Unusual abbreviations that may be used in the commentary: */ -/* lhs -- left hand side (operand, of an operation) */ -/* lsd -- least significant digit (of coefficient) */ -/* lsu -- least significant Unit (of coefficient) */ -/* msd -- most significant digit (of coefficient) */ -/* msi -- most significant item (in an array) */ -/* msu -- most significant Unit (of coefficient) */ -/* rhs -- right hand side (operand, of an operation) */ -/* +ve -- positive */ -/* -ve -- negative */ -/* ** -- raise to the power */ -/* ------------------------------------------------------------------ */ - -#include // for malloc, free, etc. -#include // for printf [if needed] -#include // for strcpy -#include // for lower -#include "decNumber.h" // base number library -#include "decNumberLocal.h" // decNumber local types, etc. - -/* Constants */ -// Public lookup table used by the D2U macro -const uByte d2utable[DECMAXD2U+1]=D2UTABLE; - -#define DECVERB 1 // set to 1 for verbose DECCHECK -#define powers DECPOWERS // old internal name - -// Local constants -#define DIVIDE 0x80 // Divide operators -#define REMAINDER 0x40 // .. -#define DIVIDEINT 0x20 // .. -#define REMNEAR 0x10 // .. -#define COMPARE 0x01 // Compare operators -#define COMPMAX 0x02 // .. -#define COMPMIN 0x03 // .. -#define COMPTOTAL 0x04 // .. -#define COMPNAN 0x05 // .. [NaN processing] -#define COMPSIG 0x06 // .. [signaling COMPARE] -#define COMPMAXMAG 0x07 // .. -#define COMPMINMAG 0x08 // .. - -#define DEC_sNaN 0x40000000 // local status: sNaN signal -#define BADINT (Int)0x80000000 // most-negative Int; error indicator -// Next two indicate an integer >= 10**6, and its parity (bottom bit) -#define BIGEVEN (Int)0x80000002 -#define BIGODD (Int)0x80000003 - -static Unit uarrone[1]={1}; // Unit array of 1, used for incrementing - -/* Granularity-dependent code */ -#if DECDPUN<=4 - #define eInt Int // extended integer - #define ueInt uInt // unsigned extended integer - // Constant multipliers for divide-by-power-of five using reciprocal - // multiply, after removing powers of 2 by shifting, and final shift - // of 17 [we only need up to **4] - static const uInt multies[]={131073, 26215, 5243, 1049, 210}; - // QUOT10 -- macro to return the quotient of unit u divided by 10**n - #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) -#else - // For DECDPUN>4 non-ANSI-89 64-bit types are needed. - #if !DECUSE64 - #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4 - #endif - #define eInt Long // extended integer - #define ueInt uLong // unsigned extended integer -#endif - -/* Local routines */ -static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, - decContext *, uByte, uInt *); -static Flag decBiStr(const char *, const char *, const char *); -static uInt decCheckMath(const decNumber *, decContext *, uInt *); -static void decApplyRound(decNumber *, decContext *, Int, uInt *); -static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag); -static decNumber * decCompareOp(decNumber *, const decNumber *, - const decNumber *, decContext *, - Flag, uInt *); -static void decCopyFit(decNumber *, const decNumber *, decContext *, - Int *, uInt *); -static decNumber * decDecap(decNumber *, Int); -static decNumber * decDivideOp(decNumber *, const decNumber *, - const decNumber *, decContext *, Flag, uInt *); -static decNumber * decExpOp(decNumber *, const decNumber *, - decContext *, uInt *); -static void decFinalize(decNumber *, decContext *, Int *, uInt *); -static Int decGetDigits(Unit *, Int); -static Int decGetInt(const decNumber *); -static decNumber * decLnOp(decNumber *, const decNumber *, - decContext *, uInt *); -static decNumber * decMultiplyOp(decNumber *, const decNumber *, - const decNumber *, decContext *, - uInt *); -static decNumber * decNaNs(decNumber *, const decNumber *, - const decNumber *, decContext *, uInt *); -static decNumber * decQuantizeOp(decNumber *, const decNumber *, - const decNumber *, decContext *, Flag, - uInt *); -static void decReverse(Unit *, Unit *); -static void decSetCoeff(decNumber *, decContext *, const Unit *, - Int, Int *, uInt *); -static void decSetMaxValue(decNumber *, decContext *); -static void decSetOverflow(decNumber *, decContext *, uInt *); -static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *); -static Int decShiftToLeast(Unit *, Int, Int); -static Int decShiftToMost(Unit *, Int, Int); -static void decStatus(decNumber *, uInt, decContext *); -static void decToString(const decNumber *, char[], Flag); -static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *); -static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int, - Unit *, Int); -static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int); - -#if !DECSUBSET -/* decFinish == decFinalize when no subset arithmetic needed */ -#define decFinish(a,b,c,d) decFinalize(a,b,c,d) -#else -static void decFinish(decNumber *, decContext *, Int *, uInt *); -static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *); -#endif - -/* Local macros */ -// masked special-values bits -#define SPECIALARG (rhs->bits & DECSPECIAL) -#define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL) - -/* Diagnostic macros, etc. */ -#if DECALLOC -// Handle malloc/free accounting. If enabled, our accountable routines -// are used; otherwise the code just goes straight to the system malloc -// and free routines. -#define malloc(a) decMalloc(a) -#define free(a) decFree(a) -#define DECFENCE 0x5a // corruption detector -// 'Our' malloc and free: -static void *decMalloc(size_t); -static void decFree(void *); -uInt decAllocBytes=0; // count of bytes allocated -// Note that DECALLOC code only checks for storage buffer overflow. -// To check for memory leaks, the decAllocBytes variable must be -// checked to be 0 at appropriate times (e.g., after the test -// harness completes a set of tests). This checking may be unreliable -// if the testing is done in a multi-thread environment. -#endif - -#if DECCHECK -// Optional checking routines. Enabling these means that decNumber -// and decContext operands to operator routines are checked for -// correctness. This roughly doubles the execution time of the -// fastest routines (and adds 600+ bytes), so should not normally be -// used in 'production'. -// decCheckInexact is used to check that inexact results have a full -// complement of digits (where appropriate -- this is not the case -// for Quantize, for example) -#define DECUNRESU ((decNumber *)(void *)0xffffffff) -#define DECUNUSED ((const decNumber *)(void *)0xffffffff) -#define DECUNCONT ((decContext *)(void *)(0xffffffff)) -static Flag decCheckOperands(decNumber *, const decNumber *, - const decNumber *, decContext *); -static Flag decCheckNumber(const decNumber *); -static void decCheckInexact(const decNumber *, decContext *); -#endif - -#if DECTRACE || DECCHECK -// Optional trace/debugging routines (may or may not be used) -void decNumberShow(const decNumber *); // displays the components of a number -static void decDumpAr(char, const Unit *, Int); -#endif - -/* ================================================================== */ -/* Conversions */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* from-int32 -- conversion from Int or uInt */ -/* */ -/* dn is the decNumber to receive the integer */ -/* in or uin is the integer to be converted */ -/* returns dn */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberFromInt32(decNumber *dn, Int in) { - uInt unsig; - if (in>=0) unsig=in; - else { // negative (possibly BADINT) - if (in==BADINT) unsig=(uInt)1073741824*2; // special case - else unsig=-in; // invert - } - // in is now positive - decNumberFromUInt32(dn, unsig); - if (in<0) dn->bits=DECNEG; // sign needed - return dn; - } // decNumberFromInt32 - -decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) { - Unit *up; // work pointer - decNumberZero(dn); // clean - if (uin==0) return dn; // [or decGetDigits bad call] - for (up=dn->lsu; uin>0; up++) { - *up=(Unit)(uin%(DECDPUNMAX+1)); - uin=uin/(DECDPUNMAX+1); - } - dn->digits=decGetDigits(dn->lsu, up-dn->lsu); - return dn; - } // decNumberFromUInt32 - -/* ------------------------------------------------------------------ */ -/* to-int32 -- conversion to Int or uInt */ -/* */ -/* dn is the decNumber to convert */ -/* set is the context for reporting errors */ -/* returns the converted decNumber, or 0 if Invalid is set */ -/* */ -/* Invalid is set if the decNumber does not have exponent==0 or if */ -/* it is a NaN, Infinite, or out-of-range. */ -/* ------------------------------------------------------------------ */ -Int decNumberToInt32(const decNumber *dn, decContext *set) { - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; - #endif - - // special or too many digits, or bad exponent - if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; // bad - else { // is a finite integer with 10 or fewer digits - Int d; // work - const Unit *up; // .. - uInt hi=0, lo; // .. - up=dn->lsu; // -> lsu - lo=*up; // get 1 to 9 digits - #if DECDPUN>1 // split to higher - hi=lo/10; - lo=lo%10; - #endif - up++; - // collect remaining Units, if any, into hi - for (d=DECDPUN; ddigits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; - // now low has the lsd, hi the remainder - if (hi>214748364 || (hi==214748364 && lo>7)) { // out of range? - // most-negative is a reprieve - if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000; - // bad -- drop through - } - else { // in-range always - Int i=X10(hi)+lo; - if (dn->bits&DECNEG) return -i; - return i; - } - } // integer - decContextSetStatus(set, DEC_Invalid_operation); // [may not return] - return 0; - } // decNumberToInt32 - -uInt decNumberToUInt32(const decNumber *dn, decContext *set) { - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; - #endif - // special or too many digits, or bad exponent, or negative (<0) - if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0 - || (dn->bits&DECNEG && !ISZERO(dn))); // bad - else { // is a finite integer with 10 or fewer digits - Int d; // work - const Unit *up; // .. - uInt hi=0, lo; // .. - up=dn->lsu; // -> lsu - lo=*up; // get 1 to 9 digits - #if DECDPUN>1 // split to higher - hi=lo/10; - lo=lo%10; - #endif - up++; - // collect remaining Units, if any, into hi - for (d=DECDPUN; ddigits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; - - // now low has the lsd, hi the remainder - if (hi>429496729 || (hi==429496729 && lo>5)) ; // no reprieve possible - else return X10(hi)+lo; - } // integer - decContextSetStatus(set, DEC_Invalid_operation); // [may not return] - return 0; - } // decNumberToUInt32 - -/* ------------------------------------------------------------------ */ -/* to-scientific-string -- conversion to numeric string */ -/* to-engineering-string -- conversion to numeric string */ -/* */ -/* decNumberToString(dn, string); */ -/* decNumberToEngString(dn, string); */ -/* */ -/* dn is the decNumber to convert */ -/* string is the string where the result will be laid out */ -/* */ -/* string must be at least dn->digits+14 characters long */ -/* */ -/* No error is possible, and no status can be set. */ -/* ------------------------------------------------------------------ */ -char * decNumberToString(const decNumber *dn, char *string){ - decToString(dn, string, 0); - return string; - } // DecNumberToString - -char * decNumberToEngString(const decNumber *dn, char *string){ - decToString(dn, string, 1); - return string; - } // DecNumberToEngString - -/* ------------------------------------------------------------------ */ -/* to-number -- conversion from numeric string */ -/* */ -/* decNumberFromString -- convert string to decNumber */ -/* dn -- the number structure to fill */ -/* chars[] -- the string to convert ('\0' terminated) */ -/* set -- the context used for processing any error, */ -/* determining the maximum precision available */ -/* (set.digits), determining the maximum and minimum */ -/* exponent (set.emax and set.emin), determining if */ -/* extended values are allowed, and checking the */ -/* rounding mode if overflow occurs or rounding is */ -/* needed. */ -/* */ -/* The length of the coefficient and the size of the exponent are */ -/* checked by this routine, so the correct error (Underflow or */ -/* Overflow) can be reported or rounding applied, as necessary. */ -/* */ -/* If bad syntax is detected, the result will be a quiet NaN. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberFromString(decNumber *dn, const char chars[], - decContext *set) { - Int exponent=0; // working exponent [assume 0] - uByte bits=0; // working flags [assume +ve] - Unit *res; // where result will be built - Unit resbuff[SD2U(DECBUFFER+9)];// local buffer in case need temporary - // [+9 allows for ln() constants] - Unit *allocres=NULL; // -> allocated result, iff allocated - Int d=0; // count of digits found in decimal part - const char *dotchar=NULL; // where dot was found - const char *cfirst=chars; // -> first character of decimal part - const char *last=NULL; // -> last digit of decimal part - const char *c; // work - Unit *up; // .. - #if DECDPUN>1 - Int cut, out; // .. - #endif - Int residue; // rounding residue - uInt status=0; // error code - - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) - return decNumberZero(dn); - #endif - - do { // status & malloc protection - for (c=chars;; c++) { // -> input character - if (*c>='0' && *c<='9') { // test for Arabic digit - last=c; - d++; // count of real digits - continue; // still in decimal part - } - if (*c=='.' && dotchar==NULL) { // first '.' - dotchar=c; // record offset into decimal part - if (c==cfirst) cfirst++; // first digit must follow - continue;} - if (c==chars) { // first in string... - if (*c=='-') { // valid - sign - cfirst++; - bits=DECNEG; - continue;} - if (*c=='+') { // valid + sign - cfirst++; - continue;} - } - // *c is not a digit, or a valid +, -, or '.' - break; - } // c - - if (last==NULL) { // no digits yet - status=DEC_Conversion_syntax;// assume the worst - if (*c=='\0') break; // and no more to come... - #if DECSUBSET - // if subset then infinities and NaNs are not allowed - if (!set->extended) break; // hopeless - #endif - // Infinities and NaNs are possible, here - if (dotchar!=NULL) break; // .. unless had a dot - decNumberZero(dn); // be optimistic - if (decBiStr(c, "infinity", "INFINITY") - || decBiStr(c, "inf", "INF")) { - dn->bits=bits | DECINF; - status=0; // is OK - break; // all done - } - // a NaN expected - // 2003.09.10 NaNs are now permitted to have a sign - dn->bits=bits | DECNAN; // assume simple NaN - if (*c=='s' || *c=='S') { // looks like an sNaN - c++; - dn->bits=bits | DECSNAN; - } - if (*c!='n' && *c!='N') break; // check caseless "NaN" - c++; - if (*c!='a' && *c!='A') break; // .. - c++; - if (*c!='n' && *c!='N') break; // .. - c++; - // now either nothing, or nnnn payload, expected - // -> start of integer and skip leading 0s [including plain 0] - for (cfirst=c; *cfirst=='0';) cfirst++; - if (*cfirst=='\0') { // "NaN" or "sNaN", maybe with all 0s - status=0; // it's good - break; // .. - } - // something other than 0s; setup last and d as usual [no dots] - for (c=cfirst;; c++, d++) { - if (*c<'0' || *c>'9') break; // test for Arabic digit - last=c; - } - if (*c!='\0') break; // not all digits - if (d>set->digits-1) { - // [NB: payload in a decNumber can be full length unless - // clamped, in which case can only be digits-1] - if (set->clamp) break; - if (d>set->digits) break; - } // too many digits? - // good; drop through to convert the integer to coefficient - status=0; // syntax is OK - bits=dn->bits; // for copy-back - } // last==NULL - - else if (*c!='\0') { // more to process... - // had some digits; exponent is only valid sequence now - Flag nege; // 1=negative exponent - const char *firstexp; // -> first significant exponent digit - status=DEC_Conversion_syntax;// assume the worst - if (*c!='e' && *c!='E') break; - /* Found 'e' or 'E' -- now process explicit exponent */ - // 1998.07.11: sign no longer required - nege=0; - c++; // to (possible) sign - if (*c=='-') {nege=1; c++;} - else if (*c=='+') c++; - if (*c=='\0') break; - - for (; *c=='0' && *(c+1)!='\0';) c++; // strip insignificant zeros - firstexp=c; // save exponent digit place - for (; ;c++) { - if (*c<'0' || *c>'9') break; // not a digit - exponent=X10(exponent)+(Int)*c-(Int)'0'; - } // c - // if not now on a '\0', *c must not be a digit - if (*c!='\0') break; - - // (this next test must be after the syntax checks) - // if it was too long the exponent may have wrapped, so check - // carefully and set it to a certain overflow if wrap possible - if (c>=firstexp+9+1) { - if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2; - // [up to 1999999999 is OK, for example 1E-1000000998] - } - if (nege) exponent=-exponent; // was negative - status=0; // is OK - } // stuff after digits - - // Here when whole string has been inspected; syntax is good - // cfirst->first digit (never dot), last->last digit (ditto) - - // strip leading zeros/dot [leave final 0 if all 0's] - if (*cfirst=='0') { // [cfirst has stepped over .] - for (c=cfirst; cextended) { - decNumberZero(dn); // clean result - break; // [could be return] - } - #endif - } // at least one leading 0 - - // Handle decimal point... - if (dotchar!=NULL && dotchardigits) res=dn->lsu; // fits into supplied decNumber - else { // rounding needed - Int needbytes=D2U(d)*sizeof(Unit);// bytes needed - res=resbuff; // assume use local buffer - if (needbytes>(Int)sizeof(resbuff)) { // too big for local - allocres=(Unit *)malloc(needbytes); - if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} - res=allocres; - } - } - // res now -> number lsu, buffer, or allocated storage for Unit array - - // Place the coefficient into the selected Unit array - // [this is often 70% of the cost of this function when DECDPUN>1] - #if DECDPUN>1 - out=0; // accumulator - up=res+D2U(d)-1; // -> msu - cut=d-(up-res)*DECDPUN; // digits in top unit - for (c=cfirst;; c++) { // along the digits - if (*c=='.') continue; // ignore '.' [don't decrement cut] - out=X10(out)+(Int)*c-(Int)'0'; - if (c==last) break; // done [never get to trailing '.'] - cut--; - if (cut>0) continue; // more for this unit - *up=(Unit)out; // write unit - up--; // prepare for unit below.. - cut=DECDPUN; // .. - out=0; // .. - } // c - *up=(Unit)out; // write lsu - - #else - // DECDPUN==1 - up=res; // -> lsu - for (c=last; c>=cfirst; c--) { // over each character, from least - if (*c=='.') continue; // ignore . [don't step up] - *up=(Unit)((Int)*c-(Int)'0'); - up++; - } // c - #endif - - dn->bits=bits; - dn->exponent=exponent; - dn->digits=d; - - // if not in number (too long) shorten into the number - if (d>set->digits) { - residue=0; - decSetCoeff(dn, set, res, d, &residue, &status); - // always check for overflow or subnormal and round as needed - decFinalize(dn, set, &residue, &status); - } - else { // no rounding, but may still have overflow or subnormal - // [these tests are just for performance; finalize repeats them] - if ((dn->exponent-1emin-dn->digits) - || (dn->exponent-1>set->emax-set->digits)) { - residue=0; - decFinalize(dn, set, &residue, &status); - } - } - // decNumberShow(dn); - } while(0); // [for break] - - if (allocres!=NULL) free(allocres); // drop any storage used - if (status!=0) decStatus(dn, status, set); - return dn; - } /* decNumberFromString */ - -/* ================================================================== */ -/* Operators */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* decNumberAbs -- absolute value operator */ -/* */ -/* This computes C = abs(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* See also decNumberCopyAbs for a quiet bitwise version of this. */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This has the same effect as decNumberPlus unless A is negative, */ -/* in which case it has the same effect as decNumberMinus. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberAbs(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dzero; // for 0 - uInt status=0; // accumulator - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - decNumberZero(&dzero); // set 0 - dzero.exponent=rhs->exponent; // [no coefficient expansion] - decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberAbs - -/* ------------------------------------------------------------------ */ -/* decNumberAdd -- add two Numbers */ -/* */ -/* This computes C = A + B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X+X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This just calls the routine shared with Subtract */ -decNumber * decNumberAdd(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decAddOp(res, lhs, rhs, set, 0, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberAdd - -/* ------------------------------------------------------------------ */ -/* decNumberAnd -- AND two Numbers, digitwise */ -/* */ -/* This computes C = A & B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X&X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberAnd(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - const Unit *ua, *ub; // -> operands - const Unit *msua, *msub; // -> operand msus - Unit *uc, *msuc; // -> result and its msu - Int msudigs; // digits in res msu - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) - || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - - // operands are valid - ua=lhs->lsu; // bottom-up - ub=rhs->lsu; // .. - uc=res->lsu; // .. - msua=ua+D2U(lhs->digits)-1; // -> msu of lhs - msub=ub+D2U(rhs->digits)-1; // -> msu of rhs - msuc=uc+D2U(set->digits)-1; // -> msu of result - msudigs=MSUDIGITS(set->digits); // [faster than remainder] - for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop - Unit a, b; // extract units - if (ua>msua) a=0; - else a=*ua; - if (ub>msub) b=0; - else b=*ub; - *uc=0; // can now write back - if (a|b) { // maybe 1 bits to examine - Int i, j; - *uc=0; // can now write back - // This loop could be unrolled and/or use BIN2BCD tables - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; // just did final digit - } // each digit - } // both OK - } // each unit - // [here uc-1 is the msu of the result] - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; // integer - res->bits=0; // sign=0 - return res; // [no status to set] - } // decNumberAnd - -/* ------------------------------------------------------------------ */ -/* decNumberCompare -- compare two Numbers */ -/* */ -/* This computes C = A ? B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit (or NaN). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompare(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decCompareOp(res, lhs, rhs, set, COMPARE, &status); - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberCompare - -/* ------------------------------------------------------------------ */ -/* decNumberCompareSignal -- compare, signalling on all NaNs */ -/* */ -/* This computes C = A ? B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit (or NaN). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decCompareOp(res, lhs, rhs, set, COMPSIG, &status); - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberCompareSignal - -/* ------------------------------------------------------------------ */ -/* decNumberCompareTotal -- compare two Numbers, using total ordering */ -/* */ -/* This computes C = A ? B, under total ordering */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit; the result will always be one of */ -/* -1, 0, or 1. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberCompareTotal - -/* ------------------------------------------------------------------ */ -/* decNumberCompareTotalMag -- compare, total ordering of magnitudes */ -/* */ -/* This computes C = |A| ? |B|, under total ordering */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit; the result will always be one of */ -/* -1, 0, or 1. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - uInt needbytes; // for space calculations - decNumber bufa[D2N(DECBUFFER+1)];// +1 in case DECBUFFER=0 - decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated - decNumber bufb[D2N(DECBUFFER+1)]; - decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated - decNumber *a, *b; // temporary pointers - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { // protect allocated storage - // if either is negative, take a copy and absolute - if (decNumberIsNegative(lhs)) { // lhs<0 - a=bufa; - needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { // need malloc space - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - a=allocbufa; // use the allocated space - } - decNumberCopy(a, lhs); // copy content - a->bits&=~DECNEG; // .. and clear the sign - lhs=a; // use copy from here on - } - if (decNumberIsNegative(rhs)) { // rhs<0 - b=bufb; - needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufb)) { // need malloc space - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufb==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - b=allocbufb; // use the allocated space - } - decNumberCopy(b, rhs); // copy content - b->bits&=~DECNEG; // .. and clear the sign - rhs=b; // use copy from here on - } - decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); - } while(0); // end protected - - if (allocbufa!=NULL) free(allocbufa); // drop any storage used - if (allocbufb!=NULL) free(allocbufb); // .. - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberCompareTotalMag - -/* ------------------------------------------------------------------ */ -/* decNumberDivide -- divide one number by another */ -/* */ -/* This computes C = A / B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X/X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberDivide(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decDivideOp(res, lhs, rhs, set, DIVIDE, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberDivide - -/* ------------------------------------------------------------------ */ -/* decNumberDivideInteger -- divide and return integer quotient */ -/* */ -/* This computes C = A # B, where # is the integer divide operator */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X#X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status); - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberDivideInteger - -/* ------------------------------------------------------------------ */ -/* decNumberExp -- exponentiation */ -/* */ -/* This computes C = exp(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* Finite results will always be full precision and Inexact, except */ -/* when A is a zero or -Infinity (giving 1 or 0 respectively). */ -/* */ -/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* This is a wrapper for decExpOp which can handle the slightly wider */ -/* (double) range needed by Ln (which has to be able to calculate */ -/* exp(-a) where a can be the tiniest number (Ntiny). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberExp(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0; // accumulator - #if DECSUBSET - decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated - #endif - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - // Check restrictions; these restrictions ensure that if h=8 (see - // decExpOp) then the result will either overflow or underflow to 0. - // Other math functions restrict the input range, too, for inverses. - // If not violated then carry out the operation. - if (!decCheckMath(rhs, set, &status)) do { // protect allocation - #if DECSUBSET - if (!set->extended) { - // reduce operand and set lostDigits status, as needed - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - decExpOp(res, rhs, set, &status); - } while(0); // end protected - - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); // drop any storage used - #endif - // apply significant status - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberExp - -/* ------------------------------------------------------------------ */ -/* decNumberFMA -- fused multiply add */ -/* */ -/* This computes D = (A * B) + C with only one rounding */ -/* */ -/* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */ -/* lhs is A */ -/* rhs is B */ -/* fhs is C [far hand side] */ -/* set is the context */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberFMA(decNumber *res, const decNumber *lhs, - const decNumber *rhs, const decNumber *fhs, - decContext *set) { - uInt status=0; // accumulator - decContext dcmul; // context for the multiplication - uInt needbytes; // for space calculations - decNumber bufa[D2N(DECBUFFER*2+1)]; - decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated - decNumber *acc; // accumulator pointer - decNumber dzero; // work - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { // [undefined if subset] - status|=DEC_Invalid_operation; - break;} - #endif - // Check math restrictions [these ensure no overflow or underflow] - if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status)) - || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status)) - || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break; - // set up context for multiply - dcmul=*set; - dcmul.digits=lhs->digits+rhs->digits; // just enough - // [The above may be an over-estimate for subset arithmetic, but that's OK] - dcmul.emax=DEC_MAX_EMAX; // effectively unbounded .. - dcmul.emin=DEC_MIN_EMIN; // [thanks to Math restrictions] - // set up decNumber space to receive the result of the multiply - acc=bufa; // may fit - needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { // need malloc space - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - acc=allocbufa; // use the allocated space - } - // multiply with extended range and necessary precision - //printf("emin=%ld\n", dcmul.emin); - decMultiplyOp(acc, lhs, rhs, &dcmul, &status); - // Only Invalid operation (from sNaN or Inf * 0) is possible in - // status; if either is seen than ignore fhs (in case it is - // another sNaN) and set acc to NaN unless we had an sNaN - // [decMultiplyOp leaves that to caller] - // Note sNaN has to go through addOp to shorten payload if - // necessary - if ((status&DEC_Invalid_operation)!=0) { - if (!(status&DEC_sNaN)) { // but be true invalid - decNumberZero(res); // acc not yet set - res->bits=DECNAN; - break; - } - decNumberZero(&dzero); // make 0 (any non-NaN would do) - fhs=&dzero; // use that - } - #if DECCHECK - else { // multiply was OK - if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status); - } - #endif - // add the third operand and result -> res, and all is done - decAddOp(res, acc, fhs, set, 0, &status); - } while(0); // end protected - - if (allocbufa!=NULL) free(allocbufa); // drop any storage used - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberFMA - -/* ------------------------------------------------------------------ */ -/* decNumberInvert -- invert a Number, digitwise */ -/* */ -/* This computes C = ~A */ -/* */ -/* res is C, the result. C may be A (e.g., X=~X) */ -/* rhs is A */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberInvert(decNumber *res, const decNumber *rhs, - decContext *set) { - const Unit *ua, *msua; // -> operand and its msu - Unit *uc, *msuc; // -> result and its msu - Int msudigs; // digits in res msu - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - // operand is valid - ua=rhs->lsu; // bottom-up - uc=res->lsu; // .. - msua=ua+D2U(rhs->digits)-1; // -> msu of rhs - msuc=uc+D2U(set->digits)-1; // -> msu of result - msudigs=MSUDIGITS(set->digits); // [faster than remainder] - for (; uc<=msuc; ua++, uc++) { // Unit loop - Unit a; // extract unit - Int i, j; // work - if (ua>msua) a=0; - else a=*ua; - *uc=0; // can now write back - // always need to examine all bits in rhs - // This loop could be unrolled and/or use BIN2BCD tables - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; // just did final digit - } // each digit - } // each unit - // [here uc-1 is the msu of the result] - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; // integer - res->bits=0; // sign=0 - return res; // [no status to set] - } // decNumberInvert - -/* ------------------------------------------------------------------ */ -/* decNumberLn -- natural logarithm */ -/* */ -/* This computes C = ln(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Notable cases: */ -/* A<0 -> Invalid */ -/* A=0 -> -Infinity (Exact) */ -/* A=+Infinity -> +Infinity (Exact) */ -/* A=1 exactly -> 0 (Exact) */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* This is a wrapper for decLnOp which can handle the slightly wider */ -/* (+11) range needed by Ln, Log10, etc. (which may have to be able */ -/* to calculate at p+e+2). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberLn(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0; // accumulator - #if DECSUBSET - decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated - #endif - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - // Check restrictions; this is a math function; if not violated - // then carry out the operation. - if (!decCheckMath(rhs, set, &status)) do { // protect allocation - #if DECSUBSET - if (!set->extended) { - // reduce operand and set lostDigits status, as needed - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - // special check in subset for rhs=0 - if (ISZERO(rhs)) { // +/- zeros -> error - status|=DEC_Invalid_operation; - break;} - } // extended=0 - #endif - decLnOp(res, rhs, set, &status); - } while(0); // end protected - - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); // drop any storage used - #endif - // apply significant status - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberLn - -/* ------------------------------------------------------------------ */ -/* decNumberLogB - get adjusted exponent, by 754 rules */ -/* */ -/* This computes C = adjustedexponent(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context, used only for digits and status */ -/* */ -/* For an unrounded result, digits may need to be 10 (A might have */ -/* 10**9 digits and an exponent of +999999999, or one digit and an */ -/* exponent of -1999999999). */ -/* */ -/* This returns the adjusted exponent of A after (in theory) padding */ -/* with zeros on the right to set->digits digits while keeping the */ -/* same value. The exponent is not limited by emin/emax. */ -/* */ -/* Notable cases: */ -/* A<0 -> Use |A| */ -/* A=0 -> -Infinity (Division by zero) */ -/* A=Infinite -> +Infinity (Exact) */ -/* A=1 exactly -> 0 (Exact) */ -/* NaNs are propagated as usual */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberLogB(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0; // accumulator - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - // NaNs as usual; Infinities return +Infinity; 0->oops - if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status); - else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs); - else if (decNumberIsZero(rhs)) { - decNumberZero(res); // prepare for Infinity - res->bits=DECNEG|DECINF; // -Infinity - status|=DEC_Division_by_zero; // as per 754 - } - else { // finite non-zero - Int ae=rhs->exponent+rhs->digits-1; // adjusted exponent - if (set->digits>=10) decNumberFromInt32(res, ae); // lay it out - else { - decNumber buft[D2N(10)]; // temporary number - decNumber *t=buft; // .. - decNumberFromInt32(t, ae); // lay it out - decNumberPlus(res, t, set); // round as necessary - } - } - - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberLogB - -/* ------------------------------------------------------------------ */ -/* decNumberLog10 -- logarithm in base 10 */ -/* */ -/* This computes C = log10(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Notable cases: */ -/* A<0 -> Invalid */ -/* A=0 -> -Infinity (Exact) */ -/* A=+Infinity -> +Infinity (Exact) */ -/* A=10**n (if n is an integer) -> n (Exact) */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* This calculates ln(A)/ln(10) using appropriate precision. For */ -/* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */ -/* requested digits and t is the number of digits in the exponent */ -/* (maximum 6). For ln(10) it is p + 3; this is often handled by the */ -/* fastpath in decLnOp. The final division is done to the requested */ -/* precision. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberLog10(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0, ignore=0; // status accumulators - uInt needbytes; // for space calculations - Int p; // working precision - Int t; // digits in exponent of A - - // buffers for a and b working decimals - // (adjustment calculator, same size) - decNumber bufa[D2N(DECBUFFER+2)]; - decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated - decNumber *a=bufa; // temporary a - decNumber bufb[D2N(DECBUFFER+2)]; - decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated - decNumber *b=bufb; // temporary b - decNumber bufw[D2N(10)]; // working 2-10 digit number - decNumber *w=bufw; // .. - #if DECSUBSET - decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated - #endif - - decContext aset; // working context - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - // Check restrictions; this is a math function; if not violated - // then carry out the operation. - if (!decCheckMath(rhs, set, &status)) do { // protect malloc - #if DECSUBSET - if (!set->extended) { - // reduce operand and set lostDigits status, as needed - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - // special check in subset for rhs=0 - if (ISZERO(rhs)) { // +/- zeros -> error - status|=DEC_Invalid_operation; - break;} - } // extended=0 - #endif - - decContextDefault(&aset, DEC_INIT_DECIMAL64); // clean context - - // handle exact powers of 10; only check if +ve finite - if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { - Int residue=0; // (no residue) - uInt copystat=0; // clean status - - // round to a single digit... - aset.digits=1; - decCopyFit(w, rhs, &aset, &residue, ©stat); // copy & shorten - // if exact and the digit is 1, rhs is a power of 10 - if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { - // the exponent, conveniently, is the power of 10; making - // this the result needs a little care as it might not fit, - // so first convert it into the working number, and then move - // to res - decNumberFromInt32(w, w->exponent); - residue=0; - decCopyFit(res, w, set, &residue, &status); // copy & round - decFinish(res, set, &residue, &status); // cleanup/set flags - break; - } // not a power of 10 - } // not a candidate for exact - - // simplify the information-content calculation to use 'total - // number of digits in a, including exponent' as compared to the - // requested digits, as increasing this will only rarely cost an - // iteration in ln(a) anyway - t=6; // it can never be >6 - - // allocate space when needed... - p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; - needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { // need malloc space - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - a=allocbufa; // use the allocated space - } - aset.digits=p; // as calculated - aset.emax=DEC_MAX_MATH; // usual bounds - aset.emin=-DEC_MAX_MATH; // .. - aset.clamp=0; // and no concrete format - decLnOp(a, rhs, &aset, &status); // a=ln(rhs) - - // skip the division if the result so far is infinite, NaN, or - // zero, or there was an error; note NaN from sNaN needs copy - if (status&DEC_NaNs && !(status&DEC_sNaN)) break; - if (a->bits&DECSPECIAL || ISZERO(a)) { - decNumberCopy(res, a); // [will fit] - break;} - - // for ln(10) an extra 3 digits of precision are needed - p=set->digits+3; - needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); - if (needbytes>sizeof(bufb)) { // need malloc space - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufb==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - b=allocbufb; // use the allocated space - } - decNumberZero(w); // set up 10... - #if DECDPUN==1 - w->lsu[1]=1; w->lsu[0]=0; // .. - #else - w->lsu[0]=10; // .. - #endif - w->digits=2; // .. - - aset.digits=p; - decLnOp(b, w, &aset, &ignore); // b=ln(10) - - aset.digits=set->digits; // for final divide - decDivideOp(res, a, b, &aset, DIVIDE, &status); // into result - } while(0); // [for break] - - if (allocbufa!=NULL) free(allocbufa); // drop any storage used - if (allocbufb!=NULL) free(allocbufb); // .. - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); // .. - #endif - // apply significant status - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberLog10 - -/* ------------------------------------------------------------------ */ -/* decNumberMax -- compare two Numbers and return the maximum */ -/* */ -/* This computes C = A ? B, returning the maximum by 754 rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMax(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decCompareOp(res, lhs, rhs, set, COMPMAX, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberMax - -/* ------------------------------------------------------------------ */ -/* decNumberMaxMag -- compare and return the maximum by magnitude */ -/* */ -/* This computes C = A ? B, returning the maximum by 754 rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberMaxMag - -/* ------------------------------------------------------------------ */ -/* decNumberMin -- compare two Numbers and return the minimum */ -/* */ -/* This computes C = A ? B, returning the minimum by 754 rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMin(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decCompareOp(res, lhs, rhs, set, COMPMIN, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberMin - -/* ------------------------------------------------------------------ */ -/* decNumberMinMag -- compare and return the minimum by magnitude */ -/* */ -/* This computes C = A ? B, returning the minimum by 754 rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberMinMag - -/* ------------------------------------------------------------------ */ -/* decNumberMinus -- prefix minus operator */ -/* */ -/* This computes C = 0 - A */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* See also decNumberCopyNegate for a quiet bitwise version of this. */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* Simply use AddOp for the subtract, which will do the necessary. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMinus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dzero; - uInt status=0; // accumulator - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - decNumberZero(&dzero); // make 0 - dzero.exponent=rhs->exponent; // [no coefficient expansion] - decAddOp(res, &dzero, rhs, set, DECNEG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberMinus - -/* ------------------------------------------------------------------ */ -/* decNumberNextMinus -- next towards -Infinity */ -/* */ -/* This computes C = A - infinitesimal, rounded towards -Infinity */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* This is a generalization of 754 NextDown. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dtiny; // constant - decContext workset=*set; // work - uInt status=0; // accumulator - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - // +Infinity is the special case - if ((rhs->bits&(DECINF|DECNEG))==DECINF) { - decSetMaxValue(res, set); // is +ve - // there is no status to set - return res; - } - decNumberZero(&dtiny); // start with 0 - dtiny.lsu[0]=1; // make number that is .. - dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest - workset.round=DEC_ROUND_FLOOR; - decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status); - status&=DEC_Invalid_operation|DEC_sNaN; // only sNaN Invalid please - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberNextMinus - -/* ------------------------------------------------------------------ */ -/* decNumberNextPlus -- next towards +Infinity */ -/* */ -/* This computes C = A + infinitesimal, rounded towards +Infinity */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* This is a generalization of 754 NextUp. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dtiny; // constant - decContext workset=*set; // work - uInt status=0; // accumulator - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - // -Infinity is the special case - if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { - decSetMaxValue(res, set); - res->bits=DECNEG; // negative - // there is no status to set - return res; - } - decNumberZero(&dtiny); // start with 0 - dtiny.lsu[0]=1; // make number that is .. - dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest - workset.round=DEC_ROUND_CEILING; - decAddOp(res, rhs, &dtiny, &workset, 0, &status); - status&=DEC_Invalid_operation|DEC_sNaN; // only sNaN Invalid please - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberNextPlus - -/* ------------------------------------------------------------------ */ -/* decNumberNextToward -- next towards rhs */ -/* */ -/* This computes C = A +/- infinitesimal, rounded towards */ -/* +/-Infinity in the direction of B, as per 754-1985 nextafter */ -/* modified during revision but dropped from 754-2008. */ -/* */ -/* res is C, the result. C may be A or B. */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* This is a generalization of 754-1985 NextAfter. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - decNumber dtiny; // constant - decContext workset=*set; // work - Int result; // .. - uInt status=0; // accumulator - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { - decNaNs(res, lhs, rhs, set, &status); - } - else { // Is numeric, so no chance of sNaN Invalid, etc. - result=decCompare(lhs, rhs, 0); // sign matters - if (result==BADINT) status|=DEC_Insufficient_storage; // rare - else { // valid compare - if (result==0) decNumberCopySign(res, lhs, rhs); // easy - else { // differ: need NextPlus or NextMinus - uByte sub; // add or subtract - if (result<0) { // lhsbits&(DECINF|DECNEG))==(DECINF|DECNEG)) { - decSetMaxValue(res, set); - res->bits=DECNEG; // negative - return res; // there is no status to set - } - workset.round=DEC_ROUND_CEILING; - sub=0; // add, please - } // plus - else { // lhs>rhs, do nextminus - // +Infinity is the special case - if ((lhs->bits&(DECINF|DECNEG))==DECINF) { - decSetMaxValue(res, set); - return res; // there is no status to set - } - workset.round=DEC_ROUND_FLOOR; - sub=DECNEG; // subtract, please - } // minus - decNumberZero(&dtiny); // start with 0 - dtiny.lsu[0]=1; // make number that is .. - dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest - decAddOp(res, lhs, &dtiny, &workset, sub, &status); // + or - - // turn off exceptions if the result is a normal number - // (including Nmin), otherwise let all status through - if (decNumberIsNormal(res, set)) status=0; - } // unequal - } // compare OK - } // numeric - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberNextToward - -/* ------------------------------------------------------------------ */ -/* decNumberOr -- OR two Numbers, digitwise */ -/* */ -/* This computes C = A | B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X|X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberOr(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - const Unit *ua, *ub; // -> operands - const Unit *msua, *msub; // -> operand msus - Unit *uc, *msuc; // -> result and its msu - Int msudigs; // digits in res msu - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) - || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - // operands are valid - ua=lhs->lsu; // bottom-up - ub=rhs->lsu; // .. - uc=res->lsu; // .. - msua=ua+D2U(lhs->digits)-1; // -> msu of lhs - msub=ub+D2U(rhs->digits)-1; // -> msu of rhs - msuc=uc+D2U(set->digits)-1; // -> msu of result - msudigs=MSUDIGITS(set->digits); // [faster than remainder] - for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop - Unit a, b; // extract units - if (ua>msua) a=0; - else a=*ua; - if (ub>msub) b=0; - else b=*ub; - *uc=0; // can now write back - if (a|b) { // maybe 1 bits to examine - Int i, j; - // This loop could be unrolled and/or use BIN2BCD tables - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; // just did final digit - } // each digit - } // non-zero - } // each unit - // [here uc-1 is the msu of the result] - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; // integer - res->bits=0; // sign=0 - return res; // [no status to set] - } // decNumberOr - -/* ------------------------------------------------------------------ */ -/* decNumberPlus -- prefix plus operator */ -/* */ -/* This computes C = 0 + A */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* See also decNumberCopy for a quiet bitwise version of this. */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This simply uses AddOp; Add will take fast path after preparing A. */ -/* Performance is a concern here, as this routine is often used to */ -/* check operands and apply rounding and overflow/underflow testing. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberPlus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dzero; - uInt status=0; // accumulator - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - decNumberZero(&dzero); // make 0 - dzero.exponent=rhs->exponent; // [no coefficient expansion] - decAddOp(res, &dzero, rhs, set, 0, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberPlus - -/* ------------------------------------------------------------------ */ -/* decNumberMultiply -- multiply two Numbers */ -/* */ -/* This computes C = A x B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X+X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decMultiplyOp(res, lhs, rhs, set, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberMultiply - -/* ------------------------------------------------------------------ */ -/* decNumberPower -- raise a number to a power */ -/* */ -/* This computes C = A ** B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X**X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* However, if 1999999997<=B<=999999999 and B is an integer then the */ -/* restrictions on A and the context are relaxed to the usual bounds, */ -/* for compatibility with the earlier (integer power only) version */ -/* of this function. */ -/* */ -/* When B is an integer, the result may be exact, even if rounded. */ -/* */ -/* The final result is rounded according to the context; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberPower(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - #if DECSUBSET - decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated - decNumber *allocrhs=NULL; // .., rhs - #endif - decNumber *allocdac=NULL; // -> allocated acc buffer, iff used - decNumber *allocinv=NULL; // -> allocated 1/x buffer, iff used - Int reqdigits=set->digits; // requested DIGITS - Int n; // rhs in binary - Flag rhsint=0; // 1 if rhs is an integer - Flag useint=0; // 1 if can use integer calculation - Flag isoddint=0; // 1 if rhs is an integer and odd - Int i; // work - #if DECSUBSET - Int dropped; // .. - #endif - uInt needbytes; // buffer size needed - Flag seenbit; // seen a bit while powering - Int residue=0; // rounding residue - uInt status=0; // accumulators - uByte bits=0; // result sign if errors - decContext aset; // working context - decNumber dnOne; // work value 1... - // local accumulator buffer [a decNumber, with digits+elength+1 digits] - decNumber dacbuff[D2N(DECBUFFER+9)]; - decNumber *dac=dacbuff; // -> result accumulator - // same again for possible 1/lhs calculation - decNumber invbuff[D2N(DECBUFFER+9)]; - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { // reduce operands and set status, as needed - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, &status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - // handle NaNs and rhs Infinity (lhs infinity is harder) - if (SPECIALARGS) { - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { // NaNs - decNaNs(res, lhs, rhs, set, &status); - break;} - if (decNumberIsInfinite(rhs)) { // rhs Infinity - Flag rhsneg=rhs->bits&DECNEG; // save rhs sign - if (decNumberIsNegative(lhs) // lhs<0 - && !decNumberIsZero(lhs)) // .. - status|=DEC_Invalid_operation; - else { // lhs >=0 - decNumberZero(&dnOne); // set up 1 - dnOne.lsu[0]=1; - decNumberCompare(dac, lhs, &dnOne, set); // lhs ? 1 - decNumberZero(res); // prepare for 0/1/Infinity - if (decNumberIsNegative(dac)) { // lhs<1 - if (rhsneg) res->bits|=DECINF; // +Infinity [else is +0] - } - else if (dac->lsu[0]==0) { // lhs=1 - // 1**Infinity is inexact, so return fully-padded 1.0000 - Int shift=set->digits-1; - *res->lsu=1; // was 0, make int 1 - res->digits=decShiftToMost(res->lsu, 1, shift); - res->exponent=-shift; // make 1.0000... - status|=DEC_Inexact|DEC_Rounded; // deemed inexact - } - else { // lhs>1 - if (!rhsneg) res->bits|=DECINF; // +Infinity [else is +0] - } - } // lhs>=0 - break;} - // [lhs infinity drops through] - } // specials - - // Original rhs may be an integer that fits and is in range - n=decGetInt(rhs); - if (n!=BADINT) { // it is an integer - rhsint=1; // record the fact for 1**n - isoddint=(Flag)n&1; // [works even if big] - if (n!=BIGEVEN && n!=BIGODD) // can use integer path? - useint=1; // looks good - } - - if (decNumberIsNegative(lhs) // -x .. - && isoddint) bits=DECNEG; // .. to an odd power - - // handle LHS infinity - if (decNumberIsInfinite(lhs)) { // [NaNs already handled] - uByte rbits=rhs->bits; // save - decNumberZero(res); // prepare - if (n==0) *res->lsu=1; // [-]Inf**0 => 1 - else { - // -Inf**nonint -> error - if (!rhsint && decNumberIsNegative(lhs)) { - status|=DEC_Invalid_operation; // -Inf**nonint is error - break;} - if (!(rbits & DECNEG)) bits|=DECINF; // was not a **-n - // [otherwise will be 0 or -0] - res->bits=bits; - } - break;} - - // similarly handle LHS zero - if (decNumberIsZero(lhs)) { - if (n==0) { // 0**0 => Error - #if DECSUBSET - if (!set->extended) { // [unless subset] - decNumberZero(res); - *res->lsu=1; // return 1 - break;} - #endif - status|=DEC_Invalid_operation; - } - else { // 0**x - uByte rbits=rhs->bits; // save - if (rbits & DECNEG) { // was a 0**(-n) - #if DECSUBSET - if (!set->extended) { // [bad if subset] - status|=DEC_Invalid_operation; - break;} - #endif - bits|=DECINF; - } - decNumberZero(res); // prepare - // [otherwise will be 0 or -0] - res->bits=bits; - } - break;} - - // here both lhs and rhs are finite; rhs==0 is handled in the - // integer path. Next handle the non-integer cases - if (!useint) { // non-integral rhs - // any -ve lhs is bad, as is either operand or context out of - // bounds - if (decNumberIsNegative(lhs)) { - status|=DEC_Invalid_operation; - break;} - if (decCheckMath(lhs, set, &status) - || decCheckMath(rhs, set, &status)) break; // variable status - - decContextDefault(&aset, DEC_INIT_DECIMAL64); // clean context - aset.emax=DEC_MAX_MATH; // usual bounds - aset.emin=-DEC_MAX_MATH; // .. - aset.clamp=0; // and no concrete format - - // calculate the result using exp(ln(lhs)*rhs), which can - // all be done into the accumulator, dac. The precision needed - // is enough to contain the full information in the lhs (which - // is the total digits, including exponent), or the requested - // precision, if larger, + 4; 6 is used for the exponent - // maximum length, and this is also used when it is shorter - // than the requested digits as it greatly reduces the >0.5 ulp - // cases at little cost (because Ln doubles digits each - // iteration so a few extra digits rarely causes an extra - // iteration) - aset.digits=MAXI(lhs->digits, set->digits)+6+4; - } // non-integer rhs - - else { // rhs is in-range integer - if (n==0) { // x**0 = 1 - // (0**0 was handled above) - decNumberZero(res); // result=1 - *res->lsu=1; // .. - break;} - // rhs is a non-zero integer - if (n<0) n=-n; // use abs(n) - - aset=*set; // clone the context - aset.round=DEC_ROUND_HALF_EVEN; // internally use balanced - // calculate the working DIGITS - aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; - #if DECSUBSET - if (!set->extended) aset.digits--; // use classic precision - #endif - // it's an error if this is more than can be handled - if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} - } // integer path - - // aset.digits is the count of digits for the accumulator needed - // if accumulator is too long for local storage, then allocate - needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit); - // [needbytes also used below if 1/lhs needed] - if (needbytes>sizeof(dacbuff)) { - allocdac=(decNumber *)malloc(needbytes); - if (allocdac==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - dac=allocdac; // use the allocated space - } - // here, aset is set up and accumulator is ready for use - - if (!useint) { // non-integral rhs - // x ** y; special-case x=1 here as it will otherwise always - // reduce to integer 1; decLnOp has a fastpath which detects - // the case of x=1 - decLnOp(dac, lhs, &aset, &status); // dac=ln(lhs) - // [no error possible, as lhs 0 already handled] - if (ISZERO(dac)) { // x==1, 1.0, etc. - // need to return fully-padded 1.0000 etc., but rhsint->1 - *dac->lsu=1; // was 0, make int 1 - if (!rhsint) { // add padding - Int shift=set->digits-1; - dac->digits=decShiftToMost(dac->lsu, 1, shift); - dac->exponent=-shift; // make 1.0000... - status|=DEC_Inexact|DEC_Rounded; // deemed inexact - } - } - else { - decMultiplyOp(dac, dac, rhs, &aset, &status); // dac=dac*rhs - decExpOp(dac, dac, &aset, &status); // dac=exp(dac) - } - // and drop through for final rounding - } // non-integer rhs - - else { // carry on with integer - decNumberZero(dac); // acc=1 - *dac->lsu=1; // .. - - // if a negative power the constant 1 is needed, and if not subset - // invert the lhs now rather than inverting the result later - if (decNumberIsNegative(rhs)) { // was a **-n [hence digits>0] - decNumber *inv=invbuff; // asssume use fixed buffer - decNumberCopy(&dnOne, dac); // dnOne=1; [needed now or later] - #if DECSUBSET - if (set->extended) { // need to calculate 1/lhs - #endif - // divide lhs into 1, putting result in dac [dac=1/dac] - decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status); - // now locate or allocate space for the inverted lhs - if (needbytes>sizeof(invbuff)) { - allocinv=(decNumber *)malloc(needbytes); - if (allocinv==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - inv=allocinv; // use the allocated space - } - // [inv now points to big-enough buffer or allocated storage] - decNumberCopy(inv, dac); // copy the 1/lhs - decNumberCopy(dac, &dnOne); // restore acc=1 - lhs=inv; // .. and go forward with new lhs - #if DECSUBSET - } - #endif - } - - // Raise-to-the-power loop... - seenbit=0; // set once a 1-bit is encountered - for (i=1;;i++){ // for each bit [top bit ignored] - // abandon if had overflow or terminal underflow - if (status & (DEC_Overflow|DEC_Underflow)) { // interesting? - if (status&DEC_Overflow || ISZERO(dac)) break; - } - // [the following two lines revealed an optimizer bug in a C++ - // compiler, with symptom: 5**3 -> 25, when n=n+n was used] - n=n<<1; // move next bit to testable position - if (n<0) { // top bit is set - seenbit=1; // OK, significant bit seen - decMultiplyOp(dac, dac, lhs, &aset, &status); // dac=dac*x - } - if (i==31) break; // that was the last bit - if (!seenbit) continue; // no need to square 1 - decMultiplyOp(dac, dac, dac, &aset, &status); // dac=dac*dac [square] - } /*i*/ // 32 bits - - // complete internal overflow or underflow processing - if (status & (DEC_Overflow|DEC_Underflow)) { - #if DECSUBSET - // If subset, and power was negative, reverse the kind of -erflow - // [1/x not yet done] - if (!set->extended && decNumberIsNegative(rhs)) { - if (status & DEC_Overflow) - status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal; - else { // trickier -- Underflow may or may not be set - status&=~(DEC_Underflow | DEC_Subnormal); // [one or both] - status|=DEC_Overflow; - } - } - #endif - dac->bits=(dac->bits & ~DECNEG) | bits; // force correct sign - // round subnormals [to set.digits rather than aset.digits] - // or set overflow result similarly as required - decFinalize(dac, set, &residue, &status); - decNumberCopy(res, dac); // copy to result (is now OK length) - break; - } - - #if DECSUBSET - if (!set->extended && // subset math - decNumberIsNegative(rhs)) { // was a **-n [hence digits>0] - // so divide result into 1 [dac=1/dac] - decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status); - } - #endif - } // rhs integer path - - // reduce result to the requested length and copy to result - decCopyFit(res, dac, set, &residue, &status); - decFinish(res, set, &residue, &status); // final cleanup - #if DECSUBSET - if (!set->extended) decTrim(res, set, 0, 1, &dropped); // trailing zeros - #endif - } while(0); // end protected - - if (allocdac!=NULL) free(allocdac); // drop any storage used - if (allocinv!=NULL) free(allocinv); // .. - #if DECSUBSET - if (alloclhs!=NULL) free(alloclhs); // .. - if (allocrhs!=NULL) free(allocrhs); // .. - #endif - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberPower - -/* ------------------------------------------------------------------ */ -/* decNumberQuantize -- force exponent to requested value */ -/* */ -/* This computes C = op(A, B), where op adjusts the coefficient */ -/* of C (by rounding or shifting) such that the exponent (-scale) */ -/* of C has exponent of B. The numerical value of C will equal A, */ -/* except for the effects of any rounding that occurred. */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the number with exponent to match */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Unless there is an error or the result is infinite, the exponent */ -/* after the operation is guaranteed to be equal to that of B. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decQuantizeOp(res, lhs, rhs, set, 1, &status); - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberQuantize - -/* ------------------------------------------------------------------ */ -/* decNumberReduce -- remove trailing zeros */ -/* */ -/* This computes C = 0 + A, and normalizes the result */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -// Previously known as Normalize -decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs, - decContext *set) { - return decNumberReduce(res, rhs, set); - } // decNumberNormalize - -decNumber * decNumberReduce(decNumber *res, const decNumber *rhs, - decContext *set) { - #if DECSUBSET - decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated - #endif - uInt status=0; // as usual - Int residue=0; // as usual - Int dropped; // work - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { - // reduce operand and set lostDigits status, as needed - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - // Infinities copy through; NaNs need usual treatment - if (decNumberIsNaN(rhs)) { - decNaNs(res, rhs, NULL, set, &status); - break; - } - - // reduce result to the requested length and copy to result - decCopyFit(res, rhs, set, &residue, &status); // copy & round - decFinish(res, set, &residue, &status); // cleanup/set flags - decTrim(res, set, 1, 0, &dropped); // normalize in place - // [may clamp] - } while(0); // end protected - - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); // .. - #endif - if (status!=0) decStatus(res, status, set);// then report status - return res; - } // decNumberReduce - -/* ------------------------------------------------------------------ */ -/* decNumberRescale -- force exponent to requested value */ -/* */ -/* This computes C = op(A, B), where op adjusts the coefficient */ -/* of C (by rounding or shifting) such that the exponent (-scale) */ -/* of C has the value B. The numerical value of C will equal A, */ -/* except for the effects of any rounding that occurred. */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the requested exponent */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Unless there is an error or the result is infinite, the exponent */ -/* after the operation is guaranteed to be equal to B. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRescale(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decQuantizeOp(res, lhs, rhs, set, 0, &status); - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberRescale - -/* ------------------------------------------------------------------ */ -/* decNumberRemainder -- divide and return remainder */ -/* */ -/* This computes C = A % B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X%X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decDivideOp(res, lhs, rhs, set, REMAINDER, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberRemainder - -/* ------------------------------------------------------------------ */ -/* decNumberRemainderNear -- divide and return remainder from nearest */ -/* */ -/* This computes C = A % B, where % is the IEEE remainder operator */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X%X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - decDivideOp(res, lhs, rhs, set, REMNEAR, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberRemainderNear - -/* ------------------------------------------------------------------ */ -/* decNumberRotate -- rotate the coefficient of a Number left/right */ -/* */ -/* This computes C = A rot B (in base ten and rotating set->digits */ -/* digits). */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=XrotX) */ -/* lhs is A */ -/* rhs is B, the number of digits to rotate (-ve to right) */ -/* set is the context */ -/* */ -/* The digits of the coefficient of A are rotated to the left (if B */ -/* is positive) or to the right (if B is negative) without adjusting */ -/* the exponent or the sign of A. If lhs->digits is less than */ -/* set->digits the coefficient is padded with zeros on the left */ -/* before the rotate. Any leading zeros in the result are removed */ -/* as usual. */ -/* */ -/* B must be an integer (q=0) and in the range -set->digits through */ -/* +set->digits. */ -/* C must have space for set->digits digits. */ -/* NaNs are propagated as usual. Infinities are unaffected (but */ -/* B must be valid). No status is set unless B is invalid or an */ -/* operand is an sNaN. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRotate(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - Int rotate; // rhs as an Int - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - // NaNs propagate as normal - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) - decNaNs(res, lhs, rhs, set, &status); - // rhs must be an integer - else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) - status=DEC_Invalid_operation; - else { // both numeric, rhs is an integer - rotate=decGetInt(rhs); // [cannot fail] - if (rotate==BADINT // something bad .. - || rotate==BIGODD || rotate==BIGEVEN // .. very big .. - || abs(rotate)>set->digits) // .. or out of range - status=DEC_Invalid_operation; - else { // rhs is OK - decNumberCopy(res, lhs); - // convert -ve rotate to equivalent positive rotation - if (rotate<0) rotate=set->digits+rotate; - if (rotate!=0 && rotate!=set->digits // zero or full rotation - && !decNumberIsInfinite(res)) { // lhs was infinite - // left-rotate to do; 0 < rotate < set->digits - uInt units, shift; // work - uInt msudigits; // digits in result msu - Unit *msu=res->lsu+D2U(res->digits)-1; // current msu - Unit *msumax=res->lsu+D2U(set->digits)-1; // rotation msu - for (msu++; msu<=msumax; msu++) *msu=0; // ensure high units=0 - res->digits=set->digits; // now full-length - msudigits=MSUDIGITS(res->digits); // actual digits in msu - - // rotation here is done in-place, in three steps - // 1. shift all to least up to one unit to unit-align final - // lsd [any digits shifted out are rotated to the left, - // abutted to the original msd (which may require split)] - // - // [if there are no whole units left to rotate, the - // rotation is now complete] - // - // 2. shift to least, from below the split point only, so that - // the final msd is in the right place in its Unit [any - // digits shifted out will fit exactly in the current msu, - // left aligned, no split required] - // - // 3. rotate all the units by reversing left part, right - // part, and then whole - // - // example: rotate right 8 digits (2 units + 2), DECDPUN=3. - // - // start: 00a bcd efg hij klm npq - // - // 1a 000 0ab cde fgh|ijk lmn [pq saved] - // 1b 00p qab cde fgh|ijk lmn - // - // 2a 00p qab cde fgh|00i jkl [mn saved] - // 2b mnp qab cde fgh|00i jkl - // - // 3a fgh cde qab mnp|00i jkl - // 3b fgh cde qab mnp|jkl 00i - // 3c 00i jkl mnp qab cde fgh - - // Step 1: amount to shift is the partial right-rotate count - rotate=set->digits-rotate; // make it right-rotate - units=rotate/DECDPUN; // whole units to rotate - shift=rotate%DECDPUN; // left-over digits count - if (shift>0) { // not an exact number of units - uInt save=res->lsu[0]%powers[shift]; // save low digit(s) - decShiftToLeast(res->lsu, D2U(res->digits), shift); - if (shift>msudigits) { // msumax-1 needs >0 digits - uInt rem=save%powers[shift-msudigits];// split save - *msumax=(Unit)(save/powers[shift-msudigits]); // and insert - *(msumax-1)=*(msumax-1) - +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); // .. - } - else { // all fits in msumax - *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); // [maybe *1] - } - } // digits shift needed - - // If whole units to rotate... - if (units>0) { // some to do - // Step 2: the units to touch are the whole ones in rotate, - // if any, and the shift is DECDPUN-msudigits (which may be - // 0, again) - shift=DECDPUN-msudigits; - if (shift>0) { // not an exact number of units - uInt save=res->lsu[0]%powers[shift]; // save low digit(s) - decShiftToLeast(res->lsu, units, shift); - *msumax=*msumax+(Unit)(save*powers[msudigits]); - } // partial shift needed - - // Step 3: rotate the units array using triple reverse - // (reversing is easy and fast) - decReverse(res->lsu+units, msumax); // left part - decReverse(res->lsu, res->lsu+units-1); // right part - decReverse(res->lsu, msumax); // whole - } // whole units to rotate - // the rotation may have left an undetermined number of zeros - // on the left, so true length needs to be calculated - res->digits=decGetDigits(res->lsu, msumax-res->lsu+1); - } // rotate needed - } // rhs OK - } // numerics - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberRotate - -/* ------------------------------------------------------------------ */ -/* decNumberSameQuantum -- test for equal exponents */ -/* */ -/* res is the result number, which will contain either 0 or 1 */ -/* lhs is a number to test */ -/* rhs is the second (usually a pattern) */ -/* */ -/* No errors are possible and no context is needed. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs, - const decNumber *rhs) { - Unit ret=0; // return value - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; - #endif - - if (SPECIALARGS) { - if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1; - else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1; - // [anything else with a special gives 0] - } - else if (lhs->exponent==rhs->exponent) ret=1; - - decNumberZero(res); // OK to overwrite an operand now - *res->lsu=ret; - return res; - } // decNumberSameQuantum - -/* ------------------------------------------------------------------ */ -/* decNumberScaleB -- multiply by a power of 10 */ -/* */ -/* This computes C = A x 10**B where B is an integer (q=0) with */ -/* maximum magnitude 2*(emax+digits) */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the requested power of ten to use */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* The result may underflow or overflow. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - Int reqexp; // requested exponent change [B] - uInt status=0; // accumulator - Int residue; // work - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - // Handle special values except lhs infinite - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) - decNaNs(res, lhs, rhs, set, &status); - // rhs must be an integer - else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) - status=DEC_Invalid_operation; - else { - // lhs is a number; rhs is a finite with q==0 - reqexp=decGetInt(rhs); // [cannot fail] - // maximum range is larger than getInt can handle, so this is - // more restrictive than the specification - if (reqexp==BADINT // something bad .. - || reqexp==BIGODD || reqexp==BIGEVEN // it was huge - || (abs(reqexp)+1)/2>(set->digits+set->emax)) // .. or out of range - status=DEC_Invalid_operation; - else { // rhs is OK - decNumberCopy(res, lhs); // all done if infinite lhs - if (!decNumberIsInfinite(res)) { // prepare to scale - Int exp=res->exponent; // save for overflow test - res->exponent+=reqexp; // adjust the exponent - if (((exp^reqexp)>=0) // same sign ... - && ((exp^res->exponent)<0)) { // .. but result had different - // the calculation overflowed, so force right treatment - if (exp<0) res->exponent=DEC_MIN_EMIN-DEC_MAX_DIGITS; - else res->exponent=DEC_MAX_EMAX+1; - } - residue=0; - decFinalize(res, set, &residue, &status); // final check - } // finite LHS - } // rhs OK - } // rhs finite - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberScaleB - -/* ------------------------------------------------------------------ */ -/* decNumberShift -- shift the coefficient of a Number left or right */ -/* */ -/* This computes C = A << B or C = A >> -B (in base ten). */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X<digits through */ -/* +set->digits. */ -/* C must have space for set->digits digits. */ -/* NaNs are propagated as usual. Infinities are unaffected (but */ -/* B must be valid). No status is set unless B is invalid or an */ -/* operand is an sNaN. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberShift(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - Int shift; // rhs as an Int - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - // NaNs propagate as normal - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) - decNaNs(res, lhs, rhs, set, &status); - // rhs must be an integer - else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) - status=DEC_Invalid_operation; - else { // both numeric, rhs is an integer - shift=decGetInt(rhs); // [cannot fail] - if (shift==BADINT // something bad .. - || shift==BIGODD || shift==BIGEVEN // .. very big .. - || abs(shift)>set->digits) // .. or out of range - status=DEC_Invalid_operation; - else { // rhs is OK - decNumberCopy(res, lhs); - if (shift!=0 && !decNumberIsInfinite(res)) { // something to do - if (shift>0) { // to left - if (shift==set->digits) { // removing all - *res->lsu=0; // so place 0 - res->digits=1; // .. - } - else { // - // first remove leading digits if necessary - if (res->digits+shift>set->digits) { - decDecap(res, res->digits+shift-set->digits); - // that updated res->digits; may have gone to 1 (for a - // single digit or for zero - } - if (res->digits>1 || *res->lsu) // if non-zero.. - res->digits=decShiftToMost(res->lsu, res->digits, shift); - } // partial left - } // left - else { // to right - if (-shift>=res->digits) { // discarding all - *res->lsu=0; // so place 0 - res->digits=1; // .. - } - else { - decShiftToLeast(res->lsu, D2U(res->digits), -shift); - res->digits-=(-shift); - } - } // to right - } // non-0 non-Inf shift - } // rhs OK - } // numerics - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberShift - -/* ------------------------------------------------------------------ */ -/* decNumberSquareRoot -- square root operator */ -/* */ -/* This computes C = squareroot(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This uses the following varying-precision algorithm in: */ -/* */ -/* Properly Rounded Variable Precision Square Root, T. E. Hull and */ -/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ -/* pp229-237, ACM, September 1985. */ -/* */ -/* The square-root is calculated using Newton's method, after which */ -/* a check is made to ensure the result is correctly rounded. */ -/* */ -/* % [Reformatted original Numerical Turing source code follows.] */ -/* function sqrt(x : real) : real */ -/* % sqrt(x) returns the properly rounded approximation to the square */ -/* % root of x, in the precision of the calling environment, or it */ -/* % fails if x < 0. */ -/* % t e hull and a abrham, august, 1984 */ -/* if x <= 0 then */ -/* if x < 0 then */ -/* assert false */ -/* else */ -/* result 0 */ -/* end if */ -/* end if */ -/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */ -/* var e := getexp(x) % exponent part of x */ -/* var approx : real */ -/* if e mod 2 = 0 then */ -/* approx := .259 + .819 * f % approx to root of f */ -/* else */ -/* f := f/l0 % adjustments */ -/* e := e + 1 % for odd */ -/* approx := .0819 + 2.59 * f % exponent */ -/* end if */ -/* */ -/* var p:= 3 */ -/* const maxp := currentprecision + 2 */ -/* loop */ -/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */ -/* precision p */ -/* approx := .5 * (approx + f/approx) */ -/* exit when p = maxp */ -/* end loop */ -/* */ -/* % approx is now within 1 ulp of the properly rounded square root */ -/* % of f; to ensure proper rounding, compare squares of (approx - */ -/* % l/2 ulp) and (approx + l/2 ulp) with f. */ -/* p := currentprecision */ -/* begin */ -/* precision p + 2 */ -/* const approxsubhalf := approx - setexp(.5, -p) */ -/* if mulru(approxsubhalf, approxsubhalf) > f then */ -/* approx := approx - setexp(.l, -p + 1) */ -/* else */ -/* const approxaddhalf := approx + setexp(.5, -p) */ -/* if mulrd(approxaddhalf, approxaddhalf) < f then */ -/* approx := approx + setexp(.l, -p + 1) */ -/* end if */ -/* end if */ -/* end */ -/* result setexp(approx, e div 2) % fix exponent */ -/* end sqrt */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs, - decContext *set) { - decContext workset, approxset; // work contexts - decNumber dzero; // used for constant zero - Int maxp; // largest working precision - Int workp; // working precision - Int residue=0; // rounding residue - uInt status=0, ignore=0; // status accumulators - uInt rstatus; // .. - Int exp; // working exponent - Int ideal; // ideal (preferred) exponent - Int needbytes; // work - Int dropped; // .. - - #if DECSUBSET - decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated - #endif - // buffer for f [needs +1 in case DECBUFFER 0] - decNumber buff[D2N(DECBUFFER+1)]; - // buffer for a [needs +2 to match likely maxp] - decNumber bufa[D2N(DECBUFFER+2)]; - // buffer for temporary, b [must be same size as a] - decNumber bufb[D2N(DECBUFFER+2)]; - decNumber *allocbuff=NULL; // -> allocated buff, iff allocated - decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated - decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated - decNumber *f=buff; // reduced fraction - decNumber *a=bufa; // approximation to result - decNumber *b=bufb; // intermediate result - // buffer for temporary variable, up to 3 digits - decNumber buft[D2N(3)]; - decNumber *t=buft; // up-to-3-digit constant or work - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { - // reduce operand and set lostDigits status, as needed - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - // [Note: 'f' allocation below could reuse this buffer if - // used, but as this is rare they are kept separate for clarity.] - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - // handle infinities and NaNs - if (SPECIALARG) { - if (decNumberIsInfinite(rhs)) { // an infinity - if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation; - else decNumberCopy(res, rhs); // +Infinity - } - else decNaNs(res, rhs, NULL, set, &status); // a NaN - break; - } - - // calculate the ideal (preferred) exponent [floor(exp/2)] - // [It would be nicer to write: ideal=rhs->exponent>>1, but this - // generates a compiler warning. Generated code is the same.] - ideal=(rhs->exponent&~1)/2; // target - - // handle zeros - if (ISZERO(rhs)) { - decNumberCopy(res, rhs); // could be 0 or -0 - res->exponent=ideal; // use the ideal [safe] - // use decFinish to clamp any out-of-range exponent, etc. - decFinish(res, set, &residue, &status); - break; - } - - // any other -x is an oops - if (decNumberIsNegative(rhs)) { - status|=DEC_Invalid_operation; - break; - } - - // space is needed for three working variables - // f -- the same precision as the RHS, reduced to 0.01->0.99... - // a -- Hull's approximation -- precision, when assigned, is - // currentprecision+1 or the input argument precision, - // whichever is larger (+2 for use as temporary) - // b -- intermediate temporary result (same size as a) - // if any is too long for local storage, then allocate - workp=MAXI(set->digits+1, rhs->digits); // actual rounding precision - workp=MAXI(workp, 7); // at least 7 for low cases - maxp=workp+2; // largest working precision - - needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); - if (needbytes>(Int)sizeof(buff)) { - allocbuff=(decNumber *)malloc(needbytes); - if (allocbuff==NULL) { // hopeless -- abandon - status|=DEC_Insufficient_storage; - break;} - f=allocbuff; // use the allocated space - } - // a and b both need to be able to hold a maxp-length number - needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit); - if (needbytes>(Int)sizeof(bufa)) { // [same applies to b] - allocbufa=(decNumber *)malloc(needbytes); - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufa==NULL || allocbufb==NULL) { // hopeless - status|=DEC_Insufficient_storage; - break;} - a=allocbufa; // use the allocated spaces - b=allocbufb; // .. - } - - // copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 - decNumberCopy(f, rhs); - exp=f->exponent+f->digits; // adjusted to Hull rules - f->exponent=-(f->digits); // to range - - // set up working context - decContextDefault(&workset, DEC_INIT_DECIMAL64); - workset.emax=DEC_MAX_EMAX; - workset.emin=DEC_MIN_EMIN; - - // [Until further notice, no error is possible and status bits - // (Rounded, etc.) should be ignored, not accumulated.] - - // Calculate initial approximation, and allow for odd exponent - workset.digits=workp; // p for initial calculation - t->bits=0; t->digits=3; - a->bits=0; a->digits=3; - if ((exp & 1)==0) { // even exponent - // Set t=0.259, a=0.819 - t->exponent=-3; - a->exponent=-3; - #if DECDPUN>=3 - t->lsu[0]=259; - a->lsu[0]=819; - #elif DECDPUN==2 - t->lsu[0]=59; t->lsu[1]=2; - a->lsu[0]=19; a->lsu[1]=8; - #else - t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; - a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; - #endif - } - else { // odd exponent - // Set t=0.0819, a=2.59 - f->exponent--; // f=f/10 - exp++; // e=e+1 - t->exponent=-4; - a->exponent=-2; - #if DECDPUN>=3 - t->lsu[0]=819; - a->lsu[0]=259; - #elif DECDPUN==2 - t->lsu[0]=19; t->lsu[1]=8; - a->lsu[0]=59; a->lsu[1]=2; - #else - t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; - a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; - #endif - } - - decMultiplyOp(a, a, f, &workset, &ignore); // a=a*f - decAddOp(a, a, t, &workset, 0, &ignore); // ..+t - // [a is now the initial approximation for sqrt(f), calculated with - // currentprecision, which is also a's precision.] - - // the main calculation loop - decNumberZero(&dzero); // make 0 - decNumberZero(t); // set t = 0.5 - t->lsu[0]=5; // .. - t->exponent=-1; // .. - workset.digits=3; // initial p - for (; workset.digitsexponent+=exp/2; // set correct exponent - rstatus=0; // clear status - residue=0; // .. and accumulator - decCopyFit(a, a, &approxset, &residue, &rstatus); // reduce (if needed) - decFinish(a, &approxset, &residue, &rstatus); // clean and finalize - - // Overflow was possible if the input exponent was out-of-range, - // in which case quit - if (rstatus&DEC_Overflow) { - status=rstatus; // use the status as-is - decNumberCopy(res, a); // copy to result - break; - } - - // Preserve status except Inexact/Rounded - status|=(rstatus & ~(DEC_Rounded|DEC_Inexact)); - - // Carry out the Hull correction - a->exponent-=exp/2; // back to 0.1->1 - - // a is now at final precision and within 1 ulp of the properly - // rounded square root of f; to ensure proper rounding, compare - // squares of (a - l/2 ulp) and (a + l/2 ulp) with f. - // Here workset.digits=maxp and t=0.5, and a->digits determines - // the ulp - workset.digits--; // maxp-1 is OK now - t->exponent=-a->digits-1; // make 0.5 ulp - decAddOp(b, a, t, &workset, DECNEG, &ignore); // b = a - 0.5 ulp - workset.round=DEC_ROUND_UP; - decMultiplyOp(b, b, b, &workset, &ignore); // b = mulru(b, b) - decCompareOp(b, f, b, &workset, COMPARE, &ignore); // b ? f, reversed - if (decNumberIsNegative(b)) { // f < b [i.e., b > f] - // this is the more common adjustment, though both are rare - t->exponent++; // make 1.0 ulp - t->lsu[0]=1; // .. - decAddOp(a, a, t, &workset, DECNEG, &ignore); // a = a - 1 ulp - // assign to approx [round to length] - approxset.emin-=exp/2; // adjust to match a - approxset.emax-=exp/2; - decAddOp(a, &dzero, a, &approxset, 0, &ignore); - } - else { - decAddOp(b, a, t, &workset, 0, &ignore); // b = a + 0.5 ulp - workset.round=DEC_ROUND_DOWN; - decMultiplyOp(b, b, b, &workset, &ignore); // b = mulrd(b, b) - decCompareOp(b, b, f, &workset, COMPARE, &ignore); // b ? f - if (decNumberIsNegative(b)) { // b < f - t->exponent++; // make 1.0 ulp - t->lsu[0]=1; // .. - decAddOp(a, a, t, &workset, 0, &ignore); // a = a + 1 ulp - // assign to approx [round to length] - approxset.emin-=exp/2; // adjust to match a - approxset.emax-=exp/2; - decAddOp(a, &dzero, a, &approxset, 0, &ignore); - } - } - // [no errors are possible in the above, and rounding/inexact during - // estimation are irrelevant, so status was not accumulated] - - // Here, 0.1 <= a < 1 (still), so adjust back - a->exponent+=exp/2; // set correct exponent - - // count droppable zeros [after any subnormal rounding] by - // trimming a copy - decNumberCopy(b, a); - decTrim(b, set, 1, 1, &dropped); // [drops trailing zeros] - - // Set Inexact and Rounded. The answer can only be exact if - // it is short enough so that squaring it could fit in workp - // digits, so this is the only (relatively rare) condition that - // a careful check is needed - if (b->digits*2-1 > workp) { // cannot fit - status|=DEC_Inexact|DEC_Rounded; - } - else { // could be exact/unrounded - uInt mstatus=0; // local status - decMultiplyOp(b, b, b, &workset, &mstatus); // try the multiply - if (mstatus&DEC_Overflow) { // result just won't fit - status|=DEC_Inexact|DEC_Rounded; - } - else { // plausible - decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); // b ? rhs - if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; // not equal - else { // is Exact - // here, dropped is the count of trailing zeros in 'a' - // use closest exponent to ideal... - Int todrop=ideal-a->exponent; // most that can be dropped - if (todrop<0) status|=DEC_Rounded; // ideally would add 0s - else { // unrounded - // there are some to drop, but emax may not allow all - Int maxexp=set->emax-set->digits+1; - Int maxdrop=maxexp-a->exponent; - if (todrop>maxdrop && set->clamp) { // apply clamping - todrop=maxdrop; - status|=DEC_Clamped; - } - if (dropped0) { // have some to drop - decShiftToLeast(a->lsu, D2U(a->digits), todrop); - a->exponent+=todrop; // maintain numerical value - a->digits-=todrop; // new length - } - } - } - } - } - - // double-check Underflow, as perhaps the result could not have - // been subnormal (initial argument too big), or it is now Exact - if (status&DEC_Underflow) { - Int ae=rhs->exponent+rhs->digits-1; // adjusted exponent - // check if truly subnormal - #if DECEXTFLAG // DEC_Subnormal too - if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow); - #else - if (ae>=set->emin*2) status&=~DEC_Underflow; - #endif - // check if truly inexact - if (!(status&DEC_Inexact)) status&=~DEC_Underflow; - } - - decNumberCopy(res, a); // a is now the result - } while(0); // end protected - - if (allocbuff!=NULL) free(allocbuff); // drop any storage used - if (allocbufa!=NULL) free(allocbufa); // .. - if (allocbufb!=NULL) free(allocbufb); // .. - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); // .. - #endif - if (status!=0) decStatus(res, status, set);// then report status - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberSquareRoot - -/* ------------------------------------------------------------------ */ -/* decNumberSubtract -- subtract two Numbers */ -/* */ -/* This computes C = A - B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X-X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; // accumulator - - decAddOp(res, lhs, rhs, set, DECNEG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } // decNumberSubtract - -/* ------------------------------------------------------------------ */ -/* decNumberToIntegralExact -- round-to-integral-value with InExact */ -/* decNumberToIntegralValue -- round-to-integral-value */ -/* */ -/* res is the result */ -/* rhs is input number */ -/* set is the context */ -/* */ -/* res must have space for any value of rhs. */ -/* */ -/* This implements the IEEE special operators and therefore treats */ -/* special values as valid. For finite numbers it returns */ -/* rescale(rhs, 0) if rhs->exponent is <0. */ -/* Otherwise the result is rhs (so no error is possible, except for */ -/* sNaN). */ -/* */ -/* The context is used for rounding mode and status after sNaN, but */ -/* the digits setting is ignored. The Exact version will signal */ -/* Inexact if the result differs numerically from rhs; the other */ -/* never signals Inexact. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dn; - decContext workset; // working context - uInt status=0; // accumulator - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - // handle infinities and NaNs - if (SPECIALARG) { - if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); // an Infinity - else decNaNs(res, rhs, NULL, set, &status); // a NaN - } - else { // finite - // have a finite number; no error possible (res must be big enough) - if (rhs->exponent>=0) return decNumberCopy(res, rhs); - // that was easy, but if negative exponent there is work to do... - workset=*set; // clone rounding, etc. - workset.digits=rhs->digits; // no length rounding - workset.traps=0; // no traps - decNumberZero(&dn); // make a number with exponent 0 - decNumberQuantize(res, rhs, &dn, &workset); - status|=workset.status; - } - if (status!=0) decStatus(res, status, set); - return res; - } // decNumberToIntegralExact - -decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs, - decContext *set) { - decContext workset=*set; // working context - workset.traps=0; // no traps - decNumberToIntegralExact(res, rhs, &workset); - // this never affects set, except for sNaNs; NaN will have been set - // or propagated already, so no need to call decStatus - set->status|=workset.status&DEC_Invalid_operation; - return res; - } // decNumberToIntegralValue - -/* ------------------------------------------------------------------ */ -/* decNumberXor -- XOR two Numbers, digitwise */ -/* */ -/* This computes C = A ^ B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X^X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberXor(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - const Unit *ua, *ub; // -> operands - const Unit *msua, *msub; // -> operand msus - Unit *uc, *msuc; // -> result and its msu - Int msudigs; // digits in res msu - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) - || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - // operands are valid - ua=lhs->lsu; // bottom-up - ub=rhs->lsu; // .. - uc=res->lsu; // .. - msua=ua+D2U(lhs->digits)-1; // -> msu of lhs - msub=ub+D2U(rhs->digits)-1; // -> msu of rhs - msuc=uc+D2U(set->digits)-1; // -> msu of result - msudigs=MSUDIGITS(set->digits); // [faster than remainder] - for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop - Unit a, b; // extract units - if (ua>msua) a=0; - else a=*ua; - if (ub>msub) b=0; - else b=*ub; - *uc=0; // can now write back - if (a|b) { // maybe 1 bits to examine - Int i, j; - // This loop could be unrolled and/or use BIN2BCD tables - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; // just did final digit - } // each digit - } // non-zero - } // each unit - // [here uc-1 is the msu of the result] - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; // integer - res->bits=0; // sign=0 - return res; // [no status to set] - } // decNumberXor - - -/* ================================================================== */ -/* Utility routines */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* decNumberClass -- return the decClass of a decNumber */ -/* dn -- the decNumber to test */ -/* set -- the context to use for Emin */ -/* returns the decClass enum */ -/* ------------------------------------------------------------------ */ -enum decClass decNumberClass(const decNumber *dn, decContext *set) { - if (decNumberIsSpecial(dn)) { - if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN; - if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN; - // must be an infinity - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF; - return DEC_CLASS_POS_INF; - } - // is finite - if (decNumberIsNormal(dn, set)) { // most common - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL; - return DEC_CLASS_POS_NORMAL; - } - // is subnormal or zero - if (decNumberIsZero(dn)) { // most common - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO; - return DEC_CLASS_POS_ZERO; - } - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL; - return DEC_CLASS_POS_SUBNORMAL; - } // decNumberClass - -/* ------------------------------------------------------------------ */ -/* decNumberClassToString -- convert decClass to a string */ -/* */ -/* eclass is a valid decClass */ -/* returns a constant string describing the class (max 13+1 chars) */ -/* ------------------------------------------------------------------ */ -const char *decNumberClassToString(enum decClass eclass) { - if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN; - if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN; - if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ; - if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ; - if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; - if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; - if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI; - if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI; - if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN; - if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN; - return DEC_ClassString_UN; // Unknown - } // decNumberClassToString - -/* ------------------------------------------------------------------ */ -/* decNumberCopy -- copy a number */ -/* */ -/* dest is the target decNumber */ -/* src is the source decNumber */ -/* returns dest */ -/* */ -/* (dest==src is allowed and is a no-op) */ -/* All fields are updated as required. This is a utility operation, */ -/* so special values are unchanged and no error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopy(decNumber *dest, const decNumber *src) { - - #if DECCHECK - if (src==NULL) return decNumberZero(dest); - #endif - - if (dest==src) return dest; // no copy required - - // Use explicit assignments here as structure assignment could copy - // more than just the lsu (for small DECDPUN). This would not affect - // the value of the results, but could disturb test harness spill - // checking. - dest->bits=src->bits; - dest->exponent=src->exponent; - dest->digits=src->digits; - dest->lsu[0]=src->lsu[0]; - if (src->digits>DECDPUN) { // more Units to come - const Unit *smsup, *s; // work - Unit *d; // .. - // memcpy for the remaining Units would be safe as they cannot - // overlap. However, this explicit loop is faster in short cases. - d=dest->lsu+1; // -> first destination - smsup=src->lsu+D2U(src->digits); // -> source msu+1 - for (s=src->lsu+1; sdigits digits. */ -/* No exception or error can occur; this is a quiet bitwise operation.*/ -/* See also decNumberAbs for a checking version of this. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) { - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; - #endif - decNumberCopy(res, rhs); - res->bits&=~DECNEG; // turn off sign - return res; - } // decNumberCopyAbs - -/* ------------------------------------------------------------------ */ -/* decNumberCopyNegate -- quiet negate value operator */ -/* */ -/* This sets C = negate(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* */ -/* C must have space for set->digits digits. */ -/* No exception or error can occur; this is a quiet bitwise operation.*/ -/* See also decNumberMinus for a checking version of this. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) { - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; - #endif - decNumberCopy(res, rhs); - res->bits^=DECNEG; // invert the sign - return res; - } // decNumberCopyNegate - -/* ------------------------------------------------------------------ */ -/* decNumberCopySign -- quiet copy and set sign operator */ -/* */ -/* This sets C = A with the sign of B */ -/* */ -/* res is C, the result. C may be A */ -/* lhs is A */ -/* rhs is B */ -/* */ -/* C must have space for set->digits digits. */ -/* No exception or error can occur; this is a quiet bitwise operation.*/ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs, - const decNumber *rhs) { - uByte sign; // rhs sign - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; - #endif - sign=rhs->bits & DECNEG; // save sign bit - decNumberCopy(res, lhs); - res->bits&=~DECNEG; // clear the sign - res->bits|=sign; // set from rhs - return res; - } // decNumberCopySign - -/* ------------------------------------------------------------------ */ -/* decNumberGetBCD -- get the coefficient in BCD8 */ -/* dn is the source decNumber */ -/* bcd is the uInt array that will receive dn->digits BCD bytes, */ -/* most-significant at offset 0 */ -/* returns bcd */ -/* */ -/* bcd must have at least dn->digits bytes. No error is possible; if */ -/* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */ -/* ------------------------------------------------------------------ */ -uByte * decNumberGetBCD(const decNumber *dn, uByte *bcd) { - uByte *ub=bcd+dn->digits-1; // -> lsd - const Unit *up=dn->lsu; // Unit pointer, -> lsu - - #if DECDPUN==1 // trivial simple copy - for (; ub>=bcd; ub--, up++) *ub=*up; - #else // chopping needed - uInt u=*up; // work - uInt cut=DECDPUN; // downcounter through unit - for (; ub>=bcd; ub--) { - *ub=(uByte)(u%10); // [*6554 trick inhibits, here] - u=u/10; - cut--; - if (cut>0) continue; // more in this unit - up++; - u=*up; - cut=DECDPUN; - } - #endif - return bcd; - } // decNumberGetBCD - -/* ------------------------------------------------------------------ */ -/* decNumberSetBCD -- set (replace) the coefficient from BCD8 */ -/* dn is the target decNumber */ -/* bcd is the uInt array that will source n BCD bytes, most- */ -/* significant at offset 0 */ -/* n is the number of digits in the source BCD array (bcd) */ -/* returns dn */ -/* */ -/* dn must have space for at least n digits. No error is possible; */ -/* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */ -/* and bcd[0] zero. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { - Unit *up=dn->lsu+D2U(dn->digits)-1; // -> msu [target pointer] - const uByte *ub=bcd; // -> source msd - - #if DECDPUN==1 // trivial simple copy - for (; ub=dn->lsu; up--) { // each Unit from msu - *up=0; // will take <=DECDPUN digits - for (; cut>0; ub++, cut--) *up=X10(*up)+*ub; - cut=DECDPUN; // next Unit has all digits - } - #endif - dn->digits=n; // set digit count - return dn; - } // decNumberSetBCD - -/* ------------------------------------------------------------------ */ -/* decNumberIsNormal -- test normality of a decNumber */ -/* dn is the decNumber to test */ -/* set is the context to use for Emin */ -/* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */ -/* ------------------------------------------------------------------ */ -Int decNumberIsNormal(const decNumber *dn, decContext *set) { - Int ae; // adjusted exponent - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; - #endif - - if (decNumberIsSpecial(dn)) return 0; // not finite - if (decNumberIsZero(dn)) return 0; // not non-zero - - ae=dn->exponent+dn->digits-1; // adjusted exponent - if (aeemin) return 0; // is subnormal - return 1; - } // decNumberIsNormal - -/* ------------------------------------------------------------------ */ -/* decNumberIsSubnormal -- test subnormality of a decNumber */ -/* dn is the decNumber to test */ -/* set is the context to use for Emin */ -/* returns 1 if |dn| is finite, non-zero, and exponent+dn->digits-1; // adjusted exponent - if (aeemin) return 1; // is subnormal - return 0; - } // decNumberIsSubnormal - -/* ------------------------------------------------------------------ */ -/* decNumberTrim -- remove insignificant zeros */ -/* */ -/* dn is the number to trim */ -/* returns dn */ -/* */ -/* All fields are updated as required. This is a utility operation, */ -/* so special values are unchanged and no error is possible. The */ -/* zeros are removed unconditionally. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberTrim(decNumber *dn) { - Int dropped; // work - decContext set; // .. - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; - #endif - decContextDefault(&set, DEC_INIT_BASE); // clamp=0 - return decTrim(dn, &set, 0, 1, &dropped); - } // decNumberTrim - -/* ------------------------------------------------------------------ */ -/* decNumberVersion -- return the name and version of this module */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -const char * decNumberVersion(void) { - return DECVERSION; - } // decNumberVersion - -/* ------------------------------------------------------------------ */ -/* decNumberZero -- set a number to 0 */ -/* */ -/* dn is the number to set, with space for one digit */ -/* returns dn */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -// Memset is not used as it is much slower in some environments. -decNumber * decNumberZero(decNumber *dn) { - - #if DECCHECK - if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; - #endif - - dn->bits=0; - dn->exponent=0; - dn->digits=1; - dn->lsu[0]=0; - return dn; - } // decNumberZero - -/* ================================================================== */ -/* Local routines */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* decToString -- lay out a number into a string */ -/* */ -/* dn is the number to lay out */ -/* string is where to lay out the number */ -/* eng is 1 if Engineering, 0 if Scientific */ -/* */ -/* string must be at least dn->digits+14 characters long */ -/* No error is possible. */ -/* */ -/* Note that this routine can generate a -0 or 0.000. These are */ -/* never generated in subset to-number or arithmetic, but can occur */ -/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */ -/* ------------------------------------------------------------------ */ -// If DECCHECK is enabled the string "?" is returned if a number is -// invalid. -static void decToString(const decNumber *dn, char *string, Flag eng) { - Int exp=dn->exponent; // local copy - Int e; // E-part value - Int pre; // digits before the '.' - Int cut; // for counting digits in a Unit - char *c=string; // work [output pointer] - const Unit *up=dn->lsu+D2U(dn->digits)-1; // -> msu [input pointer] - uInt u, pow; // work - - #if DECCHECK - if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { - strcpy(string, "?"); - return;} - #endif - - if (decNumberIsNegative(dn)) { // Negatives get a minus - *c='-'; - c++; - } - if (dn->bits&DECSPECIAL) { // Is a special value - if (decNumberIsInfinite(dn)) { - strcpy(c, "Inf"); - strcpy(c+3, "inity"); - return;} - // a NaN - if (dn->bits&DECSNAN) { // signalling NaN - *c='s'; - c++; - } - strcpy(c, "NaN"); - c+=3; // step past - // if not a clean non-zero coefficient, that's all there is in a - // NaN string - if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; - // [drop through to add integer] - } - - // calculate how many digits in msu, and hence first cut - cut=MSUDIGITS(dn->digits); // [faster than remainder] - cut--; // power of ten for digit - - if (exp==0) { // simple integer [common fastpath] - for (;up>=dn->lsu; up--) { // each Unit from msu - u=*up; // contains DECDPUN digits to lay out - for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow); - cut=DECDPUN-1; // next Unit has all digits - } - *c='\0'; // terminate the string - return;} - - /* non-0 exponent -- assume plain form */ - pre=dn->digits+exp; // digits before '.' - e=0; // no E - if ((exp>0) || (pre<-5)) { // need exponential form - e=exp+dn->digits-1; // calculate E value - pre=1; // assume one digit before '.' - if (eng && (e!=0)) { // engineering: may need to adjust - Int adj; // adjustment - // The C remainder operator is undefined for negative numbers, so - // a positive remainder calculation must be used here - if (e<0) { - adj=(-e)%3; - if (adj!=0) adj=3-adj; - } - else { // e>0 - adj=e%3; - } - e=e-adj; - // if dealing with zero still produce an exponent which is a - // multiple of three, as expected, but there will only be the - // one zero before the E, still. Otherwise note the padding. - if (!ISZERO(dn)) pre+=adj; - else { // is zero - if (adj!=0) { // 0.00Esnn needed - e=e+3; - pre=-(2-adj); - } - } // zero - } // eng - } // need exponent - - /* lay out the digits of the coefficient, adding 0s and . as needed */ - u=*up; - if (pre>0) { // xxx.xxx or xx00 (engineering) form - Int n=pre; - for (; pre>0; pre--, c++, cut--) { - if (cut<0) { // need new Unit - if (up==dn->lsu) break; // out of input digits (pre>digits) - up--; - cut=DECDPUN-1; - u=*up; - } - TODIGIT(u, cut, c, pow); - } - if (ndigits) { // more to come, after '.' - *c='.'; c++; - for (;; c++, cut--) { - if (cut<0) { // need new Unit - if (up==dn->lsu) break; // out of input digits - up--; - cut=DECDPUN-1; - u=*up; - } - TODIGIT(u, cut, c, pow); - } - } - else for (; pre>0; pre--, c++) *c='0'; // 0 padding (for engineering) needed - } - else { // 0.xxx or 0.000xxx form - *c='0'; c++; - *c='.'; c++; - for (; pre<0; pre++, c++) *c='0'; // add any 0's after '.' - for (; ; c++, cut--) { - if (cut<0) { // need new Unit - if (up==dn->lsu) break; // out of input digits - up--; - cut=DECDPUN-1; - u=*up; - } - TODIGIT(u, cut, c, pow); - } - } - - /* Finally add the E-part, if needed. It will never be 0, has a - base maximum and minimum of +999999999 through -999999999, but - could range down to -1999999998 for anormal numbers */ - if (e!=0) { - Flag had=0; // 1=had non-zero - *c='E'; c++; - *c='+'; c++; // assume positive - u=e; // .. - if (e<0) { - *(c-1)='-'; // oops, need - - u=-e; // uInt, please - } - // lay out the exponent [_itoa or equivalent is not ANSI C] - for (cut=9; cut>=0; cut--) { - TODIGIT(u, cut, c, pow); - if (*c=='0' && !had) continue; // skip leading zeros - had=1; // had non-0 - c++; // step for next - } // cut - } - *c='\0'; // terminate the string (all paths) - return; - } // decToString - -/* ------------------------------------------------------------------ */ -/* decAddOp -- add/subtract operation */ -/* */ -/* This computes C = A + B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X+X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* negate is DECNEG if rhs should be negated, or 0 otherwise */ -/* status accumulates status for the caller */ -/* */ -/* C must have space for set->digits digits. */ -/* Inexact in status must be 0 for correct Exact zero sign in result */ -/* ------------------------------------------------------------------ */ -/* If possible, the coefficient is calculated directly into C. */ -/* However, if: */ -/* -- a digits+1 calculation is needed because the numbers are */ -/* unaligned and span more than set->digits digits */ -/* -- a carry to digits+1 digits looks possible */ -/* -- C is the same as A or B, and the result would destructively */ -/* overlap the A or B coefficient */ -/* then the result must be calculated into a temporary buffer. In */ -/* this case a local (stack) buffer is used if possible, and only if */ -/* too long for that does malloc become the final resort. */ -/* */ -/* Misalignment is handled as follows: */ -/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */ -/* BPad: Apply the padding by a combination of shifting (whole */ -/* units) and multiplication (part units). */ -/* */ -/* Addition, especially x=x+1, is speed-critical. */ -/* The static buffer is larger than might be expected to allow for */ -/* calls from higher-level funtions (notable exp). */ -/* ------------------------------------------------------------------ */ -static decNumber * decAddOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - uByte negate, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated - decNumber *allocrhs=NULL; // .., rhs - #endif - Int rhsshift; // working shift (in Units) - Int maxdigits; // longest logical length - Int mult; // multiplier - Int residue; // rounding accumulator - uByte bits; // result bits - Flag diffsign; // non-0 if arguments have different sign - Unit *acc; // accumulator for result - Unit accbuff[SD2U(DECBUFFER*2+20)]; // local buffer [*2+20 reduces many - // allocations when called from - // other operations, notable exp] - Unit *allocacc=NULL; // -> allocated acc buffer, iff allocated - Int reqdigits=set->digits; // local copy; requested DIGITS - Int padding; // work - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { - // reduce operands and set lostDigits status, as needed - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - // note whether signs differ [used all paths] - diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG); - - // handle infinities and NaNs - if (SPECIALARGS) { // a special bit set - if (SPECIALARGS & (DECSNAN | DECNAN)) // a NaN - decNaNs(res, lhs, rhs, set, status); - else { // one or two infinities - if (decNumberIsInfinite(lhs)) { // LHS is infinity - // two infinities with different signs is invalid - if (decNumberIsInfinite(rhs) && diffsign) { - *status|=DEC_Invalid_operation; - break; - } - bits=lhs->bits & DECNEG; // get sign from LHS - } - else bits=(rhs->bits^negate) & DECNEG;// RHS must be Infinity - bits|=DECINF; - decNumberZero(res); - res->bits=bits; // set +/- infinity - } // an infinity - break; - } - - // Quick exit for add 0s; return the non-0, modified as need be - if (ISZERO(lhs)) { - Int adjust; // work - Int lexp=lhs->exponent; // save in case LHS==RES - bits=lhs->bits; // .. - residue=0; // clear accumulator - decCopyFit(res, rhs, set, &residue, status); // copy (as needed) - res->bits^=negate; // flip if rhs was negated - #if DECSUBSET - if (set->extended) { // exponents on zeros count - #endif - // exponent will be the lower of the two - adjust=lexp-res->exponent; // adjustment needed [if -ve] - if (ISZERO(res)) { // both 0: special IEEE 754 rules - if (adjust<0) res->exponent=lexp; // set exponent - // 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 - if (diffsign) { - if (set->round!=DEC_ROUND_FLOOR) res->bits=0; - else res->bits=DECNEG; // preserve 0 sign - } - } - else { // non-0 res - if (adjust<0) { // 0-padding needed - if ((res->digits-adjust)>set->digits) { - adjust=res->digits-set->digits; // to fit exactly - *status|=DEC_Rounded; // [but exact] - } - res->digits=decShiftToMost(res->lsu, res->digits, -adjust); - res->exponent+=adjust; // set the exponent. - } - } // non-0 res - #if DECSUBSET - } // extended - #endif - decFinish(res, set, &residue, status); // clean and finalize - break;} - - if (ISZERO(rhs)) { // [lhs is non-zero] - Int adjust; // work - Int rexp=rhs->exponent; // save in case RHS==RES - bits=rhs->bits; // be clean - residue=0; // clear accumulator - decCopyFit(res, lhs, set, &residue, status); // copy (as needed) - #if DECSUBSET - if (set->extended) { // exponents on zeros count - #endif - // exponent will be the lower of the two - // [0-0 case handled above] - adjust=rexp-res->exponent; // adjustment needed [if -ve] - if (adjust<0) { // 0-padding needed - if ((res->digits-adjust)>set->digits) { - adjust=res->digits-set->digits; // to fit exactly - *status|=DEC_Rounded; // [but exact] - } - res->digits=decShiftToMost(res->lsu, res->digits, -adjust); - res->exponent+=adjust; // set the exponent. - } - #if DECSUBSET - } // extended - #endif - decFinish(res, set, &residue, status); // clean and finalize - break;} - - // [NB: both fastpath and mainpath code below assume these cases - // (notably 0-0) have already been handled] - - // calculate the padding needed to align the operands - padding=rhs->exponent-lhs->exponent; - - // Fastpath cases where the numbers are aligned and normal, the RHS - // is all in one unit, no operand rounding is needed, and no carry, - // lengthening, or borrow is needed - if (padding==0 - && rhs->digits<=DECDPUN - && rhs->exponent>=set->emin // [some normals drop through] - && rhs->exponent<=set->emax-set->digits+1 // [could clamp] - && rhs->digits<=reqdigits - && lhs->digits<=reqdigits) { - Int partial=*lhs->lsu; - if (!diffsign) { // adding - partial+=*rhs->lsu; - if ((partial<=DECDPUNMAX) // result fits in unit - && (lhs->digits>=DECDPUN || // .. and no digits-count change - partial<(Int)powers[lhs->digits])) { // .. - if (res!=lhs) decNumberCopy(res, lhs); // not in place - *res->lsu=(Unit)partial; // [copy could have overwritten RHS] - break; - } - // else drop out for careful add - } - else { // signs differ - partial-=*rhs->lsu; - if (partial>0) { // no borrow needed, and non-0 result - if (res!=lhs) decNumberCopy(res, lhs); // not in place - *res->lsu=(Unit)partial; - // this could have reduced digits [but result>0] - res->digits=decGetDigits(res->lsu, D2U(res->digits)); - break; - } - // else drop out for careful subtract - } - } - - // Now align (pad) the lhs or rhs so they can be added or - // subtracted, as necessary. If one number is much larger than - // the other (that is, if in plain form there is a least one - // digit between the lowest digit of one and the highest of the - // other) padding with up to DIGITS-1 trailing zeros may be - // needed; then apply rounding (as exotic rounding modes may be - // affected by the residue). - rhsshift=0; // rhs shift to left (padding) in Units - bits=lhs->bits; // assume sign is that of LHS - mult=1; // likely multiplier - - // [if padding==0 the operands are aligned; no padding is needed] - if (padding!=0) { - // some padding needed; always pad the RHS, as any required - // padding can then be effected by a simple combination of - // shifts and a multiply - Flag swapped=0; - if (padding<0) { // LHS needs the padding - const decNumber *t; - padding=-padding; // will be +ve - bits=(uByte)(rhs->bits^negate); // assumed sign is now that of RHS - t=lhs; lhs=rhs; rhs=t; - swapped=1; - } - - // If, after pad, rhs would be longer than lhs by digits+1 or - // more then lhs cannot affect the answer, except as a residue, - // so only need to pad up to a length of DIGITS+1. - if (rhs->digits+padding > lhs->digits+reqdigits+1) { - // The RHS is sufficient - // for residue use the relative sign indication... - Int shift=reqdigits-rhs->digits; // left shift needed - residue=1; // residue for rounding - if (diffsign) residue=-residue; // signs differ - // copy, shortening if necessary - decCopyFit(res, rhs, set, &residue, status); - // if it was already shorter, then need to pad with zeros - if (shift>0) { - res->digits=decShiftToMost(res->lsu, res->digits, shift); - res->exponent-=shift; // adjust the exponent. - } - // flip the result sign if unswapped and rhs was negated - if (!swapped) res->bits^=negate; - decFinish(res, set, &residue, status); // done - break;} - - // LHS digits may affect result - rhsshift=D2U(padding+1)-1; // this much by Unit shift .. - mult=powers[padding-(rhsshift*DECDPUN)]; // .. this by multiplication - } // padding needed - - if (diffsign) mult=-mult; // signs differ - - // determine the longer operand - maxdigits=rhs->digits+padding; // virtual length of RHS - if (lhs->digits>maxdigits) maxdigits=lhs->digits; - - // Decide on the result buffer to use; if possible place directly - // into result. - acc=res->lsu; // assume add direct to result - // If destructive overlap, or the number is too long, or a carry or - // borrow to DIGITS+1 might be possible, a buffer must be used. - // [Might be worth more sophisticated tests when maxdigits==reqdigits] - if ((maxdigits>=reqdigits) // is, or could be, too large - || (res==rhs && rhsshift>0)) { // destructive overlap - // buffer needed, choose it; units for maxdigits digits will be - // needed, +1 Unit for carry or borrow - Int need=D2U(maxdigits)+1; - acc=accbuff; // assume use local buffer - if (need*sizeof(Unit)>sizeof(accbuff)) { - // printf("malloc add %ld %ld\n", need, sizeof(accbuff)); - allocacc=(Unit *)malloc(need*sizeof(Unit)); - if (allocacc==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - acc=allocacc; - } - } - - res->bits=(uByte)(bits&DECNEG); // it's now safe to overwrite.. - res->exponent=lhs->exponent; // .. operands (even if aliased) - - #if DECTRACE - decDumpAr('A', lhs->lsu, D2U(lhs->digits)); - decDumpAr('B', rhs->lsu, D2U(rhs->digits)); - printf(" :h: %ld %ld\n", rhsshift, mult); - #endif - - // add [A+B*m] or subtract [A+B*(-m)] - res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits), - rhs->lsu, D2U(rhs->digits), - rhsshift, acc, mult) - *DECDPUN; // [units -> digits] - if (res->digits<0) { // borrowed... - res->digits=-res->digits; - res->bits^=DECNEG; // flip the sign - } - #if DECTRACE - decDumpAr('+', acc, D2U(res->digits)); - #endif - - // If a buffer was used the result must be copied back, possibly - // shortening. (If no buffer was used then the result must have - // fit, so can't need rounding and residue must be 0.) - residue=0; // clear accumulator - if (acc!=res->lsu) { - #if DECSUBSET - if (set->extended) { // round from first significant digit - #endif - // remove leading zeros that were added due to rounding up to - // integral Units -- before the test for rounding. - if (res->digits>reqdigits) - res->digits=decGetDigits(acc, D2U(res->digits)); - decSetCoeff(res, set, acc, res->digits, &residue, status); - #if DECSUBSET - } - else { // subset arithmetic rounds from original significant digit - // May have an underestimate. This only occurs when both - // numbers fit in DECDPUN digits and are padding with a - // negative multiple (-10, -100...) and the top digit(s) become - // 0. (This only matters when using X3.274 rules where the - // leading zero could be included in the rounding.) - if (res->digitsdigits))=0; // ensure leading 0 is there - res->digits=maxdigits; - } - else { - // remove leading zeros that added due to rounding up to - // integral Units (but only those in excess of the original - // maxdigits length, unless extended) before test for rounding. - if (res->digits>reqdigits) { - res->digits=decGetDigits(acc, D2U(res->digits)); - if (res->digitsdigits=maxdigits; - } - } - decSetCoeff(res, set, acc, res->digits, &residue, status); - // Now apply rounding if needed before removing leading zeros. - // This is safe because subnormals are not a possibility - if (residue!=0) { - decApplyRound(res, set, residue, status); - residue=0; // did what needed to be done - } - } // subset - #endif - } // used buffer - - // strip leading zeros [these were left on in case of subset subtract] - res->digits=decGetDigits(res->lsu, D2U(res->digits)); - - // apply checks and rounding - decFinish(res, set, &residue, status); - - // "When the sum of two operands with opposite signs is exactly - // zero, the sign of that sum shall be '+' in all rounding modes - // except round toward -Infinity, in which mode that sign shall be - // '-'." [Subset zeros also never have '-', set by decFinish.] - if (ISZERO(res) && diffsign - #if DECSUBSET - && set->extended - #endif - && (*status&DEC_Inexact)==0) { - if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; // sign - - else res->bits&=~DECNEG; // sign + - } - } while(0); // end protected - - if (allocacc!=NULL) free(allocacc); // drop any storage used - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); // .. - if (alloclhs!=NULL) free(alloclhs); // .. - #endif - return res; - } // decAddOp - -/* ------------------------------------------------------------------ */ -/* decDivideOp -- division operation */ -/* */ -/* This routine performs the calculations for all four division */ -/* operators (divide, divideInteger, remainder, remainderNear). */ -/* */ -/* C=A op B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X/X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */ -/* status is the usual accumulator */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* ------------------------------------------------------------------ */ -/* The underlying algorithm of this routine is the same as in the */ -/* 1981 S/370 implementation, that is, non-restoring long division */ -/* with bi-unit (rather than bi-digit) estimation for each unit */ -/* multiplier. In this pseudocode overview, complications for the */ -/* Remainder operators and division residues for exact rounding are */ -/* omitted for clarity. */ -/* */ -/* Prepare operands and handle special values */ -/* Test for x/0 and then 0/x */ -/* Exp =Exp1 - Exp2 */ -/* Exp =Exp +len(var1) -len(var2) */ -/* Sign=Sign1 * Sign2 */ -/* Pad accumulator (Var1) to double-length with 0's (pad1) */ -/* Pad Var2 to same length as Var1 */ -/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */ -/* have=0 */ -/* Do until (have=digits+1 OR residue=0) */ -/* if exp<0 then if integer divide/residue then leave */ -/* this_unit=0 */ -/* Do forever */ -/* compare numbers */ -/* if <0 then leave inner_loop */ -/* if =0 then (* quick exit without subtract *) do */ -/* this_unit=this_unit+1; output this_unit */ -/* leave outer_loop; end */ -/* Compare lengths of numbers (mantissae): */ -/* If same then tops2=msu2pair -- {units 1&2 of var2} */ -/* else tops2=msu2plus -- {0, unit 1 of var2} */ -/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ -/* mult=tops1/tops2 -- Good and safe guess at divisor */ -/* if mult=0 then mult=1 */ -/* this_unit=this_unit+mult */ -/* subtract */ -/* end inner_loop */ -/* if have\=0 | this_unit\=0 then do */ -/* output this_unit */ -/* have=have+1; end */ -/* var2=var2/10 */ -/* exp=exp-1 */ -/* end outer_loop */ -/* exp=exp+1 -- set the proper exponent */ -/* if have=0 then generate answer=0 */ -/* Return (Result is defined by Var1) */ -/* */ -/* ------------------------------------------------------------------ */ -/* Two working buffers are needed during the division; one (digits+ */ -/* 1) to accumulate the result, and the other (up to 2*digits+1) for */ -/* long subtractions. These are acc and var1 respectively. */ -/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ -/* The static buffers may be larger than might be expected to allow */ -/* for calls from higher-level funtions (notable exp). */ -/* ------------------------------------------------------------------ */ -static decNumber * decDivideOp(decNumber *res, - const decNumber *lhs, const decNumber *rhs, - decContext *set, Flag op, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated - decNumber *allocrhs=NULL; // .., rhs - #endif - Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; // local buffer - Unit *acc=accbuff; // -> accumulator array for result - Unit *allocacc=NULL; // -> allocated buffer, iff allocated - Unit *accnext; // -> where next digit will go - Int acclength; // length of acc needed [Units] - Int accunits; // count of units accumulated - Int accdigits; // count of digits accumulated - - Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)]; // buffer for var1 - Unit *var1=varbuff; // -> var1 array for long subtraction - Unit *varalloc=NULL; // -> allocated buffer, iff used - Unit *msu1; // -> msu of var1 - - const Unit *var2; // -> var2 array - const Unit *msu2; // -> msu of var2 - Int msu2plus; // msu2 plus one [does not vary] - eInt msu2pair; // msu2 pair plus one [does not vary] - - Int var1units, var2units; // actual lengths - Int var2ulen; // logical length (units) - Int var1initpad=0; // var1 initial padding (digits) - Int maxdigits; // longest LHS or required acc length - Int mult; // multiplier for subtraction - Unit thisunit; // current unit being accumulated - Int residue; // for rounding - Int reqdigits=set->digits; // requested DIGITS - Int exponent; // working exponent - Int maxexponent=0; // DIVIDE maximum exponent if unrounded - uByte bits; // working sign - Unit *target; // work - const Unit *source; // .. - uInt const *pow; // .. - Int shift, cut; // .. - #if DECSUBSET - Int dropped; // work - #endif - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { - // reduce operands and set lostDigits status, as needed - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - bits=(lhs->bits^rhs->bits)&DECNEG; // assumed sign for divisions - - // handle infinities and NaNs - if (SPECIALARGS) { // a special bit set - if (SPECIALARGS & (DECSNAN | DECNAN)) { // one or two NaNs - decNaNs(res, lhs, rhs, set, status); - break; - } - // one or two infinities - if (decNumberIsInfinite(lhs)) { // LHS (dividend) is infinite - if (decNumberIsInfinite(rhs) || // two infinities are invalid .. - op & (REMAINDER | REMNEAR)) { // as is remainder of infinity - *status|=DEC_Invalid_operation; - break; - } - // [Note that infinity/0 raises no exceptions] - decNumberZero(res); - res->bits=bits|DECINF; // set +/- infinity - break; - } - else { // RHS (divisor) is infinite - residue=0; - if (op&(REMAINDER|REMNEAR)) { - // result is [finished clone of] lhs - decCopyFit(res, lhs, set, &residue, status); - } - else { // a division - decNumberZero(res); - res->bits=bits; // set +/- zero - // for DIVIDEINT the exponent is always 0. For DIVIDE, result - // is a 0 with infinitely negative exponent, clamped to minimum - if (op&DIVIDE) { - res->exponent=set->emin-set->digits+1; - *status|=DEC_Clamped; - } - } - decFinish(res, set, &residue, status); - break; - } - } - - // handle 0 rhs (x/0) - if (ISZERO(rhs)) { // x/0 is always exceptional - if (ISZERO(lhs)) { - decNumberZero(res); // [after lhs test] - *status|=DEC_Division_undefined;// 0/0 will become NaN - } - else { - decNumberZero(res); - if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation; - else { - *status|=DEC_Division_by_zero; // x/0 - res->bits=bits|DECINF; // .. is +/- Infinity - } - } - break;} - - // handle 0 lhs (0/x) - if (ISZERO(lhs)) { // 0/x [x!=0] - #if DECSUBSET - if (!set->extended) decNumberZero(res); - else { - #endif - if (op&DIVIDE) { - residue=0; - exponent=lhs->exponent-rhs->exponent; // ideal exponent - decNumberCopy(res, lhs); // [zeros always fit] - res->bits=bits; // sign as computed - res->exponent=exponent; // exponent, too - decFinalize(res, set, &residue, status); // check exponent - } - else if (op&DIVIDEINT) { - decNumberZero(res); // integer 0 - res->bits=bits; // sign as computed - } - else { // a remainder - exponent=rhs->exponent; // [save in case overwrite] - decNumberCopy(res, lhs); // [zeros always fit] - if (exponentexponent) res->exponent=exponent; // use lower - } - #if DECSUBSET - } - #endif - break;} - - // Precalculate exponent. This starts off adjusted (and hence fits - // in 31 bits) and becomes the usual unadjusted exponent as the - // division proceeds. The order of evaluation is important, here, - // to avoid wrap. - exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); - - // If the working exponent is -ve, then some quick exits are - // possible because the quotient is known to be <1 - // [for REMNEAR, it needs to be < -1, as -0.5 could need work] - if (exponent<0 && !(op==DIVIDE)) { - if (op&DIVIDEINT) { - decNumberZero(res); // integer part is 0 - #if DECSUBSET - if (set->extended) - #endif - res->bits=bits; // set +/- zero - break;} - // fastpath remainders so long as the lhs has the smaller - // (or equal) exponent - if (lhs->exponent<=rhs->exponent) { - if (op&REMAINDER || exponent<-1) { - // It is REMAINDER or safe REMNEAR; result is [finished - // clone of] lhs (r = x - 0*y) - residue=0; - decCopyFit(res, lhs, set, &residue, status); - decFinish(res, set, &residue, status); - break; - } - // [unsafe REMNEAR drops through] - } - } // fastpaths - - /* Long (slow) division is needed; roll up the sleeves... */ - - // The accumulator will hold the quotient of the division. - // If it needs to be too long for stack storage, then allocate. - acclength=D2U(reqdigits+DECDPUN); // in Units - if (acclength*sizeof(Unit)>sizeof(accbuff)) { - // printf("malloc dvacc %ld units\n", acclength); - allocacc=(Unit *)malloc(acclength*sizeof(Unit)); - if (allocacc==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - acc=allocacc; // use the allocated space - } - - // var1 is the padded LHS ready for subtractions. - // If it needs to be too long for stack storage, then allocate. - // The maximum units needed for var1 (long subtraction) is: - // Enough for - // (rhs->digits+reqdigits-1) -- to allow full slide to right - // or (lhs->digits) -- to allow for long lhs - // whichever is larger - // +1 -- for rounding of slide to right - // +1 -- for leading 0s - // +1 -- for pre-adjust if a remainder or DIVIDEINT - // [Note: unused units do not participate in decUnitAddSub data] - maxdigits=rhs->digits+reqdigits-1; - if (lhs->digits>maxdigits) maxdigits=lhs->digits; - var1units=D2U(maxdigits)+2; - // allocate a guard unit above msu1 for REMAINDERNEAR - if (!(op&DIVIDE)) var1units++; - if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { - // printf("malloc dvvar %ld units\n", var1units+1); - varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit)); - if (varalloc==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - var1=varalloc; // use the allocated space - } - - // Extend the lhs and rhs to full long subtraction length. The lhs - // is truly extended into the var1 buffer, with 0 padding, so a - // subtract in place is always possible. The rhs (var2) has - // virtual padding (implemented by decUnitAddSub). - // One guard unit was allocated above msu1 for rem=rem+rem in - // REMAINDERNEAR. - msu1=var1+var1units-1; // msu of var1 - source=lhs->lsu+D2U(lhs->digits)-1; // msu of input array - for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; - for (; target>=var1; target--) *target=0; - - // rhs (var2) is left-aligned with var1 at the start - var2ulen=var1units; // rhs logical length (units) - var2units=D2U(rhs->digits); // rhs actual length (units) - var2=rhs->lsu; // -> rhs array - msu2=var2+var2units-1; // -> msu of var2 [never changes] - // now set up the variables which will be used for estimating the - // multiplication factor. If these variables are not exact, add - // 1 to make sure that the multiplier is never overestimated. - msu2plus=*msu2; // it's value .. - if (var2units>1) msu2plus++; // .. +1 if any more - msu2pair=(eInt)*msu2*(DECDPUNMAX+1);// top two pair .. - if (var2units>1) { // .. [else treat 2nd as 0] - msu2pair+=*(msu2-1); // .. - if (var2units>2) msu2pair++; // .. +1 if any more - } - - // The calculation is working in units, which may have leading zeros, - // but the exponent was calculated on the assumption that they are - // both left-aligned. Adjust the exponent to compensate: add the - // number of leading zeros in var1 msu and subtract those in var2 msu. - // [This is actually done by counting the digits and negating, as - // lead1=DECDPUN-digits1, and similarly for lead2.] - for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--; - for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++; - - // Now, if doing an integer divide or remainder, ensure that - // the result will be Unit-aligned. To do this, shift the var1 - // accumulator towards least if need be. (It's much easier to - // do this now than to reassemble the residue afterwards, if - // doing a remainder.) Also ensure the exponent is not negative. - if (!(op&DIVIDE)) { - Unit *u; // work - // save the initial 'false' padding of var1, in digits - var1initpad=(var1units-D2U(lhs->digits))*DECDPUN; - // Determine the shift to do. - if (exponent<0) cut=-exponent; - else cut=DECDPUN-exponent%DECDPUN; - decShiftToLeast(var1, var1units, cut); - exponent+=cut; // maintain numerical value - var1initpad-=cut; // .. and reduce padding - // clean any most-significant units which were just emptied - for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0; - } // align - else { // is DIVIDE - maxexponent=lhs->exponent-rhs->exponent; // save - // optimization: if the first iteration will just produce 0, - // preadjust to skip it [valid for DIVIDE only] - if (*msu1<*msu2) { - var2ulen--; // shift down - exponent-=DECDPUN; // update the exponent - } - } - - // ---- start the long-division loops ------------------------------ - accunits=0; // no units accumulated yet - accdigits=0; // .. or digits - accnext=acc+acclength-1; // -> msu of acc [NB: allows digits+1] - for (;;) { // outer forever loop - thisunit=0; // current unit assumed 0 - // find the next unit - for (;;) { // inner forever loop - // strip leading zero units [from either pre-adjust or from - // subtract last time around]. Leave at least one unit. - for (; *msu1==0 && msu1>var1; msu1--) var1units--; - - if (var1units msu - for (pv1=msu1; ; pv1--, pv2--) { - // v1=*pv1 -- always OK - v2=0; // assume in padding - if (pv2>=var2) v2=*pv2; // in range - if (*pv1!=v2) break; // no longer the same - if (pv1==var1) break; // done; leave pv1 as is - } - // here when all inspected or a difference seen - if (*pv1v2. Prepare for real subtraction; the lengths are equal - // Estimate the multiplier (there's always a msu1-1)... - // Bring in two units of var2 to provide a good estimate. - mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair); - } // lengths the same - else { // var1units > var2ulen, so subtraction is safe - // The var2 msu is one unit towards the lsu of the var1 msu, - // so only one unit for var2 can be used. - mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus); - } - if (mult==0) mult=1; // must always be at least 1 - // subtraction needed; var1 is > var2 - thisunit=(Unit)(thisunit+mult); // accumulate - // subtract var1-var2, into var1; only the overlap needs - // processing, as this is an in-place calculation - shift=var2ulen-var2units; - #if DECTRACE - decDumpAr('1', &var1[shift], var1units-shift); - decDumpAr('2', var2, var2units); - printf("m=%ld\n", -mult); - #endif - decUnitAddSub(&var1[shift], var1units-shift, - var2, var2units, 0, - &var1[shift], -mult); - #if DECTRACE - decDumpAr('#', &var1[shift], var1units-shift); - #endif - // var1 now probably has leading zeros; these are removed at the - // top of the inner loop. - } // inner loop - - // The next unit has been calculated in full; unless it's a - // leading zero, add to acc - if (accunits!=0 || thisunit!=0) { // is first or non-zero - *accnext=thisunit; // store in accumulator - // account exactly for the new digits - if (accunits==0) { - accdigits++; // at least one - for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++; - } - else accdigits+=DECDPUN; - accunits++; // update count - accnext--; // ready for next - if (accdigits>reqdigits) break; // have enough digits - } - - // if the residue is zero, the operation is done (unless divide - // or divideInteger and still not enough digits yet) - if (*var1==0 && var1units==1) { // residue is 0 - if (op&(REMAINDER|REMNEAR)) break; - if ((op&DIVIDE) && (exponent<=maxexponent)) break; - // [drop through if divideInteger] - } - // also done enough if calculating remainder or integer - // divide and just did the last ('units') unit - if (exponent==0 && !(op&DIVIDE)) break; - - // to get here, var1 is less than var2, so divide var2 by the per- - // Unit power of ten and go for the next digit - var2ulen--; // shift down - exponent-=DECDPUN; // update the exponent - } // outer loop - - // ---- division is complete --------------------------------------- - // here: acc has at least reqdigits+1 of good results (or fewer - // if early stop), starting at accnext+1 (its lsu) - // var1 has any residue at the stopping point - // accunits is the number of digits collected in acc - if (accunits==0) { // acc is 0 - accunits=1; // show have a unit .. - accdigits=1; // .. - *accnext=0; // .. whose value is 0 - } - else accnext++; // back to last placed - // accnext now -> lowest unit of result - - residue=0; // assume no residue - if (op&DIVIDE) { - // record the presence of any residue, for rounding - if (*var1!=0 || var1units>1) residue=1; - else { // no residue - // Had an exact division; clean up spurious trailing 0s. - // There will be at most DECDPUN-1, from the final multiply, - // and then only if the result is non-0 (and even) and the - // exponent is 'loose'. - #if DECDPUN>1 - Unit lsu=*accnext; - if (!(lsu&0x01) && (lsu!=0)) { - // count the trailing zeros - Int drop=0; - for (;; drop++) { // [will terminate because lsu!=0] - if (exponent>=maxexponent) break; // don't chop real 0s - #if DECDPUN<=4 - if ((lsu-QUOT10(lsu, drop+1) - *powers[drop+1])!=0) break; // found non-0 digit - #else - if (lsu%powers[drop+1]!=0) break; // found non-0 digit - #endif - exponent++; - } - if (drop>0) { - accunits=decShiftToLeast(accnext, accunits, drop); - accdigits=decGetDigits(accnext, accunits); - accunits=D2U(accdigits); - // [exponent was adjusted in the loop] - } - } // neither odd nor 0 - #endif - } // exact divide - } // divide - else /* op!=DIVIDE */ { - // check for coefficient overflow - if (accdigits+exponent>reqdigits) { - *status|=DEC_Division_impossible; - break; - } - if (op & (REMAINDER|REMNEAR)) { - // [Here, the exponent will be 0, because var1 was adjusted - // appropriately.] - Int postshift; // work - Flag wasodd=0; // integer was odd - Unit *quotlsu; // for save - Int quotdigits; // .. - - bits=lhs->bits; // remainder sign is always as lhs - - // Fastpath when residue is truly 0 is worthwhile [and - // simplifies the code below] - if (*var1==0 && var1units==1) { // residue is 0 - Int exp=lhs->exponent; // save min(exponents) - if (rhs->exponentexponent; - decNumberZero(res); // 0 coefficient - #if DECSUBSET - if (set->extended) - #endif - res->exponent=exp; // .. with proper exponent - res->bits=(uByte)(bits&DECNEG); // [cleaned] - decFinish(res, set, &residue, status); // might clamp - break; - } - // note if the quotient was odd - if (*accnext & 0x01) wasodd=1; // acc is odd - quotlsu=accnext; // save in case need to reinspect - quotdigits=accdigits; // .. - - // treat the residue, in var1, as the value to return, via acc - // calculate the unused zero digits. This is the smaller of: - // var1 initial padding (saved above) - // var2 residual padding, which happens to be given by: - postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; - // [the 'exponent' term accounts for the shifts during divide] - if (var1initpadexponent; // exponent is smaller of lhs & rhs - if (rhs->exponentexponent; - - // Now correct the result if doing remainderNear; if it - // (looking just at coefficients) is > rhs/2, or == rhs/2 and - // the integer was odd then the result should be rem-rhs. - if (op&REMNEAR) { - Int compare, tarunits; // work - Unit *up; // .. - // calculate remainder*2 into the var1 buffer (which has - // 'headroom' of an extra unit and hence enough space) - // [a dedicated 'double' loop would be faster, here] - tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, - 0, accnext, 1); - // decDumpAr('r', accnext, tarunits); - - // Here, accnext (var1) holds tarunits Units with twice the - // remainder's coefficient, which must now be compared to the - // RHS. The remainder's exponent may be smaller than the RHS's. - compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits), - rhs->exponent-exponent); - if (compare==BADINT) { // deep trouble - *status|=DEC_Insufficient_storage; - break;} - - // now restore the remainder by dividing by two; the lsu - // is known to be even. - for (up=accnext; up0 || (compare==0 && wasodd)) { // adjustment needed - Int exp, expunits, exprem; // work - // This is effectively causing round-up of the quotient, - // so if it was the rare case where it was full and all - // nines, it would overflow and hence division-impossible - // should be raised - Flag allnines=0; // 1 if quotient all nines - if (quotdigits==reqdigits) { // could be borderline - for (up=quotlsu; ; up++) { - if (quotdigits>DECDPUN) { - if (*up!=DECDPUNMAX) break;// non-nines - } - else { // this is the last Unit - if (*up==powers[quotdigits]-1) allnines=1; - break; - } - quotdigits-=DECDPUN; // checked those digits - } // up - } // borderline check - if (allnines) { - *status|=DEC_Division_impossible; - break;} - - // rem-rhs is needed; the sign will invert. Again, var1 - // can safely be used for the working Units array. - exp=rhs->exponent-exponent; // RHS padding needed - // Calculate units and remainder from exponent. - expunits=exp/DECDPUN; - exprem=exp%DECDPUN; - // subtract [A+B*(-m)]; the result will always be negative - accunits=-decUnitAddSub(accnext, accunits, - rhs->lsu, D2U(rhs->digits), - expunits, accnext, -(Int)powers[exprem]); - accdigits=decGetDigits(accnext, accunits); // count digits exactly - accunits=D2U(accdigits); // and recalculate the units for copy - // [exponent is as for original remainder] - bits^=DECNEG; // flip the sign - } - } // REMNEAR - } // REMAINDER or REMNEAR - } // not DIVIDE - - // Set exponent and bits - res->exponent=exponent; - res->bits=(uByte)(bits&DECNEG); // [cleaned] - - // Now the coefficient. - decSetCoeff(res, set, accnext, accdigits, &residue, status); - - decFinish(res, set, &residue, status); // final cleanup - - #if DECSUBSET - // If a divide then strip trailing zeros if subset [after round] - if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped); - #endif - } while(0); // end protected - - if (varalloc!=NULL) free(varalloc); // drop any storage used - if (allocacc!=NULL) free(allocacc); // .. - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); // .. - if (alloclhs!=NULL) free(alloclhs); // .. - #endif - return res; - } // decDivideOp - -/* ------------------------------------------------------------------ */ -/* decMultiplyOp -- multiplication operation */ -/* */ -/* This routine performs the multiplication C=A x B. */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X*X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* status is the usual accumulator */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* ------------------------------------------------------------------ */ -/* 'Classic' multiplication is used rather than Karatsuba, as the */ -/* latter would give only a minor improvement for the short numbers */ -/* expected to be handled most (and uses much more memory). */ -/* */ -/* There are two major paths here: the general-purpose ('old code') */ -/* path which handles all DECDPUN values, and a fastpath version */ -/* which is used if 64-bit ints are available, DECDPUN<=4, and more */ -/* than two calls to decUnitAddSub would be made. */ -/* */ -/* The fastpath version lumps units together into 8-digit or 9-digit */ -/* chunks, and also uses a lazy carry strategy to minimise expensive */ -/* 64-bit divisions. The chunks are then broken apart again into */ -/* units for continuing processing. Despite this overhead, the */ -/* fastpath can speed up some 16-digit operations by 10x (and much */ -/* more for higher-precision calculations). */ -/* */ -/* A buffer always has to be used for the accumulator; in the */ -/* fastpath, buffers are also always needed for the chunked copies of */ -/* of the operand coefficients. */ -/* Static buffers are larger than needed just for multiply, to allow */ -/* for calls from other operations (notably exp). */ -/* ------------------------------------------------------------------ */ -#define FASTMUL (DECUSE64 && DECDPUN<5) -static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - uInt *status) { - Int accunits; // Units of accumulator in use - Int exponent; // work - Int residue=0; // rounding residue - uByte bits; // result sign - Unit *acc; // -> accumulator Unit array - Int needbytes; // size calculator - void *allocacc=NULL; // -> allocated accumulator, iff allocated - Unit accbuff[SD2U(DECBUFFER*4+1)]; // buffer (+1 for DECBUFFER==0, - // *4 for calls from other operations) - const Unit *mer, *mermsup; // work - Int madlength; // Units in multiplicand - Int shift; // Units to shift multiplicand by - - #if FASTMUL - // if DECDPUN is 1 or 3 work in base 10**9, otherwise - // (DECDPUN is 2 or 4) then work in base 10**8 - #if DECDPUN & 1 // odd - #define FASTBASE 1000000000 // base - #define FASTDIGS 9 // digits in base - #define FASTLAZY 18 // carry resolution point [1->18] - #else - #define FASTBASE 100000000 - #define FASTDIGS 8 - #define FASTLAZY 1844 // carry resolution point [1->1844] - #endif - // three buffers are used, two for chunked copies of the operands - // (base 10**8 or base 10**9) and one base 2**64 accumulator with - // lazy carry evaluation - uInt zlhibuff[(DECBUFFER*2+1)/8+1]; // buffer (+1 for DECBUFFER==0) - uInt *zlhi=zlhibuff; // -> lhs array - uInt *alloclhi=NULL; // -> allocated buffer, iff allocated - uInt zrhibuff[(DECBUFFER*2+1)/8+1]; // buffer (+1 for DECBUFFER==0) - uInt *zrhi=zrhibuff; // -> rhs array - uInt *allocrhi=NULL; // -> allocated buffer, iff allocated - uLong zaccbuff[(DECBUFFER*2+1)/4+2]; // buffer (+1 for DECBUFFER==0) - // [allocacc is shared for both paths, as only one will run] - uLong *zacc=zaccbuff; // -> accumulator array for exact result - #if DECDPUN==1 - Int zoff; // accumulator offset - #endif - uInt *lip, *rip; // item pointers - uInt *lmsi, *rmsi; // most significant items - Int ilhs, irhs, iacc; // item counts in the arrays - Int lazy; // lazy carry counter - uLong lcarry; // uLong carry - uInt carry; // carry (NB not uLong) - Int count; // work - const Unit *cup; // .. - Unit *up; // .. - uLong *lp; // .. - Int p; // .. - #endif - - #if DECSUBSET - decNumber *alloclhs=NULL; // -> allocated buffer, iff allocated - decNumber *allocrhs=NULL; // -> allocated buffer, iff allocated - #endif - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - // precalculate result sign - bits=(uByte)((lhs->bits^rhs->bits)&DECNEG); - - // handle infinities and NaNs - if (SPECIALARGS) { // a special bit set - if (SPECIALARGS & (DECSNAN | DECNAN)) { // one or two NaNs - decNaNs(res, lhs, rhs, set, status); - return res;} - // one or two infinities; Infinity * 0 is invalid - if (((lhs->bits & DECINF)==0 && ISZERO(lhs)) - ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { - *status|=DEC_Invalid_operation; - return res;} - decNumberZero(res); - res->bits=bits|DECINF; // infinity - return res;} - - // For best speed, as in DMSRCN [the original Rexx numerics - // module], use the shorter number as the multiplier (rhs) and - // the longer as the multiplicand (lhs) to minimise the number of - // adds (partial products) - if (lhs->digitsdigits) { // swap... - const decNumber *hold=lhs; - lhs=rhs; - rhs=hold; - } - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { - // reduce operands and set lostDigits status, as needed - if (lhs->digits>set->digits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - #if FASTMUL // fastpath can be used - // use the fast path if there are enough digits in the shorter - // operand to make the setup and takedown worthwhile - #define NEEDTWO (DECDPUN*2) // within two decUnitAddSub calls - if (rhs->digits>NEEDTWO) { // use fastpath... - // calculate the number of elements in each array - ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; // [ceiling] - irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; // .. - iacc=ilhs+irhs; - - // allocate buffers if required, as usual - needbytes=ilhs*sizeof(uInt); - if (needbytes>(Int)sizeof(zlhibuff)) { - alloclhi=(uInt *)malloc(needbytes); - zlhi=alloclhi;} - needbytes=irhs*sizeof(uInt); - if (needbytes>(Int)sizeof(zrhibuff)) { - allocrhi=(uInt *)malloc(needbytes); - zrhi=allocrhi;} - - // Allocating the accumulator space needs a special case when - // DECDPUN=1 because when converting the accumulator to Units - // after the multiplication each 8-byte item becomes 9 1-byte - // units. Therefore iacc extra bytes are needed at the front - // (rounded up to a multiple of 8 bytes), and the uLong - // accumulator starts offset the appropriate number of units - // to the right to avoid overwrite during the unchunking. - needbytes=iacc*sizeof(uLong); - #if DECDPUN==1 - zoff=(iacc+7)/8; // items to offset by - needbytes+=zoff*8; - #endif - if (needbytes>(Int)sizeof(zaccbuff)) { - allocacc=(uLong *)malloc(needbytes); - zacc=(uLong *)allocacc;} - if (zlhi==NULL||zrhi==NULL||zacc==NULL) { - *status|=DEC_Insufficient_storage; - break;} - - acc=(Unit *)zacc; // -> target Unit array - #if DECDPUN==1 - zacc+=zoff; // start uLong accumulator to right - #endif - - // assemble the chunked copies of the left and right sides - for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) - for (p=0, *lip=0; p0; - p+=DECDPUN, cup++, count-=DECDPUN) - *lip+=*cup*powers[p]; - lmsi=lip-1; // save -> msi - for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) - for (p=0, *rip=0; p0; - p+=DECDPUN, cup++, count-=DECDPUN) - *rip+=*cup*powers[p]; - rmsi=rip-1; // save -> msi - - // zero the accumulator - for (lp=zacc; lp0 && rip!=rmsi) continue; - lazy=FASTLAZY; // reset delay count - // spin up the accumulator resolving overflows - for (lp=zacc; lp assume buffer for accumulator - needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit); - if (needbytes>(Int)sizeof(accbuff)) { - allocacc=(Unit *)malloc(needbytes); - if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} - acc=(Unit *)allocacc; // use the allocated space - } - - /* Now the main long multiplication loop */ - // Unlike the equivalent in the IBM Java implementation, there - // is no advantage in calculating from msu to lsu. So, do it - // by the book, as it were. - // Each iteration calculates ACC=ACC+MULTAND*MULT - accunits=1; // accumulator starts at '0' - *acc=0; // .. (lsu=0) - shift=0; // no multiplicand shift at first - madlength=D2U(lhs->digits); // this won't change - mermsup=rhs->lsu+D2U(rhs->digits); // -> msu+1 of multiplier - - for (mer=rhs->lsu; merlsu, madlength, 0, - &acc[shift], *mer) - + shift; - else { // extend acc with a 0; it will be used shortly - *(acc+accunits)=0; // [this avoids length of <=0 later] - accunits++; - } - // multiply multiplicand by 10**DECDPUN for next Unit to left - shift++; // add this for 'logical length' - } // n - #if FASTMUL - } // unchunked units - #endif - // common end-path - #if DECTRACE - decDumpAr('*', acc, accunits); // Show exact result - #endif - - // acc now contains the exact result of the multiplication, - // possibly with a leading zero unit; build the decNumber from - // it, noting if any residue - res->bits=bits; // set sign - res->digits=decGetDigits(acc, accunits); // count digits exactly - - // There can be a 31-bit wrap in calculating the exponent. - // This can only happen if both input exponents are negative and - // both their magnitudes are large. If there was a wrap, set a - // safe very negative exponent, from which decFinalize() will - // raise a hard underflow shortly. - exponent=lhs->exponent+rhs->exponent; // calculate exponent - if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) - exponent=-2*DECNUMMAXE; // force underflow - res->exponent=exponent; // OK to overwrite now - - - // Set the coefficient. If any rounding, residue records - decSetCoeff(res, set, acc, res->digits, &residue, status); - decFinish(res, set, &residue, status); // final cleanup - } while(0); // end protected - - if (allocacc!=NULL) free(allocacc); // drop any storage used - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); // .. - if (alloclhs!=NULL) free(alloclhs); // .. - #endif - #if FASTMUL - if (allocrhi!=NULL) free(allocrhi); // .. - if (alloclhi!=NULL) free(alloclhi); // .. - #endif - return res; - } // decMultiplyOp - -/* ------------------------------------------------------------------ */ -/* decExpOp -- effect exponentiation */ -/* */ -/* This computes C = exp(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. status is updated but */ -/* not set. */ -/* */ -/* Restrictions: */ -/* */ -/* digits, emax, and -emin in the context must be less than */ -/* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */ -/* bounds or a zero. This is an internal routine, so these */ -/* restrictions are contractual and not enforced. */ -/* */ -/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* */ -/* Finite results will always be full precision and Inexact, except */ -/* when A is a zero or -Infinity (giving 1 or 0 respectively). */ -/* ------------------------------------------------------------------ */ -/* This approach used here is similar to the algorithm described in */ -/* */ -/* Variable Precision Exponential Function, T. E. Hull and */ -/* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ -/* pp79-91, ACM, June 1986. */ -/* */ -/* with the main difference being that the iterations in the series */ -/* evaluation are terminated dynamically (which does not require the */ -/* extra variable-precision variables which are expensive in this */ -/* context). */ -/* */ -/* The error analysis in Hull & Abrham's paper applies except for the */ -/* round-off error accumulation during the series evaluation. This */ -/* code does not precalculate the number of iterations and so cannot */ -/* use Horner's scheme. Instead, the accumulation is done at double- */ -/* precision, which ensures that the additions of the terms are exact */ -/* and do not accumulate round-off (and any round-off errors in the */ -/* terms themselves move 'to the right' faster than they can */ -/* accumulate). This code also extends the calculation by allowing, */ -/* in the spirit of other decNumber operators, the input to be more */ -/* precise than the result (the precision used is based on the more */ -/* precise of the input or requested result). */ -/* */ -/* Implementation notes: */ -/* */ -/* 1. This is separated out as decExpOp so it can be called from */ -/* other Mathematical functions (notably Ln) with a wider range */ -/* than normal. In particular, it can handle the slightly wider */ -/* (double) range needed by Ln (which has to be able to calculate */ -/* exp(-x) where x can be the tiniest number (Ntiny). */ -/* */ -/* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */ -/* iterations by appoximately a third with additional (although */ -/* diminishing) returns as the range is reduced to even smaller */ -/* fractions. However, h (the power of 10 used to correct the */ -/* result at the end, see below) must be kept <=8 as otherwise */ -/* the final result cannot be computed. Hence the leverage is a */ -/* sliding value (8-h), where potentially the range is reduced */ -/* more for smaller values. */ -/* */ -/* The leverage that can be applied in this way is severely */ -/* limited by the cost of the raise-to-the power at the end, */ -/* which dominates when the number of iterations is small (less */ -/* than ten) or when rhs is short. As an example, the adjustment */ -/* x**10,000,000 needs 31 multiplications, all but one full-width. */ -/* */ -/* 3. The restrictions (especially precision) could be raised with */ -/* care, but the full decNumber range seems very hard within the */ -/* 32-bit limits. */ -/* */ -/* 4. The working precisions for the static buffers are twice the */ -/* obvious size to allow for calls from decNumberPower. */ -/* ------------------------------------------------------------------ */ -decNumber * decExpOp(decNumber *res, const decNumber *rhs, - decContext *set, uInt *status) { - uInt ignore=0; // working status - Int h; // adjusted exponent for 0.xxxx - Int p; // working precision - Int residue; // rounding residue - uInt needbytes; // for space calculations - const decNumber *x=rhs; // (may point to safe copy later) - decContext aset, tset, dset; // working contexts - Int comp; // work - - // the argument is often copied to normalize it, so (unusually) it - // is treated like other buffers, using DECBUFFER, +1 in case - // DECBUFFER is 0 - decNumber bufr[D2N(DECBUFFER*2+1)]; - decNumber *allocrhs=NULL; // non-NULL if rhs buffer allocated - - // the working precision will be no more than set->digits+8+1 - // so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER - // is 0 (and twice that for the accumulator) - - // buffer for t, term (working precision plus) - decNumber buft[D2N(DECBUFFER*2+9+1)]; - decNumber *allocbuft=NULL; // -> allocated buft, iff allocated - decNumber *t=buft; // term - // buffer for a, accumulator (working precision * 2), at least 9 - decNumber bufa[D2N(DECBUFFER*4+18+1)]; - decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated - decNumber *a=bufa; // accumulator - // decNumber for the divisor term; this needs at most 9 digits - // and so can be fixed size [16 so can use standard context] - decNumber bufd[D2N(16)]; - decNumber *d=bufd; // divisor - decNumber numone; // constant 1 - - #if DECCHECK - Int iterations=0; // for later sanity check - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { // protect allocated storage - if (SPECIALARG) { // handle infinities and NaNs - if (decNumberIsInfinite(rhs)) { // an infinity - if (decNumberIsNegative(rhs)) // -Infinity -> +0 - decNumberZero(res); - else decNumberCopy(res, rhs); // +Infinity -> self - } - else decNaNs(res, rhs, NULL, set, status); // a NaN - break;} - - if (ISZERO(rhs)) { // zeros -> exact 1 - decNumberZero(res); // make clean 1 - *res->lsu=1; // .. - break;} // [no status to set] - - // e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path - // positive and negative tiny cases which will result in inexact - // 1. This also allows the later add-accumulate to always be - // exact (because its length will never be more than twice the - // working precision). - // The comparator (tiny) needs just one digit, so use the - // decNumber d for it (reused as the divisor, etc., below); its - // exponent is such that if x is positive it will have - // set->digits-1 zeros between the decimal point and the digit, - // which is 4, and if x is negative one more zero there as the - // more precise result will be of the form 0.9999999 rather than - // 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 - // or 0.00000004 if digits=7 and x<0. If RHS not larger than - // this then the result will be 1.000000 - decNumberZero(d); // clean - *d->lsu=4; // set 4 .. - d->exponent=-set->digits; // * 10**(-d) - if (decNumberIsNegative(rhs)) d->exponent--; // negative case - comp=decCompare(d, rhs, 1); // signless compare - if (comp==BADINT) { - *status|=DEC_Insufficient_storage; - break;} - if (comp>=0) { // rhs < d - Int shift=set->digits-1; - decNumberZero(res); // set 1 - *res->lsu=1; // .. - res->digits=decShiftToMost(res->lsu, 1, shift); - res->exponent=-shift; // make 1.0000... - *status|=DEC_Inexact | DEC_Rounded; // .. inexactly - break;} // tiny - - // set up the context to be used for calculating a, as this is - // used on both paths below - decContextDefault(&aset, DEC_INIT_DECIMAL64); - // accumulator bounds are as requested (could underflow) - aset.emax=set->emax; // usual bounds - aset.emin=set->emin; // .. - aset.clamp=0; // and no concrete format - - // calculate the adjusted (Hull & Abrham) exponent (where the - // decimal point is just to the left of the coefficient msd) - h=rhs->exponent+rhs->digits; - // if h>8 then 10**h cannot be calculated safely; however, when - // h=8 then exp(|rhs|) will be at least exp(1E+7) which is at - // least 6.59E+4342944, so (due to the restriction on Emax/Emin) - // overflow (or underflow to 0) is guaranteed -- so this case can - // be handled by simply forcing the appropriate excess - if (h>8) { // overflow/underflow - // set up here so Power call below will over or underflow to - // zero; set accumulator to either 2 or 0.02 - // [stack buffer for a is always big enough for this] - decNumberZero(a); - *a->lsu=2; // not 1 but < exp(1) - if (decNumberIsNegative(rhs)) a->exponent=-2; // make 0.02 - h=8; // clamp so 10**h computable - p=9; // set a working precision - } - else { // h<=8 - Int maxlever=(rhs->digits>8?1:0); - // [could/should increase this for precisions >40 or so, too] - - // if h is 8, cannot normalize to a lower upper limit because - // the final result will not be computable (see notes above), - // but leverage can be applied whenever h is less than 8. - // Apply as much as possible, up to a MAXLEVER digits, which - // sets the tradeoff against the cost of the later a**(10**h). - // As h is increased, the working precision below also - // increases to compensate for the "constant digits at the - // front" effect. - Int lever=MINI(8-h, maxlever); // leverage attainable - Int use=-rhs->digits-lever; // exponent to use for RHS - h+=lever; // apply leverage selected - if (h<0) { // clamp - use+=h; // [may end up subnormal] - h=0; - } - // Take a copy of RHS if it needs normalization (true whenever x>=1) - if (rhs->exponent!=use) { - decNumber *newrhs=bufr; // assume will fit on stack - needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufr)) { // need malloc space - allocrhs=(decNumber *)malloc(needbytes); - if (allocrhs==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - newrhs=allocrhs; // use the allocated space - } - decNumberCopy(newrhs, rhs); // copy to safe space - newrhs->exponent=use; // normalize; now <1 - x=newrhs; // ready for use - // decNumberShow(x); - } - - // Now use the usual power series to evaluate exp(x). The - // series starts as 1 + x + x^2/2 ... so prime ready for the - // third term by setting the term variable t=x, the accumulator - // a=1, and the divisor d=2. - - // First determine the working precision. From Hull & Abrham - // this is set->digits+h+2. However, if x is 'over-precise' we - // need to allow for all its digits to potentially participate - // (consider an x where all the excess digits are 9s) so in - // this case use x->digits+h+2 - p=MAXI(x->digits, set->digits)+h+2; // [h<=8] - - // a and t are variable precision, and depend on p, so space - // must be allocated for them if necessary - - // the accumulator needs to be able to hold 2p digits so that - // the additions on the second and subsequent iterations are - // sufficiently exact. - needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { // need malloc space - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - a=allocbufa; // use the allocated space - } - // the term needs to be able to hold p digits (which is - // guaranteed to be larger than x->digits, so the initial copy - // is safe); it may also be used for the raise-to-power - // calculation below, which needs an extra two digits - needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit); - if (needbytes>sizeof(buft)) { // need malloc space - allocbuft=(decNumber *)malloc(needbytes); - if (allocbuft==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - t=allocbuft; // use the allocated space - } - - decNumberCopy(t, x); // term=x - decNumberZero(a); *a->lsu=1; // accumulator=1 - decNumberZero(d); *d->lsu=2; // divisor=2 - decNumberZero(&numone); *numone.lsu=1; // constant 1 for increment - - // set up the contexts for calculating a, t, and d - decContextDefault(&tset, DEC_INIT_DECIMAL64); - dset=tset; - // accumulator bounds are set above, set precision now - aset.digits=p*2; // double - // term bounds avoid any underflow or overflow - tset.digits=p; - tset.emin=DEC_MIN_EMIN; // [emax is plenty] - // [dset.digits=16, etc., are sufficient] - - // finally ready to roll - for (;;) { - #if DECCHECK - iterations++; - #endif - // only the status from the accumulation is interesting - // [but it should remain unchanged after first add] - decAddOp(a, a, t, &aset, 0, status); // a=a+t - decMultiplyOp(t, t, x, &tset, &ignore); // t=t*x - decDivideOp(t, t, d, &tset, DIVIDE, &ignore); // t=t/d - // the iteration ends when the term cannot affect the result, - // if rounded to p digits, which is when its value is smaller - // than the accumulator by p+1 digits. There must also be - // full precision in a. - if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) - && (a->digits>=p)) break; - decAddOp(d, d, &numone, &dset, 0, &ignore); // d=d+1 - } // iterate - - #if DECCHECK - // just a sanity check; comment out test to show always - if (iterations>p+3) - printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", - (LI)iterations, (LI)*status, (LI)p, (LI)x->digits); - #endif - } // h<=8 - - // apply postconditioning: a=a**(10**h) -- this is calculated - // at a slightly higher precision than Hull & Abrham suggest - if (h>0) { - Int seenbit=0; // set once a 1-bit is seen - Int i; // counter - Int n=powers[h]; // always positive - aset.digits=p+2; // sufficient precision - // avoid the overhead and many extra digits of decNumberPower - // as all that is needed is the short 'multipliers' loop; here - // accumulate the answer into t - decNumberZero(t); *t->lsu=1; // acc=1 - for (i=1;;i++){ // for each bit [top bit ignored] - // abandon if have had overflow or terminal underflow - if (*status & (DEC_Overflow|DEC_Underflow)) { // interesting? - if (*status&DEC_Overflow || ISZERO(t)) break;} - n=n<<1; // move next bit to testable position - if (n<0) { // top bit is set - seenbit=1; // OK, have a significant bit - decMultiplyOp(t, t, a, &aset, status); // acc=acc*x - } - if (i==31) break; // that was the last bit - if (!seenbit) continue; // no need to square 1 - decMultiplyOp(t, t, t, &aset, status); // acc=acc*acc [square] - } /*i*/ // 32 bits - // decNumberShow(t); - a=t; // and carry on using t instead of a - } - - // Copy and round the result to res - residue=1; // indicate dirt to right .. - if (ISZERO(a)) residue=0; // .. unless underflowed to 0 - aset.digits=set->digits; // [use default rounding] - decCopyFit(res, a, &aset, &residue, status); // copy & shorten - decFinish(res, set, &residue, status); // cleanup/set flags - } while(0); // end protected - - if (allocrhs !=NULL) free(allocrhs); // drop any storage used - if (allocbufa!=NULL) free(allocbufa); // .. - if (allocbuft!=NULL) free(allocbuft); // .. - // [status is handled by caller] - return res; - } // decExpOp - -/* ------------------------------------------------------------------ */ -/* Initial-estimate natural logarithm table */ -/* */ -/* LNnn -- 90-entry 16-bit table for values from .10 through .99. */ -/* The result is a 4-digit encode of the coefficient (c=the */ -/* top 14 bits encoding 0-9999) and a 2-digit encode of the */ -/* exponent (e=the bottom 2 bits encoding 0-3) */ -/* */ -/* The resulting value is given by: */ -/* */ -/* v = -c * 10**(-e-3) */ -/* */ -/* where e and c are extracted from entry k = LNnn[x-10] */ -/* where x is truncated (NB) into the range 10 through 99, */ -/* and then c = k>>2 and e = k&3. */ -/* ------------------------------------------------------------------ */ -const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208, - 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312, - 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032, - 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, - 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, - 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, - 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, - 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801, - 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, - 10130, 6046, 20055}; - -/* ------------------------------------------------------------------ */ -/* decLnOp -- effect natural logarithm */ -/* */ -/* This computes C = ln(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Notable cases: */ -/* A<0 -> Invalid */ -/* A=0 -> -Infinity (Exact) */ -/* A=+Infinity -> +Infinity (Exact) */ -/* A=1 exactly -> 0 (Exact) */ -/* */ -/* Restrictions (as for Exp): */ -/* */ -/* digits, emax, and -emin in the context must be less than */ -/* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */ -/* bounds or a zero. This is an internal routine, so these */ -/* restrictions are contractual and not enforced. */ -/* */ -/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* The result is calculated using Newton's method, with each */ -/* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */ -/* Epperson 1989. */ -/* */ -/* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ -/* This has to be calculated at the sum of the precision of x and the */ -/* working precision. */ -/* */ -/* Implementation notes: */ -/* */ -/* 1. This is separated out as decLnOp so it can be called from */ -/* other Mathematical functions (e.g., Log 10) with a wider range */ -/* than normal. In particular, it can handle the slightly wider */ -/* (+9+2) range needed by a power function. */ -/* */ -/* 2. The speed of this function is about 10x slower than exp, as */ -/* it typically needs 4-6 iterations for short numbers, and the */ -/* extra precision needed adds a squaring effect, twice. */ -/* */ -/* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */ -/* as these are common requests. ln(10) is used by log10(x). */ -/* */ -/* 4. An iteration might be saved by widening the LNnn table, and */ -/* would certainly save at least one if it were made ten times */ -/* bigger, too (for truncated fractions 0.100 through 0.999). */ -/* However, for most practical evaluations, at least four or five */ -/* iterations will be neede -- so this would only speed up by */ -/* 20-25% and that probably does not justify increasing the table */ -/* size. */ -/* */ -/* 5. The static buffers are larger than might be expected to allow */ -/* for calls from decNumberPower. */ -/* ------------------------------------------------------------------ */ -decNumber * decLnOp(decNumber *res, const decNumber *rhs, - decContext *set, uInt *status) { - uInt ignore=0; // working status accumulator - uInt needbytes; // for space calculations - Int residue; // rounding residue - Int r; // rhs=f*10**r [see below] - Int p; // working precision - Int pp; // precision for iteration - Int t; // work - - // buffers for a (accumulator, typically precision+2) and b - // (adjustment calculator, same size) - decNumber bufa[D2N(DECBUFFER+12)]; - decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated - decNumber *a=bufa; // accumulator/work - decNumber bufb[D2N(DECBUFFER*2+2)]; - decNumber *allocbufb=NULL; // -> allocated bufa, iff allocated - decNumber *b=bufb; // adjustment/work - - decNumber numone; // constant 1 - decNumber cmp; // work - decContext aset, bset; // working contexts - - #if DECCHECK - Int iterations=0; // for later sanity check - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { // protect allocated storage - if (SPECIALARG) { // handle infinities and NaNs - if (decNumberIsInfinite(rhs)) { // an infinity - if (decNumberIsNegative(rhs)) // -Infinity -> error - *status|=DEC_Invalid_operation; - else decNumberCopy(res, rhs); // +Infinity -> self - } - else decNaNs(res, rhs, NULL, set, status); // a NaN - break;} - - if (ISZERO(rhs)) { // +/- zeros -> -Infinity - decNumberZero(res); // make clean - res->bits=DECINF|DECNEG; // set - infinity - break;} // [no status to set] - - // Non-zero negatives are bad... - if (decNumberIsNegative(rhs)) { // -x -> error - *status|=DEC_Invalid_operation; - break;} - - // Here, rhs is positive, finite, and in range - - // lookaside fastpath code for ln(2) and ln(10) at common lengths - if (rhs->exponent==0 && set->digits<=40) { - #if DECDPUN==1 - if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { // ln(10) - #else - if (rhs->lsu[0]==10 && rhs->digits==2) { // ln(10) - #endif - aset=*set; aset.round=DEC_ROUND_HALF_EVEN; - #define LN10 "2.302585092994045684017991454684364207601" - decNumberFromString(res, LN10, &aset); - *status|=(DEC_Inexact | DEC_Rounded); // is inexact - break;} - if (rhs->lsu[0]==2 && rhs->digits==1) { // ln(2) - aset=*set; aset.round=DEC_ROUND_HALF_EVEN; - #define LN2 "0.6931471805599453094172321214581765680755" - decNumberFromString(res, LN2, &aset); - *status|=(DEC_Inexact | DEC_Rounded); - break;} - } // integer and short - - // Determine the working precision. This is normally the - // requested precision + 2, with a minimum of 9. However, if - // the rhs is 'over-precise' then allow for all its digits to - // potentially participate (consider an rhs where all the excess - // digits are 9s) so in this case use rhs->digits+2. - p=MAXI(rhs->digits, MAXI(set->digits, 7))+2; - - // Allocate space for the accumulator and the high-precision - // adjustment calculator, if necessary. The accumulator must - // be able to hold p digits, and the adjustment up to - // rhs->digits+p digits. They are also made big enough for 16 - // digits so that they can be used for calculating the initial - // estimate. - needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { // need malloc space - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - a=allocbufa; // use the allocated space - } - pp=p+rhs->digits; - needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit); - if (needbytes>sizeof(bufb)) { // need malloc space - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufb==NULL) { // hopeless -- abandon - *status|=DEC_Insufficient_storage; - break;} - b=allocbufb; // use the allocated space - } - - // Prepare an initial estimate in acc. Calculate this by - // considering the coefficient of x to be a normalized fraction, - // f, with the decimal point at far left and multiplied by - // 10**r. Then, rhs=f*10**r and 0.1<=f<1, and - // ln(x) = ln(f) + ln(10)*r - // Get the initial estimate for ln(f) from a small lookup - // table (see above) indexed by the first two digits of f, - // truncated. - - decContextDefault(&aset, DEC_INIT_DECIMAL64); // 16-digit extended - r=rhs->exponent+rhs->digits; // 'normalised' exponent - decNumberFromInt32(a, r); // a=r - decNumberFromInt32(b, 2302585); // b=ln(10) (2.302585) - b->exponent=-6; // .. - decMultiplyOp(a, a, b, &aset, &ignore); // a=a*b - // now get top two digits of rhs into b by simple truncate and - // force to integer - residue=0; // (no residue) - aset.digits=2; aset.round=DEC_ROUND_DOWN; - decCopyFit(b, rhs, &aset, &residue, &ignore); // copy & shorten - b->exponent=0; // make integer - t=decGetInt(b); // [cannot fail] - if (t<10) t=X10(t); // adjust single-digit b - t=LNnn[t-10]; // look up ln(b) - decNumberFromInt32(b, t>>2); // b=ln(b) coefficient - b->exponent=-(t&3)-3; // set exponent - b->bits=DECNEG; // ln(0.10)->ln(0.99) always -ve - aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; // restore - decAddOp(a, a, b, &aset, 0, &ignore); // acc=a+b - // the initial estimate is now in a, with up to 4 digits correct. - // When rhs is at or near Nmax the estimate will be low, so we - // will approach it from below, avoiding overflow when calling exp. - - decNumberZero(&numone); *numone.lsu=1; // constant 1 for adjustment - - // accumulator bounds are as requested (could underflow, but - // cannot overflow) - aset.emax=set->emax; - aset.emin=set->emin; - aset.clamp=0; // no concrete format - // set up a context to be used for the multiply and subtract - bset=aset; - bset.emax=DEC_MAX_MATH*2; // use double bounds for the - bset.emin=-DEC_MAX_MATH*2; // adjustment calculation - // [see decExpOp call below] - // for each iteration double the number of digits to calculate, - // up to a maximum of p - pp=9; // initial precision - // [initially 9 as then the sequence starts 7+2, 16+2, and - // 34+2, which is ideal for standard-sized numbers] - aset.digits=pp; // working context - bset.digits=pp+rhs->digits; // wider context - for (;;) { // iterate - #if DECCHECK - iterations++; - if (iterations>24) break; // consider 9 * 2**24 - #endif - // calculate the adjustment (exp(-a)*x-1) into b. This is a - // catastrophic subtraction but it really is the difference - // from 1 that is of interest. - // Use the internal entry point to Exp as it allows the double - // range for calculating exp(-a) when a is the tiniest subnormal. - a->bits^=DECNEG; // make -a - decExpOp(b, a, &bset, &ignore); // b=exp(-a) - a->bits^=DECNEG; // restore sign of a - // now multiply by rhs and subtract 1, at the wider precision - decMultiplyOp(b, b, rhs, &bset, &ignore); // b=b*rhs - decAddOp(b, b, &numone, &bset, DECNEG, &ignore); // b=b-1 - - // the iteration ends when the adjustment cannot affect the - // result by >=0.5 ulp (at the requested digits), which - // is when its value is smaller than the accumulator by - // set->digits+1 digits (or it is zero) -- this is a looser - // requirement than for Exp because all that happens to the - // accumulator after this is the final rounding (but note that - // there must also be full precision in a, or a=0). - - if (decNumberIsZero(b) || - (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { - if (a->digits==p) break; - if (decNumberIsZero(a)) { - decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); // rhs=1 ? - if (cmp.lsu[0]==0) a->exponent=0; // yes, exact 0 - else *status|=(DEC_Inexact | DEC_Rounded); // no, inexact - break; - } - // force padding if adjustment has gone to 0 before full length - if (decNumberIsZero(b)) b->exponent=a->exponent-p; - } - - // not done yet ... - decAddOp(a, a, b, &aset, 0, &ignore); // a=a+b for next estimate - if (pp==p) continue; // precision is at maximum - // lengthen the next calculation - pp=pp*2; // double precision - if (pp>p) pp=p; // clamp to maximum - aset.digits=pp; // working context - bset.digits=pp+rhs->digits; // wider context - } // Newton's iteration - - #if DECCHECK - // just a sanity check; remove the test to show always - if (iterations>24) - printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", - (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits); - #endif - - // Copy and round the result to res - residue=1; // indicate dirt to right - if (ISZERO(a)) residue=0; // .. unless underflowed to 0 - aset.digits=set->digits; // [use default rounding] - decCopyFit(res, a, &aset, &residue, status); // copy & shorten - decFinish(res, set, &residue, status); // cleanup/set flags - } while(0); // end protected - - if (allocbufa!=NULL) free(allocbufa); // drop any storage used - if (allocbufb!=NULL) free(allocbufb); // .. - // [status is handled by caller] - return res; - } // decLnOp - -/* ------------------------------------------------------------------ */ -/* decQuantizeOp -- force exponent to requested value */ -/* */ -/* This computes C = op(A, B), where op adjusts the coefficient */ -/* of C (by rounding or shifting) such that the exponent (-scale) */ -/* of C has the value B or matches the exponent of B. */ -/* The numerical value of C will equal A, except for the effects of */ -/* any rounding that occurred. */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the requested exponent */ -/* set is the context */ -/* quant is 1 for quantize or 0 for rescale */ -/* status is the status accumulator (this can be called without */ -/* risk of control loss) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Unless there is an error or the result is infinite, the exponent */ -/* after the operation is guaranteed to be that requested. */ -/* ------------------------------------------------------------------ */ -static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - Flag quant, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated - decNumber *allocrhs=NULL; // .., rhs - #endif - const decNumber *inrhs=rhs; // save original rhs - Int reqdigits=set->digits; // requested DIGITS - Int reqexp; // requested exponent [-scale] - Int residue=0; // rounding residue - Int etiny=set->emin-(reqdigits-1); - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { - // reduce operands and set lostDigits status, as needed - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { // [this only checks lostDigits] - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - // Handle special values - if (SPECIALARGS) { - // NaNs get usual processing - if (SPECIALARGS & (DECSNAN | DECNAN)) - decNaNs(res, lhs, rhs, set, status); - // one infinity but not both is bad - else if ((lhs->bits ^ rhs->bits) & DECINF) - *status|=DEC_Invalid_operation; - // both infinity: return lhs - else decNumberCopy(res, lhs); // [nop if in place] - break; - } - - // set requested exponent - if (quant) reqexp=inrhs->exponent; // quantize -- match exponents - else { // rescale -- use value of rhs - // Original rhs must be an integer that fits and is in range, - // which could be from -1999999997 to +999999999, thanks to - // subnormals - reqexp=decGetInt(inrhs); // [cannot fail] - } - - #if DECSUBSET - if (!set->extended) etiny=set->emin; // no subnormals - #endif - - if (reqexp==BADINT // bad (rescale only) or .. - || reqexp==BIGODD || reqexp==BIGEVEN // very big (ditto) or .. - || (reqexpset->emax)) { // > emax - *status|=DEC_Invalid_operation; - break;} - - // the RHS has been processed, so it can be overwritten now if necessary - if (ISZERO(lhs)) { // zero coefficient unchanged - decNumberCopy(res, lhs); // [nop if in place] - res->exponent=reqexp; // .. just set exponent - #if DECSUBSET - if (!set->extended) res->bits=0; // subset specification; no -0 - #endif - } - else { // non-zero lhs - Int adjust=reqexp-lhs->exponent; // digit adjustment needed - // if adjusted coefficient will definitely not fit, give up now - if ((lhs->digits-adjust)>reqdigits) { - *status|=DEC_Invalid_operation; - break; - } - - if (adjust>0) { // increasing exponent - // this will decrease the length of the coefficient by adjust - // digits, and must round as it does so - decContext workset; // work - workset=*set; // clone rounding, etc. - workset.digits=lhs->digits-adjust; // set requested length - // [note that the latter can be <1, here] - decCopyFit(res, lhs, &workset, &residue, status); // fit to result - decApplyRound(res, &workset, residue, status); // .. and round - residue=0; // [used] - // If just rounded a 999s case, exponent will be off by one; - // adjust back (after checking space), if so. - if (res->exponent>reqexp) { - // re-check needed, e.g., for quantize(0.9999, 0.001) under - // set->digits==3 - if (res->digits==reqdigits) { // cannot shift by 1 - *status&=~(DEC_Inexact | DEC_Rounded); // [clean these] - *status|=DEC_Invalid_operation; - break; - } - res->digits=decShiftToMost(res->lsu, res->digits, 1); // shift - res->exponent--; // (re)adjust the exponent. - } - #if DECSUBSET - if (ISZERO(res) && !set->extended) res->bits=0; // subset; no -0 - #endif - } // increase - else /* adjust<=0 */ { // decreasing or = exponent - // this will increase the length of the coefficient by -adjust - // digits, by adding zero or more trailing zeros; this is - // already checked for fit, above - decNumberCopy(res, lhs); // [it will fit] - // if padding needed (adjust<0), add it now... - if (adjust<0) { - res->digits=decShiftToMost(res->lsu, res->digits, -adjust); - res->exponent+=adjust; // adjust the exponent - } - } // decrease - } // non-zero - - // Check for overflow [do not use Finalize in this case, as an - // overflow here is a "don't fit" situation] - if (res->exponent>set->emax-res->digits+1) { // too big - *status|=DEC_Invalid_operation; - break; - } - else { - decFinalize(res, set, &residue, status); // set subnormal flags - *status&=~DEC_Underflow; // suppress Underflow [as per 754] - } - } while(0); // end protected - - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); // drop any storage used - if (alloclhs!=NULL) free(alloclhs); // .. - #endif - return res; - } // decQuantizeOp - -/* ------------------------------------------------------------------ */ -/* decCompareOp -- compare, min, or max two Numbers */ -/* */ -/* This computes C = A ? B and carries out one of four operations: */ -/* COMPARE -- returns the signum (as a number) giving the */ -/* result of a comparison unless one or both */ -/* operands is a NaN (in which case a NaN results) */ -/* COMPSIG -- as COMPARE except that a quiet NaN raises */ -/* Invalid operation. */ -/* COMPMAX -- returns the larger of the operands, using the */ -/* 754 maxnum operation */ -/* COMPMAXMAG -- ditto, comparing absolute values */ -/* COMPMIN -- the 754 minnum operation */ -/* COMPMINMAG -- ditto, comparing absolute values */ -/* COMTOTAL -- returns the signum (as a number) giving the */ -/* result of a comparison using 754 total ordering */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* op is the operation flag */ -/* status is the usual accumulator */ -/* */ -/* C must have space for one digit for COMPARE or set->digits for */ -/* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */ -/* ------------------------------------------------------------------ */ -/* The emphasis here is on speed for common cases, and avoiding */ -/* coefficient comparison if possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decCompareOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - Flag op, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated - decNumber *allocrhs=NULL; // .., rhs - #endif - Int result=0; // default result value - uByte merged; // work - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { // protect allocated storage - #if DECSUBSET - if (!set->extended) { - // reduce operands and set lostDigits status, as needed - if (lhs->digits>set->digits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) {result=BADINT; break;} - lhs=alloclhs; - } - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) {result=BADINT; break;} - rhs=allocrhs; - } - } - #endif - // [following code does not require input rounding] - - // If total ordering then handle differing signs 'up front' - if (op==COMPTOTAL) { // total ordering - if (decNumberIsNegative(lhs) & !decNumberIsNegative(rhs)) { - result=-1; - break; - } - if (!decNumberIsNegative(lhs) & decNumberIsNegative(rhs)) { - result=+1; - break; - } - } - - // handle NaNs specially; let infinities drop through - // This assumes sNaN (even just one) leads to NaN. - merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN); - if (merged) { // a NaN bit set - if (op==COMPARE); // result will be NaN - else if (op==COMPSIG) // treat qNaN as sNaN - *status|=DEC_Invalid_operation | DEC_sNaN; - else if (op==COMPTOTAL) { // total ordering, always finite - // signs are known to be the same; compute the ordering here - // as if the signs are both positive, then invert for negatives - if (!decNumberIsNaN(lhs)) result=-1; - else if (!decNumberIsNaN(rhs)) result=+1; - // here if both NaNs - else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1; - else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1; - else { // both NaN or both sNaN - // now it just depends on the payload - result=decUnitCompare(lhs->lsu, D2U(lhs->digits), - rhs->lsu, D2U(rhs->digits), 0); - // [Error not possible, as these are 'aligned'] - } // both same NaNs - if (decNumberIsNegative(lhs)) result=-result; - break; - } // total order - - else if (merged & DECSNAN); // sNaN -> qNaN - else { // here if MIN or MAX and one or two quiet NaNs - // min or max -- 754 rules ignore single NaN - if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { - // just one NaN; force choice to be the non-NaN operand - op=COMPMAX; - if (lhs->bits & DECNAN) result=-1; // pick rhs - else result=+1; // pick lhs - break; - } - } // max or min - op=COMPNAN; // use special path - decNaNs(res, lhs, rhs, set, status); // propagate NaN - break; - } - // have numbers - if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1); - else result=decCompare(lhs, rhs, 0); // sign matters - } while(0); // end protected - - if (result==BADINT) *status|=DEC_Insufficient_storage; // rare - else { - if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { // returning signum - if (op==COMPTOTAL && result==0) { - // operands are numerically equal or same NaN (and same sign, - // tested first); if identical, leave result 0 - if (lhs->exponent!=rhs->exponent) { - if (lhs->exponentexponent) result=-1; - else result=+1; - if (decNumberIsNegative(lhs)) result=-result; - } // lexp!=rexp - } // total-order by exponent - decNumberZero(res); // [always a valid result] - if (result!=0) { // must be -1 or +1 - *res->lsu=1; - if (result<0) res->bits=DECNEG; - } - } - else if (op==COMPNAN); // special, drop through - else { // MAX or MIN, non-NaN result - Int residue=0; // rounding accumulator - // choose the operand for the result - const decNumber *choice; - if (result==0) { // operands are numerically equal - // choose according to sign then exponent (see 754) - uByte slhs=(lhs->bits & DECNEG); - uByte srhs=(rhs->bits & DECNEG); - #if DECSUBSET - if (!set->extended) { // subset: force left-hand - op=COMPMAX; - result=+1; - } - else - #endif - if (slhs!=srhs) { // signs differ - if (slhs) result=-1; // rhs is max - else result=+1; // lhs is max - } - else if (slhs && srhs) { // both negative - if (lhs->exponentexponent) result=+1; - else result=-1; - // [if equal, use lhs, technically identical] - } - else { // both positive - if (lhs->exponent>rhs->exponent) result=+1; - else result=-1; - // [ditto] - } - } // numerically equal - // here result will be non-0; reverse if looking for MIN - if (op==COMPMIN || op==COMPMINMAG) result=-result; - choice=(result>0 ? lhs : rhs); // choose - // copy chosen to result, rounding if need be - decCopyFit(res, choice, set, &residue, status); - decFinish(res, set, &residue, status); - } - } - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); // free any storage used - if (alloclhs!=NULL) free(alloclhs); // .. - #endif - return res; - } // decCompareOp - -/* ------------------------------------------------------------------ */ -/* decCompare -- compare two decNumbers by numerical value */ -/* */ -/* This routine compares A ? B without altering them. */ -/* */ -/* Arg1 is A, a decNumber which is not a NaN */ -/* Arg2 is B, a decNumber which is not a NaN */ -/* Arg3 is 1 for a sign-independent compare, 0 otherwise */ -/* */ -/* returns -1, 0, or 1 for AB, or BADINT if failure */ -/* (the only possible failure is an allocation error) */ -/* ------------------------------------------------------------------ */ -static Int decCompare(const decNumber *lhs, const decNumber *rhs, - Flag abs) { - Int result; // result value - Int sigr; // rhs signum - Int compare; // work - - result=1; // assume signum(lhs) - if (ISZERO(lhs)) result=0; - if (abs) { - if (ISZERO(rhs)) return result; // LHS wins or both 0 - // RHS is non-zero - if (result==0) return -1; // LHS is 0; RHS wins - // [here, both non-zero, result=1] - } - else { // signs matter - if (result && decNumberIsNegative(lhs)) result=-1; - sigr=1; // compute signum(rhs) - if (ISZERO(rhs)) sigr=0; - else if (decNumberIsNegative(rhs)) sigr=-1; - if (result > sigr) return +1; // L > R, return 1 - if (result < sigr) return -1; // L < R, return -1 - if (result==0) return 0; // both 0 - } - - // signums are the same; both are non-zero - if ((lhs->bits | rhs->bits) & DECINF) { // one or more infinities - if (decNumberIsInfinite(rhs)) { - if (decNumberIsInfinite(lhs)) result=0;// both infinite - else result=-result; // only rhs infinite - } - return result; - } - // must compare the coefficients, allowing for exponents - if (lhs->exponent>rhs->exponent) { // LHS exponent larger - // swap sides, and sign - const decNumber *temp=lhs; - lhs=rhs; - rhs=temp; - result=-result; - } - compare=decUnitCompare(lhs->lsu, D2U(lhs->digits), - rhs->lsu, D2U(rhs->digits), - rhs->exponent-lhs->exponent); - if (compare!=BADINT) compare*=result; // comparison succeeded - return compare; - } // decCompare - -/* ------------------------------------------------------------------ */ -/* decUnitCompare -- compare two >=0 integers in Unit arrays */ -/* */ -/* This routine compares A ? B*10**E where A and B are unit arrays */ -/* A is a plain integer */ -/* B has an exponent of E (which must be non-negative) */ -/* */ -/* Arg1 is A first Unit (lsu) */ -/* Arg2 is A length in Units */ -/* Arg3 is B first Unit (lsu) */ -/* Arg4 is B length in Units */ -/* Arg5 is E (0 if the units are aligned) */ -/* */ -/* returns -1, 0, or 1 for AB, or BADINT if failure */ -/* (the only possible failure is an allocation error, which can */ -/* only occur if E!=0) */ -/* ------------------------------------------------------------------ */ -static Int decUnitCompare(const Unit *a, Int alength, - const Unit *b, Int blength, Int exp) { - Unit *acc; // accumulator for result - Unit accbuff[SD2U(DECBUFFER*2+1)]; // local buffer - Unit *allocacc=NULL; // -> allocated acc buffer, iff allocated - Int accunits, need; // units in use or needed for acc - const Unit *l, *r, *u; // work - Int expunits, exprem, result; // .. - - if (exp==0) { // aligned; fastpath - if (alength>blength) return 1; - if (alength=a; l--, r--) { - if (*l>*r) return 1; - if (*l<*r) return -1; - } - return 0; // all units match - } // aligned - - // Unaligned. If one is >1 unit longer than the other, padded - // approximately, then can return easily - if (alength>blength+(Int)D2U(exp)) return 1; - if (alength+1sizeof(accbuff)) { - allocacc=(Unit *)malloc(need*sizeof(Unit)); - if (allocacc==NULL) return BADINT; // hopeless -- abandon - acc=allocacc; - } - // Calculate units and remainder from exponent. - expunits=exp/DECDPUN; - exprem=exp%DECDPUN; - // subtract [A+B*(-m)] - accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, - -(Int)powers[exprem]); - // [UnitAddSub result may have leading zeros, even on zero] - if (accunits<0) result=-1; // negative result - else { // non-negative result - // check units of the result before freeing any storage - for (u=acc; u=0 integers in Unit arrays */ -/* */ -/* This routine performs the calculation: */ -/* */ -/* C=A+(B*M) */ -/* */ -/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */ -/* */ -/* A may be shorter or longer than B. */ -/* */ -/* Leading zeros are not removed after a calculation. The result is */ -/* either the same length as the longer of A and B (adding any */ -/* shift), or one Unit longer than that (if a Unit carry occurred). */ -/* */ -/* A and B content are not altered unless C is also A or B. */ -/* C may be the same array as A or B, but only if no zero padding is */ -/* requested (that is, C may be B only if bshift==0). */ -/* C is filled from the lsu; only those units necessary to complete */ -/* the calculation are referenced. */ -/* */ -/* Arg1 is A first Unit (lsu) */ -/* Arg2 is A length in Units */ -/* Arg3 is B first Unit (lsu) */ -/* Arg4 is B length in Units */ -/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */ -/* Arg6 is C first Unit (lsu) */ -/* Arg7 is M, the multiplier */ -/* */ -/* returns the count of Units written to C, which will be non-zero */ -/* and negated if the result is negative. That is, the sign of the */ -/* returned Int is the sign of the result (positive for zero) and */ -/* the absolute value of the Int is the count of Units. */ -/* */ -/* It is the caller's responsibility to make sure that C size is */ -/* safe, allowing space if necessary for a one-Unit carry. */ -/* */ -/* This routine is severely performance-critical; *any* change here */ -/* must be measured (timed) to assure no performance degradation. */ -/* In particular, trickery here tends to be counter-productive, as */ -/* increased complexity of code hurts register optimizations on */ -/* register-poor architectures. Avoiding divisions is nearly */ -/* always a Good Idea, however. */ -/* */ -/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */ -/* (IBM Warwick, UK) for some of the ideas used in this routine. */ -/* ------------------------------------------------------------------ */ -static Int decUnitAddSub(const Unit *a, Int alength, - const Unit *b, Int blength, Int bshift, - Unit *c, Int m) { - const Unit *alsu=a; // A lsu [need to remember it] - Unit *clsu=c; // C ditto - Unit *minC; // low water mark for C - Unit *maxC; // high water mark for C - eInt carry=0; // carry integer (could be Long) - Int add; // work - #if DECDPUN<=4 // myriadal, millenary, etc. - Int est; // estimated quotient - #endif - - #if DECTRACE - if (alength<1 || blength<1) - printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); - #endif - - maxC=c+alength; // A is usually the longer - minC=c+blength; // .. and B the shorter - if (bshift!=0) { // B is shifted; low As copy across - minC+=bshift; - // if in place [common], skip copy unless there's a gap [rare] - if (a==c && bshift<=alength) { - c+=bshift; - a+=bshift; - } - else for (; cmaxC) { // swap - Unit *hold=minC; - minC=maxC; - maxC=hold; - } - - // For speed, do the addition as two loops; the first where both A - // and B contribute, and the second (if necessary) where only one or - // other of the numbers contribute. - // Carry handling is the same (i.e., duplicated) in each case. - for (; c=0) { - est=(((ueInt)carry>>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder - carry=est; // likely quotient [89%] - if (*c>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); // correctly negative - if (*c=0) { - est=(((ueInt)carry>>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder - carry=est; // likely quotient [99%] - if (*c>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); // correctly negative - if (*c=0) { - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder - carry=est; // quotient - continue; - } - // negative case - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); // correctly negative - #else - // remainder operator is undefined if negative, so must test - if ((ueInt)carry<(DECDPUNMAX+1)*2) { // fastpath carry +1 - *c=(Unit)(carry-(DECDPUNMAX+1)); // [helps additions] - carry=1; - continue; - } - if (carry>=0) { - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1); - continue; - } - // negative case - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); - #endif - } // c - - // now may have one or other to complete - // [pretest to avoid loop setup/shutdown] - if (cDECDPUNMAX - #if DECDPUN==4 // use divide-by-multiply - if (carry>=0) { - est=(((ueInt)carry>>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder - carry=est; // likely quotient [79.7%] - if (*c>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); // correctly negative - if (*c=0) { - est=(((ueInt)carry>>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder - carry=est; // likely quotient [99%] - if (*c>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); // correctly negative - if (*c=0) { - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder - carry=est; // quotient - continue; - } - // negative case - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); // correctly negative - #else - if ((ueInt)carry<(DECDPUNMAX+1)*2){ // fastpath carry 1 - *c=(Unit)(carry-(DECDPUNMAX+1)); - carry=1; - continue; - } - // remainder operator is undefined if negative, so must test - if (carry>=0) { - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1); - continue; - } - // negative case - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); - #endif - } // c - - // OK, all A and B processed; might still have carry or borrow - // return number of Units in the result, negated if a borrow - if (carry==0) return c-clsu; // no carry, so no more to do - if (carry>0) { // positive carry - *c=(Unit)carry; // place as new unit - c++; // .. - return c-clsu; - } - // -ve carry: it's a borrow; complement needed - add=1; // temporary carry... - for (c=clsu; c current Unit - - #if DECCHECK - if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; - #endif - - *dropped=0; // assume no zeros dropped - if ((dn->bits & DECSPECIAL) // fast exit if special .. - || (*dn->lsu & 0x01)) return dn; // .. or odd - if (ISZERO(dn)) { // .. or 0 - dn->exponent=0; // (sign is preserved) - return dn; - } - - // have a finite number which is even - exp=dn->exponent; - cut=1; // digit (1-DECDPUN) in Unit - up=dn->lsu; // -> current Unit - for (d=0; ddigits-1; d++) { // [don't strip the final digit] - // slice by powers - #if DECDPUN<=4 - uInt quot=QUOT10(*up, cut); - if ((*up-quot*powers[cut])!=0) break; // found non-0 digit - #else - if (*up%powers[cut]!=0) break; // found non-0 digit - #endif - // have a trailing 0 - if (!all) { // trimming - // [if exp>0 then all trailing 0s are significant for trim] - if (exp<=0) { // if digit might be significant - if (exp==0) break; // then quit - exp++; // next digit might be significant - } - } - cut++; // next power - if (cut>DECDPUN) { // need new Unit - up++; - cut=1; - } - } // d - if (d==0) return dn; // none to drop - - // may need to limit drop if clamping - if (set->clamp && !noclamp) { - Int maxd=set->emax-set->digits+1-dn->exponent; - if (maxd<=0) return dn; // nothing possible - if (d>maxd) d=maxd; - } - - // effect the drop - decShiftToLeast(dn->lsu, D2U(dn->digits), d); - dn->exponent+=d; // maintain numerical value - dn->digits-=d; // new length - *dropped=d; // report the count - return dn; - } // decTrim - -/* ------------------------------------------------------------------ */ -/* decReverse -- reverse a Unit array in place */ -/* */ -/* ulo is the start of the array */ -/* uhi is the end of the array (highest Unit to include) */ -/* */ -/* The units ulo through uhi are reversed in place (if the number */ -/* of units is odd, the middle one is untouched). Note that the */ -/* digit(s) in each unit are unaffected. */ -/* ------------------------------------------------------------------ */ -static void decReverse(Unit *ulo, Unit *uhi) { - Unit temp; - for (; ulo=uar; source--, target--) *target=*source; - } - else { - first=uar+D2U(digits+shift)-1; // where msu of source will end up - for (; source>=uar; source--, target--) { - // split the source Unit and accumulate remainder for next - #if DECDPUN<=4 - uInt quot=QUOT10(*source, cut); - uInt rem=*source-quot*powers[cut]; - next+=quot; - #else - uInt rem=*source%powers[cut]; - next+=*source/powers[cut]; - #endif - if (target<=first) *target=(Unit)next; // write to target iff valid - next=rem*powers[DECDPUN-cut]; // save remainder for next Unit - } - } // shift-move - - // propagate any partial unit to one below and clear the rest - for (; target>=uar; target--) { - *target=(Unit)next; - next=0; - } - return digits+shift; - } // decShiftToMost - -/* ------------------------------------------------------------------ */ -/* decShiftToLeast -- shift digits in array towards least significant */ -/* */ -/* uar is the array */ -/* units is length of the array, in units */ -/* shift is the number of digits to remove from the lsu end; it */ -/* must be zero or positive and <= than units*DECDPUN. */ -/* */ -/* returns the new length of the integer in the array, in units */ -/* */ -/* Removed digits are discarded (lost). Units not required to hold */ -/* the final result are unchanged. */ -/* ------------------------------------------------------------------ */ -static Int decShiftToLeast(Unit *uar, Int units, Int shift) { - Unit *target, *up; // work - Int cut, count; // work - Int quot, rem; // for division - - if (shift==0) return units; // [fastpath] nothing to do - if (shift==units*DECDPUN) { // [fastpath] little to do - *uar=0; // all digits cleared gives zero - return 1; // leaves just the one - } - - target=uar; // both paths - cut=MSUDIGITS(shift); - if (cut==DECDPUN) { // unit-boundary case; easy - up=uar+D2U(shift); - for (; updigits is > set->digits) */ -/* set is the relevant context */ -/* status is the status accumulator */ -/* */ -/* returns an allocated decNumber with the rounded result. */ -/* */ -/* lostDigits and other status may be set by this. */ -/* */ -/* Since the input is an operand, it must not be modified. */ -/* Instead, return an allocated decNumber, rounded as required. */ -/* It is the caller's responsibility to free the allocated storage. */ -/* */ -/* If no storage is available then the result cannot be used, so NULL */ -/* is returned. */ -/* ------------------------------------------------------------------ */ -static decNumber *decRoundOperand(const decNumber *dn, decContext *set, - uInt *status) { - decNumber *res; // result structure - uInt newstatus=0; // status from round - Int residue=0; // rounding accumulator - - // Allocate storage for the returned decNumber, big enough for the - // length specified by the context - res=(decNumber *)malloc(sizeof(decNumber) - +(D2U(set->digits)-1)*sizeof(Unit)); - if (res==NULL) { - *status|=DEC_Insufficient_storage; - return NULL; - } - decCopyFit(res, dn, set, &residue, &newstatus); - decApplyRound(res, set, residue, &newstatus); - - // If that set Inexact then "lost digits" is raised... - if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits; - *status|=newstatus; - return res; - } // decRoundOperand -#endif - -/* ------------------------------------------------------------------ */ -/* decCopyFit -- copy a number, truncating the coefficient if needed */ -/* */ -/* dest is the target decNumber */ -/* src is the source decNumber */ -/* set is the context [used for length (digits) and rounding mode] */ -/* residue is the residue accumulator */ -/* status contains the current status to be updated */ -/* */ -/* (dest==src is allowed and will be a no-op if fits) */ -/* All fields are updated as required. */ -/* ------------------------------------------------------------------ */ -static void decCopyFit(decNumber *dest, const decNumber *src, - decContext *set, Int *residue, uInt *status) { - dest->bits=src->bits; - dest->exponent=src->exponent; - decSetCoeff(dest, set, src->lsu, src->digits, residue, status); - } // decCopyFit - -/* ------------------------------------------------------------------ */ -/* decSetCoeff -- set the coefficient of a number */ -/* */ -/* dn is the number whose coefficient array is to be set. */ -/* It must have space for set->digits digits */ -/* set is the context [for size] */ -/* lsu -> lsu of the source coefficient [may be dn->lsu] */ -/* len is digits in the source coefficient [may be dn->digits] */ -/* residue is the residue accumulator. This has values as in */ -/* decApplyRound, and will be unchanged unless the */ -/* target size is less than len. In this case, the */ -/* coefficient is truncated and the residue is updated to */ -/* reflect the previous residue and the dropped digits. */ -/* status is the status accumulator, as usual */ -/* */ -/* The coefficient may already be in the number, or it can be an */ -/* external intermediate array. If it is in the number, lsu must == */ -/* dn->lsu and len must == dn->digits. */ -/* */ -/* Note that the coefficient length (len) may be < set->digits, and */ -/* in this case this merely copies the coefficient (or is a no-op */ -/* if dn->lsu==lsu). */ -/* */ -/* Note also that (only internally, from decQuantizeOp and */ -/* decSetSubnormal) the value of set->digits may be less than one, */ -/* indicating a round to left. This routine handles that case */ -/* correctly; caller ensures space. */ -/* */ -/* dn->digits, dn->lsu (and as required), and dn->exponent are */ -/* updated as necessary. dn->bits (sign) is unchanged. */ -/* */ -/* DEC_Rounded status is set if any digits are discarded. */ -/* DEC_Inexact status is set if any non-zero digits are discarded, or */ -/* incoming residue was non-0 (implies rounded) */ -/* ------------------------------------------------------------------ */ -// mapping array: maps 0-9 to canonical residues, so that a residue -// can be adjusted in the range [-1, +1] and achieve correct rounding -// 0 1 2 3 4 5 6 7 8 9 -static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; -static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu, - Int len, Int *residue, uInt *status) { - Int discard; // number of digits to discard - uInt cut; // cut point in Unit - const Unit *up; // work - Unit *target; // .. - Int count; // .. - #if DECDPUN<=4 - uInt temp; // .. - #endif - - discard=len-set->digits; // digits to discard - if (discard<=0) { // no digits are being discarded - if (dn->lsu!=lsu) { // copy needed - // copy the coefficient array to the result number; no shift needed - count=len; // avoids D2U - up=lsu; - for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) - *target=*up; - dn->digits=len; // set the new length - } - // dn->exponent and residue are unchanged, record any inexactitude - if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded); - return; - } - - // some digits must be discarded ... - dn->exponent+=discard; // maintain numerical value - *status|=DEC_Rounded; // accumulate Rounded status - if (*residue>1) *residue=1; // previous residue now to right, so reduce - - if (discard>len) { // everything, +1, is being discarded - // guard digit is 0 - // residue is all the number [NB could be all 0s] - if (*residue<=0) { // not already positive - count=len; // avoids D2U - for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { // found non-0 - *residue=1; - break; // no need to check any others - } - } - if (*residue!=0) *status|=DEC_Inexact; // record inexactitude - *dn->lsu=0; // coefficient will now be 0 - dn->digits=1; // .. - return; - } // total discard - - // partial discard [most common case] - // here, at least the first (most significant) discarded digit exists - - // spin up the number, noting residue during the spin, until get to - // the Unit with the first discarded digit. When reach it, extract - // it and remember its position - count=0; - for (up=lsu;; up++) { - count+=DECDPUN; - if (count>=discard) break; // full ones all checked - if (*up!=0) *residue=1; - } // up - - // here up -> Unit with first discarded digit - cut=discard-(count-DECDPUN)-1; - if (cut==DECDPUN-1) { // unit-boundary case (fast) - Unit half=(Unit)powers[DECDPUN]>>1; - // set residue directly - if (*up>=half) { - if (*up>half) *residue=7; - else *residue+=5; // add sticky bit - } - else { // digits<=0) { // special for Quantize/Subnormal :-( - *dn->lsu=0; // .. result is 0 - dn->digits=1; // .. - } - else { // shift to least - count=set->digits; // now digits to end up with - dn->digits=count; // set the new length - up++; // move to next - // on unit boundary, so shift-down copy loop is simple - for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) - *target=*up; - } - } // unit-boundary case - - else { // discard digit is in low digit(s), and not top digit - uInt discard1; // first discarded digit - uInt quot, rem; // for divisions - if (cut==0) quot=*up; // is at bottom of unit - else /* cut>0 */ { // it's not at bottom of unit - #if DECDPUN<=4 - quot=QUOT10(*up, cut); - rem=*up-quot*powers[cut]; - #else - rem=*up%powers[cut]; - quot=*up/powers[cut]; - #endif - if (rem!=0) *residue=1; - } - // discard digit is now at bottom of quot - #if DECDPUN<=4 - temp=(quot*6554)>>16; // fast /10 - // Vowels algorithm here not a win (9 instructions) - discard1=quot-X10(temp); - quot=temp; - #else - discard1=quot%10; - quot=quot/10; - #endif - // here, discard1 is the guard digit, and residue is everything - // else [use mapping array to accumulate residue safely] - *residue+=resmap[discard1]; - cut++; // update cut - // here: up -> Unit of the array with bottom digit - // cut is the division point for each Unit - // quot holds the uncut high-order digits for the current unit - if (set->digits<=0) { // special for Quantize/Subnormal :-( - *dn->lsu=0; // .. result is 0 - dn->digits=1; // .. - } - else { // shift to least needed - count=set->digits; // now digits to end up with - dn->digits=count; // set the new length - // shift-copy the coefficient array to the result number - for (target=dn->lsu; ; target++) { - *target=(Unit)quot; - count-=(DECDPUN-cut); - if (count<=0) break; - up++; - quot=*up; - #if DECDPUN<=4 - quot=QUOT10(quot, cut); - rem=*up-quot*powers[cut]; - #else - rem=quot%powers[cut]; - quot=quot/powers[cut]; - #endif - *target=(Unit)(*target+rem*powers[DECDPUN-cut]); - count-=cut; - if (count<=0) break; - } // shift-copy loop - } // shift to least - } // not unit boundary - - if (*residue!=0) *status|=DEC_Inexact; // record inexactitude - return; - } // decSetCoeff - -/* ------------------------------------------------------------------ */ -/* decApplyRound -- apply pending rounding to a number */ -/* */ -/* dn is the number, with space for set->digits digits */ -/* set is the context [for size and rounding mode] */ -/* residue indicates pending rounding, being any accumulated */ -/* guard and sticky information. It may be: */ -/* 6-9: rounding digit is >5 */ -/* 5: rounding digit is exactly half-way */ -/* 1-4: rounding digit is <5 and >0 */ -/* 0: the coefficient is exact */ -/* -1: as 1, but the hidden digits are subtractive, that */ -/* is, of the opposite sign to dn. In this case the */ -/* coefficient must be non-0. This case occurs when */ -/* subtracting a small number (which can be reduced to */ -/* a sticky bit); see decAddOp. */ -/* status is the status accumulator, as usual */ -/* */ -/* This routine applies rounding while keeping the length of the */ -/* coefficient constant. The exponent and status are unchanged */ -/* except if: */ -/* */ -/* -- the coefficient was increased and is all nines (in which */ -/* case Overflow could occur, and is handled directly here so */ -/* the caller does not need to re-test for overflow) */ -/* */ -/* -- the coefficient was decreased and becomes all nines (in which */ -/* case Underflow could occur, and is also handled directly). */ -/* */ -/* All fields in dn are updated as required. */ -/* */ -/* ------------------------------------------------------------------ */ -static void decApplyRound(decNumber *dn, decContext *set, Int residue, - uInt *status) { - Int bump; // 1 if coefficient needs to be incremented - // -1 if coefficient needs to be decremented - - if (residue==0) return; // nothing to apply - - bump=0; // assume a smooth ride - - // now decide whether, and how, to round, depending on mode - switch (set->round) { - case DEC_ROUND_05UP: { // round zero or five up (for reround) - // This is the same as DEC_ROUND_DOWN unless there is a - // positive residue and the lsd of dn is 0 or 5, in which case - // it is bumped; when residue is <0, the number is therefore - // bumped down unless the final digit was 1 or 6 (in which - // case it is bumped down and then up -- a no-op) - Int lsd5=*dn->lsu%5; // get lsd and quintate - if (residue<0 && lsd5!=1) bump=-1; - else if (residue>0 && lsd5==0) bump=1; - // [bump==1 could be applied directly; use common path for clarity] - break;} // r-05 - - case DEC_ROUND_DOWN: { - // no change, except if negative residue - if (residue<0) bump=-1; - break;} // r-d - - case DEC_ROUND_HALF_DOWN: { - if (residue>5) bump=1; - break;} // r-h-d - - case DEC_ROUND_HALF_EVEN: { - if (residue>5) bump=1; // >0.5 goes up - else if (residue==5) { // exactly 0.5000... - // 0.5 goes up iff [new] lsd is odd - if (*dn->lsu & 0x01) bump=1; - } - break;} // r-h-e - - case DEC_ROUND_HALF_UP: { - if (residue>=5) bump=1; - break;} // r-h-u - - case DEC_ROUND_UP: { - if (residue>0) bump=1; - break;} // r-u - - case DEC_ROUND_CEILING: { - // same as _UP for positive numbers, and as _DOWN for negatives - // [negative residue cannot occur on 0] - if (decNumberIsNegative(dn)) { - if (residue<0) bump=-1; - } - else { - if (residue>0) bump=1; - } - break;} // r-c - - case DEC_ROUND_FLOOR: { - // same as _UP for negative numbers, and as _DOWN for positive - // [negative residue cannot occur on 0] - if (!decNumberIsNegative(dn)) { - if (residue<0) bump=-1; - } - else { - if (residue>0) bump=1; - } - break;} // r-f - - default: { // e.g., DEC_ROUND_MAX - *status|=DEC_Invalid_context; - #if DECTRACE || (DECCHECK && DECVERB) - printf("Unknown rounding mode: %d\n", set->round); - #endif - break;} - } // switch - - // now bump the number, up or down, if need be - if (bump==0) return; // no action required - - // Simply use decUnitAddSub unless bumping up and the number is - // all nines. In this special case set to 100... explicitly - // and adjust the exponent by one (as otherwise could overflow - // the array) - // Similarly handle all-nines result if bumping down. - if (bump>0) { - Unit *up; // work - uInt count=dn->digits; // digits to be checked - for (up=dn->lsu; ; up++) { - if (count<=DECDPUN) { - // this is the last Unit (the msu) - if (*up!=powers[count]-1) break; // not still 9s - // here if it, too, is all nines - *up=(Unit)powers[count-1]; // here 999 -> 100 etc. - for (up=up-1; up>=dn->lsu; up--) *up=0; // others all to 0 - dn->exponent++; // and bump exponent - // [which, very rarely, could cause Overflow...] - if ((dn->exponent+dn->digits)>set->emax+1) { - decSetOverflow(dn, set, status); - } - return; // done - } - // a full unit to check, with more to come - if (*up!=DECDPUNMAX) break; // not still 9s - count-=DECDPUN; - } // up - } // bump>0 - else { // -1 - // here checking for a pre-bump of 1000... (leading 1, all - // other digits zero) - Unit *up, *sup; // work - uInt count=dn->digits; // digits to be checked - for (up=dn->lsu; ; up++) { - if (count<=DECDPUN) { - // this is the last Unit (the msu) - if (*up!=powers[count-1]) break; // not 100.. - // here if have the 1000... case - sup=up; // save msu pointer - *up=(Unit)powers[count]-1; // here 100 in msu -> 999 - // others all to all-nines, too - for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1; - dn->exponent--; // and bump exponent - - // iff the number was at the subnormal boundary (exponent=etiny) - // then the exponent is now out of range, so it will in fact get - // clamped to etiny and the final 9 dropped. - // printf(">> emin=%d exp=%d sdig=%d\n", set->emin, - // dn->exponent, set->digits); - if (dn->exponent+1==set->emin-set->digits+1) { - if (count==1 && dn->digits==1) *sup=0; // here 9 -> 0[.9] - else { - *sup=(Unit)powers[count-1]-1; // here 999.. in msu -> 99.. - dn->digits--; - } - dn->exponent++; - *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; - } - return; // done - } - - // a full unit to check, with more to come - if (*up!=0) break; // not still 0s - count-=DECDPUN; - } // up - - } // bump<0 - - // Actual bump needed. Do it. - decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump); - } // decApplyRound - -#if DECSUBSET -/* ------------------------------------------------------------------ */ -/* decFinish -- finish processing a number */ -/* */ -/* dn is the number */ -/* set is the context */ -/* residue is the rounding accumulator (as in decApplyRound) */ -/* status is the accumulator */ -/* */ -/* This finishes off the current number by: */ -/* 1. If not extended: */ -/* a. Converting a zero result to clean '0' */ -/* b. Reducing positive exponents to 0, if would fit in digits */ -/* 2. Checking for overflow and subnormals (always) */ -/* Note this is just Finalize when no subset arithmetic. */ -/* All fields are updated as required. */ -/* ------------------------------------------------------------------ */ -static void decFinish(decNumber *dn, decContext *set, Int *residue, - uInt *status) { - if (!set->extended) { - if ISZERO(dn) { // value is zero - dn->exponent=0; // clean exponent .. - dn->bits=0; // .. and sign - return; // no error possible - } - if (dn->exponent>=0) { // non-negative exponent - // >0; reduce to integer if possible - if (set->digits >= (dn->exponent+dn->digits)) { - dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); - dn->exponent=0; - } - } - } // !extended - - decFinalize(dn, set, residue, status); - } // decFinish -#endif - -/* ------------------------------------------------------------------ */ -/* decFinalize -- final check, clamp, and round of a number */ -/* */ -/* dn is the number */ -/* set is the context */ -/* residue is the rounding accumulator (as in decApplyRound) */ -/* status is the status accumulator */ -/* */ -/* This finishes off the current number by checking for subnormal */ -/* results, applying any pending rounding, checking for overflow, */ -/* and applying any clamping. */ -/* Underflow and overflow conditions are raised as appropriate. */ -/* All fields are updated as required. */ -/* ------------------------------------------------------------------ */ -static void decFinalize(decNumber *dn, decContext *set, Int *residue, - uInt *status) { - Int shift; // shift needed if clamping - Int tinyexp=set->emin-dn->digits+1; // precalculate subnormal boundary - - // Must be careful, here, when checking the exponent as the - // adjusted exponent could overflow 31 bits [because it may already - // be up to twice the expected]. - - // First test for subnormal. This must be done before any final - // round as the result could be rounded to Nmin or 0. - if (dn->exponent<=tinyexp) { // prefilter - Int comp; - decNumber nmin; - // A very nasty case here is dn == Nmin and residue<0 - if (dn->exponentemin; - comp=decCompare(dn, &nmin, 1); // (signless compare) - if (comp==BADINT) { // oops - *status|=DEC_Insufficient_storage; // abandon... - return; - } - if (*residue<0 && comp==0) { // neg residue and dn==Nmin - decApplyRound(dn, set, *residue, status); // might force down - decSetSubnormal(dn, set, residue, status); - return; - } - } - - // now apply any pending round (this could raise overflow). - if (*residue!=0) decApplyRound(dn, set, *residue, status); - - // Check for overflow [redundant in the 'rare' case] or clamp - if (dn->exponent<=set->emax-set->digits+1) return; // neither needed - - - // here when might have an overflow or clamp to do - if (dn->exponent>set->emax-dn->digits+1) { // too big - decSetOverflow(dn, set, status); - return; - } - // here when the result is normal but in clamp range - if (!set->clamp) return; - - // here when need to apply the IEEE exponent clamp (fold-down) - shift=dn->exponent-(set->emax-set->digits+1); - - // shift coefficient (if non-zero) - if (!ISZERO(dn)) { - dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); - } - dn->exponent-=shift; // adjust the exponent to match - *status|=DEC_Clamped; // and record the dirty deed - return; - } // decFinalize - -/* ------------------------------------------------------------------ */ -/* decSetOverflow -- set number to proper overflow value */ -/* */ -/* dn is the number (used for sign [only] and result) */ -/* set is the context [used for the rounding mode, etc.] */ -/* status contains the current status to be updated */ -/* */ -/* This sets the sign of a number and sets its value to either */ -/* Infinity or the maximum finite value, depending on the sign of */ -/* dn and the rounding mode, following IEEE 754 rules. */ -/* ------------------------------------------------------------------ */ -static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { - Flag needmax=0; // result is maximum finite value - uByte sign=dn->bits&DECNEG; // clean and save sign bit - - if (ISZERO(dn)) { // zero does not overflow magnitude - Int emax=set->emax; // limit value - if (set->clamp) emax-=set->digits-1; // lower if clamping - if (dn->exponent>emax) { // clamp required - dn->exponent=emax; - *status|=DEC_Clamped; - } - return; - } - - decNumberZero(dn); - switch (set->round) { - case DEC_ROUND_DOWN: { - needmax=1; // never Infinity - break;} // r-d - case DEC_ROUND_05UP: { - needmax=1; // never Infinity - break;} // r-05 - case DEC_ROUND_CEILING: { - if (sign) needmax=1; // Infinity if non-negative - break;} // r-c - case DEC_ROUND_FLOOR: { - if (!sign) needmax=1; // Infinity if negative - break;} // r-f - default: break; // Infinity in all other cases - } - if (needmax) { - decSetMaxValue(dn, set); - dn->bits=sign; // set sign - } - else dn->bits=sign|DECINF; // Value is +/-Infinity - *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded; - } // decSetOverflow - -/* ------------------------------------------------------------------ */ -/* decSetMaxValue -- set number to +Nmax (maximum normal value) */ -/* */ -/* dn is the number to set */ -/* set is the context [used for digits and emax] */ -/* */ -/* This sets the number to the maximum positive value. */ -/* ------------------------------------------------------------------ */ -static void decSetMaxValue(decNumber *dn, decContext *set) { - Unit *up; // work - Int count=set->digits; // nines to add - dn->digits=count; - // fill in all nines to set maximum value - for (up=dn->lsu; ; up++) { - if (count>DECDPUN) *up=DECDPUNMAX; // unit full o'nines - else { // this is the msu - *up=(Unit)(powers[count]-1); - break; - } - count-=DECDPUN; // filled those digits - } // up - dn->bits=0; // + sign - dn->exponent=set->emax-set->digits+1; - } // decSetMaxValue - -/* ------------------------------------------------------------------ */ -/* decSetSubnormal -- process value whose exponent is extended) { - decNumberZero(dn); - // always full overflow - *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; - return; - } - #endif - - // Full arithmetic -- allow subnormals, rounded to minimum exponent - // (Etiny) if needed - etiny=set->emin-(set->digits-1); // smallest allowed exponent - - if ISZERO(dn) { // value is zero - // residue can never be non-zero here - #if DECCHECK - if (*residue!=0) { - printf("++ Subnormal 0 residue %ld\n", (LI)*residue); - *status|=DEC_Invalid_operation; - } - #endif - if (dn->exponentexponent=etiny; - *status|=DEC_Clamped; - } - return; - } - - *status|=DEC_Subnormal; // have a non-zero subnormal - adjust=etiny-dn->exponent; // calculate digits to remove - if (adjust<=0) { // not out of range; unrounded - // residue can never be non-zero here, except in the Nmin-residue - // case (which is a subnormal result), so can take fast-path here - // it may already be inexact (from setting the coefficient) - if (*status&DEC_Inexact) *status|=DEC_Underflow; - return; - } - - // adjust>0, so need to rescale the result so exponent becomes Etiny - // [this code is similar to that in rescale] - workset=*set; // clone rounding, etc. - workset.digits=dn->digits-adjust; // set requested length - workset.emin-=adjust; // and adjust emin to match - // [note that the latter can be <1, here, similar to Rescale case] - decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); - decApplyRound(dn, &workset, *residue, status); - - // Use 754 default rule: Underflow is set iff Inexact - // [independent of whether trapped] - if (*status&DEC_Inexact) *status|=DEC_Underflow; - - // if rounded up a 999s case, exponent will be off by one; adjust - // back if so [it will fit, because it was shortened earlier] - if (dn->exponent>etiny) { - dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); - dn->exponent--; // (re)adjust the exponent. - } - - // if rounded to zero, it is by definition clamped... - if (ISZERO(dn)) *status|=DEC_Clamped; - } // decSetSubnormal - -/* ------------------------------------------------------------------ */ -/* decCheckMath - check entry conditions for a math function */ -/* */ -/* This checks the context and the operand */ -/* */ -/* rhs is the operand to check */ -/* set is the context to check */ -/* status is unchanged if both are good */ -/* */ -/* returns non-zero if status is changed, 0 otherwise */ -/* */ -/* Restrictions enforced: */ -/* */ -/* digits, emax, and -emin in the context must be less than */ -/* DEC_MAX_MATH (999999), and A must be within these bounds if */ -/* non-zero. Invalid_operation is set in the status if a */ -/* restriction is violated. */ -/* ------------------------------------------------------------------ */ -static uInt decCheckMath(const decNumber *rhs, decContext *set, - uInt *status) { - uInt save=*status; // record - if (set->digits>DEC_MAX_MATH - || set->emax>DEC_MAX_MATH - || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context; - else if ((rhs->digits>DEC_MAX_MATH - || rhs->exponent+rhs->digits>DEC_MAX_MATH+1 - || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH)) - && !ISZERO(rhs)) *status|=DEC_Invalid_operation; - return (*status!=save); - } // decCheckMath - -/* ------------------------------------------------------------------ */ -/* decGetInt -- get integer from a number */ -/* */ -/* dn is the number [which will not be altered] */ -/* */ -/* returns one of: */ -/* BADINT if there is a non-zero fraction */ -/* the converted integer */ -/* BIGEVEN if the integer is even and magnitude > 2*10**9 */ -/* BIGODD if the integer is odd and magnitude > 2*10**9 */ -/* */ -/* This checks and gets a whole number from the input decNumber. */ -/* The sign can be determined from dn by the caller when BIGEVEN or */ -/* BIGODD is returned. */ -/* ------------------------------------------------------------------ */ -static Int decGetInt(const decNumber *dn) { - Int theInt; // result accumulator - const Unit *up; // work - Int got; // digits (real or not) processed - Int ilength=dn->digits+dn->exponent; // integral length - Flag neg=decNumberIsNegative(dn); // 1 if -ve - - // The number must be an integer that fits in 10 digits - // Assert, here, that 10 is enough for any rescale Etiny - #if DEC_MAX_EMAX > 999999999 - #error GetInt may need updating [for Emax] - #endif - #if DEC_MIN_EMIN < -999999999 - #error GetInt may need updating [for Emin] - #endif - if (ISZERO(dn)) return 0; // zeros are OK, with any exponent - - up=dn->lsu; // ready for lsu - theInt=0; // ready to accumulate - if (dn->exponent>=0) { // relatively easy - // no fractional part [usual]; allow for positive exponent - got=dn->exponent; - } - else { // -ve exponent; some fractional part to check and discard - Int count=-dn->exponent; // digits to discard - // spin up whole units until reach the Unit with the unit digit - for (; count>=DECDPUN; up++) { - if (*up!=0) return BADINT; // non-zero Unit to discard - count-=DECDPUN; - } - if (count==0) got=0; // [a multiple of DECDPUN] - else { // [not multiple of DECDPUN] - Int rem; // work - // slice off fraction digits and check for non-zero - #if DECDPUN<=4 - theInt=QUOT10(*up, count); - rem=*up-theInt*powers[count]; - #else - rem=*up%powers[count]; // slice off discards - theInt=*up/powers[count]; - #endif - if (rem!=0) return BADINT; // non-zero fraction - // it looks good - got=DECDPUN-count; // number of digits so far - up++; // ready for next - } - } - // now it's known there's no fractional part - - // tricky code now, to accumulate up to 9.3 digits - if (got==0) {theInt=*up; got+=DECDPUN; up++;} // ensure lsu is there - - if (ilength<11) { - Int save=theInt; - // collect any remaining unit(s) - for (; got1999999997) ilength=11; - else if (!neg && theInt>999999999) ilength=11; - if (ilength==11) theInt=save; // restore correct low bit - } - } - - if (ilength>10) { // too big - if (theInt&1) return BIGODD; // bottom bit 1 - return BIGEVEN; // bottom bit 0 - } - - if (neg) theInt=-theInt; // apply sign - return theInt; - } // decGetInt - -/* ------------------------------------------------------------------ */ -/* decDecap -- decapitate the coefficient of a number */ -/* */ -/* dn is the number to be decapitated */ -/* drop is the number of digits to be removed from the left of dn; */ -/* this must be <= dn->digits (if equal, the coefficient is */ -/* set to 0) */ -/* */ -/* Returns dn; dn->digits will be <= the initial digits less drop */ -/* (after removing drop digits there may be leading zero digits */ -/* which will also be removed). Only dn->lsu and dn->digits change. */ -/* ------------------------------------------------------------------ */ -static decNumber *decDecap(decNumber *dn, Int drop) { - Unit *msu; // -> target cut point - Int cut; // work - if (drop>=dn->digits) { // losing the whole thing - #if DECCHECK - if (drop>dn->digits) - printf("decDecap called with drop>digits [%ld>%ld]\n", - (LI)drop, (LI)dn->digits); - #endif - dn->lsu[0]=0; - dn->digits=1; - return dn; - } - msu=dn->lsu+D2U(dn->digits-drop)-1; // -> likely msu - cut=MSUDIGITS(dn->digits-drop); // digits to be in use in msu - if (cut!=DECDPUN) *msu%=powers[cut]; // clear left digits - // that may have left leading zero digits, so do a proper count... - dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1); - return dn; - } // decDecap - -/* ------------------------------------------------------------------ */ -/* decBiStr -- compare string with pairwise options */ -/* */ -/* targ is the string to compare */ -/* str1 is one of the strings to compare against (length may be 0) */ -/* str2 is the other; it must be the same length as str1 */ -/* */ -/* returns 1 if strings compare equal, (that is, it is the same */ -/* length as str1 and str2, and each character of targ is in either */ -/* str1 or str2 in the corresponding position), or 0 otherwise */ -/* */ -/* This is used for generic caseless compare, including the awkward */ -/* case of the Turkish dotted and dotless Is. Use as (for example): */ -/* if (decBiStr(test, "mike", "MIKE")) ... */ -/* ------------------------------------------------------------------ */ -static Flag decBiStr(const char *targ, const char *str1, const char *str2) { - for (;;targ++, str1++, str2++) { - if (*targ!=*str1 && *targ!=*str2) return 0; - // *targ has a match in one (or both, if terminator) - if (*targ=='\0') break; - } // forever - return 1; - } // decBiStr - -/* ------------------------------------------------------------------ */ -/* decNaNs -- handle NaN operand or operands */ -/* */ -/* res is the result number */ -/* lhs is the first operand */ -/* rhs is the second operand, or NULL if none */ -/* context is used to limit payload length */ -/* status contains the current status */ -/* returns res in case convenient */ -/* */ -/* Called when one or both operands is a NaN, and propagates the */ -/* appropriate result to res. When an sNaN is found, it is changed */ -/* to a qNaN and Invalid operation is set. */ -/* ------------------------------------------------------------------ */ -static decNumber * decNaNs(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - uInt *status) { - // This decision tree ends up with LHS being the source pointer, - // and status updated if need be - if (lhs->bits & DECSNAN) - *status|=DEC_Invalid_operation | DEC_sNaN; - else if (rhs==NULL); - else if (rhs->bits & DECSNAN) { - lhs=rhs; - *status|=DEC_Invalid_operation | DEC_sNaN; - } - else if (lhs->bits & DECNAN); - else lhs=rhs; - - // propagate the payload - if (lhs->digits<=set->digits) decNumberCopy(res, lhs); // easy - else { // too long - const Unit *ul; - Unit *ur, *uresp1; - // copy safe number of units, then decapitate - res->bits=lhs->bits; // need sign etc. - uresp1=res->lsu+D2U(set->digits); - for (ur=res->lsu, ul=lhs->lsu; urdigits=D2U(set->digits)*DECDPUN; - // maybe still too long - if (res->digits>set->digits) decDecap(res, res->digits-set->digits); - } - - res->bits&=~DECSNAN; // convert any sNaN to NaN, while - res->bits|=DECNAN; // .. preserving sign - res->exponent=0; // clean exponent - // [coefficient was copied/decapitated] - return res; - } // decNaNs - -/* ------------------------------------------------------------------ */ -/* decStatus -- apply non-zero status */ -/* */ -/* dn is the number to set if error */ -/* status contains the current status (not yet in context) */ -/* set is the context */ -/* */ -/* If the status is an error status, the number is set to a NaN, */ -/* unless the error was an overflow, divide-by-zero, or underflow, */ -/* in which case the number will have already been set. */ -/* */ -/* The context status is then updated with the new status. Note that */ -/* this may raise a signal, so control may never return from this */ -/* routine (hence resources must be recovered before it is called). */ -/* ------------------------------------------------------------------ */ -static void decStatus(decNumber *dn, uInt status, decContext *set) { - if (status & DEC_NaNs) { // error status -> NaN - // if cause was an sNaN, clear and propagate [NaN is already set up] - if (status & DEC_sNaN) status&=~DEC_sNaN; - else { - decNumberZero(dn); // other error: clean throughout - dn->bits=DECNAN; // and make a quiet NaN - } - } - decContextSetStatus(set, status); // [may not return] - return; - } // decStatus - -/* ------------------------------------------------------------------ */ -/* decGetDigits -- count digits in a Units array */ -/* */ -/* uar is the Unit array holding the number (this is often an */ -/* accumulator of some sort) */ -/* len is the length of the array in units [>=1] */ -/* */ -/* returns the number of (significant) digits in the array */ -/* */ -/* All leading zeros are excluded, except the last if the array has */ -/* only zero Units. */ -/* ------------------------------------------------------------------ */ -// This may be called twice during some operations. -static Int decGetDigits(Unit *uar, Int len) { - Unit *up=uar+(len-1); // -> msu - Int digits=(len-1)*DECDPUN+1; // possible digits excluding msu - #if DECDPUN>4 - uInt const *pow; // work - #endif - // (at least 1 in final msu) - #if DECCHECK - if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); - #endif - - for (; up>=uar; up--) { - if (*up==0) { // unit is all 0s - if (digits==1) break; // a zero has one digit - digits-=DECDPUN; // adjust for 0 unit - continue;} - // found the first (most significant) non-zero Unit - #if DECDPUN>1 // not done yet - if (*up<10) break; // is 1-9 - digits++; - #if DECDPUN>2 // not done yet - if (*up<100) break; // is 10-99 - digits++; - #if DECDPUN>3 // not done yet - if (*up<1000) break; // is 100-999 - digits++; - #if DECDPUN>4 // count the rest ... - for (pow=&powers[4]; *up>=*pow; pow++) digits++; - #endif - #endif - #endif - #endif - break; - } // up - return digits; - } // decGetDigits - -#if DECTRACE | DECCHECK -/* ------------------------------------------------------------------ */ -/* decNumberShow -- display a number [debug aid] */ -/* dn is the number to show */ -/* */ -/* Shows: sign, exponent, coefficient (msu first), digits */ -/* or: sign, special-value */ -/* ------------------------------------------------------------------ */ -// this is public so other modules can use it -void decNumberShow(const decNumber *dn) { - const Unit *up; // work - uInt u, d; // .. - Int cut; // .. - char isign='+'; // main sign - if (dn==NULL) { - printf("NULL\n"); - return;} - if (decNumberIsNegative(dn)) isign='-'; - printf(" >> %c ", isign); - if (dn->bits&DECSPECIAL) { // Is a special value - if (decNumberIsInfinite(dn)) printf("Infinity"); - else { // a NaN - if (dn->bits&DECSNAN) printf("sNaN"); // signalling NaN - else printf("NaN"); - } - // if coefficient and exponent are 0, no more to do - if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { - printf("\n"); - return;} - // drop through to report other information - printf(" "); - } - - // now carefully display the coefficient - up=dn->lsu+D2U(dn->digits)-1; // msu - printf("%ld", (LI)*up); - for (up=up-1; up>=dn->lsu; up--) { - u=*up; - printf(":"); - for (cut=DECDPUN-1; cut>=0; cut--) { - d=u/powers[cut]; - u-=d*powers[cut]; - printf("%ld", (LI)d); - } // cut - } // up - if (dn->exponent!=0) { - char esign='+'; - if (dn->exponent<0) esign='-'; - printf(" E%c%ld", esign, (LI)abs(dn->exponent)); - } - printf(" [%ld]\n", (LI)dn->digits); - } // decNumberShow -#endif - -#if DECTRACE || DECCHECK -/* ------------------------------------------------------------------ */ -/* decDumpAr -- display a unit array [debug/check aid] */ -/* name is a single-character tag name */ -/* ar is the array to display */ -/* len is the length of the array in Units */ -/* ------------------------------------------------------------------ */ -static void decDumpAr(char name, const Unit *ar, Int len) { - Int i; - const char *spec; - #if DECDPUN==9 - spec="%09d "; - #elif DECDPUN==8 - spec="%08d "; - #elif DECDPUN==7 - spec="%07d "; - #elif DECDPUN==6 - spec="%06d "; - #elif DECDPUN==5 - spec="%05d "; - #elif DECDPUN==4 - spec="%04d "; - #elif DECDPUN==3 - spec="%03d "; - #elif DECDPUN==2 - spec="%02d "; - #else - spec="%d "; - #endif - printf(" :%c: ", name); - for (i=len-1; i>=0; i--) { - if (i==len-1) printf("%ld ", (LI)ar[i]); - else printf(spec, ar[i]); - } - printf("\n"); - return;} -#endif - -#if DECCHECK -/* ------------------------------------------------------------------ */ -/* decCheckOperands -- check operand(s) to a routine */ -/* res is the result structure (not checked; it will be set to */ -/* quiet NaN if error found (and it is not NULL)) */ -/* lhs is the first operand (may be DECUNRESU) */ -/* rhs is the second (may be DECUNUSED) */ -/* set is the context (may be DECUNCONT) */ -/* returns 0 if both operands, and the context are clean, or 1 */ -/* otherwise (in which case the context will show an error, */ -/* unless NULL). Note that res is not cleaned; caller should */ -/* handle this so res=NULL case is safe. */ -/* The caller is expected to abandon immediately if 1 is returned. */ -/* ------------------------------------------------------------------ */ -static Flag decCheckOperands(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - Flag bad=0; - if (set==NULL) { // oops; hopeless - #if DECTRACE || DECVERB - printf("Reference to context is NULL.\n"); - #endif - bad=1; - return 1;} - else if (set!=DECUNCONT - && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { - bad=1; - #if DECTRACE || DECVERB - printf("Bad context [digits=%ld round=%ld].\n", - (LI)set->digits, (LI)set->round); - #endif - } - else { - if (res==NULL) { - bad=1; - #if DECTRACE - // this one not DECVERB as standard tests include NULL - printf("Reference to result is NULL.\n"); - #endif - } - if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); - if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); - } - if (bad) { - if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation); - if (res!=DECUNRESU && res!=NULL) { - decNumberZero(res); - res->bits=DECNAN; // qNaN - } - } - return bad; - } // decCheckOperands - -/* ------------------------------------------------------------------ */ -/* decCheckNumber -- check a number */ -/* dn is the number to check */ -/* returns 0 if the number is clean, or 1 otherwise */ -/* */ -/* The number is considered valid if it could be a result from some */ -/* operation in some valid context. */ -/* ------------------------------------------------------------------ */ -static Flag decCheckNumber(const decNumber *dn) { - const Unit *up; // work - uInt maxuint; // .. - Int ae, d, digits; // .. - Int emin, emax; // .. - - if (dn==NULL) { // hopeless - #if DECTRACE - // this one not DECVERB as standard tests include NULL - printf("Reference to decNumber is NULL.\n"); - #endif - return 1;} - - // check special values - if (dn->bits & DECSPECIAL) { - if (dn->exponent!=0) { - #if DECTRACE || DECVERB - printf("Exponent %ld (not 0) for a special value [%02x].\n", - (LI)dn->exponent, dn->bits); - #endif - return 1;} - - // 2003.09.08: NaNs may now have coefficients, so next tests Inf only - if (decNumberIsInfinite(dn)) { - if (dn->digits!=1) { - #if DECTRACE || DECVERB - printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); - #endif - return 1;} - if (*dn->lsu!=0) { - #if DECTRACE || DECVERB - printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); - #endif - decDumpAr('I', dn->lsu, D2U(dn->digits)); - return 1;} - } // Inf - // 2002.12.26: negative NaNs can now appear through proposed IEEE - // concrete formats (decimal64, etc.). - return 0; - } - - // check the coefficient - if (dn->digits<1 || dn->digits>DECNUMMAXP) { - #if DECTRACE || DECVERB - printf("Digits %ld in number.\n", (LI)dn->digits); - #endif - return 1;} - - d=dn->digits; - - for (up=dn->lsu; d>0; up++) { - if (d>DECDPUN) maxuint=DECDPUNMAX; - else { // reached the msu - maxuint=powers[d]-1; - if (dn->digits>1 && *upmaxuint) { - #if DECTRACE || DECVERB - printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", - (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); - #endif - return 1;} - d-=DECDPUN; - } - - // check the exponent. Note that input operands can have exponents - // which are out of the set->emin/set->emax and set->digits range - // (just as they can have more digits than set->digits). - ae=dn->exponent+dn->digits-1; // adjusted exponent - emax=DECNUMMAXE; - emin=DECNUMMINE; - digits=DECNUMMAXP; - if (ae+emax) { - #if DECTRACE || DECVERB - printf("Adjusted exponent overflow [%ld].\n", (LI)ae); - decNumberShow(dn); - #endif - return 1;} - - return 0; // it's OK - } // decCheckNumber - -/* ------------------------------------------------------------------ */ -/* decCheckInexact -- check a normal finite inexact result has digits */ -/* dn is the number to check */ -/* set is the context (for status and precision) */ -/* sets Invalid operation, etc., if some digits are missing */ -/* [this check is not made for DECSUBSET compilation or when */ -/* subnormal is not set] */ -/* ------------------------------------------------------------------ */ -static void decCheckInexact(const decNumber *dn, decContext *set) { - #if !DECSUBSET && DECEXTFLAG - if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact - && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { - #if DECTRACE || DECVERB - printf("Insufficient digits [%ld] on normal Inexact result.\n", - (LI)dn->digits); - decNumberShow(dn); - #endif - decContextSetStatus(set, DEC_Invalid_operation); - } - #else - // next is a noop for quiet compiler - if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation; - #endif - return; - } // decCheckInexact -#endif - -#if DECALLOC -#undef malloc -#undef free -/* ------------------------------------------------------------------ */ -/* decMalloc -- accountable allocation routine */ -/* n is the number of bytes to allocate */ -/* */ -/* Semantics is the same as the stdlib malloc routine, but bytes */ -/* allocated are accounted for globally, and corruption fences are */ -/* added before and after the 'actual' storage. */ -/* ------------------------------------------------------------------ */ -/* This routine allocates storage with an extra twelve bytes; 8 are */ -/* at the start and hold: */ -/* 0-3 the original length requested */ -/* 4-7 buffer corruption detection fence (DECFENCE, x4) */ -/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ -/* ------------------------------------------------------------------ */ -static void *decMalloc(size_t n) { - uInt size=n+12; // true size - void *alloc; // -> allocated storage - uByte *b, *b0; // work - uInt uiwork; // for macros - - alloc=malloc(size); // -> allocated storage - if (alloc==NULL) return NULL; // out of strorage - b0=(uByte *)alloc; // as bytes - decAllocBytes+=n; // account for storage - UBFROMUI(alloc, n); // save n - // printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n); - for (b=b0+4; b play area - } // decMalloc - -/* ------------------------------------------------------------------ */ -/* decFree -- accountable free routine */ -/* alloc is the storage to free */ -/* */ -/* Semantics is the same as the stdlib malloc routine, except that */ -/* the global storage accounting is updated and the fences are */ -/* checked to ensure that no routine has written 'out of bounds'. */ -/* ------------------------------------------------------------------ */ -/* This routine first checks that the fences have not been corrupted. */ -/* It then frees the storage using the 'truw' storage address (that */ -/* is, offset by 8). */ -/* ------------------------------------------------------------------ */ -static void decFree(void *alloc) { - uInt n; // original length - uByte *b, *b0; // work - uInt uiwork; // for macros - - if (alloc==NULL) return; // allowed; it's a nop - b0=(uByte *)alloc; // as bytes - b0-=8; // -> true start of storage - n=UBTOUI(b0); // lift length - for (b=b0+4; b0 */ - /* and <10; 3 or powers of 2 are best]. */ - - /* DECNUMDIGITS is the default number of digits that can be held in */ - /* the structure. If undefined, 1 is assumed and it is assumed */ - /* that the structure will be immediately followed by extra space, */ - /* as required. DECNUMDIGITS is always >0. */ - #if !defined(DECNUMDIGITS) - #define DECNUMDIGITS 1 - #endif - - /* The size (integer data type) of each unit is determined by the */ - /* number of digits it will hold. */ - #if DECDPUN<=2 - #define decNumberUnit uint8_t - #elif DECDPUN<=4 - #define decNumberUnit uint16_t - #else - #define decNumberUnit uint32_t - #endif - /* The number of units needed is ceil(DECNUMDIGITS/DECDPUN) */ - #define DECNUMUNITS ((DECNUMDIGITS+DECDPUN-1)/DECDPUN) - - /* The data structure... */ - typedef struct { - int32_t digits; /* Count of digits in the coefficient; >0 */ - int32_t exponent; /* Unadjusted exponent, unbiased, in */ - /* range: -1999999997 through 999999999 */ - uint8_t bits; /* Indicator bits (see above) */ - /* Coefficient, from least significant unit */ - decNumberUnit lsu[DECNUMUNITS]; - } decNumber; - - /* Notes: */ - /* 1. If digits is > DECDPUN then there will one or more */ - /* decNumberUnits immediately following the first element of lsu.*/ - /* These contain the remaining (more significant) digits of the */ - /* number, and may be in the lsu array, or may be guaranteed by */ - /* some other mechanism (such as being contained in another */ - /* structure, or being overlaid on dynamically allocated */ - /* storage). */ - /* */ - /* Each integer of the coefficient (except potentially the last) */ - /* contains DECDPUN digits (e.g., a value in the range 0 through */ - /* 99999999 if DECDPUN is 8, or 0 through 999 if DECDPUN is 3). */ - /* */ - /* 2. A decNumber converted to a string may need up to digits+14 */ - /* characters. The worst cases (non-exponential and exponential */ - /* formats) are -0.00000{9...}# and -9.{9...}E+999999999# */ - /* (where # is '\0') */ - - - /* ---------------------------------------------------------------- */ - /* decNumber public functions and macros */ - /* ---------------------------------------------------------------- */ - /* Conversions */ - decNumber * decNumberFromInt32(decNumber *, int32_t); - decNumber * decNumberFromUInt32(decNumber *, uint32_t); - decNumber * decNumberFromString(decNumber *, const char *, decContext *); - char * decNumberToString(const decNumber *, char *); - char * decNumberToEngString(const decNumber *, char *); - uint32_t decNumberToUInt32(const decNumber *, decContext *); - int32_t decNumberToInt32(const decNumber *, decContext *); - uint8_t * decNumberGetBCD(const decNumber *, uint8_t *); - decNumber * decNumberSetBCD(decNumber *, const uint8_t *, uint32_t); - - /* Operators and elementary functions */ - decNumber * decNumberAbs(decNumber *, const decNumber *, decContext *); - decNumber * decNumberAdd(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberAnd(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberCompare(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberCompareSignal(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberCompareTotal(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberCompareTotalMag(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberDivide(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberDivideInteger(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberExp(decNumber *, const decNumber *, decContext *); - decNumber * decNumberFMA(decNumber *, const decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberInvert(decNumber *, const decNumber *, decContext *); - decNumber * decNumberLn(decNumber *, const decNumber *, decContext *); - decNumber * decNumberLogB(decNumber *, const decNumber *, decContext *); - decNumber * decNumberLog10(decNumber *, const decNumber *, decContext *); - decNumber * decNumberMax(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberMaxMag(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberMin(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberMinMag(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberMinus(decNumber *, const decNumber *, decContext *); - decNumber * decNumberMultiply(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberNormalize(decNumber *, const decNumber *, decContext *); - decNumber * decNumberOr(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberPlus(decNumber *, const decNumber *, decContext *); - decNumber * decNumberPower(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberQuantize(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberReduce(decNumber *, const decNumber *, decContext *); - decNumber * decNumberRemainder(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberRemainderNear(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberRescale(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberRotate(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberSameQuantum(decNumber *, const decNumber *, const decNumber *); - decNumber * decNumberScaleB(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberShift(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberSquareRoot(decNumber *, const decNumber *, decContext *); - decNumber * decNumberSubtract(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberToIntegralExact(decNumber *, const decNumber *, decContext *); - decNumber * decNumberToIntegralValue(decNumber *, const decNumber *, decContext *); - decNumber * decNumberXor(decNumber *, const decNumber *, const decNumber *, decContext *); - - /* Utilities */ - enum decClass decNumberClass(const decNumber *, decContext *); - const char * decNumberClassToString(enum decClass); - decNumber * decNumberCopy(decNumber *, const decNumber *); - decNumber * decNumberCopyAbs(decNumber *, const decNumber *); - decNumber * decNumberCopyNegate(decNumber *, const decNumber *); - decNumber * decNumberCopySign(decNumber *, const decNumber *, const decNumber *); - decNumber * decNumberNextMinus(decNumber *, const decNumber *, decContext *); - decNumber * decNumberNextPlus(decNumber *, const decNumber *, decContext *); - decNumber * decNumberNextToward(decNumber *, const decNumber *, const decNumber *, decContext *); - decNumber * decNumberTrim(decNumber *); - const char * decNumberVersion(void); - decNumber * decNumberZero(decNumber *); - - /* Functions for testing decNumbers (normality depends on context) */ - int32_t decNumberIsNormal(const decNumber *, decContext *); - int32_t decNumberIsSubnormal(const decNumber *, decContext *); - - /* Macros for testing decNumber *dn */ - #define decNumberIsCanonical(dn) (1) /* All decNumbers are saintly */ - #define decNumberIsFinite(dn) (((dn)->bits&DECSPECIAL)==0) - #define decNumberIsInfinite(dn) (((dn)->bits&DECINF)!=0) - #define decNumberIsNaN(dn) (((dn)->bits&(DECNAN|DECSNAN))!=0) - #define decNumberIsNegative(dn) (((dn)->bits&DECNEG)!=0) - #define decNumberIsQNaN(dn) (((dn)->bits&(DECNAN))!=0) - #define decNumberIsSNaN(dn) (((dn)->bits&(DECSNAN))!=0) - #define decNumberIsSpecial(dn) (((dn)->bits&DECSPECIAL)!=0) - #define decNumberIsZero(dn) (*(dn)->lsu==0 \ - && (dn)->digits==1 \ - && (((dn)->bits&DECSPECIAL)==0)) - #define decNumberRadix(dn) (10) - -#endif diff --git a/qdecimal/decnumber/decNumberLocal.h b/qdecimal/decnumber/decNumberLocal.h deleted file mode 100644 index cfd3e74..0000000 --- a/qdecimal/decnumber/decNumberLocal.h +++ /dev/null @@ -1,757 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decNumber package local type, tuning, and macro definitions */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This header file is included by all modules in the decNumber */ -/* library, and contains local type definitions, tuning parameters, */ -/* etc. It should not need to be used by application programs. */ -/* decNumber.h or one of decDouble (etc.) must be included first. */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECNUMBERLOC) - #define DECNUMBERLOC - #define DECVERSION "decNumber 3.68" /* Package Version [16 max.] */ - #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ - - #include /* for abs */ - #include /* for memset, strcpy */ - - /* Conditional code flag -- set this to match hardware platform */ - #if !defined(DECLITEND) - #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ - #endif - - /* Conditional code flag -- set this to 1 for best performance */ - #if !defined(DECUSE64) - #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ - #endif - - /* Conditional code flag -- set this to 0 to exclude printf calls */ - #if !defined(DECPRINT) - #define DECPRINT 1 /* 1=allow printf calls; 0=no printf */ - #endif - - /* Conditional check flags -- set these to 0 for best performance */ - #if !defined(DECCHECK) - #define DECCHECK 0 /* 1 to enable robust checking */ - #endif - #if !defined(DECALLOC) - #define DECALLOC 0 /* 1 to enable memory accounting */ - #endif - #if !defined(DECTRACE) - #define DECTRACE 0 /* 1 to trace certain internals, etc. */ - #endif - - /* Tuning parameter for decNumber (arbitrary precision) module */ - #if !defined(DECBUFFER) - #define DECBUFFER 36 /* Size basis for local buffers. This */ - /* should be a common maximum precision */ - /* rounded up to a multiple of 4; must */ - /* be zero or positive. */ - #endif - - - /* ---------------------------------------------------------------- */ - /* Check parameter dependencies */ - /* ---------------------------------------------------------------- */ - #if DECCHECK & !DECPRINT - #error DECCHECK needs DECPRINT to be useful - #endif - #if DECALLOC & !DECPRINT - #error DECALLOC needs DECPRINT to be useful - #endif - #if DECTRACE & !DECPRINT - #error DECTRACE needs DECPRINT to be useful - #endif - - /* ---------------------------------------------------------------- */ - /* Definitions for all modules (general-purpose) */ - /* ---------------------------------------------------------------- */ - - /* Local names for common types -- for safety, decNumber modules do */ - /* not use int or long directly. */ - #define Flag uint8_t - #define Byte int8_t - #define uByte uint8_t - #define Short int16_t - #define uShort uint16_t - #define Int int32_t - #define uInt uint32_t - #define Unit decNumberUnit - #if DECUSE64 - #define Long int64_t - #define uLong uint64_t - #endif - - /* Development-use definitions */ - typedef long int LI; /* for printf arguments only */ - #define DECNOINT 0 /* 1 to check no internal use of 'int' */ - /* or stdint types */ - #if DECNOINT - /* if these interfere with your C includes, do not set DECNOINT */ - #define int ? /* enable to ensure that plain C 'int' */ - #define long ?? /* .. or 'long' types are not used */ - #endif - - /* Shared lookup tables */ - extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */ - extern const uInt DECPOWERS[10]; /* powers of ten table */ - /* The following are included from decDPD.h */ - extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */ - extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */ - extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */ - extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */ - extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */ - extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */ - extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/ - - /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ - /* (that is, sets w to be the high-order word of the 64-bit result; */ - /* the low-order word is simply u*v.) */ - /* This version is derived from Knuth via Hacker's Delight; */ - /* it seems to optimize better than some others tried */ - #define LONGMUL32HI(w, u, v) { \ - uInt u0, u1, v0, v1, w0, w1, w2, t; \ - u0=u & 0xffff; u1=u>>16; \ - v0=v & 0xffff; v1=v>>16; \ - w0=u0*v0; \ - t=u1*v0 + (w0>>16); \ - w1=t & 0xffff; w2=t>>16; \ - w1=u0*v1 + w1; \ - (w)=u1*v1 + w2 + (w1>>16);} - - /* ROUNDUP -- round an integer up to a multiple of n */ - #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) - #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ - - /* ROUNDDOWN -- round an integer down to a multiple of n */ - #define ROUNDDOWN(i, n) (((i)/n)*n) - #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ - - /* References to multi-byte sequences under different sizes; these */ - /* require locally declared variables, but do not violate strict */ - /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ - /* Variables needed are uswork, uiwork, etc. [so do not use at same */ - /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ - - /* Return a uInt, etc., from bytes starting at a char* or uByte* */ - #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) - #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) - - /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ - /* Returns i, evaluated, for convenience; has to use uiwork because */ - /* i may be an expression. */ - #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) - #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) - - /* X10 and X100 -- multiply integer i by 10 or 100 */ - /* [shifts are usually faster than multiply; could be conditional] */ - #define X10(i) (((i)<<1)+((i)<<3)) - #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) - - /* MAXI and MINI -- general max & min (not in ANSI) for integers */ - #define MAXI(x,y) ((x)<(y)?(y):(x)) - #define MINI(x,y) ((x)>(y)?(y):(x)) - - /* Useful constants */ - #define BILLION 1000000000 /* 10**9 */ - /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ - #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') - - - /* ---------------------------------------------------------------- */ - /* Definitions for arbitary-precision modules (only valid after */ - /* decNumber.h has been included) */ - /* ---------------------------------------------------------------- */ - - /* Limits and constants */ - #define DECNUMMAXP 999999999 /* maximum precision code can handle */ - #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ - #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ - #if (DECNUMMAXP != DEC_MAX_DIGITS) - #error Maximum digits mismatch - #endif - #if (DECNUMMAXE != DEC_MAX_EMAX) - #error Maximum exponent mismatch - #endif - #if (DECNUMMINE != DEC_MIN_EMIN) - #error Minimum exponent mismatch - #endif - - /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ - /* digits, and D2UTABLE -- the initializer for the D2U table */ - #if DECDPUN==1 - #define DECDPUNMAX 9 - #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ - 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ - 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ - 48,49} - #elif DECDPUN==2 - #define DECDPUNMAX 99 - #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ - 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ - 18,19,19,20,20,21,21,22,22,23,23,24,24,25} - #elif DECDPUN==3 - #define DECDPUNMAX 999 - #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ - 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ - 13,14,14,14,15,15,15,16,16,16,17} - #elif DECDPUN==4 - #define DECDPUNMAX 9999 - #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ - 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ - 11,11,11,12,12,12,12,13} - #elif DECDPUN==5 - #define DECDPUNMAX 99999 - #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ - 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ - 9,9,10,10,10,10} - #elif DECDPUN==6 - #define DECDPUNMAX 999999 - #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ - 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ - 8,8,8,8,8,9} - #elif DECDPUN==7 - #define DECDPUNMAX 9999999 - #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ - 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ - 7,7,7,7,7,7} - #elif DECDPUN==8 - #define DECDPUNMAX 99999999 - #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ - 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ - 6,6,6,6,6,7} - #elif DECDPUN==9 - #define DECDPUNMAX 999999999 - #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ - 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ - 5,5,6,6,6,6} - #elif defined(DECDPUN) - #error DECDPUN must be in the range 1-9 - #endif - - /* ----- Shared data (in decNumber.c) ----- */ - /* Public lookup table used by the D2U macro (see below) */ - #define DECMAXD2U 49 - extern const uByte d2utable[DECMAXD2U+1]; - - /* ----- Macros ----- */ - /* ISZERO -- return true if decNumber dn is a zero */ - /* [performance-critical in some situations] */ - #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ - - /* D2U -- return the number of Units needed to hold d digits */ - /* (runtime version, with table lookaside for small d) */ - #if DECDPUN==8 - #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) - #elif DECDPUN==4 - #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) - #else - #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) - #endif - /* SD2U -- static D2U macro (for compile-time calculation) */ - #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) - - /* MSUDIGITS -- returns digits in msu, from digits, calculated */ - /* using D2U */ - #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) - - /* D2N -- return the number of decNumber structs that would be */ - /* needed to contain that number of digits (and the initial */ - /* decNumber struct) safely. Note that one Unit is included in the */ - /* initial structure. Used for allocating space that is aligned on */ - /* a decNumber struct boundary. */ - #define D2N(d) \ - ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) - - /* TODIGIT -- macro to remove the leading digit from the unsigned */ - /* integer u at column cut (counting from the right, LSD=0) and */ - /* place it as an ASCII character into the character pointed to by */ - /* c. Note that cut must be <= 9, and the maximum value for u is */ - /* 2,000,000,000 (as is needed for negative exponents of */ - /* subnormals). The unsigned integer pow is used as a temporary */ - /* variable. */ - #define TODIGIT(u, cut, c, pow) { \ - *(c)='0'; \ - pow=DECPOWERS[cut]*2; \ - if ((u)>pow) { \ - pow*=4; \ - if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ - pow/=2; \ - if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ - pow/=2; \ - } \ - if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ - pow/=2; \ - if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ - } - - /* ---------------------------------------------------------------- */ - /* Definitions for fixed-precision modules (only valid after */ - /* decSingle.h, decDouble.h, or decQuad.h has been included) */ - /* ---------------------------------------------------------------- */ - - /* bcdnum -- a structure describing a format-independent finite */ - /* number, whose coefficient is a string of bcd8 uBytes */ - typedef struct { - uByte *msd; /* -> most significant digit */ - uByte *lsd; /* -> least ditto */ - uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ - Int exponent; /* Unadjusted signed exponent (q), or */ - /* DECFLOAT_NaN etc. for a special */ - } bcdnum; - - /* Test if exponent or bcdnum exponent must be a special, etc. */ - #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) - #define EXPISINF(exp) (exp==DECFLOAT_Inf) - #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) - #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) - - /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ - /* (array) notation (the 0 word or byte contains the sign bit), */ - /* automatically adjusting for endianness; similarly address a word */ - /* in the next-wider format (decFloatWider, or dfw) */ - #define DECWORDS (DECBYTES/4) - #define DECWWORDS (DECWBYTES/4) - #if DECLITEND - #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) - #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) - #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) - #else - #define DFBYTE(df, off) ((df)->bytes[off]) - #define DFWORD(df, off) ((df)->words[off]) - #define DFWWORD(dfw, off) ((dfw)->words[off]) - #endif - - /* Tests for sign or specials, directly on DECFLOATs */ - #define DFISSIGNED(df) ((DFWORD(df, 0)&0x80000000)!=0) - #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) - #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) - #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) - #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) - #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) - - /* Shared lookup tables */ - extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ - extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ - - /* Private generic (utility) routine */ - #if DECCHECK || DECTRACE - extern void decShowNum(const bcdnum *, const char *); - #endif - - /* Format-dependent macros and constants */ - #if defined(DECPMAX) - - /* Useful constants */ - #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ - /* Top words for a zero */ - #define SINGLEZERO 0x22500000 - #define DOUBLEZERO 0x22380000 - #define QUADZERO 0x22080000 - /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ - - /* Format-dependent common tests: */ - /* DFISZERO -- test for (any) zero */ - /* DFISCCZERO -- test for coefficient continuation being zero */ - /* DFISCC01 -- test for coefficient contains only 0s and 1s */ - /* DFISINT -- test for finite and exponent q=0 */ - /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ - /* MSD=0 or 1 */ - /* ZEROWORD is also defined here. */ - /* */ - /* In DFISZERO the first test checks the least-significant word */ - /* (most likely to be non-zero); the penultimate tests MSD and */ - /* DPDs in the signword, and the final test excludes specials and */ - /* MSD>7. DFISINT similarly has to allow for the two forms of */ - /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ - /* code. */ - #if DECPMAX==7 - #define ZEROWORD SINGLEZERO - /* [test macros not needed except for Zero] */ - #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ - && (DFWORD(df, 0)&0x60000000)!=0x60000000) - #elif DECPMAX==16 - #define ZEROWORD DOUBLEZERO - #define DFISZERO(df) ((DFWORD(df, 1)==0 \ - && (DFWORD(df, 0)&0x1c03ffff)==0 \ - && (DFWORD(df, 0)&0x60000000)!=0x60000000)) - #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ - ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) - #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) - #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ - && (DFWORD(df, 0)&0x0003ffff)==0) - #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ - && (DFWORD(df, 1)&~0x49124491)==0) - #elif DECPMAX==34 - #define ZEROWORD QUADZERO - #define DFISZERO(df) ((DFWORD(df, 3)==0 \ - && DFWORD(df, 2)==0 \ - && DFWORD(df, 1)==0 \ - && (DFWORD(df, 0)&0x1c003fff)==0 \ - && (DFWORD(df, 0)&0x60000000)!=0x60000000)) - #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ - ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) - #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) - #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ - && DFWORD(df, 2)==0 \ - && DFWORD(df, 1)==0 \ - && (DFWORD(df, 0)&0x00003fff)==0) - - #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ - && (DFWORD(df, 1)&~0x44912449)==0 \ - && (DFWORD(df, 2)&~0x12449124)==0 \ - && (DFWORD(df, 3)&~0x49124491)==0) - #endif - - /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ - /* are a canonical declet [higher or lower bits are ignored]. */ - /* declet is at offset 0 (from the right) in a uInt: */ - #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) - /* declet is at offset k (a multiple of 2) in a uInt: */ - #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ - || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) - /* declet is at offset k (a multiple of 2) in a pair of uInts: */ - /* [the top 2 bits will always be in the more-significant uInt] */ - #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ - || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ - || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) - - /* Macro to test whether a full-length (length DECPMAX) BCD8 */ - /* coefficient, starting at uByte u, is all zeros */ - /* Test just the LSWord first, then the remainder as a sequence */ - /* of tests in order to avoid same-level use of UBTOUI */ - #if DECPMAX==7 - #define ISCOEFFZERO(u) ( \ - UBTOUI((u)+DECPMAX-4)==0 \ - && UBTOUS((u)+DECPMAX-6)==0 \ - && *(u)==0) - #elif DECPMAX==16 - #define ISCOEFFZERO(u) ( \ - UBTOUI((u)+DECPMAX-4)==0 \ - && UBTOUI((u)+DECPMAX-8)==0 \ - && UBTOUI((u)+DECPMAX-12)==0 \ - && UBTOUI(u)==0) - #elif DECPMAX==34 - #define ISCOEFFZERO(u) ( \ - UBTOUI((u)+DECPMAX-4)==0 \ - && UBTOUI((u)+DECPMAX-8)==0 \ - && UBTOUI((u)+DECPMAX-12)==0 \ - && UBTOUI((u)+DECPMAX-16)==0 \ - && UBTOUI((u)+DECPMAX-20)==0 \ - && UBTOUI((u)+DECPMAX-24)==0 \ - && UBTOUI((u)+DECPMAX-28)==0 \ - && UBTOUI((u)+DECPMAX-32)==0 \ - && UBTOUS(u)==0) - #endif - - /* Macros and masks for the sign, exponent continuation, and MSD */ - /* Get the sign as DECFLOAT_Sign or 0 */ - #define GETSIGN(df) (DFWORD(df, 0)&0x80000000) - /* Get the exponent continuation from a decFloat *df as an Int */ - #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) - /* Ditto, from the next-wider format */ - #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) - /* Get the biased exponent similarly */ - #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) - /* Get the unbiased exponent similarly */ - #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) - /* Get the MSD similarly (as uInt) */ - #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) - - /* Compile-time computes of the exponent continuation field masks */ - /* full exponent continuation field: */ - #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) - /* same, not including its first digit (the qNaN/sNaN selector): */ - #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) - - /* Macros to decode the coefficient in a finite decFloat *df into */ - /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ - - /* In-line sequence to convert least significant 10 bits of uInt */ - /* dpd to three BCD8 digits starting at uByte u. Note that an */ - /* extra byte is written to the right of the three digits because */ - /* four bytes are moved at a time for speed; the alternative */ - /* macro moves exactly three bytes (usually slower). */ - #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) - #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) - - /* Decode the declets. After extracting each one, it is decoded */ - /* to BCD8 using a table lookup (also used for variable-length */ - /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ - /* length which is not used, here). Fixed-length 4-byte moves */ - /* are fast, however, almost everywhere, and so are used except */ - /* for the final three bytes (to avoid overrun). The code below */ - /* is 36 instructions for Doubles and about 70 for Quads, even */ - /* on IA32. */ - - /* Two macros are defined for each format: */ - /* GETCOEFF extracts the coefficient of the current format */ - /* GETWCOEFF extracts the coefficient of the next-wider format. */ - /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ - - #if DECPMAX==7 - #define GETCOEFF(df, bcd) { \ - uInt sourhi=DFWORD(df, 0); \ - *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ - dpd2bcd8(bcd+1, sourhi>>10); \ - dpd2bcd83(bcd+4, sourhi);} - #define GETWCOEFF(df, bcd) { \ - uInt sourhi=DFWWORD(df, 0); \ - uInt sourlo=DFWWORD(df, 1); \ - *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ - dpd2bcd8(bcd+1, sourhi>>8); \ - dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ - dpd2bcd8(bcd+7, sourlo>>20); \ - dpd2bcd8(bcd+10, sourlo>>10); \ - dpd2bcd83(bcd+13, sourlo);} - - #elif DECPMAX==16 - #define GETCOEFF(df, bcd) { \ - uInt sourhi=DFWORD(df, 0); \ - uInt sourlo=DFWORD(df, 1); \ - *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ - dpd2bcd8(bcd+1, sourhi>>8); \ - dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ - dpd2bcd8(bcd+7, sourlo>>20); \ - dpd2bcd8(bcd+10, sourlo>>10); \ - dpd2bcd83(bcd+13, sourlo);} - #define GETWCOEFF(df, bcd) { \ - uInt sourhi=DFWWORD(df, 0); \ - uInt sourmh=DFWWORD(df, 1); \ - uInt sourml=DFWWORD(df, 2); \ - uInt sourlo=DFWWORD(df, 3); \ - *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ - dpd2bcd8(bcd+1, sourhi>>4); \ - dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ - dpd2bcd8(bcd+7, sourmh>>16); \ - dpd2bcd8(bcd+10, sourmh>>6); \ - dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ - dpd2bcd8(bcd+16, sourml>>18); \ - dpd2bcd8(bcd+19, sourml>>8); \ - dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ - dpd2bcd8(bcd+25, sourlo>>20); \ - dpd2bcd8(bcd+28, sourlo>>10); \ - dpd2bcd83(bcd+31, sourlo);} - - #elif DECPMAX==34 - #define GETCOEFF(df, bcd) { \ - uInt sourhi=DFWORD(df, 0); \ - uInt sourmh=DFWORD(df, 1); \ - uInt sourml=DFWORD(df, 2); \ - uInt sourlo=DFWORD(df, 3); \ - *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ - dpd2bcd8(bcd+1, sourhi>>4); \ - dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ - dpd2bcd8(bcd+7, sourmh>>16); \ - dpd2bcd8(bcd+10, sourmh>>6); \ - dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ - dpd2bcd8(bcd+16, sourml>>18); \ - dpd2bcd8(bcd+19, sourml>>8); \ - dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ - dpd2bcd8(bcd+25, sourlo>>20); \ - dpd2bcd8(bcd+28, sourlo>>10); \ - dpd2bcd83(bcd+31, sourlo);} - - #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ - #endif - - /* Macros to decode the coefficient in a finite decFloat *df into */ - /* a base-billion uInt array, with the least-significant */ - /* 0-999999999 'digit' at offset 0. */ - - /* Decode the declets. After extracting each one, it is decoded */ - /* to binary using a table lookup. Three tables are used; one */ - /* the usual DPD to binary, the other two pre-multiplied by 1000 */ - /* and 1000000 to avoid multiplication during decode. These */ - /* tables can also be used for multiplying up the MSD as the DPD */ - /* code for 0 through 9 is the identity. */ - #define DPD2BIN0 DPD2BIN /* for prettier code */ - - #if DECPMAX==7 - #define GETCOEFFBILL(df, buf) { \ - uInt sourhi=DFWORD(df, 0); \ - (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ - +DPD2BINK[(sourhi>>10)&0x3ff] \ - +DPD2BINM[DECCOMBMSD[sourhi>>26]];} - - #elif DECPMAX==16 - #define GETCOEFFBILL(df, buf) { \ - uInt sourhi, sourlo; \ - sourlo=DFWORD(df, 1); \ - (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ - +DPD2BINK[(sourlo>>10)&0x3ff] \ - +DPD2BINM[(sourlo>>20)&0x3ff]; \ - sourhi=DFWORD(df, 0); \ - (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ - +DPD2BINK[(sourhi>>8)&0x3ff] \ - +DPD2BINM[DECCOMBMSD[sourhi>>26]];} - - #elif DECPMAX==34 - #define GETCOEFFBILL(df, buf) { \ - uInt sourhi, sourmh, sourml, sourlo; \ - sourlo=DFWORD(df, 3); \ - (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ - +DPD2BINK[(sourlo>>10)&0x3ff] \ - +DPD2BINM[(sourlo>>20)&0x3ff]; \ - sourml=DFWORD(df, 2); \ - (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ - +DPD2BINK[(sourml>>8)&0x3ff] \ - +DPD2BINM[(sourml>>18)&0x3ff]; \ - sourmh=DFWORD(df, 1); \ - (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ - +DPD2BINK[(sourmh>>6)&0x3ff] \ - +DPD2BINM[(sourmh>>16)&0x3ff]; \ - sourhi=DFWORD(df, 0); \ - (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ - +DPD2BINK[(sourhi>>4)&0x3ff] \ - +DPD2BINM[DECCOMBMSD[sourhi>>26]];} - - #endif - - /* Macros to decode the coefficient in a finite decFloat *df into */ - /* a base-thousand uInt array (of size DECLETS+1, to allow for */ - /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ - - /* Decode the declets. After extracting each one, it is decoded */ - /* to binary using a table lookup. */ - #if DECPMAX==7 - #define GETCOEFFTHOU(df, buf) { \ - uInt sourhi=DFWORD(df, 0); \ - (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ - (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ - (buf)[2]=DECCOMBMSD[sourhi>>26];} - - #elif DECPMAX==16 - #define GETCOEFFTHOU(df, buf) { \ - uInt sourhi, sourlo; \ - sourlo=DFWORD(df, 1); \ - (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ - (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ - (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ - sourhi=DFWORD(df, 0); \ - (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ - (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ - (buf)[5]=DECCOMBMSD[sourhi>>26];} - - #elif DECPMAX==34 - #define GETCOEFFTHOU(df, buf) { \ - uInt sourhi, sourmh, sourml, sourlo; \ - sourlo=DFWORD(df, 3); \ - (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ - (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ - (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ - sourml=DFWORD(df, 2); \ - (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ - (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ - (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ - sourmh=DFWORD(df, 1); \ - (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ - (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ - (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ - sourhi=DFWORD(df, 0); \ - (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ - (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ - (buf)[11]=DECCOMBMSD[sourhi>>26];} - #endif - - - /* Macros to decode the coefficient in a finite decFloat *df and */ - /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ - /* After the addition then most significant 'digit' in the array */ - /* might have a value larger then 10 (with a maximum of 19). */ - #if DECPMAX==7 - #define ADDCOEFFTHOU(df, buf) { \ - uInt sourhi=DFWORD(df, 0); \ - (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ - if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ - (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ - if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ - (buf)[2]+=DECCOMBMSD[sourhi>>26];} - - #elif DECPMAX==16 - #define ADDCOEFFTHOU(df, buf) { \ - uInt sourhi, sourlo; \ - sourlo=DFWORD(df, 1); \ - (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ - if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ - (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ - if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ - (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ - if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ - sourhi=DFWORD(df, 0); \ - (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ - if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ - (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ - if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ - (buf)[5]+=DECCOMBMSD[sourhi>>26];} - - #elif DECPMAX==34 - #define ADDCOEFFTHOU(df, buf) { \ - uInt sourhi, sourmh, sourml, sourlo; \ - sourlo=DFWORD(df, 3); \ - (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ - if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ - (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ - if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ - (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ - if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ - sourml=DFWORD(df, 2); \ - (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ - if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ - (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ - if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ - (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ - if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ - sourmh=DFWORD(df, 1); \ - (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ - if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ - (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ - if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ - (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ - if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ - sourhi=DFWORD(df, 0); \ - (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ - if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ - (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ - if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ - (buf)[11]+=DECCOMBMSD[sourhi>>26];} - #endif - - - /* Set a decFloat to the maximum positive finite number (Nmax) */ - #if DECPMAX==7 - #define DFSETNMAX(df) \ - {DFWORD(df, 0)=0x77f3fcff;} - #elif DECPMAX==16 - #define DFSETNMAX(df) \ - {DFWORD(df, 0)=0x77fcff3f; \ - DFWORD(df, 1)=0xcff3fcff;} - #elif DECPMAX==34 - #define DFSETNMAX(df) \ - {DFWORD(df, 0)=0x77ffcff3; \ - DFWORD(df, 1)=0xfcff3fcf; \ - DFWORD(df, 2)=0xf3fcff3f; \ - DFWORD(df, 3)=0xcff3fcff;} - #endif - - /* [end of format-dependent macros and constants] */ - #endif - -#else - #error decNumberLocal included more than once -#endif diff --git a/qdecimal/decnumber/decPacked.c b/qdecimal/decnumber/decPacked.c deleted file mode 100644 index 90b1071..0000000 --- a/qdecimal/decnumber/decPacked.c +++ /dev/null @@ -1,220 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Packed Decimal conversion module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2002. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises the routines for Packed Decimal format */ -/* numbers. Conversions are supplied to and from decNumber, which in */ -/* turn supports: */ -/* conversions to and from string */ -/* arithmetic routines */ -/* utilities. */ -/* Conversions from decNumber to and from densely packed decimal */ -/* formats are provided by the decimal32 through decimal128 modules. */ -/* ------------------------------------------------------------------ */ - -#include // for NULL -#include "decNumber.h" // base number library -#include "decPacked.h" // packed decimal -#include "decNumberLocal.h" // decNumber local types, etc. - -/* ------------------------------------------------------------------ */ -/* decPackedFromNumber -- convert decNumber to BCD Packed Decimal */ -/* */ -/* bcd is the BCD bytes */ -/* length is the length of the BCD array */ -/* scale is the scale result */ -/* dn is the decNumber */ -/* returns bcd, or NULL if error */ -/* */ -/* The number is converted to a BCD packed decimal byte array, */ -/* right aligned in the bcd array, whose length is indicated by the */ -/* second parameter. The final 4-bit nibble in the array will be a */ -/* sign nibble, C (1100) for + and D (1101) for -. Unused bytes and */ -/* nibbles to the left of the number are set to 0. */ -/* */ -/* scale is set to the scale of the number (this is the exponent, */ -/* negated). To force the number to a specified scale, first use the */ -/* decNumberRescale routine, which will round and change the exponent */ -/* as necessary. */ -/* */ -/* If there is an error (that is, the decNumber has too many digits */ -/* to fit in length bytes, or it is a NaN or Infinity), NULL is */ -/* returned and the bcd and scale results are unchanged. Otherwise */ -/* bcd is returned. */ -/* ------------------------------------------------------------------ */ -uByte * decPackedFromNumber(uByte *bcd, Int length, Int *scale, - const decNumber *dn) { - const Unit *up=dn->lsu; // Unit array pointer - uByte obyte, *out; // current output byte, and where it goes - Int indigs=dn->digits; // digits processed - uInt cut=DECDPUN; // downcounter per Unit - uInt u=*up; // work - uInt nib; // .. - #if DECDPUN<=4 - uInt temp; // .. - #endif - - if (dn->digits>length*2-1 // too long .. - ||(dn->bits & DECSPECIAL)) return NULL; // .. or special -- hopeless - - if (dn->bits&DECNEG) obyte=DECPMINUS; // set the sign .. - else obyte=DECPPLUS; - *scale=-dn->exponent; // .. and scale - - // loop from lowest (rightmost) byte - out=bcd+length-1; // -> final byte - for (; out>=bcd; out--) { - if (indigs>0) { - if (cut==0) { - up++; - u=*up; - cut=DECDPUN; - } - #if DECDPUN<=4 - temp=(u*6554)>>16; // fast /10 - nib=u-X10(temp); - u=temp; - #else - nib=u%10; // cannot use *6554 trick :-( - u=u/10; - #endif - obyte|=(nib<<4); - indigs--; - cut--; - } - *out=obyte; - obyte=0; // assume 0 - if (indigs>0) { - if (cut==0) { - up++; - u=*up; - cut=DECDPUN; - } - #if DECDPUN<=4 - temp=(u*6554)>>16; // as above - obyte=(uByte)(u-X10(temp)); - u=temp; - #else - obyte=(uByte)(u%10); - u=u/10; - #endif - indigs--; - cut--; - } - } // loop - - return bcd; - } // decPackedFromNumber - -/* ------------------------------------------------------------------ */ -/* decPackedToNumber -- convert BCD Packed Decimal to a decNumber */ -/* */ -/* bcd is the BCD bytes */ -/* length is the length of the BCD array */ -/* scale is the scale associated with the BCD integer */ -/* dn is the decNumber [with space for length*2 digits] */ -/* returns dn, or NULL if error */ -/* */ -/* The BCD packed decimal byte array, together with an associated */ -/* scale, is converted to a decNumber. The BCD array is assumed full */ -/* of digits, and must be ended by a 4-bit sign nibble in the least */ -/* significant four bits of the final byte. */ -/* */ -/* The scale is used (negated) as the exponent of the decNumber. */ -/* Note that zeros may have a sign and/or a scale. */ -/* */ -/* The decNumber structure is assumed to have sufficient space to */ -/* hold the converted number (that is, up to length*2-1 digits), so */ -/* no error is possible unless the adjusted exponent is out of range, */ -/* no sign nibble was found, or a sign nibble was found before the */ -/* final nibble. In these error cases, NULL is returned and the */ -/* decNumber will be 0. */ -/* ------------------------------------------------------------------ */ -decNumber * decPackedToNumber(const uByte *bcd, Int length, - const Int *scale, decNumber *dn) { - const uByte *last=bcd+length-1; // -> last byte - const uByte *first; // -> first non-zero byte - uInt nib; // work nibble - Unit *up=dn->lsu; // output pointer - Int digits; // digits count - Int cut=0; // phase of output - - decNumberZero(dn); // default result - last=&bcd[length-1]; - nib=*last & 0x0f; // get the sign - if (nib==DECPMINUS || nib==DECPMINUSALT) dn->bits=DECNEG; - else if (nib<=9) return NULL; // not a sign nibble - - // skip leading zero bytes [final byte is always non-zero, due to sign] - for (first=bcd; *first==0;) first++; - digits=(last-first)*2+1; // calculate digits .. - if ((*first & 0xf0)==0) digits--; // adjust for leading zero nibble - if (digits!=0) dn->digits=digits; // count of actual digits [if 0, - // leave as 1] - - // check the adjusted exponent; note that scale could be unbounded - dn->exponent=-*scale; // set the exponent - if (*scale>=0) { // usual case - if ((dn->digits-*scale-1)<-DECNUMMAXE) { // underflow - decNumberZero(dn); - return NULL;} - } - else { // -ve scale; +ve exponent - // need to be careful to avoid wrap, here, also BADINT case - if ((*scale<-DECNUMMAXE) // overflow even without digits - || ((dn->digits-*scale-1)>DECNUMMAXE)) { // overflow - decNumberZero(dn); - return NULL;} - } - if (digits==0) return dn; // result was zero - - // copy the digits to the number's units, starting at the lsu - // [unrolled] - for (;;) { // forever - // left nibble first - nib=(unsigned)(*last & 0xf0)>>4; - // got a digit, in nib - if (nib>9) {decNumberZero(dn); return NULL;} - - if (cut==0) *up=(Unit)nib; - else *up=(Unit)(*up+nib*DECPOWERS[cut]); - digits--; - if (digits==0) break; // got them all - cut++; - if (cut==DECDPUN) { - up++; - cut=0; - } - last--; // ready for next - nib=*last & 0x0f; // get right nibble - if (nib>9) {decNumberZero(dn); return NULL;} - - // got a digit, in nib - if (cut==0) *up=(Unit)nib; - else *up=(Unit)(*up+nib*DECPOWERS[cut]); - digits--; - if (digits==0) break; // got them all - cut++; - if (cut==DECDPUN) { - up++; - cut=0; - } - } // forever - - return dn; - } // decPackedToNumber - diff --git a/qdecimal/decnumber/decPacked.h b/qdecimal/decnumber/decPacked.h deleted file mode 100644 index 929a546..0000000 --- a/qdecimal/decnumber/decPacked.h +++ /dev/null @@ -1,52 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Packed Decimal conversion module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2005. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECPACKED) - #define DECPACKED - #define DECPNAME "decPacked" /* Short name */ - #define DECPFULLNAME "Packed Decimal conversions" /* Verbose name */ - #define DECPAUTHOR "Mike Cowlishaw" /* Who to blame */ - - #define DECPACKED_DefP 32 /* default precision */ - - #ifndef DECNUMDIGITS - #define DECNUMDIGITS DECPACKED_DefP /* size if not already defined*/ - #endif - #include "decNumber.h" /* context and number library */ - - /* Sign nibble constants */ - #if !defined(DECPPLUSALT) - #define DECPPLUSALT 0x0A /* alternate plus nibble */ - #define DECPMINUSALT 0x0B /* alternate minus nibble */ - #define DECPPLUS 0x0C /* preferred plus nibble */ - #define DECPMINUS 0x0D /* preferred minus nibble */ - #define DECPPLUSALT2 0x0E /* alternate plus nibble */ - #define DECPUNSIGNED 0x0F /* alternate plus nibble (unsigned) */ - #endif - - /* ---------------------------------------------------------------- */ - /* decPacked public routines */ - /* ---------------------------------------------------------------- */ - /* Conversions */ - uint8_t * decPackedFromNumber(uint8_t *, int32_t, int32_t *, - const decNumber *); - decNumber * decPackedToNumber(const uint8_t *, int32_t, const int32_t *, - decNumber *); - -#endif diff --git a/qdecimal/decnumber/decQuad.c b/qdecimal/decnumber/decQuad.c deleted file mode 100644 index c65b30c..0000000 --- a/qdecimal/decnumber/decQuad.c +++ /dev/null @@ -1,135 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decQuad.c -- decQuad operations module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises decQuad operations (including conversions) */ -/* ------------------------------------------------------------------ */ - - -/* Constant mappings for shared code */ -#define DECPMAX DECQUAD_Pmax -#define DECEMIN DECQUAD_Emin -#define DECEMAX DECQUAD_Emax -#define DECEMAXD DECQUAD_EmaxD -#define DECBYTES DECQUAD_Bytes -#define DECSTRING DECQUAD_String -#define DECECONL DECQUAD_EconL -#define DECBIAS DECQUAD_Bias -#define DECLETS DECQUAD_Declets -#define DECQTINY (-DECQUAD_Bias) - -/* Type and function mappings for shared code */ -#define decFloat decQuad // Type name - -// Utilities and conversions (binary results, extractors, etc.) -#define decFloatFromBCD decQuadFromBCD -#define decFloatFromInt32 decQuadFromInt32 -#define decFloatFromPacked decQuadFromPacked -#define decFloatFromPackedChecked decQuadFromPackedChecked -#define decFloatFromString decQuadFromString -#define decFloatFromUInt32 decQuadFromUInt32 -#define decFloatFromWider decQuadFromWider -#define decFloatGetCoefficient decQuadGetCoefficient -#define decFloatGetExponent decQuadGetExponent -#define decFloatSetCoefficient decQuadSetCoefficient -#define decFloatSetExponent decQuadSetExponent -#define decFloatShow decQuadShow -#define decFloatToBCD decQuadToBCD -#define decFloatToEngString decQuadToEngString -#define decFloatToInt32 decQuadToInt32 -#define decFloatToInt32Exact decQuadToInt32Exact -#define decFloatToPacked decQuadToPacked -#define decFloatToString decQuadToString -#define decFloatToUInt32 decQuadToUInt32 -#define decFloatToUInt32Exact decQuadToUInt32Exact -#define decFloatToWider decQuadToWider -#define decFloatZero decQuadZero - -// Computational (result is a decFloat) -#define decFloatAbs decQuadAbs -#define decFloatAdd decQuadAdd -#define decFloatAnd decQuadAnd -#define decFloatDivide decQuadDivide -#define decFloatDivideInteger decQuadDivideInteger -#define decFloatFMA decQuadFMA -#define decFloatInvert decQuadInvert -#define decFloatLogB decQuadLogB -#define decFloatMax decQuadMax -#define decFloatMaxMag decQuadMaxMag -#define decFloatMin decQuadMin -#define decFloatMinMag decQuadMinMag -#define decFloatMinus decQuadMinus -#define decFloatMultiply decQuadMultiply -#define decFloatNextMinus decQuadNextMinus -#define decFloatNextPlus decQuadNextPlus -#define decFloatNextToward decQuadNextToward -#define decFloatOr decQuadOr -#define decFloatPlus decQuadPlus -#define decFloatQuantize decQuadQuantize -#define decFloatReduce decQuadReduce -#define decFloatRemainder decQuadRemainder -#define decFloatRemainderNear decQuadRemainderNear -#define decFloatRotate decQuadRotate -#define decFloatScaleB decQuadScaleB -#define decFloatShift decQuadShift -#define decFloatSubtract decQuadSubtract -#define decFloatToIntegralValue decQuadToIntegralValue -#define decFloatToIntegralExact decQuadToIntegralExact -#define decFloatXor decQuadXor - -// Comparisons -#define decFloatCompare decQuadCompare -#define decFloatCompareSignal decQuadCompareSignal -#define decFloatCompareTotal decQuadCompareTotal -#define decFloatCompareTotalMag decQuadCompareTotalMag - -// Copies -#define decFloatCanonical decQuadCanonical -#define decFloatCopy decQuadCopy -#define decFloatCopyAbs decQuadCopyAbs -#define decFloatCopyNegate decQuadCopyNegate -#define decFloatCopySign decQuadCopySign - -// Non-computational -#define decFloatClass decQuadClass -#define decFloatClassString decQuadClassString -#define decFloatDigits decQuadDigits -#define decFloatIsCanonical decQuadIsCanonical -#define decFloatIsFinite decQuadIsFinite -#define decFloatIsInfinite decQuadIsInfinite -#define decFloatIsInteger decQuadIsInteger -#define decFloatIsLogical decQuadIsLogical -#define decFloatIsNaN decQuadIsNaN -#define decFloatIsNegative decQuadIsNegative -#define decFloatIsNormal decQuadIsNormal -#define decFloatIsPositive decQuadIsPositive -#define decFloatIsSignaling decQuadIsSignaling -#define decFloatIsSignalling decQuadIsSignalling -#define decFloatIsSigned decQuadIsSigned -#define decFloatIsSubnormal decQuadIsSubnormal -#define decFloatIsZero decQuadIsZero -#define decFloatRadix decQuadRadix -#define decFloatSameQuantum decQuadSameQuantum -#define decFloatVersion decQuadVersion - -/* And now the code itself */ -#include "decContext.h" // public includes -#include "decQuad.h" // .. -#include "decNumberLocal.h" // local includes (need DECPMAX) -#include "decCommon.c" // non-arithmetic decFloat routines -#include "decBasic.c" // basic formats routines - diff --git a/qdecimal/decnumber/decQuad.h b/qdecimal/decnumber/decQuad.h deleted file mode 100644 index 829f39a..0000000 --- a/qdecimal/decnumber/decQuad.h +++ /dev/null @@ -1,177 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decQuad.h -- Decimal 128-bit format module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This include file is always included by decSingle and decDouble, */ -/* and therefore also holds useful constants used by all three. */ - -#if !defined(DECQUAD) - #define DECQUAD - - #define DECQUADNAME "decimalQuad" /* Short name */ - #define DECQUADTITLE "Decimal 128-bit datum" /* Verbose name */ - #define DECQUADAUTHOR "Mike Cowlishaw" /* Who to blame */ - - /* parameters for decQuads */ - #define DECQUAD_Bytes 16 /* length */ - #define DECQUAD_Pmax 34 /* maximum precision (digits) */ - #define DECQUAD_Emin -6143 /* minimum adjusted exponent */ - #define DECQUAD_Emax 6144 /* maximum adjusted exponent */ - #define DECQUAD_EmaxD 4 /* maximum exponent digits */ - #define DECQUAD_Bias 6176 /* bias for the exponent */ - #define DECQUAD_String 43 /* maximum string length, +1 */ - #define DECQUAD_EconL 12 /* exponent continuation length */ - #define DECQUAD_Declets 11 /* count of declets */ - /* highest biased exponent (Elimit-1) */ - #define DECQUAD_Ehigh (DECQUAD_Emax + DECQUAD_Bias - (DECQUAD_Pmax-1)) - - /* Required include */ - #include "decContext.h" - - /* The decQuad decimal 128-bit type, accessible by all sizes */ - typedef union { - uint8_t bytes[DECQUAD_Bytes]; /* fields: 1, 5, 12, 110 bits */ - uint16_t shorts[DECQUAD_Bytes/2]; - uint32_t words[DECQUAD_Bytes/4]; - #if DECUSE64 - uint64_t longs[DECQUAD_Bytes/8]; - #endif - } decQuad; - - /* ---------------------------------------------------------------- */ - /* Shared constants */ - /* ---------------------------------------------------------------- */ - - /* sign and special values [top 32-bits; last two bits are don't-care - for Infinity on input, last bit don't-care for NaNs] */ - #define DECFLOAT_Sign 0x80000000 /* 1 00000 00 Sign */ - #define DECFLOAT_NaN 0x7c000000 /* 0 11111 00 NaN generic */ - #define DECFLOAT_qNaN 0x7c000000 /* 0 11111 00 qNaN */ - #define DECFLOAT_sNaN 0x7e000000 /* 0 11111 10 sNaN */ - #define DECFLOAT_Inf 0x78000000 /* 0 11110 00 Infinity */ - #define DECFLOAT_MinSp 0x78000000 /* minimum special value */ - /* [specials are all >=MinSp] */ - /* Sign nibble constants */ - #if !defined(DECPPLUSALT) - #define DECPPLUSALT 0x0A /* alternate plus nibble */ - #define DECPMINUSALT 0x0B /* alternate minus nibble */ - #define DECPPLUS 0x0C /* preferred plus nibble */ - #define DECPMINUS 0x0D /* preferred minus nibble */ - #define DECPPLUSALT2 0x0E /* alternate plus nibble */ - #define DECPUNSIGNED 0x0F /* alternate plus nibble (unsigned) */ - #endif - - /* ---------------------------------------------------------------- */ - /* Routines -- implemented as decFloat routines in common files */ - /* ---------------------------------------------------------------- */ - - /* Utilities and conversions, extractors, etc.) */ - extern decQuad * decQuadFromBCD(decQuad *, int32_t, const uint8_t *, int32_t); - extern decQuad * decQuadFromInt32(decQuad *, int32_t); - extern decQuad * decQuadFromPacked(decQuad *, int32_t, const uint8_t *); - extern decQuad * decQuadFromPackedChecked(decQuad *, int32_t, const uint8_t *); - extern decQuad * decQuadFromString(decQuad *, const char *, decContext *); - extern decQuad * decQuadFromUInt32(decQuad *, uint32_t); - extern int32_t decQuadGetCoefficient(const decQuad *, uint8_t *); - extern int32_t decQuadGetExponent(const decQuad *); - extern decQuad * decQuadSetCoefficient(decQuad *, const uint8_t *, int32_t); - extern decQuad * decQuadSetExponent(decQuad *, decContext *, int32_t); - extern void decQuadShow(const decQuad *, const char *); - extern int32_t decQuadToBCD(const decQuad *, int32_t *, uint8_t *); - extern char * decQuadToEngString(const decQuad *, char *); - extern int32_t decQuadToInt32(const decQuad *, decContext *, enum rounding); - extern int32_t decQuadToInt32Exact(const decQuad *, decContext *, enum rounding); - extern int32_t decQuadToPacked(const decQuad *, int32_t *, uint8_t *); - extern char * decQuadToString(const decQuad *, char *); - extern uint32_t decQuadToUInt32(const decQuad *, decContext *, enum rounding); - extern uint32_t decQuadToUInt32Exact(const decQuad *, decContext *, enum rounding); - extern decQuad * decQuadZero(decQuad *); - - /* Computational (result is a decQuad) */ - extern decQuad * decQuadAbs(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadAdd(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadAnd(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadDivide(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadDivideInteger(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadFMA(decQuad *, const decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadInvert(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadLogB(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadMax(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadMaxMag(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadMin(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadMinMag(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadMinus(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadMultiply(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadNextMinus(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadNextPlus(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadNextToward(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadOr(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadPlus(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadQuantize(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadReduce(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadRemainder(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadRemainderNear(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadRotate(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadScaleB(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadShift(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadSubtract(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadToIntegralValue(decQuad *, const decQuad *, decContext *, enum rounding); - extern decQuad * decQuadToIntegralExact(decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadXor(decQuad *, const decQuad *, const decQuad *, decContext *); - - /* Comparisons */ - extern decQuad * decQuadCompare(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadCompareSignal(decQuad *, const decQuad *, const decQuad *, decContext *); - extern decQuad * decQuadCompareTotal(decQuad *, const decQuad *, const decQuad *); - extern decQuad * decQuadCompareTotalMag(decQuad *, const decQuad *, const decQuad *); - - /* Copies */ - extern decQuad * decQuadCanonical(decQuad *, const decQuad *); - extern decQuad * decQuadCopy(decQuad *, const decQuad *); - extern decQuad * decQuadCopyAbs(decQuad *, const decQuad *); - extern decQuad * decQuadCopyNegate(decQuad *, const decQuad *); - extern decQuad * decQuadCopySign(decQuad *, const decQuad *, const decQuad *); - - /* Non-computational */ - extern enum decClass decQuadClass(const decQuad *); - extern const char * decQuadClassString(const decQuad *); - extern uint32_t decQuadDigits(const decQuad *); - extern uint32_t decQuadIsCanonical(const decQuad *); - extern uint32_t decQuadIsFinite(const decQuad *); - extern uint32_t decQuadIsInteger(const decQuad *); - extern uint32_t decQuadIsLogical(const decQuad *); - extern uint32_t decQuadIsInfinite(const decQuad *); - extern uint32_t decQuadIsNaN(const decQuad *); - extern uint32_t decQuadIsNegative(const decQuad *); - extern uint32_t decQuadIsNormal(const decQuad *); - extern uint32_t decQuadIsPositive(const decQuad *); - extern uint32_t decQuadIsSignaling(const decQuad *); - extern uint32_t decQuadIsSignalling(const decQuad *); - extern uint32_t decQuadIsSigned(const decQuad *); - extern uint32_t decQuadIsSubnormal(const decQuad *); - extern uint32_t decQuadIsZero(const decQuad *); - extern uint32_t decQuadRadix(const decQuad *); - extern uint32_t decQuadSameQuantum(const decQuad *, const decQuad *); - extern const char * decQuadVersion(void); - - /* decNumber conversions; these are implemented as macros so as not */ - /* to force a dependency on decimal128 and decNumber in decQuad. */ - /* decQuadFromNumber returns a decimal128 * to avoid warnings. */ - #define decQuadToNumber(dq, dn) decimal128ToNumber((decimal128 *)(dq), dn) - #define decQuadFromNumber(dq, dn, set) decimal128FromNumber((decimal128 *)(dq), dn, set) - -#endif diff --git a/qdecimal/decnumber/decSingle.c b/qdecimal/decnumber/decSingle.c deleted file mode 100644 index 85e59d5..0000000 --- a/qdecimal/decnumber/decSingle.c +++ /dev/null @@ -1,71 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decSingle.c -- decSingle operations module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises decSingle operations (including conversions) */ -/* ------------------------------------------------------------------ */ - -#include "decContext.h" // public includes -#include "decSingle.h" // public includes - -/* Constant mappings for shared code */ -#define DECPMAX DECSINGLE_Pmax -#define DECEMIN DECSINGLE_Emin -#define DECEMAX DECSINGLE_Emax -#define DECEMAXD DECSINGLE_EmaxD -#define DECBYTES DECSINGLE_Bytes -#define DECSTRING DECSINGLE_String -#define DECECONL DECSINGLE_EconL -#define DECBIAS DECSINGLE_Bias -#define DECLETS DECSINGLE_Declets -#define DECQTINY (-DECSINGLE_Bias) -// parameters of next-wider format -#define DECWBYTES DECDOUBLE_Bytes -#define DECWPMAX DECDOUBLE_Pmax -#define DECWECONL DECDOUBLE_EconL -#define DECWBIAS DECDOUBLE_Bias - -/* Type and function mappings for shared code */ -#define decFloat decSingle // Type name -#define decFloatWider decDouble // Type name - -// Utility (binary results, extractors, etc.) -#define decFloatFromBCD decSingleFromBCD -#define decFloatFromPacked decSingleFromPacked -#define decFloatFromPackedChecked decSingleFromPackedChecked -#define decFloatFromString decSingleFromString -#define decFloatFromWider decSingleFromWider -#define decFloatGetCoefficient decSingleGetCoefficient -#define decFloatGetExponent decSingleGetExponent -#define decFloatSetCoefficient decSingleSetCoefficient -#define decFloatSetExponent decSingleSetExponent -#define decFloatShow decSingleShow -#define decFloatToBCD decSingleToBCD -#define decFloatToEngString decSingleToEngString -#define decFloatToPacked decSingleToPacked -#define decFloatToString decSingleToString -#define decFloatToWider decSingleToWider -#define decFloatZero decSingleZero - -// Non-computational -#define decFloatRadix decSingleRadix -#define decFloatVersion decSingleVersion - -#include "decNumberLocal.h" // local includes (need DECPMAX) -#include "decCommon.c" // non-basic decFloat routines -// [Do not include decBasic.c for decimal32] - diff --git a/qdecimal/decnumber/decSingle.h b/qdecimal/decnumber/decSingle.h deleted file mode 100644 index 2bd1fde..0000000 --- a/qdecimal/decnumber/decSingle.h +++ /dev/null @@ -1,86 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* decSingle.h -- Decimal 32-bit format module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is included in the package as decNumber.pdf. This */ -/* document is also available in HTML, together with specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECSINGLE) - #define DECSINGLE - - #define DECSINGLENAME "decSingle" /* Short name */ - #define DECSINGLETITLE "Decimal 32-bit datum" /* Verbose name */ - #define DECSINGLEAUTHOR "Mike Cowlishaw" /* Who to blame */ - - /* parameters for decSingles */ - #define DECSINGLE_Bytes 4 /* length */ - #define DECSINGLE_Pmax 7 /* maximum precision (digits) */ - #define DECSINGLE_Emin -95 /* minimum adjusted exponent */ - #define DECSINGLE_Emax 96 /* maximum adjusted exponent */ - #define DECSINGLE_EmaxD 3 /* maximum exponent digits */ - #define DECSINGLE_Bias 101 /* bias for the exponent */ - #define DECSINGLE_String 16 /* maximum string length, +1 */ - #define DECSINGLE_EconL 6 /* exponent continuation length */ - #define DECSINGLE_Declets 2 /* count of declets */ - /* highest biased exponent (Elimit-1) */ - #define DECSINGLE_Ehigh (DECSINGLE_Emax + DECSINGLE_Bias - (DECSINGLE_Pmax-1)) - - /* Required includes */ - #include "decContext.h" - #include "decQuad.h" - #include "decDouble.h" - - /* The decSingle decimal 32-bit type, accessible by all sizes */ - typedef union { - uint8_t bytes[DECSINGLE_Bytes]; /* fields: 1, 5, 6, 20 bits */ - uint16_t shorts[DECSINGLE_Bytes/2]; - uint32_t words[DECSINGLE_Bytes/4]; - } decSingle; - - /* ---------------------------------------------------------------- */ - /* Routines -- implemented as decFloat routines in common files */ - /* ---------------------------------------------------------------- */ - - /* Utilities (binary argument(s) or result, extractors, etc.) */ - extern decSingle * decSingleFromBCD(decSingle *, int32_t, const uint8_t *, int32_t); - extern decSingle * decSingleFromPacked(decSingle *, int32_t, const uint8_t *); - extern decSingle * decSingleFromPackedChecked(decSingle *, int32_t, const uint8_t *); - extern decSingle * decSingleFromString(decSingle *, const char *, decContext *); - extern decSingle * decSingleFromWider(decSingle *, const decDouble *, decContext *); - extern int32_t decSingleGetCoefficient(const decSingle *, uint8_t *); - extern int32_t decSingleGetExponent(const decSingle *); - extern decSingle * decSingleSetCoefficient(decSingle *, const uint8_t *, int32_t); - extern decSingle * decSingleSetExponent(decSingle *, decContext *, int32_t); - extern void decSingleShow(const decSingle *, const char *); - extern int32_t decSingleToBCD(const decSingle *, int32_t *, uint8_t *); - extern char * decSingleToEngString(const decSingle *, char *); - extern int32_t decSingleToPacked(const decSingle *, int32_t *, uint8_t *); - extern char * decSingleToString(const decSingle *, char *); - extern decDouble * decSingleToWider(const decSingle *, decDouble *); - extern decSingle * decSingleZero(decSingle *); - - /* (No Arithmetic routines for decSingle) */ - - /* Non-computational */ - extern uint32_t decSingleRadix(const decSingle *); - extern const char * decSingleVersion(void); - - /* decNumber conversions; these are implemented as macros so as not */ - /* to force a dependency on decimal32 and decNumber in decSingle. */ - /* decSingleFromNumber returns a decimal32 * to avoid warnings. */ - #define decSingleToNumber(dq, dn) decimal32ToNumber((decimal32 *)(dq), dn) - #define decSingleFromNumber(dq, dn, set) decimal32FromNumber((decimal32 *)(dq), dn, set) - -#endif diff --git a/qdecimal/decnumber/decimal128.c b/qdecimal/decnumber/decimal128.c deleted file mode 100644 index 4387f44..0000000 --- a/qdecimal/decnumber/decimal128.c +++ /dev/null @@ -1,553 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal 128-bit format module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises the routines for decimal128 format numbers. */ -/* Conversions are supplied to and from decNumber and String. */ -/* */ -/* This is used when decNumber provides operations, either for all */ -/* operations or as a proxy between decNumber and decSingle. */ -/* */ -/* Error handling is the same as decNumber (qv.). */ -/* ------------------------------------------------------------------ */ -#include // [for memset/memcpy] -#include // [for printf] - -#define DECNUMDIGITS 34 // make decNumbers with space for 34 -#include "decNumber.h" // base number library -#include "decNumberLocal.h" // decNumber local types, etc. -#include "decimal128.h" // our primary include - -/* Utility routines and tables [in decimal64.c] */ -// DPD2BIN and the reverse are renamed to prevent link-time conflict -// if decQuad is also built in the same executable -#define DPD2BIN DPD2BINx -#define BIN2DPD BIN2DPDx -extern const uInt COMBEXP[32], COMBMSD[32]; -extern const uShort DPD2BIN[1024]; -extern const uShort BIN2DPD[1000]; // [not used] -extern const uByte BIN2CHAR[4001]; - -extern void decDigitsFromDPD(decNumber *, const uInt *, Int); -extern void decDigitsToDPD(const decNumber *, uInt *, Int); - -#if DECTRACE || DECCHECK -void decimal128Show(const decimal128 *); // for debug -extern void decNumberShow(const decNumber *); // .. -#endif - -/* Useful macro */ -// Clear a structure (e.g., a decNumber) -#define DEC_clear(d) memset(d, 0, sizeof(*d)) - -/* ------------------------------------------------------------------ */ -/* decimal128FromNumber -- convert decNumber to decimal128 */ -/* */ -/* ds is the target decimal128 */ -/* dn is the source number (assumed valid) */ -/* set is the context, used only for reporting errors */ -/* */ -/* The set argument is used only for status reporting and for the */ -/* rounding mode (used if the coefficient is more than DECIMAL128_Pmax*/ -/* digits or an overflow is detected). If the exponent is out of the */ -/* valid range then Overflow or Underflow will be raised. */ -/* After Underflow a subnormal result is possible. */ -/* */ -/* DEC_Clamped is set if the number has to be 'folded down' to fit, */ -/* by reducing its exponent and multiplying the coefficient by a */ -/* power of ten, or if the exponent on a zero had to be clamped. */ -/* ------------------------------------------------------------------ */ -decimal128 * decimal128FromNumber(decimal128 *d128, const decNumber *dn, - decContext *set) { - uInt status=0; // status accumulator - Int ae; // adjusted exponent - decNumber dw; // work - decContext dc; // .. - uInt comb, exp; // .. - uInt uiwork; // for macros - uInt targar[4]={0,0,0,0}; // target 128-bit - #define targhi targar[3] // name the word with the sign - #define targmh targar[2] // name the words - #define targml targar[1] // .. - #define targlo targar[0] // .. - - // If the number has too many digits, or the exponent could be - // out of range then reduce the number under the appropriate - // constraints. This could push the number to Infinity or zero, - // so this check and rounding must be done before generating the - // decimal128] - ae=dn->exponent+dn->digits-1; // [0 if special] - if (dn->digits>DECIMAL128_Pmax // too many digits - || ae>DECIMAL128_Emax // likely overflow - || aeround; // use supplied rounding - decNumberPlus(&dw, dn, &dc); // (round and check) - // [this changes -0 to 0, so enforce the sign...] - dw.bits|=dn->bits&DECNEG; - status=dc.status; // save status - dn=&dw; // use the work number - } // maybe out of range - - if (dn->bits&DECSPECIAL) { // a special value - if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24; - else { // sNaN or qNaN - if ((*dn->lsu!=0 || dn->digits>1) // non-zero coefficient - && (dn->digitsbits&DECNAN) targhi|=DECIMAL_NaN<<24; - else targhi|=DECIMAL_sNaN<<24; - } // a NaN - } // special - - else { // is finite - if (decNumberIsZero(dn)) { // is a zero - // set and clamp exponent - if (dn->exponent<-DECIMAL128_Bias) { - exp=0; // low clamp - status|=DEC_Clamped; - } - else { - exp=dn->exponent+DECIMAL128_Bias; // bias exponent - if (exp>DECIMAL128_Ehigh) { // top clamp - exp=DECIMAL128_Ehigh; - status|=DEC_Clamped; - } - } - comb=(exp>>9) & 0x18; // msd=0, exp top 2 bits .. - } - else { // non-zero finite number - uInt msd; // work - Int pad=0; // coefficient pad digits - - // the dn is known to fit, but it may need to be padded - exp=(uInt)(dn->exponent+DECIMAL128_Bias); // bias exponent - if (exp>DECIMAL128_Ehigh) { // fold-down case - pad=exp-DECIMAL128_Ehigh; - exp=DECIMAL128_Ehigh; // [to maximum] - status|=DEC_Clamped; - } - - // [fastpath for common case is not a win, here] - decDigitsToDPD(dn, targar, pad); - // save and clear the top digit - msd=targhi>>14; - targhi&=0x00003fff; - - // create the combination field - if (msd>=8) comb=0x18 | ((exp>>11) & 0x06) | (msd & 0x01); - else comb=((exp>>9) & 0x18) | msd; - } - targhi|=comb<<26; // add combination field .. - targhi|=(exp&0xfff)<<14; // .. and exponent continuation - } // finite - - if (dn->bits&DECNEG) targhi|=0x80000000; // add sign bit - - // now write to storage; this is endian - if (DECLITEND) { - // lo -> hi - UBFROMUI(d128->bytes, targlo); - UBFROMUI(d128->bytes+4, targml); - UBFROMUI(d128->bytes+8, targmh); - UBFROMUI(d128->bytes+12, targhi); - } - else { - // hi -> lo - UBFROMUI(d128->bytes, targhi); - UBFROMUI(d128->bytes+4, targmh); - UBFROMUI(d128->bytes+8, targml); - UBFROMUI(d128->bytes+12, targlo); - } - - if (status!=0) decContextSetStatus(set, status); // pass on status - // decimal128Show(d128); - return d128; - } // decimal128FromNumber - -/* ------------------------------------------------------------------ */ -/* decimal128ToNumber -- convert decimal128 to decNumber */ -/* d128 is the source decimal128 */ -/* dn is the target number, with appropriate space */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decimal128ToNumber(const decimal128 *d128, decNumber *dn) { - uInt msd; // coefficient MSD - uInt exp; // exponent top two bits - uInt comb; // combination field - Int need; // work - uInt uiwork; // for macros - uInt sourar[4]; // source 128-bit - #define sourhi sourar[3] // name the word with the sign - #define sourmh sourar[2] // and the mid-high word - #define sourml sourar[1] // and the mod-low word - #define sourlo sourar[0] // and the lowest word - - // load source from storage; this is endian - if (DECLITEND) { - sourlo=UBTOUI(d128->bytes ); // directly load the low int - sourml=UBTOUI(d128->bytes+4 ); // then the mid-low - sourmh=UBTOUI(d128->bytes+8 ); // then the mid-high - sourhi=UBTOUI(d128->bytes+12); // then the high int - } - else { - sourhi=UBTOUI(d128->bytes ); // directly load the high int - sourmh=UBTOUI(d128->bytes+4 ); // then the mid-high - sourml=UBTOUI(d128->bytes+8 ); // then the mid-low - sourlo=UBTOUI(d128->bytes+12); // then the low int - } - - comb=(sourhi>>26)&0x1f; // combination field - - decNumberZero(dn); // clean number - if (sourhi&0x80000000) dn->bits=DECNEG; // set sign if negative - - msd=COMBMSD[comb]; // decode the combination field - exp=COMBEXP[comb]; // .. - - if (exp==3) { // is a special - if (msd==0) { - dn->bits|=DECINF; - return dn; // no coefficient needed - } - else if (sourhi&0x02000000) dn->bits|=DECSNAN; - else dn->bits|=DECNAN; - msd=0; // no top digit - } - else { // is a finite number - dn->exponent=(exp<<12)+((sourhi>>14)&0xfff)-DECIMAL128_Bias; // unbiased - } - - // get the coefficient - sourhi&=0x00003fff; // clean coefficient continuation - if (msd) { // non-zero msd - sourhi|=msd<<14; // prefix to coefficient - need=12; // process 12 declets - } - else { // msd=0 - if (sourhi) need=11; // declets to process - else if (sourmh) need=10; - else if (sourml) need=7; - else if (sourlo) need=4; - else return dn; // easy: coefficient is 0 - } //msd=0 - - decDigitsFromDPD(dn, sourar, need); // process declets - // decNumberShow(dn); - return dn; - } // decimal128ToNumber - -/* ------------------------------------------------------------------ */ -/* to-scientific-string -- conversion to numeric string */ -/* to-engineering-string -- conversion to numeric string */ -/* */ -/* decimal128ToString(d128, string); */ -/* decimal128ToEngString(d128, string); */ -/* */ -/* d128 is the decimal128 format number to convert */ -/* string is the string where the result will be laid out */ -/* */ -/* string must be at least 24 characters */ -/* */ -/* No error is possible, and no status can be set. */ -/* ------------------------------------------------------------------ */ -char * decimal128ToEngString(const decimal128 *d128, char *string){ - decNumber dn; // work - decimal128ToNumber(d128, &dn); - decNumberToEngString(&dn, string); - return string; - } // decimal128ToEngString - -char * decimal128ToString(const decimal128 *d128, char *string){ - uInt msd; // coefficient MSD - Int exp; // exponent top two bits or full - uInt comb; // combination field - char *cstart; // coefficient start - char *c; // output pointer in string - const uByte *u; // work - char *s, *t; // .. (source, target) - Int dpd; // .. - Int pre, e; // .. - uInt uiwork; // for macros - - uInt sourar[4]; // source 128-bit - #define sourhi sourar[3] // name the word with the sign - #define sourmh sourar[2] // and the mid-high word - #define sourml sourar[1] // and the mod-low word - #define sourlo sourar[0] // and the lowest word - - // load source from storage; this is endian - if (DECLITEND) { - sourlo=UBTOUI(d128->bytes ); // directly load the low int - sourml=UBTOUI(d128->bytes+4 ); // then the mid-low - sourmh=UBTOUI(d128->bytes+8 ); // then the mid-high - sourhi=UBTOUI(d128->bytes+12); // then the high int - } - else { - sourhi=UBTOUI(d128->bytes ); // directly load the high int - sourmh=UBTOUI(d128->bytes+4 ); // then the mid-high - sourml=UBTOUI(d128->bytes+8 ); // then the mid-low - sourlo=UBTOUI(d128->bytes+12); // then the low int - } - - c=string; // where result will go - if (((Int)sourhi)<0) *c++='-'; // handle sign - - comb=(sourhi>>26)&0x1f; // combination field - msd=COMBMSD[comb]; // decode the combination field - exp=COMBEXP[comb]; // .. - - if (exp==3) { - if (msd==0) { // infinity - strcpy(c, "Inf"); - strcpy(c+3, "inity"); - return string; // easy - } - if (sourhi&0x02000000) *c++='s'; // sNaN - strcpy(c, "NaN"); // complete word - c+=3; // step past - if (sourlo==0 && sourml==0 && sourmh==0 - && (sourhi&0x0003ffff)==0) return string; // zero payload - // otherwise drop through to add integer; set correct exp - exp=0; msd=0; // setup for following code - } - else exp=(exp<<12)+((sourhi>>14)&0xfff)-DECIMAL128_Bias; // unbiased - - // convert 34 digits of significand to characters - cstart=c; // save start of coefficient - if (msd) *c++='0'+(char)msd; // non-zero most significant digit - - // Now decode the declets. After extracting each one, it is - // decoded to binary and then to a 4-char sequence by table lookup; - // the 4-chars are a 1-char length (significant digits, except 000 - // has length 0). This allows us to left-align the first declet - // with non-zero content, then remaining ones are full 3-char - // length. We use fixed-length memcpys because variable-length - // causes a subroutine call in GCC. (These are length 4 for speed - // and are safe because the array has an extra terminator byte.) - #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \ - if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \ - else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;} - dpd=(sourhi>>4)&0x3ff; // declet 1 - dpd2char; - dpd=((sourhi&0xf)<<6) | (sourmh>>26); // declet 2 - dpd2char; - dpd=(sourmh>>16)&0x3ff; // declet 3 - dpd2char; - dpd=(sourmh>>6)&0x3ff; // declet 4 - dpd2char; - dpd=((sourmh&0x3f)<<4) | (sourml>>28); // declet 5 - dpd2char; - dpd=(sourml>>18)&0x3ff; // declet 6 - dpd2char; - dpd=(sourml>>8)&0x3ff; // declet 7 - dpd2char; - dpd=((sourml&0xff)<<2) | (sourlo>>30); // declet 8 - dpd2char; - dpd=(sourlo>>20)&0x3ff; // declet 9 - dpd2char; - dpd=(sourlo>>10)&0x3ff; // declet 10 - dpd2char; - dpd=(sourlo)&0x3ff; // declet 11 - dpd2char; - - if (c==cstart) *c++='0'; // all zeros -- make 0 - - if (exp==0) { // integer or NaN case -- easy - *c='\0'; // terminate - return string; - } - - /* non-0 exponent */ - e=0; // assume no E - pre=c-cstart+exp; - // [here, pre-exp is the digits count (==1 for zero)] - if (exp>0 || pre<-5) { // need exponential form - e=pre-1; // calculate E value - pre=1; // assume one digit before '.' - } // exponential form - - /* modify the coefficient, adding 0s, '.', and E+nn as needed */ - s=c-1; // source (LSD) - if (pre>0) { // ddd.ddd (plain), perhaps with E - char *dotat=cstart+pre; - if (dotat=dotat; s--, t--) *t=*s; // open the gap; leave t at gap - *t='.'; // insert the dot - c++; // length increased by one - } - - // finally add the E-part, if needed; it will never be 0, and has - // a maximum length of 4 digits - if (e!=0) { - *c++='E'; // starts with E - *c++='+'; // assume positive - if (e<0) { - *(c-1)='-'; // oops, need '-' - e=-e; // uInt, please - } - if (e<1000) { // 3 (or fewer) digits case - u=&BIN2CHAR[e*4]; // -> length byte - memcpy(c, u+4-*u, 4); // copy fixed 4 characters [is safe] - c+=*u; // bump pointer appropriately - } - else { // 4-digits - Int thou=((e>>3)*1049)>>17; // e/1000 - Int rem=e-(1000*thou); // e%1000 - *c++='0'+(char)thou; - u=&BIN2CHAR[rem*4]; // -> length byte - memcpy(c, u+1, 4); // copy fixed 3+1 characters [is safe] - c+=3; // bump pointer, always 3 digits - } - } - *c='\0'; // add terminator - //printf("res %s\n", string); - return string; - } // pre>0 - - /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */ - t=c+1-pre; - *(t+1)='\0'; // can add terminator now - for (; s>=cstart; s--, t--) *t=*s; // shift whole coefficient right - c=cstart; - *c++='0'; // always starts with 0. - *c++='.'; - for (; pre<0; pre++) *c++='0'; // add any 0's after '.' - //printf("res %s\n", string); - return string; - } // decimal128ToString - -/* ------------------------------------------------------------------ */ -/* to-number -- conversion from numeric string */ -/* */ -/* decimal128FromString(result, string, set); */ -/* */ -/* result is the decimal128 format number which gets the result of */ -/* the conversion */ -/* *string is the character string which should contain a valid */ -/* number (which may be a special value) */ -/* set is the context */ -/* */ -/* The context is supplied to this routine is used for error handling */ -/* (setting of status and traps) and for the rounding mode, only. */ -/* If an error occurs, the result will be a valid decimal128 NaN. */ -/* ------------------------------------------------------------------ */ -decimal128 * decimal128FromString(decimal128 *result, const char *string, - decContext *set) { - decContext dc; // work - decNumber dn; // .. - - decContextDefault(&dc, DEC_INIT_DECIMAL128); // no traps, please - dc.round=set->round; // use supplied rounding - - decNumberFromString(&dn, string, &dc); // will round if needed - decimal128FromNumber(result, &dn, &dc); - if (dc.status!=0) { // something happened - decContextSetStatus(set, dc.status); // .. pass it on - } - return result; - } // decimal128FromString - -/* ------------------------------------------------------------------ */ -/* decimal128IsCanonical -- test whether encoding is canonical */ -/* d128 is the source decimal128 */ -/* returns 1 if the encoding of d128 is canonical, 0 otherwise */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -uInt decimal128IsCanonical(const decimal128 *d128) { - decNumber dn; // work - decimal128 canon; // .. - decContext dc; // .. - decContextDefault(&dc, DEC_INIT_DECIMAL128); - decimal128ToNumber(d128, &dn); - decimal128FromNumber(&canon, &dn, &dc);// canon will now be canonical - return memcmp(d128, &canon, DECIMAL128_Bytes)==0; - } // decimal128IsCanonical - -/* ------------------------------------------------------------------ */ -/* decimal128Canonical -- copy an encoding, ensuring it is canonical */ -/* d128 is the source decimal128 */ -/* result is the target (may be the same decimal128) */ -/* returns result */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decimal128 * decimal128Canonical(decimal128 *result, const decimal128 *d128) { - decNumber dn; // work - decContext dc; // .. - decContextDefault(&dc, DEC_INIT_DECIMAL128); - decimal128ToNumber(d128, &dn); - decimal128FromNumber(result, &dn, &dc);// result will now be canonical - return result; - } // decimal128Canonical - -#if DECTRACE || DECCHECK -/* Macros for accessing decimal128 fields. These assume the argument - is a reference (pointer) to the decimal128 structure, and the - decimal128 is in network byte order (big-endian) */ -// Get sign -#define decimal128Sign(d) ((unsigned)(d)->bytes[0]>>7) - -// Get combination field -#define decimal128Comb(d) (((d)->bytes[0] & 0x7c)>>2) - -// Get exponent continuation [does not remove bias] -#define decimal128ExpCon(d) ((((d)->bytes[0] & 0x03)<<10) \ - | ((unsigned)(d)->bytes[1]<<2) \ - | ((unsigned)(d)->bytes[2]>>6)) - -// Set sign [this assumes sign previously 0] -#define decimal128SetSign(d, b) { \ - (d)->bytes[0]|=((unsigned)(b)<<7);} - -// Set exponent continuation [does not apply bias] -// This assumes range has been checked and exponent previously 0; -// type of exponent must be unsigned -#define decimal128SetExpCon(d, e) { \ - (d)->bytes[0]|=(uByte)((e)>>10); \ - (d)->bytes[1] =(uByte)(((e)&0x3fc)>>2); \ - (d)->bytes[2]|=(uByte)(((e)&0x03)<<6);} - -/* ------------------------------------------------------------------ */ -/* decimal128Show -- display a decimal128 in hexadecimal [debug aid] */ -/* d128 -- the number to show */ -/* ------------------------------------------------------------------ */ -// Also shows sign/cob/expconfields extracted -void decimal128Show(const decimal128 *d128) { - char buf[DECIMAL128_Bytes*2+1]; - Int i, j=0; - - if (DECLITEND) { - for (i=0; ibytes[15-i]); - } - printf(" D128> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf, - d128->bytes[15]>>7, (d128->bytes[15]>>2)&0x1f, - ((d128->bytes[15]&0x3)<<10)|(d128->bytes[14]<<2)| - (d128->bytes[13]>>6)); - } - else { - for (i=0; ibytes[i]); - } - printf(" D128> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf, - decimal128Sign(d128), decimal128Comb(d128), - decimal128ExpCon(d128)); - } - } // decimal128Show -#endif diff --git a/qdecimal/decnumber/decimal128.h b/qdecimal/decnumber/decimal128.h deleted file mode 100644 index df72acf..0000000 --- a/qdecimal/decnumber/decimal128.h +++ /dev/null @@ -1,81 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal 128-bit format module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2005. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECIMAL128) - #define DECIMAL128 - #define DEC128NAME "decimal128" /* Short name */ - #define DEC128FULLNAME "Decimal 128-bit Number" /* Verbose name */ - #define DEC128AUTHOR "Mike Cowlishaw" /* Who to blame */ - - /* parameters for decimal128s */ - #define DECIMAL128_Bytes 16 /* length */ - #define DECIMAL128_Pmax 34 /* maximum precision (digits) */ - #define DECIMAL128_Emax 6144 /* maximum adjusted exponent */ - #define DECIMAL128_Emin -6143 /* minimum adjusted exponent */ - #define DECIMAL128_Bias 6176 /* bias for the exponent */ - #define DECIMAL128_String 43 /* maximum string length, +1 */ - #define DECIMAL128_EconL 12 /* exp. continuation length */ - /* highest biased exponent (Elimit-1) */ - #define DECIMAL128_Ehigh (DECIMAL128_Emax+DECIMAL128_Bias-DECIMAL128_Pmax+1) - - /* check enough digits, if pre-defined */ - #if defined(DECNUMDIGITS) - #if (DECNUMDIGITS=34 for safe use - #endif - #endif - - #ifndef DECNUMDIGITS - #define DECNUMDIGITS DECIMAL128_Pmax /* size if not already defined*/ - #endif - #ifndef DECNUMBER - #include "decNumber.h" /* context and number library */ - #endif - - /* Decimal 128-bit type, accessible by bytes */ - typedef struct { - uint8_t bytes[DECIMAL128_Bytes]; /* decimal128: 1, 5, 12, 110 bits*/ - } decimal128; - - /* special values [top byte excluding sign bit; last two bits are */ - /* don't-care for Infinity on input, last bit don't-care for NaN] */ - #if !defined(DECIMAL_NaN) - #define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */ - #define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */ - #define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */ - #endif - - /* ---------------------------------------------------------------- */ - /* Routines */ - /* ---------------------------------------------------------------- */ - /* String conversions */ - decimal128 * decimal128FromString(decimal128 *, const char *, decContext *); - char * decimal128ToString(const decimal128 *, char *); - char * decimal128ToEngString(const decimal128 *, char *); - - /* decNumber conversions */ - decimal128 * decimal128FromNumber(decimal128 *, const decNumber *, - decContext *); - decNumber * decimal128ToNumber(const decimal128 *, decNumber *); - - /* Format-dependent utilities */ - uint32_t decimal128IsCanonical(const decimal128 *); - decimal128 * decimal128Canonical(decimal128 *, const decimal128 *); - -#endif diff --git a/qdecimal/decnumber/decimal32.c b/qdecimal/decnumber/decimal32.c deleted file mode 100644 index 2fad512..0000000 --- a/qdecimal/decnumber/decimal32.c +++ /dev/null @@ -1,476 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal 32-bit format module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises the routines for decimal32 format numbers. */ -/* Conversions are supplied to and from decNumber and String. */ -/* */ -/* This is used when decNumber provides operations, either for all */ -/* operations or as a proxy between decNumber and decSingle. */ -/* */ -/* Error handling is the same as decNumber (qv.). */ -/* ------------------------------------------------------------------ */ -#include // [for memset/memcpy] -#include // [for printf] - -#define DECNUMDIGITS 7 // make decNumbers with space for 7 -#include "decNumber.h" // base number library -#include "decNumberLocal.h" // decNumber local types, etc. -#include "decimal32.h" // our primary include - -/* Utility tables and routines [in decimal64.c] */ -// DPD2BIN and the reverse are renamed to prevent link-time conflict -// if decQuad is also built in the same executable -#define DPD2BIN DPD2BINx -#define BIN2DPD BIN2DPDx -extern const uInt COMBEXP[32], COMBMSD[32]; -extern const uShort DPD2BIN[1024]; -extern const uShort BIN2DPD[1000]; -extern const uByte BIN2CHAR[4001]; - -extern void decDigitsToDPD(const decNumber *, uInt *, Int); -extern void decDigitsFromDPD(decNumber *, const uInt *, Int); - -#if DECTRACE || DECCHECK -void decimal32Show(const decimal32 *); // for debug -extern void decNumberShow(const decNumber *); // .. -#endif - -/* Useful macro */ -// Clear a structure (e.g., a decNumber) -#define DEC_clear(d) memset(d, 0, sizeof(*d)) - -/* ------------------------------------------------------------------ */ -/* decimal32FromNumber -- convert decNumber to decimal32 */ -/* */ -/* ds is the target decimal32 */ -/* dn is the source number (assumed valid) */ -/* set is the context, used only for reporting errors */ -/* */ -/* The set argument is used only for status reporting and for the */ -/* rounding mode (used if the coefficient is more than DECIMAL32_Pmax */ -/* digits or an overflow is detected). If the exponent is out of the */ -/* valid range then Overflow or Underflow will be raised. */ -/* After Underflow a subnormal result is possible. */ -/* */ -/* DEC_Clamped is set if the number has to be 'folded down' to fit, */ -/* by reducing its exponent and multiplying the coefficient by a */ -/* power of ten, or if the exponent on a zero had to be clamped. */ -/* ------------------------------------------------------------------ */ -decimal32 * decimal32FromNumber(decimal32 *d32, const decNumber *dn, - decContext *set) { - uInt status=0; // status accumulator - Int ae; // adjusted exponent - decNumber dw; // work - decContext dc; // .. - uInt comb, exp; // .. - uInt uiwork; // for macros - uInt targ=0; // target 32-bit - - // If the number has too many digits, or the exponent could be - // out of range then reduce the number under the appropriate - // constraints. This could push the number to Infinity or zero, - // so this check and rounding must be done before generating the - // decimal32] - ae=dn->exponent+dn->digits-1; // [0 if special] - if (dn->digits>DECIMAL32_Pmax // too many digits - || ae>DECIMAL32_Emax // likely overflow - || aeround; // use supplied rounding - decNumberPlus(&dw, dn, &dc); // (round and check) - // [this changes -0 to 0, so enforce the sign...] - dw.bits|=dn->bits&DECNEG; - status=dc.status; // save status - dn=&dw; // use the work number - } // maybe out of range - - if (dn->bits&DECSPECIAL) { // a special value - if (dn->bits&DECINF) targ=DECIMAL_Inf<<24; - else { // sNaN or qNaN - if ((*dn->lsu!=0 || dn->digits>1) // non-zero coefficient - && (dn->digitsbits&DECNAN) targ|=DECIMAL_NaN<<24; - else targ|=DECIMAL_sNaN<<24; - } // a NaN - } // special - - else { // is finite - if (decNumberIsZero(dn)) { // is a zero - // set and clamp exponent - if (dn->exponent<-DECIMAL32_Bias) { - exp=0; // low clamp - status|=DEC_Clamped; - } - else { - exp=dn->exponent+DECIMAL32_Bias; // bias exponent - if (exp>DECIMAL32_Ehigh) { // top clamp - exp=DECIMAL32_Ehigh; - status|=DEC_Clamped; - } - } - comb=(exp>>3) & 0x18; // msd=0, exp top 2 bits .. - } - else { // non-zero finite number - uInt msd; // work - Int pad=0; // coefficient pad digits - - // the dn is known to fit, but it may need to be padded - exp=(uInt)(dn->exponent+DECIMAL32_Bias); // bias exponent - if (exp>DECIMAL32_Ehigh) { // fold-down case - pad=exp-DECIMAL32_Ehigh; - exp=DECIMAL32_Ehigh; // [to maximum] - status|=DEC_Clamped; - } - - // fastpath common case - if (DECDPUN==3 && pad==0) { - targ=BIN2DPD[dn->lsu[0]]; - if (dn->digits>3) targ|=(uInt)(BIN2DPD[dn->lsu[1]])<<10; - msd=(dn->digits==7 ? dn->lsu[2] : 0); - } - else { // general case - decDigitsToDPD(dn, &targ, pad); - // save and clear the top digit - msd=targ>>20; - targ&=0x000fffff; - } - - // create the combination field - if (msd>=8) comb=0x18 | ((exp>>5) & 0x06) | (msd & 0x01); - else comb=((exp>>3) & 0x18) | msd; - } - targ|=comb<<26; // add combination field .. - targ|=(exp&0x3f)<<20; // .. and exponent continuation - } // finite - - if (dn->bits&DECNEG) targ|=0x80000000; // add sign bit - - // now write to storage; this is endian - UBFROMUI(d32->bytes, targ); // directly store the int - - if (status!=0) decContextSetStatus(set, status); // pass on status - // decimal32Show(d32); - return d32; - } // decimal32FromNumber - -/* ------------------------------------------------------------------ */ -/* decimal32ToNumber -- convert decimal32 to decNumber */ -/* d32 is the source decimal32 */ -/* dn is the target number, with appropriate space */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decimal32ToNumber(const decimal32 *d32, decNumber *dn) { - uInt msd; // coefficient MSD - uInt exp; // exponent top two bits - uInt comb; // combination field - uInt sour; // source 32-bit - uInt uiwork; // for macros - - // load source from storage; this is endian - sour=UBTOUI(d32->bytes); // directly load the int - - comb=(sour>>26)&0x1f; // combination field - - decNumberZero(dn); // clean number - if (sour&0x80000000) dn->bits=DECNEG; // set sign if negative - - msd=COMBMSD[comb]; // decode the combination field - exp=COMBEXP[comb]; // .. - - if (exp==3) { // is a special - if (msd==0) { - dn->bits|=DECINF; - return dn; // no coefficient needed - } - else if (sour&0x02000000) dn->bits|=DECSNAN; - else dn->bits|=DECNAN; - msd=0; // no top digit - } - else { // is a finite number - dn->exponent=(exp<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias; // unbiased - } - - // get the coefficient - sour&=0x000fffff; // clean coefficient continuation - if (msd) { // non-zero msd - sour|=msd<<20; // prefix to coefficient - decDigitsFromDPD(dn, &sour, 3); // process 3 declets - return dn; - } - // msd=0 - if (!sour) return dn; // easy: coefficient is 0 - if (sour&0x000ffc00) // need 2 declets? - decDigitsFromDPD(dn, &sour, 2); // process 2 declets - else - decDigitsFromDPD(dn, &sour, 1); // process 1 declet - return dn; - } // decimal32ToNumber - -/* ------------------------------------------------------------------ */ -/* to-scientific-string -- conversion to numeric string */ -/* to-engineering-string -- conversion to numeric string */ -/* */ -/* decimal32ToString(d32, string); */ -/* decimal32ToEngString(d32, string); */ -/* */ -/* d32 is the decimal32 format number to convert */ -/* string is the string where the result will be laid out */ -/* */ -/* string must be at least 24 characters */ -/* */ -/* No error is possible, and no status can be set. */ -/* ------------------------------------------------------------------ */ -char * decimal32ToEngString(const decimal32 *d32, char *string){ - decNumber dn; // work - decimal32ToNumber(d32, &dn); - decNumberToEngString(&dn, string); - return string; - } // decimal32ToEngString - -char * decimal32ToString(const decimal32 *d32, char *string){ - uInt msd; // coefficient MSD - Int exp; // exponent top two bits or full - uInt comb; // combination field - char *cstart; // coefficient start - char *c; // output pointer in string - const uByte *u; // work - char *s, *t; // .. (source, target) - Int dpd; // .. - Int pre, e; // .. - uInt uiwork; // for macros - uInt sour; // source 32-bit - - // load source from storage; this is endian - sour=UBTOUI(d32->bytes); // directly load the int - - c=string; // where result will go - if (((Int)sour)<0) *c++='-'; // handle sign - - comb=(sour>>26)&0x1f; // combination field - msd=COMBMSD[comb]; // decode the combination field - exp=COMBEXP[comb]; // .. - - if (exp==3) { - if (msd==0) { // infinity - strcpy(c, "Inf"); - strcpy(c+3, "inity"); - return string; // easy - } - if (sour&0x02000000) *c++='s'; // sNaN - strcpy(c, "NaN"); // complete word - c+=3; // step past - if ((sour&0x000fffff)==0) return string; // zero payload - // otherwise drop through to add integer; set correct exp - exp=0; msd=0; // setup for following code - } - else exp=(exp<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias; // unbiased - - // convert 7 digits of significand to characters - cstart=c; // save start of coefficient - if (msd) *c++='0'+(char)msd; // non-zero most significant digit - - // Now decode the declets. After extracting each one, it is - // decoded to binary and then to a 4-char sequence by table lookup; - // the 4-chars are a 1-char length (significant digits, except 000 - // has length 0). This allows us to left-align the first declet - // with non-zero content, then remaining ones are full 3-char - // length. We use fixed-length memcpys because variable-length - // causes a subroutine call in GCC. (These are length 4 for speed - // and are safe because the array has an extra terminator byte.) - #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \ - if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \ - else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;} - - dpd=(sour>>10)&0x3ff; // declet 1 - dpd2char; - dpd=(sour)&0x3ff; // declet 2 - dpd2char; - - if (c==cstart) *c++='0'; // all zeros -- make 0 - - if (exp==0) { // integer or NaN case -- easy - *c='\0'; // terminate - return string; - } - - /* non-0 exponent */ - e=0; // assume no E - pre=c-cstart+exp; - // [here, pre-exp is the digits count (==1 for zero)] - if (exp>0 || pre<-5) { // need exponential form - e=pre-1; // calculate E value - pre=1; // assume one digit before '.' - } // exponential form - - /* modify the coefficient, adding 0s, '.', and E+nn as needed */ - s=c-1; // source (LSD) - if (pre>0) { // ddd.ddd (plain), perhaps with E - char *dotat=cstart+pre; - if (dotat=dotat; s--, t--) *t=*s; // open the gap; leave t at gap - *t='.'; // insert the dot - c++; // length increased by one - } - - // finally add the E-part, if needed; it will never be 0, and has - // a maximum length of 3 digits (E-101 case) - if (e!=0) { - *c++='E'; // starts with E - *c++='+'; // assume positive - if (e<0) { - *(c-1)='-'; // oops, need '-' - e=-e; // uInt, please - } - u=&BIN2CHAR[e*4]; // -> length byte - memcpy(c, u+4-*u, 4); // copy fixed 4 characters [is safe] - c+=*u; // bump pointer appropriately - } - *c='\0'; // add terminator - //printf("res %s\n", string); - return string; - } // pre>0 - - /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */ - t=c+1-pre; - *(t+1)='\0'; // can add terminator now - for (; s>=cstart; s--, t--) *t=*s; // shift whole coefficient right - c=cstart; - *c++='0'; // always starts with 0. - *c++='.'; - for (; pre<0; pre++) *c++='0'; // add any 0's after '.' - //printf("res %s\n", string); - return string; - } // decimal32ToString - -/* ------------------------------------------------------------------ */ -/* to-number -- conversion from numeric string */ -/* */ -/* decimal32FromString(result, string, set); */ -/* */ -/* result is the decimal32 format number which gets the result of */ -/* the conversion */ -/* *string is the character string which should contain a valid */ -/* number (which may be a special value) */ -/* set is the context */ -/* */ -/* The context is supplied to this routine is used for error handling */ -/* (setting of status and traps) and for the rounding mode, only. */ -/* If an error occurs, the result will be a valid decimal32 NaN. */ -/* ------------------------------------------------------------------ */ -decimal32 * decimal32FromString(decimal32 *result, const char *string, - decContext *set) { - decContext dc; // work - decNumber dn; // .. - - decContextDefault(&dc, DEC_INIT_DECIMAL32); // no traps, please - dc.round=set->round; // use supplied rounding - - decNumberFromString(&dn, string, &dc); // will round if needed - decimal32FromNumber(result, &dn, &dc); - if (dc.status!=0) { // something happened - decContextSetStatus(set, dc.status); // .. pass it on - } - return result; - } // decimal32FromString - -/* ------------------------------------------------------------------ */ -/* decimal32IsCanonical -- test whether encoding is canonical */ -/* d32 is the source decimal32 */ -/* returns 1 if the encoding of d32 is canonical, 0 otherwise */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -uInt decimal32IsCanonical(const decimal32 *d32) { - decNumber dn; // work - decimal32 canon; // .. - decContext dc; // .. - decContextDefault(&dc, DEC_INIT_DECIMAL32); - decimal32ToNumber(d32, &dn); - decimal32FromNumber(&canon, &dn, &dc);// canon will now be canonical - return memcmp(d32, &canon, DECIMAL32_Bytes)==0; - } // decimal32IsCanonical - -/* ------------------------------------------------------------------ */ -/* decimal32Canonical -- copy an encoding, ensuring it is canonical */ -/* d32 is the source decimal32 */ -/* result is the target (may be the same decimal32) */ -/* returns result */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decimal32 * decimal32Canonical(decimal32 *result, const decimal32 *d32) { - decNumber dn; // work - decContext dc; // .. - decContextDefault(&dc, DEC_INIT_DECIMAL32); - decimal32ToNumber(d32, &dn); - decimal32FromNumber(result, &dn, &dc);// result will now be canonical - return result; - } // decimal32Canonical - -#if DECTRACE || DECCHECK -/* Macros for accessing decimal32 fields. These assume the argument - is a reference (pointer) to the decimal32 structure, and the - decimal32 is in network byte order (big-endian) */ -// Get sign -#define decimal32Sign(d) ((unsigned)(d)->bytes[0]>>7) - -// Get combination field -#define decimal32Comb(d) (((d)->bytes[0] & 0x7c)>>2) - -// Get exponent continuation [does not remove bias] -#define decimal32ExpCon(d) ((((d)->bytes[0] & 0x03)<<4) \ - | ((unsigned)(d)->bytes[1]>>4)) - -// Set sign [this assumes sign previously 0] -#define decimal32SetSign(d, b) { \ - (d)->bytes[0]|=((unsigned)(b)<<7);} - -// Set exponent continuation [does not apply bias] -// This assumes range has been checked and exponent previously 0; -// type of exponent must be unsigned -#define decimal32SetExpCon(d, e) { \ - (d)->bytes[0]|=(uByte)((e)>>4); \ - (d)->bytes[1]|=(uByte)(((e)&0x0F)<<4);} - -/* ------------------------------------------------------------------ */ -/* decimal32Show -- display a decimal32 in hexadecimal [debug aid] */ -/* d32 -- the number to show */ -/* ------------------------------------------------------------------ */ -// Also shows sign/cob/expconfields extracted - valid bigendian only -void decimal32Show(const decimal32 *d32) { - char buf[DECIMAL32_Bytes*2+1]; - Int i, j=0; - - if (DECLITEND) { - for (i=0; ibytes[3-i]); - } - printf(" D32> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf, - d32->bytes[3]>>7, (d32->bytes[3]>>2)&0x1f, - ((d32->bytes[3]&0x3)<<4)| (d32->bytes[2]>>4)); - } - else { - for (i=0; ibytes[i]); - } - printf(" D32> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf, - decimal32Sign(d32), decimal32Comb(d32), decimal32ExpCon(d32)); - } - } // decimal32Show -#endif diff --git a/qdecimal/decnumber/decimal32.h b/qdecimal/decnumber/decimal32.h deleted file mode 100644 index faaf9a9..0000000 --- a/qdecimal/decnumber/decimal32.h +++ /dev/null @@ -1,81 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal 32-bit format module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2006. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECIMAL32) - #define DECIMAL32 - #define DEC32NAME "decimal32" /* Short name */ - #define DEC32FULLNAME "Decimal 32-bit Number" /* Verbose name */ - #define DEC32AUTHOR "Mike Cowlishaw" /* Who to blame */ - - /* parameters for decimal32s */ - #define DECIMAL32_Bytes 4 /* length */ - #define DECIMAL32_Pmax 7 /* maximum precision (digits) */ - #define DECIMAL32_Emax 96 /* maximum adjusted exponent */ - #define DECIMAL32_Emin -95 /* minimum adjusted exponent */ - #define DECIMAL32_Bias 101 /* bias for the exponent */ - #define DECIMAL32_String 15 /* maximum string length, +1 */ - #define DECIMAL32_EconL 6 /* exp. continuation length */ - /* highest biased exponent (Elimit-1) */ - #define DECIMAL32_Ehigh (DECIMAL32_Emax+DECIMAL32_Bias-DECIMAL32_Pmax+1) - - /* check enough digits, if pre-defined */ - #if defined(DECNUMDIGITS) - #if (DECNUMDIGITS=7 for safe use - #endif - #endif - - #ifndef DECNUMDIGITS - #define DECNUMDIGITS DECIMAL32_Pmax /* size if not already defined*/ - #endif - #ifndef DECNUMBER - #include "decNumber.h" /* context and number library */ - #endif - - /* Decimal 32-bit type, accessible by bytes */ - typedef struct { - uint8_t bytes[DECIMAL32_Bytes]; /* decimal32: 1, 5, 6, 20 bits*/ - } decimal32; - - /* special values [top byte excluding sign bit; last two bits are */ - /* don't-care for Infinity on input, last bit don't-care for NaN] */ - #if !defined(DECIMAL_NaN) - #define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */ - #define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */ - #define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */ - #endif - - /* ---------------------------------------------------------------- */ - /* Routines */ - /* ---------------------------------------------------------------- */ - /* String conversions */ - decimal32 * decimal32FromString(decimal32 *, const char *, decContext *); - char * decimal32ToString(const decimal32 *, char *); - char * decimal32ToEngString(const decimal32 *, char *); - - /* decNumber conversions */ - decimal32 * decimal32FromNumber(decimal32 *, const decNumber *, - decContext *); - decNumber * decimal32ToNumber(const decimal32 *, decNumber *); - - /* Format-dependent utilities */ - uint32_t decimal32IsCanonical(const decimal32 *); - decimal32 * decimal32Canonical(decimal32 *, const decimal32 *); - -#endif diff --git a/qdecimal/decnumber/decimal64.c b/qdecimal/decnumber/decimal64.c deleted file mode 100644 index 4bfc5fb..0000000 --- a/qdecimal/decnumber/decimal64.c +++ /dev/null @@ -1,839 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal 64-bit format module */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2009. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ -/* This module comprises the routines for decimal64 format numbers. */ -/* Conversions are supplied to and from decNumber and String. */ -/* */ -/* This is used when decNumber provides operations, either for all */ -/* operations or as a proxy between decNumber and decSingle. */ -/* */ -/* Error handling is the same as decNumber (qv.). */ -/* ------------------------------------------------------------------ */ -#include // [for memset/memcpy] -#include // [for printf] - -#define DECNUMDIGITS 16 // make decNumbers with space for 16 -#include "decNumber.h" // base number library -#include "decNumberLocal.h" // decNumber local types, etc. -#include "decimal64.h" // our primary include - -/* Utility routines and tables [in decimal64.c]; externs for C++ */ -// DPD2BIN and the reverse are renamed to prevent link-time conflict -// if decQuad is also built in the same executable -#define DPD2BIN DPD2BINx -#define BIN2DPD BIN2DPDx -extern const uInt COMBEXP[32], COMBMSD[32]; -extern const uShort DPD2BIN[1024]; -extern const uShort BIN2DPD[1000]; -extern const uByte BIN2CHAR[4001]; - -extern void decDigitsFromDPD(decNumber *, const uInt *, Int); -extern void decDigitsToDPD(const decNumber *, uInt *, Int); - -#if DECTRACE || DECCHECK -void decimal64Show(const decimal64 *); // for debug -extern void decNumberShow(const decNumber *); // .. -#endif - -/* Useful macro */ -// Clear a structure (e.g., a decNumber) -#define DEC_clear(d) memset(d, 0, sizeof(*d)) - -/* define and include the tables to use for conversions */ -#define DEC_BIN2CHAR 1 -#define DEC_DPD2BIN 1 -#define DEC_BIN2DPD 1 // used for all sizes -#include "decDPD.h" // lookup tables - -/* ------------------------------------------------------------------ */ -/* decimal64FromNumber -- convert decNumber to decimal64 */ -/* */ -/* ds is the target decimal64 */ -/* dn is the source number (assumed valid) */ -/* set is the context, used only for reporting errors */ -/* */ -/* The set argument is used only for status reporting and for the */ -/* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */ -/* digits or an overflow is detected). If the exponent is out of the */ -/* valid range then Overflow or Underflow will be raised. */ -/* After Underflow a subnormal result is possible. */ -/* */ -/* DEC_Clamped is set if the number has to be 'folded down' to fit, */ -/* by reducing its exponent and multiplying the coefficient by a */ -/* power of ten, or if the exponent on a zero had to be clamped. */ -/* ------------------------------------------------------------------ */ -decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn, - decContext *set) { - uInt status=0; // status accumulator - Int ae; // adjusted exponent - decNumber dw; // work - decContext dc; // .. - uInt comb, exp; // .. - uInt uiwork; // for macros - uInt targar[2]={0, 0}; // target 64-bit - #define targhi targar[1] // name the word with the sign - #define targlo targar[0] // and the other - - // If the number has too many digits, or the exponent could be - // out of range then reduce the number under the appropriate - // constraints. This could push the number to Infinity or zero, - // so this check and rounding must be done before generating the - // decimal64] - ae=dn->exponent+dn->digits-1; // [0 if special] - if (dn->digits>DECIMAL64_Pmax // too many digits - || ae>DECIMAL64_Emax // likely overflow - || aeround; // use supplied rounding - decNumberPlus(&dw, dn, &dc); // (round and check) - // [this changes -0 to 0, so enforce the sign...] - dw.bits|=dn->bits&DECNEG; - status=dc.status; // save status - dn=&dw; // use the work number - } // maybe out of range - - if (dn->bits&DECSPECIAL) { // a special value - if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24; - else { // sNaN or qNaN - if ((*dn->lsu!=0 || dn->digits>1) // non-zero coefficient - && (dn->digitsbits&DECNAN) targhi|=DECIMAL_NaN<<24; - else targhi|=DECIMAL_sNaN<<24; - } // a NaN - } // special - - else { // is finite - if (decNumberIsZero(dn)) { // is a zero - // set and clamp exponent - if (dn->exponent<-DECIMAL64_Bias) { - exp=0; // low clamp - status|=DEC_Clamped; - } - else { - exp=dn->exponent+DECIMAL64_Bias; // bias exponent - if (exp>DECIMAL64_Ehigh) { // top clamp - exp=DECIMAL64_Ehigh; - status|=DEC_Clamped; - } - } - comb=(exp>>5) & 0x18; // msd=0, exp top 2 bits .. - } - else { // non-zero finite number - uInt msd; // work - Int pad=0; // coefficient pad digits - - // the dn is known to fit, but it may need to be padded - exp=(uInt)(dn->exponent+DECIMAL64_Bias); // bias exponent - if (exp>DECIMAL64_Ehigh) { // fold-down case - pad=exp-DECIMAL64_Ehigh; - exp=DECIMAL64_Ehigh; // [to maximum] - status|=DEC_Clamped; - } - - // fastpath common case - if (DECDPUN==3 && pad==0) { - uInt dpd[6]={0,0,0,0,0,0}; - uInt i; - Int d=dn->digits; - for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]]; - targlo =dpd[0]; - targlo|=dpd[1]<<10; - targlo|=dpd[2]<<20; - if (dn->digits>6) { - targlo|=dpd[3]<<30; - targhi =dpd[3]>>2; - targhi|=dpd[4]<<8; - } - msd=dpd[5]; // [did not really need conversion] - } - else { // general case - decDigitsToDPD(dn, targar, pad); - // save and clear the top digit - msd=targhi>>18; - targhi&=0x0003ffff; - } - - // create the combination field - if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01); - else comb=((exp>>5) & 0x18) | msd; - } - targhi|=comb<<26; // add combination field .. - targhi|=(exp&0xff)<<18; // .. and exponent continuation - } // finite - - if (dn->bits&DECNEG) targhi|=0x80000000; // add sign bit - - // now write to storage; this is now always endian - if (DECLITEND) { - // lo int then hi - UBFROMUI(d64->bytes, targar[0]); - UBFROMUI(d64->bytes+4, targar[1]); - } - else { - // hi int then lo - UBFROMUI(d64->bytes, targar[1]); - UBFROMUI(d64->bytes+4, targar[0]); - } - - if (status!=0) decContextSetStatus(set, status); // pass on status - // decimal64Show(d64); - return d64; - } // decimal64FromNumber - -/* ------------------------------------------------------------------ */ -/* decimal64ToNumber -- convert decimal64 to decNumber */ -/* d64 is the source decimal64 */ -/* dn is the target number, with appropriate space */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) { - uInt msd; // coefficient MSD - uInt exp; // exponent top two bits - uInt comb; // combination field - Int need; // work - uInt uiwork; // for macros - uInt sourar[2]; // source 64-bit - #define sourhi sourar[1] // name the word with the sign - #define sourlo sourar[0] // and the lower word - - // load source from storage; this is endian - if (DECLITEND) { - sourlo=UBTOUI(d64->bytes ); // directly load the low int - sourhi=UBTOUI(d64->bytes+4); // then the high int - } - else { - sourhi=UBTOUI(d64->bytes ); // directly load the high int - sourlo=UBTOUI(d64->bytes+4); // then the low int - } - - comb=(sourhi>>26)&0x1f; // combination field - - decNumberZero(dn); // clean number - if (sourhi&0x80000000) dn->bits=DECNEG; // set sign if negative - - msd=COMBMSD[comb]; // decode the combination field - exp=COMBEXP[comb]; // .. - - if (exp==3) { // is a special - if (msd==0) { - dn->bits|=DECINF; - return dn; // no coefficient needed - } - else if (sourhi&0x02000000) dn->bits|=DECSNAN; - else dn->bits|=DECNAN; - msd=0; // no top digit - } - else { // is a finite number - dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; // unbiased - } - - // get the coefficient - sourhi&=0x0003ffff; // clean coefficient continuation - if (msd) { // non-zero msd - sourhi|=msd<<18; // prefix to coefficient - need=6; // process 6 declets - } - else { // msd=0 - if (!sourhi) { // top word 0 - if (!sourlo) return dn; // easy: coefficient is 0 - need=3; // process at least 3 declets - if (sourlo&0xc0000000) need++; // process 4 declets - // [could reduce some more, here] - } - else { // some bits in top word, msd=0 - need=4; // process at least 4 declets - if (sourhi&0x0003ff00) need++; // top declet!=0, process 5 - } - } //msd=0 - - decDigitsFromDPD(dn, sourar, need); // process declets - return dn; - } // decimal64ToNumber - - -/* ------------------------------------------------------------------ */ -/* to-scientific-string -- conversion to numeric string */ -/* to-engineering-string -- conversion to numeric string */ -/* */ -/* decimal64ToString(d64, string); */ -/* decimal64ToEngString(d64, string); */ -/* */ -/* d64 is the decimal64 format number to convert */ -/* string is the string where the result will be laid out */ -/* */ -/* string must be at least 24 characters */ -/* */ -/* No error is possible, and no status can be set. */ -/* ------------------------------------------------------------------ */ -char * decimal64ToEngString(const decimal64 *d64, char *string){ - decNumber dn; // work - decimal64ToNumber(d64, &dn); - decNumberToEngString(&dn, string); - return string; - } // decimal64ToEngString - -char * decimal64ToString(const decimal64 *d64, char *string){ - uInt msd; // coefficient MSD - Int exp; // exponent top two bits or full - uInt comb; // combination field - char *cstart; // coefficient start - char *c; // output pointer in string - const uByte *u; // work - char *s, *t; // .. (source, target) - Int dpd; // .. - Int pre, e; // .. - uInt uiwork; // for macros - - uInt sourar[2]; // source 64-bit - #define sourhi sourar[1] // name the word with the sign - #define sourlo sourar[0] // and the lower word - - // load source from storage; this is endian - if (DECLITEND) { - sourlo=UBTOUI(d64->bytes ); // directly load the low int - sourhi=UBTOUI(d64->bytes+4); // then the high int - } - else { - sourhi=UBTOUI(d64->bytes ); // directly load the high int - sourlo=UBTOUI(d64->bytes+4); // then the low int - } - - c=string; // where result will go - if (((Int)sourhi)<0) *c++='-'; // handle sign - - comb=(sourhi>>26)&0x1f; // combination field - msd=COMBMSD[comb]; // decode the combination field - exp=COMBEXP[comb]; // .. - - if (exp==3) { - if (msd==0) { // infinity - strcpy(c, "Inf"); - strcpy(c+3, "inity"); - return string; // easy - } - if (sourhi&0x02000000) *c++='s'; // sNaN - strcpy(c, "NaN"); // complete word - c+=3; // step past - if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; // zero payload - // otherwise drop through to add integer; set correct exp - exp=0; msd=0; // setup for following code - } - else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; - - // convert 16 digits of significand to characters - cstart=c; // save start of coefficient - if (msd) *c++='0'+(char)msd; // non-zero most significant digit - - // Now decode the declets. After extracting each one, it is - // decoded to binary and then to a 4-char sequence by table lookup; - // the 4-chars are a 1-char length (significant digits, except 000 - // has length 0). This allows us to left-align the first declet - // with non-zero content, then remaining ones are full 3-char - // length. We use fixed-length memcpys because variable-length - // causes a subroutine call in GCC. (These are length 4 for speed - // and are safe because the array has an extra terminator byte.) - #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \ - if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \ - else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;} - - dpd=(sourhi>>8)&0x3ff; // declet 1 - dpd2char; - dpd=((sourhi&0xff)<<2) | (sourlo>>30); // declet 2 - dpd2char; - dpd=(sourlo>>20)&0x3ff; // declet 3 - dpd2char; - dpd=(sourlo>>10)&0x3ff; // declet 4 - dpd2char; - dpd=(sourlo)&0x3ff; // declet 5 - dpd2char; - - if (c==cstart) *c++='0'; // all zeros -- make 0 - - if (exp==0) { // integer or NaN case -- easy - *c='\0'; // terminate - return string; - } - - /* non-0 exponent */ - e=0; // assume no E - pre=c-cstart+exp; - // [here, pre-exp is the digits count (==1 for zero)] - if (exp>0 || pre<-5) { // need exponential form - e=pre-1; // calculate E value - pre=1; // assume one digit before '.' - } // exponential form - - /* modify the coefficient, adding 0s, '.', and E+nn as needed */ - s=c-1; // source (LSD) - if (pre>0) { // ddd.ddd (plain), perhaps with E - char *dotat=cstart+pre; - if (dotat=dotat; s--, t--) *t=*s; // open the gap; leave t at gap - *t='.'; // insert the dot - c++; // length increased by one - } - - // finally add the E-part, if needed; it will never be 0, and has - // a maximum length of 3 digits - if (e!=0) { - *c++='E'; // starts with E - *c++='+'; // assume positive - if (e<0) { - *(c-1)='-'; // oops, need '-' - e=-e; // uInt, please - } - u=&BIN2CHAR[e*4]; // -> length byte - memcpy(c, u+4-*u, 4); // copy fixed 4 characters [is safe] - c+=*u; // bump pointer appropriately - } - *c='\0'; // add terminator - //printf("res %s\n", string); - return string; - } // pre>0 - - /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */ - t=c+1-pre; - *(t+1)='\0'; // can add terminator now - for (; s>=cstart; s--, t--) *t=*s; // shift whole coefficient right - c=cstart; - *c++='0'; // always starts with 0. - *c++='.'; - for (; pre<0; pre++) *c++='0'; // add any 0's after '.' - //printf("res %s\n", string); - return string; - } // decimal64ToString - -/* ------------------------------------------------------------------ */ -/* to-number -- conversion from numeric string */ -/* */ -/* decimal64FromString(result, string, set); */ -/* */ -/* result is the decimal64 format number which gets the result of */ -/* the conversion */ -/* *string is the character string which should contain a valid */ -/* number (which may be a special value) */ -/* set is the context */ -/* */ -/* The context is supplied to this routine is used for error handling */ -/* (setting of status and traps) and for the rounding mode, only. */ -/* If an error occurs, the result will be a valid decimal64 NaN. */ -/* ------------------------------------------------------------------ */ -decimal64 * decimal64FromString(decimal64 *result, const char *string, - decContext *set) { - decContext dc; // work - decNumber dn; // .. - - decContextDefault(&dc, DEC_INIT_DECIMAL64); // no traps, please - dc.round=set->round; // use supplied rounding - - decNumberFromString(&dn, string, &dc); // will round if needed - - decimal64FromNumber(result, &dn, &dc); - if (dc.status!=0) { // something happened - decContextSetStatus(set, dc.status); // .. pass it on - } - return result; - } // decimal64FromString - -/* ------------------------------------------------------------------ */ -/* decimal64IsCanonical -- test whether encoding is canonical */ -/* d64 is the source decimal64 */ -/* returns 1 if the encoding of d64 is canonical, 0 otherwise */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -uInt decimal64IsCanonical(const decimal64 *d64) { - decNumber dn; // work - decimal64 canon; // .. - decContext dc; // .. - decContextDefault(&dc, DEC_INIT_DECIMAL64); - decimal64ToNumber(d64, &dn); - decimal64FromNumber(&canon, &dn, &dc);// canon will now be canonical - return memcmp(d64, &canon, DECIMAL64_Bytes)==0; - } // decimal64IsCanonical - -/* ------------------------------------------------------------------ */ -/* decimal64Canonical -- copy an encoding, ensuring it is canonical */ -/* d64 is the source decimal64 */ -/* result is the target (may be the same decimal64) */ -/* returns result */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) { - decNumber dn; // work - decContext dc; // .. - decContextDefault(&dc, DEC_INIT_DECIMAL64); - decimal64ToNumber(d64, &dn); - decimal64FromNumber(result, &dn, &dc);// result will now be canonical - return result; - } // decimal64Canonical - -#if DECTRACE || DECCHECK -/* Macros for accessing decimal64 fields. These assume the - argument is a reference (pointer) to the decimal64 structure, - and the decimal64 is in network byte order (big-endian) */ -// Get sign -#define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7) - -// Get combination field -#define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2) - -// Get exponent continuation [does not remove bias] -#define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \ - | ((unsigned)(d)->bytes[1]>>2)) - -// Set sign [this assumes sign previously 0] -#define decimal64SetSign(d, b) { \ - (d)->bytes[0]|=((unsigned)(b)<<7);} - -// Set exponent continuation [does not apply bias] -// This assumes range has been checked and exponent previously 0; -// type of exponent must be unsigned -#define decimal64SetExpCon(d, e) { \ - (d)->bytes[0]|=(uByte)((e)>>6); \ - (d)->bytes[1]|=(uByte)(((e)&0x3F)<<2);} - -/* ------------------------------------------------------------------ */ -/* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */ -/* d64 -- the number to show */ -/* ------------------------------------------------------------------ */ -// Also shows sign/cob/expconfields extracted -void decimal64Show(const decimal64 *d64) { - char buf[DECIMAL64_Bytes*2+1]; - Int i, j=0; - - if (DECLITEND) { - for (i=0; ibytes[7-i]); - } - printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf, - d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f, - ((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2)); - } - else { // big-endian - for (i=0; ibytes[i]); - } - printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf, - decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64)); - } - } // decimal64Show -#endif - -/* ================================================================== */ -/* Shared utility routines and tables */ -/* ================================================================== */ -// define and include the conversion tables to use for shared code -#if DECDPUN==3 - #define DEC_DPD2BIN 1 -#else - #define DEC_DPD2BCD 1 -#endif -#include "decDPD.h" // lookup tables - -// The maximum number of decNumberUnits needed for a working copy of -// the units array is the ceiling of digits/DECDPUN, where digits is -// the maximum number of digits in any of the formats for which this -// is used. decimal128.h must not be included in this module, so, as -// a very special case, that number is defined as a literal here. -#define DECMAX754 34 -#define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN) - -/* ------------------------------------------------------------------ */ -/* Combination field lookup tables (uInts to save measurable work) */ -/* */ -/* COMBEXP - 2-bit most-significant-bits of exponent */ -/* [11 if an Infinity or NaN] */ -/* COMBMSD - 4-bit most-significant-digit */ -/* [0=Infinity, 1=NaN if COMBEXP=11] */ -/* */ -/* Both are indexed by the 5-bit combination field (0-31) */ -/* ------------------------------------------------------------------ */ -const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0, - 1, 1, 1, 1, 1, 1, 1, 1, - 2, 2, 2, 2, 2, 2, 2, 2, - 0, 0, 1, 1, 2, 2, 3, 3}; -const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7, - 0, 1, 2, 3, 4, 5, 6, 7, - 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 8, 9, 8, 9, 0, 1}; - -/* ------------------------------------------------------------------ */ -/* decDigitsToDPD -- pack coefficient into DPD form */ -/* */ -/* dn is the source number (assumed valid, max DECMAX754 digits) */ -/* targ is 1, 2, or 4-element uInt array, which the caller must */ -/* have cleared to zeros */ -/* shift is the number of 0 digits to add on the right (normally 0) */ -/* */ -/* The coefficient must be known small enough to fit. The full */ -/* coefficient is copied, including the leading 'odd' digit. This */ -/* digit is retrieved and packed into the combination field by the */ -/* caller. */ -/* */ -/* The target uInts are altered only as necessary to receive the */ -/* digits of the decNumber. When more than one uInt is needed, they */ -/* are filled from left to right (that is, the uInt at offset 0 will */ -/* end up with the least-significant digits). */ -/* */ -/* shift is used for 'fold-down' padding. */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -#if DECDPUN<=4 -// Constant multipliers for divide-by-power-of five using reciprocal -// multiply, after removing powers of 2 by shifting, and final shift -// of 17 [we only need up to **4] -static const uInt multies[]={131073, 26215, 5243, 1049, 210}; -// QUOT10 -- macro to return the quotient of unit u divided by 10**n -#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) -#endif -void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) { - Int cut; // work - Int n; // output bunch counter - Int digits=dn->digits; // digit countdown - uInt dpd; // densely packed decimal value - uInt bin; // binary value 0-999 - uInt *uout=targ; // -> current output uInt - uInt uoff=0; // -> current output offset [from right] - const Unit *inu=dn->lsu; // -> current input unit - Unit uar[DECMAXUNITS]; // working copy of units, iff shifted - #if DECDPUN!=3 // not fast path - Unit in; // current unit - #endif - - if (shift!=0) { // shift towards most significant required - // shift the units array to the left by pad digits and copy - // [this code is a special case of decShiftToMost, which could - // be used instead if exposed and the array were copied first] - const Unit *source; // .. - Unit *target, *first; // .. - uInt next=0; // work - - source=dn->lsu+D2U(digits)-1; // where msu comes from - target=uar+D2U(digits)-1+D2U(shift);// where upper part of first cut goes - cut=DECDPUN-MSUDIGITS(shift); // where to slice - if (cut==0) { // unit-boundary case - for (; source>=dn->lsu; source--, target--) *target=*source; - } - else { - first=uar+D2U(digits+shift)-1; // where msu will end up - for (; source>=dn->lsu; source--, target--) { - // split the source Unit and accumulate remainder for next - #if DECDPUN<=4 - uInt quot=QUOT10(*source, cut); - uInt rem=*source-quot*DECPOWERS[cut]; - next+=quot; - #else - uInt rem=*source%DECPOWERS[cut]; - next+=*source/DECPOWERS[cut]; - #endif - if (target<=first) *target=(Unit)next; // write to target iff valid - next=rem*DECPOWERS[DECDPUN-cut]; // save remainder for next Unit - } - } // shift-move - // propagate remainder to one below and clear the rest - for (; target>=uar; target--) { - *target=(Unit)next; - next=0; - } - digits+=shift; // add count (shift) of zeros added - inu=uar; // use units in working array - } - - /* now densely pack the coefficient into DPD declets */ - - #if DECDPUN!=3 // not fast path - in=*inu; // current unit - cut=0; // at lowest digit - bin=0; // [keep compiler quiet] - #endif - - for(n=0; digits>0; n++) { // each output bunch - #if DECDPUN==3 // fast path, 3-at-a-time - bin=*inu; // 3 digits ready for convert - digits-=3; // [may go negative] - inu++; // may need another - - #else // must collect digit-by-digit - Unit dig; // current digit - Int j; // digit-in-declet count - for (j=0; j<3; j++) { - #if DECDPUN<=4 - Unit temp=(Unit)((uInt)(in*6554)>>16); - dig=(Unit)(in-X10(temp)); - in=temp; - #else - dig=in%10; - in=in/10; - #endif - if (j==0) bin=dig; - else if (j==1) bin+=X10(dig); - else /* j==2 */ bin+=X100(dig); - digits--; - if (digits==0) break; // [also protects *inu below] - cut++; - if (cut==DECDPUN) {inu++; in=*inu; cut=0;} - } - #endif - // here there are 3 digits in bin, or have used all input digits - - dpd=BIN2DPD[bin]; - - // write declet to uInt array - *uout|=dpd<>(10-uoff); // collect top bits - } // n declets - return; - } // decDigitsToDPD - -/* ------------------------------------------------------------------ */ -/* decDigitsFromDPD -- unpack a format's coefficient */ -/* */ -/* dn is the target number, with 7, 16, or 34-digit space. */ -/* sour is a 1, 2, or 4-element uInt array containing only declets */ -/* declets is the number of (right-aligned) declets in sour to */ -/* be processed. This may be 1 more than the obvious number in */ -/* a format, as any top digit is prefixed to the coefficient */ -/* continuation field. It also may be as small as 1, as the */ -/* caller may pre-process leading zero declets. */ -/* */ -/* When doing the 'extra declet' case care is taken to avoid writing */ -/* extra digits when there are leading zeros, as these could overflow */ -/* the units array when DECDPUN is not 3. */ -/* */ -/* The target uInts are used only as necessary to process declets */ -/* declets into the decNumber. When more than one uInt is needed, */ -/* they are used from left to right (that is, the uInt at offset 0 */ -/* provides the least-significant digits). */ -/* */ -/* dn->digits is set, but not the sign or exponent. */ -/* No error is possible [the redundant 888 codes are allowed]. */ -/* ------------------------------------------------------------------ */ -void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) { - - uInt dpd; // collector for 10 bits - Int n; // counter - Unit *uout=dn->lsu; // -> current output unit - Unit *last=uout; // will be unit containing msd - const uInt *uin=sour; // -> current input uInt - uInt uoff=0; // -> current input offset [from right] - - #if DECDPUN!=3 - uInt bcd; // BCD result - uInt nibble; // work - Unit out=0; // accumulator - Int cut=0; // power of ten in current unit - #endif - #if DECDPUN>4 - uInt const *pow; // work - #endif - - // Expand the densely-packed integer, right to left - for (n=declets-1; n>=0; n--) { // count down declets of 10 bits - dpd=*uin>>uoff; - uoff+=10; - if (uoff>32) { // crossed uInt boundary - uin++; - uoff-=32; // [if using this code for wider, check this] - dpd|=*uin<<(10-uoff); // get waiting bits - } - dpd&=0x3ff; // clear uninteresting bits - - #if DECDPUN==3 - if (dpd==0) *uout=0; - else { - *uout=DPD2BIN[dpd]; // convert 10 bits to binary 0-999 - last=uout; // record most significant unit - } - uout++; - } // n - - #else // DECDPUN!=3 - if (dpd==0) { // fastpath [e.g., leading zeros] - // write out three 0 digits (nibbles); out may have digit(s) - cut++; - if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} - if (n==0) break; // [as below, works even if MSD=0] - cut++; - if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} - cut++; - if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} - continue; - } - - bcd=DPD2BCD[dpd]; // convert 10 bits to 12 bits BCD - - // now accumulate the 3 BCD nibbles into units - nibble=bcd & 0x00f; - if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); - cut++; - if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} - bcd>>=4; - - // if this is the last declet and the remaining nibbles in bcd - // are 00 then process no more nibbles, because this could be - // the 'odd' MSD declet and writing any more Units would then - // overflow the unit array - if (n==0 && !bcd) break; - - nibble=bcd & 0x00f; - if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); - cut++; - if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} - bcd>>=4; - - nibble=bcd & 0x00f; - if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); - cut++; - if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} - } // n - if (cut!=0) { // some more left over - *uout=out; // write out final unit - if (out) last=uout; // and note if non-zero - } - #endif - - // here, last points to the most significant unit with digits; - // inspect it to get the final digits count -- this is essentially - // the same code as decGetDigits in decNumber.c - dn->digits=(last-dn->lsu)*DECDPUN+1; // floor of digits, plus - // must be at least 1 digit - #if DECDPUN>1 - if (*last<10) return; // common odd digit or 0 - dn->digits++; // must be 2 at least - #if DECDPUN>2 - if (*last<100) return; // 10-99 - dn->digits++; // must be 3 at least - #if DECDPUN>3 - if (*last<1000) return; // 100-999 - dn->digits++; // must be 4 at least - #if DECDPUN>4 - for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++; - #endif - #endif - #endif - #endif - return; - } //decDigitsFromDPD diff --git a/qdecimal/decnumber/decimal64.h b/qdecimal/decnumber/decimal64.h deleted file mode 100644 index d2782a3..0000000 --- a/qdecimal/decnumber/decimal64.h +++ /dev/null @@ -1,83 +0,0 @@ -/* ------------------------------------------------------------------ */ -/* Decimal 64-bit format module header */ -/* ------------------------------------------------------------------ */ -/* Copyright (c) IBM Corporation, 2000, 2005. All rights reserved. */ -/* */ -/* This software is made available under the terms of the */ -/* ICU License -- ICU 1.8.1 and later. */ -/* */ -/* The description and User's Guide ("The decNumber C Library") for */ -/* this software is called decNumber.pdf. This document is */ -/* available, together with arithmetic and format specifications, */ -/* testcases, and Web links, on the General Decimal Arithmetic page. */ -/* */ -/* Please send comments, suggestions, and corrections to the author: */ -/* mfc@uk.ibm.com */ -/* Mike Cowlishaw, IBM Fellow */ -/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ -/* ------------------------------------------------------------------ */ - -#if !defined(DECIMAL64) - #define DECIMAL64 - #define DEC64NAME "decimal64" /* Short name */ - #define DEC64FULLNAME "Decimal 64-bit Number" /* Verbose name */ - #define DEC64AUTHOR "Mike Cowlishaw" /* Who to blame */ - - - /* parameters for decimal64s */ - #define DECIMAL64_Bytes 8 /* length */ - #define DECIMAL64_Pmax 16 /* maximum precision (digits) */ - #define DECIMAL64_Emax 384 /* maximum adjusted exponent */ - #define DECIMAL64_Emin -383 /* minimum adjusted exponent */ - #define DECIMAL64_Bias 398 /* bias for the exponent */ - #define DECIMAL64_String 24 /* maximum string length, +1 */ - #define DECIMAL64_EconL 8 /* exp. continuation length */ - /* highest biased exponent (Elimit-1) */ - #define DECIMAL64_Ehigh (DECIMAL64_Emax+DECIMAL64_Bias-DECIMAL64_Pmax+1) - - /* check enough digits, if pre-defined */ - #if defined(DECNUMDIGITS) - #if (DECNUMDIGITS=16 for safe use - #endif - #endif - - - #ifndef DECNUMDIGITS - #define DECNUMDIGITS DECIMAL64_Pmax /* size if not already defined*/ - #endif - #ifndef DECNUMBER - #include "decNumber.h" /* context and number library */ - #endif - - /* Decimal 64-bit type, accessible by bytes */ - typedef struct { - uint8_t bytes[DECIMAL64_Bytes]; /* decimal64: 1, 5, 8, 50 bits*/ - } decimal64; - - /* special values [top byte excluding sign bit; last two bits are */ - /* don't-care for Infinity on input, last bit don't-care for NaN] */ - #if !defined(DECIMAL_NaN) - #define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */ - #define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */ - #define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */ - #endif - - /* ---------------------------------------------------------------- */ - /* Routines */ - /* ---------------------------------------------------------------- */ - /* String conversions */ - decimal64 * decimal64FromString(decimal64 *, const char *, decContext *); - char * decimal64ToString(const decimal64 *, char *); - char * decimal64ToEngString(const decimal64 *, char *); - - /* decNumber conversions */ - decimal64 * decimal64FromNumber(decimal64 *, const decNumber *, - decContext *); - decNumber * decimal64ToNumber(const decimal64 *, decNumber *); - - /* Format-dependent utilities */ - uint32_t decimal64IsCanonical(const decimal64 *); - decimal64 * decimal64Canonical(decimal64 *, const decimal64 *); - -#endif diff --git a/qdecimal/decnumber/decnumber.pro b/qdecimal/decnumber/decnumber.pro deleted file mode 100644 index 2eb7184..0000000 --- a/qdecimal/decnumber/decnumber.pro +++ /dev/null @@ -1,44 +0,0 @@ -# -# -# -include(../common.pri) - -QT -= gui -TEMPLATE = lib -# decnumber library should always be static -# regardless Qdecimal is static or dynamic -CONFIG += static -DEPENDPATH += . -TARGET = decnumber -DESTDIR = ../lib - - - -# Input -HEADERS += decContext.h \ - decDouble.h \ - decDPD.h \ - decimal128.h \ - decimal32.h \ - decimal64.h \ - decNumber.h \ - decNumberLocal.h \ - decPacked.h \ - decQuad.h \ - decSingle.h \ - decCommon.c \ - decBasic.c \ - Port_stdint.h \ - VCpp_stdint.h - -SOURCES += decBasic.c \ - decCommon.c \ - decContext.c \ - decDouble.c \ - decimal128.c \ - decimal32.c \ - decimal64.c \ - decNumber.c \ - decPacked.c \ - decQuad.c \ - decSingle.c diff --git a/qdecimal/doc/Announce.txt b/qdecimal/doc/Announce.txt deleted file mode 100644 index 824ff36..0000000 --- a/qdecimal/doc/Announce.txt +++ /dev/null @@ -1,172 +0,0 @@ - -Dear Qt users, - -I would like to announce initial public release of QDecimal library. - -Most computers today support binary floating-point in hardware. While suitable -for many purposes, binary floating-point arithmetic should not be used -for financial, commercial, and user-centric applications because the -decimal data used in these applications cannot be represented exactly -using binary floating-point. - -The General Decimal Arithmetic (GDA) specification aims to address -deficiencies in the binary floating-point arithmetic, and defines a -decimal arithmetic which meets the requirements of commercial, -financial, and human-oriented applications. It also matches the -decimal arithmetic in the IEEE 754-2008 Standard for Floating Point -Arithmetic. - -The decNumber library is full implementation of the GDA specification -and also matches the decimal arithmetic in the IEEE 754-2008 Standard -for Floating Point Arithmetic. - -The QDecimal is a thin layer around IBM's decNumber library which -implements the General Decimal Arithmetic Specification in ANSI C. [1] - -The QDecimal/decNumberlibrary [2,3] fully implements the specification, -and hence supports integer, fixed-point, and floating-point decimal -numbers directly, including infinite, NaN (Not a Number), and -subnormal values. Both arbitrary-precision and fixed-size -representations are supported. - -The aim of the QDecimal library [4] is to extend decNumber functionality -to C++ language and Qt framework by using idioms, tecniques and best -practices in both tecnologies. For instance, inline functions are used -heavily to aid optimization, operator overloading and conversion -operators are defined to aid type casting in between the types defined -by QDecimal. Further these types are integrated with Qt object model -by introducing them to Qt meta type system. - - -CONTENTS -Following classes are defined by QDecimal library: - -QDecNumber (based on decNumber): ----------- -decNumber module uses an arbitrary-precision decimal number -representation designed for efficient computation in software and -implements the arithmetic and logical operations, together with a -number of conversions and utilities. Once a number is held as a -decNumber, no further conversions are necessary to carry out -arithmetic. - -The decNumber representation is variable-length and machine-dependent -(for example, it contains integers which may be big-endian or -little-endian). - -QDecNumber encapsulates decNumber and reimplements global functions -that operates upon decNumber as member functions with the same name. - - -QDecContext (based on decContext): ------------ -Most functions in the decNumber module take as an argument a -decContext structure, which provides the context for operations -(precision, rounding mode, etc.) and also controls the handling of -exceptional conditions (corresponding to the flags and trap enablers -in a hardware floating-point implementation). - -QDecContext encapsulates decContext and provides decNumber library -functions that operates upon decContext as member functions. - - -QDecSingle (based on decSingle/decimal32): ----------- -decimal32 is a 32-bit decimal floating-point representation which -provides 7 decimal digits of precision in a compressed format. - -decSingle module provides the functions for the decimal32 format; this -format is intended for storage and interchange only and so the module -provides utilities and conversions but no arithmetic functions. - -QDecSingle encapsulates decSingle and provides decNumber library -functions that operates upon decSingle as member functions with the -same name. - - -QDecDouble (based on decDouble/decimal64): ----------- -decimal64 is a 64-bit decimal floating-point representation which -provides 16 decimal digits of precision in a compressed format. - -decDouble module provides the functions for the decimal64 format; this -format is an IEEE 754 basic format and so a full set of arithmetic and -other functions is included. - -QDecDouble encapsulates decDouble and provides decNumber library -functions that operates upon decSingle as member functions with the -same name. - - -QDecQuad (based on decQuad/decimal128): --------- -decimal128 is a 128-bit decimal floating-point representation which -provides 34 decimal digits of precision in a compressed format. - -decQuad module provides the functions for the decimal128 format; this -format is an IEEE 754 basic format; it contains the same set of -functions as decDouble. - -QDecQuad encapsulates decQuad and provides decNumber library functions -that operates upon decSingle as member functions with the same name. - - -QDecPacked (based on decPacked): ---------- -The decPacked format is the classic packed decimal format implemented -by IBM S/360 and later machines, where each digit is encoded as a -4-bit binary sequence (BCD) and a number is ended by a 4-bit sign -indicator. The decPacked module accepts variable lengths, allowing for -very large numbers (up to a billion digits), and also allows the -specification of a scale. - -QDecPacked augments decPacked by encapsulating reference counted byte -array and scale of the decimal point as member variables, thus, freeing up -user of this class from memory management and keeping track of scale value. - - -LICENSE -QDecimal is under the terms of the LGPL v2.1. -decNumber is under the terms of ICU v1.8.1 -See COPYRIGHT file within the package for terms of the these licenses. -Both licences allow commercial and non-commercial use of the software. - - -PLATFORMS -QDecimal should be usable in all platforms on which Qt 4.7.x or -greater is supported: -We regularly test on following platforms: -Solaris 11 x86 (sstudio 12.2 CC 5.11) -Linux x64 2.6.38 (Ubuntu 11.04 - gcc 4.5.2) -Linux x86 2.6.38 (Ubuntu 11.04- gcc 4.5.2) -Windows XP (msvc 2008) - - -CREDITS -We are grateful to Mike Cowlishaw et al. from IBM for making decNumber package -available. Further, Mr. Cowlishaw has kindly helped us while making -QDecimal production ready. - - -REFERENCES -[1] General Decimal Arithmetic Specification -http://speleotrove.com/decimal/decarith.html - -[2] The decNumber Library -http://speleotrove.com/decimal/decnumber.html - -[3] General Decimal Arithmetic -http://speleotrove.com/decimal - -[4] QDecimal Project Home -http://code.google.com/p/qdecimal - - - -Regards, -Semih Cemiloglu - -semih (at) cemiloglu.org -PGP/GPG KeyId: FCEE9B7A on keyserver.pgp.com -Fingerprint: ED8F48028DE03BE0A2C95E0FACC5043BFCEE9B7A - diff --git a/qdecimal/doc/COPYRIGHT.txt b/qdecimal/doc/COPYRIGHT.txt deleted file mode 100644 index 22e2b32..0000000 --- a/qdecimal/doc/COPYRIGHT.txt +++ /dev/null @@ -1,480 +0,0 @@ - GNU LESSER GENERAL PUBLIC LICENSE - Version 2.1, February 1999 - - Copyright (C) 1991, 1999 Free Software Foundation, Inc. - 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - -[This is the first released version of the Lesser GPL. It also counts - as the successor of the GNU Library Public License, version 2, hence - the version number 2.1.] - - Preamble - - The licenses for most software are designed to take away your -freedom to share and change it. By contrast, the GNU General Public -Licenses are intended to guarantee your freedom to share and change -free software--to make sure the software is free for all its users. - - This license, the Lesser General Public License, applies to some -specially designated software packages--typically libraries--of the -Free Software Foundation and other authors who decide to use it. You -can use it too, but we suggest you first think carefully about whether -this license or the ordinary General Public License is the better -strategy to use in any particular case, based on the explanations below. - - When we speak of free software, we are referring to freedom of use, -not price. Our General Public Licenses are designed to make sure that -you have the freedom to distribute copies of free software (and charge -for this service if you wish); that you receive source code or can get -it if you want it; that you can change the software and use pieces of -it in new free programs; and that you are informed that you can do -these things. - - To protect your rights, we need to make restrictions that forbid -distributors to deny you these rights or to ask you to surrender these -rights. These restrictions translate to certain responsibilities for -you if you distribute copies of the library or if you modify it. - - For example, if you distribute copies of the library, whether gratis -or for a fee, you must give the recipients all the rights that we gave -you. You must make sure that they, too, receive or can get the source -code. If you link other code with the library, you must provide -complete object files to the recipients, so that they can relink them -with the library after making changes to the library and recompiling -it. And you must show them these terms so they know their rights. - - We protect your rights with a two-step method: (1) we copyright the -library, and (2) we offer you this license, which gives you legal -permission to copy, distribute and/or modify the library. - - To protect each distributor, we want to make it very clear that -there is no warranty for the free library. Also, if the library is -modified by someone else and passed on, the recipients should know -that what they have is not the original version, so that the original -author's reputation will not be affected by problems that might be -introduced by others. - - Finally, software patents pose a constant threat to the existence of -any free program. We wish to make sure that a company cannot -effectively restrict the users of a free program by obtaining a -restrictive license from a patent holder. Therefore, we insist that -any patent license obtained for a version of the library must be -consistent with the full freedom of use specified in this license. - - Most GNU software, including some libraries, is covered by the -ordinary GNU General Public License. This license, the GNU Lesser -General Public License, applies to certain designated libraries, and -is quite different from the ordinary General Public License. We use -this license for certain libraries in order to permit linking those -libraries into non-free programs. - - When a program is linked with a library, whether statically or using -a shared library, the combination of the two is legally speaking a -combined work, a derivative of the original library. The ordinary -General Public License therefore permits such linking only if the -entire combination fits its criteria of freedom. The Lesser General -Public License permits more lax criteria for linking other code with -the library. - - We call this license the "Lesser" General Public License because it -does Less to protect the user's freedom than the ordinary General -Public License. It also provides other free software developers Less -of an advantage over competing non-free programs. These disadvantages -are the reason we use the ordinary General Public License for many -libraries. However, the Lesser license provides advantages in certain -special circumstances. - - For example, on rare occasions, there may be a special need to -encourage the widest possible use of a certain library, so that it becomes -a de-facto standard. To achieve this, non-free programs must be -allowed to use the library. A more frequent case is that a free -library does the same job as widely used non-free libraries. In this -case, there is little to gain by limiting the free library to free -software only, so we use the Lesser General Public License. - - In other cases, permission to use a particular library in non-free -programs enables a greater number of people to use a large body of -free software. For example, permission to use the GNU C Library in -non-free programs enables many more people to use the whole GNU -operating system, as well as its variant, the GNU/Linux operating -system. - - Although the Lesser General Public License is Less protective of the -users' freedom, it does ensure that the user of a program that is -linked with the Library has the freedom and the wherewithal to run -that program using a modified version of the Library. - - The precise terms and conditions for copying, distribution and -modification follow. Pay close attention to the difference between a -"work based on the library" and a "work that uses the library". The -former contains code derived from the library, whereas the latter must -be combined with the library in order to run. - - GNU LESSER GENERAL PUBLIC LICENSE - TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION - - 0. This License Agreement applies to any software library or other -program which contains a notice placed by the copyright holder or -other authorized party saying it may be distributed under the terms of -this Lesser General Public License (also called "this License"). -Each licensee is addressed as "you". - - A "library" means a collection of software functions and/or data -prepared so as to be conveniently linked with application programs -(which use some of those functions and data) to form executables. - - The "Library", below, refers to any such software library or work -which has been distributed under these terms. A "work based on the -Library" means either the Library or any derivative work under -copyright law: that is to say, a work containing the Library or a -portion of it, either verbatim or with modifications and/or translated -straightforwardly into another language. (Hereinafter, translation is -included without limitation in the term "modification".) - - "Source code" for a work means the preferred form of the work for -making modifications to it. For a library, complete source code means -all the source code for all modules it contains, plus any associated -interface definition files, plus the scripts used to control compilation -and installation of the library. - - Activities other than copying, distribution and modification are not -covered by this License; they are outside its scope. The act of -running a program using the Library is not restricted, and output from -such a program is covered only if its contents constitute a work based -on the Library (independent of the use of the Library in a tool for -writing it). Whether that is true depends on what the Library does -and what the program that uses the Library does. - - 1. You may copy and distribute verbatim copies of the Library's -complete source code as you receive it, in any medium, provided that -you conspicuously and appropriately publish on each copy an -appropriate copyright notice and disclaimer of warranty; keep intact -all the notices that refer to this License and to the absence of any -warranty; and distribute a copy of this License along with the -Library. - - You may charge a fee for the physical act of transferring a copy, -and you may at your option offer warranty protection in exchange for a -fee. - - 2. You may modify your copy or copies of the Library or any portion -of it, thus forming a work based on the Library, and copy and -distribute such modifications or work under the terms of Section 1 -above, provided that you also meet all of these conditions: - - a) The modified work must itself be a software library. - - b) You must cause the files modified to carry prominent notices - stating that you changed the files and the date of any change. - - c) You must cause the whole of the work to be licensed at no - charge to all third parties under the terms of this License. - - d) If a facility in the modified Library refers to a function or a - table of data to be supplied by an application program that uses - the facility, other than as an argument passed when the facility - is invoked, then you must make a good faith effort to ensure that, - in the event an application does not supply such function or - table, the facility still operates, and performs whatever part of - its purpose remains meaningful. - - (For example, a function in a library to compute square roots has - a purpose that is entirely well-defined independent of the - application. Therefore, Subsection 2d requires that any - application-supplied function or table used by this function must - be optional: if the application does not supply it, the square - root function must still compute square roots.) - -These requirements apply to the modified work as a whole. If -identifiable sections of that work are not derived from the Library, -and can be reasonably considered independent and separate works in -themselves, then this License, and its terms, do not apply to those -sections when you distribute them as separate works. But when you -distribute the same sections as part of a whole which is a work based -on the Library, the distribution of the whole must be on the terms of -this License, whose permissions for other licensees extend to the -entire whole, and thus to each and every part regardless of who wrote -it. - -Thus, it is not the intent of this section to claim rights or contest -your rights to work written entirely by you; rather, the intent is to -exercise the right to control the distribution of derivative or -collective works based on the Library. - -In addition, mere aggregation of another work not based on the Library -with the Library (or with a work based on the Library) on a volume of -a storage or distribution medium does not bring the other work under -the scope of this License. - - 3. You may opt to apply the terms of the ordinary GNU General Public -License instead of this License to a given copy of the Library. To do -this, you must alter all the notices that refer to this License, so -that they refer to the ordinary GNU General Public License, version 2, -instead of to this License. (If a newer version than version 2 of the -ordinary GNU General Public License has appeared, then you can specify -that version instead if you wish.) Do not make any other change in -these notices. - - Once this change is made in a given copy, it is irreversible for -that copy, so the ordinary GNU General Public License applies to all -subsequent copies and derivative works made from that copy. - - This option is useful when you wish to copy part of the code of -the Library into a program that is not a library. - - 4. You may copy and distribute the Library (or a portion or -derivative of it, under Section 2) in object code or executable form -under the terms of Sections 1 and 2 above provided that you accompany -it with the complete corresponding machine-readable source code, which -must be distributed under the terms of Sections 1 and 2 above on a -medium customarily used for software interchange. - - If distribution of object code is made by offering access to copy -from a designated place, then offering equivalent access to copy the -source code from the same place satisfies the requirement to -distribute the source code, even though third parties are not -compelled to copy the source along with the object code. - - 5. A program that contains no derivative of any portion of the -Library, but is designed to work with the Library by being compiled or -linked with it, is called a "work that uses the Library". Such a -work, in isolation, is not a derivative work of the Library, and -therefore falls outside the scope of this License. - - However, linking a "work that uses the Library" with the Library -creates an executable that is a derivative of the Library (because it -contains portions of the Library), rather than a "work that uses the -library". The executable is therefore covered by this License. -Section 6 states terms for distribution of such executables. - - When a "work that uses the Library" uses material from a header file -that is part of the Library, the object code for the work may be a -derivative work of the Library even though the source code is not. -Whether this is true is especially significant if the work can be -linked without the Library, or if the work is itself a library. The -threshold for this to be true is not precisely defined by law. - - If such an object file uses only numerical parameters, data -structure layouts and accessors, and small macros and small inline -functions (ten lines or less in length), then the use of the object -file is unrestricted, regardless of whether it is legally a derivative -work. (Executables containing this object code plus portions of the -Library will still fall under Section 6.) - - Otherwise, if the work is a derivative of the Library, you may -distribute the object code for the work under the terms of Section 6. -Any executables containing that work also fall under Section 6, -whether or not they are linked directly with the Library itself. - - 6. As an exception to the Sections above, you may also combine or -link a "work that uses the Library" with the Library to produce a -work containing portions of the Library, and distribute that work -under terms of your choice, provided that the terms permit -modification of the work for the customer's own use and reverse -engineering for debugging such modifications. - - You must give prominent notice with each copy of the work that the -Library is used in it and that the Library and its use are covered by -this License. You must supply a copy of this License. If the work -during execution displays copyright notices, you must include the -copyright notice for the Library among them, as well as a reference -directing the user to the copy of this License. Also, you must do one -of these things: - - a) Accompany the work with the complete corresponding - machine-readable source code for the Library including whatever - changes were used in the work (which must be distributed under - Sections 1 and 2 above); and, if the work is an executable linked - with the Library, with the complete machine-readable "work that - uses the Library", as object code and/or source code, so that the - user can modify the Library and then relink to produce a modified - executable containing the modified Library. (It is understood - that the user who changes the contents of definitions files in the - Library will not necessarily be able to recompile the application - to use the modified definitions.) - - b) Use a suitable shared library mechanism for linking with the - Library. A suitable mechanism is one that (1) uses at run time a - copy of the library already present on the user's computer system, - rather than copying library functions into the executable, and (2) - will operate properly with a modified version of the library, if - the user installs one, as long as the modified version is - interface-compatible with the version that the work was made with. - - c) Accompany the work with a written offer, valid for at - least three years, to give the same user the materials - specified in Subsection 6a, above, for a charge no more - than the cost of performing this distribution. - - d) If distribution of the work is made by offering access to copy - from a designated place, offer equivalent access to copy the above - specified materials from the same place. - - e) Verify that the user has already received a copy of these - materials or that you have already sent this user a copy. - - For an executable, the required form of the "work that uses the -Library" must include any data and utility programs needed for -reproducing the executable from it. However, as a special exception, -the materials to be distributed need not include anything that is -normally distributed (in either source or binary form) with the major -components (compiler, kernel, and so on) of the operating system on -which the executable runs, unless that component itself accompanies -the executable. - - It may happen that this requirement contradicts the license -restrictions of other proprietary libraries that do not normally -accompany the operating system. Such a contradiction means you cannot -use both them and the Library together in an executable that you -distribute. - - 7. You may place library facilities that are a work based on the -Library side-by-side in a single library together with other library -facilities not covered by this License, and distribute such a combined -library, provided that the separate distribution of the work based on -the Library and of the other library facilities is otherwise -permitted, and provided that you do these two things: - - a) Accompany the combined library with a copy of the same work - based on the Library, uncombined with any other library - facilities. This must be distributed under the terms of the - Sections above. - - b) Give prominent notice with the combined library of the fact - that part of it is a work based on the Library, and explaining - where to find the accompanying uncombined form of the same work. - - 8. You may not copy, modify, sublicense, link with, or distribute -the Library except as expressly provided under this License. Any -attempt otherwise to copy, modify, sublicense, link with, or -distribute the Library is void, and will automatically terminate your -rights under this License. However, parties who have received copies, -or rights, from you under this License will not have their licenses -terminated so long as such parties remain in full compliance. - - 9. You are not required to accept this License, since you have not -signed it. However, nothing else grants you permission to modify or -distribute the Library or its derivative works. These actions are -prohibited by law if you do not accept this License. Therefore, by -modifying or distributing the Library (or any work based on the -Library), you indicate your acceptance of this License to do so, and -all its terms and conditions for copying, distributing or modifying -the Library or works based on it. - - 10. Each time you redistribute the Library (or any work based on the -Library), the recipient automatically receives a license from the -original licensor to copy, distribute, link with or modify the Library -subject to these terms and conditions. You may not impose any further -restrictions on the recipients' exercise of the rights granted herein. -You are not responsible for enforcing compliance by third parties with -this License. - - 11. If, as a consequence of a court judgment or allegation of patent -infringement or for any other reason (not limited to patent issues), -conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot -distribute so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you -may not distribute the Library at all. For example, if a patent -license would not permit royalty-free redistribution of the Library by -all those who receive copies directly or indirectly through you, then -the only way you could satisfy both it and this License would be to -refrain entirely from distribution of the Library. - -If any portion of this section is held invalid or unenforceable under any -particular circumstance, the balance of the section is intended to apply, -and the section as a whole is intended to apply in other circumstances. - -It is not the purpose of this section to induce you to infringe any -patents or other property right claims or to contest validity of any -such claims; this section has the sole purpose of protecting the -integrity of the free software distribution system which is -implemented by public license practices. Many people have made -generous contributions to the wide range of software distributed -through that system in reliance on consistent application of that -system; it is up to the author/donor to decide if he or she is willing -to distribute software through any other system and a licensee cannot -impose that choice. - -This section is intended to make thoroughly clear what is believed to -be a consequence of the rest of this License. - - 12. If the distribution and/or use of the Library is restricted in -certain countries either by patents or by copyrighted interfaces, the -original copyright holder who places the Library under this License may add -an explicit geographical distribution limitation excluding those countries, -so that distribution is permitted only in or among countries not thus -excluded. In such case, this License incorporates the limitation as if -written in the body of this License. - - 13. The Free Software Foundation may publish revised and/or new -versions of the Lesser General Public License from time to time. -Such new versions will be similar in spirit to the present version, -but may differ in detail to address new problems or concerns. - -Each version is given a distinguishing version number. If the Library -specifies a version number of this License which applies to it and -"any later version", you have the option of following the terms and -conditions either of that version or of any later version published by -the Free Software Foundation. If the Library does not specify a -license version number, you may choose any version ever published by -the Free Software Foundation. - - 14. If you wish to incorporate parts of the Library into other free -programs whose distribution conditions are incompatible with these, -write to the author to ask for permission. For software which is -copyrighted by the Free Software Foundation, write to the Free -Software Foundation; we sometimes make exceptions for this. Our -decision will be guided by the two goals of preserving the free status -of all derivatives of our free software and of promoting the sharing -and reuse of software generally. - - NO WARRANTY - - 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO -WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. -EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR -OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY -KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE -LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME -THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN -WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY -AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU -FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR -CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE -LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING -RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A -FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF -SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH -DAMAGES. - - END OF TERMS AND CONDITIONS - - -===================================================================== - -decNumber library is under separate licence which listed below: - -ICU License - ICU 1.8.1 and later - -COPYRIGHT AND PERMISSION NOTICE - -Copyright (c) 1995-2011 International Business Machines Corporation and others - -All rights reserved. - -Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - -Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder. - -===================================================================== - diff --git a/qdecimal/doc/INSTALL.txt b/qdecimal/doc/INSTALL.txt deleted file mode 100644 index f439d66..0000000 --- a/qdecimal/doc/INSTALL.txt +++ /dev/null @@ -1,55 +0,0 @@ - -BUILDING -~~~~~~~~ -We now have two options to build QDecimal project. -A) SCons based build -B) Qmake/Make based build. - -SCons is now the preferred method of building. -just type "scons" at the project root to build. type scons -h or -H to -see full options for build. - - -Qmake/Make based build is now deprecated, please use it as a last resort as -it will be discontinued near future: - -Unix -~~~~ -qmake -r -make - -Use "make clean" to clean up intermediate (object etc.) files. -Use "make distclean" to return to clean state. - -Windows -~~~~~~~ -qmake -r -nmake - -Use "nmake clean" to clean up intermediate (object etc.) files. -Use "nmake distclean" to return to clean state. - -TESTING -~~~~~~~ -Execute the "qdecimal_test" application in the bin directory, ie. "cd bin". - -To execute the subset of the tests, just run -"qdecimal_test --testdir=tc_subset". - -To execute the full set of the tests, just run -"qdecimal_test --testdir=tc_full". - -Full test would have only 2 expected (fma) failures, whereas subset -test should not have any failure (grep -i fail / grep PASS). - -SHARED LIBRARY -~~~~~~~~~~~~~~ -a) Comment "CONFIG += static" line and uncomment the two lines -beginning with "CONFIG += shared" -in src/src.pro file. - -b) In the client applications simply define QDECIMAL_SHARED macro as 1; -that is "DEFINES += QDECIMAL_SHARED=1" - -c) At run-time, PATH (Windows) or LD_LIBRARY_PATH (Unix) environment -variables should be specified to locate the shared library. diff --git a/qdecimal/doc/README.txt b/qdecimal/doc/README.txt deleted file mode 100644 index ca4dd74..0000000 --- a/qdecimal/doc/README.txt +++ /dev/null @@ -1,113 +0,0 @@ -* The QDecimal Library -~~~~~~~~~~~~~~~~~~~~~~ - -Overview -~~~~~~~~ - -The QDecimal is a thin layer around IBM's decNumber library which implements the General Decimal Arithmetic Specification in ANSI C. [1] -This specification defines a decimal arithmetic which meets the requirements of commercial, financial, and human-oriented applications. It also matches the decimal arithmetic in the IEEE 754 Standard for Floating Point Arithmetic. -The decNumber library also matches the decimal arithmetic in the IEEE 754 Standard for Floating Point Arithmetic. - -The QDecimal/decNumberlibrary [2] fully implements the specification, and hence supports integer, fixed-point, and floating-point decimal numbers directly, including infinite, NaN (Not a Number), and subnormal values. Both arbitrary-precision and fixed-size representations are supported. - - -The aim of the QDecimal library is to extend decNumber functionality to C++ language and Qt framework by using idioms, tecniques and best practices in both tecnologies. For instance, inline functions are used heavily to aid optimization, operator overloading and conversion operators are defined to aid type casting in between the types defined by QDecimal. Further these types are integrated with Qt object model by introducing them to Qt meta type system. - -Following classes are defined by QDecimal library: - - -QDecNumber (based on decNumber): - -decNumber module uses an arbitrary-precision decimal number representation designed for efficient computation in software and implements the arithmetic and logical operations, together with a number of conversions and utilities. Once a number is held as a decNumber, no further conversions are necessary to carry out arithmetic. -The decNumber representation is variable-length and machine-dependent (for example, it contains integers which may be big-endian or little-endian). -QDecNumber encapsulates decNumber and reimplements global functions that operates upon decNumber as member functions with the same name. - - -QDecContext (based on decContext): - -Most functions in the decNumber module take as an argument a decContext structure, which provides the context for operations (precision, rounding mode, etc.) and also controls the handling of exceptional conditions (corresponding to the flags and trap enablers in a hardware floating-point implementation). - - -QDecSingle (based on decSingle/decimal32): - -decimal32 is a 32-bit decimal floating-point representation which provides 7 decimal digits of precision in a compressed format. -decSingle module provides the functions for the decimal32 format; this format is intended for storage and interchange only and so the module provides utilities and conversions but no arithmetic functions. -QDecSingle encapsulates decSingle and provides decNumber library functions that operates upon decSingle as member functions with the same name. - - -QDecDouble (based on decDouble/decimal64): - -decimal64 is a 64-bit decimal floating-point representation which provides 16 decimal digits of precision in a compressed format. -decDouble module provides the functions for the decimal64 format; this format is an IEEE 754 basic format and so a full set of arithmetic and other functions is included. -QDecDouble encapsulates decDouble and provides decNumber library functions that operates upon decSingle as member functions with the same name. - - -QDecQuad (based on decQuad/decimal128): - -decimal128 is a 128-bit decimal floating-point representation which provides 34 decimal digits of precision in a compressed format. -decQuad module provides the functions for the decimal128 format; this format is an IEEE 754 basic format; it contains the same set of functions as decDouble. -QDecQuad encapsulates decQuad and provides decNumber library functions that operates upon decSingle as member functions with the same name. - - -QDecPacked (based on decPacked): - -The decPacked format is the classic packed decimal format implemented by IBM S/360 and later machines, where each digit is encoded as a 4-bit binary sequence (BCD) and a number is ended by a 4-bit sign indicator. The decPacked module accepts variable lengths, allowing for very large numbers (up to a billion digits), and also allows the specification of a scale. -QDecPacked augments decPacked by encapsulating reference counted byte -array and scale of the decimal point as members variables, thus, freeing up -user of this class from memory management and keeping track of scale value. - - -License -~~~~~~~ -QDecimal is under the terms of the LGPL v2.1. -decNumber is under the terms of ICU v1.8.1 -See COPYRIGHT file for terms of the these licenses. - -Platforms -~~~~~~~~~ -QDecimal should be usable in all platforms that Qt supports. -We regularly test on following platforms: -Solaris 11 x86 (sun studio 12.5) -Linux (Ubuntu x64 - gcc) -Linux (Ubuntu x86 - gcc) -Windows XP (msvc 2008) - - -Installation -~~~~~~~~~~~~~~ -Read INSTALL.txt to build and install QDecimal. - -Copyright -~~~~~~~~~ -Copyright (C) 2012-2013 Semih Cemiloglu -Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details (COPYRIGHT.txt). - -The decNumber library has separate license terms, which is governed by -ICU License -- ICU 1.8.1 and later. - - -Credits -~~~~~~~ -We are grateful to Mike Cowlishaw et al. from IBM for making decNumber package -available. Mr. Cowlishaw has kindly helped while making QDecimal production -ready. - - -In memoriam -~~~~~~~~~~~ -QDecimal library is dedicated to cherished memory of my late uncle: - -Muharrem Saffet Bozkurt - -He is sadly missed. - diff --git a/qdecimal/doc/doxy.cfg b/qdecimal/doc/doxy.cfg deleted file mode 100644 index 443703a..0000000 --- a/qdecimal/doc/doxy.cfg +++ /dev/null @@ -1,1679 +0,0 @@ -# Doxyfile 1.7.3 - -# This file describes the settings to be used by the documentation system -# doxygen (www.doxygen.org) for a project. -# -# All text after a hash (#) is considered a comment and will be ignored. -# The format is: -# TAG = value [value, ...] -# For lists items can also be appended using: -# TAG += value [value, ...] -# Values that contain spaces should be placed between quotes (" "). - -#--------------------------------------------------------------------------- -# Project related configuration options -#--------------------------------------------------------------------------- - -# This tag specifies the encoding used for all characters in the config file -# that follow. The default is UTF-8 which is also the encoding used for all -# text before the first occurrence of this tag. Doxygen uses libiconv (or the -# iconv built into libc) for the transcoding. See -# http://www.gnu.org/software/libiconv for the list of possible encodings. - -DOXYFILE_ENCODING = UTF-8 - -# The PROJECT_NAME tag is a single word (or a sequence of words surrounded -# by quotes) that should identify the project. - -PROJECT_NAME = - -# The PROJECT_NUMBER tag can be used to enter a project or revision number. -# This could be handy for archiving the generated documentation or -# if some version control system is used. - -PROJECT_NUMBER = - -# Using the PROJECT_BRIEF tag one can provide an optional one line description for a project that appears at the top of each page and should give viewer a quick idea about the purpose of the project. Keep the description short. - -PROJECT_BRIEF = QDecimal - -# With the PROJECT_LOGO tag one can specify an logo or icon that is -# included in the documentation. The maximum height of the logo should not -# exceed 55 pixels and the maximum width should not exceed 200 pixels. -# Doxygen will copy the logo to the output directory. - -PROJECT_LOGO = - -# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) -# base path where the generated documentation will be put. -# If a relative path is entered, it will be relative to the location -# where doxygen was started. If left blank the current directory will be used. - -OUTPUT_DIRECTORY = doxydoc - -# If the CREATE_SUBDIRS tag is set to YES, then doxygen will create -# 4096 sub-directories (in 2 levels) under the output directory of each output -# format and will distribute the generated files over these directories. -# Enabling this option can be useful when feeding doxygen a huge amount of -# source files, where putting all generated files in the same directory would -# otherwise cause performance problems for the file system. - -CREATE_SUBDIRS = NO - -# The OUTPUT_LANGUAGE tag is used to specify the language in which all -# documentation generated by doxygen is written. Doxygen will use this -# information to generate all constant output in the proper language. -# The default language is English, other supported languages are: -# Afrikaans, Arabic, Brazilian, Catalan, Chinese, Chinese-Traditional, -# Croatian, Czech, Danish, Dutch, Esperanto, Farsi, Finnish, French, German, -# Greek, Hungarian, Italian, Japanese, Japanese-en (Japanese with English -# messages), Korean, Korean-en, Lithuanian, Norwegian, Macedonian, Persian, -# Polish, Portuguese, Romanian, Russian, Serbian, Serbian-Cyrillic, Slovak, -# Slovene, Spanish, Swedish, Ukrainian, and Vietnamese. - -OUTPUT_LANGUAGE = English - -# If the BRIEF_MEMBER_DESC tag is set to YES (the default) Doxygen will -# include brief member descriptions after the members that are listed in -# the file and class documentation (similar to JavaDoc). -# Set to NO to disable this. - -BRIEF_MEMBER_DESC = YES - -# If the REPEAT_BRIEF tag is set to YES (the default) Doxygen will prepend -# the brief description of a member or function before the detailed description. -# Note: if both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the -# brief descriptions will be completely suppressed. - -REPEAT_BRIEF = YES - -# This tag implements a quasi-intelligent brief description abbreviator -# that is used to form the text in various listings. Each string -# in this list, if found as the leading text of the brief description, will be -# stripped from the text and the result after processing the whole list, is -# used as the annotated text. Otherwise, the brief description is used as-is. -# If left blank, the following values are used ("$name" is automatically -# replaced with the name of the entity): "The $name class" "The $name widget" -# "The $name file" "is" "provides" "specifies" "contains" -# "represents" "a" "an" "the" - -ABBREVIATE_BRIEF = - -# If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then -# Doxygen will generate a detailed section even if there is only a brief -# description. - -ALWAYS_DETAILED_SEC = NO - -# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all -# inherited members of a class in the documentation of that class as if those -# members were ordinary class members. Constructors, destructors and assignment -# operators of the base classes will not be shown. - -INLINE_INHERITED_MEMB = NO - -# If the FULL_PATH_NAMES tag is set to YES then Doxygen will prepend the full -# path before files name in the file list and in the header files. If set -# to NO the shortest path that makes the file name unique will be used. - -FULL_PATH_NAMES = YES - -# If the FULL_PATH_NAMES tag is set to YES then the STRIP_FROM_PATH tag -# can be used to strip a user-defined part of the path. Stripping is -# only done if one of the specified strings matches the left-hand part of -# the path. The tag can be used to show relative paths in the file list. -# If left blank the directory from which doxygen is run is used as the -# path to strip. - -STRIP_FROM_PATH = - -# The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of -# the path mentioned in the documentation of a class, which tells -# the reader which header file to include in order to use a class. -# If left blank only the name of the header file containing the class -# definition is used. Otherwise one should specify the include paths that -# are normally passed to the compiler using the -I flag. - -STRIP_FROM_INC_PATH = - -# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter -# (but less readable) file names. This can be useful if your file system -# doesn't support long names like on DOS, Mac, or CD-ROM. - -SHORT_NAMES = NO - -# If the JAVADOC_AUTOBRIEF tag is set to YES then Doxygen -# will interpret the first line (until the first dot) of a JavaDoc-style -# comment as the brief description. If set to NO, the JavaDoc -# comments will behave just like regular Qt-style comments -# (thus requiring an explicit @brief command for a brief description.) - -JAVADOC_AUTOBRIEF = NO - -# If the QT_AUTOBRIEF tag is set to YES then Doxygen will -# interpret the first line (until the first dot) of a Qt-style -# comment as the brief description. If set to NO, the comments -# will behave just like regular Qt-style comments (thus requiring -# an explicit \brief command for a brief description.) - -QT_AUTOBRIEF = YES - -# The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make Doxygen -# treat a multi-line C++ special comment block (i.e. a block of //! or /// -# comments) as a brief description. This used to be the default behaviour. -# The new default is to treat a multi-line C++ comment block as a detailed -# description. Set this tag to YES if you prefer the old behaviour instead. - -MULTILINE_CPP_IS_BRIEF = YES - -# If the INHERIT_DOCS tag is set to YES (the default) then an undocumented -# member inherits the documentation from any documented member that it -# re-implements. - -INHERIT_DOCS = YES - -# If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce -# a new page for each member. If set to NO, the documentation of a member will -# be part of the file/class/namespace that contains it. - -SEPARATE_MEMBER_PAGES = NO - -# The TAB_SIZE tag can be used to set the number of spaces in a tab. -# Doxygen uses this value to replace tabs by spaces in code fragments. - -TAB_SIZE = 4 - -# This tag can be used to specify a number of aliases that acts -# as commands in the documentation. An alias has the form "name=value". -# For example adding "sideeffect=\par Side Effects:\n" will allow you to -# put the command \sideeffect (or @sideeffect) in the documentation, which -# will result in a user-defined paragraph with heading "Side Effects:". -# You can put \n's in the value part of an alias to insert newlines. - -ALIASES = - -# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C -# sources only. Doxygen will then generate output that is more tailored for C. -# For instance, some of the names that are used will be different. The list -# of all members will be omitted, etc. - -OPTIMIZE_OUTPUT_FOR_C = NO - -# Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java -# sources only. Doxygen will then generate output that is more tailored for -# Java. For instance, namespaces will be presented as packages, qualified -# scopes will look different, etc. - -OPTIMIZE_OUTPUT_JAVA = NO - -# Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran -# sources only. Doxygen will then generate output that is more tailored for -# Fortran. - -OPTIMIZE_FOR_FORTRAN = NO - -# Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL -# sources. Doxygen will then generate output that is tailored for -# VHDL. - -OPTIMIZE_OUTPUT_VHDL = NO - -# Doxygen selects the parser to use depending on the extension of the files it -# parses. With this tag you can assign which parser to use for a given extension. -# Doxygen has a built-in mapping, but you can override or extend it using this -# tag. The format is ext=language, where ext is a file extension, and language -# is one of the parsers supported by doxygen: IDL, Java, Javascript, CSharp, C, -# C++, D, PHP, Objective-C, Python, Fortran, VHDL, C, C++. For instance to make -# doxygen treat .inc files as Fortran files (default is PHP), and .f files as C -# (default is Fortran), use: inc=Fortran f=C. Note that for custom extensions -# you also need to set FILE_PATTERNS otherwise the files are not read by doxygen. - -EXTENSION_MAPPING = - -# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want -# to include (a tag file for) the STL sources as input, then you should -# set this tag to YES in order to let doxygen match functions declarations and -# definitions whose arguments contain STL classes (e.g. func(std::string); v.s. -# func(std::string) {}). This also makes the inheritance and collaboration -# diagrams that involve STL classes more complete and accurate. - -BUILTIN_STL_SUPPORT = YES - -# If you use Microsoft's C++/CLI language, you should set this option to YES to -# enable parsing support. - -CPP_CLI_SUPPORT = YES - -# Set the SIP_SUPPORT tag to YES if your project consists of sip sources only. -# Doxygen will parse them like normal C++ but will assume all classes use public -# instead of private inheritance when no explicit protection keyword is present. - -SIP_SUPPORT = NO - -# For Microsoft's IDL there are propget and propput attributes to indicate getter -# and setter methods for a property. Setting this option to YES (the default) -# will make doxygen replace the get and set methods by a property in the -# documentation. This will only work if the methods are indeed getting or -# setting a simple type. If this is not the case, or you want to show the -# methods anyway, you should set this option to NO. - -IDL_PROPERTY_SUPPORT = YES - -# If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC -# tag is set to YES, then doxygen will reuse the documentation of the first -# member in the group (if any) for the other members of the group. By default -# all members of a group must be documented explicitly. - -DISTRIBUTE_GROUP_DOC = NO - -# Set the SUBGROUPING tag to YES (the default) to allow class member groups of -# the same type (for instance a group of public functions) to be put as a -# subgroup of that type (e.g. under the Public Functions section). Set it to -# NO to prevent subgrouping. Alternatively, this can be done per class using -# the \nosubgrouping command. - -SUBGROUPING = YES - -# When TYPEDEF_HIDES_STRUCT is enabled, a typedef of a struct, union, or enum -# is documented as struct, union, or enum with the name of the typedef. So -# typedef struct TypeS {} TypeT, will appear in the documentation as a struct -# with name TypeT. When disabled the typedef will appear as a member of a file, -# namespace, or class. And the struct will be named TypeS. This can typically -# be useful for C code in case the coding convention dictates that all compound -# types are typedef'ed and only the typedef is referenced, never the tag name. - -TYPEDEF_HIDES_STRUCT = NO - -# The SYMBOL_CACHE_SIZE determines the size of the internal cache use to -# determine which symbols to keep in memory and which to flush to disk. -# When the cache is full, less often used symbols will be written to disk. -# For small to medium size projects (<1000 input files) the default value is -# probably good enough. For larger projects a too small cache size can cause -# doxygen to be busy swapping symbols to and from disk most of the time -# causing a significant performance penalty. -# If the system has enough physical memory increasing the cache will improve the -# performance by keeping more symbols in memory. Note that the value works on -# a logarithmic scale so increasing the size by one will roughly double the -# memory usage. The cache size is given by this formula: -# 2^(16+SYMBOL_CACHE_SIZE). The valid range is 0..9, the default is 0, -# corresponding to a cache size of 2^16 = 65536 symbols - -SYMBOL_CACHE_SIZE = 0 - -#--------------------------------------------------------------------------- -# Build related configuration options -#--------------------------------------------------------------------------- - -# If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in -# documentation are documented, even if no documentation was available. -# Private class members and static file members will be hidden unless -# the EXTRACT_PRIVATE and EXTRACT_STATIC tags are set to YES - -EXTRACT_ALL = YES - -# If the EXTRACT_PRIVATE tag is set to YES all private members of a class -# will be included in the documentation. - -EXTRACT_PRIVATE = YES - -# If the EXTRACT_STATIC tag is set to YES all static members of a file -# will be included in the documentation. - -EXTRACT_STATIC = YES - -# If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs) -# defined locally in source files will be included in the documentation. -# If set to NO only classes defined in header files are included. - -EXTRACT_LOCAL_CLASSES = YES - -# This flag is only useful for Objective-C code. When set to YES local -# methods, which are defined in the implementation section but not in -# the interface are included in the documentation. -# If set to NO (the default) only methods in the interface are included. - -EXTRACT_LOCAL_METHODS = NO - -# If this flag is set to YES, the members of anonymous namespaces will be -# extracted and appear in the documentation as a namespace called -# 'anonymous_namespace{file}', where file will be replaced with the base -# name of the file that contains the anonymous namespace. By default -# anonymous namespaces are hidden. - -EXTRACT_ANON_NSPACES = YES - -# If the HIDE_UNDOC_MEMBERS tag is set to YES, Doxygen will hide all -# undocumented members of documented classes, files or namespaces. -# If set to NO (the default) these members will be included in the -# various overviews, but no documentation section is generated. -# This option has no effect if EXTRACT_ALL is enabled. - -HIDE_UNDOC_MEMBERS = NO - -# If the HIDE_UNDOC_CLASSES tag is set to YES, Doxygen will hide all -# undocumented classes that are normally visible in the class hierarchy. -# If set to NO (the default) these classes will be included in the various -# overviews. This option has no effect if EXTRACT_ALL is enabled. - -HIDE_UNDOC_CLASSES = NO - -# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, Doxygen will hide all -# friend (class|struct|union) declarations. -# If set to NO (the default) these declarations will be included in the -# documentation. - -HIDE_FRIEND_COMPOUNDS = NO - -# If the HIDE_IN_BODY_DOCS tag is set to YES, Doxygen will hide any -# documentation blocks found inside the body of a function. -# If set to NO (the default) these blocks will be appended to the -# function's detailed documentation block. - -HIDE_IN_BODY_DOCS = NO - -# The INTERNAL_DOCS tag determines if documentation -# that is typed after a \internal command is included. If the tag is set -# to NO (the default) then the documentation will be excluded. -# Set it to YES to include the internal documentation. - -INTERNAL_DOCS = NO - -# If the CASE_SENSE_NAMES tag is set to NO then Doxygen will only generate -# file names in lower-case letters. If set to YES upper-case letters are also -# allowed. This is useful if you have classes or files whose names only differ -# in case and if your file system supports case sensitive file names. Windows -# and Mac users are advised to set this option to NO. - -CASE_SENSE_NAMES = NO - -# If the HIDE_SCOPE_NAMES tag is set to NO (the default) then Doxygen -# will show members with their full class and namespace scopes in the -# documentation. If set to YES the scope will be hidden. - -HIDE_SCOPE_NAMES = NO - -# If the SHOW_INCLUDE_FILES tag is set to YES (the default) then Doxygen -# will put a list of the files that are included by a file in the documentation -# of that file. - -SHOW_INCLUDE_FILES = YES - -# If the FORCE_LOCAL_INCLUDES tag is set to YES then Doxygen -# will list include files with double quotes in the documentation -# rather than with sharp brackets. - -FORCE_LOCAL_INCLUDES = NO - -# If the INLINE_INFO tag is set to YES (the default) then a tag [inline] -# is inserted in the documentation for inline members. - -INLINE_INFO = YES - -# If the SORT_MEMBER_DOCS tag is set to YES (the default) then doxygen -# will sort the (detailed) documentation of file and class members -# alphabetically by member name. If set to NO the members will appear in -# declaration order. - -SORT_MEMBER_DOCS = YES - -# If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the -# brief documentation of file, namespace and class members alphabetically -# by member name. If set to NO (the default) the members will appear in -# declaration order. - -SORT_BRIEF_DOCS = NO - -# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen -# will sort the (brief and detailed) documentation of class members so that -# constructors and destructors are listed first. If set to NO (the default) -# the constructors will appear in the respective orders defined by -# SORT_MEMBER_DOCS and SORT_BRIEF_DOCS. -# This tag will be ignored for brief docs if SORT_BRIEF_DOCS is set to NO -# and ignored for detailed docs if SORT_MEMBER_DOCS is set to NO. - -SORT_MEMBERS_CTORS_1ST = NO - -# If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the -# hierarchy of group names into alphabetical order. If set to NO (the default) -# the group names will appear in their defined order. - -SORT_GROUP_NAMES = NO - -# If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be -# sorted by fully-qualified names, including namespaces. If set to -# NO (the default), the class list will be sorted only by class name, -# not including the namespace part. -# Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES. -# Note: This option applies only to the class list, not to the -# alphabetical list. - -SORT_BY_SCOPE_NAME = NO - -# If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to do proper type resolution of all parameters of a function it will reject a -# match between the prototype and the implementation of a member function even if there is only one candidate or it is obvious which candidate to choose by doing a simple string match. By disabling STRICT_PROTO_MATCHING doxygen -# will still accept a match between prototype and implementation in such cases. - -STRICT_PROTO_MATCHING = NO - -# The GENERATE_TODOLIST tag can be used to enable (YES) or -# disable (NO) the todo list. This list is created by putting \todo -# commands in the documentation. - -GENERATE_TODOLIST = YES - -# The GENERATE_TESTLIST tag can be used to enable (YES) or -# disable (NO) the test list. This list is created by putting \test -# commands in the documentation. - -GENERATE_TESTLIST = YES - -# The GENERATE_BUGLIST tag can be used to enable (YES) or -# disable (NO) the bug list. This list is created by putting \bug -# commands in the documentation. - -GENERATE_BUGLIST = YES - -# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or -# disable (NO) the deprecated list. This list is created by putting -# \deprecated commands in the documentation. - -GENERATE_DEPRECATEDLIST= YES - -# The ENABLED_SECTIONS tag can be used to enable conditional -# documentation sections, marked by \if sectionname ... \endif. - -ENABLED_SECTIONS = - -# The MAX_INITIALIZER_LINES tag determines the maximum number of lines -# the initial value of a variable or macro consists of for it to appear in -# the documentation. If the initializer consists of more lines than specified -# here it will be hidden. Use a value of 0 to hide initializers completely. -# The appearance of the initializer of individual variables and macros in the -# documentation can be controlled using \showinitializer or \hideinitializer -# command in the documentation regardless of this setting. - -MAX_INITIALIZER_LINES = 30 - -# Set the SHOW_USED_FILES tag to NO to disable the list of files generated -# at the bottom of the documentation of classes and structs. If set to YES the -# list will mention the files that were used to generate the documentation. - -SHOW_USED_FILES = YES - -# If the sources in your project are distributed over multiple directories -# then setting the SHOW_DIRECTORIES tag to YES will show the directory hierarchy -# in the documentation. The default is NO. - -SHOW_DIRECTORIES = NO - -# Set the SHOW_FILES tag to NO to disable the generation of the Files page. -# This will remove the Files entry from the Quick Index and from the -# Folder Tree View (if specified). The default is YES. - -SHOW_FILES = YES - -# Set the SHOW_NAMESPACES tag to NO to disable the generation of the -# Namespaces page. -# This will remove the Namespaces entry from the Quick Index -# and from the Folder Tree View (if specified). The default is YES. - -SHOW_NAMESPACES = YES - -# The FILE_VERSION_FILTER tag can be used to specify a program or script that -# doxygen should invoke to get the current version for each file (typically from -# the version control system). Doxygen will invoke the program by executing (via -# popen()) the command , where is the value of -# the FILE_VERSION_FILTER tag, and is the name of an input file -# provided by doxygen. Whatever the program writes to standard output -# is used as the file version. See the manual for examples. - -FILE_VERSION_FILTER = - -# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed -# by doxygen. The layout file controls the global structure of the generated -# output files in an output format independent way. The create the layout file -# that represents doxygen's defaults, run doxygen with the -l option. -# You can optionally specify a file name after the option, if omitted -# DoxygenLayout.xml will be used as the name of the layout file. - -LAYOUT_FILE = - -#--------------------------------------------------------------------------- -# configuration options related to warning and progress messages -#--------------------------------------------------------------------------- - -# The QUIET tag can be used to turn on/off the messages that are generated -# by doxygen. Possible values are YES and NO. If left blank NO is used. - -QUIET = NO - -# The WARNINGS tag can be used to turn on/off the warning messages that are -# generated by doxygen. Possible values are YES and NO. If left blank -# NO is used. - -WARNINGS = YES - -# If WARN_IF_UNDOCUMENTED is set to YES, then doxygen will generate warnings -# for undocumented members. If EXTRACT_ALL is set to YES then this flag will -# automatically be disabled. - -WARN_IF_UNDOCUMENTED = YES - -# If WARN_IF_DOC_ERROR is set to YES, doxygen will generate warnings for -# potential errors in the documentation, such as not documenting some -# parameters in a documented function, or documenting parameters that -# don't exist or using markup commands wrongly. - -WARN_IF_DOC_ERROR = YES - -# The WARN_NO_PARAMDOC option can be enabled to get warnings for -# functions that are documented, but have no documentation for their parameters -# or return value. If set to NO (the default) doxygen will only warn about -# wrong or incomplete parameter documentation, but not about the absence of -# documentation. - -WARN_NO_PARAMDOC = NO - -# The WARN_FORMAT tag determines the format of the warning messages that -# doxygen can produce. The string should contain the $file, $line, and $text -# tags, which will be replaced by the file and line number from which the -# warning originated and the warning text. Optionally the format may contain -# $version, which will be replaced by the version of the file (if it could -# be obtained via FILE_VERSION_FILTER) - -WARN_FORMAT = "$file:$line: $text" - -# The WARN_LOGFILE tag can be used to specify a file to which warning -# and error messages should be written. If left blank the output is written -# to stderr. - -WARN_LOGFILE = - -#--------------------------------------------------------------------------- -# configuration options related to the input files -#--------------------------------------------------------------------------- - -# The INPUT tag can be used to specify the files and/or directories that contain -# documented source files. You may enter file names like "myfile.cpp" or -# directories like "/usr/src/myproject". Separate the files or directories -# with spaces. - -INPUT = ../src ../decnumber ../test/ . - -# This tag can be used to specify the character encoding of the source files -# that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is -# also the default input encoding. Doxygen uses libiconv (or the iconv built -# into libc) for the transcoding. See http://www.gnu.org/software/libiconv for -# the list of possible encodings. - -INPUT_ENCODING = UTF-8 - -# If the value of the INPUT tag contains directories, you can use the -# FILE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp -# and *.h) to filter out the source-files in the directories. If left -# blank the following patterns are tested: -# *.c *.cc *.cxx *.cpp *.c++ *.d *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh -# *.hxx *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.dox *.py -# *.f90 *.f *.for *.vhd *.vhdl - -FILE_PATTERNS = - -# The RECURSIVE tag can be used to turn specify whether or not subdirectories -# should be searched for input files as well. Possible values are YES and NO. -# If left blank NO is used. - -RECURSIVE = YES - -# The EXCLUDE tag can be used to specify files and/or directories that should -# excluded from the INPUT source files. This way you can easily exclude a -# subdirectory from a directory tree whose root is specified with the INPUT tag. - -EXCLUDE = - -# The EXCLUDE_SYMLINKS tag can be used select whether or not files or -# directories that are symbolic links (a Unix file system feature) are excluded -# from the input. - -EXCLUDE_SYMLINKS = NO - -# If the value of the INPUT tag contains directories, you can use the -# EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude -# certain files from those directories. Note that the wildcards are matched -# against the file with absolute path, so to exclude all test directories -# for example use the pattern */test/* - -EXCLUDE_PATTERNS = - -# The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names -# (namespaces, classes, functions, etc.) that should be excluded from the -# output. The symbol name can be a fully qualified name, a word, or if the -# wildcard * is used, a substring. Examples: ANamespace, AClass, -# AClass::ANamespace, ANamespace::*Test - -EXCLUDE_SYMBOLS = - -# The EXAMPLE_PATH tag can be used to specify one or more files or -# directories that contain example code fragments that are included (see -# the \include command). - -EXAMPLE_PATH = - -# If the value of the EXAMPLE_PATH tag contains directories, you can use the -# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp -# and *.h) to filter out the source-files in the directories. If left -# blank all files are included. - -EXAMPLE_PATTERNS = - -# If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be -# searched for input files to be used with the \include or \dontinclude -# commands irrespective of the value of the RECURSIVE tag. -# Possible values are YES and NO. If left blank NO is used. - -EXAMPLE_RECURSIVE = NO - -# The IMAGE_PATH tag can be used to specify one or more files or -# directories that contain image that are included in the documentation (see -# the \image command). - -IMAGE_PATH = - -# The INPUT_FILTER tag can be used to specify a program that doxygen should -# invoke to filter for each input file. Doxygen will invoke the filter program -# by executing (via popen()) the command , where -# is the value of the INPUT_FILTER tag, and is the name of an -# input file. Doxygen will then use the output that the filter program writes -# to standard output. -# If FILTER_PATTERNS is specified, this tag will be -# ignored. - -INPUT_FILTER = - -# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern -# basis. -# Doxygen will compare the file name with each pattern and apply the -# filter if there is a match. -# The filters are a list of the form: -# pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further -# info on how filters are used. If FILTER_PATTERNS is empty or if -# non of the patterns match the file name, INPUT_FILTER is applied. - -FILTER_PATTERNS = - -# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using -# INPUT_FILTER) will be used to filter the input files when producing source -# files to browse (i.e. when SOURCE_BROWSER is set to YES). - -FILTER_SOURCE_FILES = NO - -# The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file -# pattern. A pattern will override the setting for FILTER_PATTERN (if any) -# and it is also possible to disable source filtering for a specific pattern -# using *.ext= (so without naming a filter). This option only has effect when -# FILTER_SOURCE_FILES is enabled. - -FILTER_SOURCE_PATTERNS = - -#--------------------------------------------------------------------------- -# configuration options related to source browsing -#--------------------------------------------------------------------------- - -# If the SOURCE_BROWSER tag is set to YES then a list of source files will -# be generated. Documented entities will be cross-referenced with these sources. -# Note: To get rid of all source code in the generated output, make sure also -# VERBATIM_HEADERS is set to NO. - -SOURCE_BROWSER = YES - -# Setting the INLINE_SOURCES tag to YES will include the body -# of functions and classes directly in the documentation. - -INLINE_SOURCES = YES - -# Setting the STRIP_CODE_COMMENTS tag to YES (the default) will instruct -# doxygen to hide any special comment blocks from generated source code -# fragments. Normal C and C++ comments will always remain visible. - -STRIP_CODE_COMMENTS = YES - -# If the REFERENCED_BY_RELATION tag is set to YES -# then for each documented function all documented -# functions referencing it will be listed. - -REFERENCED_BY_RELATION = NO - -# If the REFERENCES_RELATION tag is set to YES -# then for each documented function all documented entities -# called/used by that function will be listed. - -REFERENCES_RELATION = NO - -# If the REFERENCES_LINK_SOURCE tag is set to YES (the default) -# and SOURCE_BROWSER tag is set to YES, then the hyperlinks from -# functions in REFERENCES_RELATION and REFERENCED_BY_RELATION lists will -# link to the source code. -# Otherwise they will link to the documentation. - -REFERENCES_LINK_SOURCE = YES - -# If the USE_HTAGS tag is set to YES then the references to source code -# will point to the HTML generated by the htags(1) tool instead of doxygen -# built-in source browser. The htags tool is part of GNU's global source -# tagging system (see http://www.gnu.org/software/global/global.html). You -# will need version 4.8.6 or higher. - -USE_HTAGS = NO - -# If the VERBATIM_HEADERS tag is set to YES (the default) then Doxygen -# will generate a verbatim copy of the header file for each class for -# which an include is specified. Set to NO to disable this. - -VERBATIM_HEADERS = YES - -#--------------------------------------------------------------------------- -# configuration options related to the alphabetical class index -#--------------------------------------------------------------------------- - -# If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index -# of all compounds will be generated. Enable this if the project -# contains a lot of classes, structs, unions or interfaces. - -ALPHABETICAL_INDEX = YES - -# If the alphabetical index is enabled (see ALPHABETICAL_INDEX) then -# the COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns -# in which this list will be split (can be a number in the range [1..20]) - -COLS_IN_ALPHA_INDEX = 5 - -# In case all classes in a project start with a common prefix, all -# classes will be put under the same header in the alphabetical index. -# The IGNORE_PREFIX tag can be used to specify one or more prefixes that -# should be ignored while generating the index headers. - -IGNORE_PREFIX = - -#--------------------------------------------------------------------------- -# configuration options related to the HTML output -#--------------------------------------------------------------------------- - -# If the GENERATE_HTML tag is set to YES (the default) Doxygen will -# generate HTML output. - -GENERATE_HTML = YES - -# The HTML_OUTPUT tag is used to specify where the HTML docs will be put. -# If a relative path is entered the value of OUTPUT_DIRECTORY will be -# put in front of it. If left blank `html' will be used as the default path. - -HTML_OUTPUT = html - -# The HTML_FILE_EXTENSION tag can be used to specify the file extension for -# each generated HTML page (for example: .htm,.php,.asp). If it is left blank -# doxygen will generate files with .html extension. - -HTML_FILE_EXTENSION = .html - -# The HTML_HEADER tag can be used to specify a personal HTML header for -# each generated HTML page. If it is left blank doxygen will generate a -# standard header. - -HTML_HEADER = - -# The HTML_FOOTER tag can be used to specify a personal HTML footer for -# each generated HTML page. If it is left blank doxygen will generate a -# standard footer. - -HTML_FOOTER = - -# The HTML_STYLESHEET tag can be used to specify a user-defined cascading -# style sheet that is used by each HTML page. It can be used to -# fine-tune the look of the HTML output. If the tag is left blank doxygen -# will generate a default style sheet. Note that doxygen will try to copy -# the style sheet file to the HTML output directory, so don't put your own -# stylesheet in the HTML output directory as well, or it will be erased! - -HTML_STYLESHEET = - -# The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. -# Doxygen will adjust the colors in the stylesheet and background images -# according to this color. Hue is specified as an angle on a colorwheel, -# see http://en.wikipedia.org/wiki/Hue for more information. -# For instance the value 0 represents red, 60 is yellow, 120 is green, -# 180 is cyan, 240 is blue, 300 purple, and 360 is red again. -# The allowed range is 0 to 359. - -HTML_COLORSTYLE_HUE = 220 - -# The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of -# the colors in the HTML output. For a value of 0 the output will use -# grayscales only. A value of 255 will produce the most vivid colors. - -HTML_COLORSTYLE_SAT = 100 - -# The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to -# the luminance component of the colors in the HTML output. Values below -# 100 gradually make the output lighter, whereas values above 100 make -# the output darker. The value divided by 100 is the actual gamma applied, -# so 80 represents a gamma of 0.8, The value 220 represents a gamma of 2.2, -# and 100 does not change the gamma. - -HTML_COLORSTYLE_GAMMA = 80 - -# If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML -# page will contain the date and time when the page was generated. Setting -# this to NO can help when comparing the output of multiple runs. - -HTML_TIMESTAMP = YES - -# If the HTML_ALIGN_MEMBERS tag is set to YES, the members of classes, -# files or namespaces will be aligned in HTML using tables. If set to -# NO a bullet list will be used. - -HTML_ALIGN_MEMBERS = YES - -# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML -# documentation will contain sections that can be hidden and shown after the -# page has loaded. For this to work a browser that supports -# JavaScript and DHTML is required (for instance Mozilla 1.0+, Firefox -# Netscape 6.0+, Internet explorer 5.0+, Konqueror, or Safari). - -HTML_DYNAMIC_SECTIONS = NO - -# If the GENERATE_DOCSET tag is set to YES, additional index files -# will be generated that can be used as input for Apple's Xcode 3 -# integrated development environment, introduced with OSX 10.5 (Leopard). -# To create a documentation set, doxygen will generate a Makefile in the -# HTML output directory. Running make will produce the docset in that -# directory and running "make install" will install the docset in -# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find -# it at startup. -# See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html -# for more information. - -GENERATE_DOCSET = NO - -# When GENERATE_DOCSET tag is set to YES, this tag determines the name of the -# feed. A documentation feed provides an umbrella under which multiple -# documentation sets from a single provider (such as a company or product suite) -# can be grouped. - -DOCSET_FEEDNAME = "Doxygen generated docs" - -# When GENERATE_DOCSET tag is set to YES, this tag specifies a string that -# should uniquely identify the documentation set bundle. This should be a -# reverse domain-name style string, e.g. com.mycompany.MyDocSet. Doxygen -# will append .docset to the name. - -DOCSET_BUNDLE_ID = org.doxygen.Project - -# When GENERATE_PUBLISHER_ID tag specifies a string that should uniquely identify -# the documentation publisher. This should be a reverse domain-name style -# string, e.g. com.mycompany.MyDocSet.documentation. - -DOCSET_PUBLISHER_ID = org.doxygen.Publisher - -# The GENERATE_PUBLISHER_NAME tag identifies the documentation publisher. - -DOCSET_PUBLISHER_NAME = Publisher - -# If the GENERATE_HTMLHELP tag is set to YES, additional index files -# will be generated that can be used as input for tools like the -# Microsoft HTML help workshop to generate a compiled HTML help file (.chm) -# of the generated HTML documentation. - -GENERATE_HTMLHELP = NO - -# If the GENERATE_HTMLHELP tag is set to YES, the CHM_FILE tag can -# be used to specify the file name of the resulting .chm file. You -# can add a path in front of the file if the result should not be -# written to the html output directory. - -CHM_FILE = - -# If the GENERATE_HTMLHELP tag is set to YES, the HHC_LOCATION tag can -# be used to specify the location (absolute path including file name) of -# the HTML help compiler (hhc.exe). If non-empty doxygen will try to run -# the HTML help compiler on the generated index.hhp. - -HHC_LOCATION = - -# If the GENERATE_HTMLHELP tag is set to YES, the GENERATE_CHI flag -# controls if a separate .chi index file is generated (YES) or that -# it should be included in the master .chm file (NO). - -GENERATE_CHI = NO - -# If the GENERATE_HTMLHELP tag is set to YES, the CHM_INDEX_ENCODING -# is used to encode HtmlHelp index (hhk), content (hhc) and project file -# content. - -CHM_INDEX_ENCODING = - -# If the GENERATE_HTMLHELP tag is set to YES, the BINARY_TOC flag -# controls whether a binary table of contents is generated (YES) or a -# normal table of contents (NO) in the .chm file. - -BINARY_TOC = NO - -# The TOC_EXPAND flag can be set to YES to add extra items for group members -# to the contents of the HTML help documentation and to the tree view. - -TOC_EXPAND = NO - -# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and -# QHP_VIRTUAL_FOLDER are set, an additional index file will be generated -# that can be used as input for Qt's qhelpgenerator to generate a -# Qt Compressed Help (.qch) of the generated HTML documentation. - -GENERATE_QHP = NO - -# If the QHG_LOCATION tag is specified, the QCH_FILE tag can -# be used to specify the file name of the resulting .qch file. -# The path specified is relative to the HTML output folder. - -QCH_FILE = - -# The QHP_NAMESPACE tag specifies the namespace to use when generating -# Qt Help Project output. For more information please see -# http://doc.trolltech.com/qthelpproject.html#namespace - -QHP_NAMESPACE = org.doxygen.Project - -# The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating -# Qt Help Project output. For more information please see -# http://doc.trolltech.com/qthelpproject.html#virtual-folders - -QHP_VIRTUAL_FOLDER = doc - -# If QHP_CUST_FILTER_NAME is set, it specifies the name of a custom filter to -# add. For more information please see -# http://doc.trolltech.com/qthelpproject.html#custom-filters - -QHP_CUST_FILTER_NAME = - -# The QHP_CUST_FILT_ATTRS tag specifies the list of the attributes of the -# custom filter to add. For more information please see -# -# Qt Help Project / Custom Filters. - -QHP_CUST_FILTER_ATTRS = - -# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this -# project's -# filter section matches. -# -# Qt Help Project / Filter Attributes. - -QHP_SECT_FILTER_ATTRS = - -# If the GENERATE_QHP tag is set to YES, the QHG_LOCATION tag can -# be used to specify the location of Qt's qhelpgenerator. -# If non-empty doxygen will try to run qhelpgenerator on the generated -# .qhp file. - -QHG_LOCATION = - -# If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files -# will be generated, which together with the HTML files, form an Eclipse help -# plugin. To install this plugin and make it available under the help contents -# menu in Eclipse, the contents of the directory containing the HTML and XML -# files needs to be copied into the plugins directory of eclipse. The name of -# the directory within the plugins directory should be the same as -# the ECLIPSE_DOC_ID value. After copying Eclipse needs to be restarted before -# the help appears. - -GENERATE_ECLIPSEHELP = NO - -# A unique identifier for the eclipse help plugin. When installing the plugin -# the directory name containing the HTML and XML files should also have -# this name. - -ECLIPSE_DOC_ID = org.doxygen.Project - -# The DISABLE_INDEX tag can be used to turn on/off the condensed index at -# top of each HTML page. The value NO (the default) enables the index and -# the value YES disables it. - -DISABLE_INDEX = NO - -# This tag can be used to set the number of enum values (range [0,1..20]) -# that doxygen will group on one line in the generated HTML documentation. -# Note that a value of 0 will completely suppress the enum values from appearing in the overview section. - -ENUM_VALUES_PER_LINE = 4 - -# The GENERATE_TREEVIEW tag is used to specify whether a tree-like index -# structure should be generated to display hierarchical information. -# If the tag value is set to YES, a side panel will be generated -# containing a tree-like index structure (just like the one that -# is generated for HTML Help). For this to work a browser that supports -# JavaScript, DHTML, CSS and frames is required (i.e. any modern browser). -# Windows users are probably better off using the HTML help feature. - -GENERATE_TREEVIEW = NO - -# By enabling USE_INLINE_TREES, doxygen will generate the Groups, Directories, -# and Class Hierarchy pages using a tree view instead of an ordered list. - -USE_INLINE_TREES = NO - -# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be -# used to set the initial width (in pixels) of the frame in which the tree -# is shown. - -TREEVIEW_WIDTH = 250 - -# When the EXT_LINKS_IN_WINDOW option is set to YES doxygen will open -# links to external symbols imported via tag files in a separate window. - -EXT_LINKS_IN_WINDOW = NO - -# Use this tag to change the font size of Latex formulas included -# as images in the HTML documentation. The default is 10. Note that -# when you change the font size after a successful doxygen run you need -# to manually remove any form_*.png images from the HTML output directory -# to force them to be regenerated. - -FORMULA_FONTSIZE = 10 - -# Use the FORMULA_TRANPARENT tag to determine whether or not the images -# generated for formulas are transparent PNGs. Transparent PNGs are -# not supported properly for IE 6.0, but are supported on all modern browsers. -# Note that when changing this option you need to delete any form_*.png files -# in the HTML output before the changes have effect. - -FORMULA_TRANSPARENT = YES - -# Enable the USE_MATHJAX option to render LaTeX formulas using MathJax -# (see http://www.mathjax.org) which uses client side Javascript for the -# rendering instead of using prerendered bitmaps. Use this if you do not -# have LaTeX installed or if you want to formulas look prettier in the HTML -# output. When enabled you also need to install MathJax separately and -# configure the path to it using the MATHJAX_RELPATH option. - -USE_MATHJAX = NO - -# When MathJax is enabled you need to specify the location relative to the -# HTML output directory using the MATHJAX_RELPATH option. The destination -# directory should contain the MathJax.js script. For instance, if the mathjax -# directory is located at the same level as the HTML output directory, then -# MATHJAX_RELPATH should be ../mathjax. The default value points to the mathjax.org site, so you can quickly see the result without installing -# MathJax, but it is strongly recommended to install a local copy of MathJax -# before deployment. - -MATHJAX_RELPATH = http://www.mathjax.org/mathjax - -# When the SEARCHENGINE tag is enabled doxygen will generate a search box -# for the HTML output. The underlying search engine uses javascript -# and DHTML and should work on any modern browser. Note that when using -# HTML help (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets -# (GENERATE_DOCSET) there is already a search function so this one should -# typically be disabled. For large projects the javascript based search engine -# can be slow, then enabling SERVER_BASED_SEARCH may provide a better solution. - -SEARCHENGINE = YES - -# When the SERVER_BASED_SEARCH tag is enabled the search engine will be -# implemented using a PHP enabled web server instead of at the web client -# using Javascript. Doxygen will generate the search PHP script and index -# file to put on the web server. The advantage of the server -# based approach is that it scales better to large projects and allows -# full text search. The disadvantages are that it is more difficult to setup -# and does not have live searching capabilities. - -SERVER_BASED_SEARCH = NO - -#--------------------------------------------------------------------------- -# configuration options related to the LaTeX output -#--------------------------------------------------------------------------- - -# If the GENERATE_LATEX tag is set to YES (the default) Doxygen will -# generate Latex output. - -GENERATE_LATEX = NO - -# The LATEX_OUTPUT tag is used to specify where the LaTeX docs will be put. -# If a relative path is entered the value of OUTPUT_DIRECTORY will be -# put in front of it. If left blank `latex' will be used as the default path. - -LATEX_OUTPUT = latex - -# The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be -# invoked. If left blank `latex' will be used as the default command name. -# Note that when enabling USE_PDFLATEX this option is only used for -# generating bitmaps for formulas in the HTML output, but not in the -# Makefile that is written to the output directory. - -LATEX_CMD_NAME = latex - -# The MAKEINDEX_CMD_NAME tag can be used to specify the command name to -# generate index for LaTeX. If left blank `makeindex' will be used as the -# default command name. - -MAKEINDEX_CMD_NAME = makeindex - -# If the COMPACT_LATEX tag is set to YES Doxygen generates more compact -# LaTeX documents. This may be useful for small projects and may help to -# save some trees in general. - -COMPACT_LATEX = NO - -# The PAPER_TYPE tag can be used to set the paper type that is used -# by the printer. Possible values are: a4, letter, legal and -# executive. If left blank a4wide will be used. - -PAPER_TYPE = a4 - -# The EXTRA_PACKAGES tag can be to specify one or more names of LaTeX -# packages that should be included in the LaTeX output. - -EXTRA_PACKAGES = - -# The LATEX_HEADER tag can be used to specify a personal LaTeX header for -# the generated latex document. The header should contain everything until -# the first chapter. If it is left blank doxygen will generate a -# standard header. Notice: only use this tag if you know what you are doing! - -LATEX_HEADER = - -# If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated -# is prepared for conversion to pdf (using ps2pdf). The pdf file will -# contain links (just like the HTML output) instead of page references -# This makes the output suitable for online browsing using a pdf viewer. - -PDF_HYPERLINKS = YES - -# If the USE_PDFLATEX tag is set to YES, pdflatex will be used instead of -# plain latex in the generated Makefile. Set this option to YES to get a -# higher quality PDF documentation. - -USE_PDFLATEX = YES - -# If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \\batchmode. -# command to the generated LaTeX files. This will instruct LaTeX to keep -# running if errors occur, instead of asking the user for help. -# This option is also used when generating formulas in HTML. - -LATEX_BATCHMODE = NO - -# If LATEX_HIDE_INDICES is set to YES then doxygen will not -# include the index chapters (such as File Index, Compound Index, etc.) -# in the output. - -LATEX_HIDE_INDICES = NO - -# If LATEX_SOURCE_CODE is set to YES then doxygen will include -# source code with syntax highlighting in the LaTeX output. -# Note that which sources are shown also depends on other settings -# such as SOURCE_BROWSER. - -LATEX_SOURCE_CODE = NO - -#--------------------------------------------------------------------------- -# configuration options related to the RTF output -#--------------------------------------------------------------------------- - -# If the GENERATE_RTF tag is set to YES Doxygen will generate RTF output -# The RTF output is optimized for Word 97 and may not look very pretty with -# other RTF readers or editors. - -GENERATE_RTF = NO - -# The RTF_OUTPUT tag is used to specify where the RTF docs will be put. -# If a relative path is entered the value of OUTPUT_DIRECTORY will be -# put in front of it. If left blank `rtf' will be used as the default path. - -RTF_OUTPUT = rtf - -# If the COMPACT_RTF tag is set to YES Doxygen generates more compact -# RTF documents. This may be useful for small projects and may help to -# save some trees in general. - -COMPACT_RTF = NO - -# If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated -# will contain hyperlink fields. The RTF file will -# contain links (just like the HTML output) instead of page references. -# This makes the output suitable for online browsing using WORD or other -# programs which support those fields. -# Note: wordpad (write) and others do not support links. - -RTF_HYPERLINKS = NO - -# Load stylesheet definitions from file. Syntax is similar to doxygen's -# config file, i.e. a series of assignments. You only have to provide -# replacements, missing definitions are set to their default value. - -RTF_STYLESHEET_FILE = - -# Set optional variables used in the generation of an rtf document. -# Syntax is similar to doxygen's config file. - -RTF_EXTENSIONS_FILE = - -#--------------------------------------------------------------------------- -# configuration options related to the man page output -#--------------------------------------------------------------------------- - -# If the GENERATE_MAN tag is set to YES (the default) Doxygen will -# generate man pages - -GENERATE_MAN = NO - -# The MAN_OUTPUT tag is used to specify where the man pages will be put. -# If a relative path is entered the value of OUTPUT_DIRECTORY will be -# put in front of it. If left blank `man' will be used as the default path. - -MAN_OUTPUT = man - -# The MAN_EXTENSION tag determines the extension that is added to -# the generated man pages (default is the subroutine's section .3) - -MAN_EXTENSION = .3 - -# If the MAN_LINKS tag is set to YES and Doxygen generates man output, -# then it will generate one additional man file for each entity -# documented in the real man page(s). These additional files -# only source the real man page, but without them the man command -# would be unable to find the correct page. The default is NO. - -MAN_LINKS = NO - -#--------------------------------------------------------------------------- -# configuration options related to the XML output -#--------------------------------------------------------------------------- - -# If the GENERATE_XML tag is set to YES Doxygen will -# generate an XML file that captures the structure of -# the code including all documentation. - -GENERATE_XML = NO - -# The XML_OUTPUT tag is used to specify where the XML pages will be put. -# If a relative path is entered the value of OUTPUT_DIRECTORY will be -# put in front of it. If left blank `xml' will be used as the default path. - -XML_OUTPUT = xml - -# The XML_SCHEMA tag can be used to specify an XML schema, -# which can be used by a validating XML parser to check the -# syntax of the XML files. - -XML_SCHEMA = - -# The XML_DTD tag can be used to specify an XML DTD, -# which can be used by a validating XML parser to check the -# syntax of the XML files. - -XML_DTD = - -# If the XML_PROGRAMLISTING tag is set to YES Doxygen will -# dump the program listings (including syntax highlighting -# and cross-referencing information) to the XML output. Note that -# enabling this will significantly increase the size of the XML output. - -XML_PROGRAMLISTING = YES - -#--------------------------------------------------------------------------- -# configuration options for the AutoGen Definitions output -#--------------------------------------------------------------------------- - -# If the GENERATE_AUTOGEN_DEF tag is set to YES Doxygen will -# generate an AutoGen Definitions (see autogen.sf.net) file -# that captures the structure of the code including all -# documentation. Note that this feature is still experimental -# and incomplete at the moment. - -GENERATE_AUTOGEN_DEF = NO - -#--------------------------------------------------------------------------- -# configuration options related to the Perl module output -#--------------------------------------------------------------------------- - -# If the GENERATE_PERLMOD tag is set to YES Doxygen will -# generate a Perl module file that captures the structure of -# the code including all documentation. Note that this -# feature is still experimental and incomplete at the -# moment. - -GENERATE_PERLMOD = NO - -# If the PERLMOD_LATEX tag is set to YES Doxygen will generate -# the necessary Makefile rules, Perl scripts and LaTeX code to be able -# to generate PDF and DVI output from the Perl module output. - -PERLMOD_LATEX = NO - -# If the PERLMOD_PRETTY tag is set to YES the Perl module output will be -# nicely formatted so it can be parsed by a human reader. -# This is useful -# if you want to understand what is going on. -# On the other hand, if this -# tag is set to NO the size of the Perl module output will be much smaller -# and Perl will parse it just the same. - -PERLMOD_PRETTY = YES - -# The names of the make variables in the generated doxyrules.make file -# are prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX. -# This is useful so different doxyrules.make files included by the same -# Makefile don't overwrite each other's variables. - -PERLMOD_MAKEVAR_PREFIX = - -#--------------------------------------------------------------------------- -# Configuration options related to the preprocessor -#--------------------------------------------------------------------------- - -# If the ENABLE_PREPROCESSING tag is set to YES (the default) Doxygen will -# evaluate all C-preprocessor directives found in the sources and include -# files. - -ENABLE_PREPROCESSING = YES - -# If the MACRO_EXPANSION tag is set to YES Doxygen will expand all macro -# names in the source code. If set to NO (the default) only conditional -# compilation will be performed. Macro expansion can be done in a controlled -# way by setting EXPAND_ONLY_PREDEF to YES. - -MACRO_EXPANSION = NO - -# If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES -# then the macro expansion is limited to the macros specified with the -# PREDEFINED and EXPAND_AS_DEFINED tags. - -EXPAND_ONLY_PREDEF = NO - -# If the SEARCH_INCLUDES tag is set to YES (the default) the includes files -# in the INCLUDE_PATH (see below) will be search if a #include is found. - -SEARCH_INCLUDES = YES - -# The INCLUDE_PATH tag can be used to specify one or more directories that -# contain include files that are not input files but should be processed by -# the preprocessor. - -INCLUDE_PATH = - -# You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard -# patterns (like *.h and *.hpp) to filter out the header-files in the -# directories. If left blank, the patterns specified with FILE_PATTERNS will -# be used. - -INCLUDE_FILE_PATTERNS = - -# The PREDEFINED tag can be used to specify one or more macro names that -# are defined before the preprocessor is started (similar to the -D option of -# gcc). The argument of the tag is a list of macros of the form: name -# or name=definition (no spaces). If the definition and the = are -# omitted =1 is assumed. To prevent a macro definition from being -# undefined via #undef or recursively expanded use the := operator -# instead of the = operator. - -PREDEFINED = - -# If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then -# this tag can be used to specify a list of macro names that should be expanded. -# The macro definition that is found in the sources will be used. -# Use the PREDEFINED tag if you want to use a different macro definition that overrules the definition found in the source code. - -EXPAND_AS_DEFINED = - -# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then -# doxygen's preprocessor will remove all references to function-like macros -# that are alone on a line, have an all uppercase name, and do not end with a -# semicolon, because these will confuse the parser if not removed. - -SKIP_FUNCTION_MACROS = YES - -#--------------------------------------------------------------------------- -# Configuration::additions related to external references -#--------------------------------------------------------------------------- - -# The TAGFILES option can be used to specify one or more tagfiles. -# Optionally an initial location of the external documentation -# can be added for each tagfile. The format of a tag file without -# this location is as follows: -# -# TAGFILES = file1 file2 ... -# Adding location for the tag files is done as follows: -# -# TAGFILES = file1=loc1 "file2 = loc2" ... -# where "loc1" and "loc2" can be relative or absolute paths or -# URLs. If a location is present for each tag, the installdox tool -# does not have to be run to correct the links. -# Note that each tag file must have a unique name -# (where the name does NOT include the path) -# If a tag file is not located in the directory in which doxygen -# is run, you must also specify the path to the tagfile here. - -TAGFILES = - -# When a file name is specified after GENERATE_TAGFILE, doxygen will create -# a tag file that is based on the input files it reads. - -GENERATE_TAGFILE = - -# If the ALLEXTERNALS tag is set to YES all external classes will be listed -# in the class index. If set to NO only the inherited external classes -# will be listed. - -ALLEXTERNALS = NO - -# If the EXTERNAL_GROUPS tag is set to YES all external groups will be listed -# in the modules index. If set to NO, only the current project's groups will -# be listed. - -EXTERNAL_GROUPS = YES - -# The PERL_PATH should be the absolute path and name of the perl script -# interpreter (i.e. the result of `which perl'). - -PERL_PATH = /usr/bin/perl - -#--------------------------------------------------------------------------- -# Configuration options related to the dot tool -#--------------------------------------------------------------------------- - -# If the CLASS_DIAGRAMS tag is set to YES (the default) Doxygen will -# generate a inheritance diagram (in HTML, RTF and LaTeX) for classes with base -# or super classes. Setting the tag to NO turns the diagrams off. Note that -# this option also works with HAVE_DOT disabled, but it is recommended to -# install and use dot, since it yields more powerful graphs. - -CLASS_DIAGRAMS = YES - -# You can define message sequence charts within doxygen comments using the \msc -# command. Doxygen will then run the mscgen tool (see -# http://www.mcternan.me.uk/mscgen/) to produce the chart and insert it in the -# documentation. The MSCGEN_PATH tag allows you to specify the directory where -# the mscgen tool resides. If left empty the tool is assumed to be found in the -# default search path. - -MSCGEN_PATH = - -# If set to YES, the inheritance and collaboration graphs will hide -# inheritance and usage relations if the target is undocumented -# or is not a class. - -HIDE_UNDOC_RELATIONS = YES - -# If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is -# available from the path. This tool is part of Graphviz, a graph visualization -# toolkit from AT&T and Lucent Bell Labs. The other options in this section -# have no effect if this option is set to NO (the default) - -HAVE_DOT = YES - -# The DOT_NUM_THREADS specifies the number of dot invocations doxygen is -# allowed to run in parallel. When set to 0 (the default) doxygen will -# base this on the number of processors available in the system. You can set it -# explicitly to a value larger than 0 to get control over the balance -# between CPU load and processing speed. - -DOT_NUM_THREADS = 0 - -# By default doxygen will write a font called Helvetica to the output -# directory and reference it in all dot files that doxygen generates. -# When you want a differently looking font you can specify the font name -# using DOT_FONTNAME. You need to make sure dot is able to find the font, -# which can be done by putting it in a standard location or by setting the -# DOTFONTPATH environment variable or by setting DOT_FONTPATH to the directory -# containing the font. - -DOT_FONTNAME = Helvetica - -# The DOT_FONTSIZE tag can be used to set the size of the font of dot graphs. -# The default size is 10pt. - -DOT_FONTSIZE = 10 - -# By default doxygen will tell dot to use the output directory to look for the -# FreeSans.ttf font (which doxygen will put there itself). If you specify a -# different font using DOT_FONTNAME you can set the path where dot -# can find it using this tag. - -DOT_FONTPATH = - -# If the CLASS_GRAPH and HAVE_DOT tags are set to YES then doxygen -# will generate a graph for each documented class showing the direct and -# indirect inheritance relations. Setting this tag to YES will force the -# the CLASS_DIAGRAMS tag to NO. - -CLASS_GRAPH = YES - -# If the COLLABORATION_GRAPH and HAVE_DOT tags are set to YES then doxygen -# will generate a graph for each documented class showing the direct and -# indirect implementation dependencies (inheritance, containment, and -# class references variables) of the class with other documented classes. - -COLLABORATION_GRAPH = YES - -# If the GROUP_GRAPHS and HAVE_DOT tags are set to YES then doxygen -# will generate a graph for groups, showing the direct groups dependencies - -GROUP_GRAPHS = YES - -# If the UML_LOOK tag is set to YES doxygen will generate inheritance and -# collaboration diagrams in a style similar to the OMG's Unified Modeling -# Language. - -UML_LOOK = NO - -# If set to YES, the inheritance and collaboration graphs will show the -# relations between templates and their instances. - -TEMPLATE_RELATIONS = NO - -# If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDE_GRAPH, and HAVE_DOT -# tags are set to YES then doxygen will generate a graph for each documented -# file showing the direct and indirect include dependencies of the file with -# other documented files. - -INCLUDE_GRAPH = YES - -# If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDED_BY_GRAPH, and -# HAVE_DOT tags are set to YES then doxygen will generate a graph for each -# documented header file showing the documented files that directly or -# indirectly include this file. - -INCLUDED_BY_GRAPH = YES - -# If the CALL_GRAPH and HAVE_DOT options are set to YES then -# doxygen will generate a call dependency graph for every global function -# or class method. Note that enabling this option will significantly increase -# the time of a run. So in most cases it will be better to enable call graphs -# for selected functions only using the \callgraph command. - -CALL_GRAPH = NO - -# If the CALLER_GRAPH and HAVE_DOT tags are set to YES then -# doxygen will generate a caller dependency graph for every global function -# or class method. Note that enabling this option will significantly increase -# the time of a run. So in most cases it will be better to enable caller -# graphs for selected functions only using the \callergraph command. - -CALLER_GRAPH = NO - -# If the GRAPHICAL_HIERARCHY and HAVE_DOT tags are set to YES then doxygen -# will generate a graphical hierarchy of all classes instead of a textual one. - -GRAPHICAL_HIERARCHY = YES - -# If the DIRECTORY_GRAPH, SHOW_DIRECTORIES and HAVE_DOT tags are set to YES -# then doxygen will show the dependencies a directory has on other directories -# in a graphical way. The dependency relations are determined by the #include -# relations between the files in the directories. - -DIRECTORY_GRAPH = YES - -# The DOT_IMAGE_FORMAT tag can be used to set the image format of the images -# generated by dot. Possible values are png, svg, gif or svg. -# If left blank png will be used. - -DOT_IMAGE_FORMAT = png - -# The tag DOT_PATH can be used to specify the path where the dot tool can be -# found. If left blank, it is assumed the dot tool can be found in the path. - -DOT_PATH = - -# The DOTFILE_DIRS tag can be used to specify one or more directories that -# contain dot files that are included in the documentation (see the -# \dotfile command). - -DOTFILE_DIRS = - -# The MSCFILE_DIRS tag can be used to specify one or more directories that -# contain msc files that are included in the documentation (see the -# \mscfile command). - -MSCFILE_DIRS = - -# The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of -# nodes that will be shown in the graph. If the number of nodes in a graph -# becomes larger than this value, doxygen will truncate the graph, which is -# visualized by representing a node as a red box. Note that doxygen if the -# number of direct children of the root node in a graph is already larger than -# DOT_GRAPH_MAX_NODES then the graph will not be shown at all. Also note -# that the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH. - -DOT_GRAPH_MAX_NODES = 50 - -# The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the -# graphs generated by dot. A depth value of 3 means that only nodes reachable -# from the root by following a path via at most 3 edges will be shown. Nodes -# that lay further from the root node will be omitted. Note that setting this -# option to 1 or 2 may greatly reduce the computation time needed for large -# code bases. Also note that the size of a graph can be further restricted by -# DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction. - -MAX_DOT_GRAPH_DEPTH = 0 - -# Set the DOT_TRANSPARENT tag to YES to generate images with a transparent -# background. This is disabled by default, because dot on Windows does not -# seem to support this out of the box. Warning: Depending on the platform used, -# enabling this option may lead to badly anti-aliased labels on the edges of -# a graph (i.e. they become hard to read). - -DOT_TRANSPARENT = NO - -# Set the DOT_MULTI_TARGETS tag to YES allow dot to generate multiple output -# files in one run (i.e. multiple -o and -T options on the command line). This -# makes dot run faster, but since only newer versions of dot (>1.8.10) -# support this, this feature is disabled by default. - -DOT_MULTI_TARGETS = NO - -# If the GENERATE_LEGEND tag is set to YES (the default) Doxygen will -# generate a legend page explaining the meaning of the various boxes and -# arrows in the dot generated graphs. - -GENERATE_LEGEND = YES - -# If the DOT_CLEANUP tag is set to YES (the default) Doxygen will -# remove the intermediate dot files that are used to generate -# the various graphs. - -DOT_CLEANUP = YES diff --git a/qdecimal/doc/main.dox b/qdecimal/doc/main.dox deleted file mode 100644 index 9b67763..0000000 --- a/qdecimal/doc/main.dox +++ /dev/null @@ -1,100 +0,0 @@ -/* - This file contains NO source code, just some documentation for doxygen to - parse. - (c) Semih Cemiloglu -*/ - -/*! - \mainpage QDecimal - Decimal Arithmetic Library for Qt Framework - -The QDecimal is a thin layer around IBM's decNumber library which implements the General Decimal Arithmetic Specification in ANSI C. [1] -This specification defines a decimal arithmetic which meets the requirements of commercial, financial, and human-oriented applications. It also matches the decimal arithmetic in the IEEE 754 Standard for Floating Point Arithmetic. -The decNumber library also matches the decimal arithmetic in the IEEE 754 Standard for Floating Point Arithmetic. - -The QDecimal/decNumberlibrary [2] fully implements the specification, and hence supports integer, fixed-point, and floating-point decimal numbers directly, including infinite, NaN (Not a Number), and subnormal values. Both arbitrary-precision and fixed-size representations are supported. - - -The aim of the QDecimal library is to extend decNumber functionality to C++ language and Qt framework by using idioms, tecniques and best practices in both tecnologies. For instance, inline functions are used heavily to aid optimization, operator overloading and conversion operators are defined to aid type casting in between the types defined by QDecimal. Further these types are integrated with Qt object model by introducing them to Qt meta type system. - - -Following classes are defined by QDecimal library: - - -QDecNumber (based on decNumber): - -decNumber module uses an arbitrary-precision decimal number representation designed for efficient computation in software and implements the arithmetic and logical operations, together with a number of conversions and utilities. Once a number is held as a decNumber, no further conversions are necessary to carry out arithmetic. -The decNumber representation is variable-length and machine-dependent (for example, it contains integers which may be big-endian or little-endian). -QDecNumber encapsulates decNumber and reimplements global functions that operates upon decNumber as member functions with the same name. - - -QDecContext (based on decContext): - -Most functions in the decNumber module take as an argument a decContext structure, which provides the context for operations (precision, rounding mode, etc.) and also controls the handling of exceptional conditions (corresponding to the flags and trap enablers in a hardware floating-point implementation). - - -QDecSingle (based on decSingle/decimal32): - -decimal32 is a 32-bit decimal floating-point representation which provides 7 decimal digits of precision in a compressed format. -decSingle module provides the functions for the decimal32 format; this format is intended for storage and interchange only and so the module provides utilities and conversions but no arithmetic functions. -QDecSingle encapsulates decSingle and provides decNumber library functions that operates upon decSingle as member functions with the same name. - - -QDecDouble (based on decDouble/decimal64): - -decimal64 is a 64-bit decimal floating-point representation which provides 16 decimal digits of precision in a compressed format. -decDouble module provides the functions for the decimal64 format; this format is an IEEE 754 basic format and so a full set of arithmetic and other functions is included. -QDecDouble encapsulates decDouble and provides decNumber library functions that operates upon decSingle as member functions with the same name. - - -QDecQuad (based on decQuad/decimal128): - -decimal128 is a 128-bit decimal floating-point representation which provides 34 decimal digits of precision in a compressed format. -decQuad module provides the functions for the decimal128 format; this format is an IEEE 754 basic format; it contains the same set of functions as decDouble. -QDecQuad encapsulates decQuad and provides decNumber library functions that operates upon decSingle as member functions with the same name. - - -QDecPacked (based on decPacked): - -The decPacked format is the classic packed decimal format implemented by IBM S/360 and later machines, where each digit is encoded as a 4-bit binary sequence (BCD) and a number is ended by a 4-bit sign indicator. The decPacked module accepts variable lengths, allowing for very large numbers (up to a billion digits), and also allows the specification of a scale. -QDecPacked augments decPacked by encapsulating reference counted byte -array and scale of the decimal point as members variables, thus, freeing up -user of this class from memory management and keeping track of scale value. - -\section license License - -QDecimal is under the terms of the LGPL v2.1. - -decNumber is under the terms of ICU v1.8.1 - -See COPYRIGHT file for terms of the these licenses. - -\section platforms Platforms - -QDecimal should be usable in all platforms that Qt supports. -We regularly test on following platforms: - -Solaris 11 x86 (sun studio 12.5) - -Linux (Ubuntu x64 - gcc) - -Linux (Ubuntu x86 - gcc) - -Windows XP (msvc 2008) - - -\section credits Credits - -We are grateful to Mike Cowlishaw et al. from IBM for making decNumber package -available. - -\section references References - -[1] General Decimal Arithmetic Specification - -[2] The decNumber Library - -[3] General Decimal Arithmetic - -[4] QDecimal Project Home - -*/ diff --git a/qdecimal/qdecimal.pro b/qdecimal/qdecimal.pro deleted file mode 100644 index 941ad0e..0000000 --- a/qdecimal/qdecimal.pro +++ /dev/null @@ -1,8 +0,0 @@ -# -# -# - -TEMPLATE = subdirs -CONFIG += ordered - -SUBDIRS = decnumber src test diff --git a/qdecimal/qdecimal.pro.user b/qdecimal/qdecimal.pro.user deleted file mode 100644 index d828065..0000000 --- a/qdecimal/qdecimal.pro.user +++ /dev/null @@ -1,267 +0,0 @@ - - - - - - EnvironmentId - {4077bda4-95d6-43f4-b485-ec6a1732d10d} - - - ProjectExplorer.Project.ActiveTarget - 0 - - - ProjectExplorer.Project.EditorSettings - - true - false - true - - Cpp - - CppGlobal - - - - QmlJS - - QmlJSGlobal - - - 2 - UTF-8 - false - 4 - false - 80 - true - true - 1 - true - false - 0 - true - 0 - 8 - true - 1 - true - true - true - false - - - - ProjectExplorer.Project.PluginSettings - - - - ProjectExplorer.Project.Target.0 - - Desktop - Desktop - {94142068-0625-4819-93ea-3dc64f347f5e} - 1 - 0 - 0 - - /home/jony/Prg/build-qdecimal-Desktop-Debug - - - true - qmake - - QtProjectManager.QMakeBuildStep - false - true - - false - - - true - Make - - Qt4ProjectManager.MakeStep - - -w - -r - - false - - - - 2 - Build - - ProjectExplorer.BuildSteps.Build - - - - true - Make - - Qt4ProjectManager.MakeStep - - -w - -r - - true - clean - - - 1 - Clean - - ProjectExplorer.BuildSteps.Clean - - 2 - false - - Debug - - Qt4ProjectManager.Qt4BuildConfiguration - 2 - true - - - /home/jony/Prg/build-qdecimal-Desktop-Release - - - true - qmake - - QtProjectManager.QMakeBuildStep - false - true - - false - - - true - Make - - Qt4ProjectManager.MakeStep - - -w - -r - - false - - - - 2 - Build - - ProjectExplorer.BuildSteps.Build - - - - true - Make - - Qt4ProjectManager.MakeStep - - -w - -r - - true - clean - - - 1 - Clean - - ProjectExplorer.BuildSteps.Clean - - 2 - false - - Release - - Qt4ProjectManager.Qt4BuildConfiguration - 0 - true - - 2 - - - 0 - Deploy - - ProjectExplorer.BuildSteps.Deploy - - 1 - Deploy locally - - ProjectExplorer.DefaultDeployConfiguration - - 1 - - - - false - false - false - false - true - 0.01 - 10 - true - 1 - 25 - - 1 - true - false - true - valgrind - - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - - 2 - - test - - Qt4ProjectManager.Qt4RunConfiguration:/home/jony/Prg/qdecimal/test/test.pro - - test/test.pro - false - false - - 3768 - false - true - false - false - true - - 1 - - - - ProjectExplorer.Project.TargetCount - 1 - - - ProjectExplorer.Project.Updater.FileVersion - 16 - - - Version - 16 - - diff --git a/qdecimal/site_scons/SConsLib.py b/qdecimal/site_scons/SConsLib.py deleted file mode 100644 index caf77db..0000000 --- a/qdecimal/site_scons/SConsLib.py +++ /dev/null @@ -1,220 +0,0 @@ -#!python -# -*-python-*- -# -# SCons extension library for large C/C++ projects. -# Author: Semih Cemiloglu -# Initial: 2016-01-20 -# This file and all associated files have 'BSD License' copyright terms -# - -# Standard modules -import os -import sys -import atexit -import subprocess -# Scons modules -import SCons -from SCons.Script import * - - - -def getVersion(): - return SCons.__version__ - -def printBuildFailures(): - for bf in GetBuildFailures(): - print "%s failed: %s" % (bf.node, bf.errstr) - -def findQtDir(defDir=None): - """ Detect Qt version on the platform. """ - qtdir = os.environ.get('QT5DIR',None) - if qtdir: - return qtdir - qtdir = os.environ.get('QTDIR',None) - if qtdir: - return qtdir - return defDir - - -def constructVariables(cfgFile=None): - """ - Construct variables from command line arguments given to scons - ARGUMENTS and ARGLIST - """ - vars = Variables(cfgFile) - vars.Add('verbose','Set to non-zero for verbose output', 0) - vars.Add(EnumVariable('build_mode', 'Build mode', 'dbg', - allowed_values=('dbg', 'rel'), - map={'debug':'dbg', 'release':'rel'})) - vars.Add(BoolVariable('use_plat', 'Use platform as build variant', 0)) - vars.Add(BoolVariable('run_tests', 'Run tests at the end', 0)) - vars.Add(PathVariable('build_dir', - 'Path to build directory', - 'sbuild', - PathVariable.PathIsDirCreate)) - vars.Add(BoolVariable('dump', 'Dump contents of environment', 0)) - - # Add --prefix option to be able to specify installation directory - # outside of prect directory tree. - AddOption('--prefix', - dest='prefix', - type='string', - default=None, - nargs=1, - action='store', - metavar='DIR', - help='installation prefix') - - return vars - - -def checkUnknownVariables(vars): - """ - Check if vars contains unknown variables for an environment. - """ - unknown = vars.UnknownVariables() - if unknown: - print "Unknown variables:", unknown.keys() - #This should be warning only - #Exit(1) - return 0 - - - -def setupEnvironment(env): - """ - Prepare a scons construction environment for building. - """ - # Directories that build output will be generated into - platform = sys.platform - bld_mode = env['build_mode'] - bld_dir = env['build_dir'] - if env['use_plat']: - bld_pdir = '%s/%s' % (bld_dir, platform) - else: - bld_pdir = bld_dir - bld_vdir = '%s/%s' % (bld_pdir, bld_mode) - - - # Store build directories and setup build output data structures - env.AppendUnique( - PRJ_BLD_DIR = Dir(bld_dir), - PRJ_BLD_VDIR = Dir(bld_vdir), - PRJ_BLD_BIN = Dir('%s/bin' % bld_vdir), - PRJ_BLD_LIB = Dir('%s/lib' % bld_vdir), - PRJ_EXES = {}, - PRJ_TSTS = {}, - PRJ_LIBS = {}, - PRJ_OBJS = {} - ) - - # If project install location (prefix) is specified - if env['PREFIX']: - # Define installation locations - env.AppendUnique( - PRJ_INST_DIR = Dir(env['PREFIX']), - PRJ_INST_BIN = Dir('%s/bin' % env['PREFIX']), - PRJ_INST_LIB = Dir('%s/lib' % env['PREFIX']) - ) - - # Baseline compile/link flags - if platform == 'win32': - if 'cl' in env['CC']: - if env['build_mode'] == 'dbg': - env.MergeFlags('-MTd -W1 -D_DEBUG -RTCs -Zi') - else: - env.MergeFlags('-MT -O1 -DNDEBUG') - if env['verbose']: - env.AppendUnique(CCFLAGS='-Bt') - env.AppendUnique(LINKFLAGS=['-verbose:lib', '-time']) - else: - print "Unrecognized compiler: %s" % env['CC'] - elif 'linux' in platform: - # Replace LINKCOM to position LINKFLAGS at the very end of - # link command line - env.Replace(LINKCOM='$LINK -o $TARGET $__RPATH $SOURCES $_LIBDIRFLAGS $_LIBFLAGS $LINKFLAGS') - env.AppendUnique(LINKFLAGS = ['-lm' ]) - env.AppendUnique(CCFLAGS = ['-fPIC','-DPIC']) - if env['build_mode'] == 'dbg': - env.MergeFlags('-g') - else: - env.MergeFlags('-O2 -w') - if env['verbose']: - env.AppendUnique(CCFLAGS='-v') - else: - # Warning only, rely on SCons to come up with meaningful defaults - print "Unrecognized platform: %s" % platform - - - # Inform user about the build mode - print "Will build for %s mode..." % bld_mode - # Help output to be shown to users - Help(""" -Type: 'scons' to build all libraries and executables. - """) - # At the abnormal exit show information about build failures - atexit.register(printBuildFailures) - return 0 - - -def readSConscriptFiles(env, src_dirs): - for sd in src_dirs: - env.SConscript( - '%s/SConscript' % sd, - variant_dir='%s/%s' % (env['PRJ_BLD_VDIR'],sd), - duplicate=0, - exports='env' - ) - - # Firstly, install project outputs to variant directories - for lib in env['PRJ_LIBS'].values(): - env.Install("$PRJ_BLD_LIB", lib) - for exe in env['PRJ_EXES'].values(): - env.Install("$PRJ_BLD_BIN", exe) - for exe in env['PRJ_TSTS'].values(): - env.Install("$PRJ_BLD_BIN", exe) - - # Add a 'install' target for project output files - # This will support calls to scons with "install" target - # scons --prefix=/path/to/gsl install - if env['PREFIX']: - env.Alias('install', env['PREFIX']) - for lib in env['PRJ_LIBS'].values(): - env.Install("$PRJ_INST_LIB", lib) - for exe in env['PRJ_EXES'].values(): - env.Install("$PRJ_INST_BIN", exe) - # Note that we don't install test applications - - - if env['dump']: - print env.Dump() - - if env['run_tests']: - runTests(env) - - - -def useProgress(mode=None, interval=5): - """ - use and show progress indicator when building - """ - if mode == 'target': - Progress('Evaluating $TARGET\r') - else: - Progress(['-\r', '\\\r', '|\r', '/\r'], interval) - - - -def runTests(env): - for exe in env['PRJ_TSTS'].values(): - cmd = exe[0].abspath - print "Executing: %s" % cmd - rv = subprocess.call(cmd) - if rv == 0: - print "PASS: %s" % os.path.basename(cmd) - else: - print "FAIL: %s" % os.path.basename(cmd) - - - - diff --git a/qdecimal/site_scons/site_tools/qt5/README.rst b/qdecimal/site_scons/site_tools/qt5/README.rst deleted file mode 100644 index b9f8e27..0000000 --- a/qdecimal/site_scons/site_tools/qt5/README.rst +++ /dev/null @@ -1,351 +0,0 @@ -#################################### -The SCons qt5 tool -#################################### - -Basics -====== -This tool can be used to compile Qt projects, designed for versions 5.x.y and higher. -It is not usable for Qt3 and older versions, since some of the helper tools -(``moc``, ``uic``) behave different. - -Install -------- -Installing it, requires you to copy (or, even better: checkout) the contents of the -package's ``qt5`` folder to - -#. "``/path_to_your_project/site_scons/site_tools/qt5``", if you need the Qt5 Tool in one project only, or -#. "``~/.scons/site_scons/site_tools/qt5``", for a system-wide installation under your current login. - -For more infos about this, please refer to - -* the SCons User's Guide, sect. "Where to put your custom Builders and Tools" and -* the SCons Tools Wiki page at `http://scons.org/wiki/ToolsIndex `_. - -How to activate ---------------- -For activating the tool "qt5", you have to add its name to the Environment constructor, -like this - -:: - - env = Environment(tools=['default','qt5']) - - -On its startup, the Qt5 tool tries to read the variable ``QT5DIR`` from the current -Environment and ``os.environ``. If it is not set, the value of ``QTDIR`` (in -Environment/``os.environ``) is used as a fallback. - -So, you either have to explicitly give the path of your Qt5 installation to the -Environment with - -:: - - env['QT5DIR'] = '/usr/local/Trolltech/Qt-5.2.3' - - -or set the ``QT5DIR`` as environment variable in your shell. - - -Requirements ------------- -Under Linux, "qt5" uses the system tool ``pkg-config`` for automatically -setting the required compile and link flags of the single Qt5 modules (like QtCore, -QtGui,...). -This means that - -#. you should have ``pkg-config`` installed, and -#. you additionally have to set ``PKG_CONFIG_PATH`` in your shell environment, such - that it points to $``QT5DIR/lib/pkgconfig`` (or $``QT5DIR/lib`` for some older versions). - -Based on these two environment variables (``QT5DIR`` and ``PKG_CONFIG_PATH``), -the "qt5" tool initializes all ``QT5_*`` -construction variables listed in the Reference manual. This happens when the tool -is "detected" during Environment construction. As a consequence, the setup -of the tool gets a two-stage process, if you want to override the values provided -by your current shell settings: - -:: - - # Stage 1: create plain environment - qtEnv = Environment() - # Set new vars - qtEnv['QT5DIR'] = '/usr/local/Trolltech/Qt-5.2.3 - qtEnv['ENV']['PKG_CONFIG_PATH'] = '/usr/local/Trolltech/Qt-5.2.3/lib/pkgconfig' - # Stage 2: add qt5 tool - qtEnv.Tool('qt5') - - - - -Suggested boilerplate -===================== -Based on the requirements above, we suggest a simple ready-to-go setup -as follows: - -SConstruct - -:: - - # Detect Qt version - qtdir = detectLatestQtDir() - - # Create base environment - baseEnv = Environment() - #...further customization of base env - - # Clone Qt environment - qtEnv = baseEnv.Clone() - # Set QT5DIR and PKG_CONFIG_PATH - qtEnv['ENV']['PKG_CONFIG_PATH'] = os.path.join(qtdir, 'lib/pkgconfig') - qtEnv['QT5DIR'] = qtdir - # Add qt5 tool - qtEnv.Tool('qt5') - #...further customization of qt env - - # Export environments - Export('baseEnv qtEnv') - - # Your other stuff... - # ...including the call to your SConscripts - - -In a SConscript - -:: - - # Get the Qt5 environment - Import('qtEnv') - # Clone it - env = qtEnv.clone() - # Patch it - env.Append(CCFLAGS=['-m32']) # or whatever - # Use it - env.StaticLibrary('foo', Glob('*.cpp')) - - -The detection of the Qt directory could be as simple as directly assigning -a fixed path - -:: - - def detectLatestQtDir(): - return "/usr/local/qt5.3.2" - - -or a little more sophisticated - -:: - - # Tries to detect the path to the installation of Qt with - # the highest version number - def detectLatestQtDir(): - if sys.platform.startswith("linux"): - # Simple check: inspect only '/usr/local/Trolltech' - paths = glob.glob('/usr/local/Trolltech/*') - if len(paths): - paths.sort() - return paths[-1] - else: - return "" - else: - # Simple check: inspect only 'C:\Qt' - paths = glob.glob('C:\\Qt\\*') - if len(paths): - paths.sort() - return paths[-1] - else: - return os.environ.get("QTDIR","") - - - -A first project -=============== -The following SConscript is for a simple project with -some cxx files, using the QtCore, QtGui -and QtNetwork modules: - -:: - - Import('qtEnv') - env = qtEnv.Clone() - env.EnableQt5Modules([ - 'QtGui', - 'QtCore', - 'QtNetwork' - ]) - # Add your CCFLAGS and CPPPATHs to env here... - - env.Program('foo', Glob('*.cpp')) - - - -MOC it up -========= -For the basic support of automocing, nothing needs to be -done by the user. The tool usually detects the ``Q_OBJECT`` -macro and calls the "``moc``" executable accordingly. - -If you don't want this, you can switch off the automocing -by a - -:: - - env['QT5_AUTOSCAN'] = 0 - - -in your SConscript file. Then, you have to moc your files -explicitly, using the Moc5 builder. - -You can also switch to an extended automoc strategy with - -:: - - env['QT5_AUTOSCAN_STRATEGY'] = 1 - - -Please read the description of the ``QT5_AUTOSCAN_STRATEGY`` -variable in the Reference manual for details. - -For debugging purposes, you can set the variable ``QT5_DEBUG`` -with - -:: - - env['QT5_DEBUG'] = 1 - - -which outputs a lot of messages during automocing. - - -Forms (.ui) -=========== -The header files with setup code for your GUI classes, are not -compiled automatically from your ``.ui`` files. You always -have to call the Uic5 builder explicitly like - -:: - - env.Uic5(Glob('*.ui')) - env.Program('foo', Glob('*.cpp')) - - - -Resource files (.qrc) -===================== -Resource files are not built automatically, you always -have to add the names of the ``.qrc`` files to the source list -for your program or library: - -:: - - env.Program('foo', Glob('*.cpp')+Glob('*.qrc')) - - -For each of the Resource input files, its prefix defines the -name of the resulting resource. An appropriate "``-name``" option -is added to the call of the ``rcc`` executable -by default. - -You can also call the Qrc5 builder explicitly as - -:: - - qrccc = env.Qrc5('foo') # ['foo.qrc'] -> ['qrc_foo.cc'] - - -or (overriding the default suffix) - -:: - - qrccc = env.Qrc5('myprefix_foo.cxx','foo.qrc') # -> ['qrc_myprefix_foo.cxx'] - - -and then add the resulting cxx file to the sources of your -Program/Library: - -:: - - env.Program('foo', Glob('*.cpp') + qrccc) - - - -Translation files -================= -The update of the ``.ts`` files and the conversion to binary -``.qm`` files is not done automatically. You have to call the -corresponding builders on your own. - -Example for updating a translation file: - -:: - - env.Ts5('foo.ts','.') # -> ['foo.ts'] - - -By default, the ``.ts`` files are treated as *precious* targets. This means that -they are not removed prior to a rebuild, but simply get updated. Additionally, they -do not get cleaned on a "``scons -c``". If you want to delete the translation files -on the "``-c``" SCons command, you can set the variable "``QT5_CLEAN_TS``" like this - -:: - - env['QT5_CLEAN_TS']=1 - - -Example for releasing a translation file, i.e. compiling -it to a ``.qm`` binary file: - -:: - - env.Qm5('foo') # ['foo.ts'] -> ['foo.qm'] - - -or (overriding the output prefix) - -:: - - env.Qm5('myprefix','foo') # ['foo.ts'] -> ['myprefix.qm'] - - -As an extension both, the Ts5() and Qm5 builder, support the definition of -multiple targets. So, calling - -:: - - env.Ts5(['app_en','app_de'], Glob('*.cpp')) - - -and - -:: - - env.Qm5(['app','copy'], Glob('*.ts')) - - -should work fine. - -Finally, two short notes about the support of directories for the Ts5() builder. You can -pass an arbitrary mix of cxx files and subdirs to it, as in - -:: - - env.Ts5('app_en',['sub1','appwindow.cpp','main.cpp'])) - - -where ``sub1`` is a folder that gets scanned recursively for cxx files by ``lupdate``. -But like this, you lose all dependency information for the subdir, i.e. if a file -inside the folder changes, the .ts file is not updated automatically! In this case -you should tell SCons to always update the target: - -:: - - ts = env.Ts5('app_en',['sub1','appwindow.cpp','main.cpp']) - env.AlwaysBuild(ts) - - -Last note: specifying the current folder "``.``" as input to Ts5() and storing the resulting -.ts file in the same directory, leads to a dependency cycle! You then have to store the .ts -and .qm files outside of the current folder, or use ``Glob('*.cpp'))`` instead. - - - diff --git a/qdecimal/site_scons/site_tools/qt5/__init__.py b/qdecimal/site_scons/site_tools/qt5/__init__.py deleted file mode 100644 index fd0e102..0000000 --- a/qdecimal/site_scons/site_tools/qt5/__init__.py +++ /dev/null @@ -1,1012 +0,0 @@ - -"""SCons.Tool.qt5 - -Tool-specific initialization for Qt5. - -There normally shouldn't be any need to import this module directly. -It will usually be imported through the generic SCons.Tool.Tool() -selection method. - -""" - -# -# Copyright (c) 2001-7,2010,2011,2012 The SCons Foundation -# -# Permission is hereby granted, free of charge, to any person obtaining -# a copy of this software and associated documentation files (the -# "Software"), to deal in the Software without restriction, including -# without limitation the rights to use, copy, modify, merge, publish, -# distribute, sublicense, and/or sell copies of the Software, and to -# permit persons to whom the Software is furnished to do so, subject to -# the following conditions: -# -# The above copyright notice and this permission notice shall be included -# in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY -# KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE -# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE -# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -# - -import os.path -import re - -import SCons.Action -import SCons.Builder -import SCons.Defaults -import SCons.Scanner -import SCons.Tool -import SCons.Util - -class ToolQt5Warning(SCons.Warnings.Warning): - pass - -class GeneratedMocFileNotIncluded(ToolQt5Warning): - pass - -class QtdirNotFound(ToolQt5Warning): - pass - -SCons.Warnings.enableWarningClass(ToolQt5Warning) - -try: - sorted -except NameError: - # Pre-2.4 Python has no sorted() function. - # - # The pre-2.4 Python list.sort() method does not support - # list.sort(key=) nor list.sort(reverse=) keyword arguments, so - # we must implement the functionality of those keyword arguments - # by hand instead of passing them to list.sort(). - def sorted(iterable, cmp=None, key=None, reverse=0): - if key is not None: - result = [(key(x), x) for x in iterable] - else: - result = iterable[:] - if cmp is None: - # Pre-2.3 Python does not support list.sort(None). - result.sort() - else: - result.sort(cmp) - if key is not None: - result = [t1 for t0,t1 in result] - if reverse: - result.reverse() - return result - -qrcinclude_re = re.compile(r']*>([^<]*)', re.M) - -mocver_re = re.compile(r'.*(\d+)\.(\d+)\.(\d+).*') - -def transformToWinePath(path) : - return os.popen('winepath -w "%s"'%path).read().strip().replace('\\','/') - -header_extensions = [".h", ".hxx", ".hpp", ".hh"] -if SCons.Util.case_sensitive_suffixes('.h', '.H'): - header_extensions.append('.H') -# TODO: The following two lines will work when integrated back to SCons -# TODO: Meanwhile the third line will do the work -#cplusplus = __import__('c++', globals(), locals(), []) -#cxx_suffixes = cplusplus.CXXSuffixes -cxx_suffixes = [".c", ".cxx", ".cpp", ".cc"] - -def checkMocIncluded(target, source, env): - moc = target[0] - cpp = source[0] - # looks like cpp.includes is cleared before the build stage :-( - # not really sure about the path transformations (moc.cwd? cpp.cwd?) :-/ - path = SCons.Defaults.CScan.path_function(env, moc.cwd) - includes = SCons.Defaults.CScan(cpp, env, path) - if not moc in includes: - SCons.Warnings.warn( - GeneratedMocFileNotIncluded, - "Generated moc file '%s' is not included by '%s'" % - (str(moc), str(cpp))) - -def find_file(filename, paths, node_factory): - for dir in paths: - node = node_factory(filename, dir) - if node.rexists(): - return node - return None - -class _Automoc: - """ - Callable class, which works as an emitter for Programs, SharedLibraries and - StaticLibraries. - """ - - def __init__(self, objBuilderName): - self.objBuilderName = objBuilderName - # some regular expressions: - # Q_OBJECT detection - self.qo_search = re.compile(r'[^A-Za-z0-9]Q_OBJECT[^A-Za-z0-9]') - # cxx and c comment 'eater' - self.ccomment = re.compile(r'/\*(.*?)\*/',re.S) - self.cxxcomment = re.compile(r'//.*$',re.M) - # we also allow Q_OBJECT in a literal string - self.literal_qobject = re.compile(r'"[^\n]*Q_OBJECT[^\n]*"') - - def create_automoc_options(self, env): - """ - Create a dictionary with variables related to Automocing, - based on the current environment. - Is executed once in the __call__ routine. - """ - moc_options = {'auto_scan' : True, - 'auto_scan_strategy' : 0, - 'gobble_comments' : 0, - 'debug' : 0, - 'auto_cpppath' : True, - 'cpppaths' : []} - try: - if int(env.subst('$QT5_AUTOSCAN')) == 0: - moc_options['auto_scan'] = False - except ValueError: - pass - try: - moc_options['auto_scan_strategy'] = int(env.subst('$QT5_AUTOSCAN_STRATEGY')) - except ValueError: - pass - try: - moc_options['gobble_comments'] = int(env.subst('$QT5_GOBBLECOMMENTS')) - except ValueError: - pass - try: - moc_options['debug'] = int(env.subst('$QT5_DEBUG')) - except ValueError: - pass - try: - if int(env.subst('$QT5_AUTOMOC_SCANCPPPATH')) == 0: - moc_options['auto_cpppath'] = False - except ValueError: - pass - if moc_options['auto_cpppath']: - paths = env.get('QT5_AUTOMOC_CPPPATH', []) - if not paths: - paths = env.get('CPPPATH', []) - moc_options['cpppaths'].extend(paths) - - return moc_options - - def __automoc_strategy_simple(self, env, moc_options, - cpp, cpp_contents, out_sources): - """ - Default Automoc strategy (Q_OBJECT driven): detect a header file - (alongside the current cpp/cxx) that contains a Q_OBJECT - macro...and MOC it. - If a Q_OBJECT macro is also found in the cpp/cxx itself, - it gets MOCed too. - """ - - h=None - for h_ext in header_extensions: - # try to find the header file in the corresponding source - # directory - hname = self.splitext(cpp.name)[0] + h_ext - h = find_file(hname, [cpp.get_dir()]+moc_options['cpppaths'], env.File) - if h: - if moc_options['debug']: - print "scons: qt5: Scanning '%s' (header of '%s')" % (str(h), str(cpp)) - h_contents = h.get_contents() - if moc_options['gobble_comments']: - h_contents = self.ccomment.sub('', h_contents) - h_contents = self.cxxcomment.sub('', h_contents) - h_contents = self.literal_qobject.sub('""', h_contents) - break - if not h and moc_options['debug']: - print "scons: qt5: no header for '%s'." % (str(cpp)) - if h and self.qo_search.search(h_contents): - # h file with the Q_OBJECT macro found -> add moc_cpp - moc_cpp = env.Moc5(h) - if moc_options['debug']: - print "scons: qt5: found Q_OBJECT macro in '%s', moc'ing to '%s'" % (str(h), str(moc_cpp)) - - # Now, check whether the corresponding CPP file - # includes the moc'ed output directly... - inc_moc_cpp = r'^\s*#\s*include\s+"%s"' % str(moc_cpp[0]) - if cpp and re.search(inc_moc_cpp, cpp_contents, re.M): - if moc_options['debug']: - print "scons: qt5: CXX file '%s' directly includes the moc'ed output '%s', no compiling required" % (str(cpp), str(moc_cpp)) - env.Depends(cpp, moc_cpp) - else: - moc_o = self.objBuilder(moc_cpp) - if moc_options['debug']: - print "scons: qt5: compiling '%s' to '%s'" % (str(cpp), str(moc_o)) - out_sources.extend(moc_o) - if cpp and self.qo_search.search(cpp_contents): - # cpp file with Q_OBJECT macro found -> add moc - # (to be included in cpp) - moc = env.Moc5(cpp) - env.Ignore(moc, moc) - if moc_options['debug']: - print "scons: qt5: found Q_OBJECT macro in '%s', moc'ing to '%s'" % (str(cpp), str(moc)) - - def __automoc_strategy_include_driven(self, env, moc_options, - cpp, cpp_contents, out_sources): - """ - Automoc strategy #1 (include driven): searches for "include" - statements of MOCed files in the current cpp/cxx file. - This strategy tries to add support for the compilation - of the qtsolutions... - """ - if self.splitext(str(cpp))[1] in cxx_suffixes: - added = False - h_moc = "%s%s%s" % (env.subst('$QT5_XMOCHPREFIX'), - self.splitext(cpp.name)[0], - env.subst('$QT5_XMOCHSUFFIX')) - cxx_moc = "%s%s%s" % (env.subst('$QT5_XMOCCXXPREFIX'), - self.splitext(cpp.name)[0], - env.subst('$QT5_XMOCCXXSUFFIX')) - inc_h_moc = r'#include\s+"%s"' % h_moc - inc_cxx_moc = r'#include\s+"%s"' % cxx_moc - - # Search for special includes in qtsolutions style - if cpp and re.search(inc_h_moc, cpp_contents): - # cpp file with #include directive for a MOCed header found -> add moc - - # Try to find header file - h=None - hname="" - for h_ext in header_extensions: - # Try to find the header file in the - # corresponding source directory - hname = self.splitext(cpp.name)[0] + h_ext - h = find_file(hname, [cpp.get_dir()]+moc_options['cpppaths'], env.File) - if h: - if moc_options['debug']: - print "scons: qt5: Scanning '%s' (header of '%s')" % (str(h), str(cpp)) - h_contents = h.get_contents() - if moc_options['gobble_comments']: - h_contents = self.ccomment.sub('', h_contents) - h_contents = self.cxxcomment.sub('', h_contents) - h_contents = self.literal_qobject.sub('""', h_contents) - break - if not h and moc_options['debug']: - print "scons: qt5: no header for '%s'." % (str(cpp)) - if h and self.qo_search.search(h_contents): - # h file with the Q_OBJECT macro found -> add moc_cpp - moc_cpp = env.XMoc5(h) - env.Ignore(moc_cpp, moc_cpp) - added = True - # Removing file from list of sources, because it is not to be - # compiled but simply included by the cpp/cxx file. - for idx, s in enumerate(out_sources): - if hasattr(s, "sources") and len(s.sources) > 0: - if str(s.sources[0]) == h_moc: - out_sources.pop(idx) - break - if moc_options['debug']: - print "scons: qt5: found Q_OBJECT macro in '%s', moc'ing to '%s'" % (str(h), str(h_moc)) - else: - if moc_options['debug']: - print "scons: qt5: found no Q_OBJECT macro in '%s', but a moc'ed version '%s' gets included in '%s'" % (str(h), inc_h_moc, cpp.name) - - if cpp and re.search(inc_cxx_moc, cpp_contents): - # cpp file with #include directive for a MOCed cxx file found -> add moc - if self.qo_search.search(cpp_contents): - moc = env.XMoc5(target=cxx_moc, source=cpp) - env.Ignore(moc, moc) - added = True - if moc_options['debug']: - print "scons: qt5: found Q_OBJECT macro in '%s', moc'ing to '%s'" % (str(cpp), str(moc)) - else: - if moc_options['debug']: - print "scons: qt5: found no Q_OBJECT macro in '%s', although a moc'ed version '%s' of itself gets included" % (cpp.name, inc_cxx_moc) - - if not added: - # Fallback to default Automoc strategy (Q_OBJECT driven) - self.__automoc_strategy_simple(env, moc_options, cpp, - cpp_contents, out_sources) - - def __call__(self, target, source, env): - """ - Smart autoscan function. Gets the list of objects for the Program - or Lib. Adds objects and builders for the special qt5 files. - """ - moc_options = self.create_automoc_options(env) - - # some shortcuts used in the scanner - self.splitext = SCons.Util.splitext - self.objBuilder = getattr(env, self.objBuilderName) - - # The following is kind of hacky to get builders working properly (FIXME) - objBuilderEnv = self.objBuilder.env - self.objBuilder.env = env - mocBuilderEnv = env.Moc5.env - env.Moc5.env = env - xMocBuilderEnv = env.XMoc5.env - env.XMoc5.env = env - - # make a deep copy for the result; MocH objects will be appended - out_sources = source[:] - - for obj in source: - if not moc_options['auto_scan']: - break - if isinstance(obj,basestring): # big kludge! - print "scons: qt5: '%s' MAYBE USING AN OLD SCONS VERSION AND NOT CONVERTED TO 'File'. Discarded." % str(obj) - continue - if not obj.has_builder(): - # binary obj file provided - if moc_options['debug']: - print "scons: qt5: '%s' seems to be a binary. Discarded." % str(obj) - continue - cpp = obj.sources[0] - if not self.splitext(str(cpp))[1] in cxx_suffixes: - if moc_options['debug']: - print "scons: qt5: '%s' is no cxx file. Discarded." % str(cpp) - # c or fortran source - continue - try: - cpp_contents = cpp.get_contents() - if moc_options['gobble_comments']: - cpp_contents = self.ccomment.sub('', cpp_contents) - cpp_contents = self.cxxcomment.sub('', cpp_contents) - cpp_contents = self.literal_qobject.sub('""', cpp_contents) - except: continue # may be an still not generated source - - if moc_options['auto_scan_strategy'] == 0: - # Default Automoc strategy (Q_OBJECT driven) - self.__automoc_strategy_simple(env, moc_options, - cpp, cpp_contents, out_sources) - else: - # Automoc strategy #1 (include driven) - self.__automoc_strategy_include_driven(env, moc_options, - cpp, cpp_contents, out_sources) - - # restore the original env attributes (FIXME) - self.objBuilder.env = objBuilderEnv - env.Moc5.env = mocBuilderEnv - env.XMoc5.env = xMocBuilderEnv - - # We return the set of source entries as sorted sequence, else - # the order might accidentally change from one build to another - # and trigger unwanted rebuilds. For proper sorting, a key function - # has to be specified...FS.Entry (and Base nodes in general) do not - # provide a __cmp__, for performance reasons. - return (target, sorted(set(out_sources), key=lambda entry : str(entry))) - -AutomocShared = _Automoc('SharedObject') -AutomocStatic = _Automoc('StaticObject') - -def _detect(env): - """Not really safe, but fast method to detect the Qt5 library""" - try: return env['QT5DIR'] - except KeyError: pass - - try: return env['QTDIR'] - except KeyError: pass - - try: return os.environ['QT5DIR'] - except KeyError: pass - - try: return os.environ['QTDIR'] - except KeyError: pass - - moc = env.WhereIs('moc-qt5') or env.WhereIs('moc5') or env.WhereIs('moc') - if moc: - vernumber = os.popen3('%s -v' % moc)[2].read() - vernumber = mocver_re.match(vernumber) - if vernumber: - vernumber = [ int(x) for x in vernumber.groups() ] - if vernumber < [5, 0, 0]: - vernumber = '.'.join([str(x) for x in vernumber]) - moc = None - SCons.Warnings.warn( - QtdirNotFound, - "QT5DIR variable not defined, and detected moc is for Qt %s" % vernumber) - - QT5DIR = os.path.dirname(os.path.dirname(moc)) - SCons.Warnings.warn( - QtdirNotFound, - "QT5DIR variable is not defined, using moc executable as a hint (QT5DIR=%s)" % QT5DIR) - return QT5DIR - - raise SCons.Errors.StopError( - QtdirNotFound, - "Could not detect Qt 5 installation") - return None - - -def __scanResources(node, env, path, arg): - # Helper function for scanning .qrc resource files - # I've been careful on providing names relative to the qrc file - # If that was not needed this code could be simplified a lot - def recursiveFiles(basepath, path) : - result = [] - for item in os.listdir(os.path.join(basepath, path)) : - itemPath = os.path.join(path, item) - if os.path.isdir(os.path.join(basepath, itemPath)) : - result += recursiveFiles(basepath, itemPath) - else: - result.append(itemPath) - return result - contents = node.get_contents() - includes = qrcinclude_re.findall(contents) - qrcpath = os.path.dirname(node.path) - dirs = [included for included in includes if os.path.isdir(os.path.join(qrcpath,included))] - # dirs need to include files recursively - for dir in dirs : - includes.remove(dir) - includes+=recursiveFiles(qrcpath,dir) - return includes - -# -# Scanners -# -__qrcscanner = SCons.Scanner.Scanner(name = 'qrcfile', - function = __scanResources, - argument = None, - skeys = ['.qrc']) - -# -# Emitters -# -def __qrc_path(head, prefix, tail, suffix): - if head: - if tail: - return os.path.join(head, "%s%s%s" % (prefix, tail, suffix)) - else: - return "%s%s%s" % (prefix, head, suffix) - else: - return "%s%s%s" % (prefix, tail, suffix) -def __qrc_emitter(target, source, env): - sourceBase, sourceExt = os.path.splitext(SCons.Util.to_String(source[0])) - sHead = None - sTail = sourceBase - if sourceBase: - sHead, sTail = os.path.split(sourceBase) - - t = __qrc_path(sHead, env.subst('$QT5_QRCCXXPREFIX'), - sTail, env.subst('$QT5_QRCCXXSUFFIX')) - - return t, source - -# -# Action generators -# -def __moc_generator_from_h(source, target, env, for_signature): - pass_defines = False - try: - if int(env.subst('$QT5_CPPDEFINES_PASSTOMOC')) == 1: - pass_defines = True - except ValueError: - pass - - if pass_defines: - return '$QT5_MOC $QT5_MOCDEFINES $QT5_MOCFROMHFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE' - else: - return '$QT5_MOC $QT5_MOCFROMHFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE' - -def __moc_generator_from_cxx(source, target, env, for_signature): - pass_defines = False - try: - if int(env.subst('$QT5_CPPDEFINES_PASSTOMOC')) == 1: - pass_defines = True - except ValueError: - pass - - if pass_defines: - return ['$QT5_MOC $QT5_MOCDEFINES $QT5_MOCFROMCXXFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE', - SCons.Action.Action(checkMocIncluded,None)] - else: - return ['$QT5_MOC $QT5_MOCFROMCXXFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE', - SCons.Action.Action(checkMocIncluded,None)] - -def __mocx_generator_from_h(source, target, env, for_signature): - pass_defines = False - try: - if int(env.subst('$QT5_CPPDEFINES_PASSTOMOC')) == 1: - pass_defines = True - except ValueError: - pass - - if pass_defines: - return '$QT5_MOC $QT5_MOCDEFINES $QT5_MOCFROMHFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE' - else: - return '$QT5_MOC $QT5_MOCFROMHFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE' - -def __mocx_generator_from_cxx(source, target, env, for_signature): - pass_defines = False - try: - if int(env.subst('$QT5_CPPDEFINES_PASSTOMOC')) == 1: - pass_defines = True - except ValueError: - pass - - if pass_defines: - return ['$QT5_MOC $QT5_MOCDEFINES $QT5_MOCFROMCXXFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE', - SCons.Action.Action(checkMocIncluded,None)] - else: - return ['$QT5_MOC $QT5_MOCFROMCXXFLAGS $QT5_MOCINCFLAGS -o $TARGET $SOURCE', - SCons.Action.Action(checkMocIncluded,None)] - -def __qrc_generator(source, target, env, for_signature): - name_defined = False - try: - if env.subst('$QT5_QRCFLAGS').find('-name') >= 0: - name_defined = True - except ValueError: - pass - - if name_defined: - return '$QT5_RCC $QT5_QRCFLAGS $SOURCE -o $TARGET' - else: - qrc_suffix = env.subst('$QT5_QRCSUFFIX') - src = str(source[0]) - head, tail = os.path.split(src) - if tail: - src = tail - qrc_suffix = env.subst('$QT5_QRCSUFFIX') - if src.endswith(qrc_suffix): - qrc_stem = src[:-len(qrc_suffix)] - else: - qrc_stem = src - return '$QT5_RCC $QT5_QRCFLAGS -name %s $SOURCE -o $TARGET' % qrc_stem - -# -# Builders -# -__ts_builder = SCons.Builder.Builder( - action = SCons.Action.Action('$QT5_LUPDATECOM','$QT5_LUPDATECOMSTR'), - suffix = '.ts', - source_factory = SCons.Node.FS.Entry) -__qm_builder = SCons.Builder.Builder( - action = SCons.Action.Action('$QT5_LRELEASECOM','$QT5_LRELEASECOMSTR'), - src_suffix = '.ts', - suffix = '.qm') -__qrc_builder = SCons.Builder.Builder( - action = SCons.Action.CommandGeneratorAction(__qrc_generator, {'cmdstr':'$QT5_QRCCOMSTR'}), - source_scanner = __qrcscanner, - src_suffix = '$QT5_QRCSUFFIX', - suffix = '$QT5_QRCCXXSUFFIX', - prefix = '$QT5_QRCCXXPREFIX', - single_source = 1) -__ex_moc_builder = SCons.Builder.Builder( - action = SCons.Action.CommandGeneratorAction(__moc_generator_from_h, {'cmdstr':'$QT5_MOCCOMSTR'})) -__ex_uic_builder = SCons.Builder.Builder( - action = SCons.Action.Action('$QT5_UICCOM', '$QT5_UICCOMSTR'), - src_suffix = '.ui') - - -# -# Wrappers (pseudo-Builders) -# -def Ts5(env, target, source=None, *args, **kw): - """ - A pseudo-Builder wrapper around the LUPDATE executable of Qt5. - lupdate [options] [source-file|path]... -ts ts-files - """ - if not SCons.Util.is_List(target): - target = [target] - if not source: - source = target[:] - if not SCons.Util.is_List(source): - source = [source] - - # Check QT5_CLEAN_TS and use NoClean() function - clean_ts = False - try: - if int(env.subst('$QT5_CLEAN_TS')) == 1: - clean_ts = True - except ValueError: - pass - - result = [] - for t in target: - obj = __ts_builder.__call__(env, t, source, **kw) - # Prevent deletion of the .ts file, unless explicitly specified - if not clean_ts: - env.NoClean(obj) - # Always make our target "precious", such that it is not deleted - # prior to a rebuild - env.Precious(obj) - # Add to resulting target list - result.extend(obj) - - return result - -def Qm5(env, target, source=None, *args, **kw): - """ - A pseudo-Builder wrapper around the LRELEASE executable of Qt5. - lrelease [options] ts-files [-qm qm-file] - """ - if not SCons.Util.is_List(target): - target = [target] - if not source: - source = target[:] - if not SCons.Util.is_List(source): - source = [source] - - result = [] - for t in target: - result.extend(__qm_builder.__call__(env, t, source, **kw)) - - return result - -def Qrc5(env, target, source=None, *args, **kw): - """ - A pseudo-Builder wrapper around the RCC executable of Qt5. - rcc [options] qrc-files -o out-file - """ - if not SCons.Util.is_List(target): - target = [target] - if not source: - source = target[:] - if not SCons.Util.is_List(source): - source = [source] - - result = [] - for t, s in zip(target, source): - result.extend(__qrc_builder.__call__(env, t, s, **kw)) - - return result - -def ExplicitMoc5(env, target, source, *args, **kw): - """ - A pseudo-Builder wrapper around the MOC executable of Qt5. - moc [options] - """ - if not SCons.Util.is_List(target): - target = [target] - if not SCons.Util.is_List(source): - source = [source] - - result = [] - for t in target: - # Is it a header or a cxx file? - result.extend(__ex_moc_builder.__call__(env, t, source, **kw)) - - return result - -def ExplicitUic5(env, target, source, *args, **kw): - """ - A pseudo-Builder wrapper around the UIC executable of Qt5. - uic [options] - """ - if not SCons.Util.is_List(target): - target = [target] - if not SCons.Util.is_List(source): - source = [source] - - result = [] - for t in target: - result.extend(__ex_uic_builder.__call__(env, t, source, **kw)) - - return result - -def generate(env): - """Add Builders and construction variables for qt5 to an Environment.""" - - suffixes = [ - '-qt5', - '-qt5.exe', - '5', - '5.exe', - '', - '.exe', - ] - command_suffixes = ['-qt5', '5', ''] - - def locateQt5Command(env, command, qtdir) : - triedPaths = [] - for suffix in suffixes : - fullpath = os.path.join(qtdir,'bin',command + suffix) - if os.access(fullpath, os.X_OK) : - return fullpath - triedPaths.append(fullpath) - - fullpath = env.Detect([command+s for s in command_suffixes]) - if not (fullpath is None) : return fullpath - - raise Exception("Qt5 command '" + command + "' not found. Tried: " + ', '.join(triedPaths)) - - CLVar = SCons.Util.CLVar - Action = SCons.Action.Action - Builder = SCons.Builder.Builder - - env['QT5DIR'] = _detect(env) - # TODO: 'Replace' should be 'SetDefault' -# env.SetDefault( - env.Replace( - QT5DIR = _detect(env), - QT5_BINPATH = os.path.join('$QT5DIR', 'bin'), - # TODO: This is not reliable to QT5DIR value changes but needed in order to support '-qt5' variants - QT5_MOC = locateQt5Command(env,'moc', env['QT5DIR']), - QT5_UIC = locateQt5Command(env,'uic', env['QT5DIR']), - QT5_RCC = locateQt5Command(env,'rcc', env['QT5DIR']), - QT5_LUPDATE = locateQt5Command(env,'lupdate', env['QT5DIR']), - QT5_LRELEASE = locateQt5Command(env,'lrelease', env['QT5DIR']), - - QT5_AUTOSCAN = 1, # Should the qt5 tool try to figure out, which sources are to be moc'ed? - QT5_AUTOSCAN_STRATEGY = 0, # While scanning for files to moc, should we search for includes in qtsolutions style? - QT5_GOBBLECOMMENTS = 0, # If set to 1, comments are removed before scanning cxx/h files. - QT5_CPPDEFINES_PASSTOMOC = 1, # If set to 1, all CPPDEFINES get passed to the moc executable. - QT5_CLEAN_TS = 0, # If set to 1, translation files (.ts) get cleaned on 'scons -c' - QT5_AUTOMOC_SCANCPPPATH = 1, # If set to 1, the CPPPATHs (or QT5_AUTOMOC_CPPPATH) get scanned for moc'able files - QT5_AUTOMOC_CPPPATH = [], # Alternative paths that get scanned for moc files - - # Some Qt5 specific flags. I don't expect someone wants to - # manipulate those ... - QT5_UICFLAGS = CLVar(''), - QT5_MOCFROMHFLAGS = CLVar(''), - QT5_MOCFROMCXXFLAGS = CLVar('-i'), - QT5_QRCFLAGS = '', - QT5_LUPDATEFLAGS = '', - QT5_LRELEASEFLAGS = '', - - # suffixes/prefixes for the headers / sources to generate - QT5_UISUFFIX = '.ui', - QT5_UICDECLPREFIX = 'ui_', - QT5_UICDECLSUFFIX = '.h', - QT5_MOCINCPREFIX = '-I', - QT5_MOCHPREFIX = 'moc_', - QT5_MOCHSUFFIX = '$CXXFILESUFFIX', - QT5_MOCCXXPREFIX = '', - QT5_MOCCXXSUFFIX = '.moc', - QT5_QRCSUFFIX = '.qrc', - QT5_QRCCXXSUFFIX = '$CXXFILESUFFIX', - QT5_QRCCXXPREFIX = 'qrc_', - QT5_MOCDEFPREFIX = '-D', - QT5_MOCDEFSUFFIX = '', - QT5_MOCDEFINES = '${_defines(QT5_MOCDEFPREFIX, CPPDEFINES, QT5_MOCDEFSUFFIX, __env__)}', - QT5_MOCCPPPATH = [], - QT5_MOCINCFLAGS = '$( ${_concat(QT5_MOCINCPREFIX, QT5_MOCCPPPATH, INCSUFFIX, __env__, RDirs)} $)', - - # Commands for the qt5 support ... - QT5_UICCOM = '$QT5_UIC $QT5_UICFLAGS -o $TARGET $SOURCE', - QT5_LUPDATECOM = '$QT5_LUPDATE $QT5_LUPDATEFLAGS $SOURCES -ts $TARGET', - QT5_LRELEASECOM = '$QT5_LRELEASE $QT5_LRELEASEFLAGS -qm $TARGET $SOURCES', - - # Specialized variables for the Extended Automoc support - # (Strategy #1 for qtsolutions) - QT5_XMOCHPREFIX = 'moc_', - QT5_XMOCHSUFFIX = '.cpp', - QT5_XMOCCXXPREFIX = '', - QT5_XMOCCXXSUFFIX = '.moc', - - ) - - try: - env.AddMethod(Ts5, "Ts5") - env.AddMethod(Qm5, "Qm5") - env.AddMethod(Qrc5, "Qrc5") - env.AddMethod(ExplicitMoc5, "ExplicitMoc5") - env.AddMethod(ExplicitUic5, "ExplicitUic5") - except AttributeError: - # Looks like we use a pre-0.98 version of SCons... - from SCons.Script.SConscript import SConsEnvironment - SConsEnvironment.Ts5 = Ts5 - SConsEnvironment.Qm5 = Qm5 - SConsEnvironment.Qrc5 = Qrc5 - SConsEnvironment.ExplicitMoc5 = ExplicitMoc5 - SConsEnvironment.ExplicitUic5 = ExplicitUic5 - - # Interface builder - uic5builder = Builder( - action = SCons.Action.Action('$QT5_UICCOM', '$QT5_UICCOMSTR'), - src_suffix='$QT5_UISUFFIX', - suffix='$QT5_UICDECLSUFFIX', - prefix='$QT5_UICDECLPREFIX', - single_source = True - #TODO: Consider the uiscanner on new scons version - ) - env['BUILDERS']['Uic5'] = uic5builder - - # Metaobject builder - mocBld = Builder(action={}, prefix={}, suffix={}) - for h in header_extensions: - act = SCons.Action.CommandGeneratorAction(__moc_generator_from_h, {'cmdstr':'$QT5_MOCCOMSTR'}) - mocBld.add_action(h, act) - mocBld.prefix[h] = '$QT5_MOCHPREFIX' - mocBld.suffix[h] = '$QT5_MOCHSUFFIX' - for cxx in cxx_suffixes: - act = SCons.Action.CommandGeneratorAction(__moc_generator_from_cxx, {'cmdstr':'$QT5_MOCCOMSTR'}) - mocBld.add_action(cxx, act) - mocBld.prefix[cxx] = '$QT5_MOCCXXPREFIX' - mocBld.suffix[cxx] = '$QT5_MOCCXXSUFFIX' - env['BUILDERS']['Moc5'] = mocBld - - # Metaobject builder for the extended auto scan feature - # (Strategy #1 for qtsolutions) - xMocBld = Builder(action={}, prefix={}, suffix={}) - for h in header_extensions: - act = SCons.Action.CommandGeneratorAction(__mocx_generator_from_h, {'cmdstr':'$QT5_MOCCOMSTR'}) - xMocBld.add_action(h, act) - xMocBld.prefix[h] = '$QT5_XMOCHPREFIX' - xMocBld.suffix[h] = '$QT5_XMOCHSUFFIX' - for cxx in cxx_suffixes: - act = SCons.Action.CommandGeneratorAction(__mocx_generator_from_cxx, {'cmdstr':'$QT5_MOCCOMSTR'}) - xMocBld.add_action(cxx, act) - xMocBld.prefix[cxx] = '$QT5_XMOCCXXPREFIX' - xMocBld.suffix[cxx] = '$QT5_XMOCCXXSUFFIX' - env['BUILDERS']['XMoc5'] = xMocBld - - # Add the Qrc5 action to the CXX file builder (registers the - # *.qrc extension with the Environment) - cfile_builder, cxxfile_builder = SCons.Tool.createCFileBuilders(env) - qrc_act = SCons.Action.CommandGeneratorAction(__qrc_generator, {'cmdstr':'$QT5_QRCCOMSTR'}) - cxxfile_builder.add_action('$QT5_QRCSUFFIX', qrc_act) - cxxfile_builder.add_emitter('$QT5_QRCSUFFIX', __qrc_emitter) - - # We use the emitters of Program / StaticLibrary / SharedLibrary - # to scan for moc'able files - # We can't refer to the builders directly, we have to fetch them - # as Environment attributes because that sets them up to be called - # correctly later by our emitter. - env.AppendUnique(PROGEMITTER =[AutomocStatic], - SHLIBEMITTER=[AutomocShared], - LIBEMITTER =[AutomocStatic], - ) - - # TODO: Does dbusxml2cpp need an adapter - try: - env.AddMethod(enable_modules, "EnableQt5Modules") - except AttributeError: - # Looks like we use a pre-0.98 version of SCons... - from SCons.Script.SConscript import SConsEnvironment - SConsEnvironment.EnableQt5Modules = enable_modules - -def enable_modules(self, modules, debug=False, crosscompiling=False) : - import sys - - validModules = [ - # Qt Essentials - 'QtCore', - 'QtGui', - 'QtMultimedia', - 'QtMultimediaQuick_p', - 'QtMultimediaWidgets', - 'QtNetwork', - 'QtPlatformSupport', - 'QtQml', - 'QtQmlDevTools', - 'QtQuick', - 'QtQuickParticles', - 'QtSql', - 'QtQuickTest', - 'QtTest', - 'QtWebKit', - 'QtWebKitWidgets', - 'QtWidgets', - # Qt Add-Ons - 'QtConcurrent', - 'QtDBus', - 'QtOpenGL', - 'QtPrintSupport', - 'QtDeclarative', - 'QtScript', - 'QtScriptTools', - 'QtSvg', - 'QtUiTools', - 'QtXml', - 'QtXmlPatterns', - # Qt Tools - 'QtHelp', - 'QtDesigner', - 'QtDesignerComponents', - # Other - 'QtCLucene', - 'QtConcurrent', - 'QtV8', - 'QtANGLE' - ] - pclessModules = [ - ] - staticModules = [ - ] - invalidModules=[] - for module in modules: - if module not in validModules : - invalidModules.append(module) - if invalidModules : - raise Exception("Modules %s are not Qt5 modules. Valid Qt5 modules are: %s"% ( - str(invalidModules),str(validModules))) - - moduleDefines = { - 'QtScript' : ['QT_SCRIPT_LIB'], - 'QtSvg' : ['QT_SVG_LIB'], - 'QtSql' : ['QT_SQL_LIB'], - 'QtXml' : ['QT_XML_LIB'], - 'QtOpenGL' : ['QT_OPENGL_LIB'], - 'QtGui' : ['QT_GUI_LIB'], - 'QtNetwork' : ['QT_NETWORK_LIB'], - 'QtCore' : ['QT_CORE_LIB'], - 'QtWidgets' : ['QT_WIDGETS_LIB'], - 'QtANGLE' : ['QT_OPENGL_ES_2', 'QT_OPENGL_ES_2_ANGLE'], - } - for module in modules : - try : self.AppendUnique(CPPDEFINES=moduleDefines[module]) - except: pass - debugSuffix = '' - if sys.platform in ["darwin", "linux2"] and not crosscompiling : - if debug : debugSuffix = '_debug' - for module in modules : - if module not in pclessModules : continue - self.AppendUnique(LIBS=[module.replace('Qt','Qt5')+debugSuffix]) - self.AppendUnique(LIBPATH=[os.path.join("$QT5DIR","lib")]) - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include")]) - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include",module)]) - pcmodules = [module.replace('Qt','Qt5')+debugSuffix for module in modules if module not in pclessModules ] - if 'Qt5DBus' in pcmodules: - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include","Qt5DBus")]) - if "Qt5Assistant" in pcmodules: - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include","Qt5Assistant")]) - pcmodules.remove("Qt5Assistant") - pcmodules.append("Qt5AssistantClient") - self.AppendUnique(RPATH=[os.path.join("$QT5DIR","lib")]) - self.ParseConfig('pkg-config %s --libs --cflags'% ' '.join(pcmodules)) - self["QT5_MOCCPPPATH"] = self["CPPPATH"] - return - if sys.platform == "win32" or crosscompiling : - if crosscompiling: - transformedQtdir = transformToWinePath(self['QT5DIR']) - self['QT5_MOC'] = "QT5DIR=%s %s"%( transformedQtdir, self['QT5_MOC']) - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include")]) - try: modules.remove("QtDBus") - except: pass - if debug : debugSuffix = 'd' - if "QtAssistant" in modules: - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include","QtAssistant")]) - modules.remove("QtAssistant") - modules.append("QtAssistantClient") - self.AppendUnique(LIBS=['qtmain'+debugSuffix]) - self.AppendUnique(LIBS=[lib.replace("Qt","Qt5")+debugSuffix for lib in modules if lib not in staticModules]) - self.PrependUnique(LIBS=[lib+debugSuffix for lib in modules if lib in staticModules]) - if 'QtOpenGL' in modules: - self.AppendUnique(LIBS=['opengl32']) - if 'QtANGLE' in modules: - self.AppendUnique(LIBS=['libEGL','libGLESv2']) - qtAngleLibs = self['LIBS'] - qtAngleLibs.remove('Qt5ANGLE') - #print qtAngleLibs - self.Replace(LIBS=qtAngleLibs) - self.AppendUnique(CPPPATH=[ '$QT5DIR/include/']) - self.AppendUnique(CPPPATH=[ '$QT5DIR/include/'+module for module in modules]) - if crosscompiling : - self["QT5_MOCCPPPATH"] = [ - path.replace('$QT5DIR', transformedQtdir) - for path in self['CPPPATH'] ] - else : - self["QT5_MOCCPPPATH"] = self["CPPPATH"] - self.AppendUnique(LIBPATH=[os.path.join('$QT5DIR','lib')]) - return - - """ - if sys.platform=="darwin" : - # TODO: Test debug version on Mac - self.AppendUnique(LIBPATH=[os.path.join('$QT5DIR','lib')]) - self.AppendUnique(LINKFLAGS="-F$QT5DIR/lib") - self.AppendUnique(LINKFLAGS="-L$QT5DIR/lib") #TODO clean! - if debug : debugSuffix = 'd' - for module in modules : -# self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include")]) -# self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include",module)]) -# port qt5-mac: - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include", "qt5")]) - self.AppendUnique(CPPPATH=[os.path.join("$QT5DIR","include", "qt5", module)]) - if module in staticModules : - self.AppendUnique(LIBS=[module+debugSuffix]) # TODO: Add the debug suffix - self.AppendUnique(LIBPATH=[os.path.join("$QT5DIR","lib")]) - else : -# self.Append(LINKFLAGS=['-framework', module]) -# port qt5-mac: - self.Append(LIBS=module) - if 'QtOpenGL' in modules: - self.AppendUnique(LINKFLAGS="-F/System/Library/Frameworks") - self.Append(LINKFLAGS=['-framework', 'AGL']) #TODO ughly kludge to avoid quotes - self.Append(LINKFLAGS=['-framework', 'OpenGL']) - self["QT5_MOCCPPPATH"] = self["CPPPATH"] - return -# This should work for mac but doesn't -# env.AppendUnique(FRAMEWORKPATH=[os.path.join(env['QT5DIR'],'lib')]) -# env.AppendUnique(FRAMEWORKS=['QtCore','QtGui','QtOpenGL', 'AGL']) - """ - -def exists(env): - return _detect(env) diff --git a/qdecimal/src/QDecContext.cc b/qdecimal/src/QDecContext.cc deleted file mode 100644 index afb72b1..0000000 --- a/qdecimal/src/QDecContext.cc +++ /dev/null @@ -1,131 +0,0 @@ -/** \file DeciContext.cc - * Definitions for the class QDecContext. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include "QDecContext.hh" -//include -#include -#include -#include -#include "QDecFwd.hh" - -using namespace std; - - -QDecContext::QDecContext(int32_t kind) -{ - switch(kind) { - case DEC_INIT_BASE: - case DEC_INIT_DECIMAL32: - case DEC_INIT_DECIMAL64: - case DEC_INIT_DECIMAL128: - // Above kinds must be specified - break; - - default: - // Invalid kind - throw("Invalid QDecContext kind"); - } - - decContextDefault(&m_data, kind); - - // No SIGFPE trap is allowed by default - // as this will disrupt most calculations. - m_data.traps = 0; - - // By default allow maximum allowable precision - setDigits(QDecNumDigits); -} - - -QByteArray QDecContext::statusFlags() const -{ - uint32_t status = m_data.status; - QByteArray str; - QTextStream os(&str); - //ostringstream os; - const char sep = '|'; // Separator - - if(status & DEC_Conversion_syntax) - os << DEC_Condition_CS << sep; - if(status & DEC_Division_by_zero) - os << DEC_Condition_DZ << sep; - if(status & DEC_Division_impossible) - os << DEC_Condition_DI << sep; - if(status & DEC_Division_undefined) - os << DEC_Condition_DU << sep; - if(status & DEC_Inexact) - os << DEC_Condition_IE << sep; - if(status & DEC_Invalid_context) - os << DEC_Condition_IC << sep; - if(status & DEC_Insufficient_storage) - os << DEC_Condition_IS << sep; - if(status & DEC_Invalid_operation) - os << DEC_Condition_IO << sep; -#if DECSUBSET - if(status & DEC_Lost_digits) - os << DEC_Condition_LD << sep; -#endif - if(status & DEC_Overflow) - os << DEC_Condition_OV << sep; - if(status & DEC_Clamped) - os << DEC_Condition_PA << sep; - if(status & DEC_Rounded) - os << DEC_Condition_RO << sep; - if(status & DEC_Subnormal) - os << DEC_Condition_SU << sep; - if(status & DEC_Underflow) - os << DEC_Condition_UN << sep; - if(0==status) - os << DEC_Condition_ZE << sep; - - os << "0x" << hex << status; - - os.flush(); - //return os.str().c_str(); - return str; -} - - -uint8_t QDecContext::extended() const -{ -#if DECSUBSET - return m_data.extended; -#else - return 0; -#endif -} - - -void QDecContext::setExtended(uint8_t ext) -{ -#if DECSUBSET - m_data.extended = ext; -#else - (void)ext; // To disable compiler warning -#endif -} - - -QTextStream& operator<<(QTextStream& ts, const QDecContext ctx) -{ - char c = ' '; - ts << "digits=" << ctx.digits() - << c << "emax=" << ctx.emax() - << c << "emin=" << ctx.emin() - << c << "extended=" << ctx.extended() - << c << "clamp=" << ctx.clamp() - << c << "round=" << ctx.round() - << c << "traps=" << ctx.traps() - << c << "status=" << ctx.status() - << c << ctx.statusToString(); - - return ts; -} diff --git a/qdecimal/src/QDecContext.hh b/qdecimal/src/QDecContext.hh deleted file mode 100644 index 03fd693..0000000 --- a/qdecimal/src/QDecContext.hh +++ /dev/null @@ -1,251 +0,0 @@ -#ifndef QDECCONTEXT_HH -#define QDECCONTEXT_HH - -/** \file QDecContext.hh - * Declarations for the class QDecContext. - * - * (C) Copyright Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -extern "C" { - #include "decContext.h" -} -#include "QDecFwd.hh" - - -// FORWARDS -class QByteArray; -class QTextStream; - -/*! Default context type or kind, should be set to one of these: - * DEC_INIT_BASE - * DEC_INIT_DECIMAL32 - * DEC_INIT_DECIMAL64 - * DEC_INIT_DECIMAL128 - */ -const int QDecContextDefKind = DEC_INIT_BASE; - - -//! Maximum precision allowed in precision (digits) field -const int32_t QDecMaxPrecision = 999999999; -const int32_t QDecMaxExponent = 999999999; -const int32_t QDecMinExponent = -999999999; - -/*! - \class QDecContext - QDecContext encapsulates decContext structure as member and - exposes free-standing functions as member functions. - Most functions in the decNumber module take as an argument a - decContext structure, which provides the context for operations - (precision, rounding mode, etc.) and also controls the handling of - exceptional conditions (corresponding to the flags and trap enablers - in a hardware floating-point implementation). - */ -class QDECIMAL_EXPORT QDecContext -{ - // MEMBERS - //! Embedded decContext structure - decContext m_data; - - public: - // TYPES - typedef decContext* decContextPtr_t; - typedef enum rounding Rounding_e; - - // CREATORS - //! Default constructor - QDecContext(int32_t kind = QDecContextDefKind); - QDecContext(const decContext* cptr) : m_data(*cptr) {} - QDecContext(const decContext& data) : m_data(data) {} - // Default Copy Ctor and Dtor and Copy assignment are ok - - - // ACCESSORS - //! Get decContext member - const decContext* data() const - { return &m_data; } - - //! Get clamp flag of the context (IEEE exponent clamp) - uint8_t clamp() const - { return m_data.clamp; } - - //! Get digits field of the context (working precision) - int32_t digits() const - { return m_data.digits; } - - //! Get emax field of the context (maximum positive exponent) - int32_t emax() const - { return m_data.emax; } - - //! Get emin field of the context (minimum negative exponent) - int32_t emin() const - { return m_data.emin; } - - //! Get extended flag of the context (special values) - uint8_t extended() const; - - //! Get round field of the context (rounding mode) - Rounding_e round() const - { return m_data.round; } - - //! Get status flags of the context - uint32_t status() const - { return m_data.status; } - - //! Get trap-enabler flags of the context - uint32_t traps() const - { return m_data.traps; } - - - // MODIFIERS - //! Get decContext member - decContext* data() - { return &m_data; } - - //! Set clamp flag of the context (IEEE exponent clamp) - void setClamp(uint32_t clamp) - { m_data.clamp = clamp; } - - //! Set digits field of the context (working precision) - void setDigits(int32_t digits) - { m_data.digits = digits; } - - //! Set emax field of the context (maximum positive exponent) - void setEmax(int32_t emax) - { m_data.emax = emax; } - - //! Set emin field of the context (minimum negative exponent) - void setEmin(int32_t emin) - { m_data.emin = emin; } - - //! Set extended flag of the context (special values) - void setExtended(uint8_t ext); - - //! This function is used to return the round (rounding mode) field - //! of a decContext. - void setRound(Rounding_e round) - { m_data.round = round; } - - void setTraps(uint32_t traps) - { m_data.traps = traps; } - - /*! - This function is used to set one or more status bits in the status - field of a decContext. If any of the bits being set have the - corresponding bit set in the traps field, a trap is raised - (regardless of whether the bit is already set in the status field). - Only one trap is raised even if more than one bit is being set. - */ - void setStatus(uint32_t status = 0) - { m_data.status = status; } - - //! This function is identical to setStatus except that - //! the context traps field is ignored (i.e., no trap is raised). - void setStatusQuiet(uint32_t status = 0) - { decContextSetStatusQuiet(&m_data, status); } - - // ROUTINES - //! This function is used to clear (set to zero) one or more status - //! bits in the status field of a decContext. - QDecContext& clearStatus(uint32_t status) - { decContextClearStatus(&m_data, status); return *this; } - - //! This function is used to restore one or more status bits in - //! the status field of a decContext from a saved status field. - QDecContext& restoreStatus(uint32_t status, uint32_t mask) - { decContextRestoreStatus(&m_data, status, mask); return *this; } - - /*! - This function is used to initialize a decContext structure to - default values. It is stongly recommended that this function always - be used to initialize a decContext structure, even if most or all - of the fields are to be set explicitly (in case new fields are added - to a later version of the structure). - */ - QDecContext& setDefault(int32_t kind = QDecContextDefKind) - { decContextDefault(&m_data, kind); return *this; } - - //! This function is used to save one or more status bits from - //! the status field of a decContext. - uint32_t saveStatus(uint32_t mask) - { return decContextSaveStatus(&m_data, mask); } - - /*! - This function is used to set a status bit in the status field of a - decContext, using the name of the bit as returned by the - decContextStatusToString function. If the bit being set has the - corresponding bit set in the traps field, a trap is raised - (regardless of whether the bit is already set in the status field). - */ - QDecContext& setStatusFromString(const char* str) - { decContextSetStatusFromString(&m_data, str); return *this; } - - //! This function is identical to setStatusFromString except - //! that the context traps field is ignored (i.e., no trap is raised). - QDecContext& setStatusFromStringQuiet(const char* str) - { decContextSetStatusFromStringQuiet(&m_data, str); return *this; } - - //! This function returns a pointer (char *) to a human-readable - //! description of a status bit. The string pointed to will be a constant. - const char* statusToString() const - { return decContextStatusToString(&m_data); } - - //! This function is used to test one or more status bits in a context. - uint32_t testStatus(uint32_t mask) //const - { return decContextTestStatus(&m_data, mask); } - - //! This function is used to clear (set to zero) all the - //! status bits in the status field of a decContext. - QDecContext& zeroStatus() - { decContextZeroStatus(&m_data); return *this; } - - - // UTILITY ROUTINES - //! Get status flags (fields) in string form - //! separated by | character - QByteArray statusFlags() const; - - //! Throw exception if status flags are set. - void throwOnError() const - { if(m_data.status) throw(statusToString()); } - - //! Type conversion operator to decContext* - operator decContextPtr_t() { return &m_data; } - - - // STATIC FUNCTIONS - //! This function checks that the DECLITEND tuning - //! parameter is set correctly. - //! Returns 0 if the DECLITEND parameter is correct, - //! 1 if it is incorrect and should be set to 1, and - //! -1 if it is incorrect and should be set to 0. - static int TestEndian() - { return decContextTestEndian(1 /*Quiet*/); } - - //! This function is used to test one or more status - //! bits in a saved status field. - static uint32_t TestSavedStatus(uint32_t status, uint32_t mask) - { return decContextTestSavedStatus(status, mask); } - - -}; // end class - - -/*! - QTextStream inserter to pretty-print QDecContext objects - in the debug stream. - */ -QDECIMAL_EXPORT -QTextStream& operator<<(QTextStream& ts, const QDecContext); - - -//! Convience macro to extract decContext structure or -//! create one on stack to comply with callee signature. -#define CXT(cptr) ( cptr ? cptr->data() : QDecContext().data() ) - -#endif /* Include guard */ diff --git a/qdecimal/src/QDecDouble.cc b/qdecimal/src/QDecDouble.cc deleted file mode 100644 index 7685c88..0000000 --- a/qdecimal/src/QDecDouble.cc +++ /dev/null @@ -1,119 +0,0 @@ -/** \file QDecDouble.cc - * Definitions for the class QDecDouble. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include "QDecDouble.hh" -extern "C" { - #include "decimal64.h" -} -#include -#include -#include "QDecNumber.hh" -#include "QDecPacked.hh" -#include "QDecSingle.hh" -#include "QDecQuad.hh" - - -QDecDouble& QDecDouble::fromDouble(double d) -{ - char str[MaxStrSize] = { 0 }; - - #if defined(_MSC_VER) - _snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - #else - char *curLoc = setlocale(LC_NUMERIC, NULL); - setlocale(LC_NUMERIC, "C"); - snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - setlocale(LC_NUMERIC, curLoc); - #endif - - return fromString(str); -} - -QDecDouble& QDecDouble::fromHexString(const char* str) -{ - QByteArray ba = QByteArray::fromHex(str); - int size = sizeof(m_data); - char* p = (char*)&m_data; - int i = 0; - int j = size-1; - for(; i -#include - -#include "QDecFwd.hh" -#include "QDecContext.hh" -extern "C" { - #include "decDouble.h" -} - -// FORWARDS -QT_BEGIN_NAMESPACE -class QTextStream; -QT_END_NAMESPACE - - -/*! - \class QDecDouble - QDecDouble encapsulates decDouble and provides decNumber library - functions that operates upon decSingle as member functions with the same name. - decimal64 is a 64-bit decimal floating-point representation which - provides 16 decimal digits of precision in a compressed format. - decDouble module provides the functions for the decimal64 format; - this format is an IEEE 754 basic format and so a full set of arithmetic - and other functions is included. - */ -class QDECIMAL_EXPORT QDecDouble -{ - // MEMBERS - //! Embedded decDouble structure - decDouble m_data; - - public: - // TYPES - typedef decDouble* decDoublePtr_t; - enum { - MaxStrSize = QDECMAXSTRSIZE - }; - - - // CREATORS - //! Default constructor - QDecDouble() { decDoubleZero(&m_data); } - - // Default Dtor and Copy Ctor are ok - - // Constructors using decDouble structure - QDecDouble(decDouble d) : m_data(d) {} - QDecDouble(const decDouble* p) : m_data(*p) {} - - // Conversion constructors using simple types - QDecDouble(const char* str) { fromString(str); } - QDecDouble(int32_t i) { fromInt32(i); } - QDecDouble(uint32_t i) { fromUInt32(i); } - QDecDouble(double d) { fromDouble(d); } - - - // Conversion constructors using composite types - QDecDouble(const QDecQuad& q) { fromQDecQuad(q); } - QDecDouble(const QDecSingle& s) { fromQDecSingle(s); } - QDecDouble(const QDecPacked& p) { fromQDecPacked(p); } - QDecDouble(const QDecNumber& n) { fromQDecNumber(n); } - - - //! Copy assignment - QDecDouble& operator=(const QDecDouble& o) - { return (this != &o ? copy(o) : *this); } - - //! Conversion operator to decDouble* - operator decDoublePtr_t() { return &m_data; } - - - // ACCESSORS - const decDouble* data() const - { return &m_data; } - - // MODIFIERS - decDouble* data() - { return &m_data; } - - // UTILITIES & CONVERSIONS - QDecDouble& fromBCD(int32_t exp, const QByteArray& bcd, int32_t sign) { - decDoubleFromBCD(&m_data, exp, (const uint8_t*)bcd.data(), sign); - return *this; - } - - QDecDouble& fromDouble(double d); - - QDecDouble& fromInt32(int32_t i) - { decDoubleFromInt32(&m_data, i); return *this; } - - QDecDouble& fromPacked(int32_t exp, const QByteArray& pack) { - decDoubleFromPacked(&m_data, exp, (const uint8_t*)pack.data()); - return *this; - } - - QDecDouble& fromPackedChecked(int32_t exp, const QByteArray& pack) { - decDoubleFromPackedChecked(&m_data, exp, (const uint8_t*)pack.data()); - return *this; - } - - QDecDouble& fromString(const char* str, QDecContext* c = 0) - { decDoubleFromString(&m_data, str, CXT(c)); return *this; } - - //! Hexadecimal string in network byte order - QDecDouble& fromHexString(const char* str); - - QDecDouble& fromQDecSingle(const QDecSingle& s); - - QDecDouble& fromQDecQuad(const QDecQuad& q, QDecContext* c = 0) - { return fromWider(q, c); } - - QDecDouble& fromQDecNumber(const QDecNumber& n, QDecContext* c = 0); - - QDecDouble& fromQDecPacked(const QDecPacked& p); - - QDecDouble& fromUInt32(uint32_t i) - { decDoubleFromUInt32(&m_data, i); return *this; } - - QDecDouble& fromWider(const QDecQuad& q, QDecContext* c = 0); - - int32_t getCoefficient(QByteArray& bcd) const { - bcd.resize(DECDOUBLE_Pmax); - return decDoubleGetCoefficient(&m_data, (uint8_t*)bcd.data()); - } - - QDecDouble& setCoefficient(const QByteArray& bcd, int32_t sign) { - decDoubleSetCoefficient(&m_data, (const uint8_t*)bcd.data(), sign); - return *this; - } - - QDecDouble& setExponent(int32_t exp, QDecContext* c = 0 ) { - decDoubleSetExponent(&m_data, CXT(c), exp); - return *this; - } - - int32_t toBCD(int32_t& exp, QByteArray& bcd) { - bcd.resize(DECDOUBLE_Pmax); - return decDoubleToBCD(&m_data, &exp, (uint8_t*)bcd.data()); - } - - double toDouble() const; - - int32_t toInt32(QDecContext* c = 0) const { - return decDoubleToInt32(&m_data, CXT(c), DEC_ROUND_HALF_UP); - } - - QByteArray toEngString() const { - char str[MaxStrSize] = { 0 }; - return decDoubleToEngString(&m_data, str); - } - - int32_t toPacked(int32_t& exp, QByteArray& pack) { - pack.resize(DECDOUBLE_Pmax); - return decDoubleToPacked(&m_data, &exp, (uint8_t*)pack.data()); - } - - QByteArray toString() const { - char str[MaxStrSize] = { 0 }; - return decDoubleToString(&m_data, str); - } - - QDecSingle toQDecSingle(QDecContext* c = 0) const; - - QDecQuad toQDecQuad() const; - - QDecPacked toQDecPacked() const; - - QDecNumber toQDecNumber() const; - - QDecQuad toWider() const; - - QDecDouble& zero() - { decDoubleZero(&m_data); return *this; } - - - // COMPUTATIONAL - //! Returns the absolute value - QDecDouble abs(QDecContext* c = 0) const - { decDouble d; return decDoubleAbs(&d, &m_data, CXT(c)); } - - QDecDouble add(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleAdd(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble digitAnd(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleAnd(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble divide(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleDivide(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble divideInteger(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleDivideInteger(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble fma(const QDecDouble& o, const QDecDouble& o2, - QDecContext* c = 0) const - { decDouble d; return decDoubleFMA(&d, &m_data, &o.m_data, &o2.m_data, CXT(c)); } - - QDecDouble invert(QDecContext* c = 0) const - { decDouble d; return decDoubleInvert(&d, &m_data, CXT(c)); } - - QDecDouble logB(QDecContext* c = 0) const - { decDouble d; return decDoubleLogB(&d, &m_data, CXT(c)); } - - QDecDouble max(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleMax(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble maxMag(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleMaxMag(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble minus(QDecContext* c = 0) const - { decDouble d; return decDoubleMinus(&d, &m_data, CXT(c)); } - - QDecDouble multiply(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleMultiply(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble nextMinus(QDecContext* c = 0) const - { decDouble d; return decDoubleNextMinus(&d, &m_data, CXT(c)); } - - QDecDouble nextPlus(QDecContext* c = 0) const - { decDouble d; return decDoubleNextPlus(&d, &m_data, CXT(c)); } - - QDecDouble nextToward(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleNextToward(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble digitOr(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleOr(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble plus(QDecContext* c = 0) const - { decDouble d; return decDoublePlus(&d, &m_data, CXT(c)); } - - QDecDouble quantize(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleQuantize(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble reduce(QDecContext* c = 0) const - { decDouble d; return decDoubleReduce(&d, &m_data, CXT(c)); } - - QDecDouble remainder(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleRemainder(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble remainderNear(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleRemainderNear(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble rotate(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleRotate(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble scaleB(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleScaleB(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble shift(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleShift(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble subtract(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleSubtract(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble toIntegralValue(enum rounding r, QDecContext* c = 0) const - { decDouble d; return decDoubleToIntegralValue(&d, &m_data, CXT(c), r); } - - QDecDouble toIntegralExact(QDecContext* c = 0) const - { decDouble d; return decDoubleToIntegralExact(&d, &m_data, CXT(c)); } - - QDecDouble digitXor(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleXor(&d, &m_data, &o.m_data, CXT(c)); } - - - // COMPARISONS - QDecDouble compare(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleCompare(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble compareSignal(const QDecDouble& o, QDecContext* c = 0) const - { decDouble d; return decDoubleCompareSignal(&d, &m_data, &o.m_data, CXT(c)); } - - QDecDouble compareTotal(const QDecDouble& o) const - { decDouble d; return decDoubleCompareTotal(&d, &m_data, &o.m_data); } - - QDecDouble compareTotalMag(const QDecDouble& o) const - { decDouble d; return decDoubleCompareTotalMag(&d, &m_data, &o.m_data); } - - - // COPIES - QDecDouble& canonical(const QDecDouble& d) - { decDoubleCanonical(&m_data, &d.m_data); return *this; } - - QDecDouble& copy(const QDecDouble& d) - { decDoubleCopy(&m_data, &d.m_data); return *this; } - - QDecDouble& copyAbs(const QDecDouble& d) - { decDoubleCopyAbs(&m_data, &d.m_data); return *this; } - - QDecDouble& copyNegate(const QDecDouble& d) - { decDoubleCopyNegate(&m_data, &d.m_data); return *this; } - - QDecDouble& copySign(const QDecDouble& d, const QDecDouble& sd) - { decDoubleCopySign(&m_data, &d.m_data, &sd.m_data); return *this; } - - - // NON-COMPUTATIONAL - // "class" is a reserved word in C++ - enum decClass classification() const - { return decDoubleClass(&m_data); } - - const char* classString() const - { return decDoubleClassString(&m_data); } - - uint32_t digits() const - { return decDoubleDigits(&m_data); } - - bool isCanonical() const - { return decDoubleIsCanonical(&m_data); } - - bool isFinite() const - { return decDoubleIsFinite(&m_data); } - - bool isInteger() const - { return decDoubleIsInteger(&m_data); } - - bool isLogical() const - { return decDoubleIsLogical(&m_data); } - - bool isInfinite() const - { return decDoubleIsInfinite(&m_data); } - - bool isNaN() const - { return decDoubleIsNaN(&m_data); } - - bool isNegative() const - { return decDoubleIsNegative(&m_data); } - - bool isNormal() const - { return decDoubleIsNormal(&m_data); } - - bool isPositive() const - { return decDoubleIsPositive(&m_data); } - - bool isSignaling() const - { return decDoubleIsSignaling(&m_data); } - - bool isSignalling() const - { return decDoubleIsSignalling(&m_data); } - - bool isSigned() const - { return decDoubleIsSigned(&m_data); } - - bool isSubnormal() const - { return decDoubleIsSubnormal(&m_data); } - - bool isZero() const - { return decDoubleIsZero(&m_data); } - - uint32_t radix() const - { return decDoubleRadix(&m_data); } - - const char* version() const - { return decDoubleVersion(); } - - - // RELATIONAL AND LOGICAL OPERATORS - bool operator==(const QDecDouble& o) const - { return compare(o).isZero(); } - - bool operator!=(const QDecDouble& o) const - { return !(this->operator==(o)); } - - bool operator<(const QDecDouble& o) const - { return compare(o).isNegative(); } - - bool operator<=(const QDecDouble& o) const - { - const QDecDouble& r = compare(o); - return r.isNegative() || r.isZero(); - } - - bool operator>(const QDecDouble& o) const - { return !(this->operator<=(o)); } - - bool operator>=(const QDecDouble& o) const - { - const QDecDouble& r = compare(o); - return !r.isNegative() || r.isZero(); - } - - // BITWISE OPERATORS - QDecDouble operator&(const QDecDouble& o) const - { return digitAnd(o); } - - QDecDouble operator|(const QDecDouble& o) const - { return digitOr(o); } - - QDecDouble operator^(const QDecDouble& o) const - { return digitXor(o); } - - - // ARITHMETIC OPERATORS - QDecDouble operator+(const QDecDouble& o) const - { return add(o); } - - QDecDouble operator-(const QDecDouble& o) const - { return subtract(o); } - - QDecDouble operator*(const QDecDouble& o) const - { return multiply(o); } - - QDecDouble operator/(const QDecDouble& o) const - { return divide(o); } - - QDecDouble operator%(const QDecDouble& o) const - { return remainder(o); } - - - // COMPOUND ASSIGNMENT OPERATORS - QDecDouble& operator+=(const QDecDouble& o) - { return copy(add(o)); } - - QDecDouble& operator-=(const QDecDouble& o) - { return copy(subtract(o)); } - - QDecDouble& operator*=(const QDecDouble& o) - { return copy(multiply(o)); } - - QDecDouble& operator/=(const QDecDouble& o) - { return copy(divide(o)); } - - QDecDouble& operator%=(const QDecDouble& o) - { return copy(remainder(o)); } - - QDecDouble& operator&=(const QDecDouble& o) - { return copy(digitAnd(o)); } - - QDecDouble& operator|=(const QDecDouble& o) - { return copy(digitOr(o)); } - - QDecDouble& operator^=(const QDecDouble& o) - { return copy(digitXor(o)); } - - -}; // end class - - -Q_DECLARE_METATYPE(QDecDouble); - - -QDECIMAL_EXPORT -QTextStream& operator<<(QTextStream& ts, const QDecDouble& d); - - -#endif /* Include guard */ diff --git a/qdecimal/src/QDecFwd.hh b/qdecimal/src/QDecFwd.hh deleted file mode 100644 index 0d1699e..0000000 --- a/qdecimal/src/QDecFwd.hh +++ /dev/null @@ -1,79 +0,0 @@ -#ifndef QDECFWD_HH -#define QDECFWD_HH - -/** \file QDecFwd.hh - * Forward declarations for QDecimal types - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include - -#ifndef DECNUMDIGITS -//! Work with up to 80 digits as default, resulting in 64 bytes -//! decNumber structure. -# define DECNUMDIGITS 80 -#endif - -//! Digits of decimal precision for QDecNumber, decNumber. -//! This is set at compile time via DECNUMDIGITS macro. -const int QDecNumDigits = DECNUMDIGITS; - -//! Digits of decimal precision for QDecSingle, decSingle, decimal32 -const int QDecSingleDigits = 7; - -//! Digits of decimal precision for QDecDouble, decDouble, decimal64 -const int QDecDoubleDigits = 16; - -//! Digits of decimal precision for QDecQuad, decQuad, decimal128 -const int QDecQuadDigits = 34; - -#ifndef QDECMAXSTRSIZE -//! Maximum length of a conversion string -# define QDECMAXSTRSIZE 512 -#endif - - -extern "C" { - #if !defined(int32_t) - #if defined(_MSC_VER) - /* MS Visual C */ - #include - #else - /* C99 standard integers */ - #include - /* For unknown compilers, you can use portable stdint.h */ - //include - #endif - #endif - - #include "decContext.h" - #include "decNumber.h" -} - -// Prepare for shared library usage. -// See Q_DEC_EXPORT from Qt documentation for details. - -#ifdef QDECIMAL_SHARED -# if(QDECIMAL_SHARED > 1) -# define QDECIMAL_EXPORT Q_DECL_EXPORT -# else -# define QDECIMAL_EXPORT Q_DECL_IMPORT -# endif -#else -# define QDECIMAL_EXPORT /* no-op */ -#endif - -class QDECIMAL_EXPORT QDecContext; -class QDECIMAL_EXPORT QDecNumber; -class QDECIMAL_EXPORT QDecPacked; -class QDECIMAL_EXPORT QDecSingle; -class QDECIMAL_EXPORT QDecDouble; -class QDECIMAL_EXPORT QDecQuad; - -#endif /* Include guard */ diff --git a/qdecimal/src/QDecNumber.cc b/qdecimal/src/QDecNumber.cc deleted file mode 100644 index a4eefb2..0000000 --- a/qdecimal/src/QDecNumber.cc +++ /dev/null @@ -1,67 +0,0 @@ -/** \file QDecNumber.cc - * Definitions for the class QDecNumber. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include "QDecNumber.hh" -#include -#include -#include "QDecSingle.hh" -#include "QDecDouble.hh" -#include "QDecQuad.hh" -#include "QDecPacked.hh" -extern "C" { - #include "decimal32.h" - #include "decimal64.h" - #include "decimal128.h" -} - - - -QDecNumber::QDecNumber(const QDecSingle& s) -{ decSingleToNumber(s.data(), &m_data); } - -QDecNumber::QDecNumber(const QDecDouble& d) -{ decDoubleToNumber(d.data(), &m_data); } - -QDecNumber::QDecNumber(const QDecQuad& q) -{ decQuadToNumber(q.data(), &m_data); } - -QDecNumber::QDecNumber(const QDecPacked& p) -{ *this = p.toQDecNumber(); } - - -QDecNumber& QDecNumber::fromDouble(double d) -{ - char str[MaxStrSize] = { 0 }; - - #if defined(_MSC_VER) - _snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - #else - snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - #endif - return fromString(str); -} - - -double QDecNumber::toDouble() const -{ - char str[MaxStrSize] = { 0 }; - - decNumberToString(&m_data, str); - return strtod(str, 0); -} - - -QTextStream& operator<<(QTextStream& ts, const QDecNumber& n) -{ - ts << n.toString(); - return ts; -} - diff --git a/qdecimal/src/QDecNumber.hh b/qdecimal/src/QDecNumber.hh deleted file mode 100644 index 2793f1a..0000000 --- a/qdecimal/src/QDecNumber.hh +++ /dev/null @@ -1,433 +0,0 @@ -#ifndef QDECNUMBER_HH -#define QDECNUMBER_HH - -/** \file QDecNumber.hh - * Declarations for the class QDecNumber. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include -#include - -#include "QDecFwd.hh" -#include "QDecContext.hh" - -// FORWARDS -QT_BEGIN_NAMESPACE -class QTextStream; -QT_END_NAMESPACE - - -/*! - \class QDecNumber - QDecNumber encapsulates decNumber and reimplements global functions - that operates upon decNumber as member functions with the same name. - decNumber module uses an arbitrary-precision decimal number representation - designed for efficient computation in software and implements the - arithmetic and logical operations, together with a number of conversions - and utilities. Once a number is held as a decNumber, no further conversions - are necessary to carry out arithmetic. - The decNumber representation is variable-length and machine-dependent - (for example, it contains integers which may be big-endian or little-endian). - */ -class QDECIMAL_EXPORT QDecNumber -{ - // MEMBERS - //! Embedded decNumber structure - decNumber m_data; - -public: - // TYPES - typedef decNumber* decNumberPtr_t; - enum { - MaxStrSize = QDECMAXSTRSIZE - }; - - // CREATORS - //! Default constructor - QDecNumber() { decNumberZero(&m_data); } - - // Constructors using decNumber structure - QDecNumber(const decNumber& d) : m_data(d) {} - QDecNumber(const decNumber* p) : m_data(*p) {} - - // Conversion constructors using simple types - QDecNumber(const char* str) { fromString(str); } - // m_data must have space for the digits needed to represent - // the value of val, which may need up to ten digits. - QDecNumber(uint32_t val) { fromUInt32(val); } - QDecNumber(int32_t val) { fromInt32(val); } - QDecNumber(double d) { fromDouble(d); } - - // Conversion constructors using composite types - QDecNumber(const QDecSingle& s); - QDecNumber(const QDecDouble& d); - QDecNumber(const QDecQuad& q); - QDecNumber(const QDecPacked& p); - - //! Copy constructor - QDecNumber(const QDecNumber& o) - { decNumberCopy(&m_data, &o.m_data); } - - //! Copy assignment - QDecNumber& operator=(const QDecNumber& o) - { if(this != &o) decNumberCopy(&m_data, &o.m_data); return *this; } - - //! Type conversion operator to decNumber* - operator decNumberPtr_t() { return &m_data; } - - - // ACCESSORS - const decNumber* data() const - { return &m_data; } - - // MODIFIERS - decNumber* data() - { return &m_data; } - - - // CONVERSIONS - QDecNumber& fromBCD(QByteArray& bcd) { - decNumberSetBCD(&m_data, (const uint8_t*)bcd.data(), bcd.size()); - return *this; - } - - QDecNumber& fromDouble(double d); - - QDecNumber& fromInt32(int32_t val) - { decNumberFromInt32(&m_data, val); return *this; } - - QDecNumber& fromUInt32(uint32_t val) - { decNumberFromUInt32(&m_data, val); return *this; } - - QDecNumber& fromString(const char* str, QDecContext* c = 0) - { decNumberFromString(&m_data, str, CXT(c)); return *this; } - - QByteArray toBCD() const { - QByteArray bcd(m_data.digits+1, '\0'); - decNumberGetBCD(&m_data, (uint8_t*)bcd.data()); - return bcd; - } - - double toDouble() const; - - QByteArray toEngString() const { - char str[MaxStrSize] = { 0 }; - return decNumberToEngString(&m_data, str); - } - - QByteArray toString() const { - char str[MaxStrSize] = { 0 }; - return decNumberToString(&m_data, str); - } - - int32_t toInt32(QDecContext* c = 0) const - { return decNumberToInt32(&m_data, CXT(c)); } - - uint32_t toUInt32(QDecContext* c = 0) const - { return decNumberToUInt32(&m_data, CXT(c)); } - - - // COMPUTATIONAL FUNCTIONS - QDecNumber abs(QDecContext* c = 0) const - { decNumber n; return decNumberAbs(&n, &m_data, CXT(c)); } - - QDecNumber add(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberAdd(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber digitAnd(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberAnd(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber compare(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberCompare(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber compareSignal(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberCompareSignal(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber compareTotal(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberCompareTotal(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber compareTotalMag(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberCompareTotalMag(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber divide(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberDivide(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber divideInteger(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberDivideInteger(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber exp(QDecContext* c = 0) const - { decNumber n; return decNumberExp(&n, &m_data, CXT(c)); } - - QDecNumber fma(const QDecNumber& mo, const QDecNumber& ao, - QDecContext* c = 0) const { - decNumber n; - return decNumberFMA(&n, &m_data, &mo.m_data, &ao.m_data, CXT(c)); - } - - QDecNumber invert(QDecContext* c = 0) const - { decNumber n; return decNumberInvert(&n, &m_data, CXT(c)); } - - QDecNumber ln(QDecContext* c = 0) const - { decNumber n; return decNumberLn(&n, &m_data, CXT(c)); } - - QDecNumber logB(QDecContext* c = 0) const - { decNumber n; return decNumberLogB(&n, &m_data, CXT(c)); } - - QDecNumber log10(QDecContext* c = 0) const - { decNumber n; return decNumberLog10(&n, &m_data, CXT(c)); } - - QDecNumber max(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberMax(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber maxMag(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberMaxMag(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber min(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberMin(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber minMag(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberMinMag(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber minus(QDecContext* c = 0) const - { decNumber n; return decNumberMinus(&n, &m_data, CXT(c)); } - - QDecNumber multiply(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberMultiply(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber nextMinus(QDecContext* c = 0) - { decNumber n; return decNumberNextMinus(&n, &m_data, CXT(c)); } - - QDecNumber nextPlus(QDecContext* c = 0) - { decNumber n; return decNumberNextPlus(&n, &m_data, CXT(c)); } - - QDecNumber nextToward(const QDecNumber& o, QDecContext* c = 0) - { decNumber n; return decNumberNextToward(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber normalize(QDecContext* c = 0) const - { decNumber n; return decNumberNormalize(&n, &m_data, CXT(c)); } - - QDecNumber digitOr(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberOr(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber plus(QDecContext* c = 0) const - { decNumber n; return decNumberPlus(&n, &m_data, CXT(c)); } - - QDecNumber power(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberPower(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber quantize(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberQuantize(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber reduce(QDecContext* c = 0) const - { decNumber n; return decNumberReduce(&n, &m_data, CXT(c)); } - - QDecNumber remainder(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberRemainder(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber remainderNear(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberRemainderNear(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber rescale(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberRescale(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber rotate(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberRotate(&n, &m_data, &o.m_data, CXT(c)); } - - bool sameQuantum(const QDecNumber& o) const { - decNumber n; - QDecNumber r = decNumberSameQuantum(&n, data(), o.data()); - return !r.isZero(); - } - - QDecNumber scaleB(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberScaleB(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber shift(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberShift(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber squareRoot(QDecContext* c = 0) const - { decNumber n; return decNumberSquareRoot(&n, &m_data, CXT(c)); } - - QDecNumber subtract(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberSubtract(&n, &m_data, &o.m_data, CXT(c)); } - - QDecNumber toIntegralExact(QDecContext* c = 0) const - { decNumber n; return decNumberToIntegralExact(&n, &m_data, CXT(c)); } - - QDecNumber toIntegralValue(QDecContext* c = 0) const - { decNumber n; return decNumberToIntegralValue(&n, &m_data, CXT(c)); } - - QDecNumber digitXor(const QDecNumber& o, QDecContext* c = 0) const - { decNumber n; return decNumberXor(&n, &m_data, &o.m_data, CXT(c)); } - - - // TESTING FUNCTIONS - bool isCanonical() const - { return decNumberIsCanonical(&m_data); } - - bool isFinite() const - { return decNumberIsFinite(&m_data); } - - bool isInfinite() const - { return decNumberIsInfinite(&m_data); } - - bool isNaN() const - { return decNumberIsNaN(&m_data); } - - bool isNegative() const - { return decNumberIsNegative(&m_data); } - - bool isQNaN() const - { return decNumberIsQNaN(&m_data); } - - bool isSNaN() const - { return decNumberIsSNaN(&m_data); } - - bool isSpecial() const - { return decNumberIsSpecial(&m_data); } - - bool isZero() const - { return decNumberIsZero(&m_data); } - - - // TEST FUNCTIONS (CONTEXT DEPENDENT) - bool isNormal(QDecContext* c = 0) const - { return decNumberIsNormal(&m_data, CXT(c)); } - - bool isSubnormal(QDecContext* c = 0) const - { return decNumberIsSubnormal(&m_data, CXT(c)); } - - - - // UTILITIES - enum decClass toClass(QDecContext* c = 0) const - { return decNumberClass(&m_data, CXT(c)); } - - QDecNumber& copy(const QDecNumber& o) - { decNumberCopy(&m_data, &o.m_data); return *this; } - - QDecNumber& copyAbs(const QDecNumber& o) - { decNumberCopyAbs(&m_data, &o.m_data); return *this; } - - QDecNumber& copyNegate(const QDecNumber& o) - { decNumberCopyNegate(&m_data, &o.m_data); return *this; } - - QDecNumber& copySign(const QDecNumber& o, const QDecNumber& so) - { decNumberCopySign(&m_data, &o.m_data, &so.m_data); return *this; } - - uint32_t radix() const - { return decNumberRadix(&m_data); } - - QDecNumber& trim() - { decNumberTrim(&m_data); return *this; } - - const char* version() const - { return decNumberVersion(); } - - QDecNumber& zero() - { decNumberZero(&m_data); return *this; } - - - // STATIC FUNCTIONS (UTILITIES) - static const char* ClassToString(enum decClass dc) - { return decNumberClassToString(dc); } - - static const char* Version() - { return decNumberVersion(); } - - - // RELATIONAL AND LOGICAL OPERATORS - bool operator==(const QDecNumber& o) const - { return compare(o).isZero(); } - - bool operator!=(const QDecNumber& o) const - { return !(this->operator==(o)); } - - bool operator<(const QDecNumber& o) const - { return compare(o).isNegative(); } - - bool operator<=(const QDecNumber& o) const - { - const QDecNumber& r = compare(o); - return r.isNegative() || r.isZero(); - } - - bool operator>(const QDecNumber& o) const - { return !(this->operator<=(o)); } - - bool operator>=(const QDecNumber& o) const - { - const QDecNumber& r = compare(o); - return !r.isNegative() || r.isZero(); - } - - // BITWISE OPERATORS - QDecNumber operator&(const QDecNumber& o) const - { return digitAnd(o); } - - QDecNumber operator|(const QDecNumber& o) const - { return digitOr(o); } - - QDecNumber operator^(const QDecNumber& o) const - { return digitXor(o); } - - - // ARITHMETIC OPERATORS - QDecNumber operator+(const QDecNumber& o) const - { return add(o); } - - QDecNumber operator-(const QDecNumber& o) const - { return subtract(o); } - - QDecNumber operator*(const QDecNumber& o) const - { return multiply(o); } - - QDecNumber operator/(const QDecNumber& o) const - { return divide(o); } - - QDecNumber operator%(const QDecNumber& o) const - { return remainder(o); } - - - // COMPOUND ASSIGNMENT OPERATORS - QDecNumber& operator+=(const QDecNumber& o) - { return copy(add(o)); } - - QDecNumber& operator-=(const QDecNumber& o) - { return copy(subtract(o)); } - - QDecNumber& operator*=(const QDecNumber& o) - { return copy(multiply(o)); } - - QDecNumber& operator/=(const QDecNumber& o) - { return copy(divide(o)); } - - QDecNumber& operator%=(const QDecNumber& o) - { return copy(remainder(o)); } - - QDecNumber& operator&=(const QDecNumber& o) - { return copy(digitAnd(o)); } - - QDecNumber& operator|=(const QDecNumber& o) - { return copy(digitOr(o)); } - - QDecNumber& operator^=(const QDecNumber& o) - { return copy(digitXor(o)); } - - -}; // end class - - -Q_DECLARE_METATYPE(QDecNumber); - -QDECIMAL_EXPORT -QTextStream& operator<<(QTextStream& ts, const QDecNumber& n); - -#endif /* Include guard */ diff --git a/qdecimal/src/QDecPacked.cc b/qdecimal/src/QDecPacked.cc deleted file mode 100644 index 0478123..0000000 --- a/qdecimal/src/QDecPacked.cc +++ /dev/null @@ -1,83 +0,0 @@ -/** \file QDecPacked.cc - * Definitions for the class QDecPacked. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include "QDecPacked.hh" -#include "QDecNumber.hh" -#include "QDecSingle.hh" -#include "QDecDouble.hh" -#include "QDecQuad.hh" - -QDecPacked::QDecPacked(const char* str) -{ *this = fromQDecNumber(QDecNumber(str)); } - -QDecPacked::QDecPacked(double d) -{ *this = fromQDecNumber(QDecNumber(d)); } - -QDecPacked::QDecPacked(const QDecSingle& s) -{ *this = s.toQDecPacked(); } - -QDecPacked::QDecPacked(const QDecDouble& d) -{ *this = d.toQDecPacked(); } - -QDecPacked::QDecPacked(const QDecQuad& q) -{ *this = q.toQDecPacked(); } - - -QDecPacked& QDecPacked::fromQDecNumber(const QDecNumber& d) -{ - uint8_t bfr[QDecNumDigits] = { 0 }; - int32_t scale = 0; - - uint8_t* rv = decPackedFromNumber(bfr, QDecNumDigits, &scale, d.data()); - - if(rv) { - m_scale = scale; - - char* p = (char*)bfr; - int i = 0; - // Skip null bytes at the left - for(; p[i] == '\0' || i==QDecNumDigits; ++i); - - // Construct byte array from the beginning of BCD bytes - m_bytes = QByteArray(&p[i], QDecNumDigits-i); - } - - return *this; -} - -QDecNumber QDecPacked::toQDecNumber() const -{ - if(length() > 0) { - decNumber n; - return decPackedToNumber(bytesRaw(), length(), &m_scale, &n); - } - else - // Not initialized, return default QDecNumber value - return QDecNumber(); -} - -QDecPacked& QDecPacked::fromDouble(double d) -{ - *this = fromQDecNumber(QDecNumber(d)); - return *this; -} - -QDecPacked& QDecPacked::fromString(const char* str) -{ - *this = fromQDecNumber(QDecNumber(str)); - return *this; -} - -QByteArray QDecPacked::toString() const -{ - return toQDecNumber().toString(); -} - diff --git a/qdecimal/src/QDecPacked.hh b/qdecimal/src/QDecPacked.hh deleted file mode 100644 index 0609c6c..0000000 --- a/qdecimal/src/QDecPacked.hh +++ /dev/null @@ -1,108 +0,0 @@ -#ifndef QDECPACKED_HH -#define QDECPACKED_HH - -/** \file QDecPacked.hh - * Declarations for the class QDecPacked. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include - -#include "QDecFwd.hh" -extern "C" { - #include "decPacked.h" -} - - -/*! - \class QDecPacked - QDecPacked augments decPacked by encapsulating reference counted byte - array and scale of the decimal point as members variables, thus, freeing up - user of this class from memory management and keeping track of scale value. - The decPacked format is the classic packed decimal format implemented - by IBM S/360 and later machines, where each digit is encoded as - a 4-bit binary sequence (BCD) and a number is ended by a 4-bit - sign indicator. The decPacked module accepts variable lengths, - allowing for very large numbers (up to a billion digits), and also - allows the specification of a scale. - */ -class QDECIMAL_EXPORT QDecPacked -{ - // MEMBERS - //! Byte array containing BCD sequence - QByteArray m_bytes; - //! Scale of the decimal number (point) - int32_t m_scale; - - public: - // CREATORS - //! Default constructor - QDecPacked() : m_scale(0) {} - QDecPacked(int32_t length, int32_t scale = 0) - : m_bytes(length,'\0'), m_scale(scale) {} - QDecPacked(const QByteArray& bytes, int32_t scale = 0) - : m_bytes(bytes), m_scale(scale) {} - - // Default copy constructor and destructor are ok to use - - // Conversion constructors using simple types - QDecPacked(const char* str); - QDecPacked(double d); - - // Conversion constructors using composite types - QDecPacked(const QDecNumber& d) { fromQDecNumber(d); } - QDecPacked(const QDecSingle& s); - QDecPacked(const QDecDouble& d); - QDecPacked(const QDecQuad& d); - - // ACCESSORS - const char* data() const - { return m_bytes.data(); } - - QByteArray bytes() const - { return m_bytes; } - - const uint8_t* bytesRaw() const - { return reinterpret_cast(m_bytes.data()); } - - int32_t length() const - { return m_bytes.size(); } - - int32_t scale() const - { return m_scale; } - - QByteArray toString() const; - - - // MODIFIERS - uint8_t* bytesRaw() - { return reinterpret_cast(m_bytes.data()); } - - QDecPacked& fromDouble(double d); - - QDecPacked& fromString(const char* str); - - void setLength(int32_t length) - { m_bytes.resize(length); } - - void setScale(int32_t scale) - { m_scale = scale; } - - // CONVERSIONS - QDecNumber toQDecNumber() const; - QDecPacked& fromQDecNumber(const QDecNumber& d); - - -}; // end class - - - - - -#endif /* Include guard */ diff --git a/qdecimal/src/QDecQuad.cc b/qdecimal/src/QDecQuad.cc deleted file mode 100644 index 076c944..0000000 --- a/qdecimal/src/QDecQuad.cc +++ /dev/null @@ -1,100 +0,0 @@ -/** \file QDecQuad.cc - * Definitions for the class QDecQuad. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id: QDecQuad.cc 111 2006-06-19 03:45:40Z semihc $ - * - * - */ - -#include "QDecQuad.hh" -extern "C" { - #include "decimal128.h" -} -#include -#include -#include "QDecNumber.hh" -#include "QDecPacked.hh" -#include "QDecDouble.hh" - - -QDecQuad& QDecQuad::fromDouble(double d) -{ - char str[MaxStrSize] = { 0 }; - - #if defined(_MSC_VER) - _snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - #else - snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - #endif - - return fromString(str); -} - - -QDecQuad& QDecQuad::fromHexString(const char* str) -{ - QByteArray ba = QByteArray::fromHex(str); - int size = sizeof(m_data); - char* p = (char*)&m_data; - int i = 0; - int j = size-1; - for(; i -#include - -#include "QDecFwd.hh" -#include "QDecContext.hh" -extern "C" { - #include "decQuad.h" -} - -// FORWARDS -QT_BEGIN_NAMESPACE -class QTextStream; -QT_END_NAMESPACE - - -/*! - \class QDecQuad - QDecQuad encapsulates decQuad and provides decNumber library functions - that operates upon decSingle as member functions with the same name. - decimal128 is a 128-bit decimal floating-point representation which - provides 34 decimal digits of precision in a compressed format. - decQuad module provides the functions for the decimal128 format; - this format is an IEEE 754 basic format; it contains the same set of - functions as decDouble. - */ -class QDECIMAL_EXPORT QDecQuad -{ - // MEMBERS - //! Embedded decQuad structure - decQuad m_data; - - public: - // TYPES - typedef decQuad* decQuadPtr_t; - enum { - MaxStrSize = QDECMAXSTRSIZE - }; - - // CREATORS - //! Default constructor - QDecQuad() { decQuadZero(&m_data); } - - // Default Dtor and Copy Ctor are ok - - // Constructors using decQuad structure - QDecQuad(decQuad d) : m_data(d) {} - QDecQuad(const decQuad* p) : m_data(*p) {} - - // Conversion constructors using simple types - QDecQuad(const char* str) { fromString(str); } - QDecQuad(int32_t i) { fromInt32(i); } - QDecQuad(uint32_t i) { fromUInt32(i); } - QDecQuad(double d) { fromDouble(d); } - - - // Conversion constructors using composite types - QDecQuad(const QDecDouble& d) { fromQDecDouble(d); } - QDecQuad(const QDecPacked& p) { fromQDecPacked(p); } - QDecQuad(const QDecNumber& n) { fromQDecNumber(n); } - - - //! Copy assignment - QDecQuad& operator=(const QDecQuad& o) - { return (this != &o ? copy(o) : *this); } - - //! Conversion operator to decQuad* - operator decQuadPtr_t() { return &m_data; } - - - // ACCESSORS - const decQuad* data() const - { return &m_data; } - - // MODIFIERS - decQuad* data() - { return &m_data; } - - // UTILITIES & CONVERSIONS - QDecQuad& fromBCD(int32_t exp, const QByteArray& bcd, int32_t sign) { - decQuadFromBCD(&m_data, exp, (const uint8_t*)bcd.data(), sign); - return *this; - } - - QDecQuad& fromDouble(double d); - - QDecQuad& fromInt32(int32_t i) - { decQuadFromInt32(&m_data, i); return *this; } - - QDecQuad& fromPacked(int32_t exp, const QByteArray& pack) { - decQuadFromPacked(&m_data, exp, (const uint8_t*)pack.data()); - return *this; - } - - QDecQuad& fromPackedChecked(int32_t exp, const QByteArray& pack) { - decQuadFromPackedChecked(&m_data, exp, (const uint8_t*)pack.data()); - return *this; - } - - QDecQuad& fromString(const char* str, QDecContext* c = 0) - { decQuadFromString(&m_data, str, CXT(c)); return *this; } - - //! Hexadecimal string in network byte order - QDecQuad& fromHexString(const char* str); - - QDecQuad& fromQDecDouble(const QDecDouble& d); - - QDecQuad& fromQDecNumber(const QDecNumber& n, QDecContext* c = 0); - - QDecQuad& fromQDecPacked(const QDecPacked& p); - - QDecQuad& fromUInt32(uint32_t i) - { decQuadFromUInt32(&m_data, i); return *this; } - - int32_t getCoefficient(QByteArray& bcd) const { - bcd.resize(DECQUAD_Pmax); - return decQuadGetCoefficient(&m_data, (uint8_t*)bcd.data()); - } - - QDecQuad& setCoefficient(const QByteArray& bcd, int32_t sign) { - decQuadSetCoefficient(&m_data, (const uint8_t*)bcd.data(), sign); - return *this; - } - - QDecQuad& setExponent(int32_t exp, QDecContext* c = 0) { - decQuadSetExponent(&m_data, CXT(c), exp); - return *this; - } - - int32_t toBCD(int32_t& exp, QByteArray& bcd) { - bcd.resize(DECQUAD_Pmax); - return decQuadToBCD(&m_data, &exp, (uint8_t*)bcd.data()); - } - - double toDouble() const; - - QByteArray toEngString() const { - char str[MaxStrSize] = { 0 }; - return decQuadToEngString(&m_data, str); - } - - int32_t toPacked(int32_t& exp, QByteArray& pack) { - pack.resize(DECQUAD_Pmax); - return decQuadToPacked(&m_data, &exp, (uint8_t*)pack.data()); - } - - QByteArray toString() const { - char str[MaxStrSize] = { 0 }; - return decQuadToString(&m_data, str); - } - - QDecDouble toQDecDouble(QDecContext* c = 0) const; - - QDecPacked toQDecPacked() const; - - QDecNumber toQDecNumber() const; - - QDecQuad& zero() - { decQuadZero(&m_data); return *this; } - - - // COMPUTATIONAL - QDecQuad abs(QDecContext* c = 0) const - { decQuad q; return decQuadAbs(&q, &m_data, CXT(c)); } - - QDecQuad add(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadAdd(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad digitAnd(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadAnd(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad divide(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadDivide(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad divideInteger(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadDivideInteger(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad fma(const QDecQuad& o, const QDecQuad& o2, - QDecContext* c = 0) const - { decQuad q; return decQuadFMA(&q, &m_data, &o.m_data, &o2.m_data, CXT(c)); } - - QDecQuad invert(QDecContext* c = 0) const - { decQuad q; return decQuadInvert(&q, &m_data, CXT(c)); } - - QDecQuad logB(QDecContext* c = 0) const - { decQuad q; return decQuadLogB(&q, &m_data, CXT(c)); } - - QDecQuad max(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadMax(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad maxMag(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadMaxMag(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad minus(QDecContext* c = 0) const - { decQuad q; return decQuadMinus(&q, &m_data, CXT(c)); } - - QDecQuad multiply(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadMultiply(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad nextMinus(QDecContext* c = 0) const - { decQuad q; return decQuadNextMinus(&q, &m_data, CXT(c)); } - - QDecQuad nextPlus(QDecContext* c = 0) const - { decQuad q; return decQuadNextPlus(&q, &m_data, CXT(c)); } - - QDecQuad nextToward(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadNextToward(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad digitOr(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadOr(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad plus(QDecContext* c = 0) const - { decQuad q; return decQuadPlus(&q, &m_data, CXT(c)); } - - QDecQuad quantize(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadQuantize(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad reduce(QDecContext* c = 0) const - { decQuad q; return decQuadReduce(&q, &m_data, CXT(c)); } - - QDecQuad remainder(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadRemainder(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad remainderNear(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadRemainderNear(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad rotate(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadRotate(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad scaleB(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadScaleB(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad shift(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadShift(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad subtract(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadSubtract(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad toIntegralValue(enum rounding r, QDecContext* c = 0) const - { decQuad q; return decQuadToIntegralValue(&q, &m_data, CXT(c), r); } - - QDecQuad toIntegralExact(QDecContext* c = 0) const - { decQuad q; return decQuadToIntegralExact(&q, &m_data, CXT(c)); } - - QDecQuad digitXor(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadXor(&q, &m_data, &o.m_data, CXT(c)); } - - - // COMPARISONS - QDecQuad compare(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadCompare(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad compareSignal(const QDecQuad& o, QDecContext* c = 0) const - { decQuad q; return decQuadCompareSignal(&q, &m_data, &o.m_data, CXT(c)); } - - QDecQuad compareTotal(const QDecQuad& o) const - { decQuad q; return decQuadCompareTotal(&q, &m_data, &o.m_data); } - - QDecQuad compareTotalMag(const QDecQuad& o) const - { decQuad q; return decQuadCompareTotalMag(&q, &m_data, &o.m_data); } - - - // COPIES - QDecQuad& canonical(const QDecQuad& d) - { decQuadCanonical(&m_data, &d.m_data); return *this; } - - QDecQuad& copy(const QDecQuad& d) - { decQuadCopy(&m_data, &d.m_data); return *this; } - - QDecQuad& copyAbs(const QDecQuad& d) - { decQuadCopyAbs(&m_data, &d.m_data); return *this; } - - QDecQuad& copyNegate(const QDecQuad& d) - { decQuadCopyNegate(&m_data, &d.m_data); return *this; } - - QDecQuad& copySign(const QDecQuad& d, const QDecQuad& sd) - { decQuadCopySign(&m_data, &d.m_data, &sd.m_data); return *this; } - - - // NON-COMPUTATIONAL - // "class" is a reserved word in C++ - enum decClass classification() const - { return decQuadClass(&m_data); } - - const char* classString() const - { return decQuadClassString(&m_data); } - - uint32_t digits() const - { return decQuadDigits(&m_data); } - - bool isCanonical() const - { return decQuadIsCanonical(&m_data); } - - bool isFinite() const - { return decQuadIsFinite(&m_data); } - - bool isInteger() const - { return decQuadIsInteger(&m_data); } - - bool isLogical() const - { return decQuadIsLogical(&m_data); } - - bool isInfinite() const - { return decQuadIsInfinite(&m_data); } - - bool isNaN() const - { return decQuadIsNaN(&m_data); } - - bool isNegative() const - { return decQuadIsNegative(&m_data); } - - bool isNormal() const - { return decQuadIsNormal(&m_data); } - - bool isPositive() const - { return decQuadIsPositive(&m_data); } - - bool isSignaling() const - { return decQuadIsSignaling(&m_data); } - - bool isSignalling() const - { return decQuadIsSignalling(&m_data); } - - bool isSigned() const - { return decQuadIsSigned(&m_data); } - - bool isSubnormal() const - { return decQuadIsSubnormal(&m_data); } - - bool isZero() const - { return decQuadIsZero(&m_data); } - - uint32_t radix() const - { return decQuadRadix(&m_data); } - - const char* version() const - { return decQuadVersion(); } - - - // RELATIONAL AND LOGICAL OPERATORS - bool operator==(const QDecQuad& o) const - { return compare(o).isZero(); } - - bool operator!=(const QDecQuad& o) const - { return !(this->operator==(o)); } - - bool operator<(const QDecQuad& o) const - { return compare(o).isNegative(); } - - bool operator<=(const QDecQuad& o) const - { - const QDecQuad& r = compare(o); - return r.isNegative() || r.isZero(); - } - - bool operator>(const QDecQuad& o) const - { return !(this->operator<=(o)); } - - bool operator>=(const QDecQuad& o) const - { - const QDecQuad& r = compare(o); - return !r.isNegative() || r.isZero(); - } - - // BITWISE OPERATORS - QDecQuad operator&(const QDecQuad& o) const - { return digitAnd(o); } - - QDecQuad operator|(const QDecQuad& o) const - { return digitOr(o); } - - QDecQuad operator^(const QDecQuad& o) const - { return digitXor(o); } - - - // ARITHMETIC OPERATORS - QDecQuad operator+(const QDecQuad& o) const - { return add(o); } - - QDecQuad operator-(const QDecQuad& o) const - { return subtract(o); } - - QDecQuad operator*(const QDecQuad& o) const - { return multiply(o); } - - QDecQuad operator/(const QDecQuad& o) const - { return divide(o); } - - QDecQuad operator%(const QDecQuad& o) const - { return remainder(o); } - - - // COMPOUND ASSIGNMENT OPERATORS - QDecQuad& operator+=(const QDecQuad& o) - { return copy(add(o)); } - - QDecQuad& operator-=(const QDecQuad& o) - { return copy(subtract(o)); } - - QDecQuad& operator*=(const QDecQuad& o) - { return copy(multiply(o)); } - - QDecQuad& operator/=(const QDecQuad& o) - { return copy(divide(o)); } - - QDecQuad& operator%=(const QDecQuad& o) - { return copy(remainder(o)); } - - QDecQuad& operator&=(const QDecQuad& o) - { return copy(digitAnd(o)); } - - QDecQuad& operator|=(const QDecQuad& o) - { return copy(digitOr(o)); } - - QDecQuad& operator^=(const QDecQuad& o) - { return copy(digitXor(o)); } - - -}; // end class - - -Q_DECLARE_METATYPE(QDecQuad); - - -QDECIMAL_EXPORT -QTextStream& operator<<(QTextStream& ts, const QDecQuad& d); - - -#endif /* Include guard */ diff --git a/qdecimal/src/QDecSingle.cc b/qdecimal/src/QDecSingle.cc deleted file mode 100644 index 55b9a6e..0000000 --- a/qdecimal/src/QDecSingle.cc +++ /dev/null @@ -1,102 +0,0 @@ -/** \file QDecSingle.cc - * Definitions for the class QDecSingle. - * - * (C) Copyright by Semih Cemiloglu - * All rights reserved, see COPYRIGHT file for details. - * - * $Id$ - * - * - */ - -#include "QDecSingle.hh" -extern "C" { - #include "decimal32.h" -} -#include -#include -#include "QDecNumber.hh" -#include "QDecPacked.hh" -#include "QDecDouble.hh" - - -QDecSingle& QDecSingle::fromDouble(double d) -{ - char str[MaxStrSize] = {0}; - - #if defined(_MSC_VER) - _snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - #else - snprintf(str, MaxStrSize, "%.*g", QDecNumDigits, d); - #endif - - return fromString(str); -} - -QDecSingle& QDecSingle::fromHexString(const char* str) -{ - QByteArray ba = QByteArray::fromHex(str); - int size = sizeof(m_data); - char* p = (char*)&m_data; - int i = 0; - int j = size-1; - for(; i -#include - -#include "QDecFwd.hh" -#include "QDecContext.hh" -extern "C" { - #include "decSingle.h" -} - -// FORWARDS -QT_BEGIN_NAMESPACE -class QTextStream; -QT_END_NAMESPACE - - -/*! - \class QDecSingle - QDecSingle encapsulates decSingle and provides decNumber - library functions that operates upon decSingle as member functions - with the same name. - decimal32 is a 32-bit decimal floating-point representation which - provides 7 decimal digits of precision in a compressed format. - decSingle module provides the functions for the decimal32 format; - this format is intended for storage and interchange only and so - the module provides utilities and conversions but no arithmetic functions. - */ -class QDECIMAL_EXPORT QDecSingle -{ - // MEMBERS - //! Embedded decSingle structure - decSingle m_data; - - public: - // TYPES - typedef decSingle* decSinglePtr_t; - enum { - MaxStrSize = QDECMAXSTRSIZE - }; - - - // CREATORS - //! Default constructor - QDecSingle() { decSingleZero(&m_data); } - - // Default Dtor and Copy Ctor are ok - - // Constructors using decSingle structure - QDecSingle(decSingle d) : m_data(d) {} - QDecSingle(const decSingle* p) : m_data(*p) {} - - // Conversion constructors using simple types - QDecSingle(const char* str) { fromString(str); } - QDecSingle(double d) { fromDouble(d); } - - // Conversion constructors using composite types - QDecSingle(const QDecDouble& d) { fromQDecDouble(d); } - QDecSingle(const QDecPacked& p) { fromQDecPacked(p); } - QDecSingle(const QDecNumber& n) { fromQDecNumber(n); } - - //! Copy assignment - QDecSingle& operator=(const QDecSingle& o) - { if(this != &o) m_data = o.m_data; return *this; } - - //! Conversion operator to decSingle* - operator decSinglePtr_t() { return &m_data; } - - - // ACCESSORS - const decSingle* data() const - { return &m_data; } - - // MODIFIERS - decSingle* data() - { return &m_data; } - - - // UTILITIES & CONVERSIONS - QDecSingle& fromBCD(int32_t exp, const QByteArray& bcd, int32_t sign) { - decSingleFromBCD(&m_data, exp, (const uint8_t*)bcd.data(), sign); - return *this; - } - - QDecSingle& fromDouble(double d); - - QDecSingle& fromPacked(int32_t exp, const QByteArray& pack) { - decSingleFromPacked(&m_data, exp, (const uint8_t*)pack.data()); - return *this; - } - - QDecSingle& fromPackedChecked(int32_t exp, const QByteArray& pack) { - decSingleFromPackedChecked(&m_data, exp, (const uint8_t*)pack.data()); - return *this; - } - - QDecSingle& fromString(const char* str, QDecContext* c = 0) { - decSingleFromString(&m_data, str, CXT(c)); - return *this; - } - - //! Hexadecimal string in network byte order - QDecSingle& fromHexString(const char* str); - - QDecSingle& fromQDecDouble(const QDecDouble& d, QDecContext* c = 0) - { return fromWider(d,c); } - - QDecSingle& fromQDecNumber(const QDecNumber& n, QDecContext* c = 0); - - QDecSingle& fromQDecPacked(const QDecPacked& p); - - QDecSingle& fromWider(const QDecDouble& d, QDecContext* c = 0); - - int32_t getCoefficient(QByteArray& bcd) const { - bcd.resize(DECSINGLE_Pmax); - return decSingleGetCoefficient(&m_data, (uint8_t*)bcd.data()); - } - - int32_t getExponent() const - { return decSingleGetExponent(&m_data); } - - QDecSingle& setCoefficient(const QByteArray& bcd, int32_t sign) { - decSingleSetCoefficient(&m_data, (const uint8_t*)bcd.data(), sign); - return *this; - } - - QDecSingle& setExponent(int32_t exp, QDecContext* c = 0 ) { - decSingleSetExponent(&m_data, CXT(c), exp); - return *this; - } - - int32_t toBCD(int32_t& exp, QByteArray& bcd) { - bcd.resize(DECSINGLE_Pmax); - return decSingleToBCD(&m_data, &exp, (uint8_t*)bcd.data()); - } - - double toDouble() const; - - QByteArray toEngString() const { - char str[MaxStrSize] = { 0 }; - return decSingleToEngString(&m_data, str); - } - - QByteArray toString() const { - char str[MaxStrSize] = { 0 }; - return decSingleToString(&m_data, str); - } - - int32_t toPacked(int32_t& exp, QByteArray& pack) { - pack.resize(DECSINGLE_Pmax); - return decSingleToPacked(&m_data, &exp, (uint8_t*)pack.data()); - } - - QDecDouble toQDecDouble() const; - - QDecPacked toQDecPacked() const; - - QDecNumber toQDecNumber() const; - - QDecDouble toWider() const; - - QDecSingle& zero() - { decSingleZero(&m_data); return *this; } - - - // ARITHMETIC - // No arithmetic routines defines for QDecSingle - - // NON-COMPUTATIONAL - - uint32_t radix() const - { return decSingleRadix(&m_data); } - - const char* version() const - { return decSingleVersion(); } - - -}; // end class - - -Q_DECLARE_METATYPE(QDecSingle); - - -QDECIMAL_EXPORT -QTextStream& operator<<(QTextStream& ts, const QDecSingle& d); - - -#endif /* Include guard */ diff --git a/qdecimal/src/SConscript b/qdecimal/src/SConscript deleted file mode 100644 index 5fd0360..0000000 --- a/qdecimal/src/SConscript +++ /dev/null @@ -1,7 +0,0 @@ -Import('*') - -env.AppendUnique(CPPPATH = ['#/decnumber']) - -lib = env.Library('qdecimal', Glob('*.cc')) - -env['PRJ_LIBS']['qdecimal'] = lib diff --git a/qdecimal/src/src.pro b/qdecimal/src/src.pro deleted file mode 100644 index 11b94ef..0000000 --- a/qdecimal/src/src.pro +++ /dev/null @@ -1,37 +0,0 @@ -# -# -# -include(../common.pri) - -QT -= gui -TEMPLATE = lib - -# Pick if the library will be static or dynamic: -CONFIG += static -# or dynamic (don't forget to define QDECIMAL_SHARED -#CONFIG += shared -#DEFINES += QDECIMAL_SHARED=2 -# 1=import, client app, 2=export, source shared library (here) - - -TARGET = qdecimal -DEPENDPATH += . -# To include decnumber headers -INCLUDEPATH += ../decnumber -DESTDIR = ../lib -LIBS += -L../lib -ldecnumber - -# Input -HEADERS += QDecContext.hh \ - QDecDouble.hh \ - QDecPacked.hh \ - QDecNumber.hh \ - QDecSingle.hh \ - QDecQuad.hh - -SOURCES += QDecContext.cc \ - QDecDouble.cc \ - QDecPacked.cc \ - QDecNumber.cc \ - QDecSingle.cc \ - QDecQuad.cc diff --git a/qdecimal/test/Main.cc b/qdecimal/test/Main.cc deleted file mode 100644 index 606255c..0000000 --- a/qdecimal/test/Main.cc +++ /dev/null @@ -1,70 +0,0 @@ -#include - -#include "QDecNumberTests.hh" - -#if defined(__GNUC__) -# ident "$Id$" -#elif defined(__sun) -# pragma ident "$Id$" -#elif defined(_WIN32) -# pragma comment( user, __FILE__ " " __DATE__ " " __TIME__ "$Id$" ) -#endif - - - -void MessageOutput(QtMsgType type, const QMessageLogContext &context, - const QString &msg) -{ - QByteArray lmsg = msg.toLocal8Bit(); - const char* cmsg = lmsg.constData(); - switch (type) { - case QtDebugMsg: - fprintf(stderr, "%s\n", cmsg); - break; - case QtWarningMsg: - fprintf(stderr, "Warn: %s\n", cmsg); - break; - case QtCriticalMsg: - fprintf(stderr, "Critical: %s\n", cmsg); - break; - case QtFatalMsg: - fprintf(stderr, "Fatal: %s\n", cmsg); - abort(); - } -} - - - -//QTEST_MAIN(QDecNumberTests) - -int main(int argc, char* argv[]) -{ - qInstallMessageHandler(MessageOutput); - QCoreApplication app(argc, argv); - QStringList args = QCoreApplication::arguments(); - - QRegExp flagre("--(\\w+)=.*"); - QStringList tc_args; - QStringList qt_args; - - // Separate QTest arguments out of test class arguments - QStringListIterator ai(args); - while(ai.hasNext()) { - QString item = ai.next(); - if(flagre.exactMatch(item)) - tc_args << item; - else - qt_args << item; - } - - QDecNumberTests tc(tc_args); - int rv; - - // Increase limit for warnings count - qt_args << "-maxwarnings" << "9999999"; - rv = QTest::qExec(&tc, qt_args); - - return rv; -} - -//include "moc_QDecNumberTests.cpp" diff --git a/qdecimal/test/QDecNumberTests.cc b/qdecimal/test/QDecNumberTests.cc deleted file mode 100644 index b41a727..0000000 --- a/qdecimal/test/QDecNumberTests.cc +++ /dev/null @@ -1,1362 +0,0 @@ -#include - -#include -#include -#include - -#include "QDecContext.hh" -#include "QDecNumber.hh" -#include "QDecSingle.hh" -#include "QDecDouble.hh" -#include "QDecQuad.hh" -#include "QDecPacked.hh" - -extern "C" { -#include "decimal64.h" -#include "decimal128.h" -#include "decPacked.h" -#include "decQuad.h" -} - -#include -using namespace std; - -#include "QDecNumberTests.hh" - - -#if defined(__GNUC__) -# ident "$Id$" -#elif defined(__sun) -# pragma ident "$Id$" -#elif defined(_WIN32) -# pragma comment( user, __FILE__ " " __DATE__ " " __TIME__ "$Id$" ) -#endif - - -QDebug operator<<(QDebug dbg, const QDecContext& c) -{ - QString cstr; - { - QTextStream ts(&cstr); - ts << c; - } - dbg.nospace() << cstr; - return dbg.space(); -} - - -QDecNumberTests::QDecNumberTests(const QStringList& args) -{ - // These are the flags we recognize - QStringList flags; - flags << "testdir" << "testfile" << "testcase" - << "testfilefilter"; - - // Generic flag format - QRegExp flagre("--(\\w+)=(.*)"); - - // Store flags and values in m_argsMap - for(int i=0; istring buffer - char hexes[25]; // decimal64>hex buffer - int i; // counter - - decContextDefault(&set, DEC_INIT_DECIMAL64); // initialize - - decimal64FromString(&a, "79", &set); - // lay out the decimal64 as eight hexadecimal pairs - for (i=0; i<8; i++) { - sprintf(&hexes[i*3], "%02x ", a.bytes[i]); - } - decimal64ToNumber(&a, &d); - decNumberToString(&d, string); - - QCOMPARE(string, "79"); - // Little endian: - QCOMPARE((const char*)hexes, "79 00 00 00 00 00 38 22 "); - - // Big endian: - //QCOMPARE(hexes, "22 38 00 00 00 00 00 79 "); - - //printf("%s => %s=> %s\n", argv[1], hexes, string); -} - - -void QDecNumberTests::packed_decimals() -{ - uint8_t startpack[]={0x01, 0x00, 0x00, 0x0C}; // investment=100000 - int32_t startscale=0; - uint8_t ratepack[]={0x06, 0x5C}; // rate=6.5% - int32_t ratescale=1; - uint8_t yearspack[]={0x02, 0x0C}; // years=20 - int32_t yearsscale=0; - uint8_t respack[16]; // result, packed - int32_t resscale; // .. - char hexes[49]; // for packed>hex - int i; // counter - - decNumber one, mtwo, hundred; // constants - decNumber start, rate, years; // parameters - decNumber total; // result - decContext set; // working context - - decContextDefault(&set, DEC_INIT_BASE); // initialize - set.traps=0; // no traps - set.digits=25; // precision 25 - decNumberFromString(&one, "1", &set); // set constants - decNumberFromString(&mtwo, "-2", &set); - decNumberFromString(&hundred, "100", &set); - - QVERIFY(0 == set.status); - - decPackedToNumber(startpack, sizeof(startpack), &startscale, &start); - decPackedToNumber(ratepack, sizeof(ratepack), &ratescale, &rate); - decPackedToNumber(yearspack, sizeof(yearspack), &yearsscale, &years); - - decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100 - decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1 - decNumberPower(&rate, &rate, &years, &set); // rate=rate**years - decNumberMultiply(&total, &rate, &start, &set); // total=rate*start - decNumberRescale(&total, &total, &mtwo, &set); // two digits please - - decPackedFromNumber(respack, sizeof(respack), &resscale, &total); - - // lay out the total as sixteen hexadecimal pairs - for (i=0; i<16; i++) { - sprintf(&hexes[i*3], "%02x ", respack[i]); - } - - - QVERIFY(resscale == 2); - QCOMPARE((const char*)hexes, "00 00 00 00 00 00 00 00 00 00 00 03 52 36 45 1c "); - //printf("Result: %s (scale=%ld)\n", hexes, (long int)resscale); - -} - - -void QDecNumberTests::quad_tests() -{ - decQuad a, b; // working decQuads - decContext set; // working context - char string[DECQUAD_String]; // number>string buffer - - decContextDefault(&set, DEC_INIT_DECQUAD); // initialize - - decQuadFromString(&a, "1.123456", &set); - decQuadFromString(&b, "2.111111", &set); - decQuadAdd(&a, &a, &b, &set); // a=a+b - decQuadToString(&a, string); - - QCOMPARE(string, "3.234567"); - - //printf("%s + %s => %s\n", argv[1], argv[2], string); -} - - -void QDecNumberTests::quad_with_number() -{ - decQuad a; // working decQuad - decNumber numa, numb; // working decNumbers - decContext set; // working context - char string[DECQUAD_String]; // number>string buffer - - decContextDefault(&set, DEC_INIT_DECQUAD); // initialize - - decQuadFromString(&a, "1.0", &set); // get a - decQuadAdd(&a, &a, &a, &set); // double a - decQuadToNumber(&a, &numa); // convert to decNumber - decNumberFromString(&numb, "2.0", &set); - decNumberPower(&numa, &numa, &numb, &set); // numa=numa**numb - decQuadFromNumber(&a, &numa, &set); // back via a Quad - decQuadToString(&a, string); // .. - - QCOMPARE(string, "4.00"); - //printf("power(2*%s, %s) => %s\n", argv[1], argv[2], string); -} - - -void QDecNumberTests::QDecContext_tests() -{ - QDecContext dc; - dc.setDigits(15); - dc.setRound(DEC_ROUND_HALF_UP); - dc.setEmin(-999999999); - dc.setEmax(999999999); - - - QCOMPARE(0, (int)dc.status()); - QVERIFY(0==dc.status()); - QCOMPARE(DEC_ROUND_HALF_UP, dc.round()); - -} - - - - -void QDecNumberTests::QDecNumber_abs() -{ - QDecContext cxt; - QDecNumber dcn; - - cxt.setDigits(15); - cxt.setRound(DEC_ROUND_HALF_UP); - cxt.setEmax(384); - cxt.setEmin(-383); - - QVERIFY(dcn.fromString("1").abs(&cxt).toString() == "1"); - QVERIFY(dcn.fromString("-1").abs(&cxt).toString() == "1"); - //qDebug() << "abs:" << dcn.fromString("0.00").abs(&cxt).toString(); - QVERIFY(dcn.fromString("0.00").abs(&cxt).isZero()); - QVERIFY(dcn.fromString("-101.5").abs(&cxt).toString() == "101.5"); - - cxt.setDigits(9); - QVERIFY(dcn.fromString("-56267E-5").abs(&cxt).toString() == "0.56267"); - -} - - -void QDecNumberTests::QDecNumber_add() -{ - QDecContext cxt; - QDecNumber op1,op2; - - cxt.setDigits(9); - cxt.setRound(DEC_ROUND_HALF_UP); - cxt.setEmax(384); - cxt.setEmin(-383); - - op1.fromString("2"); - op2.fromString("3"); - QVERIFY(op1.add(op2,&cxt).toString() == "5"); - - op1.fromString("-7"); - op2.fromString("2.5"); - QVERIFY(op1.add(op2,&cxt).toString() == "-4.5"); - - op1.fromString("7000"); - op2.fromString("10000e+9"); - QVERIFY(op1.add(op2,&cxt).toString() == "1.00000000E+13"); - -} - -void QDecNumberTests::QDecimal_size() -{ - qDebug() << "sizeof(QDecContext)" << sizeof(QDecContext); - QVERIFY(sizeof(decContext) == sizeof(QDecContext)); - - qDebug() << "sizeof(QDecPacked)" << sizeof(QDecPacked); - - qDebug() << "QDecNumDigits=" << QDecNumDigits; - qDebug() << "sizeof(QDecNumber)" << sizeof(QDecNumber); - - qDebug() << "sizeof(QDecSingle)" << sizeof(QDecSingle); - QVERIFY(sizeof(QDecSingle)==4); - qDebug() << "sizeof(QDecDouble)" << sizeof(QDecDouble); - QVERIFY(sizeof(QDecDouble)==8); - qDebug() << "sizeof(QDecQuad)" << sizeof(QDecQuad); - QVERIFY(sizeof(QDecQuad)==16); - -} - - -static void qDebugDouble(const char* label, double d) -{ - char bfr[1024]; - sprintf(bfr,"%.*g",QDecNumDigits, d); - qDebug() << label << bfr; -} - -static bool qRealFuzzyCompare(double d1, double d2) -{ - double delta = d1-d2; - - if(delta==0.0) return true; - - // We want absolute values - if(delta < 0) delta *= -1.0; - - double max = (d1 > d2) ? d1 : d2; - // 1e-6 is the highest level of error margin - if(delta/max > 0.000001) { - qDebug() << "max=" << max - << "delta=" << delta - << "d/m=" << delta/max - << endl; - return false; // not equal - } - - return true; // equal -} - -void QDecNumber_conv(const char* dblstr) -{ - QDecNumber n; - QDecContext c(DEC_INIT_DECIMAL128); - double d; - const char* ns = dblstr; - char bfr[1024]; - - qDebug() << endl << "QDecNumber conversion tests using string" << ns; - d = strtod(ns,0); - qDebugDouble("d=", d); - sprintf(bfr,"%.*g",QDecNumDigits, d); - qDebug() << "d=" << d << bfr; - QCOMPARE(d, atof(ns)); - - n.fromString(ns /*,&c*/); - qDebug() << "n=" << n.toString() << n.toEngString(); - if(n.isNaN()) - return; // Skip rest of the tests - qDebug() << "n.toDouble()=" << n.toDouble(); - qDebug() << "QString(n.toDouble())=" - << QString::number(n.toDouble(),'g',QDecNumDigits); - sprintf(bfr, "%.*g", QDecNumDigits, n.toDouble()); - qDebug() << "sprintf(n.toDouble())=" << bfr; - QCOMPARE(n.toDouble(), d); - - QDecNumber n2; - n2.fromDouble(d); - qDebug() << "n2=" << n2.toString(); - QCOMPARE(d, n2.toDouble()); -} - - -void QDecX_conv(const char* dblstr) -{ - QDecSingle qs; - QDecDouble qd; - QDecQuad qq; - double d; - const char* ns = dblstr; - - qDebug() << endl << "QDecX conversion tests using string" << ns; - d = strtod(ns,0); - qDebugDouble("d=",d); - QCOMPARE(d, atof(ns)); - - qs.fromString(ns); - qDebug() << "qs.fromString()=" << qs.toString(); - qs.fromDouble(d); - qDebug() << "qs.fromDouble()=" << qs.toString(); - qDebugDouble("qs.toDouble()=",qs.toDouble()); - QVERIFY(qRealFuzzyCompare(d, qs.toDouble())); - - qd.fromString(ns); - qDebug() << "qd.fromString()=" << qd.toString(); - qd.fromDouble(d); - qDebug() << "qd.fromDouble()=" << qd.toString(); - qDebugDouble("qd.toDouble()=",qd.toDouble()); - QVERIFY(qRealFuzzyCompare(d, qd.toDouble())); - - qq.fromString(ns); - qDebug() << "qq.fromString()=" << qq.toString(); - qq.fromDouble(d); - qDebug() << "qq.fromDouble()=" << qq.toString(); - qDebugDouble("qq.toDouble()=",qq.toDouble()); - QVERIFY(qRealFuzzyCompare(d, qq.toDouble())); - -} - -void QDecPacked_conv(const char* dblstr) -{ - QDecPacked qp; - QDecNumber n; - double d; - const char* ns = dblstr; - - qDebug() << endl << "QDecPacked conversion tests using string" << ns; - d = strtod(ns,0); - qDebugDouble("d=",d); - QCOMPARE(d, atof(ns)); - - n.fromString(ns); - if(n.isNaN()) - return; // Skip rest of the tests - - qp.fromString(ns); - qDebug() << "qp.fromString()=" << qp.toString(); - qDebugDouble("qp...toDouble()=",qp.toQDecNumber().toDouble()); - QVERIFY(qRealFuzzyCompare(d, qp.toQDecNumber().toDouble())); - - qp.fromDouble(d); - qDebug() << "qp.fromDouble()=" << qp.toString(); - // fromDouble() is not precise, use the string again - qp.fromString(ns); - qDebug() << "qp.scale()=" << qp.scale() - << "qp.length()=" << qp.length() - << "qp.bytes()=" << qp.bytes().toHex(); - QVERIFY(n == qp.toQDecNumber()); -} - -void QDecNumberTests::conversion() -{ - const char* darr[] = { - "1", "0.123", "10.0123", "210.01234567", - "9876543210.01234567890123456789", - "1.01234567890123456789012345678901234567890123456789012345678901234567890123456789", - "x.y?", - 0 - }; - - /* - QDecNumber n; - n.fromString("1.125"); - qDebug() << n.toDouble(); - return; - */ - - int i; - for(i=0; darr[i] != 0; ++i) - QDecNumber_conv(darr[i]); - - for(i=0; darr[i] != 0; ++i) - QDecX_conv(darr[i]); - - for(i=0; darr[i] != 0; ++i) - QDecPacked_conv(darr[i]); - -} - - -void QDecNumberTests::regression() -{ - { // Issue #1 - double dmax = DBL_MAX; - double dmin = DBL_MIN; - - QDecDouble ddmax(dmax); - qDebug() << "dmax=" << dmax << "ddmax=" << ddmax.toString(); - //QCOMPARE(ddmax.toDouble(), dmax); - QVERIFY(1); - - QDecDouble ddmin(dmin); - qDebug() << "dmin=" << dmin << "ddmin=" << ddmin.toString(); - //QCOMPARE(ddmin.toDouble(), dmin); - QVERIFY(1); - } - -} - - -// -//-------------------------------------- -// - - - -void QDecNumberTests::procTestFile(const QString& filename) -{ - QFile file(filename); - if(!file.open(QIODevice::ReadOnly | QIODevice::Text)) { - qWarning() << "Cannot open " << filename; - return; - } - else { - m_testFile = filename; - m_testLines.clear(); - } - - while(!file.atEnd()) { - QByteArray line = file.readLine(); - m_testLines.append(line); - } - - // Remove directives belonging to previous files - clearDirectivesContext(); - - int rv ; - QByteArray line; - QStringList tokens; - QStringListIterator si(m_testLines); - QDecContext context; - - while(si.hasNext()) { - QString line = si.next(); - rv = procTestLine(line , tokens); - switch(rv) { - case TC_unknown: - case TC_ignore: - case TC_comment: break; - - case TC_directive: - applyTestDirective(tokens, context); - break; - - case TC_test: - qDebug() << "TESTCASE: " << line.trimmed(); - if(m_skipSet.contains(tokens.at(0))) { - qDebug() << "SKIP(skipSet):" << line.trimmed(); - } - else if(context.digits() > QDecNumDigits) { - // Skip testcase if precision required is higher than - // QDecNumber can accommodate. - qDebug() << "SKIP(precision):" << line.trimmed(); - } - else { - // No precision issue, run the test case - runTestCase(tokens, context); - } - break; - } - } // end while - - qDebug() << "Number of test lines " << m_testLines.size(); -} - - -int QDecNumberTests::procTestLine(const QString& line, - QStringList& tokens) -{ - QRegExp re_space("^\\s*"); - QRegExp re_comment("^(\\s*)--(.*)"); - QRegExp re_directive("^([^:]+):(.+)"); - QRegExp re_testop("^(.+)->(.+)"); - - tokens.clear(); - - if(re_space.exactMatch(line)) { - // Ignore empty lines - return TC_ignore; - } - if(re_comment.exactMatch(line)) { - // Ignore full comment lines - return TC_comment; - } - - // Find inline comments if any - QString ln = line; - int cpos = line.indexOf("--"); - if(cpos > 0) { - // If comment start is not in quotes - int qpos = line.indexOf("'"); - if(!(qpos > 0 && qpos < cpos)) { - // Comment is not in quotes... - ln = line.mid(0,cpos-1); // Extract non-comment part - } - } - - if(re_directive.exactMatch(ln)) { - QString keyword = re_directive.cap(1).simplified(); - QString value = re_directive.cap(2).simplified(); - //qDebug() << '[' << keyword << ':' << value << ']'; - tokens << keyword << value; - return TC_directive; - } - else if(re_testop.exactMatch(ln)) { - // Unary/Binary test operation tokens - QRegExp tot("^\\s*(\\S+)\\s+(\\S+)\\s+('[^']+'|\\S+)\\s*(\\S*)\\s*(\\S*)\\s*->\\s*(\\S+)\\s*(.*)"); - if(tot.exactMatch(ln)) { - QString id = tot.cap(1).simplified(); - QString op = tot.cap(2).simplified(); - // Don't trim whitespace from tokens - QString opd1 = tot.cap(3); //.simplified(); - QString opd2 = tot.cap(4); //.simplified(); - QString opd3 = tot.cap(5); //.simplified(); - QString res = tot.cap(6).simplified(); - QString cond = tot.cap(7).simplified(); - tokens << id << op << opd1 << opd2 << opd3 << res << cond; - //qDebug() << "Parsed tokens: " << tokens.join("|"); - return TC_test; - } - else { - qWarning() << "Cannot parse test op: " << ln; - } - } - else { - // Unidentified line - qWarning() << "Unidentified line: " << line; - } - - return TC_unknown; -} - -int QDecNumberTests::applyTestDirective(const QStringList& tokens, QDecContext& ctx) -{ - if(tokens.size() != 2 ) { - qWarning() << "Invalid tokens:" << tokens.join(" "); - return -1; - } - QString key = tokens.at(0).toLower(); // keyword - QString val = tokens.at(1).toLower(); // value - int rv = -1; // Return value error by default - - // Flags required to construct context object - bool ok; - - // Clear any status value left before - ctx.zeroStatus(); - - // - // Mandatory directives - // - if(!key.compare("precision")) { - // No operation to be done on context - unsigned pval = val.toUInt(&ok); - // Check if conversion is ok - if(ok) { - rv = 0; - if(pval < (unsigned)QDecNumDigits) - ctx.setDigits(pval); - } - else { - qWarning() << "Precison value conversion failed: " << val; - } - } - else if(!key.compare("rounding")) { - rv = 0; // Assume success - if(val == "ceiling") { - ctx.setRound(DEC_ROUND_CEILING); - } - else if(val == "down") { - ctx.setRound(DEC_ROUND_DOWN); - } - else if(val == "floor") { - ctx.setRound(DEC_ROUND_FLOOR); - } - else if(val == "half_down") { - ctx.setRound(DEC_ROUND_HALF_DOWN); - } - else if(val == "half_even") { - ctx.setRound(DEC_ROUND_HALF_EVEN); - } - else if(val == "half_up") { - ctx.setRound(DEC_ROUND_HALF_UP); - } - else if(val == "up") { - ctx.setRound(DEC_ROUND_UP); - } - else if(val == "05up") { - ctx.setRound(DEC_ROUND_05UP); - } - else { - rv = -1; - qWarning() << "Unknown value for rounding: " << val; - } - } - else if(!key.compare("maxexponent")) { - int32_t emax = (int32_t) val.toInt(&ok, 10); - if(ok) { - rv = 0; - ctx.setEmax(emax); - } - else { - qWarning() << "Unrecognized maxexponent: " << val; - } - } - else if(!key.compare("minexponent")) { - int32_t emin = (int32_t) val.toInt(&ok, 10); - if(ok) { - rv = 0; - ctx.setEmin(emin); - } - else { - qWarning() << "Unrecognized minexponent: " << val; - } - } - - // - // Optional directives - // - if(!key.compare("version")) { - // No operation for version, just store it - rv = 0; - } - else if(!key.compare("extended")) { - uint8_t ext = static_cast(val.toInt(&ok)); - if(ok) { - rv = 0; - ctx.setExtended(ext); - } - else - qWarning() << "Unrecognized extended: " << val; - } - else if(!key.compare("clamp")) { - uint8_t clp = static_cast(val.toInt(&ok)); - if(ok) { - rv = 0; - ctx.setClamp(clp); - } - else - qWarning() << "Unrecognized clamp: " << val; - - } - else if(!key.compare("dectest")) { - // Process the test cases in a file - rv = 0; - //TODO: Include the file - } - - - // Check if keyword/value pair is recognized - if(rv != 0) - qWarning() << "Unknown keyword " << key; - else { - m_curDirectives.insert(key, val); - //qDebug() << "directive=" << key << " val=" << val; - } - - //qDebug() << "ctx=" << ctx; - return rv; -} - - - -int QDecNumberTests::getDirectivesContext(QDecContext& ctx, bool precision) -{ - QMapIterator i(m_curDirectives); - QStringList tokens; - - while(i.hasNext()) { - i.next(); - if(!precision) { - if(i.key() == "precision") - continue; // Ignore precison directives if not wanted - } - tokens.clear(); - tokens << i.key() << i.value(); - applyTestDirective(tokens, ctx); - } - - // If precision is not wanted, pick largest exponent values - // to avoid rounding - if(!precision) { - ctx.setEmax(QDecMaxExponent); - ctx.setEmin(QDecMinExponent); - } - - if(ctx.status()) - qWarning() << "getDirectivesContext ctx=" << ctx.statusToString(); - //qDebug() << "getDirectivesContext ctx=" << ctx; - - return 0; -} - -void QDecNumberTests::displayDirectivesContext() -{ - QMapIterator i(m_curDirectives); - - qDebug() << "Currently valid context settings:"; - while(i.hasNext()) { - i.next(); - qDebug() << i.key() << '=' << i.value(); - } -} - -void QDecNumberTests::clearDirectivesContext() -{ - m_curDirectives.clear(); -} - - -inline bool is_unary_op(QString op) -{ - QStringList op_list; - op_list - << "abs" - << "apply" - << "class" - << "canonical" - << "copy" - << "copyabs" - << "copynegate" - << "exp" - << "invert" - << "ln" - << "log10" - << "logb" - << "minus" - << "nextminus" - << "nextplus" - << "plus" - << "reduce" - << "squareroot" - << "toSci" - << "toEng" - << "minus" - << "tointegral" - << "tointegralx" - << "trim" - ; - - return op_list.contains(op, Qt::CaseInsensitive); -} - -inline bool is_binary_op(QString op) -{ - QStringList op_list; - op_list - << "add" - << "and" - << "compare" - << "comparesig" - << "comparetotal" - << "comparetotalmag" - << "comparetotmag" - << "copysign" - << "divide" - << "divideint" - << "max" - << "min" - << "maxmag" - << "minmag" - << "multiply" - << "nexttoward" - << "or" - << "power" - << "quantize" - << "remainder" - << "remaindernear" - << "rescale" - << "rotate" - << "samequantum" - << "scaleb" - << "shift" - << "subtract" - << "xor" - ; - - return op_list.contains(op, Qt::CaseInsensitive); -} - -inline bool is_ternary_op(QString op) -{ - QStringList op_list; - op_list - << "fma" - ; - return op_list.contains(op, Qt::CaseInsensitive); -} - - -// Binary operations -inline QDecNumber op_do(QString op, - QDecNumber& n1, QDecNumber& n2, QDecNumber& n3, - QDecContext& c, QString& rs) -{ - // - // Unary operations - // - if("abs" == op) - return n1.abs(&c); - if("apply" == op) - return n1.plus(&c); - // canonical is similar to apply - if("canonical" == op) - return n1.plus(&c); - if("class" == op) { - enum decClass dc = n1.toClass(&c); - rs = n1.ClassToString(dc); - return n1; - } - // Copy operation modifies the callee, thus operation - // is done on unused operand - if("copy" == op) - return n2.copy(n1); - if("copyabs" == op) - return n2.copyAbs(n1); - if("copynegate" == op) - return n2.copyNegate(n1); - if("copysign" == op) - return n3.copySign(n1,n2); - if("exp" == op) - return n1.exp(&c); - if("invert" == op) - return n1.invert(&c); - if("ln" == op) - return n1.ln(&c); - if("log10" == op) - return n1.log10(&c); - if("logb" == op) - return n1.logB(&c); - if("minus" == op) - return n1.minus(&c); - if("nextminus" == op) - return n1.nextMinus(&c); - if("nextplus" == op) - return n1.nextPlus(&c); - if("plus" == op) - return n1.plus(&c); - if("reduce" == op) - return n1.reduce(&c); - if("squareroot" == op) - return n1.squareRoot(&c); - if("tosci" == op) { - rs = n1.toString().data(); - return n1; - } - if("toeng" == op) { - rs = n1.toEngString().data(); - return n1; - } - if("tointegral" == op) - return n1.toIntegralValue(&c); - if("tointegralx" == op) - return n1.toIntegralExact(&c); - if("trim" == op) - return n1.trim(); - - // - // Binary operations - // - if("add" == op) - return n1.add(n2, &c); - if("and" == op) - return n1.digitAnd(n2, &c); - if("compare" == op) - return n1.compare(n2, &c); - if("comparesig" == op) - return n1.compareSignal(n2, &c); - if("comparetotal" == op) - return n1.compareTotal(n2, &c); - if("comparetotalmag" == op || - "comparetotmag" == op) - return n1.compareTotalMag(n2, &c); - if("divide" == op) - return n1.divide(n2, &c); - if("divideint" == op) - return n1.divideInteger(n2, &c); - if("max" == op) - return n1.max(n2, &c); - if("min" == op) - return n1.min(n2, &c); - if("maxmag" == op) - return n1.maxMag(n2, &c); - if("minmag" == op) - return n1.minMag(n2, &c); - if("multiply" == op) - return n1.multiply(n2, &c); - if("nexttoward" == op) - return n1.nextToward(n2, &c); - if("or" == op) - return n1.digitOr(n2, &c); - if("power" == op) - return n1.power(n2, &c); - if("quantize" == op) - return n1.quantize(n2, &c); - if("remainder" == op) - return n1.remainder(n2, &c); - if("remaindernear" == op) - return n1.remainderNear(n2, &c); - if("rescale" == op) - return n1.rescale(n2, &c); - if("rotate" == op) - return n1.rotate(n2, &c); - if("samequantum" == op) { - if(n1.sameQuantum(n2)) return "1"; - else return "0"; - } - if("scaleb" == op) - return n1.scaleB(n2, &c); - if("shift" == op) - return n1.shift(n2, &c); - if("subtract" == op) - return n1.subtract(n2, &c); - if("xor" == op) - return n1.digitXor(n2, &c); - - // - // Ternary operations - // - if("fma" == op) - return n1.fma(n2, n3, &c); - - - qWarning() << "Unrecognized operation: " << op << endl; - return QDecNumber(); -} - - -int QDecNumberTests::opTest(const QStringList& tokens) -{ - QString id = tokens.at(0); - QString op = tokens.at(1).toLower(); - QString opd1 = tokens.at(2); - QString opd2 = tokens.at(3); - QString opd3 = tokens.at(4); - QString res = tokens.at(5); - QString cond = tokens.at(6); - bool ret = false; - - QDecNumber n1,n2,n3,e; - // Conversion Context - needs high precision - QDecContext cc(DEC_INIT_DECIMAL128); - // Operation Context - QDecContext oc(DEC_INIT_DECIMAL128); - QString rs; // Result String - bool op_precision_needed = false; - bool is_rs_used = false; // Is result string used? - - - // Skip a testcase with # as any of the operands - for(int i=2; i<=4; i++) - if(QString('#')==tokens.at(i)) { - qDebug() << "SKIP(operand#): " << tokens.join(","); - return 0; - } - - // Expected result will get maximum allowable precision - cc.setEmax(QDecMaxExponent); - cc.setEmin(QDecMinExponent); - // Expected result should not be affected by current context - if(res != "?") { - ret = token2QDecNumber(res, cc, e); // Expected result - qDebug() << "cc: " << cc; - } - cc.zeroStatus(); // Clear status flag for next operation - - // Apply current context to operands now - if(op=="tosci" || - op=="toeng" || - op=="apply") { - op_precision_needed = true; - is_rs_used = true; - res.remove(QChar('\'')); - } - getDirectivesContext(cc, op_precision_needed); - - ret = token2QDecNumber(opd1, cc, n1); - cc.zeroStatus(); // Clear status flag for next operation - - if(is_binary_op(op) || - is_ternary_op(op)) { - ret = token2QDecNumber(opd2, cc, n2); - cc.zeroStatus(); - } - if(is_ternary_op(op)) { - ret = token2QDecNumber(opd3, cc, n3); - cc.zeroStatus(); - } - - // Get context directives including precision - getDirectivesContext(oc, true); - // Perform the operation, obtain the result - QDecNumber r = op_do(op,n1,n2,n3,oc,rs); - - if(res=="?") { - ret = true; - if(oc.status()) { - qDebug() << "runTestCase ctx=" << oc.statusToString() - << "flg=" << oc.statusFlags(); - } - } - else { - if(op == "tosci" || - op == "toeng" || - op == "class" ) { - ret = (0==res.trimmed().compare(rs)); - if(!ret) - // If false check the result is identical - // This is also acceptable as there might be more than - // one representation of same number - ret = r.compare(e, &oc).isZero(); - } - else { - ret = r.compare(e, &oc).isZero(); - if(r.isNaN() && e.isNaN()) ret = true; - } - } - qDebug() << "oc: " << oc; - if(ret) { - qDebug() << "PASS: " << tokens.join(","); - /* Uncomment to receive more information about passing test cases: */ - qDebug() << "n1=" << n1.toString().data() - << "n2=" << n2.toString().data() - << "r=" - << (is_rs_used ? rs.toLocal8Bit().data() : r.toString().data()) - << "e=" << e.toString().data() - << "prc=" << oc.digits() - << "ctx=" << (oc.status() ? oc.statusToString() : 0) - << (is_rs_used ? res + "|" + rs : (const char*)0); - - return 0; // Success - } - else { - qDebug() << "FAIL: " << tokens.join(","); - qDebug() << "n1=" << n1.toString().data() - << "n2=" << n2.toString().data() - << "n3=" << n3.toString().data() - << "r=" - << (is_rs_used ? rs.toLocal8Bit().data() : r.toString().data()) - << "e=" << e.toString().data() - << "prc=" << oc.digits() - << "ctx=" << (oc.status() ? oc.statusToString() : 0) - << (is_rs_used ? res + "|" + rs : (const char*)0); - - // Print out operation context - qDebug() << "oc: " << oc; - // Print out prevailing context settings - displayDirectivesContext(); - // Uncomment this if you want to stop the test cases after failure - //qFatal("End"); - return 1; // Failure - } - - return 0; -} - -int QDecNumberTests::runTestCase(const QStringList& tokens, const QDecContext& /* ctx */) -{ - if(tokens.size() != 7) { - qWarning() << "Invalid number of tokens: " << tokens.join(","); - return 1; // Failure - } - - QString op = tokens.at(1); - - if(is_unary_op(op) || - is_binary_op(op) || - is_ternary_op(op)) - return opTest(tokens); - else - qDebug() << "SKIP(unknown op): " << tokens.join(","); - - return 0; -} - - -bool QDecNumberTests::token2QDecNumber(const QString& token, const QDecContext& ctx, QDecNumber& num) -{ - QString tt = token; - // Deal with quotes, double quotes and escaped quotes - if(tt.contains("''")) { - tt.replace("''","'"); - tt = tt.remove(0,1); - tt.chop(1); - } - else - tt.remove(QChar('\'')); - - if(tt.contains("\"\"")) { - tt.replace("\"\"","\""); - tt = tt.remove(0,1); - tt.chop(1); - } - else - tt.remove(QChar('\"')); - - if(token.contains('#')) { - QRegExp expl("#([0-9a-fA-F]+)"); // explicit notation - QRegExp altn("([0-9]+)#(.+)"); // alternative notation - - if(expl.exactMatch(token)) { - QString hexval = expl.cap(1); // get hex value - switch(hexval.size()) { - case 8: { - QDecSingle ds; - ds.fromHexString(hexval.toLocal8Bit().data()); - num = ds.toQDecNumber(); - return true; - } - case 16: { - QDecDouble dd; - dd.fromHexString(hexval.toLocal8Bit().data()); - num = dd.toQDecNumber(); - return true; - } - case 32: { - QDecQuad dq; - dq.fromHexString(hexval.toLocal8Bit().data()); - num = dq.toQDecNumber(); - return true; - } - } // end switch - } // expl. - - if(altn.exactMatch(token)) { - QString fmt = altn.cap(1); // get format size - QString val = altn.cap(2); // get number value in string - - uint fmtsize = fmt.toUInt(); - switch(fmtsize) { - case 32: { - qDebug() << "fmt=" << fmt << "val=" << val; - QDecSingle ds(val.toLocal8Bit().data()); - num = ds.toQDecNumber(); - return true; - } - - case 64: { - qDebug() << "fmt=" << fmt << "val=" << val; - QDecDouble dd(val.toLocal8Bit().data()); - num = dd.toQDecNumber(); - return true; - } - - case 128: { - qDebug() << "fmt=" << fmt << "val=" << val; - QDecQuad dq(val.toLocal8Bit().data()); - num = dq.toQDecNumber(); - return true; - } - - } // end switch - - } // altn. - - - // '#' in a token by itself - num.fromString("NaN"); - return true; - - } // contains # - - //qDebug() << "ctx=" << ctx; - QDecContext c(ctx); - - QDecNumber tnum; - tnum.fromString(tt.toLocal8Bit().data(), &c); - num = tnum; - - //TODO: Check if warning is necessary - if(c.status()) { - qDebug() << "token2QDecNumber " - << "tkn=" << token - << "ctx=" << c.statusToString() - << c.statusFlags() - << "val=" << tnum.toString(); - - qDebug() << "c=" << c; - - } - - - return true; -} - -bool QDecNumberTests::QDecNumber2token(QString& token, const QDecNumber& num) -{ - QString numstr = num.toString(); - token = numstr; - return true; -} - -void QDecNumberTests::test_cases() -{ - - // Initiase the set of test cases to be skipped - m_skipSet << "pwsx805" << "powx4302" << "powx4303" << "powx4342" - << "powx4343" << "lnx116" << "lnx732"; - // Invalid operations due to restrictions - m_skipSet << "expx901" << "expx902" << "lnx901" << "lnx902" - << "logx901" << "logx902" << "powx4001" << "powx4002"; - // Failures due to settings of clamp, could be ignored - m_skipSet << "basx716" << "basx720" << "basx724" << "basx744"; - - QString cwd = QDir::currentPath() ; - // Assume test application is run from cwd - QString prjdir = cwd + "/../../../../test/"; - QDir pdir(prjdir); - // If not, assume it's called from project root directory - if(!pdir.exists()) { - prjdir = cwd + "/test/"; - } - - // Check if user specified a test case directory - QString tdir = m_argsMap.value("testdir", - //"tc_subset"); - "tc_full"); - tdir = prjdir + tdir; - QString tfile = m_argsMap.value("testfile"); - QString tffilter = m_argsMap.value("testfilefilter"); - - try { - qDebug() << "Locating test data from directory " << tdir; - QDir dir(tdir); - if(!dir.exists()) { - qWarning() << "Cannot find test directory" << tdir; - return; - } - - dir.setFilter(QDir::Files); - qDebug() << "testfilefilter=" << tffilter.toLocal8Bit(); - if(tffilter.size()) { - QStringList filters; - filters << tffilter; - dir.setNameFilters(filters); - } - QStringList list = dir.entryList(); - qDebug() << "Found test files: " << list; - - QStringListIterator si(list); - while(si.hasNext()) { - QString f = si.next(); - qDebug() << f; - procTestFile(tdir + "/" + f); - } - - /* - for(i = 0; i < list.size(); ++i) { - // Skip test file is wanted and don't match with current file name - if(tfile.size() && tfile!=list[i]) { - qWarning() << "Skipping " << list[i].toLocal8Bit(); - continue; - } - qDebug() << list[i].toLocal8Bit(); - procTestFile(tdir + "/" + list[i]); - } - */ - - QVERIFY(1); - } - catch(const char* s) { - qWarning() << "Ex " << s; - } - catch(const std::exception& e) { - qWarning() << e.what(); - } - catch(...) { - qWarning() << "Unknown exception" ; - } -} - diff --git a/qdecimal/test/QDecNumberTests.hh b/qdecimal/test/QDecNumberTests.hh deleted file mode 100644 index aa1339c..0000000 --- a/qdecimal/test/QDecNumberTests.hh +++ /dev/null @@ -1,82 +0,0 @@ -#ifndef QDECNUMBERTESTS_HH -#define QDECNUMBERTESTS_HH - -#if defined(_MSC_VER) || defined(__GNUC__) -# pragma once -#endif - -#include -#include -#include -#include -#include - - -// FORWARDS -class QDecContext; -class QDecNumber; - -class QDecNumberTests: public QObject -{ - Q_OBJECT - Q_ENUMS(TestCodes_e) - - public: - - // CREATORS - QDecNumberTests(const QStringList& arguments); - - enum TestCodes_e { - TC_ignore = 0, - TC_comment, - TC_directive , - TC_test, - TC_unknown - }; - - private slots: - void compound_interest(); - void compressed_formats(); - void packed_decimals(); - void quad_tests(); - void quad_with_number(); - void QDecContext_tests(); - void QDecNumber_abs(); - void QDecNumber_add(); - void QDecimal_size(); - void conversion(); - void regression(); - void test_cases(); - - private: - void procTestFile(const QString& filename); - int procTestLine(const QString& line, QStringList& tokens); - int applyTestDirective(const QStringList& tokens, QDecContext& ctx); - int getDirectivesContext(QDecContext& ctx, bool precision=true); - void displayDirectivesContext(); - void clearDirectivesContext(); - int opTest(const QStringList& tokens); - int runTestCase(const QStringList& tokens, const QDecContext& ctx); - - - bool token2QDecNumber(const QString& token, const QDecContext& ctx, QDecNumber& num); - bool QDecNumber2token(QString& token, const QDecNumber& num); - - - // MEMBERS - // Current test file - QString m_testFile; - // Test lines (cases + directives) - QStringList m_testLines; - // Currently in force directives - QMap m_curDirectives; - - // Map of arguments - QMap m_argsMap; - - // Set of test cases to be skipped - QSet m_skipSet; - -}; - -#endif diff --git a/qdecimal/test/SConscript b/qdecimal/test/SConscript deleted file mode 100644 index 80362cd..0000000 --- a/qdecimal/test/SConscript +++ /dev/null @@ -1,14 +0,0 @@ -Import('*') - -env.AppendUnique(CPPPATH = ['#/test', '#/src']) - -qd_libs = [ - env['PRJ_LIBS']['qdecimal'], - env['PRJ_LIBS']['decnumber'] -] -env.AppendUnique(LIBS = qd_libs) - - -exe = env.Program('qdecimal_test', Glob('*.cc')) - -env['PRJ_TSTS']['qdecimal_test'] = exe diff --git a/qdecimal/test/tc_full/abs.decTest b/qdecimal/test/tc_full/abs.decTest deleted file mode 100644 index ed3c6f7..0000000 --- a/qdecimal/test/tc_full/abs.decTest +++ /dev/null @@ -1,161 +0,0 @@ ------------------------------------------------------------------------- --- abs.decTest -- decimal absolute value -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests primarily tests the existence of the operator. --- Additon, subtraction, rounding, and more overflows are tested --- elsewhere. - -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 -extended: 1 - -absx001 abs '1' -> '1' -absx002 abs '-1' -> '1' -absx003 abs '1.00' -> '1.00' -absx004 abs '-1.00' -> '1.00' -absx005 abs '0' -> '0' -absx006 abs '0.00' -> '0.00' -absx007 abs '00.0' -> '0.0' -absx008 abs '00.00' -> '0.00' -absx009 abs '00' -> '0' - -absx010 abs '-2' -> '2' -absx011 abs '2' -> '2' -absx012 abs '-2.00' -> '2.00' -absx013 abs '2.00' -> '2.00' -absx014 abs '-0' -> '0' -absx015 abs '-0.00' -> '0.00' -absx016 abs '-00.0' -> '0.0' -absx017 abs '-00.00' -> '0.00' -absx018 abs '-00' -> '0' - -absx020 abs '-2000000' -> '2000000' -absx021 abs '2000000' -> '2000000' -precision: 7 -absx022 abs '-2000000' -> '2000000' -absx023 abs '2000000' -> '2000000' -precision: 6 -absx024 abs '-2000000' -> '2.00000E+6' Rounded -absx025 abs '2000000' -> '2.00000E+6' Rounded -precision: 3 -absx026 abs '-2000000' -> '2.00E+6' Rounded -absx027 abs '2000000' -> '2.00E+6' Rounded - -absx030 abs '+0.1' -> '0.1' -absx031 abs '-0.1' -> '0.1' -absx032 abs '+0.01' -> '0.01' -absx033 abs '-0.01' -> '0.01' -absx034 abs '+0.001' -> '0.001' -absx035 abs '-0.001' -> '0.001' -absx036 abs '+0.000001' -> '0.000001' -absx037 abs '-0.000001' -> '0.000001' -absx038 abs '+0.000000000001' -> '1E-12' -absx039 abs '-0.000000000001' -> '1E-12' - --- examples from decArith -precision: 9 -absx040 abs '2.1' -> '2.1' -absx041 abs '-100' -> '100' -absx042 abs '101.5' -> '101.5' -absx043 abs '-101.5' -> '101.5' - --- more fixed, potential LHS swaps/overlays if done by subtract 0 -precision: 9 -absx060 abs '-56267E-10' -> '0.0000056267' -absx061 abs '-56267E-5' -> '0.56267' -absx062 abs '-56267E-2' -> '562.67' -absx063 abs '-56267E-1' -> '5626.7' -absx065 abs '-56267E-0' -> '56267' - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -absx120 abs 9.999E+999999999 -> Infinity Inexact Overflow Rounded - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -absx210 abs 1.00E-999 -> 1.00E-999 -absx211 abs 0.1E-999 -> 1E-1000 Subnormal -absx212 abs 0.10E-999 -> 1.0E-1000 Subnormal -absx213 abs 0.100E-999 -> 1.0E-1000 Subnormal Rounded -absx214 abs 0.01E-999 -> 1E-1001 Subnormal --- next is rounded to Emin -absx215 abs 0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow -absx216 abs 0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -absx217 abs 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow -absx218 abs 0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -absx219 abs 0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -absx220 abs 0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - -absx230 abs -1.00E-999 -> 1.00E-999 -absx231 abs -0.1E-999 -> 1E-1000 Subnormal -absx232 abs -0.10E-999 -> 1.0E-1000 Subnormal -absx233 abs -0.100E-999 -> 1.0E-1000 Subnormal Rounded -absx234 abs -0.01E-999 -> 1E-1001 Subnormal --- next is rounded to Emin -absx235 abs -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow -absx236 abs -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -absx237 abs -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow -absx238 abs -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -absx239 abs -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -absx240 abs -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - --- long operand tests -maxexponent: 999 -minexponent: -999 -precision: 9 -absx301 abs 12345678000 -> 1.23456780E+10 Rounded -absx302 abs 1234567800 -> 1.23456780E+9 Rounded -absx303 abs 1234567890 -> 1.23456789E+9 Rounded -absx304 abs 1234567891 -> 1.23456789E+9 Inexact Rounded -absx305 abs 12345678901 -> 1.23456789E+10 Inexact Rounded -absx306 abs 1234567896 -> 1.23456790E+9 Inexact Rounded - -precision: 15 -absx321 abs 12345678000 -> 12345678000 -absx322 abs 1234567800 -> 1234567800 -absx323 abs 1234567890 -> 1234567890 -absx324 abs 1234567891 -> 1234567891 -absx325 abs 12345678901 -> 12345678901 -absx326 abs 1234567896 -> 1234567896 - - --- Specials -precision: 9 - --- specials -absx520 abs 'Inf' -> 'Infinity' -absx521 abs '-Inf' -> 'Infinity' -absx522 abs NaN -> NaN -absx523 abs sNaN -> NaN Invalid_operation -absx524 abs NaN22 -> NaN22 -absx525 abs sNaN33 -> NaN33 Invalid_operation -absx526 abs -NaN22 -> -NaN22 -absx527 abs -sNaN33 -> -NaN33 Invalid_operation - --- Null tests -absx900 abs # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/add.decTest b/qdecimal/test/tc_full/add.decTest deleted file mode 100644 index 06eb93e..0000000 --- a/qdecimal/test/tc_full/add.decTest +++ /dev/null @@ -1,2716 +0,0 @@ -------/cancell---------------------------------------------------------- --- add.decTest -- decimal addition -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 -extended: 1 - --- [first group are 'quick confidence check'] -addx001 add 1 1 -> 2 -addx002 add 2 3 -> 5 -addx003 add '5.75' '3.3' -> 9.05 -addx004 add '5' '-3' -> 2 -addx005 add '-5' '-3' -> -8 -addx006 add '-7' '2.5' -> -4.5 -addx007 add '0.7' '0.3' -> 1.0 -addx008 add '1.25' '1.25' -> 2.50 -addx009 add '1.23456789' '1.00000000' -> '2.23456789' -addx010 add '1.23456789' '1.00000011' -> '2.23456800' - -addx011 add '0.4444444444' '0.5555555555' -> '1.00000000' Inexact Rounded -addx012 add '0.4444444440' '0.5555555555' -> '1.00000000' Inexact Rounded -addx013 add '0.4444444444' '0.5555555550' -> '0.999999999' Inexact Rounded -addx014 add '0.44444444449' '0' -> '0.444444444' Inexact Rounded -addx015 add '0.444444444499' '0' -> '0.444444444' Inexact Rounded -addx016 add '0.4444444444999' '0' -> '0.444444444' Inexact Rounded -addx017 add '0.4444444445000' '0' -> '0.444444445' Inexact Rounded -addx018 add '0.4444444445001' '0' -> '0.444444445' Inexact Rounded -addx019 add '0.444444444501' '0' -> '0.444444445' Inexact Rounded -addx020 add '0.44444444451' '0' -> '0.444444445' Inexact Rounded - -addx021 add 0 1 -> 1 -addx022 add 1 1 -> 2 -addx023 add 2 1 -> 3 -addx024 add 3 1 -> 4 -addx025 add 4 1 -> 5 -addx026 add 5 1 -> 6 -addx027 add 6 1 -> 7 -addx028 add 7 1 -> 8 -addx029 add 8 1 -> 9 -addx030 add 9 1 -> 10 - --- some carrying effects -addx031 add '0.9998' '0.0000' -> '0.9998' -addx032 add '0.9998' '0.0001' -> '0.9999' -addx033 add '0.9998' '0.0002' -> '1.0000' -addx034 add '0.9998' '0.0003' -> '1.0001' - -addx035 add '70' '10000e+9' -> '1.00000000E+13' Inexact Rounded -addx036 add '700' '10000e+9' -> '1.00000000E+13' Inexact Rounded -addx037 add '7000' '10000e+9' -> '1.00000000E+13' Inexact Rounded -addx038 add '70000' '10000e+9' -> '1.00000001E+13' Inexact Rounded -addx039 add '700000' '10000e+9' -> '1.00000007E+13' Rounded - --- symmetry: -addx040 add '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded -addx041 add '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded -addx042 add '10000e+9' '7000' -> '1.00000000E+13' Inexact Rounded -addx044 add '10000e+9' '70000' -> '1.00000001E+13' Inexact Rounded -addx045 add '10000e+9' '700000' -> '1.00000007E+13' Rounded - --- same, higher precision -precision: 15 -addx046 add '10000e+9' '7' -> '10000000000007' -addx047 add '10000e+9' '70' -> '10000000000070' -addx048 add '10000e+9' '700' -> '10000000000700' -addx049 add '10000e+9' '7000' -> '10000000007000' -addx050 add '10000e+9' '70000' -> '10000000070000' -addx051 add '10000e+9' '700000' -> '10000000700000' -addx052 add '10000e+9' '7000000' -> '10000007000000' - --- examples from decarith -addx053 add '12' '7.00' -> '19.00' -addx054 add '1.3' '-1.07' -> '0.23' -addx055 add '1.3' '-1.30' -> '0.00' -addx056 add '1.3' '-2.07' -> '-0.77' -addx057 add '1E+2' '1E+4' -> '1.01E+4' - --- zero preservation -precision: 6 -addx060 add '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded -addx061 add 1 '0.0001' -> '1.0001' -addx062 add 1 '0.00001' -> '1.00001' -addx063 add 1 '0.000001' -> '1.00000' Inexact Rounded -addx064 add 1 '0.0000001' -> '1.00000' Inexact Rounded -addx065 add 1 '0.00000001' -> '1.00000' Inexact Rounded - --- some funny zeros [in case of bad signum] -addx070 add 1 0 -> 1 -addx071 add 1 0. -> 1 -addx072 add 1 .0 -> 1.0 -addx073 add 1 0.0 -> 1.0 -addx074 add 1 0.00 -> 1.00 -addx075 add 0 1 -> 1 -addx076 add 0. 1 -> 1 -addx077 add .0 1 -> 1.0 -addx078 add 0.0 1 -> 1.0 -addx079 add 0.00 1 -> 1.00 - -precision: 9 - --- some carries -addx080 add 999999998 1 -> 999999999 -addx081 add 999999999 1 -> 1.00000000E+9 Rounded -addx082 add 99999999 1 -> 100000000 -addx083 add 9999999 1 -> 10000000 -addx084 add 999999 1 -> 1000000 -addx085 add 99999 1 -> 100000 -addx086 add 9999 1 -> 10000 -addx087 add 999 1 -> 1000 -addx088 add 99 1 -> 100 -addx089 add 9 1 -> 10 - - --- more LHS swaps -addx090 add '-56267E-10' 0 -> '-0.0000056267' -addx091 add '-56267E-6' 0 -> '-0.056267' -addx092 add '-56267E-5' 0 -> '-0.56267' -addx093 add '-56267E-4' 0 -> '-5.6267' -addx094 add '-56267E-3' 0 -> '-56.267' -addx095 add '-56267E-2' 0 -> '-562.67' -addx096 add '-56267E-1' 0 -> '-5626.7' -addx097 add '-56267E-0' 0 -> '-56267' -addx098 add '-5E-10' 0 -> '-5E-10' -addx099 add '-5E-7' 0 -> '-5E-7' -addx100 add '-5E-6' 0 -> '-0.000005' -addx101 add '-5E-5' 0 -> '-0.00005' -addx102 add '-5E-4' 0 -> '-0.0005' -addx103 add '-5E-1' 0 -> '-0.5' -addx104 add '-5E0' 0 -> '-5' -addx105 add '-5E1' 0 -> '-50' -addx106 add '-5E5' 0 -> '-500000' -addx107 add '-5E8' 0 -> '-500000000' -addx108 add '-5E9' 0 -> '-5.00000000E+9' Rounded -addx109 add '-5E10' 0 -> '-5.00000000E+10' Rounded -addx110 add '-5E11' 0 -> '-5.00000000E+11' Rounded -addx111 add '-5E100' 0 -> '-5.00000000E+100' Rounded - --- more RHS swaps -addx113 add 0 '-56267E-10' -> '-0.0000056267' -addx114 add 0 '-56267E-6' -> '-0.056267' -addx116 add 0 '-56267E-5' -> '-0.56267' -addx117 add 0 '-56267E-4' -> '-5.6267' -addx119 add 0 '-56267E-3' -> '-56.267' -addx120 add 0 '-56267E-2' -> '-562.67' -addx121 add 0 '-56267E-1' -> '-5626.7' -addx122 add 0 '-56267E-0' -> '-56267' -addx123 add 0 '-5E-10' -> '-5E-10' -addx124 add 0 '-5E-7' -> '-5E-7' -addx125 add 0 '-5E-6' -> '-0.000005' -addx126 add 0 '-5E-5' -> '-0.00005' -addx127 add 0 '-5E-4' -> '-0.0005' -addx128 add 0 '-5E-1' -> '-0.5' -addx129 add 0 '-5E0' -> '-5' -addx130 add 0 '-5E1' -> '-50' -addx131 add 0 '-5E5' -> '-500000' -addx132 add 0 '-5E8' -> '-500000000' -addx133 add 0 '-5E9' -> '-5.00000000E+9' Rounded -addx134 add 0 '-5E10' -> '-5.00000000E+10' Rounded -addx135 add 0 '-5E11' -> '-5.00000000E+11' Rounded -addx136 add 0 '-5E100' -> '-5.00000000E+100' Rounded - --- related -addx137 add 1 '0E-12' -> '1.00000000' Rounded -addx138 add -1 '0E-12' -> '-1.00000000' Rounded -addx139 add '0E-12' 1 -> '1.00000000' Rounded -addx140 add '0E-12' -1 -> '-1.00000000' Rounded -addx141 add 1E+4 0.0000 -> '10000.0000' -addx142 add 1E+4 0.00000 -> '10000.0000' Rounded -addx143 add 0.000 1E+5 -> '100000.000' -addx144 add 0.0000 1E+5 -> '100000.000' Rounded - --- [some of the next group are really constructor tests] -addx146 add '00.0' 0 -> '0.0' -addx147 add '0.00' 0 -> '0.00' -addx148 add 0 '0.00' -> '0.00' -addx149 add 0 '00.0' -> '0.0' -addx150 add '00.0' '0.00' -> '0.00' -addx151 add '0.00' '00.0' -> '0.00' -addx152 add '3' '.3' -> '3.3' -addx153 add '3.' '.3' -> '3.3' -addx154 add '3.0' '.3' -> '3.3' -addx155 add '3.00' '.3' -> '3.30' -addx156 add '3' '3' -> '6' -addx157 add '3' '+3' -> '6' -addx158 add '3' '-3' -> '0' -addx159 add '0.3' '-0.3' -> '0.0' -addx160 add '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -precision: 15 -addx161 add '1E+12' '-1' -> '999999999999' -addx162 add '1E+12' '1.11' -> '1000000000001.11' -addx163 add '1.11' '1E+12' -> '1000000000001.11' -addx164 add '-1' '1E+12' -> '999999999999' -addx165 add '7E+12' '-1' -> '6999999999999' -addx166 add '7E+12' '1.11' -> '7000000000001.11' -addx167 add '1.11' '7E+12' -> '7000000000001.11' -addx168 add '-1' '7E+12' -> '6999999999999' - --- 123456789012345 123456789012345 1 23456789012345 -addx170 add '0.444444444444444' '0.555555555555563' -> '1.00000000000001' Inexact Rounded -addx171 add '0.444444444444444' '0.555555555555562' -> '1.00000000000001' Inexact Rounded -addx172 add '0.444444444444444' '0.555555555555561' -> '1.00000000000001' Inexact Rounded -addx173 add '0.444444444444444' '0.555555555555560' -> '1.00000000000000' Inexact Rounded -addx174 add '0.444444444444444' '0.555555555555559' -> '1.00000000000000' Inexact Rounded -addx175 add '0.444444444444444' '0.555555555555558' -> '1.00000000000000' Inexact Rounded -addx176 add '0.444444444444444' '0.555555555555557' -> '1.00000000000000' Inexact Rounded -addx177 add '0.444444444444444' '0.555555555555556' -> '1.00000000000000' Rounded -addx178 add '0.444444444444444' '0.555555555555555' -> '0.999999999999999' -addx179 add '0.444444444444444' '0.555555555555554' -> '0.999999999999998' -addx180 add '0.444444444444444' '0.555555555555553' -> '0.999999999999997' -addx181 add '0.444444444444444' '0.555555555555552' -> '0.999999999999996' -addx182 add '0.444444444444444' '0.555555555555551' -> '0.999999999999995' -addx183 add '0.444444444444444' '0.555555555555550' -> '0.999999999999994' - --- and some more, including residue effects and different roundings -precision: 9 -rounding: half_up -addx200 add '123456789' 0 -> '123456789' -addx201 add '123456789' 0.000000001 -> '123456789' Inexact Rounded -addx202 add '123456789' 0.000001 -> '123456789' Inexact Rounded -addx203 add '123456789' 0.1 -> '123456789' Inexact Rounded -addx204 add '123456789' 0.4 -> '123456789' Inexact Rounded -addx205 add '123456789' 0.49 -> '123456789' Inexact Rounded -addx206 add '123456789' 0.499999 -> '123456789' Inexact Rounded -addx207 add '123456789' 0.499999999 -> '123456789' Inexact Rounded -addx208 add '123456789' 0.5 -> '123456790' Inexact Rounded -addx209 add '123456789' 0.500000001 -> '123456790' Inexact Rounded -addx210 add '123456789' 0.500001 -> '123456790' Inexact Rounded -addx211 add '123456789' 0.51 -> '123456790' Inexact Rounded -addx212 add '123456789' 0.6 -> '123456790' Inexact Rounded -addx213 add '123456789' 0.9 -> '123456790' Inexact Rounded -addx214 add '123456789' 0.99999 -> '123456790' Inexact Rounded -addx215 add '123456789' 0.999999999 -> '123456790' Inexact Rounded -addx216 add '123456789' 1 -> '123456790' -addx217 add '123456789' 1.000000001 -> '123456790' Inexact Rounded -addx218 add '123456789' 1.00001 -> '123456790' Inexact Rounded -addx219 add '123456789' 1.1 -> '123456790' Inexact Rounded - -rounding: half_even -addx220 add '123456789' 0 -> '123456789' -addx221 add '123456789' 0.000000001 -> '123456789' Inexact Rounded -addx222 add '123456789' 0.000001 -> '123456789' Inexact Rounded -addx223 add '123456789' 0.1 -> '123456789' Inexact Rounded -addx224 add '123456789' 0.4 -> '123456789' Inexact Rounded -addx225 add '123456789' 0.49 -> '123456789' Inexact Rounded -addx226 add '123456789' 0.499999 -> '123456789' Inexact Rounded -addx227 add '123456789' 0.499999999 -> '123456789' Inexact Rounded -addx228 add '123456789' 0.5 -> '123456790' Inexact Rounded -addx229 add '123456789' 0.500000001 -> '123456790' Inexact Rounded -addx230 add '123456789' 0.500001 -> '123456790' Inexact Rounded -addx231 add '123456789' 0.51 -> '123456790' Inexact Rounded -addx232 add '123456789' 0.6 -> '123456790' Inexact Rounded -addx233 add '123456789' 0.9 -> '123456790' Inexact Rounded -addx234 add '123456789' 0.99999 -> '123456790' Inexact Rounded -addx235 add '123456789' 0.999999999 -> '123456790' Inexact Rounded -addx236 add '123456789' 1 -> '123456790' -addx237 add '123456789' 1.00000001 -> '123456790' Inexact Rounded -addx238 add '123456789' 1.00001 -> '123456790' Inexact Rounded -addx239 add '123456789' 1.1 -> '123456790' Inexact Rounded --- critical few with even bottom digit... -addx240 add '123456788' 0.499999999 -> '123456788' Inexact Rounded -addx241 add '123456788' 0.5 -> '123456788' Inexact Rounded -addx242 add '123456788' 0.500000001 -> '123456789' Inexact Rounded - -rounding: down -addx250 add '123456789' 0 -> '123456789' -addx251 add '123456789' 0.000000001 -> '123456789' Inexact Rounded -addx252 add '123456789' 0.000001 -> '123456789' Inexact Rounded -addx253 add '123456789' 0.1 -> '123456789' Inexact Rounded -addx254 add '123456789' 0.4 -> '123456789' Inexact Rounded -addx255 add '123456789' 0.49 -> '123456789' Inexact Rounded -addx256 add '123456789' 0.499999 -> '123456789' Inexact Rounded -addx257 add '123456789' 0.499999999 -> '123456789' Inexact Rounded -addx258 add '123456789' 0.5 -> '123456789' Inexact Rounded -addx259 add '123456789' 0.500000001 -> '123456789' Inexact Rounded -addx260 add '123456789' 0.500001 -> '123456789' Inexact Rounded -addx261 add '123456789' 0.51 -> '123456789' Inexact Rounded -addx262 add '123456789' 0.6 -> '123456789' Inexact Rounded -addx263 add '123456789' 0.9 -> '123456789' Inexact Rounded -addx264 add '123456789' 0.99999 -> '123456789' Inexact Rounded -addx265 add '123456789' 0.999999999 -> '123456789' Inexact Rounded -addx266 add '123456789' 1 -> '123456790' -addx267 add '123456789' 1.00000001 -> '123456790' Inexact Rounded -addx268 add '123456789' 1.00001 -> '123456790' Inexact Rounded -addx269 add '123456789' 1.1 -> '123456790' Inexact Rounded - --- input preparation tests (operands should not be rounded) -precision: 3 -rounding: half_up - -addx270 add '12345678900000' 9999999999999 -> '2.23E+13' Inexact Rounded -addx271 add '9999999999999' 12345678900000 -> '2.23E+13' Inexact Rounded - -addx272 add '12E+3' '3444' -> '1.54E+4' Inexact Rounded -addx273 add '12E+3' '3446' -> '1.54E+4' Inexact Rounded -addx274 add '12E+3' '3449.9' -> '1.54E+4' Inexact Rounded -addx275 add '12E+3' '3450.0' -> '1.55E+4' Inexact Rounded -addx276 add '12E+3' '3450.1' -> '1.55E+4' Inexact Rounded -addx277 add '12E+3' '3454' -> '1.55E+4' Inexact Rounded -addx278 add '12E+3' '3456' -> '1.55E+4' Inexact Rounded - -addx281 add '3444' '12E+3' -> '1.54E+4' Inexact Rounded -addx282 add '3446' '12E+3' -> '1.54E+4' Inexact Rounded -addx283 add '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded -addx284 add '3450.0' '12E+3' -> '1.55E+4' Inexact Rounded -addx285 add '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded -addx286 add '3454' '12E+3' -> '1.55E+4' Inexact Rounded -addx287 add '3456' '12E+3' -> '1.55E+4' Inexact Rounded - -rounding: half_down -addx291 add '3444' '12E+3' -> '1.54E+4' Inexact Rounded -addx292 add '3446' '12E+3' -> '1.54E+4' Inexact Rounded -addx293 add '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded -addx294 add '3450.0' '12E+3' -> '1.54E+4' Inexact Rounded -addx295 add '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded -addx296 add '3454' '12E+3' -> '1.55E+4' Inexact Rounded -addx297 add '3456' '12E+3' -> '1.55E+4' Inexact Rounded - --- 1 in last place tests -rounding: half_up -addx301 add -1 1 -> 0 -addx302 add 0 1 -> 1 -addx303 add 1 1 -> 2 -addx304 add 12 1 -> 13 -addx305 add 98 1 -> 99 -addx306 add 99 1 -> 100 -addx307 add 100 1 -> 101 -addx308 add 101 1 -> 102 -addx309 add -1 -1 -> -2 -addx310 add 0 -1 -> -1 -addx311 add 1 -1 -> 0 -addx312 add 12 -1 -> 11 -addx313 add 98 -1 -> 97 -addx314 add 99 -1 -> 98 -addx315 add 100 -1 -> 99 -addx316 add 101 -1 -> 100 - -addx321 add -0.01 0.01 -> 0.00 -addx322 add 0.00 0.01 -> 0.01 -addx323 add 0.01 0.01 -> 0.02 -addx324 add 0.12 0.01 -> 0.13 -addx325 add 0.98 0.01 -> 0.99 -addx326 add 0.99 0.01 -> 1.00 -addx327 add 1.00 0.01 -> 1.01 -addx328 add 1.01 0.01 -> 1.02 -addx329 add -0.01 -0.01 -> -0.02 -addx330 add 0.00 -0.01 -> -0.01 -addx331 add 0.01 -0.01 -> 0.00 -addx332 add 0.12 -0.01 -> 0.11 -addx333 add 0.98 -0.01 -> 0.97 -addx334 add 0.99 -0.01 -> 0.98 -addx335 add 1.00 -0.01 -> 0.99 -addx336 add 1.01 -0.01 -> 1.00 - --- some more cases where adding 0 affects the coefficient -precision: 9 -addx340 add 1E+3 0 -> 1000 -addx341 add 1E+8 0 -> 100000000 -addx342 add 1E+9 0 -> 1.00000000E+9 Rounded -addx343 add 1E+10 0 -> 1.00000000E+10 Rounded --- which simply follow from these cases ... -addx344 add 1E+3 1 -> 1001 -addx345 add 1E+8 1 -> 100000001 -addx346 add 1E+9 1 -> 1.00000000E+9 Inexact Rounded -addx347 add 1E+10 1 -> 1.00000000E+10 Inexact Rounded -addx348 add 1E+3 7 -> 1007 -addx349 add 1E+8 7 -> 100000007 -addx350 add 1E+9 7 -> 1.00000001E+9 Inexact Rounded -addx351 add 1E+10 7 -> 1.00000000E+10 Inexact Rounded - --- tryzeros cases -precision: 7 -rounding: half_up -maxExponent: 92 -minexponent: -92 -addx361 add 0E+50 10000E+1 -> 1.0000E+5 -addx362 add 10000E+1 0E-50 -> 100000.0 Rounded -addx363 add 10000E+1 10000E-50 -> 100000.0 Rounded Inexact -addx364 add 9.999999E+92 -9.999999E+92 -> 0E+86 - --- a curiosity from JSR 13 testing -rounding: half_down -precision: 10 -addx370 add 99999999 81512 -> 100081511 -precision: 6 -addx371 add 99999999 81512 -> 1.00082E+8 Rounded Inexact -rounding: half_up -precision: 10 -addx372 add 99999999 81512 -> 100081511 -precision: 6 -addx373 add 99999999 81512 -> 1.00082E+8 Rounded Inexact -rounding: half_even -precision: 10 -addx374 add 99999999 81512 -> 100081511 -precision: 6 -addx375 add 99999999 81512 -> 1.00082E+8 Rounded Inexact - --- ulp replacement tests -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -addx400 add 1 77e-7 -> 1.0000077 -addx401 add 1 77e-8 -> 1.00000077 -addx402 add 1 77e-9 -> 1.00000008 Inexact Rounded -addx403 add 1 77e-10 -> 1.00000001 Inexact Rounded -addx404 add 1 77e-11 -> 1.00000000 Inexact Rounded -addx405 add 1 77e-12 -> 1.00000000 Inexact Rounded -addx406 add 1 77e-999 -> 1.00000000 Inexact Rounded -addx407 add 1 77e-9999999 -> 1.00000000 Inexact Rounded - -addx410 add 10 77e-7 -> 10.0000077 -addx411 add 10 77e-8 -> 10.0000008 Inexact Rounded -addx412 add 10 77e-9 -> 10.0000001 Inexact Rounded -addx413 add 10 77e-10 -> 10.0000000 Inexact Rounded -addx414 add 10 77e-11 -> 10.0000000 Inexact Rounded -addx415 add 10 77e-12 -> 10.0000000 Inexact Rounded -addx416 add 10 77e-999 -> 10.0000000 Inexact Rounded -addx417 add 10 77e-9999999 -> 10.0000000 Inexact Rounded - -addx420 add 77e-7 1 -> 1.0000077 -addx421 add 77e-8 1 -> 1.00000077 -addx422 add 77e-9 1 -> 1.00000008 Inexact Rounded -addx423 add 77e-10 1 -> 1.00000001 Inexact Rounded -addx424 add 77e-11 1 -> 1.00000000 Inexact Rounded -addx425 add 77e-12 1 -> 1.00000000 Inexact Rounded -addx426 add 77e-999 1 -> 1.00000000 Inexact Rounded -addx427 add 77e-9999999 1 -> 1.00000000 Inexact Rounded - -addx430 add 77e-7 10 -> 10.0000077 -addx431 add 77e-8 10 -> 10.0000008 Inexact Rounded -addx432 add 77e-9 10 -> 10.0000001 Inexact Rounded -addx433 add 77e-10 10 -> 10.0000000 Inexact Rounded -addx434 add 77e-11 10 -> 10.0000000 Inexact Rounded -addx435 add 77e-12 10 -> 10.0000000 Inexact Rounded -addx436 add 77e-999 10 -> 10.0000000 Inexact Rounded -addx437 add 77e-9999999 10 -> 10.0000000 Inexact Rounded - --- negative ulps -addx440 add 1 -77e-7 -> 0.9999923 -addx441 add 1 -77e-8 -> 0.99999923 -addx442 add 1 -77e-9 -> 0.999999923 -addx443 add 1 -77e-10 -> 0.999999992 Inexact Rounded -addx444 add 1 -77e-11 -> 0.999999999 Inexact Rounded -addx445 add 1 -77e-12 -> 1.00000000 Inexact Rounded -addx446 add 1 -77e-999 -> 1.00000000 Inexact Rounded -addx447 add 1 -77e-9999999 -> 1.00000000 Inexact Rounded - -addx450 add 10 -77e-7 -> 9.9999923 -addx451 add 10 -77e-8 -> 9.99999923 -addx452 add 10 -77e-9 -> 9.99999992 Inexact Rounded -addx453 add 10 -77e-10 -> 9.99999999 Inexact Rounded -addx454 add 10 -77e-11 -> 10.0000000 Inexact Rounded -addx455 add 10 -77e-12 -> 10.0000000 Inexact Rounded -addx456 add 10 -77e-999 -> 10.0000000 Inexact Rounded -addx457 add 10 -77e-9999999 -> 10.0000000 Inexact Rounded - -addx460 add -77e-7 1 -> 0.9999923 -addx461 add -77e-8 1 -> 0.99999923 -addx462 add -77e-9 1 -> 0.999999923 -addx463 add -77e-10 1 -> 0.999999992 Inexact Rounded -addx464 add -77e-11 1 -> 0.999999999 Inexact Rounded -addx465 add -77e-12 1 -> 1.00000000 Inexact Rounded -addx466 add -77e-999 1 -> 1.00000000 Inexact Rounded -addx467 add -77e-9999999 1 -> 1.00000000 Inexact Rounded - -addx470 add -77e-7 10 -> 9.9999923 -addx471 add -77e-8 10 -> 9.99999923 -addx472 add -77e-9 10 -> 9.99999992 Inexact Rounded -addx473 add -77e-10 10 -> 9.99999999 Inexact Rounded -addx474 add -77e-11 10 -> 10.0000000 Inexact Rounded -addx475 add -77e-12 10 -> 10.0000000 Inexact Rounded -addx476 add -77e-999 10 -> 10.0000000 Inexact Rounded -addx477 add -77e-9999999 10 -> 10.0000000 Inexact Rounded - --- negative ulps -addx480 add -1 77e-7 -> -0.9999923 -addx481 add -1 77e-8 -> -0.99999923 -addx482 add -1 77e-9 -> -0.999999923 -addx483 add -1 77e-10 -> -0.999999992 Inexact Rounded -addx484 add -1 77e-11 -> -0.999999999 Inexact Rounded -addx485 add -1 77e-12 -> -1.00000000 Inexact Rounded -addx486 add -1 77e-999 -> -1.00000000 Inexact Rounded -addx487 add -1 77e-9999999 -> -1.00000000 Inexact Rounded - -addx490 add -10 77e-7 -> -9.9999923 -addx491 add -10 77e-8 -> -9.99999923 -addx492 add -10 77e-9 -> -9.99999992 Inexact Rounded -addx493 add -10 77e-10 -> -9.99999999 Inexact Rounded -addx494 add -10 77e-11 -> -10.0000000 Inexact Rounded -addx495 add -10 77e-12 -> -10.0000000 Inexact Rounded -addx496 add -10 77e-999 -> -10.0000000 Inexact Rounded -addx497 add -10 77e-9999999 -> -10.0000000 Inexact Rounded - -addx500 add 77e-7 -1 -> -0.9999923 -addx501 add 77e-8 -1 -> -0.99999923 -addx502 add 77e-9 -1 -> -0.999999923 -addx503 add 77e-10 -1 -> -0.999999992 Inexact Rounded -addx504 add 77e-11 -1 -> -0.999999999 Inexact Rounded -addx505 add 77e-12 -1 -> -1.00000000 Inexact Rounded -addx506 add 77e-999 -1 -> -1.00000000 Inexact Rounded -addx507 add 77e-9999999 -1 -> -1.00000000 Inexact Rounded - -addx510 add 77e-7 -10 -> -9.9999923 -addx511 add 77e-8 -10 -> -9.99999923 -addx512 add 77e-9 -10 -> -9.99999992 Inexact Rounded -addx513 add 77e-10 -10 -> -9.99999999 Inexact Rounded -addx514 add 77e-11 -10 -> -10.0000000 Inexact Rounded -addx515 add 77e-12 -10 -> -10.0000000 Inexact Rounded -addx516 add 77e-999 -10 -> -10.0000000 Inexact Rounded -addx517 add 77e-9999999 -10 -> -10.0000000 Inexact Rounded - - --- long operands -maxexponent: 999 -minexponent: -999 -precision: 9 -addx521 add 12345678000 0 -> 1.23456780E+10 Rounded -addx522 add 0 12345678000 -> 1.23456780E+10 Rounded -addx523 add 1234567800 0 -> 1.23456780E+9 Rounded -addx524 add 0 1234567800 -> 1.23456780E+9 Rounded -addx525 add 1234567890 0 -> 1.23456789E+9 Rounded -addx526 add 0 1234567890 -> 1.23456789E+9 Rounded -addx527 add 1234567891 0 -> 1.23456789E+9 Inexact Rounded -addx528 add 0 1234567891 -> 1.23456789E+9 Inexact Rounded -addx529 add 12345678901 0 -> 1.23456789E+10 Inexact Rounded -addx530 add 0 12345678901 -> 1.23456789E+10 Inexact Rounded -addx531 add 1234567896 0 -> 1.23456790E+9 Inexact Rounded -addx532 add 0 1234567896 -> 1.23456790E+9 Inexact Rounded - -precision: 15 --- still checking -addx541 add 12345678000 0 -> 12345678000 -addx542 add 0 12345678000 -> 12345678000 -addx543 add 1234567800 0 -> 1234567800 -addx544 add 0 1234567800 -> 1234567800 -addx545 add 1234567890 0 -> 1234567890 -addx546 add 0 1234567890 -> 1234567890 -addx547 add 1234567891 0 -> 1234567891 -addx548 add 0 1234567891 -> 1234567891 -addx549 add 12345678901 0 -> 12345678901 -addx550 add 0 12345678901 -> 12345678901 -addx551 add 1234567896 0 -> 1234567896 -addx552 add 0 1234567896 -> 1234567896 - --- verify a query -precision: 16 -maxExponent: +394 -minExponent: -393 -rounding: down -addx561 add 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded -addx562 add 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded --- and using decimal64 bounds (see also ddadd.decTest) -precision: 16 -maxExponent: +384 -minExponent: -383 -rounding: down -addx563 add 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded -addx564 add 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded - - --- some more residue effects with extreme rounding -precision: 9 -rounding: half_up -addx601 add 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: half_even -addx602 add 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: half_down -addx603 add 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: floor -addx604 add 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: ceiling -addx605 add 123456789 0.000001 -> 123456790 Inexact Rounded -rounding: up -addx606 add 123456789 0.000001 -> 123456790 Inexact Rounded -rounding: down -addx607 add 123456789 0.000001 -> 123456789 Inexact Rounded - -rounding: half_up -addx611 add 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: half_even -addx612 add 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: half_down -addx613 add 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: floor -addx614 add 123456789 -0.000001 -> 123456788 Inexact Rounded -rounding: ceiling -addx615 add 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: up -addx616 add 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: down -addx617 add 123456789 -0.000001 -> 123456788 Inexact Rounded - -rounding: half_up -addx621 add 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: half_even -addx622 add 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: half_down -addx623 add 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: floor -addx624 add 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: ceiling -addx625 add 123456789 0.499999 -> 123456790 Inexact Rounded -rounding: up -addx626 add 123456789 0.499999 -> 123456790 Inexact Rounded -rounding: down -addx627 add 123456789 0.499999 -> 123456789 Inexact Rounded - -rounding: half_up -addx631 add 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: half_even -addx632 add 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: half_down -addx633 add 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: floor -addx634 add 123456789 -0.499999 -> 123456788 Inexact Rounded -rounding: ceiling -addx635 add 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: up -addx636 add 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: down -addx637 add 123456789 -0.499999 -> 123456788 Inexact Rounded - -rounding: half_up -addx641 add 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: half_even -addx642 add 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: half_down -addx643 add 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: floor -addx644 add 123456789 0.500001 -> 123456789 Inexact Rounded -rounding: ceiling -addx645 add 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: up -addx646 add 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: down -addx647 add 123456789 0.500001 -> 123456789 Inexact Rounded - -rounding: half_up -addx651 add 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: half_even -addx652 add 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: half_down -addx653 add 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: floor -addx654 add 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: ceiling -addx655 add 123456789 -0.500001 -> 123456789 Inexact Rounded -rounding: up -addx656 add 123456789 -0.500001 -> 123456789 Inexact Rounded -rounding: down -addx657 add 123456789 -0.500001 -> 123456788 Inexact Rounded - --- long operand triangle -rounding: half_up -precision: 37 -addx660 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114834538 -precision: 36 -addx661 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483454 Inexact Rounded -precision: 35 -addx662 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148345 Inexact Rounded -precision: 34 -addx663 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114835 Inexact Rounded -precision: 33 -addx664 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483 Inexact Rounded -precision: 32 -addx665 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148 Inexact Rounded -precision: 31 -addx666 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337115 Inexact Rounded -precision: 30 -addx667 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711 Inexact Rounded -precision: 29 -addx668 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371 Inexact Rounded -precision: 28 -addx669 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337 Inexact Rounded -precision: 27 -addx670 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892234 Inexact Rounded -precision: 26 -addx671 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223 Inexact Rounded -precision: 25 -addx672 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922 Inexact Rounded -precision: 24 -addx673 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892 Inexact Rounded -precision: 23 -addx674 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389 Inexact Rounded -precision: 22 -addx675 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023639 Inexact Rounded -precision: 21 -addx676 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102364 Inexact Rounded -precision: 20 -addx677 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236 Inexact Rounded -precision: 19 -addx678 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211024 Inexact Rounded -precision: 18 -addx679 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102 Inexact Rounded -precision: 17 -addx680 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110 Inexact Rounded -precision: 16 -addx681 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211 Inexact Rounded -precision: 15 -addx682 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221 Inexact Rounded -precision: 14 -addx683 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422 Inexact Rounded -precision: 13 -addx684 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42 Inexact Rounded -precision: 12 -addx685 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4 Inexact Rounded -precision: 11 -addx686 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166 Inexact Rounded -precision: 10 -addx687 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117417E+10 Inexact Rounded -precision: 9 -addx688 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84711742E+10 Inexact Rounded -precision: 8 -addx689 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471174E+10 Inexact Rounded -precision: 7 -addx690 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117E+10 Inexact Rounded -precision: 6 -addx691 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84712E+10 Inexact Rounded -precision: 5 -addx692 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471E+10 Inexact Rounded -precision: 4 -addx693 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847E+10 Inexact Rounded -precision: 3 -addx694 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.85E+10 Inexact Rounded -precision: 2 -addx695 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8E+10 Inexact Rounded -precision: 1 -addx696 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 1E+11 Inexact Rounded - --- more zeros, etc. -rounding: half_up -precision: 9 - -addx701 add 5.00 1.00E-3 -> 5.00100 -addx702 add 00.00 0.000 -> 0.000 -addx703 add 00.00 0E-3 -> 0.000 -addx704 add 0E-3 00.00 -> 0.000 - -addx710 add 0E+3 00.00 -> 0.00 -addx711 add 0E+3 00.0 -> 0.0 -addx712 add 0E+3 00. -> 0 -addx713 add 0E+3 00.E+1 -> 0E+1 -addx714 add 0E+3 00.E+2 -> 0E+2 -addx715 add 0E+3 00.E+3 -> 0E+3 -addx716 add 0E+3 00.E+4 -> 0E+3 -addx717 add 0E+3 00.E+5 -> 0E+3 -addx718 add 0E+3 -00.0 -> 0.0 -addx719 add 0E+3 -00. -> 0 -addx731 add 0E+3 -00.E+1 -> 0E+1 - -addx720 add 00.00 0E+3 -> 0.00 -addx721 add 00.0 0E+3 -> 0.0 -addx722 add 00. 0E+3 -> 0 -addx723 add 00.E+1 0E+3 -> 0E+1 -addx724 add 00.E+2 0E+3 -> 0E+2 -addx725 add 00.E+3 0E+3 -> 0E+3 -addx726 add 00.E+4 0E+3 -> 0E+3 -addx727 add 00.E+5 0E+3 -> 0E+3 -addx728 add -00.00 0E+3 -> 0.00 -addx729 add -00.0 0E+3 -> 0.0 -addx730 add -00. 0E+3 -> 0 - -addx732 add 0 0 -> 0 -addx733 add 0 -0 -> 0 -addx734 add -0 0 -> 0 -addx735 add -0 -0 -> -0 -- IEEE 854 special case - -addx736 add 1 -1 -> 0 -addx737 add -1 -1 -> -2 -addx738 add 1 1 -> 2 -addx739 add -1 1 -> 0 - -addx741 add 0 -1 -> -1 -addx742 add -0 -1 -> -1 -addx743 add 0 1 -> 1 -addx744 add -0 1 -> 1 -addx745 add -1 0 -> -1 -addx746 add -1 -0 -> -1 -addx747 add 1 0 -> 1 -addx748 add 1 -0 -> 1 - -addx751 add 0.0 -1 -> -1.0 -addx752 add -0.0 -1 -> -1.0 -addx753 add 0.0 1 -> 1.0 -addx754 add -0.0 1 -> 1.0 -addx755 add -1.0 0 -> -1.0 -addx756 add -1.0 -0 -> -1.0 -addx757 add 1.0 0 -> 1.0 -addx758 add 1.0 -0 -> 1.0 - -addx761 add 0 -1.0 -> -1.0 -addx762 add -0 -1.0 -> -1.0 -addx763 add 0 1.0 -> 1.0 -addx764 add -0 1.0 -> 1.0 -addx765 add -1 0.0 -> -1.0 -addx766 add -1 -0.0 -> -1.0 -addx767 add 1 0.0 -> 1.0 -addx768 add 1 -0.0 -> 1.0 - -addx771 add 0.0 -1.0 -> -1.0 -addx772 add -0.0 -1.0 -> -1.0 -addx773 add 0.0 1.0 -> 1.0 -addx774 add -0.0 1.0 -> 1.0 -addx775 add -1.0 0.0 -> -1.0 -addx776 add -1.0 -0.0 -> -1.0 -addx777 add 1.0 0.0 -> 1.0 -addx778 add 1.0 -0.0 -> 1.0 - --- Specials -addx780 add -Inf -Inf -> -Infinity -addx781 add -Inf -1000 -> -Infinity -addx782 add -Inf -1 -> -Infinity -addx783 add -Inf -0 -> -Infinity -addx784 add -Inf 0 -> -Infinity -addx785 add -Inf 1 -> -Infinity -addx786 add -Inf 1000 -> -Infinity -addx787 add -1000 -Inf -> -Infinity -addx788 add -Inf -Inf -> -Infinity -addx789 add -1 -Inf -> -Infinity -addx790 add -0 -Inf -> -Infinity -addx791 add 0 -Inf -> -Infinity -addx792 add 1 -Inf -> -Infinity -addx793 add 1000 -Inf -> -Infinity -addx794 add Inf -Inf -> NaN Invalid_operation - -addx800 add Inf -Inf -> NaN Invalid_operation -addx801 add Inf -1000 -> Infinity -addx802 add Inf -1 -> Infinity -addx803 add Inf -0 -> Infinity -addx804 add Inf 0 -> Infinity -addx805 add Inf 1 -> Infinity -addx806 add Inf 1000 -> Infinity -addx807 add Inf Inf -> Infinity -addx808 add -1000 Inf -> Infinity -addx809 add -Inf Inf -> NaN Invalid_operation -addx810 add -1 Inf -> Infinity -addx811 add -0 Inf -> Infinity -addx812 add 0 Inf -> Infinity -addx813 add 1 Inf -> Infinity -addx814 add 1000 Inf -> Infinity -addx815 add Inf Inf -> Infinity - -addx821 add NaN -Inf -> NaN -addx822 add NaN -1000 -> NaN -addx823 add NaN -1 -> NaN -addx824 add NaN -0 -> NaN -addx825 add NaN 0 -> NaN -addx826 add NaN 1 -> NaN -addx827 add NaN 1000 -> NaN -addx828 add NaN Inf -> NaN -addx829 add NaN NaN -> NaN -addx830 add -Inf NaN -> NaN -addx831 add -1000 NaN -> NaN -addx832 add -1 NaN -> NaN -addx833 add -0 NaN -> NaN -addx834 add 0 NaN -> NaN -addx835 add 1 NaN -> NaN -addx836 add 1000 NaN -> NaN -addx837 add Inf NaN -> NaN - -addx841 add sNaN -Inf -> NaN Invalid_operation -addx842 add sNaN -1000 -> NaN Invalid_operation -addx843 add sNaN -1 -> NaN Invalid_operation -addx844 add sNaN -0 -> NaN Invalid_operation -addx845 add sNaN 0 -> NaN Invalid_operation -addx846 add sNaN 1 -> NaN Invalid_operation -addx847 add sNaN 1000 -> NaN Invalid_operation -addx848 add sNaN NaN -> NaN Invalid_operation -addx849 add sNaN sNaN -> NaN Invalid_operation -addx850 add NaN sNaN -> NaN Invalid_operation -addx851 add -Inf sNaN -> NaN Invalid_operation -addx852 add -1000 sNaN -> NaN Invalid_operation -addx853 add -1 sNaN -> NaN Invalid_operation -addx854 add -0 sNaN -> NaN Invalid_operation -addx855 add 0 sNaN -> NaN Invalid_operation -addx856 add 1 sNaN -> NaN Invalid_operation -addx857 add 1000 sNaN -> NaN Invalid_operation -addx858 add Inf sNaN -> NaN Invalid_operation -addx859 add NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -addx861 add NaN1 -Inf -> NaN1 -addx862 add +NaN2 -1000 -> NaN2 -addx863 add NaN3 1000 -> NaN3 -addx864 add NaN4 Inf -> NaN4 -addx865 add NaN5 +NaN6 -> NaN5 -addx866 add -Inf NaN7 -> NaN7 -addx867 add -1000 NaN8 -> NaN8 -addx868 add 1000 NaN9 -> NaN9 -addx869 add Inf +NaN10 -> NaN10 -addx871 add sNaN11 -Inf -> NaN11 Invalid_operation -addx872 add sNaN12 -1000 -> NaN12 Invalid_operation -addx873 add sNaN13 1000 -> NaN13 Invalid_operation -addx874 add sNaN14 NaN17 -> NaN14 Invalid_operation -addx875 add sNaN15 sNaN18 -> NaN15 Invalid_operation -addx876 add NaN16 sNaN19 -> NaN19 Invalid_operation -addx877 add -Inf +sNaN20 -> NaN20 Invalid_operation -addx878 add -1000 sNaN21 -> NaN21 Invalid_operation -addx879 add 1000 sNaN22 -> NaN22 Invalid_operation -addx880 add Inf sNaN23 -> NaN23 Invalid_operation -addx881 add +NaN25 +sNaN24 -> NaN24 Invalid_operation -addx882 add -NaN26 NaN28 -> -NaN26 -addx883 add -sNaN27 sNaN29 -> -NaN27 Invalid_operation -addx884 add 1000 -NaN30 -> -NaN30 -addx885 add 1000 -sNaN31 -> -NaN31 Invalid_operation - --- overflow, underflow and subnormal tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -addx890 add 1E+999999999 9E+999999999 -> Infinity Overflow Inexact Rounded -addx891 add 9E+999999999 1E+999999999 -> Infinity Overflow Inexact Rounded -addx892 add -1.1E-999999999 1E-999999999 -> -1E-1000000000 Subnormal -addx893 add 1E-999999999 -1.1e-999999999 -> -1E-1000000000 Subnormal -addx894 add -1.0001E-999999999 1E-999999999 -> -1E-1000000003 Subnormal -addx895 add 1E-999999999 -1.0001e-999999999 -> -1E-1000000003 Subnormal -addx896 add -1E+999999999 -9E+999999999 -> -Infinity Overflow Inexact Rounded -addx897 add -9E+999999999 -1E+999999999 -> -Infinity Overflow Inexact Rounded -addx898 add +1.1E-999999999 -1E-999999999 -> 1E-1000000000 Subnormal -addx899 add -1E-999999999 +1.1e-999999999 -> 1E-1000000000 Subnormal -addx900 add +1.0001E-999999999 -1E-999999999 -> 1E-1000000003 Subnormal -addx901 add -1E-999999999 +1.0001e-999999999 -> 1E-1000000003 Subnormal -addx902 add -1E+999999999 +9E+999999999 -> 8E+999999999 -addx903 add -9E+999999999 +1E+999999999 -> -8E+999999999 - -precision: 3 -addx904 add 0 -9.999E+999999999 -> -Infinity Inexact Overflow Rounded -addx905 add -9.999E+999999999 0 -> -Infinity Inexact Overflow Rounded -addx906 add 0 9.999E+999999999 -> Infinity Inexact Overflow Rounded -addx907 add 9.999E+999999999 0 -> Infinity Inexact Overflow Rounded - -precision: 3 -maxexponent: 999 -minexponent: -999 -addx910 add 1.00E-999 0 -> 1.00E-999 -addx911 add 0.1E-999 0 -> 1E-1000 Subnormal -addx912 add 0.10E-999 0 -> 1.0E-1000 Subnormal -addx913 add 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded -addx914 add 0.01E-999 0 -> 1E-1001 Subnormal --- next is rounded to Nmin -addx915 add 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow -addx916 add 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -addx917 add 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow -addx918 add 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -addx919 add 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -addx920 add 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - -addx930 add -1.00E-999 0 -> -1.00E-999 -addx931 add -0.1E-999 0 -> -1E-1000 Subnormal -addx932 add -0.10E-999 0 -> -1.0E-1000 Subnormal -addx933 add -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded -addx934 add -0.01E-999 0 -> -1E-1001 Subnormal --- next is rounded to Nmin -addx935 add -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow -addx936 add -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -addx937 add -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow -addx938 add -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -addx939 add -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -addx940 add -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped - --- some non-zero subnormal adds -addx950 add 1.00E-999 0.1E-999 -> 1.10E-999 -addx951 add 0.1E-999 0.1E-999 -> 2E-1000 Subnormal -addx952 add 0.10E-999 0.1E-999 -> 2.0E-1000 Subnormal -addx953 add 0.100E-999 0.1E-999 -> 2.0E-1000 Subnormal Rounded -addx954 add 0.01E-999 0.1E-999 -> 1.1E-1000 Subnormal -addx955 add 0.999E-999 0.1E-999 -> 1.10E-999 Inexact Rounded -addx956 add 0.099E-999 0.1E-999 -> 2.0E-1000 Inexact Rounded Subnormal Underflow -addx957 add 0.009E-999 0.1E-999 -> 1.1E-1000 Inexact Rounded Subnormal Underflow -addx958 add 0.001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -addx959 add 0.0009E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -addx960 add 0.0001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow --- negatives... -addx961 add 1.00E-999 -0.1E-999 -> 9.0E-1000 Subnormal -addx962 add 0.1E-999 -0.1E-999 -> 0E-1000 -addx963 add 0.10E-999 -0.1E-999 -> 0E-1001 -addx964 add 0.100E-999 -0.1E-999 -> 0E-1001 Clamped -addx965 add 0.01E-999 -0.1E-999 -> -9E-1001 Subnormal -addx966 add 0.999E-999 -0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow -addx967 add 0.099E-999 -0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -addx968 add 0.009E-999 -0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow -addx969 add 0.001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -addx970 add 0.0009E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -addx971 add 0.0001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow - --- some 'real' numbers -maxExponent: 384 -minExponent: -383 -precision: 8 -addx566 add 99999061735E-394 0E-394 -> 9.999906E-384 Inexact Rounded Underflow Subnormal -precision: 7 -addx567 add 99999061735E-394 0E-394 -> 9.99991E-384 Inexact Rounded Underflow Subnormal -precision: 6 -addx568 add 99999061735E-394 0E-394 -> 9.9999E-384 Inexact Rounded Underflow Subnormal - --- now the case where we can get underflow but the result is normal --- [note this can't happen if the operands are also bounded, as we --- cannot represent 1E-399, for example] -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - -addx571 add 1E-383 0 -> 1E-383 -addx572 add 1E-384 0 -> 1E-384 Subnormal -addx573 add 1E-383 1E-384 -> 1.1E-383 -addx574 subtract 1E-383 1E-384 -> 9E-384 Subnormal - --- Here we explore the boundary of rounding a subnormal to Nmin -addx575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -addx576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -addx577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -addx578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -addx579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -addx580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded - --- check overflow edge case -precision: 7 -rounding: half_up -maxExponent: 96 -minExponent: -95 -addx972 apply 9.999999E+96 -> 9.999999E+96 -addx973 add 9.999999E+96 1 -> 9.999999E+96 Inexact Rounded -addx974 add 9999999E+90 1 -> 9.999999E+96 Inexact Rounded -addx975 add 9999999E+90 1E+90 -> Infinity Overflow Inexact Rounded -addx976 add 9999999E+90 9E+89 -> Infinity Overflow Inexact Rounded -addx977 add 9999999E+90 8E+89 -> Infinity Overflow Inexact Rounded -addx978 add 9999999E+90 7E+89 -> Infinity Overflow Inexact Rounded -addx979 add 9999999E+90 6E+89 -> Infinity Overflow Inexact Rounded -addx980 add 9999999E+90 5E+89 -> Infinity Overflow Inexact Rounded -addx981 add 9999999E+90 4E+89 -> 9.999999E+96 Inexact Rounded -addx982 add 9999999E+90 3E+89 -> 9.999999E+96 Inexact Rounded -addx983 add 9999999E+90 2E+89 -> 9.999999E+96 Inexact Rounded -addx984 add 9999999E+90 1E+89 -> 9.999999E+96 Inexact Rounded - -addx985 apply -9.999999E+96 -> -9.999999E+96 -addx986 add -9.999999E+96 -1 -> -9.999999E+96 Inexact Rounded -addx987 add -9999999E+90 -1 -> -9.999999E+96 Inexact Rounded -addx988 add -9999999E+90 -1E+90 -> -Infinity Overflow Inexact Rounded -addx989 add -9999999E+90 -9E+89 -> -Infinity Overflow Inexact Rounded -addx990 add -9999999E+90 -8E+89 -> -Infinity Overflow Inexact Rounded -addx991 add -9999999E+90 -7E+89 -> -Infinity Overflow Inexact Rounded -addx992 add -9999999E+90 -6E+89 -> -Infinity Overflow Inexact Rounded -addx993 add -9999999E+90 -5E+89 -> -Infinity Overflow Inexact Rounded -addx994 add -9999999E+90 -4E+89 -> -9.999999E+96 Inexact Rounded -addx995 add -9999999E+90 -3E+89 -> -9.999999E+96 Inexact Rounded -addx996 add -9999999E+90 -2E+89 -> -9.999999E+96 Inexact Rounded -addx997 add -9999999E+90 -1E+89 -> -9.999999E+96 Inexact Rounded - --- check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 --- Add: lhs and rhs 0 -addx1001 add 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1002 add 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1003 add 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1004 add 0 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1005 add 0 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1006 add 0 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow - --- Add: lhs >> rhs and vice versa -addx1011 add 1.52444E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1012 add 1.52445E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1013 add 1.52446E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1014 add 1E-100 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1015 add 1E-100 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -addx1016 add 1E-100 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow - --- Add: lhs + rhs addition carried out -addx1021 add 1.52443E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -addx1022 add 1.52444E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -addx1023 add 1.52445E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -addx1024 add 1.00001E-80 1.52443E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -addx1025 add 1.00001E-80 1.52444E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -addx1026 add 1.00001E-80 1.52445E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow - --- And for round down full and subnormal results -precision: 16 -maxExponent: +384 -minExponent: -383 -rounding: down - -addx1100 add 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact -addx1101 add 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact -addx1103 add +1 -1e-383 -> 0.9999999999999999 Rounded Inexact -addx1104 add 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact -addx1105 add 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact -addx1106 add 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact -addx1107 add 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact -addx1108 add 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact -addx1109 add 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact - -rounding: ceiling -addx1110 add -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact -addx1111 add -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact -addx1113 add -1 +1e-383 -> -0.9999999999999999 Rounded Inexact -addx1114 add -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact -addx1115 add -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact -addx1116 add -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact -addx1117 add -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact -addx1118 add -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact -addx1119 add -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact -addx1120 add +1e-383 -1e+2 -> -99.99999999999999 Rounded Inexact -addx1121 add +1e-383 -1e+1 -> -9.999999999999999 Rounded Inexact -addx1123 add +1e-383 -1 -> -0.9999999999999999 Rounded Inexact -addx1124 add +1e-383 -1e-1 -> -0.09999999999999999 Rounded Inexact -addx1125 add +1e-383 -1e-2 -> -0.009999999999999999 Rounded Inexact -addx1126 add +1e-383 -1e-3 -> -0.0009999999999999999 Rounded Inexact -addx1127 add +1e-383 -1e-4 -> -0.00009999999999999999 Rounded Inexact -addx1128 add +1e-383 -1e-5 -> -0.000009999999999999999 Rounded Inexact -addx1129 add +1e-383 -1e-6 -> -9.999999999999999E-7 Rounded Inexact - -rounding: down -precision: 7 -maxExponent: +96 -minExponent: -95 -addx1130 add 1 -1e-200 -> 0.9999999 Rounded Inexact --- subnormal boundary -addx1131 add 1.000000E-94 -1e-200 -> 9.999999E-95 Rounded Inexact -addx1132 add 1.000001E-95 -1e-200 -> 1.000000E-95 Rounded Inexact -addx1133 add 1.000000E-95 -1e-200 -> 9.99999E-96 Rounded Inexact Subnormal Underflow -addx1134 add 0.999999E-95 -1e-200 -> 9.99998E-96 Rounded Inexact Subnormal Underflow -addx1135 add 0.001000E-95 -1e-200 -> 9.99E-99 Rounded Inexact Subnormal Underflow -addx1136 add 0.000999E-95 -1e-200 -> 9.98E-99 Rounded Inexact Subnormal Underflow -addx1137 add 1.000000E-95 -1e-101 -> 9.99999E-96 Subnormal -addx1138 add 10000E-101 -1e-200 -> 9.999E-98 Subnormal Inexact Rounded Underflow -addx1139 add 1000E-101 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow -addx1140 add 100E-101 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow -addx1141 add 10E-101 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow -addx1142 add 1E-101 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped -addx1143 add 0E-101 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped -addx1144 add 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped - -addx1151 add 10000E-102 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow -addx1152 add 1000E-102 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow -addx1153 add 100E-102 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow -addx1154 add 10E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped -addx1155 add 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped -addx1156 add 0E-102 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped -addx1157 add 1E-103 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped - -addx1160 add 100E-105 -1e-101 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped -addx1161 add 100E-105 -1e-201 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped - --- tests based on Gunnar Degnbol's edge case -precision: 15 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -addx1200 add 1E15 -0.5 -> 1.00000000000000E+15 Inexact Rounded -addx1201 add 1E15 -0.50 -> 1.00000000000000E+15 Inexact Rounded -addx1210 add 1E15 -0.51 -> 999999999999999 Inexact Rounded -addx1211 add 1E15 -0.501 -> 999999999999999 Inexact Rounded -addx1212 add 1E15 -0.5001 -> 999999999999999 Inexact Rounded -addx1213 add 1E15 -0.50001 -> 999999999999999 Inexact Rounded -addx1214 add 1E15 -0.500001 -> 999999999999999 Inexact Rounded -addx1215 add 1E15 -0.5000001 -> 999999999999999 Inexact Rounded -addx1216 add 1E15 -0.50000001 -> 999999999999999 Inexact Rounded -addx1217 add 1E15 -0.500000001 -> 999999999999999 Inexact Rounded -addx1218 add 1E15 -0.5000000001 -> 999999999999999 Inexact Rounded -addx1219 add 1E15 -0.50000000001 -> 999999999999999 Inexact Rounded -addx1220 add 1E15 -0.500000000001 -> 999999999999999 Inexact Rounded -addx1221 add 1E15 -0.5000000000001 -> 999999999999999 Inexact Rounded -addx1222 add 1E15 -0.50000000000001 -> 999999999999999 Inexact Rounded -addx1223 add 1E15 -0.500000000000001 -> 999999999999999 Inexact Rounded -addx1224 add 1E15 -0.5000000000000001 -> 999999999999999 Inexact Rounded -addx1225 add 1E15 -0.5000000000000000 -> 1.00000000000000E+15 Inexact Rounded -addx1230 add 1E15 -5000000.000000001 -> 999999995000000 Inexact Rounded - -precision: 16 - -addx1300 add 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded -addx1310 add 1E16 -0.51 -> 9999999999999999 Inexact Rounded -addx1311 add 1E16 -0.501 -> 9999999999999999 Inexact Rounded -addx1312 add 1E16 -0.5001 -> 9999999999999999 Inexact Rounded -addx1313 add 1E16 -0.50001 -> 9999999999999999 Inexact Rounded -addx1314 add 1E16 -0.500001 -> 9999999999999999 Inexact Rounded -addx1315 add 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded -addx1316 add 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded -addx1317 add 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded -addx1318 add 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded -addx1319 add 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded -addx1320 add 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded -addx1321 add 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded -addx1322 add 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded -addx1323 add 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded -addx1324 add 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded -addx1325 add 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1326 add 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1327 add 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1328 add 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1329 add 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1330 add 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1331 add 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1332 add 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded -addx1333 add 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded -addx1334 add 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded -addx1335 add 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded -addx1336 add 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded -addx1337 add 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded -addx1338 add 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded -addx1339 add 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded - -addx1340 add 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded -addx1341 add 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded - -addx1349 add 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded -addx1350 add 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded -addx1351 add 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded -addx1352 add 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded -addx1353 add 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded -addx1354 add 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded -addx1355 add 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded -addx1356 add 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded -addx1357 add 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded -addx1358 add 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded -addx1359 add 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded -addx1360 add 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded -addx1361 add 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded -addx1362 add 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded -addx1363 add 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded -addx1364 add 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded -addx1365 add 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1367 add 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1368 add 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1369 add 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1370 add 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1371 add 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1372 add 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -addx1373 add 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded -addx1374 add 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded -addx1375 add 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded -addx1376 add 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded -addx1377 add 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded -addx1378 add 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded -addx1379 add 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded -addx1380 add 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded -addx1381 add 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded -addx1382 add 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx1383 add 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx1384 add 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx1385 add 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx1386 add 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded -addx1387 add 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded -addx1388 add 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded -addx1389 add 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded -addx1390 add 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded -addx1391 add 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded -addx1392 add 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded -addx1393 add 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded -addx1394 add 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded -addx1395 add 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded -addx1396 add 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -precision: 15 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -addx1400 add 0 1.23456789012345 -> 1.23456789012345 -addx1401 add 0 1.23456789012345E-1 -> 0.123456789012345 -addx1402 add 0 1.23456789012345E-2 -> 0.0123456789012345 -addx1403 add 0 1.23456789012345E-3 -> 0.00123456789012345 -addx1404 add 0 1.23456789012345E-4 -> 0.000123456789012345 -addx1405 add 0 1.23456789012345E-5 -> 0.0000123456789012345 -addx1406 add 0 1.23456789012345E-6 -> 0.00000123456789012345 -addx1407 add 0 1.23456789012345E-7 -> 1.23456789012345E-7 -addx1408 add 0 1.23456789012345E-8 -> 1.23456789012345E-8 -addx1409 add 0 1.23456789012345E-9 -> 1.23456789012345E-9 -addx1410 add 0 1.23456789012345E-10 -> 1.23456789012345E-10 -addx1411 add 0 1.23456789012345E-11 -> 1.23456789012345E-11 -addx1412 add 0 1.23456789012345E-12 -> 1.23456789012345E-12 -addx1413 add 0 1.23456789012345E-13 -> 1.23456789012345E-13 -addx1414 add 0 1.23456789012345E-14 -> 1.23456789012345E-14 -addx1415 add 0 1.23456789012345E-15 -> 1.23456789012345E-15 -addx1416 add 0 1.23456789012345E-16 -> 1.23456789012345E-16 -addx1417 add 0 1.23456789012345E-17 -> 1.23456789012345E-17 -addx1418 add 0 1.23456789012345E-18 -> 1.23456789012345E-18 -addx1419 add 0 1.23456789012345E-19 -> 1.23456789012345E-19 - --- same, precision 16.. -precision: 16 -addx1420 add 0 1.123456789012345 -> 1.123456789012345 -addx1421 add 0 1.123456789012345E-1 -> 0.1123456789012345 -addx1422 add 0 1.123456789012345E-2 -> 0.01123456789012345 -addx1423 add 0 1.123456789012345E-3 -> 0.001123456789012345 -addx1424 add 0 1.123456789012345E-4 -> 0.0001123456789012345 -addx1425 add 0 1.123456789012345E-5 -> 0.00001123456789012345 -addx1426 add 0 1.123456789012345E-6 -> 0.000001123456789012345 -addx1427 add 0 1.123456789012345E-7 -> 1.123456789012345E-7 -addx1428 add 0 1.123456789012345E-8 -> 1.123456789012345E-8 -addx1429 add 0 1.123456789012345E-9 -> 1.123456789012345E-9 -addx1430 add 0 1.123456789012345E-10 -> 1.123456789012345E-10 -addx1431 add 0 1.123456789012345E-11 -> 1.123456789012345E-11 -addx1432 add 0 1.123456789012345E-12 -> 1.123456789012345E-12 -addx1433 add 0 1.123456789012345E-13 -> 1.123456789012345E-13 -addx1434 add 0 1.123456789012345E-14 -> 1.123456789012345E-14 -addx1435 add 0 1.123456789012345E-15 -> 1.123456789012345E-15 -addx1436 add 0 1.123456789012345E-16 -> 1.123456789012345E-16 -addx1437 add 0 1.123456789012345E-17 -> 1.123456789012345E-17 -addx1438 add 0 1.123456789012345E-18 -> 1.123456789012345E-18 -addx1439 add 0 1.123456789012345E-19 -> 1.123456789012345E-19 - --- same, reversed 0 -addx1440 add 1.123456789012345 0 -> 1.123456789012345 -addx1441 add 1.123456789012345E-1 0 -> 0.1123456789012345 -addx1442 add 1.123456789012345E-2 0 -> 0.01123456789012345 -addx1443 add 1.123456789012345E-3 0 -> 0.001123456789012345 -addx1444 add 1.123456789012345E-4 0 -> 0.0001123456789012345 -addx1445 add 1.123456789012345E-5 0 -> 0.00001123456789012345 -addx1446 add 1.123456789012345E-6 0 -> 0.000001123456789012345 -addx1447 add 1.123456789012345E-7 0 -> 1.123456789012345E-7 -addx1448 add 1.123456789012345E-8 0 -> 1.123456789012345E-8 -addx1449 add 1.123456789012345E-9 0 -> 1.123456789012345E-9 -addx1450 add 1.123456789012345E-10 0 -> 1.123456789012345E-10 -addx1451 add 1.123456789012345E-11 0 -> 1.123456789012345E-11 -addx1452 add 1.123456789012345E-12 0 -> 1.123456789012345E-12 -addx1453 add 1.123456789012345E-13 0 -> 1.123456789012345E-13 -addx1454 add 1.123456789012345E-14 0 -> 1.123456789012345E-14 -addx1455 add 1.123456789012345E-15 0 -> 1.123456789012345E-15 -addx1456 add 1.123456789012345E-16 0 -> 1.123456789012345E-16 -addx1457 add 1.123456789012345E-17 0 -> 1.123456789012345E-17 -addx1458 add 1.123456789012345E-18 0 -> 1.123456789012345E-18 -addx1459 add 1.123456789012345E-19 0 -> 1.123456789012345E-19 - --- same, Es on the 0 -addx1460 add 1.123456789012345 0E-0 -> 1.123456789012345 -addx1461 add 1.123456789012345 0E-1 -> 1.123456789012345 -addx1462 add 1.123456789012345 0E-2 -> 1.123456789012345 -addx1463 add 1.123456789012345 0E-3 -> 1.123456789012345 -addx1464 add 1.123456789012345 0E-4 -> 1.123456789012345 -addx1465 add 1.123456789012345 0E-5 -> 1.123456789012345 -addx1466 add 1.123456789012345 0E-6 -> 1.123456789012345 -addx1467 add 1.123456789012345 0E-7 -> 1.123456789012345 -addx1468 add 1.123456789012345 0E-8 -> 1.123456789012345 -addx1469 add 1.123456789012345 0E-9 -> 1.123456789012345 -addx1470 add 1.123456789012345 0E-10 -> 1.123456789012345 -addx1471 add 1.123456789012345 0E-11 -> 1.123456789012345 -addx1472 add 1.123456789012345 0E-12 -> 1.123456789012345 -addx1473 add 1.123456789012345 0E-13 -> 1.123456789012345 -addx1474 add 1.123456789012345 0E-14 -> 1.123456789012345 -addx1475 add 1.123456789012345 0E-15 -> 1.123456789012345 --- next four flag Rounded because the 0 extends the result -addx1476 add 1.123456789012345 0E-16 -> 1.123456789012345 Rounded -addx1477 add 1.123456789012345 0E-17 -> 1.123456789012345 Rounded -addx1478 add 1.123456789012345 0E-18 -> 1.123456789012345 Rounded -addx1479 add 1.123456789012345 0E-19 -> 1.123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -precision: 16 -maxExponent: 384 -minexponent: -383 - -rounding: half_up --- exact zeros from zeros -addx1500 add 0 0E-19 -> 0E-19 -addx1501 add -0 0E-19 -> 0E-19 -addx1502 add 0 -0E-19 -> 0E-19 -addx1503 add -0 -0E-19 -> -0E-19 -addx1504 add 0E-400 0E-19 -> 0E-398 Clamped -addx1505 add -0E-400 0E-19 -> 0E-398 Clamped -addx1506 add 0E-400 -0E-19 -> 0E-398 Clamped -addx1507 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx1511 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1512 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1513 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1514 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx1515 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1516 add -1E-401 1E-401 -> 0E-398 Clamped -addx1517 add 1E-401 -1E-401 -> 0E-398 Clamped -addx1518 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_down --- exact zeros from zeros -addx1520 add 0 0E-19 -> 0E-19 -addx1521 add -0 0E-19 -> 0E-19 -addx1522 add 0 -0E-19 -> 0E-19 -addx1523 add -0 -0E-19 -> -0E-19 -addx1524 add 0E-400 0E-19 -> 0E-398 Clamped -addx1525 add -0E-400 0E-19 -> 0E-398 Clamped -addx1526 add 0E-400 -0E-19 -> 0E-398 Clamped -addx1527 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx1531 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1532 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1533 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1534 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx1535 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1536 add -1E-401 1E-401 -> 0E-398 Clamped -addx1537 add 1E-401 -1E-401 -> 0E-398 Clamped -addx1538 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_even --- exact zeros from zeros -addx1540 add 0 0E-19 -> 0E-19 -addx1541 add -0 0E-19 -> 0E-19 -addx1542 add 0 -0E-19 -> 0E-19 -addx1543 add -0 -0E-19 -> -0E-19 -addx1544 add 0E-400 0E-19 -> 0E-398 Clamped -addx1545 add -0E-400 0E-19 -> 0E-398 Clamped -addx1546 add 0E-400 -0E-19 -> 0E-398 Clamped -addx1547 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx1551 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1552 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1553 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1554 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx1555 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1556 add -1E-401 1E-401 -> 0E-398 Clamped -addx1557 add 1E-401 -1E-401 -> 0E-398 Clamped -addx1558 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: up --- exact zeros from zeros -addx1560 add 0 0E-19 -> 0E-19 -addx1561 add -0 0E-19 -> 0E-19 -addx1562 add 0 -0E-19 -> 0E-19 -addx1563 add -0 -0E-19 -> -0E-19 -addx1564 add 0E-400 0E-19 -> 0E-398 Clamped -addx1565 add -0E-400 0E-19 -> 0E-398 Clamped -addx1566 add 0E-400 -0E-19 -> 0E-398 Clamped -addx1567 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx1571 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx1572 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx1573 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -addx1574 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -addx1575 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -addx1576 add -1E-401 1E-401 -> 0E-398 Clamped -addx1577 add 1E-401 -1E-401 -> 0E-398 Clamped -addx1578 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - -rounding: down --- exact zeros from zeros -addx1580 add 0 0E-19 -> 0E-19 -addx1581 add -0 0E-19 -> 0E-19 -addx1582 add 0 -0E-19 -> 0E-19 -addx1583 add -0 -0E-19 -> -0E-19 -addx1584 add 0E-400 0E-19 -> 0E-398 Clamped -addx1585 add -0E-400 0E-19 -> 0E-398 Clamped -addx1586 add 0E-400 -0E-19 -> 0E-398 Clamped -addx1587 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx1591 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1592 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1593 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1594 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx1595 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1596 add -1E-401 1E-401 -> 0E-398 Clamped -addx1597 add 1E-401 -1E-401 -> 0E-398 Clamped -addx1598 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: ceiling --- exact zeros from zeros -addx1600 add 0 0E-19 -> 0E-19 -addx1601 add -0 0E-19 -> 0E-19 -addx1602 add 0 -0E-19 -> 0E-19 -addx1603 add -0 -0E-19 -> -0E-19 -addx1604 add 0E-400 0E-19 -> 0E-398 Clamped -addx1605 add -0E-400 0E-19 -> 0E-398 Clamped -addx1606 add 0E-400 -0E-19 -> 0E-398 Clamped -addx1607 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx1611 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx1612 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx1613 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1614 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx1615 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -addx1616 add -1E-401 1E-401 -> 0E-398 Clamped -addx1617 add 1E-401 -1E-401 -> 0E-398 Clamped -addx1618 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -addx1620 add 0 0E-19 -> 0E-19 -addx1621 add -0 0E-19 -> -0E-19 -- * -addx1622 add 0 -0E-19 -> -0E-19 -- * -addx1623 add -0 -0E-19 -> -0E-19 -addx1624 add 0E-400 0E-19 -> 0E-398 Clamped -addx1625 add -0E-400 0E-19 -> -0E-398 Clamped -- * -addx1626 add 0E-400 -0E-19 -> -0E-398 Clamped -- * -addx1627 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx1631 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1632 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1633 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -addx1634 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -addx1635 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx1636 add -1E-401 1E-401 -> -0E-398 Clamped -- * -addx1637 add 1E-401 -1E-401 -> -0E-398 Clamped -- * -addx1638 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - --- BigDecimal problem testcases 2006.01.23 -precision: 16 -maxExponent: 384 -minexponent: -383 - -rounding: down -precision: 7 -addx1651 add 10001E+2 -2E+1 -> 1.00008E+6 -precision: 6 -addx1652 add 10001E+2 -2E+1 -> 1.00008E+6 -precision: 5 -addx1653 add 10001E+2 -2E+1 -> 1.0000E+6 Inexact Rounded -precision: 4 -addx1654 add 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded -precision: 3 -addx1655 add 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded -precision: 2 -addx1656 add 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded -precision: 1 -addx1657 add 10001E+2 -2E+1 -> 1E+6 Inexact Rounded - -rounding: half_even -precision: 7 -addx1661 add 10001E+2 -2E+1 -> 1.00008E+6 -precision: 6 -addx1662 add 10001E+2 -2E+1 -> 1.00008E+6 -precision: 5 -addx1663 add 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded -precision: 4 -addx1664 add 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded -precision: 3 -addx1665 add 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded -precision: 2 -addx1666 add 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded -precision: 1 -addx1667 add 10001E+2 -2E+1 -> 1E+6 Inexact Rounded - -rounding: up -precision: 7 -addx1671 add 10001E+2 -2E+1 -> 1.00008E+6 -precision: 6 -addx1672 add 10001E+2 -2E+1 -> 1.00008E+6 -precision: 5 -addx1673 add 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded -precision: 4 -addx1674 add 10001E+2 -2E+1 -> 1.001E+6 Inexact Rounded -precision: 3 -addx1675 add 10001E+2 -2E+1 -> 1.01E+6 Inexact Rounded -precision: 2 -addx1676 add 10001E+2 -2E+1 -> 1.1E+6 Inexact Rounded -precision: 1 -addx1677 add 10001E+2 -2E+1 -> 2E+6 Inexact Rounded - -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 --- Examples from SQL proposal (Krishna Kulkarni) -addx1701 add 130E-2 120E-2 -> 2.50 -addx1702 add 130E-2 12E-1 -> 2.50 -addx1703 add 130E-2 1E0 -> 2.30 -addx1704 add 1E2 1E4 -> 1.01E+4 -addx1705 subtract 130E-2 120E-2 -> 0.10 -addx1706 subtract 130E-2 12E-1 -> 0.10 -addx1707 subtract 130E-2 1E0 -> 0.30 -addx1708 subtract 1E2 1E4 -> -9.9E+3 - ------------------------------------------------------------------------- --- Same as above, using decimal64 default parameters -- ------------------------------------------------------------------------- -precision: 16 -rounding: half_even -maxExponent: 384 -minexponent: -383 - --- [first group are 'quick confidence check'] -addx6001 add 1 1 -> 2 -addx6002 add 2 3 -> 5 -addx6003 add '5.75' '3.3' -> 9.05 -addx6004 add '5' '-3' -> 2 -addx6005 add '-5' '-3' -> -8 -addx6006 add '-7' '2.5' -> -4.5 -addx6007 add '0.7' '0.3' -> 1.0 -addx6008 add '1.25' '1.25' -> 2.50 -addx6009 add '1.23456789' '1.00000000' -> '2.23456789' -addx6010 add '1.23456789' '1.00000011' -> '2.23456800' - -addx6011 add '0.44444444444444444' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded -addx6012 add '0.44444444444444440' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded -addx6013 add '0.44444444444444444' '0.55555555555555550' -> '0.9999999999999999' Inexact Rounded -addx6014 add '0.444444444444444449' '0' -> '0.4444444444444444' Inexact Rounded -addx6015 add '0.4444444444444444499' '0' -> '0.4444444444444444' Inexact Rounded -addx6016 add '0.44444444444444444999' '0' -> '0.4444444444444444' Inexact Rounded -addx6017 add '0.44444444444444445000' '0' -> '0.4444444444444444' Inexact Rounded -addx6018 add '0.44444444444444445001' '0' -> '0.4444444444444445' Inexact Rounded -addx6019 add '0.4444444444444444501' '0' -> '0.4444444444444445' Inexact Rounded -addx6020 add '0.444444444444444451' '0' -> '0.4444444444444445' Inexact Rounded - -addx6021 add 0 1 -> 1 -addx6022 add 1 1 -> 2 -addx6023 add 2 1 -> 3 -addx6024 add 3 1 -> 4 -addx6025 add 4 1 -> 5 -addx6026 add 5 1 -> 6 -addx6027 add 6 1 -> 7 -addx6028 add 7 1 -> 8 -addx6029 add 8 1 -> 9 -addx6030 add 9 1 -> 10 - --- some carrying effects -addx6031 add '0.9998' '0.0000' -> '0.9998' -addx6032 add '0.9998' '0.0001' -> '0.9999' -addx6033 add '0.9998' '0.0002' -> '1.0000' -addx6034 add '0.9998' '0.0003' -> '1.0001' - -addx6035 add '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -addx6036 add '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -addx6037 add '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -addx6038 add '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded -addx6039 add '700000' '10000e+16' -> '1.000000000000007E+20' Rounded - --- symmetry: -addx6040 add '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded -addx6041 add '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded -addx6042 add '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded -addx6044 add '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded -addx6045 add '10000e+16' '700000' -> '1.000000000000007E+20' Rounded - -addx6046 add '10000e+9' '7' -> '10000000000007' -addx6047 add '10000e+9' '70' -> '10000000000070' -addx6048 add '10000e+9' '700' -> '10000000000700' -addx6049 add '10000e+9' '7000' -> '10000000007000' -addx6050 add '10000e+9' '70000' -> '10000000070000' -addx6051 add '10000e+9' '700000' -> '10000000700000' - --- examples from decarith -addx6053 add '12' '7.00' -> '19.00' -addx6054 add '1.3' '-1.07' -> '0.23' -addx6055 add '1.3' '-1.30' -> '0.00' -addx6056 add '1.3' '-2.07' -> '-0.77' -addx6057 add '1E+2' '1E+4' -> '1.01E+4' - --- from above -addx6060 add 1 '0.1' -> '1.1' -addx6061 add 1 '0.01' -> '1.01' -addx6062 add 1 '0.001' -> '1.001' -addx6063 add 1 '0.0001' -> '1.0001' -addx6064 add 1 '0.00001' -> '1.00001' -addx6065 add 1 '0.000001' -> '1.000001' -addx6066 add 1 '0.0000001' -> '1.0000001' -addx6067 add 1 '0.00000001' -> '1.00000001' - --- cancellation to integer -addx6068 add 99999999999999123456789 -99999999999999E+9 -> 123456789 --- similar from FMA fun -addx6069 add "-1234567890123455.234567890123454" "1234567890123456" -> 0.765432109876546 - --- some funny zeros [in case of bad signum] -addx6070 add 1 0 -> 1 -addx6071 add 1 0. -> 1 -addx6072 add 1 .0 -> 1.0 -addx6073 add 1 0.0 -> 1.0 -addx6074 add 1 0.00 -> 1.00 -addx6075 add 0 1 -> 1 -addx6076 add 0. 1 -> 1 -addx6077 add .0 1 -> 1.0 -addx6078 add 0.0 1 -> 1.0 -addx6079 add 0.00 1 -> 1.00 - --- some carries -addx6080 add 9999999999999998 1 -> 9999999999999999 -addx6081 add 9999999999999999 1 -> 1.000000000000000E+16 Rounded -addx6082 add 999999999999999 1 -> 1000000000000000 -addx6083 add 9999999999999 1 -> 10000000000000 -addx6084 add 99999999999 1 -> 100000000000 -addx6085 add 999999999 1 -> 1000000000 -addx6086 add 9999999 1 -> 10000000 -addx6087 add 99999 1 -> 100000 -addx6088 add 999 1 -> 1000 -addx6089 add 9 1 -> 10 - - --- more LHS swaps -addx6090 add '-56267E-10' 0 -> '-0.0000056267' -addx6091 add '-56267E-6' 0 -> '-0.056267' -addx6092 add '-56267E-5' 0 -> '-0.56267' -addx6093 add '-56267E-4' 0 -> '-5.6267' -addx6094 add '-56267E-3' 0 -> '-56.267' -addx6095 add '-56267E-2' 0 -> '-562.67' -addx6096 add '-56267E-1' 0 -> '-5626.7' -addx6097 add '-56267E-0' 0 -> '-56267' -addx6098 add '-5E-10' 0 -> '-5E-10' -addx6099 add '-5E-7' 0 -> '-5E-7' -addx6100 add '-5E-6' 0 -> '-0.000005' -addx6101 add '-5E-5' 0 -> '-0.00005' -addx6102 add '-5E-4' 0 -> '-0.0005' -addx6103 add '-5E-1' 0 -> '-0.5' -addx6104 add '-5E0' 0 -> '-5' -addx6105 add '-5E1' 0 -> '-50' -addx6106 add '-5E5' 0 -> '-500000' -addx6107 add '-5E15' 0 -> '-5000000000000000' -addx6108 add '-5E16' 0 -> '-5.000000000000000E+16' Rounded -addx6109 add '-5E17' 0 -> '-5.000000000000000E+17' Rounded -addx6110 add '-5E18' 0 -> '-5.000000000000000E+18' Rounded -addx6111 add '-5E100' 0 -> '-5.000000000000000E+100' Rounded - --- more RHS swaps -addx6113 add 0 '-56267E-10' -> '-0.0000056267' -addx6114 add 0 '-56267E-6' -> '-0.056267' -addx6116 add 0 '-56267E-5' -> '-0.56267' -addx6117 add 0 '-56267E-4' -> '-5.6267' -addx6119 add 0 '-56267E-3' -> '-56.267' -addx6120 add 0 '-56267E-2' -> '-562.67' -addx6121 add 0 '-56267E-1' -> '-5626.7' -addx6122 add 0 '-56267E-0' -> '-56267' -addx6123 add 0 '-5E-10' -> '-5E-10' -addx6124 add 0 '-5E-7' -> '-5E-7' -addx6125 add 0 '-5E-6' -> '-0.000005' -addx6126 add 0 '-5E-5' -> '-0.00005' -addx6127 add 0 '-5E-4' -> '-0.0005' -addx6128 add 0 '-5E-1' -> '-0.5' -addx6129 add 0 '-5E0' -> '-5' -addx6130 add 0 '-5E1' -> '-50' -addx6131 add 0 '-5E5' -> '-500000' -addx6132 add 0 '-5E15' -> '-5000000000000000' -addx6133 add 0 '-5E16' -> '-5.000000000000000E+16' Rounded -addx6134 add 0 '-5E17' -> '-5.000000000000000E+17' Rounded -addx6135 add 0 '-5E18' -> '-5.000000000000000E+18' Rounded -addx6136 add 0 '-5E100' -> '-5.000000000000000E+100' Rounded - --- related -addx6137 add 1 '0E-19' -> '1.000000000000000' Rounded -addx6138 add -1 '0E-19' -> '-1.000000000000000' Rounded -addx6139 add '0E-19' 1 -> '1.000000000000000' Rounded -addx6140 add '0E-19' -1 -> '-1.000000000000000' Rounded -addx6141 add 1E+11 0.0000 -> '100000000000.0000' -addx6142 add 1E+11 0.00000 -> '100000000000.0000' Rounded -addx6143 add 0.000 1E+12 -> '1000000000000.000' -addx6144 add 0.0000 1E+12 -> '1000000000000.000' Rounded - --- [some of the next group are really constructor tests] -addx6146 add '00.0' 0 -> '0.0' -addx6147 add '0.00' 0 -> '0.00' -addx6148 add 0 '0.00' -> '0.00' -addx6149 add 0 '00.0' -> '0.0' -addx6150 add '00.0' '0.00' -> '0.00' -addx6151 add '0.00' '00.0' -> '0.00' -addx6152 add '3' '.3' -> '3.3' -addx6153 add '3.' '.3' -> '3.3' -addx6154 add '3.0' '.3' -> '3.3' -addx6155 add '3.00' '.3' -> '3.30' -addx6156 add '3' '3' -> '6' -addx6157 add '3' '+3' -> '6' -addx6158 add '3' '-3' -> '0' -addx6159 add '0.3' '-0.3' -> '0.0' -addx6160 add '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -addx6161 add '1E+13' '-1' -> '9999999999999' -addx6162 add '1E+13' '1.11' -> '10000000000001.11' -addx6163 add '1.11' '1E+13' -> '10000000000001.11' -addx6164 add '-1' '1E+13' -> '9999999999999' -addx6165 add '7E+13' '-1' -> '69999999999999' -addx6166 add '7E+13' '1.11' -> '70000000000001.11' -addx6167 add '1.11' '7E+13' -> '70000000000001.11' -addx6168 add '-1' '7E+13' -> '69999999999999' - --- 1234567890123456 1234567890123456 1 234567890123456 -addx6170 add '0.4444444444444444' '0.5555555555555563' -> '1.000000000000001' Inexact Rounded -addx6171 add '0.4444444444444444' '0.5555555555555562' -> '1.000000000000001' Inexact Rounded -addx6172 add '0.4444444444444444' '0.5555555555555561' -> '1.000000000000000' Inexact Rounded -addx6173 add '0.4444444444444444' '0.5555555555555560' -> '1.000000000000000' Inexact Rounded -addx6174 add '0.4444444444444444' '0.5555555555555559' -> '1.000000000000000' Inexact Rounded -addx6175 add '0.4444444444444444' '0.5555555555555558' -> '1.000000000000000' Inexact Rounded -addx6176 add '0.4444444444444444' '0.5555555555555557' -> '1.000000000000000' Inexact Rounded -addx6177 add '0.4444444444444444' '0.5555555555555556' -> '1.000000000000000' Rounded -addx6178 add '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999' -addx6179 add '0.4444444444444444' '0.5555555555555554' -> '0.9999999999999998' -addx6180 add '0.4444444444444444' '0.5555555555555553' -> '0.9999999999999997' -addx6181 add '0.4444444444444444' '0.5555555555555552' -> '0.9999999999999996' -addx6182 add '0.4444444444444444' '0.5555555555555551' -> '0.9999999999999995' -addx6183 add '0.4444444444444444' '0.5555555555555550' -> '0.9999999999999994' - --- and some more, including residue effects and different roundings -rounding: half_up -addx6200 add '6543210123456789' 0 -> '6543210123456789' -addx6201 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -addx6202 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -addx6203 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -addx6204 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -addx6205 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -addx6206 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -addx6207 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -addx6208 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -addx6209 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -addx6210 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -addx6211 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -addx6212 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -addx6213 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -addx6214 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -addx6215 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded -addx6216 add '6543210123456789' 1 -> '6543210123456790' -addx6217 add '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded -addx6218 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -addx6219 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - -rounding: half_even -addx6220 add '6543210123456789' 0 -> '6543210123456789' -addx6221 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -addx6222 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -addx6223 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -addx6224 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -addx6225 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -addx6226 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -addx6227 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -addx6228 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -addx6229 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -addx6230 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -addx6231 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -addx6232 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -addx6233 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -addx6234 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -addx6235 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded -addx6236 add '6543210123456789' 1 -> '6543210123456790' -addx6237 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -addx6238 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -addx6239 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded --- critical few with even bottom digit... -addx6240 add '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded -addx6241 add '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded -addx6242 add '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded - -rounding: down -addx6250 add '6543210123456789' 0 -> '6543210123456789' -addx6251 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -addx6252 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -addx6253 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -addx6254 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -addx6255 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -addx6256 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -addx6257 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -addx6258 add '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded -addx6259 add '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded -addx6260 add '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded -addx6261 add '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded -addx6262 add '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded -addx6263 add '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded -addx6264 add '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded -addx6265 add '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded -addx6266 add '6543210123456789' 1 -> '6543210123456790' -addx6267 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -addx6268 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -addx6269 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - --- 1 in last place tests -rounding: half_even -addx6301 add -1 1 -> 0 -addx6302 add 0 1 -> 1 -addx6303 add 1 1 -> 2 -addx6304 add 12 1 -> 13 -addx6305 add 98 1 -> 99 -addx6306 add 99 1 -> 100 -addx6307 add 100 1 -> 101 -addx6308 add 101 1 -> 102 -addx6309 add -1 -1 -> -2 -addx6310 add 0 -1 -> -1 -addx6311 add 1 -1 -> 0 -addx6312 add 12 -1 -> 11 -addx6313 add 98 -1 -> 97 -addx6314 add 99 -1 -> 98 -addx6315 add 100 -1 -> 99 -addx6316 add 101 -1 -> 100 - -addx6321 add -0.01 0.01 -> 0.00 -addx6322 add 0.00 0.01 -> 0.01 -addx6323 add 0.01 0.01 -> 0.02 -addx6324 add 0.12 0.01 -> 0.13 -addx6325 add 0.98 0.01 -> 0.99 -addx6326 add 0.99 0.01 -> 1.00 -addx6327 add 1.00 0.01 -> 1.01 -addx6328 add 1.01 0.01 -> 1.02 -addx6329 add -0.01 -0.01 -> -0.02 -addx6330 add 0.00 -0.01 -> -0.01 -addx6331 add 0.01 -0.01 -> 0.00 -addx6332 add 0.12 -0.01 -> 0.11 -addx6333 add 0.98 -0.01 -> 0.97 -addx6334 add 0.99 -0.01 -> 0.98 -addx6335 add 1.00 -0.01 -> 0.99 -addx6336 add 1.01 -0.01 -> 1.00 - --- some more cases where adding 0 affects the coefficient -addx6340 add 1E+3 0 -> 1000 -addx6341 add 1E+15 0 -> 1000000000000000 -addx6342 add 1E+16 0 -> 1.000000000000000E+16 Rounded -addx6343 add 1E+17 0 -> 1.000000000000000E+17 Rounded --- which simply follow from these cases ... -addx6344 add 1E+3 1 -> 1001 -addx6345 add 1E+15 1 -> 1000000000000001 -addx6346 add 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded -addx6347 add 1E+17 1 -> 1.000000000000000E+17 Inexact Rounded -addx6348 add 1E+3 7 -> 1007 -addx6349 add 1E+15 7 -> 1000000000000007 -addx6350 add 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded -addx6351 add 1E+17 7 -> 1.000000000000000E+17 Inexact Rounded - --- tryzeros cases -addx6361 add 0E+50 10000E+1 -> 1.0000E+5 -addx6362 add 10000E+1 0E-50 -> 100000.0000000000 Rounded -addx6363 add 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact -addx6364 add 12.34 0e-398 -> 12.34000000000000 Rounded - --- ulp replacement tests -addx6400 add 1 77e-14 -> 1.00000000000077 -addx6401 add 1 77e-15 -> 1.000000000000077 -addx6402 add 1 77e-16 -> 1.000000000000008 Inexact Rounded -addx6403 add 1 77e-17 -> 1.000000000000001 Inexact Rounded -addx6404 add 1 77e-18 -> 1.000000000000000 Inexact Rounded -addx6405 add 1 77e-19 -> 1.000000000000000 Inexact Rounded -addx6406 add 1 77e-99 -> 1.000000000000000 Inexact Rounded - -addx6410 add 10 77e-14 -> 10.00000000000077 -addx6411 add 10 77e-15 -> 10.00000000000008 Inexact Rounded -addx6412 add 10 77e-16 -> 10.00000000000001 Inexact Rounded -addx6413 add 10 77e-17 -> 10.00000000000000 Inexact Rounded -addx6414 add 10 77e-18 -> 10.00000000000000 Inexact Rounded -addx6415 add 10 77e-19 -> 10.00000000000000 Inexact Rounded -addx6416 add 10 77e-99 -> 10.00000000000000 Inexact Rounded - -addx6420 add 77e-14 1 -> 1.00000000000077 -addx6421 add 77e-15 1 -> 1.000000000000077 -addx6422 add 77e-16 1 -> 1.000000000000008 Inexact Rounded -addx6423 add 77e-17 1 -> 1.000000000000001 Inexact Rounded -addx6424 add 77e-18 1 -> 1.000000000000000 Inexact Rounded -addx6425 add 77e-19 1 -> 1.000000000000000 Inexact Rounded -addx6426 add 77e-99 1 -> 1.000000000000000 Inexact Rounded - -addx6430 add 77e-14 10 -> 10.00000000000077 -addx6431 add 77e-15 10 -> 10.00000000000008 Inexact Rounded -addx6432 add 77e-16 10 -> 10.00000000000001 Inexact Rounded -addx6433 add 77e-17 10 -> 10.00000000000000 Inexact Rounded -addx6434 add 77e-18 10 -> 10.00000000000000 Inexact Rounded -addx6435 add 77e-19 10 -> 10.00000000000000 Inexact Rounded -addx6436 add 77e-99 10 -> 10.00000000000000 Inexact Rounded - --- negative ulps -addx6440 add 1 -77e-14 -> 0.99999999999923 -addx6441 add 1 -77e-15 -> 0.999999999999923 -addx6442 add 1 -77e-16 -> 0.9999999999999923 -addx6443 add 1 -77e-17 -> 0.9999999999999992 Inexact Rounded -addx6444 add 1 -77e-18 -> 0.9999999999999999 Inexact Rounded -addx6445 add 1 -77e-19 -> 1.000000000000000 Inexact Rounded -addx6446 add 1 -77e-99 -> 1.000000000000000 Inexact Rounded - -addx6450 add 10 -77e-14 -> 9.99999999999923 -addx6451 add 10 -77e-15 -> 9.999999999999923 -addx6452 add 10 -77e-16 -> 9.999999999999992 Inexact Rounded -addx6453 add 10 -77e-17 -> 9.999999999999999 Inexact Rounded -addx6454 add 10 -77e-18 -> 10.00000000000000 Inexact Rounded -addx6455 add 10 -77e-19 -> 10.00000000000000 Inexact Rounded -addx6456 add 10 -77e-99 -> 10.00000000000000 Inexact Rounded - -addx6460 add -77e-14 1 -> 0.99999999999923 -addx6461 add -77e-15 1 -> 0.999999999999923 -addx6462 add -77e-16 1 -> 0.9999999999999923 -addx6463 add -77e-17 1 -> 0.9999999999999992 Inexact Rounded -addx6464 add -77e-18 1 -> 0.9999999999999999 Inexact Rounded -addx6465 add -77e-19 1 -> 1.000000000000000 Inexact Rounded -addx6466 add -77e-99 1 -> 1.000000000000000 Inexact Rounded - -addx6470 add -77e-14 10 -> 9.99999999999923 -addx6471 add -77e-15 10 -> 9.999999999999923 -addx6472 add -77e-16 10 -> 9.999999999999992 Inexact Rounded -addx6473 add -77e-17 10 -> 9.999999999999999 Inexact Rounded -addx6474 add -77e-18 10 -> 10.00000000000000 Inexact Rounded -addx6475 add -77e-19 10 -> 10.00000000000000 Inexact Rounded -addx6476 add -77e-99 10 -> 10.00000000000000 Inexact Rounded - --- negative ulps -addx6480 add -1 77e-14 -> -0.99999999999923 -addx6481 add -1 77e-15 -> -0.999999999999923 -addx6482 add -1 77e-16 -> -0.9999999999999923 -addx6483 add -1 77e-17 -> -0.9999999999999992 Inexact Rounded -addx6484 add -1 77e-18 -> -0.9999999999999999 Inexact Rounded -addx6485 add -1 77e-19 -> -1.000000000000000 Inexact Rounded -addx6486 add -1 77e-99 -> -1.000000000000000 Inexact Rounded - -addx6490 add -10 77e-14 -> -9.99999999999923 -addx6491 add -10 77e-15 -> -9.999999999999923 -addx6492 add -10 77e-16 -> -9.999999999999992 Inexact Rounded -addx6493 add -10 77e-17 -> -9.999999999999999 Inexact Rounded -addx6494 add -10 77e-18 -> -10.00000000000000 Inexact Rounded -addx6495 add -10 77e-19 -> -10.00000000000000 Inexact Rounded -addx6496 add -10 77e-99 -> -10.00000000000000 Inexact Rounded - -addx6500 add 77e-14 -1 -> -0.99999999999923 -addx6501 add 77e-15 -1 -> -0.999999999999923 -addx6502 add 77e-16 -1 -> -0.9999999999999923 -addx6503 add 77e-17 -1 -> -0.9999999999999992 Inexact Rounded -addx6504 add 77e-18 -1 -> -0.9999999999999999 Inexact Rounded -addx6505 add 77e-19 -1 -> -1.000000000000000 Inexact Rounded -addx6506 add 77e-99 -1 -> -1.000000000000000 Inexact Rounded - -addx6510 add 77e-14 -10 -> -9.99999999999923 -addx6511 add 77e-15 -10 -> -9.999999999999923 -addx6512 add 77e-16 -10 -> -9.999999999999992 Inexact Rounded -addx6513 add 77e-17 -10 -> -9.999999999999999 Inexact Rounded -addx6514 add 77e-18 -10 -> -10.00000000000000 Inexact Rounded -addx6515 add 77e-19 -10 -> -10.00000000000000 Inexact Rounded -addx6516 add 77e-99 -10 -> -10.00000000000000 Inexact Rounded - - --- long operands -addx6521 add 101234562345678000 0 -> 1.012345623456780E+17 Rounded -addx6522 add 0 101234562345678000 -> 1.012345623456780E+17 Rounded -addx6523 add 10123456234567800 0 -> 1.012345623456780E+16 Rounded -addx6524 add 0 10123456234567800 -> 1.012345623456780E+16 Rounded -addx6525 add 10123456234567890 0 -> 1.012345623456789E+16 Rounded -addx6526 add 0 10123456234567890 -> 1.012345623456789E+16 Rounded -addx6527 add 10123456234567891 0 -> 1.012345623456789E+16 Inexact Rounded -addx6528 add 0 10123456234567891 -> 1.012345623456789E+16 Inexact Rounded -addx6529 add 101234562345678901 0 -> 1.012345623456789E+17 Inexact Rounded -addx6530 add 0 101234562345678901 -> 1.012345623456789E+17 Inexact Rounded -addx6531 add 10123456234567896 0 -> 1.012345623456790E+16 Inexact Rounded -addx6532 add 0 10123456234567896 -> 1.012345623456790E+16 Inexact Rounded - --- verify a query -rounding: down -addx6561 add 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded -addx6562 add 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded --- and using decimal64 bounds... -rounding: down -addx6563 add 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded -addx6564 add 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded - --- more zeros, etc. -rounding: half_even - -addx6701 add 5.00 1.00E-3 -> 5.00100 -addx6702 add 00.00 0.000 -> 0.000 -addx6703 add 00.00 0E-3 -> 0.000 -addx6704 add 0E-3 00.00 -> 0.000 - -addx6710 add 0E+3 00.00 -> 0.00 -addx6711 add 0E+3 00.0 -> 0.0 -addx6712 add 0E+3 00. -> 0 -addx6713 add 0E+3 00.E+1 -> 0E+1 -addx6714 add 0E+3 00.E+2 -> 0E+2 -addx6715 add 0E+3 00.E+3 -> 0E+3 -addx6716 add 0E+3 00.E+4 -> 0E+3 -addx6717 add 0E+3 00.E+5 -> 0E+3 -addx6718 add 0E+3 -00.0 -> 0.0 -addx6719 add 0E+3 -00. -> 0 -addx6731 add 0E+3 -00.E+1 -> 0E+1 - -addx6720 add 00.00 0E+3 -> 0.00 -addx6721 add 00.0 0E+3 -> 0.0 -addx6722 add 00. 0E+3 -> 0 -addx6723 add 00.E+1 0E+3 -> 0E+1 -addx6724 add 00.E+2 0E+3 -> 0E+2 -addx6725 add 00.E+3 0E+3 -> 0E+3 -addx6726 add 00.E+4 0E+3 -> 0E+3 -addx6727 add 00.E+5 0E+3 -> 0E+3 -addx6728 add -00.00 0E+3 -> 0.00 -addx6729 add -00.0 0E+3 -> 0.0 -addx6730 add -00. 0E+3 -> 0 - -addx6732 add 0 0 -> 0 -addx6733 add 0 -0 -> 0 -addx6734 add -0 0 -> 0 -addx6735 add -0 -0 -> -0 -- IEEE 854 special case - -addx6736 add 1 -1 -> 0 -addx6737 add -1 -1 -> -2 -addx6738 add 1 1 -> 2 -addx6739 add -1 1 -> 0 - -addx6741 add 0 -1 -> -1 -addx6742 add -0 -1 -> -1 -addx6743 add 0 1 -> 1 -addx6744 add -0 1 -> 1 -addx6745 add -1 0 -> -1 -addx6746 add -1 -0 -> -1 -addx6747 add 1 0 -> 1 -addx6748 add 1 -0 -> 1 - -addx6751 add 0.0 -1 -> -1.0 -addx6752 add -0.0 -1 -> -1.0 -addx6753 add 0.0 1 -> 1.0 -addx6754 add -0.0 1 -> 1.0 -addx6755 add -1.0 0 -> -1.0 -addx6756 add -1.0 -0 -> -1.0 -addx6757 add 1.0 0 -> 1.0 -addx6758 add 1.0 -0 -> 1.0 - -addx6761 add 0 -1.0 -> -1.0 -addx6762 add -0 -1.0 -> -1.0 -addx6763 add 0 1.0 -> 1.0 -addx6764 add -0 1.0 -> 1.0 -addx6765 add -1 0.0 -> -1.0 -addx6766 add -1 -0.0 -> -1.0 -addx6767 add 1 0.0 -> 1.0 -addx6768 add 1 -0.0 -> 1.0 - -addx6771 add 0.0 -1.0 -> -1.0 -addx6772 add -0.0 -1.0 -> -1.0 -addx6773 add 0.0 1.0 -> 1.0 -addx6774 add -0.0 1.0 -> 1.0 -addx6775 add -1.0 0.0 -> -1.0 -addx6776 add -1.0 -0.0 -> -1.0 -addx6777 add 1.0 0.0 -> 1.0 -addx6778 add 1.0 -0.0 -> 1.0 - --- Specials -addx6780 add -Inf -Inf -> -Infinity -addx6781 add -Inf -1000 -> -Infinity -addx6782 add -Inf -1 -> -Infinity -addx6783 add -Inf -0 -> -Infinity -addx6784 add -Inf 0 -> -Infinity -addx6785 add -Inf 1 -> -Infinity -addx6786 add -Inf 1000 -> -Infinity -addx6787 add -1000 -Inf -> -Infinity -addx6788 add -Inf -Inf -> -Infinity -addx6789 add -1 -Inf -> -Infinity -addx6790 add -0 -Inf -> -Infinity -addx6791 add 0 -Inf -> -Infinity -addx6792 add 1 -Inf -> -Infinity -addx6793 add 1000 -Inf -> -Infinity -addx6794 add Inf -Inf -> NaN Invalid_operation - -addx6800 add Inf -Inf -> NaN Invalid_operation -addx6801 add Inf -1000 -> Infinity -addx6802 add Inf -1 -> Infinity -addx6803 add Inf -0 -> Infinity -addx6804 add Inf 0 -> Infinity -addx6805 add Inf 1 -> Infinity -addx6806 add Inf 1000 -> Infinity -addx6807 add Inf Inf -> Infinity -addx6808 add -1000 Inf -> Infinity -addx6809 add -Inf Inf -> NaN Invalid_operation -addx6810 add -1 Inf -> Infinity -addx6811 add -0 Inf -> Infinity -addx6812 add 0 Inf -> Infinity -addx6813 add 1 Inf -> Infinity -addx6814 add 1000 Inf -> Infinity -addx6815 add Inf Inf -> Infinity - -addx6821 add NaN -Inf -> NaN -addx6822 add NaN -1000 -> NaN -addx6823 add NaN -1 -> NaN -addx6824 add NaN -0 -> NaN -addx6825 add NaN 0 -> NaN -addx6826 add NaN 1 -> NaN -addx6827 add NaN 1000 -> NaN -addx6828 add NaN Inf -> NaN -addx6829 add NaN NaN -> NaN -addx6830 add -Inf NaN -> NaN -addx6831 add -1000 NaN -> NaN -addx6832 add -1 NaN -> NaN -addx6833 add -0 NaN -> NaN -addx6834 add 0 NaN -> NaN -addx6835 add 1 NaN -> NaN -addx6836 add 1000 NaN -> NaN -addx6837 add Inf NaN -> NaN - -addx6841 add sNaN -Inf -> NaN Invalid_operation -addx6842 add sNaN -1000 -> NaN Invalid_operation -addx6843 add sNaN -1 -> NaN Invalid_operation -addx6844 add sNaN -0 -> NaN Invalid_operation -addx6845 add sNaN 0 -> NaN Invalid_operation -addx6846 add sNaN 1 -> NaN Invalid_operation -addx6847 add sNaN 1000 -> NaN Invalid_operation -addx6848 add sNaN NaN -> NaN Invalid_operation -addx6849 add sNaN sNaN -> NaN Invalid_operation -addx6850 add NaN sNaN -> NaN Invalid_operation -addx6851 add -Inf sNaN -> NaN Invalid_operation -addx6852 add -1000 sNaN -> NaN Invalid_operation -addx6853 add -1 sNaN -> NaN Invalid_operation -addx6854 add -0 sNaN -> NaN Invalid_operation -addx6855 add 0 sNaN -> NaN Invalid_operation -addx6856 add 1 sNaN -> NaN Invalid_operation -addx6857 add 1000 sNaN -> NaN Invalid_operation -addx6858 add Inf sNaN -> NaN Invalid_operation -addx6859 add NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -addx6861 add NaN1 -Inf -> NaN1 -addx6862 add +NaN2 -1000 -> NaN2 -addx6863 add NaN3 1000 -> NaN3 -addx6864 add NaN4 Inf -> NaN4 -addx6865 add NaN5 +NaN6 -> NaN5 -addx6866 add -Inf NaN7 -> NaN7 -addx6867 add -1000 NaN8 -> NaN8 -addx6868 add 1000 NaN9 -> NaN9 -addx6869 add Inf +NaN10 -> NaN10 -addx6871 add sNaN11 -Inf -> NaN11 Invalid_operation -addx6872 add sNaN12 -1000 -> NaN12 Invalid_operation -addx6873 add sNaN13 1000 -> NaN13 Invalid_operation -addx6874 add sNaN14 NaN17 -> NaN14 Invalid_operation -addx6875 add sNaN15 sNaN18 -> NaN15 Invalid_operation -addx6876 add NaN16 sNaN19 -> NaN19 Invalid_operation -addx6877 add -Inf +sNaN20 -> NaN20 Invalid_operation -addx6878 add -1000 sNaN21 -> NaN21 Invalid_operation -addx6879 add 1000 sNaN22 -> NaN22 Invalid_operation -addx6880 add Inf sNaN23 -> NaN23 Invalid_operation -addx6881 add +NaN25 +sNaN24 -> NaN24 Invalid_operation -addx6882 add -NaN26 NaN28 -> -NaN26 -addx6883 add -sNaN27 sNaN29 -> -NaN27 Invalid_operation -addx6884 add 1000 -NaN30 -> -NaN30 -addx6885 add 1000 -sNaN31 -> -NaN31 Invalid_operation - --- now the case where we can get underflow but the result is normal --- [note this can't happen if the operands are also bounded, as we --- cannot represent 1E-399, for example] - -addx6571 add 1E-383 0 -> 1E-383 -addx6572 add 1E-384 0 -> 1E-384 Subnormal -addx6573 add 1E-383 1E-384 -> 1.1E-383 -addx6574 subtract 1E-383 1E-384 -> 9E-384 Subnormal - --- Here we explore the boundary of rounding a subnormal to Nmin -addx6575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -addx6576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -addx6577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -addx6578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -addx6579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -addx6580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded - --- check overflow edge case --- 1234567890123456 -addx6972 apply 9.999999999999999E+384 -> 9.999999999999999E+384 -addx6973 add 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded -addx6974 add 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded -addx6975 add 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded -addx6976 add 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded -addx6977 add 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded -addx6978 add 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded -addx6979 add 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded -addx6980 add 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded -addx6981 add 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded -addx6982 add 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded -addx6983 add 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded -addx6984 add 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded - -addx6985 apply -9.999999999999999E+384 -> -9.999999999999999E+384 -addx6986 add -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded -addx6987 add -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded -addx6988 add -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded -addx6989 add -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded -addx6990 add -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded -addx6991 add -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded -addx6992 add -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded -addx6993 add -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded -addx6994 add -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded -addx6995 add -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded -addx6996 add -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded -addx6997 add -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded - --- And for round down full and subnormal results -rounding: down -addx61100 add 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact -addx61101 add 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact -addx61103 add +1 -1e-383 -> 0.9999999999999999 Rounded Inexact -addx61104 add 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact -addx61105 add 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact -addx61106 add 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact -addx61107 add 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact -addx61108 add 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact -addx61109 add 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact - -rounding: ceiling -addx61110 add -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact -addx61111 add -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact -addx61113 add -1 +1e-383 -> -0.9999999999999999 Rounded Inexact -addx61114 add -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact -addx61115 add -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact -addx61116 add -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact -addx61117 add -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact -addx61118 add -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact -addx61119 add -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact - --- tests based on Gunnar Degnbol's edge case -rounding: half_even - -addx61300 add 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded -addx61310 add 1E16 -0.51 -> 9999999999999999 Inexact Rounded -addx61311 add 1E16 -0.501 -> 9999999999999999 Inexact Rounded -addx61312 add 1E16 -0.5001 -> 9999999999999999 Inexact Rounded -addx61313 add 1E16 -0.50001 -> 9999999999999999 Inexact Rounded -addx61314 add 1E16 -0.500001 -> 9999999999999999 Inexact Rounded -addx61315 add 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded -addx61316 add 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded -addx61317 add 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded -addx61318 add 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded -addx61319 add 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded -addx61320 add 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded -addx61321 add 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded -addx61322 add 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded -addx61323 add 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded -addx61324 add 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded -addx61325 add 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61326 add 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61327 add 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61328 add 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61329 add 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61330 add 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61331 add 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61332 add 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded -addx61333 add 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded -addx61334 add 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded -addx61335 add 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded -addx61336 add 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded -addx61337 add 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded -addx61338 add 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded -addx61339 add 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded - -addx61340 add 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded -addx61341 add 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded - -addx61349 add 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded -addx61350 add 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded -addx61351 add 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded -addx61352 add 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded -addx61353 add 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded -addx61354 add 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded -addx61355 add 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded -addx61356 add 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded -addx61357 add 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded -addx61358 add 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded -addx61359 add 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded -addx61360 add 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded -addx61361 add 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded -addx61362 add 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded -addx61363 add 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded -addx61364 add 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded -addx61365 add 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61367 add 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61368 add 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61369 add 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61370 add 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61371 add 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61372 add 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -addx61373 add 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded -addx61374 add 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded -addx61375 add 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded -addx61376 add 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded -addx61377 add 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded -addx61378 add 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded -addx61379 add 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded -addx61380 add 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded -addx61381 add 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded -addx61382 add 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx61383 add 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx61384 add 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx61385 add 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded -addx61386 add 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded -addx61387 add 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded -addx61388 add 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded -addx61389 add 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded -addx61390 add 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded -addx61391 add 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded -addx61392 add 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded -addx61393 add 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded -addx61394 add 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded -addx61395 add 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded -addx61396 add 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -addx61420 add 0 1.123456789012345 -> 1.123456789012345 -addx61421 add 0 1.123456789012345E-1 -> 0.1123456789012345 -addx61422 add 0 1.123456789012345E-2 -> 0.01123456789012345 -addx61423 add 0 1.123456789012345E-3 -> 0.001123456789012345 -addx61424 add 0 1.123456789012345E-4 -> 0.0001123456789012345 -addx61425 add 0 1.123456789012345E-5 -> 0.00001123456789012345 -addx61426 add 0 1.123456789012345E-6 -> 0.000001123456789012345 -addx61427 add 0 1.123456789012345E-7 -> 1.123456789012345E-7 -addx61428 add 0 1.123456789012345E-8 -> 1.123456789012345E-8 -addx61429 add 0 1.123456789012345E-9 -> 1.123456789012345E-9 -addx61430 add 0 1.123456789012345E-10 -> 1.123456789012345E-10 -addx61431 add 0 1.123456789012345E-11 -> 1.123456789012345E-11 -addx61432 add 0 1.123456789012345E-12 -> 1.123456789012345E-12 -addx61433 add 0 1.123456789012345E-13 -> 1.123456789012345E-13 -addx61434 add 0 1.123456789012345E-14 -> 1.123456789012345E-14 -addx61435 add 0 1.123456789012345E-15 -> 1.123456789012345E-15 -addx61436 add 0 1.123456789012345E-16 -> 1.123456789012345E-16 -addx61437 add 0 1.123456789012345E-17 -> 1.123456789012345E-17 -addx61438 add 0 1.123456789012345E-18 -> 1.123456789012345E-18 -addx61439 add 0 1.123456789012345E-19 -> 1.123456789012345E-19 - --- same, reversed 0 -addx61440 add 1.123456789012345 0 -> 1.123456789012345 -addx61441 add 1.123456789012345E-1 0 -> 0.1123456789012345 -addx61442 add 1.123456789012345E-2 0 -> 0.01123456789012345 -addx61443 add 1.123456789012345E-3 0 -> 0.001123456789012345 -addx61444 add 1.123456789012345E-4 0 -> 0.0001123456789012345 -addx61445 add 1.123456789012345E-5 0 -> 0.00001123456789012345 -addx61446 add 1.123456789012345E-6 0 -> 0.000001123456789012345 -addx61447 add 1.123456789012345E-7 0 -> 1.123456789012345E-7 -addx61448 add 1.123456789012345E-8 0 -> 1.123456789012345E-8 -addx61449 add 1.123456789012345E-9 0 -> 1.123456789012345E-9 -addx61450 add 1.123456789012345E-10 0 -> 1.123456789012345E-10 -addx61451 add 1.123456789012345E-11 0 -> 1.123456789012345E-11 -addx61452 add 1.123456789012345E-12 0 -> 1.123456789012345E-12 -addx61453 add 1.123456789012345E-13 0 -> 1.123456789012345E-13 -addx61454 add 1.123456789012345E-14 0 -> 1.123456789012345E-14 -addx61455 add 1.123456789012345E-15 0 -> 1.123456789012345E-15 -addx61456 add 1.123456789012345E-16 0 -> 1.123456789012345E-16 -addx61457 add 1.123456789012345E-17 0 -> 1.123456789012345E-17 -addx61458 add 1.123456789012345E-18 0 -> 1.123456789012345E-18 -addx61459 add 1.123456789012345E-19 0 -> 1.123456789012345E-19 - --- same, Es on the 0 -addx61460 add 1.123456789012345 0E-0 -> 1.123456789012345 -addx61461 add 1.123456789012345 0E-1 -> 1.123456789012345 -addx61462 add 1.123456789012345 0E-2 -> 1.123456789012345 -addx61463 add 1.123456789012345 0E-3 -> 1.123456789012345 -addx61464 add 1.123456789012345 0E-4 -> 1.123456789012345 -addx61465 add 1.123456789012345 0E-5 -> 1.123456789012345 -addx61466 add 1.123456789012345 0E-6 -> 1.123456789012345 -addx61467 add 1.123456789012345 0E-7 -> 1.123456789012345 -addx61468 add 1.123456789012345 0E-8 -> 1.123456789012345 -addx61469 add 1.123456789012345 0E-9 -> 1.123456789012345 -addx61470 add 1.123456789012345 0E-10 -> 1.123456789012345 -addx61471 add 1.123456789012345 0E-11 -> 1.123456789012345 -addx61472 add 1.123456789012345 0E-12 -> 1.123456789012345 -addx61473 add 1.123456789012345 0E-13 -> 1.123456789012345 -addx61474 add 1.123456789012345 0E-14 -> 1.123456789012345 -addx61475 add 1.123456789012345 0E-15 -> 1.123456789012345 --- next four flag Rounded because the 0 extends the result -addx61476 add 1.123456789012345 0E-16 -> 1.123456789012345 Rounded -addx61477 add 1.123456789012345 0E-17 -> 1.123456789012345 Rounded -addx61478 add 1.123456789012345 0E-18 -> 1.123456789012345 Rounded -addx61479 add 1.123456789012345 0E-19 -> 1.123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -rounding: half_up --- exact zeros from zeros -addx61500 add 0 0E-19 -> 0E-19 -addx61501 add -0 0E-19 -> 0E-19 -addx61502 add 0 -0E-19 -> 0E-19 -addx61503 add -0 -0E-19 -> -0E-19 -addx61504 add 0E-400 0E-19 -> 0E-398 Clamped -addx61505 add -0E-400 0E-19 -> 0E-398 Clamped -addx61506 add 0E-400 -0E-19 -> 0E-398 Clamped -addx61507 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx61511 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61512 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61513 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61514 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx61515 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61516 add -1E-401 1E-401 -> 0E-398 Clamped -addx61517 add 1E-401 -1E-401 -> 0E-398 Clamped -addx61518 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_down --- exact zeros from zeros -addx61520 add 0 0E-19 -> 0E-19 -addx61521 add -0 0E-19 -> 0E-19 -addx61522 add 0 -0E-19 -> 0E-19 -addx61523 add -0 -0E-19 -> -0E-19 -addx61524 add 0E-400 0E-19 -> 0E-398 Clamped -addx61525 add -0E-400 0E-19 -> 0E-398 Clamped -addx61526 add 0E-400 -0E-19 -> 0E-398 Clamped -addx61527 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx61531 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61532 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61533 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61534 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx61535 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61536 add -1E-401 1E-401 -> 0E-398 Clamped -addx61537 add 1E-401 -1E-401 -> 0E-398 Clamped -addx61538 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_even --- exact zeros from zeros -addx61540 add 0 0E-19 -> 0E-19 -addx61541 add -0 0E-19 -> 0E-19 -addx61542 add 0 -0E-19 -> 0E-19 -addx61543 add -0 -0E-19 -> -0E-19 -addx61544 add 0E-400 0E-19 -> 0E-398 Clamped -addx61545 add -0E-400 0E-19 -> 0E-398 Clamped -addx61546 add 0E-400 -0E-19 -> 0E-398 Clamped -addx61547 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx61551 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61552 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61553 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61554 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx61555 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61556 add -1E-401 1E-401 -> 0E-398 Clamped -addx61557 add 1E-401 -1E-401 -> 0E-398 Clamped -addx61558 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: up --- exact zeros from zeros -addx61560 add 0 0E-19 -> 0E-19 -addx61561 add -0 0E-19 -> 0E-19 -addx61562 add 0 -0E-19 -> 0E-19 -addx61563 add -0 -0E-19 -> -0E-19 -addx61564 add 0E-400 0E-19 -> 0E-398 Clamped -addx61565 add -0E-400 0E-19 -> 0E-398 Clamped -addx61566 add 0E-400 -0E-19 -> 0E-398 Clamped -addx61567 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx61571 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx61572 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx61573 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -addx61574 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -addx61575 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -addx61576 add -1E-401 1E-401 -> 0E-398 Clamped -addx61577 add 1E-401 -1E-401 -> 0E-398 Clamped -addx61578 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - -rounding: down --- exact zeros from zeros -addx61580 add 0 0E-19 -> 0E-19 -addx61581 add -0 0E-19 -> 0E-19 -addx61582 add 0 -0E-19 -> 0E-19 -addx61583 add -0 -0E-19 -> -0E-19 -addx61584 add 0E-400 0E-19 -> 0E-398 Clamped -addx61585 add -0E-400 0E-19 -> 0E-398 Clamped -addx61586 add 0E-400 -0E-19 -> 0E-398 Clamped -addx61587 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx61591 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61592 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61593 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61594 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx61595 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61596 add -1E-401 1E-401 -> 0E-398 Clamped -addx61597 add 1E-401 -1E-401 -> 0E-398 Clamped -addx61598 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: ceiling --- exact zeros from zeros -addx61600 add 0 0E-19 -> 0E-19 -addx61601 add -0 0E-19 -> 0E-19 -addx61602 add 0 -0E-19 -> 0E-19 -addx61603 add -0 -0E-19 -> -0E-19 -addx61604 add 0E-400 0E-19 -> 0E-398 Clamped -addx61605 add -0E-400 0E-19 -> 0E-398 Clamped -addx61606 add 0E-400 -0E-19 -> 0E-398 Clamped -addx61607 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx61611 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx61612 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -addx61613 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61614 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -addx61615 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -addx61616 add -1E-401 1E-401 -> 0E-398 Clamped -addx61617 add 1E-401 -1E-401 -> 0E-398 Clamped -addx61618 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -addx61620 add 0 0E-19 -> 0E-19 -addx61621 add -0 0E-19 -> -0E-19 -- * -addx61622 add 0 -0E-19 -> -0E-19 -- * -addx61623 add -0 -0E-19 -> -0E-19 -addx61624 add 0E-400 0E-19 -> 0E-398 Clamped -addx61625 add -0E-400 0E-19 -> -0E-398 Clamped -- * -addx61626 add 0E-400 -0E-19 -> -0E-398 Clamped -- * -addx61627 add -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -addx61631 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61632 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61633 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -addx61634 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -addx61635 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -addx61636 add -1E-401 1E-401 -> -0E-398 Clamped -- * -addx61637 add 1E-401 -1E-401 -> -0E-398 Clamped -- * -addx61638 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - --- Examples from SQL proposal (Krishna Kulkarni) -addx61701 add 130E-2 120E-2 -> 2.50 -addx61702 add 130E-2 12E-1 -> 2.50 -addx61703 add 130E-2 1E0 -> 2.30 -addx61704 add 1E2 1E4 -> 1.01E+4 -addx61705 subtract 130E-2 120E-2 -> 0.10 -addx61706 subtract 130E-2 12E-1 -> 0.10 -addx61707 subtract 130E-2 1E0 -> 0.30 -addx61708 subtract 1E2 1E4 -> -9.9E+3 - --- Gappy coefficients; check residue handling even with full coefficient gap -rounding: half_even - -addx62001 add 1234567890123456 1 -> 1234567890123457 -addx62002 add 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded -addx62003 add 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded -addx62004 add 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded -addx62005 add 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded -addx62006 add 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded -addx62007 add 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded -addx62008 add 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded -addx62009 add 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded -addx62010 add 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded -addx62011 add 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded -addx62012 add 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded -addx62013 add 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded -addx62014 add 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded -addx62015 add 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded -addx62016 add 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded -addx62017 add 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded -addx62018 add 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded -addx62019 add 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded -addx62020 add 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded -addx62021 add 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded - --- widening second argument at gap -addx62030 add 12345678 1 -> 12345679 -addx62031 add 12345678 0.1 -> 12345678.1 -addx62032 add 12345678 0.12 -> 12345678.12 -addx62033 add 12345678 0.123 -> 12345678.123 -addx62034 add 12345678 0.1234 -> 12345678.1234 -addx62035 add 12345678 0.12345 -> 12345678.12345 -addx62036 add 12345678 0.123456 -> 12345678.123456 -addx62037 add 12345678 0.1234567 -> 12345678.1234567 -addx62038 add 12345678 0.12345678 -> 12345678.12345678 -addx62039 add 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded -addx62040 add 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded -addx62041 add 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded -addx62042 add 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded -addx62043 add 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded -addx62044 add 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded -addx62045 add 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded -addx62046 add 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded -addx62047 add 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded -addx62048 add 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded -addx62049 add 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded --- 90123456 -rounding: half_even -addx62050 add 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded -addx62051 add 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded -addx62052 add 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded -addx62053 add 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded -addx62054 add 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded -addx62055 add 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded -addx62056 add 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded -addx62057 add 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded -addx62060 add 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded -addx62061 add 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded -addx62062 add 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded -addx62063 add 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded -addx62064 add 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded -addx62065 add 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded -addx62066 add 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded -addx62067 add 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded --- far-out residues (full coefficient gap is 16+15 digits) -rounding: up -addx62070 add 12345678 1E-8 -> 12345678.00000001 -addx62071 add 12345678 1E-9 -> 12345678.00000001 Inexact Rounded -addx62072 add 12345678 1E-10 -> 12345678.00000001 Inexact Rounded -addx62073 add 12345678 1E-11 -> 12345678.00000001 Inexact Rounded -addx62074 add 12345678 1E-12 -> 12345678.00000001 Inexact Rounded -addx62075 add 12345678 1E-13 -> 12345678.00000001 Inexact Rounded -addx62076 add 12345678 1E-14 -> 12345678.00000001 Inexact Rounded -addx62077 add 12345678 1E-15 -> 12345678.00000001 Inexact Rounded -addx62078 add 12345678 1E-16 -> 12345678.00000001 Inexact Rounded -addx62079 add 12345678 1E-17 -> 12345678.00000001 Inexact Rounded -addx62080 add 12345678 1E-18 -> 12345678.00000001 Inexact Rounded -addx62081 add 12345678 1E-19 -> 12345678.00000001 Inexact Rounded -addx62082 add 12345678 1E-20 -> 12345678.00000001 Inexact Rounded -addx62083 add 12345678 1E-25 -> 12345678.00000001 Inexact Rounded -addx62084 add 12345678 1E-30 -> 12345678.00000001 Inexact Rounded -addx62085 add 12345678 1E-31 -> 12345678.00000001 Inexact Rounded -addx62086 add 12345678 1E-32 -> 12345678.00000001 Inexact Rounded -addx62087 add 12345678 1E-33 -> 12345678.00000001 Inexact Rounded -addx62088 add 12345678 1E-34 -> 12345678.00000001 Inexact Rounded -addx62089 add 12345678 1E-35 -> 12345678.00000001 Inexact Rounded - --- payload decapitate -precision: 5 -addx62100 add 11 sNaN123456789 -> NaN56789 Invalid_operation -addx62101 add -11 -sNaN123456789 -> -NaN56789 Invalid_operation -addx62102 add 11 NaN123456789 -> NaN56789 -addx62103 add -11 -NaN123456789 -> -NaN56789 - --- Null tests -addx9990 add 10 # -> NaN Invalid_operation -addx9991 add # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/and.decTest b/qdecimal/test/tc_full/and.decTest deleted file mode 100644 index cca71ad..0000000 --- a/qdecimal/test/tc_full/and.decTest +++ /dev/null @@ -1,338 +0,0 @@ ------------------------------------------------------------------------- --- and.decTest -- digitwise logical AND -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check (truth table) -andx001 and 0 0 -> 0 -andx002 and 0 1 -> 0 -andx003 and 1 0 -> 0 -andx004 and 1 1 -> 1 -andx005 and 1100 1010 -> 1000 -andx006 and 1111 10 -> 10 -andx007 and 1111 1010 -> 1010 - --- and at msd and msd-1 -andx010 and 000000000 000000000 -> 0 -andx011 and 000000000 100000000 -> 0 -andx012 and 100000000 000000000 -> 0 -andx013 and 100000000 100000000 -> 100000000 -andx014 and 000000000 000000000 -> 0 -andx015 and 000000000 010000000 -> 0 -andx016 and 010000000 000000000 -> 0 -andx017 and 010000000 010000000 -> 10000000 - --- Various lengths --- 123456789 123456789 123456789 -andx021 and 111111111 111111111 -> 111111111 -andx022 and 111111111111 111111111 -> 111111111 -andx023 and 111111111111 11111111 -> 11111111 -andx024 and 111111111 11111111 -> 11111111 -andx025 and 111111111 1111111 -> 1111111 -andx026 and 111111111111 111111 -> 111111 -andx027 and 111111111111 11111 -> 11111 -andx028 and 111111111111 1111 -> 1111 -andx029 and 111111111111 111 -> 111 -andx031 and 111111111111 11 -> 11 -andx032 and 111111111111 1 -> 1 -andx033 and 111111111111 1111111111 -> 111111111 -andx034 and 11111111111 11111111111 -> 111111111 -andx035 and 1111111111 111111111111 -> 111111111 -andx036 and 111111111 1111111111111 -> 111111111 - -andx040 and 111111111 111111111111 -> 111111111 -andx041 and 11111111 111111111111 -> 11111111 -andx042 and 11111111 111111111 -> 11111111 -andx043 and 1111111 111111111 -> 1111111 -andx044 and 111111 111111111 -> 111111 -andx045 and 11111 111111111 -> 11111 -andx046 and 1111 111111111 -> 1111 -andx047 and 111 111111111 -> 111 -andx048 and 11 111111111 -> 11 -andx049 and 1 111111111 -> 1 - -andx050 and 1111111111 1 -> 1 -andx051 and 111111111 1 -> 1 -andx052 and 11111111 1 -> 1 -andx053 and 1111111 1 -> 1 -andx054 and 111111 1 -> 1 -andx055 and 11111 1 -> 1 -andx056 and 1111 1 -> 1 -andx057 and 111 1 -> 1 -andx058 and 11 1 -> 1 -andx059 and 1 1 -> 1 - -andx060 and 1111111111 0 -> 0 -andx061 and 111111111 0 -> 0 -andx062 and 11111111 0 -> 0 -andx063 and 1111111 0 -> 0 -andx064 and 111111 0 -> 0 -andx065 and 11111 0 -> 0 -andx066 and 1111 0 -> 0 -andx067 and 111 0 -> 0 -andx068 and 11 0 -> 0 -andx069 and 1 0 -> 0 - -andx070 and 1 1111111111 -> 1 -andx071 and 1 111111111 -> 1 -andx072 and 1 11111111 -> 1 -andx073 and 1 1111111 -> 1 -andx074 and 1 111111 -> 1 -andx075 and 1 11111 -> 1 -andx076 and 1 1111 -> 1 -andx077 and 1 111 -> 1 -andx078 and 1 11 -> 1 -andx079 and 1 1 -> 1 - -andx080 and 0 1111111111 -> 0 -andx081 and 0 111111111 -> 0 -andx082 and 0 11111111 -> 0 -andx083 and 0 1111111 -> 0 -andx084 and 0 111111 -> 0 -andx085 and 0 11111 -> 0 -andx086 and 0 1111 -> 0 -andx087 and 0 111 -> 0 -andx088 and 0 11 -> 0 -andx089 and 0 1 -> 0 - -andx090 and 011111111 111111111 -> 11111111 -andx091 and 101111111 111111111 -> 101111111 -andx092 and 110111111 111111111 -> 110111111 -andx093 and 111011111 111111111 -> 111011111 -andx094 and 111101111 111111111 -> 111101111 -andx095 and 111110111 111111111 -> 111110111 -andx096 and 111111011 111111111 -> 111111011 -andx097 and 111111101 111111111 -> 111111101 -andx098 and 111111110 111111111 -> 111111110 - -andx100 and 111111111 011111111 -> 11111111 -andx101 and 111111111 101111111 -> 101111111 -andx102 and 111111111 110111111 -> 110111111 -andx103 and 111111111 111011111 -> 111011111 -andx104 and 111111111 111101111 -> 111101111 -andx105 and 111111111 111110111 -> 111110111 -andx106 and 111111111 111111011 -> 111111011 -andx107 and 111111111 111111101 -> 111111101 -andx108 and 111111111 111111110 -> 111111110 - --- non-0/1 should not be accepted, nor should signs -andx220 and 111111112 111111111 -> NaN Invalid_operation -andx221 and 333333333 333333333 -> NaN Invalid_operation -andx222 and 555555555 555555555 -> NaN Invalid_operation -andx223 and 777777777 777777777 -> NaN Invalid_operation -andx224 and 999999999 999999999 -> NaN Invalid_operation -andx225 and 222222222 999999999 -> NaN Invalid_operation -andx226 and 444444444 999999999 -> NaN Invalid_operation -andx227 and 666666666 999999999 -> NaN Invalid_operation -andx228 and 888888888 999999999 -> NaN Invalid_operation -andx229 and 999999999 222222222 -> NaN Invalid_operation -andx230 and 999999999 444444444 -> NaN Invalid_operation -andx231 and 999999999 666666666 -> NaN Invalid_operation -andx232 and 999999999 888888888 -> NaN Invalid_operation --- a few randoms -andx240 and 567468689 -934981942 -> NaN Invalid_operation -andx241 and 567367689 934981942 -> NaN Invalid_operation -andx242 and -631917772 -706014634 -> NaN Invalid_operation -andx243 and -756253257 138579234 -> NaN Invalid_operation -andx244 and 835590149 567435400 -> NaN Invalid_operation --- test MSD -andx250 and 200000000 100000000 -> NaN Invalid_operation -andx251 and 700000000 100000000 -> NaN Invalid_operation -andx252 and 800000000 100000000 -> NaN Invalid_operation -andx253 and 900000000 100000000 -> NaN Invalid_operation -andx254 and 200000000 000000000 -> NaN Invalid_operation -andx255 and 700000000 000000000 -> NaN Invalid_operation -andx256 and 800000000 000000000 -> NaN Invalid_operation -andx257 and 900000000 000000000 -> NaN Invalid_operation -andx258 and 100000000 200000000 -> NaN Invalid_operation -andx259 and 100000000 700000000 -> NaN Invalid_operation -andx260 and 100000000 800000000 -> NaN Invalid_operation -andx261 and 100000000 900000000 -> NaN Invalid_operation -andx262 and 000000000 200000000 -> NaN Invalid_operation -andx263 and 000000000 700000000 -> NaN Invalid_operation -andx264 and 000000000 800000000 -> NaN Invalid_operation -andx265 and 000000000 900000000 -> NaN Invalid_operation --- test MSD-1 -andx270 and 020000000 100000000 -> NaN Invalid_operation -andx271 and 070100000 100000000 -> NaN Invalid_operation -andx272 and 080010000 100000001 -> NaN Invalid_operation -andx273 and 090001000 100000010 -> NaN Invalid_operation -andx274 and 100000100 020010100 -> NaN Invalid_operation -andx275 and 100000000 070001000 -> NaN Invalid_operation -andx276 and 100000010 080010100 -> NaN Invalid_operation -andx277 and 100000000 090000010 -> NaN Invalid_operation --- test LSD -andx280 and 001000002 100000000 -> NaN Invalid_operation -andx281 and 000000007 100000000 -> NaN Invalid_operation -andx282 and 000000008 100000000 -> NaN Invalid_operation -andx283 and 000000009 100000000 -> NaN Invalid_operation -andx284 and 100000000 000100002 -> NaN Invalid_operation -andx285 and 100100000 001000007 -> NaN Invalid_operation -andx286 and 100010000 010000008 -> NaN Invalid_operation -andx287 and 100001000 100000009 -> NaN Invalid_operation --- test Middie -andx288 and 001020000 100000000 -> NaN Invalid_operation -andx289 and 000070001 100000000 -> NaN Invalid_operation -andx290 and 000080000 100010000 -> NaN Invalid_operation -andx291 and 000090000 100001000 -> NaN Invalid_operation -andx292 and 100000010 000020100 -> NaN Invalid_operation -andx293 and 100100000 000070010 -> NaN Invalid_operation -andx294 and 100010100 000080001 -> NaN Invalid_operation -andx295 and 100001000 000090000 -> NaN Invalid_operation --- signs -andx296 and -100001000 -000000000 -> NaN Invalid_operation -andx297 and -100001000 000010000 -> NaN Invalid_operation -andx298 and 100001000 -000000000 -> NaN Invalid_operation -andx299 and 100001000 000011000 -> 1000 - --- Nmax, Nmin, Ntiny -andx331 and 2 9.99999999E+999 -> NaN Invalid_operation -andx332 and 3 1E-999 -> NaN Invalid_operation -andx333 and 4 1.00000000E-999 -> NaN Invalid_operation -andx334 and 5 1E-1007 -> NaN Invalid_operation -andx335 and 6 -1E-1007 -> NaN Invalid_operation -andx336 and 7 -1.00000000E-999 -> NaN Invalid_operation -andx337 and 8 -1E-999 -> NaN Invalid_operation -andx338 and 9 -9.99999999E+999 -> NaN Invalid_operation -andx341 and 9.99999999E+999 -18 -> NaN Invalid_operation -andx342 and 1E-999 01 -> NaN Invalid_operation -andx343 and 1.00000000E-999 -18 -> NaN Invalid_operation -andx344 and 1E-1007 18 -> NaN Invalid_operation -andx345 and -1E-1007 -10 -> NaN Invalid_operation -andx346 and -1.00000000E-999 18 -> NaN Invalid_operation -andx347 and -1E-999 10 -> NaN Invalid_operation -andx348 and -9.99999999E+999 -18 -> NaN Invalid_operation - --- A few other non-integers -andx361 and 1.0 1 -> NaN Invalid_operation -andx362 and 1E+1 1 -> NaN Invalid_operation -andx363 and 0.0 1 -> NaN Invalid_operation -andx364 and 0E+1 1 -> NaN Invalid_operation -andx365 and 9.9 1 -> NaN Invalid_operation -andx366 and 9E+1 1 -> NaN Invalid_operation -andx371 and 0 1.0 -> NaN Invalid_operation -andx372 and 0 1E+1 -> NaN Invalid_operation -andx373 and 0 0.0 -> NaN Invalid_operation -andx374 and 0 0E+1 -> NaN Invalid_operation -andx375 and 0 9.9 -> NaN Invalid_operation -andx376 and 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -andx780 and -Inf -Inf -> NaN Invalid_operation -andx781 and -Inf -1000 -> NaN Invalid_operation -andx782 and -Inf -1 -> NaN Invalid_operation -andx783 and -Inf -0 -> NaN Invalid_operation -andx784 and -Inf 0 -> NaN Invalid_operation -andx785 and -Inf 1 -> NaN Invalid_operation -andx786 and -Inf 1000 -> NaN Invalid_operation -andx787 and -1000 -Inf -> NaN Invalid_operation -andx788 and -Inf -Inf -> NaN Invalid_operation -andx789 and -1 -Inf -> NaN Invalid_operation -andx790 and -0 -Inf -> NaN Invalid_operation -andx791 and 0 -Inf -> NaN Invalid_operation -andx792 and 1 -Inf -> NaN Invalid_operation -andx793 and 1000 -Inf -> NaN Invalid_operation -andx794 and Inf -Inf -> NaN Invalid_operation - -andx800 and Inf -Inf -> NaN Invalid_operation -andx801 and Inf -1000 -> NaN Invalid_operation -andx802 and Inf -1 -> NaN Invalid_operation -andx803 and Inf -0 -> NaN Invalid_operation -andx804 and Inf 0 -> NaN Invalid_operation -andx805 and Inf 1 -> NaN Invalid_operation -andx806 and Inf 1000 -> NaN Invalid_operation -andx807 and Inf Inf -> NaN Invalid_operation -andx808 and -1000 Inf -> NaN Invalid_operation -andx809 and -Inf Inf -> NaN Invalid_operation -andx810 and -1 Inf -> NaN Invalid_operation -andx811 and -0 Inf -> NaN Invalid_operation -andx812 and 0 Inf -> NaN Invalid_operation -andx813 and 1 Inf -> NaN Invalid_operation -andx814 and 1000 Inf -> NaN Invalid_operation -andx815 and Inf Inf -> NaN Invalid_operation - -andx821 and NaN -Inf -> NaN Invalid_operation -andx822 and NaN -1000 -> NaN Invalid_operation -andx823 and NaN -1 -> NaN Invalid_operation -andx824 and NaN -0 -> NaN Invalid_operation -andx825 and NaN 0 -> NaN Invalid_operation -andx826 and NaN 1 -> NaN Invalid_operation -andx827 and NaN 1000 -> NaN Invalid_operation -andx828 and NaN Inf -> NaN Invalid_operation -andx829 and NaN NaN -> NaN Invalid_operation -andx830 and -Inf NaN -> NaN Invalid_operation -andx831 and -1000 NaN -> NaN Invalid_operation -andx832 and -1 NaN -> NaN Invalid_operation -andx833 and -0 NaN -> NaN Invalid_operation -andx834 and 0 NaN -> NaN Invalid_operation -andx835 and 1 NaN -> NaN Invalid_operation -andx836 and 1000 NaN -> NaN Invalid_operation -andx837 and Inf NaN -> NaN Invalid_operation - -andx841 and sNaN -Inf -> NaN Invalid_operation -andx842 and sNaN -1000 -> NaN Invalid_operation -andx843 and sNaN -1 -> NaN Invalid_operation -andx844 and sNaN -0 -> NaN Invalid_operation -andx845 and sNaN 0 -> NaN Invalid_operation -andx846 and sNaN 1 -> NaN Invalid_operation -andx847 and sNaN 1000 -> NaN Invalid_operation -andx848 and sNaN NaN -> NaN Invalid_operation -andx849 and sNaN sNaN -> NaN Invalid_operation -andx850 and NaN sNaN -> NaN Invalid_operation -andx851 and -Inf sNaN -> NaN Invalid_operation -andx852 and -1000 sNaN -> NaN Invalid_operation -andx853 and -1 sNaN -> NaN Invalid_operation -andx854 and -0 sNaN -> NaN Invalid_operation -andx855 and 0 sNaN -> NaN Invalid_operation -andx856 and 1 sNaN -> NaN Invalid_operation -andx857 and 1000 sNaN -> NaN Invalid_operation -andx858 and Inf sNaN -> NaN Invalid_operation -andx859 and NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -andx861 and NaN1 -Inf -> NaN Invalid_operation -andx862 and +NaN2 -1000 -> NaN Invalid_operation -andx863 and NaN3 1000 -> NaN Invalid_operation -andx864 and NaN4 Inf -> NaN Invalid_operation -andx865 and NaN5 +NaN6 -> NaN Invalid_operation -andx866 and -Inf NaN7 -> NaN Invalid_operation -andx867 and -1000 NaN8 -> NaN Invalid_operation -andx868 and 1000 NaN9 -> NaN Invalid_operation -andx869 and Inf +NaN10 -> NaN Invalid_operation -andx871 and sNaN11 -Inf -> NaN Invalid_operation -andx872 and sNaN12 -1000 -> NaN Invalid_operation -andx873 and sNaN13 1000 -> NaN Invalid_operation -andx874 and sNaN14 NaN17 -> NaN Invalid_operation -andx875 and sNaN15 sNaN18 -> NaN Invalid_operation -andx876 and NaN16 sNaN19 -> NaN Invalid_operation -andx877 and -Inf +sNaN20 -> NaN Invalid_operation -andx878 and -1000 sNaN21 -> NaN Invalid_operation -andx879 and 1000 sNaN22 -> NaN Invalid_operation -andx880 and Inf sNaN23 -> NaN Invalid_operation -andx881 and +NaN25 +sNaN24 -> NaN Invalid_operation -andx882 and -NaN26 NaN28 -> NaN Invalid_operation -andx883 and -sNaN27 sNaN29 -> NaN Invalid_operation -andx884 and 1000 -NaN30 -> NaN Invalid_operation -andx885 and 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/base.decTest b/qdecimal/test/tc_full/base.decTest deleted file mode 100644 index 85cac38..0000000 --- a/qdecimal/test/tc_full/base.decTest +++ /dev/null @@ -1,1411 +0,0 @@ ------------------------------------------------------------------------- --- base.decTest -- base decimal <--> string conversions -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 -extended: 1 - --- This file tests base conversions from string to a decimal number --- and back to a string (in either Scientific or Engineering form) - --- Note that unlike other operations the operand is subject to rounding --- to conform to emax and precision settings (that is, numbers will --- conform to rules and exponent will be in permitted range). - -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - -basx001 toSci 0 -> 0 -basx002 toSci 1 -> 1 -basx003 toSci 1.0 -> 1.0 -basx004 toSci 1.00 -> 1.00 -basx005 toSci 10 -> 10 -basx006 toSci 1000 -> 1000 -basx007 toSci 10.0 -> 10.0 -basx008 toSci 10.1 -> 10.1 -basx009 toSci 10.4 -> 10.4 -basx010 toSci 10.5 -> 10.5 -basx011 toSci 10.6 -> 10.6 -basx012 toSci 10.9 -> 10.9 -basx013 toSci 11.0 -> 11.0 -basx014 toSci 1.234 -> 1.234 -basx015 toSci 0.123 -> 0.123 -basx016 toSci 0.012 -> 0.012 -basx017 toSci -0 -> -0 -basx018 toSci -0.0 -> -0.0 -basx019 toSci -00.00 -> -0.00 - -basx021 toSci -1 -> -1 -basx022 toSci -1.0 -> -1.0 -basx023 toSci -0.1 -> -0.1 -basx024 toSci -9.1 -> -9.1 -basx025 toSci -9.11 -> -9.11 -basx026 toSci -9.119 -> -9.119 -basx027 toSci -9.999 -> -9.999 - -basx030 toSci '123456789.123456' -> '123456789.123456' -basx031 toSci '123456789.000000' -> '123456789.000000' -basx032 toSci '123456789123456' -> '123456789123456' -basx033 toSci '0.0000123456789' -> '0.0000123456789' -basx034 toSci '0.00000123456789' -> '0.00000123456789' -basx035 toSci '0.000000123456789' -> '1.23456789E-7' -basx036 toSci '0.0000000123456789' -> '1.23456789E-8' - -basx037 toSci '0.123456789012344' -> '0.123456789012344' -basx038 toSci '0.123456789012345' -> '0.123456789012345' - --- String [many more examples are implicitly tested elsewhere] --- strings without E cannot generate E in result -basx040 toSci "12" -> '12' -basx041 toSci "-76" -> '-76' -basx042 toSci "12.76" -> '12.76' -basx043 toSci "+12.76" -> '12.76' -basx044 toSci "012.76" -> '12.76' -basx045 toSci "+0.003" -> '0.003' -basx046 toSci "17." -> '17' -basx047 toSci ".5" -> '0.5' -basx048 toSci "044" -> '44' -basx049 toSci "0044" -> '44' -basx050 toSci "0.0005" -> '0.0005' -basx051 toSci "00.00005" -> '0.00005' -basx052 toSci "0.000005" -> '0.000005' -basx053 toSci "0.0000050" -> '0.0000050' -basx054 toSci "0.0000005" -> '5E-7' -basx055 toSci "0.00000005" -> '5E-8' -basx056 toSci "12345678.543210" -> '12345678.543210' -basx057 toSci "2345678.543210" -> '2345678.543210' -basx058 toSci "345678.543210" -> '345678.543210' -basx059 toSci "0345678.54321" -> '345678.54321' -basx060 toSci "345678.5432" -> '345678.5432' -basx061 toSci "+345678.5432" -> '345678.5432' -basx062 toSci "+0345678.5432" -> '345678.5432' -basx063 toSci "+00345678.5432" -> '345678.5432' -basx064 toSci "-345678.5432" -> '-345678.5432' -basx065 toSci "-0345678.5432" -> '-345678.5432' -basx066 toSci "-00345678.5432" -> '-345678.5432' --- examples -basx067 toSci "5E-6" -> '0.000005' -basx068 toSci "50E-7" -> '0.0000050' -basx069 toSci "5E-7" -> '5E-7' - --- [No exotics as no Unicode] - --- rounded with dots in all (including edge) places -basx071 toSci .1234567890123456123 -> 0.1234567890123456 Inexact Rounded -basx072 toSci 1.234567890123456123 -> 1.234567890123456 Inexact Rounded -basx073 toSci 12.34567890123456123 -> 12.34567890123456 Inexact Rounded -basx074 toSci 123.4567890123456123 -> 123.4567890123456 Inexact Rounded -basx075 toSci 1234.567890123456123 -> 1234.567890123456 Inexact Rounded -basx076 toSci 12345.67890123456123 -> 12345.67890123456 Inexact Rounded -basx077 toSci 123456.7890123456123 -> 123456.7890123456 Inexact Rounded -basx078 toSci 1234567.890123456123 -> 1234567.890123456 Inexact Rounded -basx079 toSci 12345678.90123456123 -> 12345678.90123456 Inexact Rounded -basx080 toSci 123456789.0123456123 -> 123456789.0123456 Inexact Rounded -basx081 toSci 1234567890.123456123 -> 1234567890.123456 Inexact Rounded -basx082 toSci 12345678901.23456123 -> 12345678901.23456 Inexact Rounded -basx083 toSci 123456789012.3456123 -> 123456789012.3456 Inexact Rounded -basx084 toSci 1234567890123.456123 -> 1234567890123.456 Inexact Rounded -basx085 toSci 12345678901234.56123 -> 12345678901234.56 Inexact Rounded -basx086 toSci 123456789012345.6123 -> 123456789012345.6 Inexact Rounded -basx087 toSci 1234567890123456.123 -> 1234567890123456 Inexact Rounded -basx088 toSci 12345678901234561.23 -> 1.234567890123456E+16 Inexact Rounded -basx089 toSci 123456789012345612.3 -> 1.234567890123456E+17 Inexact Rounded -basx090 toSci 1234567890123456123. -> 1.234567890123456E+18 Inexact Rounded - --- Numbers with E -basx130 toSci "0.000E-1" -> '0.0000' -basx131 toSci "0.000E-2" -> '0.00000' -basx132 toSci "0.000E-3" -> '0.000000' -basx133 toSci "0.000E-4" -> '0E-7' -basx134 toSci "0.00E-2" -> '0.0000' -basx135 toSci "0.00E-3" -> '0.00000' -basx136 toSci "0.00E-4" -> '0.000000' -basx137 toSci "0.00E-5" -> '0E-7' -basx138 toSci "+0E+9" -> '0E+9' -basx139 toSci "-0E+9" -> '-0E+9' -basx140 toSci "1E+9" -> '1E+9' -basx141 toSci "1e+09" -> '1E+9' -basx142 toSci "1E+90" -> '1E+90' -basx143 toSci "+1E+009" -> '1E+9' -basx144 toSci "0E+9" -> '0E+9' -basx145 toSci "1E+9" -> '1E+9' -basx146 toSci "1E+09" -> '1E+9' -basx147 toSci "1e+90" -> '1E+90' -basx148 toSci "1E+009" -> '1E+9' -basx149 toSci "000E+9" -> '0E+9' -basx150 toSci "1E9" -> '1E+9' -basx151 toSci "1e09" -> '1E+9' -basx152 toSci "1E90" -> '1E+90' -basx153 toSci "1E009" -> '1E+9' -basx154 toSci "0E9" -> '0E+9' -basx155 toSci "0.000e+0" -> '0.000' -basx156 toSci "0.000E-1" -> '0.0000' -basx157 toSci "4E+9" -> '4E+9' -basx158 toSci "44E+9" -> '4.4E+10' -basx159 toSci "0.73e-7" -> '7.3E-8' -basx160 toSci "00E+9" -> '0E+9' -basx161 toSci "00E-9" -> '0E-9' -basx162 toSci "10E+9" -> '1.0E+10' -basx163 toSci "10E+09" -> '1.0E+10' -basx164 toSci "10e+90" -> '1.0E+91' -basx165 toSci "10E+009" -> '1.0E+10' -basx166 toSci "100e+9" -> '1.00E+11' -basx167 toSci "100e+09" -> '1.00E+11' -basx168 toSci "100E+90" -> '1.00E+92' -basx169 toSci "100e+009" -> '1.00E+11' - -basx170 toSci "1.265" -> '1.265' -basx171 toSci "1.265E-20" -> '1.265E-20' -basx172 toSci "1.265E-8" -> '1.265E-8' -basx173 toSci "1.265E-4" -> '0.0001265' -basx174 toSci "1.265E-3" -> '0.001265' -basx175 toSci "1.265E-2" -> '0.01265' -basx176 toSci "1.265E-1" -> '0.1265' -basx177 toSci "1.265E-0" -> '1.265' -basx178 toSci "1.265E+1" -> '12.65' -basx179 toSci "1.265E+2" -> '126.5' -basx180 toSci "1.265E+3" -> '1265' -basx181 toSci "1.265E+4" -> '1.265E+4' -basx182 toSci "1.265E+8" -> '1.265E+8' -basx183 toSci "1.265E+20" -> '1.265E+20' - -basx190 toSci "12.65" -> '12.65' -basx191 toSci "12.65E-20" -> '1.265E-19' -basx192 toSci "12.65E-8" -> '1.265E-7' -basx193 toSci "12.65E-4" -> '0.001265' -basx194 toSci "12.65E-3" -> '0.01265' -basx195 toSci "12.65E-2" -> '0.1265' -basx196 toSci "12.65E-1" -> '1.265' -basx197 toSci "12.65E-0" -> '12.65' -basx198 toSci "12.65E+1" -> '126.5' -basx199 toSci "12.65E+2" -> '1265' -basx200 toSci "12.65E+3" -> '1.265E+4' -basx201 toSci "12.65E+4" -> '1.265E+5' -basx202 toSci "12.65E+8" -> '1.265E+9' -basx203 toSci "12.65E+20" -> '1.265E+21' - -basx210 toSci "126.5" -> '126.5' -basx211 toSci "126.5E-20" -> '1.265E-18' -basx212 toSci "126.5E-8" -> '0.000001265' -basx213 toSci "126.5E-4" -> '0.01265' -basx214 toSci "126.5E-3" -> '0.1265' -basx215 toSci "126.5E-2" -> '1.265' -basx216 toSci "126.5E-1" -> '12.65' -basx217 toSci "126.5E-0" -> '126.5' -basx218 toSci "126.5E+1" -> '1265' -basx219 toSci "126.5E+2" -> '1.265E+4' -basx220 toSci "126.5E+3" -> '1.265E+5' -basx221 toSci "126.5E+4" -> '1.265E+6' -basx222 toSci "126.5E+8" -> '1.265E+10' -basx223 toSci "126.5E+20" -> '1.265E+22' - -basx230 toSci "1265" -> '1265' -basx231 toSci "1265E-20" -> '1.265E-17' -basx232 toSci "1265E-8" -> '0.00001265' -basx233 toSci "1265E-4" -> '0.1265' -basx234 toSci "1265E-3" -> '1.265' -basx235 toSci "1265E-2" -> '12.65' -basx236 toSci "1265E-1" -> '126.5' -basx237 toSci "1265E-0" -> '1265' -basx238 toSci "1265E+1" -> '1.265E+4' -basx239 toSci "1265E+2" -> '1.265E+5' -basx240 toSci "1265E+3" -> '1.265E+6' -basx241 toSci "1265E+4" -> '1.265E+7' -basx242 toSci "1265E+8" -> '1.265E+11' -basx243 toSci "1265E+20" -> '1.265E+23' - -basx250 toSci "0.1265" -> '0.1265' -basx251 toSci "0.1265E-20" -> '1.265E-21' -basx252 toSci "0.1265E-8" -> '1.265E-9' -basx253 toSci "0.1265E-4" -> '0.00001265' -basx254 toSci "0.1265E-3" -> '0.0001265' -basx255 toSci "0.1265E-2" -> '0.001265' -basx256 toSci "0.1265E-1" -> '0.01265' -basx257 toSci "0.1265E-0" -> '0.1265' -basx258 toSci "0.1265E+1" -> '1.265' -basx259 toSci "0.1265E+2" -> '12.65' -basx260 toSci "0.1265E+3" -> '126.5' -basx261 toSci "0.1265E+4" -> '1265' -basx262 toSci "0.1265E+8" -> '1.265E+7' -basx263 toSci "0.1265E+20" -> '1.265E+19' - --- some more negative zeros [systematic tests below] -basx290 toSci "-0.000E-1" -> '-0.0000' -basx291 toSci "-0.000E-2" -> '-0.00000' -basx292 toSci "-0.000E-3" -> '-0.000000' -basx293 toSci "-0.000E-4" -> '-0E-7' -basx294 toSci "-0.00E-2" -> '-0.0000' -basx295 toSci "-0.00E-3" -> '-0.00000' -basx296 toSci "-0.0E-2" -> '-0.000' -basx297 toSci "-0.0E-3" -> '-0.0000' -basx298 toSci "-0E-2" -> '-0.00' -basx299 toSci "-0E-3" -> '-0.000' - --- Engineering notation tests -basx301 toSci 10e12 -> 1.0E+13 -basx302 toEng 10e12 -> 10E+12 -basx303 toSci 10e11 -> 1.0E+12 -basx304 toEng 10e11 -> 1.0E+12 -basx305 toSci 10e10 -> 1.0E+11 -basx306 toEng 10e10 -> 100E+9 -basx307 toSci 10e9 -> 1.0E+10 -basx308 toEng 10e9 -> 10E+9 -basx309 toSci 10e8 -> 1.0E+9 -basx310 toEng 10e8 -> 1.0E+9 -basx311 toSci 10e7 -> 1.0E+8 -basx312 toEng 10e7 -> 100E+6 -basx313 toSci 10e6 -> 1.0E+7 -basx314 toEng 10e6 -> 10E+6 -basx315 toSci 10e5 -> 1.0E+6 -basx316 toEng 10e5 -> 1.0E+6 -basx317 toSci 10e4 -> 1.0E+5 -basx318 toEng 10e4 -> 100E+3 -basx319 toSci 10e3 -> 1.0E+4 -basx320 toEng 10e3 -> 10E+3 -basx321 toSci 10e2 -> 1.0E+3 -basx322 toEng 10e2 -> 1.0E+3 -basx323 toSci 10e1 -> 1.0E+2 -basx324 toEng 10e1 -> 100 -basx325 toSci 10e0 -> 10 -basx326 toEng 10e0 -> 10 -basx327 toSci 10e-1 -> 1.0 -basx328 toEng 10e-1 -> 1.0 -basx329 toSci 10e-2 -> 0.10 -basx330 toEng 10e-2 -> 0.10 -basx331 toSci 10e-3 -> 0.010 -basx332 toEng 10e-3 -> 0.010 -basx333 toSci 10e-4 -> 0.0010 -basx334 toEng 10e-4 -> 0.0010 -basx335 toSci 10e-5 -> 0.00010 -basx336 toEng 10e-5 -> 0.00010 -basx337 toSci 10e-6 -> 0.000010 -basx338 toEng 10e-6 -> 0.000010 -basx339 toSci 10e-7 -> 0.0000010 -basx340 toEng 10e-7 -> 0.0000010 -basx341 toSci 10e-8 -> 1.0E-7 -basx342 toEng 10e-8 -> 100E-9 -basx343 toSci 10e-9 -> 1.0E-8 -basx344 toEng 10e-9 -> 10E-9 -basx345 toSci 10e-10 -> 1.0E-9 -basx346 toEng 10e-10 -> 1.0E-9 -basx347 toSci 10e-11 -> 1.0E-10 -basx348 toEng 10e-11 -> 100E-12 -basx349 toSci 10e-12 -> 1.0E-11 -basx350 toEng 10e-12 -> 10E-12 -basx351 toSci 10e-13 -> 1.0E-12 -basx352 toEng 10e-13 -> 1.0E-12 - -basx361 toSci 7E12 -> 7E+12 -basx362 toEng 7E12 -> 7E+12 -basx363 toSci 7E11 -> 7E+11 -basx364 toEng 7E11 -> 700E+9 -basx365 toSci 7E10 -> 7E+10 -basx366 toEng 7E10 -> 70E+9 -basx367 toSci 7E9 -> 7E+9 -basx368 toEng 7E9 -> 7E+9 -basx369 toSci 7E8 -> 7E+8 -basx370 toEng 7E8 -> 700E+6 -basx371 toSci 7E7 -> 7E+7 -basx372 toEng 7E7 -> 70E+6 -basx373 toSci 7E6 -> 7E+6 -basx374 toEng 7E6 -> 7E+6 -basx375 toSci 7E5 -> 7E+5 -basx376 toEng 7E5 -> 700E+3 -basx377 toSci 7E4 -> 7E+4 -basx378 toEng 7E4 -> 70E+3 -basx379 toSci 7E3 -> 7E+3 -basx380 toEng 7E3 -> 7E+3 -basx381 toSci 7E2 -> 7E+2 -basx382 toEng 7E2 -> 700 -basx383 toSci 7E1 -> 7E+1 -basx384 toEng 7E1 -> 70 -basx385 toSci 7E0 -> 7 -basx386 toEng 7E0 -> 7 -basx387 toSci 7E-1 -> 0.7 -basx388 toEng 7E-1 -> 0.7 -basx389 toSci 7E-2 -> 0.07 -basx390 toEng 7E-2 -> 0.07 -basx391 toSci 7E-3 -> 0.007 -basx392 toEng 7E-3 -> 0.007 -basx393 toSci 7E-4 -> 0.0007 -basx394 toEng 7E-4 -> 0.0007 -basx395 toSci 7E-5 -> 0.00007 -basx396 toEng 7E-5 -> 0.00007 -basx397 toSci 7E-6 -> 0.000007 -basx398 toEng 7E-6 -> 0.000007 -basx399 toSci 7E-7 -> 7E-7 -basx400 toEng 7E-7 -> 700E-9 -basx401 toSci 7E-8 -> 7E-8 -basx402 toEng 7E-8 -> 70E-9 -basx403 toSci 7E-9 -> 7E-9 -basx404 toEng 7E-9 -> 7E-9 -basx405 toSci 7E-10 -> 7E-10 -basx406 toEng 7E-10 -> 700E-12 -basx407 toSci 7E-11 -> 7E-11 -basx408 toEng 7E-11 -> 70E-12 -basx409 toSci 7E-12 -> 7E-12 -basx410 toEng 7E-12 -> 7E-12 -basx411 toSci 7E-13 -> 7E-13 -basx412 toEng 7E-13 -> 700E-15 - --- Exacts remain exact up to precision .. -precision: 9 -basx420 toSci 100 -> 100 -basx421 toEng 100 -> 100 -basx422 toSci 1000 -> 1000 -basx423 toEng 1000 -> 1000 -basx424 toSci 999.9 -> 999.9 -basx425 toEng 999.9 -> 999.9 -basx426 toSci 1000.0 -> 1000.0 -basx427 toEng 1000.0 -> 1000.0 -basx428 toSci 1000.1 -> 1000.1 -basx429 toEng 1000.1 -> 1000.1 -basx430 toSci 10000 -> 10000 -basx431 toEng 10000 -> 10000 -basx432 toSci 100000 -> 100000 -basx433 toEng 100000 -> 100000 -basx434 toSci 1000000 -> 1000000 -basx435 toEng 1000000 -> 1000000 -basx436 toSci 10000000 -> 10000000 -basx437 toEng 10000000 -> 10000000 -basx438 toSci 100000000 -> 100000000 -basx439 toEng 100000000 -> 100000000 -basx440 toSci 1000000000 -> 1.00000000E+9 Rounded -basx441 toEng 1000000000 -> 1.00000000E+9 Rounded -basx442 toSci 1000000000 -> 1.00000000E+9 Rounded -basx443 toEng 1000000000 -> 1.00000000E+9 Rounded -basx444 toSci 1000000003 -> 1.00000000E+9 Rounded Inexact -basx445 toEng 1000000003 -> 1.00000000E+9 Rounded Inexact -basx446 toSci 1000000005 -> 1.00000001E+9 Rounded Inexact -basx447 toEng 1000000005 -> 1.00000001E+9 Rounded Inexact -basx448 toSci 10000000050 -> 1.00000001E+10 Rounded Inexact -basx449 toEng 10000000050 -> 10.0000001E+9 Rounded Inexact -basx450 toSci 1000000009 -> 1.00000001E+9 Rounded Inexact -basx451 toEng 1000000009 -> 1.00000001E+9 Rounded Inexact -basx452 toSci 10000000000 -> 1.00000000E+10 Rounded -basx453 toEng 10000000000 -> 10.0000000E+9 Rounded -basx454 toSci 10000000003 -> 1.00000000E+10 Rounded Inexact -basx455 toEng 10000000003 -> 10.0000000E+9 Rounded Inexact -basx456 toSci 10000000005 -> 1.00000000E+10 Rounded Inexact -basx457 toEng 10000000005 -> 10.0000000E+9 Rounded Inexact -basx458 toSci 10000000009 -> 1.00000000E+10 Rounded Inexact -basx459 toEng 10000000009 -> 10.0000000E+9 Rounded Inexact -basx460 toSci 100000000000 -> 1.00000000E+11 Rounded -basx461 toEng 100000000000 -> 100.000000E+9 Rounded -basx462 toSci 100000000300 -> 1.00000000E+11 Rounded Inexact -basx463 toEng 100000000300 -> 100.000000E+9 Rounded Inexact -basx464 toSci 100000000500 -> 1.00000001E+11 Rounded Inexact -basx465 toEng 100000000500 -> 100.000001E+9 Rounded Inexact -basx466 toSci 100000000900 -> 1.00000001E+11 Rounded Inexact -basx467 toEng 100000000900 -> 100.000001E+9 Rounded Inexact -basx468 toSci 1000000000000 -> 1.00000000E+12 Rounded -basx469 toEng 1000000000000 -> 1.00000000E+12 Rounded -basx470 toSci 1000000003000 -> 1.00000000E+12 Rounded Inexact -basx471 toEng 1000000003000 -> 1.00000000E+12 Rounded Inexact -basx472 toSci 1000000005000 -> 1.00000001E+12 Rounded Inexact -basx473 toEng 1000000005000 -> 1.00000001E+12 Rounded Inexact -basx474 toSci 1000000009000 -> 1.00000001E+12 Rounded Inexact -basx475 toEng 1000000009000 -> 1.00000001E+12 Rounded Inexact - --- all-nines rounding -precision: 9 -rounding: half_up -basx270 toSci 999999999 -> 999999999 -basx271 toSci 9999999990 -> 9.99999999E+9 Rounded -basx272 toSci 9999999991 -> 9.99999999E+9 Rounded Inexact -basx273 toSci 9999999992 -> 9.99999999E+9 Rounded Inexact -basx274 toSci 9999999993 -> 9.99999999E+9 Rounded Inexact -basx275 toSci 9999999994 -> 9.99999999E+9 Rounded Inexact -basx276 toSci 9999999995 -> 1.00000000E+10 Rounded Inexact -basx277 toSci 9999999996 -> 1.00000000E+10 Rounded Inexact -basx278 toSci 9999999997 -> 1.00000000E+10 Rounded Inexact -basx279 toSci 9999999998 -> 1.00000000E+10 Rounded Inexact -basx280 toSci 9999999999 -> 1.00000000E+10 Rounded Inexact -basx281 toSci 9999999999999999 -> 1.00000000E+16 Rounded Inexact - --- check rounding modes heeded -precision: 5 -rounding: ceiling -bsrx401 toSci 1.23450 -> 1.2345 Rounded -bsrx402 toSci 1.234549 -> 1.2346 Rounded Inexact -bsrx403 toSci 1.234550 -> 1.2346 Rounded Inexact -bsrx404 toSci 1.234551 -> 1.2346 Rounded Inexact -rounding: up -bsrx405 toSci 1.23450 -> 1.2345 Rounded -bsrx406 toSci 1.234549 -> 1.2346 Rounded Inexact -bsrx407 toSci 1.234550 -> 1.2346 Rounded Inexact -bsrx408 toSci 1.234551 -> 1.2346 Rounded Inexact -rounding: floor -bsrx410 toSci 1.23450 -> 1.2345 Rounded -bsrx411 toSci 1.234549 -> 1.2345 Rounded Inexact -bsrx412 toSci 1.234550 -> 1.2345 Rounded Inexact -bsrx413 toSci 1.234551 -> 1.2345 Rounded Inexact -rounding: half_down -bsrx415 toSci 1.23450 -> 1.2345 Rounded -bsrx416 toSci 1.234549 -> 1.2345 Rounded Inexact -bsrx417 toSci 1.234550 -> 1.2345 Rounded Inexact -bsrx418 toSci 1.234650 -> 1.2346 Rounded Inexact -bsrx419 toSci 1.234551 -> 1.2346 Rounded Inexact -rounding: half_even -bsrx421 toSci 1.23450 -> 1.2345 Rounded -bsrx422 toSci 1.234549 -> 1.2345 Rounded Inexact -bsrx423 toSci 1.234550 -> 1.2346 Rounded Inexact -bsrx424 toSci 1.234650 -> 1.2346 Rounded Inexact -bsrx425 toSci 1.234551 -> 1.2346 Rounded Inexact -rounding: down -bsrx426 toSci 1.23450 -> 1.2345 Rounded -bsrx427 toSci 1.234549 -> 1.2345 Rounded Inexact -bsrx428 toSci 1.234550 -> 1.2345 Rounded Inexact -bsrx429 toSci 1.234551 -> 1.2345 Rounded Inexact -rounding: half_up -bsrx431 toSci 1.23450 -> 1.2345 Rounded -bsrx432 toSci 1.234549 -> 1.2345 Rounded Inexact -bsrx433 toSci 1.234550 -> 1.2346 Rounded Inexact -bsrx434 toSci 1.234650 -> 1.2347 Rounded Inexact -bsrx435 toSci 1.234551 -> 1.2346 Rounded Inexact --- negatives -rounding: ceiling -bsrx501 toSci -1.23450 -> -1.2345 Rounded -bsrx502 toSci -1.234549 -> -1.2345 Rounded Inexact -bsrx503 toSci -1.234550 -> -1.2345 Rounded Inexact -bsrx504 toSci -1.234551 -> -1.2345 Rounded Inexact -rounding: up -bsrx505 toSci -1.23450 -> -1.2345 Rounded -bsrx506 toSci -1.234549 -> -1.2346 Rounded Inexact -bsrx507 toSci -1.234550 -> -1.2346 Rounded Inexact -bsrx508 toSci -1.234551 -> -1.2346 Rounded Inexact -rounding: floor -bsrx510 toSci -1.23450 -> -1.2345 Rounded -bsrx511 toSci -1.234549 -> -1.2346 Rounded Inexact -bsrx512 toSci -1.234550 -> -1.2346 Rounded Inexact -bsrx513 toSci -1.234551 -> -1.2346 Rounded Inexact -rounding: half_down -bsrx515 toSci -1.23450 -> -1.2345 Rounded -bsrx516 toSci -1.234549 -> -1.2345 Rounded Inexact -bsrx517 toSci -1.234550 -> -1.2345 Rounded Inexact -bsrx518 toSci -1.234650 -> -1.2346 Rounded Inexact -bsrx519 toSci -1.234551 -> -1.2346 Rounded Inexact -rounding: half_even -bsrx521 toSci -1.23450 -> -1.2345 Rounded -bsrx522 toSci -1.234549 -> -1.2345 Rounded Inexact -bsrx523 toSci -1.234550 -> -1.2346 Rounded Inexact -bsrx524 toSci -1.234650 -> -1.2346 Rounded Inexact -bsrx525 toSci -1.234551 -> -1.2346 Rounded Inexact -rounding: down -bsrx526 toSci -1.23450 -> -1.2345 Rounded -bsrx527 toSci -1.234549 -> -1.2345 Rounded Inexact -bsrx528 toSci -1.234550 -> -1.2345 Rounded Inexact -bsrx529 toSci -1.234551 -> -1.2345 Rounded Inexact -rounding: half_up -bsrx531 toSci -1.23450 -> -1.2345 Rounded -bsrx532 toSci -1.234549 -> -1.2345 Rounded Inexact -bsrx533 toSci -1.234550 -> -1.2346 Rounded Inexact -bsrx534 toSci -1.234650 -> -1.2347 Rounded Inexact -bsrx535 toSci -1.234551 -> -1.2346 Rounded Inexact - --- a few larger exponents -maxExponent: 999999999 -minExponent: -999999999 -basx480 toSci "0.09e999" -> '9E+997' -basx481 toSci "0.9e999" -> '9E+998' -basx482 toSci "9e999" -> '9E+999' -basx483 toSci "9.9e999" -> '9.9E+999' -basx484 toSci "9.99e999" -> '9.99E+999' -basx485 toSci "9.99e-999" -> '9.99E-999' -basx486 toSci "9.9e-999" -> '9.9E-999' -basx487 toSci "9e-999" -> '9E-999' -basx489 toSci "99e-999" -> '9.9E-998' -basx490 toSci "999e-999" -> '9.99E-997' -basx491 toSci '0.9e-998' -> '9E-999' -basx492 toSci '0.09e-997' -> '9E-999' -basx493 toSci '0.1e1000' -> '1E+999' -basx494 toSci '10e-1000' -> '1.0E-999' - -rounding: half_up -precision: 9 - --- The 'baddies' tests from DiagBigDecimal, plus some new ones -basx500 toSci '1..2' -> NaN Conversion_syntax -basx501 toSci '.' -> NaN Conversion_syntax -basx502 toSci '..' -> NaN Conversion_syntax -basx503 toSci '++1' -> NaN Conversion_syntax -basx504 toSci '--1' -> NaN Conversion_syntax -basx505 toSci '-+1' -> NaN Conversion_syntax -basx506 toSci '+-1' -> NaN Conversion_syntax -basx507 toSci '12e' -> NaN Conversion_syntax -basx508 toSci '12e++' -> NaN Conversion_syntax -basx509 toSci '12f4' -> NaN Conversion_syntax -basx510 toSci ' +1' -> NaN Conversion_syntax -basx511 toSci '+ 1' -> NaN Conversion_syntax -basx512 toSci '12 ' -> NaN Conversion_syntax -basx513 toSci ' + 1' -> NaN Conversion_syntax -basx514 toSci ' - 1 ' -> NaN Conversion_syntax -basx515 toSci 'x' -> NaN Conversion_syntax -basx516 toSci '-1-' -> NaN Conversion_syntax -basx517 toSci '12-' -> NaN Conversion_syntax -basx518 toSci '3+' -> NaN Conversion_syntax -basx519 toSci '' -> NaN Conversion_syntax -basx520 toSci '1e-' -> NaN Conversion_syntax -basx521 toSci '7e99999a' -> NaN Conversion_syntax -basx522 toSci '7e123567890x' -> NaN Conversion_syntax -basx523 toSci '7e12356789012x' -> NaN Conversion_syntax -basx524 toSci '' -> NaN Conversion_syntax -basx525 toSci 'e100' -> NaN Conversion_syntax -basx526 toSci '\u0e5a' -> NaN Conversion_syntax -basx527 toSci '\u0b65' -> NaN Conversion_syntax -basx528 toSci '123,65' -> NaN Conversion_syntax -basx529 toSci '1.34.5' -> NaN Conversion_syntax -basx530 toSci '.123.5' -> NaN Conversion_syntax -basx531 toSci '01.35.' -> NaN Conversion_syntax -basx532 toSci '01.35-' -> NaN Conversion_syntax -basx533 toSci '0000..' -> NaN Conversion_syntax -basx534 toSci '.0000.' -> NaN Conversion_syntax -basx535 toSci '00..00' -> NaN Conversion_syntax -basx536 toSci '111e*123' -> NaN Conversion_syntax -basx537 toSci '111e123-' -> NaN Conversion_syntax -basx538 toSci '111e+12+' -> NaN Conversion_syntax -basx539 toSci '111e1-3-' -> NaN Conversion_syntax -basx540 toSci '111e1*23' -> NaN Conversion_syntax -basx541 toSci '111e1e+3' -> NaN Conversion_syntax -basx542 toSci '1e1.0' -> NaN Conversion_syntax -basx543 toSci '1e123e' -> NaN Conversion_syntax -basx544 toSci 'ten' -> NaN Conversion_syntax -basx545 toSci 'ONE' -> NaN Conversion_syntax -basx546 toSci '1e.1' -> NaN Conversion_syntax -basx547 toSci '1e1.' -> NaN Conversion_syntax -basx548 toSci '1ee' -> NaN Conversion_syntax -basx549 toSci 'e+1' -> NaN Conversion_syntax -basx550 toSci '1.23.4' -> NaN Conversion_syntax -basx551 toSci '1.2.1' -> NaN Conversion_syntax -basx552 toSci '1E+1.2' -> NaN Conversion_syntax -basx553 toSci '1E+1.2.3' -> NaN Conversion_syntax -basx554 toSci '1E++1' -> NaN Conversion_syntax -basx555 toSci '1E--1' -> NaN Conversion_syntax -basx556 toSci '1E+-1' -> NaN Conversion_syntax -basx557 toSci '1E-+1' -> NaN Conversion_syntax -basx558 toSci '1E''1' -> NaN Conversion_syntax -basx559 toSci "1E""1" -> NaN Conversion_syntax -basx560 toSci "1E""""" -> NaN Conversion_syntax --- Near-specials -basx561 toSci "qNaN" -> NaN Conversion_syntax -basx562 toSci "NaNq" -> NaN Conversion_syntax -basx563 toSci "NaNs" -> NaN Conversion_syntax -basx564 toSci "Infi" -> NaN Conversion_syntax -basx565 toSci "Infin" -> NaN Conversion_syntax -basx566 toSci "Infini" -> NaN Conversion_syntax -basx567 toSci "Infinit" -> NaN Conversion_syntax -basx568 toSci "-Infinit" -> NaN Conversion_syntax -basx569 toSci "0Inf" -> NaN Conversion_syntax -basx570 toSci "9Inf" -> NaN Conversion_syntax -basx571 toSci "-0Inf" -> NaN Conversion_syntax -basx572 toSci "-9Inf" -> NaN Conversion_syntax -basx573 toSci "-sNa" -> NaN Conversion_syntax -basx574 toSci "xNaN" -> NaN Conversion_syntax -basx575 toSci "0sNaN" -> NaN Conversion_syntax - --- some baddies with dots and Es and dots and specials -basx576 toSci 'e+1' -> NaN Conversion_syntax -basx577 toSci '.e+1' -> NaN Conversion_syntax -basx578 toSci '+.e+1' -> NaN Conversion_syntax -basx579 toSci '-.e+' -> NaN Conversion_syntax -basx580 toSci '-.e' -> NaN Conversion_syntax -basx581 toSci 'E+1' -> NaN Conversion_syntax -basx582 toSci '.E+1' -> NaN Conversion_syntax -basx583 toSci '+.E+1' -> NaN Conversion_syntax -basx584 toSci '-.E+' -> NaN Conversion_syntax -basx585 toSci '-.E' -> NaN Conversion_syntax - -basx586 toSci '.NaN' -> NaN Conversion_syntax -basx587 toSci '-.NaN' -> NaN Conversion_syntax -basx588 toSci '+.sNaN' -> NaN Conversion_syntax -basx589 toSci '+.Inf' -> NaN Conversion_syntax -basx590 toSci '.Infinity' -> NaN Conversion_syntax - --- Zeros -basx601 toSci 0.000000000 -> 0E-9 -basx602 toSci 0.00000000 -> 0E-8 -basx603 toSci 0.0000000 -> 0E-7 -basx604 toSci 0.000000 -> 0.000000 -basx605 toSci 0.00000 -> 0.00000 -basx606 toSci 0.0000 -> 0.0000 -basx607 toSci 0.000 -> 0.000 -basx608 toSci 0.00 -> 0.00 -basx609 toSci 0.0 -> 0.0 -basx610 toSci .0 -> 0.0 -basx611 toSci 0. -> 0 -basx612 toSci -.0 -> -0.0 -basx613 toSci -0. -> -0 -basx614 toSci -0.0 -> -0.0 -basx615 toSci -0.00 -> -0.00 -basx616 toSci -0.000 -> -0.000 -basx617 toSci -0.0000 -> -0.0000 -basx618 toSci -0.00000 -> -0.00000 -basx619 toSci -0.000000 -> -0.000000 -basx620 toSci -0.0000000 -> -0E-7 -basx621 toSci -0.00000000 -> -0E-8 -basx622 toSci -0.000000000 -> -0E-9 - -basx630 toSci 0.00E+0 -> 0.00 -basx631 toSci 0.00E+1 -> 0.0 -basx632 toSci 0.00E+2 -> 0 -basx633 toSci 0.00E+3 -> 0E+1 -basx634 toSci 0.00E+4 -> 0E+2 -basx635 toSci 0.00E+5 -> 0E+3 -basx636 toSci 0.00E+6 -> 0E+4 -basx637 toSci 0.00E+7 -> 0E+5 -basx638 toSci 0.00E+8 -> 0E+6 -basx639 toSci 0.00E+9 -> 0E+7 - -basx640 toSci 0.0E+0 -> 0.0 -basx641 toSci 0.0E+1 -> 0 -basx642 toSci 0.0E+2 -> 0E+1 -basx643 toSci 0.0E+3 -> 0E+2 -basx644 toSci 0.0E+4 -> 0E+3 -basx645 toSci 0.0E+5 -> 0E+4 -basx646 toSci 0.0E+6 -> 0E+5 -basx647 toSci 0.0E+7 -> 0E+6 -basx648 toSci 0.0E+8 -> 0E+7 -basx649 toSci 0.0E+9 -> 0E+8 - -basx650 toSci 0E+0 -> 0 -basx651 toSci 0E+1 -> 0E+1 -basx652 toSci 0E+2 -> 0E+2 -basx653 toSci 0E+3 -> 0E+3 -basx654 toSci 0E+4 -> 0E+4 -basx655 toSci 0E+5 -> 0E+5 -basx656 toSci 0E+6 -> 0E+6 -basx657 toSci 0E+7 -> 0E+7 -basx658 toSci 0E+8 -> 0E+8 -basx659 toSci 0E+9 -> 0E+9 - -basx660 toSci 0.0E-0 -> 0.0 -basx661 toSci 0.0E-1 -> 0.00 -basx662 toSci 0.0E-2 -> 0.000 -basx663 toSci 0.0E-3 -> 0.0000 -basx664 toSci 0.0E-4 -> 0.00000 -basx665 toSci 0.0E-5 -> 0.000000 -basx666 toSci 0.0E-6 -> 0E-7 -basx667 toSci 0.0E-7 -> 0E-8 -basx668 toSci 0.0E-8 -> 0E-9 -basx669 toSci 0.0E-9 -> 0E-10 - -basx670 toSci 0.00E-0 -> 0.00 -basx671 toSci 0.00E-1 -> 0.000 -basx672 toSci 0.00E-2 -> 0.0000 -basx673 toSci 0.00E-3 -> 0.00000 -basx674 toSci 0.00E-4 -> 0.000000 -basx675 toSci 0.00E-5 -> 0E-7 -basx676 toSci 0.00E-6 -> 0E-8 -basx677 toSci 0.00E-7 -> 0E-9 -basx678 toSci 0.00E-8 -> 0E-10 -basx679 toSci 0.00E-9 -> 0E-11 - -basx680 toSci 000000. -> 0 -basx681 toSci 00000. -> 0 -basx682 toSci 0000. -> 0 -basx683 toSci 000. -> 0 -basx684 toSci 00. -> 0 -basx685 toSci 0. -> 0 -basx686 toSci +00000. -> 0 -basx687 toSci -00000. -> -0 -basx688 toSci +0. -> 0 -basx689 toSci -0. -> -0 - --- Specials -precision: 4 -basx700 toSci "NaN" -> NaN -basx701 toSci "nan" -> NaN -basx702 toSci "nAn" -> NaN -basx703 toSci "NAN" -> NaN -basx704 toSci "+NaN" -> NaN -basx705 toSci "+nan" -> NaN -basx706 toSci "+nAn" -> NaN -basx707 toSci "+NAN" -> NaN -basx708 toSci "-NaN" -> -NaN -basx709 toSci "-nan" -> -NaN -basx710 toSci "-nAn" -> -NaN -basx711 toSci "-NAN" -> -NaN -basx712 toSci 'NaN0' -> NaN -basx713 toSci 'NaN1' -> NaN1 -basx714 toSci 'NaN12' -> NaN12 -basx715 toSci 'NaN123' -> NaN123 -basx716 toSci 'NaN1234' -> NaN1234 -basx717 toSci 'NaN01' -> NaN1 -basx718 toSci 'NaN012' -> NaN12 -basx719 toSci 'NaN0123' -> NaN123 -basx720 toSci 'NaN01234' -> NaN1234 -basx721 toSci 'NaN001' -> NaN1 -basx722 toSci 'NaN0012' -> NaN12 -basx723 toSci 'NaN00123' -> NaN123 -basx724 toSci 'NaN001234' -> NaN1234 -basx725 toSci 'NaN12345' -> NaN Conversion_syntax -basx726 toSci 'NaN123e+1' -> NaN Conversion_syntax -basx727 toSci 'NaN12.45' -> NaN Conversion_syntax -basx728 toSci 'NaN-12' -> NaN Conversion_syntax -basx729 toSci 'NaN+12' -> NaN Conversion_syntax - -basx730 toSci "sNaN" -> sNaN -basx731 toSci "snan" -> sNaN -basx732 toSci "SnAn" -> sNaN -basx733 toSci "SNAN" -> sNaN -basx734 toSci "+sNaN" -> sNaN -basx735 toSci "+snan" -> sNaN -basx736 toSci "+SnAn" -> sNaN -basx737 toSci "+SNAN" -> sNaN -basx738 toSci "-sNaN" -> -sNaN -basx739 toSci "-snan" -> -sNaN -basx740 toSci "-SnAn" -> -sNaN -basx741 toSci "-SNAN" -> -sNaN -basx742 toSci 'sNaN0000' -> sNaN -basx743 toSci 'sNaN7' -> sNaN7 -basx744 toSci 'sNaN007234' -> sNaN7234 -basx745 toSci 'sNaN72345' -> NaN Conversion_syntax -basx746 toSci 'sNaN72.45' -> NaN Conversion_syntax -basx747 toSci 'sNaN-72' -> NaN Conversion_syntax - -basx748 toSci "Inf" -> Infinity -basx749 toSci "inf" -> Infinity -basx750 toSci "iNf" -> Infinity -basx751 toSci "INF" -> Infinity -basx752 toSci "+Inf" -> Infinity -basx753 toSci "+inf" -> Infinity -basx754 toSci "+iNf" -> Infinity -basx755 toSci "+INF" -> Infinity -basx756 toSci "-Inf" -> -Infinity -basx757 toSci "-inf" -> -Infinity -basx758 toSci "-iNf" -> -Infinity -basx759 toSci "-INF" -> -Infinity - -basx760 toSci "Infinity" -> Infinity -basx761 toSci "infinity" -> Infinity -basx762 toSci "iNfInItY" -> Infinity -basx763 toSci "INFINITY" -> Infinity -basx764 toSci "+Infinity" -> Infinity -basx765 toSci "+infinity" -> Infinity -basx766 toSci "+iNfInItY" -> Infinity -basx767 toSci "+INFINITY" -> Infinity -basx768 toSci "-Infinity" -> -Infinity -basx769 toSci "-infinity" -> -Infinity -basx770 toSci "-iNfInItY" -> -Infinity -basx771 toSci "-INFINITY" -> -Infinity - --- Specials and zeros for toEng -basx772 toEng "NaN" -> NaN -basx773 toEng "-Infinity" -> -Infinity -basx774 toEng "-sNaN" -> -sNaN -basx775 toEng "-NaN" -> -NaN -basx776 toEng "+Infinity" -> Infinity -basx778 toEng "+sNaN" -> sNaN -basx779 toEng "+NaN" -> NaN -basx780 toEng "INFINITY" -> Infinity -basx781 toEng "SNAN" -> sNaN -basx782 toEng "NAN" -> NaN -basx783 toEng "infinity" -> Infinity -basx784 toEng "snan" -> sNaN -basx785 toEng "nan" -> NaN -basx786 toEng "InFINITY" -> Infinity -basx787 toEng "SnAN" -> sNaN -basx788 toEng "nAN" -> NaN -basx789 toEng "iNfinity" -> Infinity -basx790 toEng "sNan" -> sNaN -basx791 toEng "Nan" -> NaN -basx792 toEng "Infinity" -> Infinity -basx793 toEng "sNaN" -> sNaN - --- Zero toEng, etc. -basx800 toEng 0e+1 -> "0.00E+3" -- doc example - -basx801 toEng 0.000000000 -> 0E-9 -basx802 toEng 0.00000000 -> 0.00E-6 -basx803 toEng 0.0000000 -> 0.0E-6 -basx804 toEng 0.000000 -> 0.000000 -basx805 toEng 0.00000 -> 0.00000 -basx806 toEng 0.0000 -> 0.0000 -basx807 toEng 0.000 -> 0.000 -basx808 toEng 0.00 -> 0.00 -basx809 toEng 0.0 -> 0.0 -basx810 toEng .0 -> 0.0 -basx811 toEng 0. -> 0 -basx812 toEng -.0 -> -0.0 -basx813 toEng -0. -> -0 -basx814 toEng -0.0 -> -0.0 -basx815 toEng -0.00 -> -0.00 -basx816 toEng -0.000 -> -0.000 -basx817 toEng -0.0000 -> -0.0000 -basx818 toEng -0.00000 -> -0.00000 -basx819 toEng -0.000000 -> -0.000000 -basx820 toEng -0.0000000 -> -0.0E-6 -basx821 toEng -0.00000000 -> -0.00E-6 -basx822 toEng -0.000000000 -> -0E-9 - -basx830 toEng 0.00E+0 -> 0.00 -basx831 toEng 0.00E+1 -> 0.0 -basx832 toEng 0.00E+2 -> 0 -basx833 toEng 0.00E+3 -> 0.00E+3 -basx834 toEng 0.00E+4 -> 0.0E+3 -basx835 toEng 0.00E+5 -> 0E+3 -basx836 toEng 0.00E+6 -> 0.00E+6 -basx837 toEng 0.00E+7 -> 0.0E+6 -basx838 toEng 0.00E+8 -> 0E+6 -basx839 toEng 0.00E+9 -> 0.00E+9 - -basx840 toEng 0.0E+0 -> 0.0 -basx841 toEng 0.0E+1 -> 0 -basx842 toEng 0.0E+2 -> 0.00E+3 -basx843 toEng 0.0E+3 -> 0.0E+3 -basx844 toEng 0.0E+4 -> 0E+3 -basx845 toEng 0.0E+5 -> 0.00E+6 -basx846 toEng 0.0E+6 -> 0.0E+6 -basx847 toEng 0.0E+7 -> 0E+6 -basx848 toEng 0.0E+8 -> 0.00E+9 -basx849 toEng 0.0E+9 -> 0.0E+9 - -basx850 toEng 0E+0 -> 0 -basx851 toEng 0E+1 -> 0.00E+3 -basx852 toEng 0E+2 -> 0.0E+3 -basx853 toEng 0E+3 -> 0E+3 -basx854 toEng 0E+4 -> 0.00E+6 -basx855 toEng 0E+5 -> 0.0E+6 -basx856 toEng 0E+6 -> 0E+6 -basx857 toEng 0E+7 -> 0.00E+9 -basx858 toEng 0E+8 -> 0.0E+9 -basx859 toEng 0E+9 -> 0E+9 - -basx860 toEng 0.0E-0 -> 0.0 -basx861 toEng 0.0E-1 -> 0.00 -basx862 toEng 0.0E-2 -> 0.000 -basx863 toEng 0.0E-3 -> 0.0000 -basx864 toEng 0.0E-4 -> 0.00000 -basx865 toEng 0.0E-5 -> 0.000000 -basx866 toEng 0.0E-6 -> 0.0E-6 -basx867 toEng 0.0E-7 -> 0.00E-6 -basx868 toEng 0.0E-8 -> 0E-9 -basx869 toEng 0.0E-9 -> 0.0E-9 - -basx870 toEng 0.00E-0 -> 0.00 -basx871 toEng 0.00E-1 -> 0.000 -basx872 toEng 0.00E-2 -> 0.0000 -basx873 toEng 0.00E-3 -> 0.00000 -basx874 toEng 0.00E-4 -> 0.000000 -basx875 toEng 0.00E-5 -> 0.0E-6 -basx876 toEng 0.00E-6 -> 0.00E-6 -basx877 toEng 0.00E-7 -> 0E-9 -basx878 toEng 0.00E-8 -> 0.0E-9 -basx879 toEng 0.00E-9 -> 0.00E-9 - - -rounding: half_up -precision: 9 --- subnormals and overflows -basx906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded -basx907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded -basx908 toSci '0.9e-999999999' -> 9E-1000000000 Subnormal -basx909 toSci '0.09e-999999999' -> 9E-1000000001 Subnormal -basx910 toSci '0.1e1000000000' -> 1E+999999999 -basx911 toSci '10e-1000000000' -> 1.0E-999999999 -basx912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded -basx913 toSci '99e-9999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -basx914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded -basx915 toSci '1111e-9999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -basx916 toSci '1111e-99999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -basx917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded --- negatives the same -basx918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded -basx919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded -basx920 toSci '-0.9e-999999999' -> -9E-1000000000 Subnormal -basx921 toSci '-0.09e-999999999' -> -9E-1000000001 Subnormal -basx922 toSci '-0.1e1000000000' -> -1E+999999999 -basx923 toSci '-10e-1000000000' -> -1.0E-999999999 -basx924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded -basx925 toSci '-99e-9999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -basx926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded -basx927 toSci '-1111e-9999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -basx928 toSci '-1111e-99999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -basx929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded - -rounding: ceiling -basx930 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded -basx931 toSci '-7e1000000000' -> -9.99999999E+999999999 Overflow Inexact Rounded -rounding: up -basx932 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded -basx933 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded -rounding: down -basx934 toSci '7e1000000000' -> 9.99999999E+999999999 Overflow Inexact Rounded -basx935 toSci '-7e1000000000' -> -9.99999999E+999999999 Overflow Inexact Rounded -rounding: floor -basx936 toSci '7e1000000000' -> 9.99999999E+999999999 Overflow Inexact Rounded -basx937 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded - -rounding: half_up -basx938 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded -basx939 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded -rounding: half_even -basx940 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded -basx941 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded -rounding: half_down -basx942 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded -basx943 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded - -rounding: half_even - - --- Giga exponent initial tests -maxExponent: 999999999 -minExponent: -999999999 - -basx951 toSci '99e999' -> '9.9E+1000' -basx952 toSci '999e999' -> '9.99E+1001' -basx953 toSci '0.9e-999' -> '9E-1000' -basx954 toSci '0.09e-999' -> '9E-1001' -basx955 toSci '0.1e1001' -> '1E+1000' -basx956 toSci '10e-1001' -> '1.0E-1000' -basx957 toSci '0.9e9999' -> '9E+9998' -basx958 toSci '99e-9999' -> '9.9E-9998' -basx959 toSci '111e9997' -> '1.11E+9999' -basx960 toSci '1111e-9999' -> '1.111E-9996' -basx961 toSci '99e9999' -> '9.9E+10000' -basx962 toSci '999e9999' -> '9.99E+10001' -basx963 toSci '0.9e-9999' -> '9E-10000' -basx964 toSci '0.09e-9999' -> '9E-10001' -basx965 toSci '0.1e10001' -> '1E+10000' -basx966 toSci '10e-10001' -> '1.0E-10000' -basx967 toSci '0.9e99999' -> '9E+99998' -basx968 toSci '99e-99999' -> '9.9E-99998' -basx969 toSci '111e99999' -> '1.11E+100001' -basx970 toSci '1111e-99999' -> '1.111E-99996' -basx971 toSci "0.09e999999999" -> '9E+999999997' -basx972 toSci "0.9e999999999" -> '9E+999999998' -basx973 toSci "9e999999999" -> '9E+999999999' -basx974 toSci "9.9e999999999" -> '9.9E+999999999' -basx975 toSci "9.99e999999999" -> '9.99E+999999999' -basx976 toSci "9.99e-999999999" -> '9.99E-999999999' -basx977 toSci "9.9e-999999999" -> '9.9E-999999999' -basx978 toSci "9e-999999999" -> '9E-999999999' -basx979 toSci "99e-999999999" -> '9.9E-999999998' -basx980 toSci "999e-999999999" -> '9.99E-999999997' - --- Varying exponent maximums -precision: 5 -maxexponent: 0 -minexponent: 0 -emax001 toSci -1E+2 -> -Infinity Overflow Inexact Rounded -emax002 toSci -100 -> -Infinity Overflow Inexact Rounded -emax003 toSci -10 -> -Infinity Overflow Inexact Rounded -emax004 toSci -9.9 -> -9.9 -emax005 toSci -9 -> -9 -emax006 toSci -1 -> -1 -emax007 toSci 0 -> 0 -emax008 toSci 1 -> 1 -emax009 toSci 9 -> 9 -emax010 toSci 9.9 -> 9.9 -emax011 toSci 10 -> Infinity Overflow Inexact Rounded -emax012 toSci 100 -> Infinity Overflow Inexact Rounded -emax013 toSci 1E+2 -> Infinity Overflow Inexact Rounded -emax014 toSci 0.99 -> 0.99 Subnormal -emax015 toSci 0.1 -> 0.1 Subnormal -emax016 toSci 0.01 -> 0.01 Subnormal -emax017 toSci 1E-1 -> 0.1 Subnormal -emax018 toSci 1E-2 -> 0.01 Subnormal - -maxexponent: 1 -minexponent: -1 -emax100 toSci -1E+3 -> -Infinity Overflow Inexact Rounded -emax101 toSci -1E+2 -> -Infinity Overflow Inexact Rounded -emax102 toSci -100 -> -Infinity Overflow Inexact Rounded -emax103 toSci -10 -> -10 -emax104 toSci -9.9 -> -9.9 -emax105 toSci -9 -> -9 -emax106 toSci -1 -> -1 -emax107 toSci 0 -> 0 -emax108 toSci 1 -> 1 -emax109 toSci 9 -> 9 -emax110 toSci 9.9 -> 9.9 -emax111 toSci 10 -> 10 -emax112 toSci 100 -> Infinity Overflow Inexact Rounded -emax113 toSci 1E+2 -> Infinity Overflow Inexact Rounded -emax114 toSci 1E+3 -> Infinity Overflow Inexact Rounded -emax115 toSci 0.99 -> 0.99 -emax116 toSci 0.1 -> 0.1 -emax117 toSci 0.01 -> 0.01 Subnormal -emax118 toSci 1E-1 -> 0.1 -emax119 toSci 1E-2 -> 0.01 Subnormal -emax120 toSci 1E-3 -> 0.001 Subnormal -emax121 toSci 1.1E-3 -> 0.0011 Subnormal -emax122 toSci 1.11E-3 -> 0.00111 Subnormal -emax123 toSci 1.111E-3 -> 0.00111 Subnormal Underflow Inexact Rounded -emax124 toSci 1.1111E-3 -> 0.00111 Subnormal Underflow Inexact Rounded -emax125 toSci 1.11111E-3 -> 0.00111 Subnormal Underflow Inexact Rounded - -maxexponent: 2 -minexponent: -2 -precision: 9 -emax200 toSci -1E+3 -> -Infinity Overflow Inexact Rounded -emax201 toSci -1E+2 -> -1E+2 -emax202 toSci -100 -> -100 -emax203 toSci -10 -> -10 -emax204 toSci -9.9 -> -9.9 -emax205 toSci -9 -> -9 -emax206 toSci -1 -> -1 -emax207 toSci 0 -> 0 -emax208 toSci 1 -> 1 -emax209 toSci 9 -> 9 -emax210 toSci 9.9 -> 9.9 -emax211 toSci 10 -> 10 -emax212 toSci 100 -> 100 -emax213 toSci 1E+2 -> 1E+2 -emax214 toSci 1E+3 -> Infinity Overflow Inexact Rounded -emax215 toSci 0.99 -> 0.99 -emax216 toSci 0.1 -> 0.1 -emax217 toSci 0.01 -> 0.01 -emax218 toSci 0.001 -> 0.001 Subnormal -emax219 toSci 1E-1 -> 0.1 -emax220 toSci 1E-2 -> 0.01 -emax221 toSci 1E-3 -> 0.001 Subnormal -emax222 toSci 1E-4 -> 0.0001 Subnormal -emax223 toSci 1E-5 -> 0.00001 Subnormal -emax224 toSci 1E-6 -> 0.000001 Subnormal -emax225 toSci 1E-7 -> 1E-7 Subnormal -emax226 toSci 1E-8 -> 1E-8 Subnormal -emax227 toSci 1E-9 -> 1E-9 Subnormal -emax228 toSci 1E-10 -> 1E-10 Subnormal -emax229 toSci 1E-11 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped -emax230 toSci 1E-12 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped - -maxexponent: 7 -minexponent: -7 -emax231 toSci 1E-8 -> 1E-8 Subnormal -emax232 toSci 1E-7 -> 1E-7 -emax233 toSci 1E-6 -> 0.000001 -emax234 toSci 1E-5 -> 0.00001 -emax235 toSci 1E+5 -> 1E+5 -emax236 toSci 1E+6 -> 1E+6 -emax237 toSci 1E+7 -> 1E+7 -emax238 toSci 1E+8 -> Infinity Overflow Inexact Rounded - -maxexponent: 9 -minexponent: -9 -emax240 toSci 1E-21 -> 0E-17 Subnormal Underflow Inexact Rounded Clamped -emax241 toSci 1E-10 -> 1E-10 Subnormal -emax242 toSci 1E-9 -> 1E-9 -emax243 toSci 1E-8 -> 1E-8 -emax244 toSci 1E-7 -> 1E-7 -emax245 toSci 1E+7 -> 1E+7 -emax246 toSci 1E+8 -> 1E+8 -emax247 toSci 1E+9 -> 1E+9 -emax248 toSci 1E+10 -> Infinity Overflow Inexact Rounded - -maxexponent: 10 -- boundary -minexponent: -10 -emax250 toSci 1E-21 -> 0E-18 Underflow Subnormal Inexact Rounded Clamped -emax251 toSci 1E-11 -> 1E-11 Subnormal -emax252 toSci 1E-10 -> 1E-10 -emax253 toSci 1E-9 -> 1E-9 -emax254 toSci 1E-8 -> 1E-8 -emax255 toSci 1E+8 -> 1E+8 -emax256 toSci 1E+9 -> 1E+9 -emax257 toSci 1E+10 -> 1E+10 -emax258 toSci 1E+11 -> Infinity Overflow Inexact Rounded - -emax260 toSci 1.00E-21 -> 0E-18 Underflow Subnormal Inexact Rounded Clamped -emax261 toSci 1.00E-11 -> 1.00E-11 Subnormal -emax262 toSci 1.00E-10 -> 1.00E-10 -emax263 toSci 1.00E-9 -> 1.00E-9 -emax264 toSci 1.00E-8 -> 1.00E-8 -emax265 toSci 1.00E+8 -> 1.00E+8 -emax266 toSci 1.00E+9 -> 1.00E+9 -emax267 toSci 1.00E+10 -> 1.00E+10 -emax268 toSci 1.00E+11 -> Infinity Overflow Inexact Rounded -emax270 toSci 9.99E-21 -> 0E-18 Underflow Subnormal Inexact Rounded Clamped -emax271 toSci 9.99E-11 -> 9.99E-11 Subnormal -emax272 toSci 9.99E-10 -> 9.99E-10 -emax273 toSci 9.99E-9 -> 9.99E-9 -emax274 toSci 9.99E-8 -> 9.99E-8 -emax275 toSci 9.99E+8 -> 9.99E+8 -emax276 toSci 9.99E+9 -> 9.99E+9 -emax277 toSci 9.99E+10 -> 9.99E+10 -emax278 toSci 9.99E+11 -> Infinity Overflow Inexact Rounded - -maxexponent: 99 -minexponent: -99 -emax280 toSci 1E-120 -> 0E-107 Underflow Subnormal Inexact Rounded Clamped -emax281 toSci 1E-100 -> 1E-100 Subnormal -emax282 toSci 1E-99 -> 1E-99 -emax283 toSci 1E-98 -> 1E-98 -emax284 toSci 1E+98 -> 1E+98 -emax285 toSci 1E+99 -> 1E+99 -emax286 toSci 1E+100 -> Infinity Overflow Inexact Rounded - -maxexponent: 999 -minexponent: -999 -emax291 toSci 1E-1000 -> 1E-1000 Subnormal -emax292 toSci 1E-999 -> 1E-999 -emax293 toSci 1E+999 -> 1E+999 -emax294 toSci 1E+1000 -> Infinity Overflow Inexact Rounded -maxexponent: 9999 -minexponent: -9999 -emax301 toSci 1E-10000 -> 1E-10000 Subnormal -emax302 toSci 1E-9999 -> 1E-9999 -emax303 toSci 1E+9999 -> 1E+9999 -emax304 toSci 1E+10000 -> Infinity Overflow Inexact Rounded -maxexponent: 99999 -minexponent: -99999 -emax311 toSci 1E-100000 -> 1E-100000 Subnormal -emax312 toSci 1E-99999 -> 1E-99999 -emax313 toSci 1E+99999 -> 1E+99999 -emax314 toSci 1E+100000 -> Infinity Overflow Inexact Rounded -maxexponent: 999999 -minexponent: -999999 -emax321 toSci 1E-1000000 -> 1E-1000000 Subnormal -emax322 toSci 1E-999999 -> 1E-999999 -emax323 toSci 1E+999999 -> 1E+999999 -emax324 toSci 1E+1000000 -> Infinity Overflow Inexact Rounded -maxexponent: 9999999 -minexponent: -9999999 -emax331 toSci 1E-10000000 -> 1E-10000000 Subnormal -emax332 toSci 1E-9999999 -> 1E-9999999 -emax333 toSci 1E+9999999 -> 1E+9999999 -emax334 toSci 1E+10000000 -> Infinity Overflow Inexact Rounded -maxexponent: 99999999 -minexponent: -99999999 -emax341 toSci 1E-100000000 -> 1E-100000000 Subnormal -emax342 toSci 1E-99999999 -> 1E-99999999 -emax343 toSci 1E+99999999 -> 1E+99999999 -emax344 toSci 1E+100000000 -> Infinity Overflow Inexact Rounded - -maxexponent: 999999999 -minexponent: -999999999 -emax347 toSci 1E-1000000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -emax348 toSci 1E-1000000007 -> 1E-1000000007 Subnormal -emax349 toSci 1E-1000000000 -> 1E-1000000000 Subnormal -emax350 toSci 1E-999999999 -> 1E-999999999 -emax351 toSci 1E+999999999 -> 1E+999999999 -emax352 toSci 1E+1000000000 -> Infinity Overflow Inexact Rounded -emax353 toSci 1.000E-1000000000 -> 1.000E-1000000000 Subnormal -emax354 toSci 1.000E-999999999 -> 1.000E-999999999 -emax355 toSci 1.000E+999999999 -> 1.000E+999999999 -emax356 toSci 1.000E+1000000000 -> Infinity Overflow Inexact Rounded -emax357 toSci 1.001E-1000000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -emax358 toSci 1.001E-1000000007 -> 1E-1000000007 Subnormal Inexact Rounded Underflow -emax359 toSci 1.001E-1000000000 -> 1.001E-1000000000 Subnormal -emax360 toSci 1.001E-999999999 -> 1.001E-999999999 -emax361 toSci 1.001E+999999999 -> 1.001E+999999999 -emax362 toSci 1.001E+1000000000 -> Infinity Overflow Inexact Rounded -emax363 toSci 9.000E-1000000000 -> 9.000E-1000000000 Subnormal -emax364 toSci 9.000E-999999999 -> 9.000E-999999999 -emax365 toSci 9.000E+999999999 -> 9.000E+999999999 -emax366 toSci 9.000E+1000000000 -> Infinity Overflow Inexact Rounded -emax367 toSci 9.999E-1000000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -emax368 toSci 9.999E-1000000008 -> 1E-1000000007 Underflow Subnormal Inexact Rounded -emax369 toSci 9.999E-1000000007 -> 1.0E-1000000006 Underflow Subnormal Inexact Rounded -emax370 toSci 9.999E-1000000000 -> 9.999E-1000000000 Subnormal -emax371 toSci 9.999E-999999999 -> 9.999E-999999999 -emax372 toSci 9.999E+999999999 -> 9.999E+999999999 - -emax373 toSci 9.999E+1000000000 -> Infinity Overflow Inexact Rounded -emax374 toSci -1E-1000000000 -> -1E-1000000000 Subnormal -emax375 toSci -1E-999999999 -> -1E-999999999 -emax376 toSci -1E+999999999 -> -1E+999999999 -emax377 toSci -1E+1000000000 -> -Infinity Overflow Inexact Rounded -emax378 toSci -1.000E-1000000000 -> -1.000E-1000000000 Subnormal -emax379 toSci -1.000E-999999999 -> -1.000E-999999999 -emax380 toSci -1.000E+999999999 -> -1.000E+999999999 -emax381 toSci -1.000E+1000000000 -> -Infinity Overflow Inexact Rounded -emax382 toSci -1.001E-1000000008 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -emax383 toSci -1.001E-999999999 -> -1.001E-999999999 -emax384 toSci -1.001E+999999999 -> -1.001E+999999999 -emax385 toSci -1.001E+1000000000 -> -Infinity Overflow Inexact Rounded -emax386 toSci -9.000E-1000000123 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -emax387 toSci -9.000E-999999999 -> -9.000E-999999999 -emax388 toSci -9.000E+999999999 -> -9.000E+999999999 -emax389 toSci -9.000E+1000000000 -> -Infinity Overflow Inexact Rounded -emax390 toSci -9.999E-1000000008 -> -1E-1000000007 Underflow Subnormal Inexact Rounded -emax391 toSci -9.999E-999999999 -> -9.999E-999999999 -emax392 toSci -9.999E+999999999 -> -9.999E+999999999 -emax393 toSci -9.999E+1000000000 -> -Infinity Overflow Inexact Rounded - --- Now check 854 rounding of subnormals and proper underflow to 0 -precision: 5 -maxExponent: 999 -minexponent: -999 -rounding: half_even - -emax400 toSci 1.0000E-999 -> 1.0000E-999 -emax401 toSci 0.1E-999 -> 1E-1000 Subnormal -emax402 toSci 0.1000E-999 -> 1.000E-1000 Subnormal -emax403 toSci 0.0100E-999 -> 1.00E-1001 Subnormal -emax404 toSci 0.0010E-999 -> 1.0E-1002 Subnormal -emax405 toSci 0.0001E-999 -> 1E-1003 Subnormal -emax406 toSci 0.00010E-999 -> 1E-1003 Subnormal Rounded -emax407 toSci 0.00013E-999 -> 1E-1003 Underflow Subnormal Inexact Rounded -emax408 toSci 0.00015E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax409 toSci 0.00017E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax410 toSci 0.00023E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax411 toSci 0.00025E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax412 toSci 0.00027E-999 -> 3E-1003 Underflow Subnormal Inexact Rounded -emax413 toSci 0.000149E-999 -> 1E-1003 Underflow Subnormal Inexact Rounded -emax414 toSci 0.000150E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax415 toSci 0.000151E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax416 toSci 0.000249E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax417 toSci 0.000250E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded -emax418 toSci 0.000251E-999 -> 3E-1003 Underflow Subnormal Inexact Rounded -emax419 toSci 0.00009E-999 -> 1E-1003 Underflow Subnormal Inexact Rounded -emax420 toSci 0.00005E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -emax421 toSci 0.00003E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -emax422 toSci 0.000009E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -emax423 toSci 0.000005E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -emax424 toSci 0.000003E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped - -emax425 toSci 0.001049E-999 -> 1.0E-1002 Underflow Subnormal Inexact Rounded -emax426 toSci 0.001050E-999 -> 1.0E-1002 Underflow Subnormal Inexact Rounded -emax427 toSci 0.001051E-999 -> 1.1E-1002 Underflow Subnormal Inexact Rounded -emax428 toSci 0.001149E-999 -> 1.1E-1002 Underflow Subnormal Inexact Rounded -emax429 toSci 0.001150E-999 -> 1.2E-1002 Underflow Subnormal Inexact Rounded -emax430 toSci 0.001151E-999 -> 1.2E-1002 Underflow Subnormal Inexact Rounded - -emax432 toSci 0.010049E-999 -> 1.00E-1001 Underflow Subnormal Inexact Rounded -emax433 toSci 0.010050E-999 -> 1.00E-1001 Underflow Subnormal Inexact Rounded -emax434 toSci 0.010051E-999 -> 1.01E-1001 Underflow Subnormal Inexact Rounded -emax435 toSci 0.010149E-999 -> 1.01E-1001 Underflow Subnormal Inexact Rounded -emax436 toSci 0.010150E-999 -> 1.02E-1001 Underflow Subnormal Inexact Rounded -emax437 toSci 0.010151E-999 -> 1.02E-1001 Underflow Subnormal Inexact Rounded - -emax440 toSci 0.10103E-999 -> 1.010E-1000 Underflow Subnormal Inexact Rounded -emax441 toSci 0.10105E-999 -> 1.010E-1000 Underflow Subnormal Inexact Rounded -emax442 toSci 0.10107E-999 -> 1.011E-1000 Underflow Subnormal Inexact Rounded -emax443 toSci 0.10113E-999 -> 1.011E-1000 Underflow Subnormal Inexact Rounded -emax444 toSci 0.10115E-999 -> 1.012E-1000 Underflow Subnormal Inexact Rounded -emax445 toSci 0.10117E-999 -> 1.012E-1000 Underflow Subnormal Inexact Rounded - -emax450 toSci 1.10730E-1000 -> 1.107E-1000 Underflow Subnormal Inexact Rounded -emax451 toSci 1.10750E-1000 -> 1.108E-1000 Underflow Subnormal Inexact Rounded -emax452 toSci 1.10770E-1000 -> 1.108E-1000 Underflow Subnormal Inexact Rounded -emax453 toSci 1.10830E-1000 -> 1.108E-1000 Underflow Subnormal Inexact Rounded -emax454 toSci 1.10850E-1000 -> 1.108E-1000 Underflow Subnormal Inexact Rounded -emax455 toSci 1.10870E-1000 -> 1.109E-1000 Underflow Subnormal Inexact Rounded - --- make sure sign OK -emax456 toSci -0.10103E-999 -> -1.010E-1000 Underflow Subnormal Inexact Rounded -emax457 toSci -0.10105E-999 -> -1.010E-1000 Underflow Subnormal Inexact Rounded -emax458 toSci -0.10107E-999 -> -1.011E-1000 Underflow Subnormal Inexact Rounded -emax459 toSci -0.10113E-999 -> -1.011E-1000 Underflow Subnormal Inexact Rounded -emax460 toSci -0.10115E-999 -> -1.012E-1000 Underflow Subnormal Inexact Rounded -emax461 toSci -0.10117E-999 -> -1.012E-1000 Underflow Subnormal Inexact Rounded - --- '999s' cases -emax464 toSci 999999E-999 -> 1.0000E-993 Inexact Rounded -emax465 toSci 99999.0E-999 -> 9.9999E-995 Rounded -emax466 toSci 99999.E-999 -> 9.9999E-995 -emax467 toSci 9999.9E-999 -> 9.9999E-996 -emax468 toSci 999.99E-999 -> 9.9999E-997 -emax469 toSci 99.999E-999 -> 9.9999E-998 -emax470 toSci 9.9999E-999 -> 9.9999E-999 -emax471 toSci 0.99999E-999 -> 1.0000E-999 Underflow Subnormal Inexact Rounded -emax472 toSci 0.099999E-999 -> 1.000E-1000 Underflow Subnormal Inexact Rounded -emax473 toSci 0.0099999E-999 -> 1.00E-1001 Underflow Subnormal Inexact Rounded -emax474 toSci 0.00099999E-999 -> 1.0E-1002 Underflow Subnormal Inexact Rounded -emax475 toSci 0.000099999E-999 -> 1E-1003 Underflow Subnormal Inexact Rounded -emax476 toSci 0.0000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -emax477 toSci 0.00000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -emax478 toSci 0.000000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped - --- Exponents with insignificant leading zeros -precision: 16 -maxExponent: 999999999 -minexponent: -999999999 -basx1001 toSci 1e999999999 -> 1E+999999999 -basx1002 toSci 1e0999999999 -> 1E+999999999 -basx1003 toSci 1e00999999999 -> 1E+999999999 -basx1004 toSci 1e000999999999 -> 1E+999999999 -basx1005 toSci 1e000000000000999999999 -> 1E+999999999 -basx1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded -basx1007 toSci 1e-999999999 -> 1E-999999999 -basx1008 toSci 1e-0999999999 -> 1E-999999999 -basx1009 toSci 1e-00999999999 -> 1E-999999999 -basx1010 toSci 1e-000999999999 -> 1E-999999999 -basx1011 toSci 1e-000000000000999999999 -> 1E-999999999 -basx1012 toSci 1e-000000000001000000007 -> 1E-1000000007 Subnormal - --- Edge cases for int32 exponents... -basx1021 tosci 1e+2147483649 -> Infinity Overflow Inexact Rounded -basx1022 tosci 1e+2147483648 -> Infinity Overflow Inexact Rounded -basx1023 tosci 1e+2147483647 -> Infinity Overflow Inexact Rounded -basx1024 tosci 1e-2147483647 -> 0E-1000000014 Underflow Subnormal Inexact Rounded Clamped -basx1025 tosci 1e-2147483648 -> 0E-1000000014 Underflow Subnormal Inexact Rounded Clamped -basx1026 tosci 1e-2147483649 -> 0E-1000000014 Underflow Subnormal Inexact Rounded Clamped --- same unbalanced -precision: 7 -maxExponent: 96 -minexponent: -95 -basx1031 tosci 1e+2147483649 -> Infinity Overflow Inexact Rounded -basx1032 tosci 1e+2147483648 -> Infinity Overflow Inexact Rounded -basx1033 tosci 1e+2147483647 -> Infinity Overflow Inexact Rounded -basx1034 tosci 1e-2147483647 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -basx1035 tosci 1e-2147483648 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -basx1036 tosci 1e-2147483649 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped - --- check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 -basx1041 toSci 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -basx1042 toSci 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -basx1043 toSci 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow - --- clamped zeros [see also clamp.decTest] -precision: 34 -maxExponent: 6144 -minExponent: -6143 - -basx1061 apply 0e+10000 -> 0E+6144 Clamped -basx1062 apply 0e-10000 -> 0E-6176 Clamped -basx1063 apply -0e+10000 -> -0E+6144 Clamped -basx1064 apply -0e-10000 -> -0E-6176 Clamped - -precision: 16 -maxExponent: 384 -minExponent: -383 - -basx1065 apply 0e+10000 -> 0E+384 Clamped -basx1066 apply 0e-10000 -> 0E-398 Clamped -basx1067 apply -0e+10000 -> -0E+384 Clamped -basx1068 apply -0e-10000 -> -0E-398 Clamped - --- same with IEEE clamping -clamp: 1 - -precision: 34 -maxExponent: 6144 -minExponent: -6143 - -basx1071 apply 0e+10000 -> 0E+6111 Clamped -basx1072 apply 0e-10000 -> 0E-6176 Clamped -basx1073 apply -0e+10000 -> -0E+6111 Clamped -basx1074 apply -0e-10000 -> -0E-6176 Clamped - -precision: 16 -maxExponent: 384 -minExponent: -383 - -basx1075 apply 0e+10000 -> 0E+369 Clamped -basx1076 apply 0e-10000 -> 0E-398 Clamped -basx1077 apply -0e+10000 -> -0E+369 Clamped -basx1078 apply -0e-10000 -> -0E-398 Clamped - - diff --git a/qdecimal/test/tc_full/clamp.decTest b/qdecimal/test/tc_full/clamp.decTest deleted file mode 100644 index 1134671..0000000 --- a/qdecimal/test/tc_full/clamp.decTest +++ /dev/null @@ -1,211 +0,0 @@ ------------------------------------------------------------------------- --- clamp.decTest -- clamped exponent tests (format-independent) -- --- Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests uses the same limits as the 8-byte concrete --- representation, but applies clamping without using format-specific --- conversions. - -extended: 1 -precision: 16 -rounding: half_even -maxExponent: 384 -minExponent: -383 -clamp: 1 - --- General testcases - --- Normality -clam010 apply 1234567890123456 -> 1234567890123456 -clam011 apply 1234567890123456.0 -> 1234567890123456 Rounded -clam012 apply 1234567890123456.1 -> 1234567890123456 Rounded Inexact -clam013 apply -1234567890123456 -> -1234567890123456 -clam014 apply -1234567890123456.0 -> -1234567890123456 Rounded -clam015 apply -1234567890123456.1 -> -1234567890123456 Rounded Inexact - - --- Nmax and similar -clam022 apply 9.999999999999999E+384 -> 9.999999999999999E+384 -clam024 apply 1.234567890123456E+384 -> 1.234567890123456E+384 --- fold-downs (more below) -clam030 apply 1.23E+384 -> 1.230000000000000E+384 Clamped -clam032 apply 1E+384 -> 1.000000000000000E+384 Clamped - -clam051 apply 12345 -> 12345 -clam053 apply 1234 -> 1234 -clam055 apply 123 -> 123 -clam057 apply 12 -> 12 -clam059 apply 1 -> 1 -clam061 apply 1.23 -> 1.23 -clam063 apply 123.45 -> 123.45 - --- Nmin and below -clam071 apply 1E-383 -> 1E-383 -clam073 apply 1.000000000000000E-383 -> 1.000000000000000E-383 -clam075 apply 1.000000000000001E-383 -> 1.000000000000001E-383 - -clam077 apply 0.100000000000000E-383 -> 1.00000000000000E-384 Subnormal -clam079 apply 0.000000000000010E-383 -> 1.0E-397 Subnormal -clam081 apply 0.00000000000001E-383 -> 1E-397 Subnormal -clam083 apply 0.000000000000001E-383 -> 1E-398 Subnormal - --- underflows -clam090 apply 1e-398 -> #0000000000000001 Subnormal -clam091 apply 1.9e-398 -> #0000000000000002 Subnormal Underflow Inexact Rounded -clam092 apply 1.1e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded -clam093 apply 1.00000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded -clam094 apply 1.00000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded -clam095 apply 1.000000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded -clam096 apply 0.1e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped -clam097 apply 0.00000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped -clam098 apply 0.00000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped -clam099 apply 0.000000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped - --- Same again, negatives --- Nmax and similar -clam122 apply -9.999999999999999E+384 -> -9.999999999999999E+384 -clam124 apply -1.234567890123456E+384 -> -1.234567890123456E+384 --- fold-downs (more below) -clam130 apply -1.23E+384 -> -1.230000000000000E+384 Clamped -clam132 apply -1E+384 -> -1.000000000000000E+384 Clamped - -clam151 apply -12345 -> -12345 -clam153 apply -1234 -> -1234 -clam155 apply -123 -> -123 -clam157 apply -12 -> -12 -clam159 apply -1 -> -1 -clam161 apply -1.23 -> -1.23 -clam163 apply -123.45 -> -123.45 - --- Nmin and below -clam171 apply -1E-383 -> -1E-383 -clam173 apply -1.000000000000000E-383 -> -1.000000000000000E-383 -clam175 apply -1.000000000000001E-383 -> -1.000000000000001E-383 - -clam177 apply -0.100000000000000E-383 -> -1.00000000000000E-384 Subnormal -clam179 apply -0.000000000000010E-383 -> -1.0E-397 Subnormal -clam181 apply -0.00000000000001E-383 -> -1E-397 Subnormal -clam183 apply -0.000000000000001E-383 -> -1E-398 Subnormal - --- underflows -clam189 apply -1e-398 -> #8000000000000001 Subnormal -clam190 apply -1.0e-398 -> #8000000000000001 Subnormal Rounded -clam191 apply -1.9e-398 -> #8000000000000002 Subnormal Underflow Inexact Rounded -clam192 apply -1.1e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded -clam193 apply -1.00000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded -clam194 apply -1.00000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded -clam195 apply -1.000000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded -clam196 apply -0.1e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped -clam197 apply -0.00000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped -clam198 apply -0.00000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped -clam199 apply -0.000000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped - --- zeros -clam401 apply 0E-500 -> 0E-398 Clamped -clam402 apply 0E-400 -> 0E-398 Clamped -clam403 apply 0E-398 -> 0E-398 -clam404 apply 0.000000000000000E-383 -> 0E-398 -clam405 apply 0E-2 -> 0.00 -clam406 apply 0 -> 0 -clam407 apply 0E+3 -> 0E+3 -clam408 apply 0E+369 -> 0E+369 --- clamped zeros... -clam410 apply 0E+370 -> 0E+369 Clamped -clam411 apply 0E+384 -> 0E+369 Clamped -clam412 apply 0E+400 -> 0E+369 Clamped -clam413 apply 0E+500 -> 0E+369 Clamped - --- negative zeros -clam420 apply -0E-500 -> -0E-398 Clamped -clam421 apply -0E-400 -> -0E-398 Clamped -clam422 apply -0E-398 -> -0E-398 -clam423 apply -0.000000000000000E-383 -> -0E-398 -clam424 apply -0E-2 -> -0.00 -clam425 apply -0 -> -0 -clam426 apply -0E+3 -> -0E+3 -clam427 apply -0E+369 -> -0E+369 --- clamped zeros... -clam431 apply -0E+370 -> -0E+369 Clamped -clam432 apply -0E+384 -> -0E+369 Clamped -clam433 apply -0E+400 -> -0E+369 Clamped -clam434 apply -0E+500 -> -0E+369 Clamped - --- fold-down full sequence -clam601 apply 1E+384 -> 1.000000000000000E+384 Clamped -clam603 apply 1E+383 -> 1.00000000000000E+383 Clamped -clam605 apply 1E+382 -> 1.0000000000000E+382 Clamped -clam607 apply 1E+381 -> 1.000000000000E+381 Clamped -clam609 apply 1E+380 -> 1.00000000000E+380 Clamped -clam611 apply 1E+379 -> 1.0000000000E+379 Clamped -clam613 apply 1E+378 -> 1.000000000E+378 Clamped -clam615 apply 1E+377 -> 1.00000000E+377 Clamped -clam617 apply 1E+376 -> 1.0000000E+376 Clamped -clam619 apply 1E+375 -> 1.000000E+375 Clamped -clam621 apply 1E+374 -> 1.00000E+374 Clamped -clam623 apply 1E+373 -> 1.0000E+373 Clamped -clam625 apply 1E+372 -> 1.000E+372 Clamped -clam627 apply 1E+371 -> 1.00E+371 Clamped -clam629 apply 1E+370 -> 1.0E+370 Clamped -clam631 apply 1E+369 -> 1E+369 -clam633 apply 1E+368 -> 1E+368 --- same with 9s -clam641 apply 9E+384 -> 9.000000000000000E+384 Clamped -clam643 apply 9E+383 -> 9.00000000000000E+383 Clamped -clam645 apply 9E+382 -> 9.0000000000000E+382 Clamped -clam647 apply 9E+381 -> 9.000000000000E+381 Clamped -clam649 apply 9E+380 -> 9.00000000000E+380 Clamped -clam651 apply 9E+379 -> 9.0000000000E+379 Clamped -clam653 apply 9E+378 -> 9.000000000E+378 Clamped -clam655 apply 9E+377 -> 9.00000000E+377 Clamped -clam657 apply 9E+376 -> 9.0000000E+376 Clamped -clam659 apply 9E+375 -> 9.000000E+375 Clamped -clam661 apply 9E+374 -> 9.00000E+374 Clamped -clam663 apply 9E+373 -> 9.0000E+373 Clamped -clam665 apply 9E+372 -> 9.000E+372 Clamped -clam667 apply 9E+371 -> 9.00E+371 Clamped -clam669 apply 9E+370 -> 9.0E+370 Clamped -clam671 apply 9E+369 -> 9E+369 -clam673 apply 9E+368 -> 9E+368 - --- subnormals clamped to 0-Etiny -precision: 16 -maxExponent: 384 -minExponent: -383 -clam681 apply 7E-398 -> 7E-398 Subnormal -clam682 apply 0E-398 -> 0E-398 -clam683 apply 7E-399 -> 1E-398 Subnormal Underflow Inexact Rounded -clam684 apply 4E-399 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded -clam685 apply 7E-400 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded -clam686 apply 7E-401 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded -clam687 apply 0E-399 -> 0E-398 Clamped -clam688 apply 0E-400 -> 0E-398 Clamped -clam689 apply 0E-401 -> 0E-398 Clamped - --- example from documentation -precision: 7 -rounding: half_even -maxExponent: +96 -minExponent: -95 - -clamp: 0 -clam700 apply 1.23E+96 -> 1.23E+96 - -clamp: 1 -clam701 apply 1.23E+96 -> 1.230000E+96 Clamped diff --git a/qdecimal/test/tc_full/class.decTest b/qdecimal/test/tc_full/class.decTest deleted file mode 100644 index 3b463cb..0000000 --- a/qdecimal/test/tc_full/class.decTest +++ /dev/null @@ -1,131 +0,0 @@ ------------------------------------------------------------------------- --- class.decTest -- Class operations -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- [New 2006.11.27] - -precision: 9 -maxExponent: 999 -minExponent: -999 -extended: 1 -clamp: 1 -rounding: half_even - -clasx001 class 0 -> +Zero -clasx002 class 0.00 -> +Zero -clasx003 class 0E+5 -> +Zero -clasx004 class 1E-1007 -> +Subnormal -clasx005 class 0.1E-999 -> +Subnormal -clasx006 class 0.99999999E-999 -> +Subnormal -clasx007 class 1.00000000E-999 -> +Normal -clasx008 class 1E-999 -> +Normal -clasx009 class 1E-100 -> +Normal -clasx010 class 1E-10 -> +Normal -clasx012 class 1E-1 -> +Normal -clasx013 class 1 -> +Normal -clasx014 class 2.50 -> +Normal -clasx015 class 100.100 -> +Normal -clasx016 class 1E+30 -> +Normal -clasx017 class 1E+999 -> +Normal -clasx018 class 9.99999999E+999 -> +Normal -clasx019 class Inf -> +Infinity - -clasx021 class -0 -> -Zero -clasx022 class -0.00 -> -Zero -clasx023 class -0E+5 -> -Zero -clasx024 class -1E-1007 -> -Subnormal -clasx025 class -0.1E-999 -> -Subnormal -clasx026 class -0.99999999E-999 -> -Subnormal -clasx027 class -1.00000000E-999 -> -Normal -clasx028 class -1E-999 -> -Normal -clasx029 class -1E-100 -> -Normal -clasx030 class -1E-10 -> -Normal -clasx032 class -1E-1 -> -Normal -clasx033 class -1 -> -Normal -clasx034 class -2.50 -> -Normal -clasx035 class -100.100 -> -Normal -clasx036 class -1E+30 -> -Normal -clasx037 class -1E+999 -> -Normal -clasx038 class -9.99999999E+999 -> -Normal -clasx039 class -Inf -> -Infinity - -clasx041 class NaN -> NaN -clasx042 class -NaN -> NaN -clasx043 class +NaN12345 -> NaN -clasx044 class sNaN -> sNaN -clasx045 class -sNaN -> sNaN -clasx046 class +sNaN12345 -> sNaN - - --- decimal64 bounds - -precision: 16 -maxExponent: 384 -minExponent: -383 -clamp: 1 -rounding: half_even - -clasx201 class 0 -> +Zero -clasx202 class 0.00 -> +Zero -clasx203 class 0E+5 -> +Zero -clasx204 class 1E-396 -> +Subnormal -clasx205 class 0.1E-383 -> +Subnormal -clasx206 class 0.999999999999999E-383 -> +Subnormal -clasx207 class 1.000000000000000E-383 -> +Normal -clasx208 class 1E-383 -> +Normal -clasx209 class 1E-100 -> +Normal -clasx210 class 1E-10 -> +Normal -clasx212 class 1E-1 -> +Normal -clasx213 class 1 -> +Normal -clasx214 class 2.50 -> +Normal -clasx215 class 100.100 -> +Normal -clasx216 class 1E+30 -> +Normal -clasx217 class 1E+384 -> +Normal -clasx218 class 9.999999999999999E+384 -> +Normal -clasx219 class Inf -> +Infinity - -clasx221 class -0 -> -Zero -clasx222 class -0.00 -> -Zero -clasx223 class -0E+5 -> -Zero -clasx224 class -1E-396 -> -Subnormal -clasx225 class -0.1E-383 -> -Subnormal -clasx226 class -0.999999999999999E-383 -> -Subnormal -clasx227 class -1.000000000000000E-383 -> -Normal -clasx228 class -1E-383 -> -Normal -clasx229 class -1E-100 -> -Normal -clasx230 class -1E-10 -> -Normal -clasx232 class -1E-1 -> -Normal -clasx233 class -1 -> -Normal -clasx234 class -2.50 -> -Normal -clasx235 class -100.100 -> -Normal -clasx236 class -1E+30 -> -Normal -clasx237 class -1E+384 -> -Normal -clasx238 class -9.999999999999999E+384 -> -Normal -clasx239 class -Inf -> -Infinity - -clasx241 class NaN -> NaN -clasx242 class -NaN -> NaN -clasx243 class +NaN12345 -> NaN -clasx244 class sNaN -> sNaN -clasx245 class -sNaN -> sNaN -clasx246 class +sNaN12345 -> sNaN - - - diff --git a/qdecimal/test/tc_full/compare.decTest b/qdecimal/test/tc_full/compare.decTest deleted file mode 100644 index 10407f8..0000000 --- a/qdecimal/test/tc_full/compare.decTest +++ /dev/null @@ -1,758 +0,0 @@ ------------------------------------------------------------------------- --- compare.decTest -- decimal comparison that allows quiet NaNs -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). - -extended: 1 - -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- sanity checks -comx001 compare -2 -2 -> 0 -comx002 compare -2 -1 -> -1 -comx003 compare -2 0 -> -1 -comx004 compare -2 1 -> -1 -comx005 compare -2 2 -> -1 -comx006 compare -1 -2 -> 1 -comx007 compare -1 -1 -> 0 -comx008 compare -1 0 -> -1 -comx009 compare -1 1 -> -1 -comx010 compare -1 2 -> -1 -comx011 compare 0 -2 -> 1 -comx012 compare 0 -1 -> 1 -comx013 compare 0 0 -> 0 -comx014 compare 0 1 -> -1 -comx015 compare 0 2 -> -1 -comx016 compare 1 -2 -> 1 -comx017 compare 1 -1 -> 1 -comx018 compare 1 0 -> 1 -comx019 compare 1 1 -> 0 -comx020 compare 1 2 -> -1 -comx021 compare 2 -2 -> 1 -comx022 compare 2 -1 -> 1 -comx023 compare 2 0 -> 1 -comx025 compare 2 1 -> 1 -comx026 compare 2 2 -> 0 - -comx031 compare -20 -20 -> 0 -comx032 compare -20 -10 -> -1 -comx033 compare -20 00 -> -1 -comx034 compare -20 10 -> -1 -comx035 compare -20 20 -> -1 -comx036 compare -10 -20 -> 1 -comx037 compare -10 -10 -> 0 -comx038 compare -10 00 -> -1 -comx039 compare -10 10 -> -1 -comx040 compare -10 20 -> -1 -comx041 compare 00 -20 -> 1 -comx042 compare 00 -10 -> 1 -comx043 compare 00 00 -> 0 -comx044 compare 00 10 -> -1 -comx045 compare 00 20 -> -1 -comx046 compare 10 -20 -> 1 -comx047 compare 10 -10 -> 1 -comx048 compare 10 00 -> 1 -comx049 compare 10 10 -> 0 -comx050 compare 10 20 -> -1 -comx051 compare 20 -20 -> 1 -comx052 compare 20 -10 -> 1 -comx053 compare 20 00 -> 1 -comx055 compare 20 10 -> 1 -comx056 compare 20 20 -> 0 - -comx061 compare -2.0 -2.0 -> 0 -comx062 compare -2.0 -1.0 -> -1 -comx063 compare -2.0 0.0 -> -1 -comx064 compare -2.0 1.0 -> -1 -comx065 compare -2.0 2.0 -> -1 -comx066 compare -1.0 -2.0 -> 1 -comx067 compare -1.0 -1.0 -> 0 -comx068 compare -1.0 0.0 -> -1 -comx069 compare -1.0 1.0 -> -1 -comx070 compare -1.0 2.0 -> -1 -comx071 compare 0.0 -2.0 -> 1 -comx072 compare 0.0 -1.0 -> 1 -comx073 compare 0.0 0.0 -> 0 -comx074 compare 0.0 1.0 -> -1 -comx075 compare 0.0 2.0 -> -1 -comx076 compare 1.0 -2.0 -> 1 -comx077 compare 1.0 -1.0 -> 1 -comx078 compare 1.0 0.0 -> 1 -comx079 compare 1.0 1.0 -> 0 -comx080 compare 1.0 2.0 -> -1 -comx081 compare 2.0 -2.0 -> 1 -comx082 compare 2.0 -1.0 -> 1 -comx083 compare 2.0 0.0 -> 1 -comx085 compare 2.0 1.0 -> 1 -comx086 compare 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -maxexponent: 999999999 -minexponent: -999999999 -comx095 compare 9.99999999E+999999999 9.99999999E+999999999 -> 0 -comx096 compare -9.99999999E+999999999 9.99999999E+999999999 -> -1 -comx097 compare 9.99999999E+999999999 -9.99999999E+999999999 -> 1 -comx098 compare -9.99999999E+999999999 -9.99999999E+999999999 -> 0 - --- some differing length/exponent cases -comx100 compare 7.0 7.0 -> 0 -comx101 compare 7.0 7 -> 0 -comx102 compare 7 7.0 -> 0 -comx103 compare 7E+0 7.0 -> 0 -comx104 compare 70E-1 7.0 -> 0 -comx105 compare 0.7E+1 7 -> 0 -comx106 compare 70E-1 7 -> 0 -comx107 compare 7.0 7E+0 -> 0 -comx108 compare 7.0 70E-1 -> 0 -comx109 compare 7 0.7E+1 -> 0 -comx110 compare 7 70E-1 -> 0 - -comx120 compare 8.0 7.0 -> 1 -comx121 compare 8.0 7 -> 1 -comx122 compare 8 7.0 -> 1 -comx123 compare 8E+0 7.0 -> 1 -comx124 compare 80E-1 7.0 -> 1 -comx125 compare 0.8E+1 7 -> 1 -comx126 compare 80E-1 7 -> 1 -comx127 compare 8.0 7E+0 -> 1 -comx128 compare 8.0 70E-1 -> 1 -comx129 compare 8 0.7E+1 -> 1 -comx130 compare 8 70E-1 -> 1 - -comx140 compare 8.0 9.0 -> -1 -comx141 compare 8.0 9 -> -1 -comx142 compare 8 9.0 -> -1 -comx143 compare 8E+0 9.0 -> -1 -comx144 compare 80E-1 9.0 -> -1 -comx145 compare 0.8E+1 9 -> -1 -comx146 compare 80E-1 9 -> -1 -comx147 compare 8.0 9E+0 -> -1 -comx148 compare 8.0 90E-1 -> -1 -comx149 compare 8 0.9E+1 -> -1 -comx150 compare 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -comx200 compare -7.0 7.0 -> -1 -comx201 compare -7.0 7 -> -1 -comx202 compare -7 7.0 -> -1 -comx203 compare -7E+0 7.0 -> -1 -comx204 compare -70E-1 7.0 -> -1 -comx205 compare -0.7E+1 7 -> -1 -comx206 compare -70E-1 7 -> -1 -comx207 compare -7.0 7E+0 -> -1 -comx208 compare -7.0 70E-1 -> -1 -comx209 compare -7 0.7E+1 -> -1 -comx210 compare -7 70E-1 -> -1 - -comx220 compare -8.0 7.0 -> -1 -comx221 compare -8.0 7 -> -1 -comx222 compare -8 7.0 -> -1 -comx223 compare -8E+0 7.0 -> -1 -comx224 compare -80E-1 7.0 -> -1 -comx225 compare -0.8E+1 7 -> -1 -comx226 compare -80E-1 7 -> -1 -comx227 compare -8.0 7E+0 -> -1 -comx228 compare -8.0 70E-1 -> -1 -comx229 compare -8 0.7E+1 -> -1 -comx230 compare -8 70E-1 -> -1 - -comx240 compare -8.0 9.0 -> -1 -comx241 compare -8.0 9 -> -1 -comx242 compare -8 9.0 -> -1 -comx243 compare -8E+0 9.0 -> -1 -comx244 compare -80E-1 9.0 -> -1 -comx245 compare -0.8E+1 9 -> -1 -comx246 compare -80E-1 9 -> -1 -comx247 compare -8.0 9E+0 -> -1 -comx248 compare -8.0 90E-1 -> -1 -comx249 compare -8 0.9E+1 -> -1 -comx250 compare -8 90E-1 -> -1 - --- and again, with sign changes +- .. -comx300 compare 7.0 -7.0 -> 1 -comx301 compare 7.0 -7 -> 1 -comx302 compare 7 -7.0 -> 1 -comx303 compare 7E+0 -7.0 -> 1 -comx304 compare 70E-1 -7.0 -> 1 -comx305 compare .7E+1 -7 -> 1 -comx306 compare 70E-1 -7 -> 1 -comx307 compare 7.0 -7E+0 -> 1 -comx308 compare 7.0 -70E-1 -> 1 -comx309 compare 7 -.7E+1 -> 1 -comx310 compare 7 -70E-1 -> 1 - -comx320 compare 8.0 -7.0 -> 1 -comx321 compare 8.0 -7 -> 1 -comx322 compare 8 -7.0 -> 1 -comx323 compare 8E+0 -7.0 -> 1 -comx324 compare 80E-1 -7.0 -> 1 -comx325 compare .8E+1 -7 -> 1 -comx326 compare 80E-1 -7 -> 1 -comx327 compare 8.0 -7E+0 -> 1 -comx328 compare 8.0 -70E-1 -> 1 -comx329 compare 8 -.7E+1 -> 1 -comx330 compare 8 -70E-1 -> 1 - -comx340 compare 8.0 -9.0 -> 1 -comx341 compare 8.0 -9 -> 1 -comx342 compare 8 -9.0 -> 1 -comx343 compare 8E+0 -9.0 -> 1 -comx344 compare 80E-1 -9.0 -> 1 -comx345 compare .8E+1 -9 -> 1 -comx346 compare 80E-1 -9 -> 1 -comx347 compare 8.0 -9E+0 -> 1 -comx348 compare 8.0 -90E-1 -> 1 -comx349 compare 8 -.9E+1 -> 1 -comx350 compare 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -comx400 compare -7.0 -7.0 -> 0 -comx401 compare -7.0 -7 -> 0 -comx402 compare -7 -7.0 -> 0 -comx403 compare -7E+0 -7.0 -> 0 -comx404 compare -70E-1 -7.0 -> 0 -comx405 compare -.7E+1 -7 -> 0 -comx406 compare -70E-1 -7 -> 0 -comx407 compare -7.0 -7E+0 -> 0 -comx408 compare -7.0 -70E-1 -> 0 -comx409 compare -7 -.7E+1 -> 0 -comx410 compare -7 -70E-1 -> 0 - -comx420 compare -8.0 -7.0 -> -1 -comx421 compare -8.0 -7 -> -1 -comx422 compare -8 -7.0 -> -1 -comx423 compare -8E+0 -7.0 -> -1 -comx424 compare -80E-1 -7.0 -> -1 -comx425 compare -.8E+1 -7 -> -1 -comx426 compare -80E-1 -7 -> -1 -comx427 compare -8.0 -7E+0 -> -1 -comx428 compare -8.0 -70E-1 -> -1 -comx429 compare -8 -.7E+1 -> -1 -comx430 compare -8 -70E-1 -> -1 - -comx440 compare -8.0 -9.0 -> 1 -comx441 compare -8.0 -9 -> 1 -comx442 compare -8 -9.0 -> 1 -comx443 compare -8E+0 -9.0 -> 1 -comx444 compare -80E-1 -9.0 -> 1 -comx445 compare -.8E+1 -9 -> 1 -comx446 compare -80E-1 -9 -> 1 -comx447 compare -8.0 -9E+0 -> 1 -comx448 compare -8.0 -90E-1 -> 1 -comx449 compare -8 -.9E+1 -> 1 -comx450 compare -8 -90E-1 -> 1 - --- misalignment traps for little-endian -comx451 compare 1.0 0.1 -> 1 -comx452 compare 0.1 1.0 -> -1 -comx453 compare 10.0 0.1 -> 1 -comx454 compare 0.1 10.0 -> -1 -comx455 compare 100 1.0 -> 1 -comx456 compare 1.0 100 -> -1 -comx457 compare 1000 10.0 -> 1 -comx458 compare 10.0 1000 -> -1 -comx459 compare 10000 100.0 -> 1 -comx460 compare 100.0 10000 -> -1 -comx461 compare 100000 1000.0 -> 1 -comx462 compare 1000.0 100000 -> -1 -comx463 compare 1000000 10000.0 -> 1 -comx464 compare 10000.0 1000000 -> -1 - --- testcases that subtract to lots of zeros at boundaries [pgr] -precision: 40 -comx470 compare 123.4560000000000000E789 123.456E789 -> 0 -comx471 compare 123.456000000000000E-89 123.456E-89 -> 0 -comx472 compare 123.45600000000000E789 123.456E789 -> 0 -comx473 compare 123.4560000000000E-89 123.456E-89 -> 0 -comx474 compare 123.456000000000E789 123.456E789 -> 0 -comx475 compare 123.45600000000E-89 123.456E-89 -> 0 -comx476 compare 123.4560000000E789 123.456E789 -> 0 -comx477 compare 123.456000000E-89 123.456E-89 -> 0 -comx478 compare 123.45600000E789 123.456E789 -> 0 -comx479 compare 123.4560000E-89 123.456E-89 -> 0 -comx480 compare 123.456000E789 123.456E789 -> 0 -comx481 compare 123.45600E-89 123.456E-89 -> 0 -comx482 compare 123.4560E789 123.456E789 -> 0 -comx483 compare 123.456E-89 123.456E-89 -> 0 -comx484 compare 123.456E-89 123.4560000000000000E-89 -> 0 -comx485 compare 123.456E789 123.456000000000000E789 -> 0 -comx486 compare 123.456E-89 123.45600000000000E-89 -> 0 -comx487 compare 123.456E789 123.4560000000000E789 -> 0 -comx488 compare 123.456E-89 123.456000000000E-89 -> 0 -comx489 compare 123.456E789 123.45600000000E789 -> 0 -comx490 compare 123.456E-89 123.4560000000E-89 -> 0 -comx491 compare 123.456E789 123.456000000E789 -> 0 -comx492 compare 123.456E-89 123.45600000E-89 -> 0 -comx493 compare 123.456E789 123.4560000E789 -> 0 -comx494 compare 123.456E-89 123.456000E-89 -> 0 -comx495 compare 123.456E789 123.45600E789 -> 0 -comx496 compare 123.456E-89 123.4560E-89 -> 0 -comx497 compare 123.456E789 123.456E789 -> 0 - --- wide-ranging, around precision; signs equal -precision: 9 -comx500 compare 1 1E-15 -> 1 -comx501 compare 1 1E-14 -> 1 -comx502 compare 1 1E-13 -> 1 -comx503 compare 1 1E-12 -> 1 -comx504 compare 1 1E-11 -> 1 -comx505 compare 1 1E-10 -> 1 -comx506 compare 1 1E-9 -> 1 -comx507 compare 1 1E-8 -> 1 -comx508 compare 1 1E-7 -> 1 -comx509 compare 1 1E-6 -> 1 -comx510 compare 1 1E-5 -> 1 -comx511 compare 1 1E-4 -> 1 -comx512 compare 1 1E-3 -> 1 -comx513 compare 1 1E-2 -> 1 -comx514 compare 1 1E-1 -> 1 -comx515 compare 1 1E-0 -> 0 -comx516 compare 1 1E+1 -> -1 -comx517 compare 1 1E+2 -> -1 -comx518 compare 1 1E+3 -> -1 -comx519 compare 1 1E+4 -> -1 -comx521 compare 1 1E+5 -> -1 -comx522 compare 1 1E+6 -> -1 -comx523 compare 1 1E+7 -> -1 -comx524 compare 1 1E+8 -> -1 -comx525 compare 1 1E+9 -> -1 -comx526 compare 1 1E+10 -> -1 -comx527 compare 1 1E+11 -> -1 -comx528 compare 1 1E+12 -> -1 -comx529 compare 1 1E+13 -> -1 -comx530 compare 1 1E+14 -> -1 -comx531 compare 1 1E+15 -> -1 --- LR swap -comx540 compare 1E-15 1 -> -1 -comx541 compare 1E-14 1 -> -1 -comx542 compare 1E-13 1 -> -1 -comx543 compare 1E-12 1 -> -1 -comx544 compare 1E-11 1 -> -1 -comx545 compare 1E-10 1 -> -1 -comx546 compare 1E-9 1 -> -1 -comx547 compare 1E-8 1 -> -1 -comx548 compare 1E-7 1 -> -1 -comx549 compare 1E-6 1 -> -1 -comx550 compare 1E-5 1 -> -1 -comx551 compare 1E-4 1 -> -1 -comx552 compare 1E-3 1 -> -1 -comx553 compare 1E-2 1 -> -1 -comx554 compare 1E-1 1 -> -1 -comx555 compare 1E-0 1 -> 0 -comx556 compare 1E+1 1 -> 1 -comx557 compare 1E+2 1 -> 1 -comx558 compare 1E+3 1 -> 1 -comx559 compare 1E+4 1 -> 1 -comx561 compare 1E+5 1 -> 1 -comx562 compare 1E+6 1 -> 1 -comx563 compare 1E+7 1 -> 1 -comx564 compare 1E+8 1 -> 1 -comx565 compare 1E+9 1 -> 1 -comx566 compare 1E+10 1 -> 1 -comx567 compare 1E+11 1 -> 1 -comx568 compare 1E+12 1 -> 1 -comx569 compare 1E+13 1 -> 1 -comx570 compare 1E+14 1 -> 1 -comx571 compare 1E+15 1 -> 1 --- similar with a useful coefficient, one side only -comx580 compare 0.000000987654321 1E-15 -> 1 -comx581 compare 0.000000987654321 1E-14 -> 1 -comx582 compare 0.000000987654321 1E-13 -> 1 -comx583 compare 0.000000987654321 1E-12 -> 1 -comx584 compare 0.000000987654321 1E-11 -> 1 -comx585 compare 0.000000987654321 1E-10 -> 1 -comx586 compare 0.000000987654321 1E-9 -> 1 -comx587 compare 0.000000987654321 1E-8 -> 1 -comx588 compare 0.000000987654321 1E-7 -> 1 -comx589 compare 0.000000987654321 1E-6 -> -1 -comx590 compare 0.000000987654321 1E-5 -> -1 -comx591 compare 0.000000987654321 1E-4 -> -1 -comx592 compare 0.000000987654321 1E-3 -> -1 -comx593 compare 0.000000987654321 1E-2 -> -1 -comx594 compare 0.000000987654321 1E-1 -> -1 -comx595 compare 0.000000987654321 1E-0 -> -1 -comx596 compare 0.000000987654321 1E+1 -> -1 -comx597 compare 0.000000987654321 1E+2 -> -1 -comx598 compare 0.000000987654321 1E+3 -> -1 -comx599 compare 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -precision: 20 -comx600 compare 12 12.2345 -> -1 -comx601 compare 12.0 12.2345 -> -1 -comx602 compare 12.00 12.2345 -> -1 -comx603 compare 12.000 12.2345 -> -1 -comx604 compare 12.0000 12.2345 -> -1 -comx605 compare 12.00000 12.2345 -> -1 -comx606 compare 12.000000 12.2345 -> -1 -comx607 compare 12.0000000 12.2345 -> -1 -comx608 compare 12.00000000 12.2345 -> -1 -comx609 compare 12.000000000 12.2345 -> -1 -comx610 compare 12.1234 12 -> 1 -comx611 compare 12.1234 12.0 -> 1 -comx612 compare 12.1234 12.00 -> 1 -comx613 compare 12.1234 12.000 -> 1 -comx614 compare 12.1234 12.0000 -> 1 -comx615 compare 12.1234 12.00000 -> 1 -comx616 compare 12.1234 12.000000 -> 1 -comx617 compare 12.1234 12.0000000 -> 1 -comx618 compare 12.1234 12.00000000 -> 1 -comx619 compare 12.1234 12.000000000 -> 1 -comx620 compare -12 -12.2345 -> 1 -comx621 compare -12.0 -12.2345 -> 1 -comx622 compare -12.00 -12.2345 -> 1 -comx623 compare -12.000 -12.2345 -> 1 -comx624 compare -12.0000 -12.2345 -> 1 -comx625 compare -12.00000 -12.2345 -> 1 -comx626 compare -12.000000 -12.2345 -> 1 -comx627 compare -12.0000000 -12.2345 -> 1 -comx628 compare -12.00000000 -12.2345 -> 1 -comx629 compare -12.000000000 -12.2345 -> 1 -comx630 compare -12.1234 -12 -> -1 -comx631 compare -12.1234 -12.0 -> -1 -comx632 compare -12.1234 -12.00 -> -1 -comx633 compare -12.1234 -12.000 -> -1 -comx634 compare -12.1234 -12.0000 -> -1 -comx635 compare -12.1234 -12.00000 -> -1 -comx636 compare -12.1234 -12.000000 -> -1 -comx637 compare -12.1234 -12.0000000 -> -1 -comx638 compare -12.1234 -12.00000000 -> -1 -comx639 compare -12.1234 -12.000000000 -> -1 -precision: 9 - --- extended zeros -comx640 compare 0 0 -> 0 -comx641 compare 0 -0 -> 0 -comx642 compare 0 -0.0 -> 0 -comx643 compare 0 0.0 -> 0 -comx644 compare -0 0 -> 0 -comx645 compare -0 -0 -> 0 -comx646 compare -0 -0.0 -> 0 -comx647 compare -0 0.0 -> 0 -comx648 compare 0.0 0 -> 0 -comx649 compare 0.0 -0 -> 0 -comx650 compare 0.0 -0.0 -> 0 -comx651 compare 0.0 0.0 -> 0 -comx652 compare -0.0 0 -> 0 -comx653 compare -0.0 -0 -> 0 -comx654 compare -0.0 -0.0 -> 0 -comx655 compare -0.0 0.0 -> 0 - -comx656 compare -0E1 0.0 -> 0 -comx657 compare -0E2 0.0 -> 0 -comx658 compare 0E1 0.0 -> 0 -comx659 compare 0E2 0.0 -> 0 -comx660 compare -0E1 0 -> 0 -comx661 compare -0E2 0 -> 0 -comx662 compare 0E1 0 -> 0 -comx663 compare 0E2 0 -> 0 -comx664 compare -0E1 -0E1 -> 0 -comx665 compare -0E2 -0E1 -> 0 -comx666 compare 0E1 -0E1 -> 0 -comx667 compare 0E2 -0E1 -> 0 -comx668 compare -0E1 -0E2 -> 0 -comx669 compare -0E2 -0E2 -> 0 -comx670 compare 0E1 -0E2 -> 0 -comx671 compare 0E2 -0E2 -> 0 -comx672 compare -0E1 0E1 -> 0 -comx673 compare -0E2 0E1 -> 0 -comx674 compare 0E1 0E1 -> 0 -comx675 compare 0E2 0E1 -> 0 -comx676 compare -0E1 0E2 -> 0 -comx677 compare -0E2 0E2 -> 0 -comx678 compare 0E1 0E2 -> 0 -comx679 compare 0E2 0E2 -> 0 - --- trailing zeros; unit-y -precision: 20 -comx680 compare 12 12 -> 0 -comx681 compare 12 12.0 -> 0 -comx682 compare 12 12.00 -> 0 -comx683 compare 12 12.000 -> 0 -comx684 compare 12 12.0000 -> 0 -comx685 compare 12 12.00000 -> 0 -comx686 compare 12 12.000000 -> 0 -comx687 compare 12 12.0000000 -> 0 -comx688 compare 12 12.00000000 -> 0 -comx689 compare 12 12.000000000 -> 0 -comx690 compare 12 12 -> 0 -comx691 compare 12.0 12 -> 0 -comx692 compare 12.00 12 -> 0 -comx693 compare 12.000 12 -> 0 -comx694 compare 12.0000 12 -> 0 -comx695 compare 12.00000 12 -> 0 -comx696 compare 12.000000 12 -> 0 -comx697 compare 12.0000000 12 -> 0 -comx698 compare 12.00000000 12 -> 0 -comx699 compare 12.000000000 12 -> 0 - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -comx701 compare 12345678000 1 -> 1 -comx702 compare 1 12345678000 -> -1 -comx703 compare 1234567800 1 -> 1 -comx704 compare 1 1234567800 -> -1 -comx705 compare 1234567890 1 -> 1 -comx706 compare 1 1234567890 -> -1 -comx707 compare 1234567891 1 -> 1 -comx708 compare 1 1234567891 -> -1 -comx709 compare 12345678901 1 -> 1 -comx710 compare 1 12345678901 -> -1 -comx711 compare 1234567896 1 -> 1 -comx712 compare 1 1234567896 -> -1 -comx713 compare -1234567891 1 -> -1 -comx714 compare 1 -1234567891 -> 1 -comx715 compare -12345678901 1 -> -1 -comx716 compare 1 -12345678901 -> 1 -comx717 compare -1234567896 1 -> -1 -comx718 compare 1 -1234567896 -> 1 - -precision: 15 --- same with plenty of precision -comx721 compare 12345678000 1 -> 1 -comx722 compare 1 12345678000 -> -1 -comx723 compare 1234567800 1 -> 1 -comx724 compare 1 1234567800 -> -1 -comx725 compare 1234567890 1 -> 1 -comx726 compare 1 1234567890 -> -1 -comx727 compare 1234567891 1 -> 1 -comx728 compare 1 1234567891 -> -1 -comx729 compare 12345678901 1 -> 1 -comx730 compare 1 12345678901 -> -1 -comx731 compare 1234567896 1 -> 1 -comx732 compare 1 1234567896 -> -1 - --- residue cases -precision: 5 -comx740 compare 1 0.9999999 -> 1 -comx741 compare 1 0.999999 -> 1 -comx742 compare 1 0.99999 -> 1 -comx743 compare 1 1.0000 -> 0 -comx744 compare 1 1.00001 -> -1 -comx745 compare 1 1.000001 -> -1 -comx746 compare 1 1.0000001 -> -1 -comx750 compare 0.9999999 1 -> -1 -comx751 compare 0.999999 1 -> -1 -comx752 compare 0.99999 1 -> -1 -comx753 compare 1.0000 1 -> 0 -comx754 compare 1.00001 1 -> 1 -comx755 compare 1.000001 1 -> 1 -comx756 compare 1.0000001 1 -> 1 - --- a selection of longies -comx760 compare -36852134.84194296250843579428931 -5830629.8347085025808756560357940 -> -1 -comx761 compare -36852134.84194296250843579428931 -36852134.84194296250843579428931 -> 0 -comx762 compare -36852134.94194296250843579428931 -36852134.84194296250843579428931 -> -1 -comx763 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 --- precisions above or below the difference should have no effect -precision: 11 -comx764 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 10 -comx765 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 9 -comx766 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 8 -comx767 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 7 -comx768 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 6 -comx769 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 5 -comx770 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 4 -comx771 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 3 -comx772 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 2 -comx773 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 1 -comx774 compare -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 - --- Specials -precision: 9 -comx780 compare Inf -Inf -> 1 -comx781 compare Inf -1000 -> 1 -comx782 compare Inf -1 -> 1 -comx783 compare Inf -0 -> 1 -comx784 compare Inf 0 -> 1 -comx785 compare Inf 1 -> 1 -comx786 compare Inf 1000 -> 1 -comx787 compare Inf Inf -> 0 -comx788 compare -1000 Inf -> -1 -comx789 compare -Inf Inf -> -1 -comx790 compare -1 Inf -> -1 -comx791 compare -0 Inf -> -1 -comx792 compare 0 Inf -> -1 -comx793 compare 1 Inf -> -1 -comx794 compare 1000 Inf -> -1 -comx795 compare Inf Inf -> 0 - -comx800 compare -Inf -Inf -> 0 -comx801 compare -Inf -1000 -> -1 -comx802 compare -Inf -1 -> -1 -comx803 compare -Inf -0 -> -1 -comx804 compare -Inf 0 -> -1 -comx805 compare -Inf 1 -> -1 -comx806 compare -Inf 1000 -> -1 -comx807 compare -Inf Inf -> -1 -comx808 compare -Inf -Inf -> 0 -comx809 compare -1000 -Inf -> 1 -comx810 compare -1 -Inf -> 1 -comx811 compare -0 -Inf -> 1 -comx812 compare 0 -Inf -> 1 -comx813 compare 1 -Inf -> 1 -comx814 compare 1000 -Inf -> 1 -comx815 compare Inf -Inf -> 1 - -comx821 compare NaN -Inf -> NaN -comx822 compare NaN -1000 -> NaN -comx823 compare NaN -1 -> NaN -comx824 compare NaN -0 -> NaN -comx825 compare NaN 0 -> NaN -comx826 compare NaN 1 -> NaN -comx827 compare NaN 1000 -> NaN -comx828 compare NaN Inf -> NaN -comx829 compare NaN NaN -> NaN -comx830 compare -Inf NaN -> NaN -comx831 compare -1000 NaN -> NaN -comx832 compare -1 NaN -> NaN -comx833 compare -0 NaN -> NaN -comx834 compare 0 NaN -> NaN -comx835 compare 1 NaN -> NaN -comx836 compare 1000 NaN -> NaN -comx837 compare Inf NaN -> NaN -comx838 compare -NaN -NaN -> -NaN -comx839 compare +NaN -NaN -> NaN -comx840 compare -NaN +NaN -> -NaN - -comx841 compare sNaN -Inf -> NaN Invalid_operation -comx842 compare sNaN -1000 -> NaN Invalid_operation -comx843 compare sNaN -1 -> NaN Invalid_operation -comx844 compare sNaN -0 -> NaN Invalid_operation -comx845 compare sNaN 0 -> NaN Invalid_operation -comx846 compare sNaN 1 -> NaN Invalid_operation -comx847 compare sNaN 1000 -> NaN Invalid_operation -comx848 compare sNaN NaN -> NaN Invalid_operation -comx849 compare sNaN sNaN -> NaN Invalid_operation -comx850 compare NaN sNaN -> NaN Invalid_operation -comx851 compare -Inf sNaN -> NaN Invalid_operation -comx852 compare -1000 sNaN -> NaN Invalid_operation -comx853 compare -1 sNaN -> NaN Invalid_operation -comx854 compare -0 sNaN -> NaN Invalid_operation -comx855 compare 0 sNaN -> NaN Invalid_operation -comx856 compare 1 sNaN -> NaN Invalid_operation -comx857 compare 1000 sNaN -> NaN Invalid_operation -comx858 compare Inf sNaN -> NaN Invalid_operation -comx859 compare NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -comx860 compare NaN9 -Inf -> NaN9 -comx861 compare NaN8 999 -> NaN8 -comx862 compare NaN77 Inf -> NaN77 -comx863 compare -NaN67 NaN5 -> -NaN67 -comx864 compare -Inf -NaN4 -> -NaN4 -comx865 compare -999 -NaN33 -> -NaN33 -comx866 compare Inf NaN2 -> NaN2 -comx867 compare -NaN41 -NaN42 -> -NaN41 -comx868 compare +NaN41 -NaN42 -> NaN41 -comx869 compare -NaN41 +NaN42 -> -NaN41 -comx870 compare +NaN41 +NaN42 -> NaN41 - -comx871 compare -sNaN99 -Inf -> -NaN99 Invalid_operation -comx872 compare sNaN98 -11 -> NaN98 Invalid_operation -comx873 compare sNaN97 NaN -> NaN97 Invalid_operation -comx874 compare sNaN16 sNaN94 -> NaN16 Invalid_operation -comx875 compare NaN85 sNaN83 -> NaN83 Invalid_operation -comx876 compare -Inf sNaN92 -> NaN92 Invalid_operation -comx877 compare 088 sNaN81 -> NaN81 Invalid_operation -comx878 compare Inf sNaN90 -> NaN90 Invalid_operation -comx879 compare NaN -sNaN89 -> -NaN89 Invalid_operation - --- overflow and underflow tests .. subnormal results now allowed -maxExponent: 999999999 -minexponent: -999999999 -comx880 compare +1.23456789012345E-0 9E+999999999 -> -1 -comx881 compare 9E+999999999 +1.23456789012345E-0 -> 1 -comx882 compare +0.100 9E-999999999 -> 1 -comx883 compare 9E-999999999 +0.100 -> -1 -comx885 compare -1.23456789012345E-0 9E+999999999 -> -1 -comx886 compare 9E+999999999 -1.23456789012345E-0 -> 1 -comx887 compare -0.100 9E-999999999 -> -1 -comx888 compare 9E-999999999 -0.100 -> 1 - -comx889 compare 1e-599999999 1e-400000001 -> -1 -comx890 compare 1e-599999999 1e-400000000 -> -1 -comx891 compare 1e-600000000 1e-400000000 -> -1 -comx892 compare 9e-999999998 0.01 -> -1 -comx893 compare 9e-999999998 0.1 -> -1 -comx894 compare 0.01 9e-999999998 -> 1 -comx895 compare 1e599999999 1e400000001 -> 1 -comx896 compare 1e599999999 1e400000000 -> 1 -comx897 compare 1e600000000 1e400000000 -> 1 -comx898 compare 9e999999998 100 -> 1 -comx899 compare 9e999999998 10 -> 1 -comx900 compare 100 9e999999998 -> -1 --- signs -comx901 compare 1e+777777777 1e+411111111 -> 1 -comx902 compare 1e+777777777 -1e+411111111 -> 1 -comx903 compare -1e+777777777 1e+411111111 -> -1 -comx904 compare -1e+777777777 -1e+411111111 -> -1 -comx905 compare 1e-777777777 1e-411111111 -> -1 -comx906 compare 1e-777777777 -1e-411111111 -> 1 -comx907 compare -1e-777777777 1e-411111111 -> -1 -comx908 compare -1e-777777777 -1e-411111111 -> 1 - --- spread zeros -comx910 compare 0E-383 0 -> 0 -comx911 compare 0E-383 -0 -> 0 -comx912 compare -0E-383 0 -> 0 -comx913 compare -0E-383 -0 -> 0 -comx914 compare 0E-383 0E+384 -> 0 -comx915 compare 0E-383 -0E+384 -> 0 -comx916 compare -0E-383 0E+384 -> 0 -comx917 compare -0E-383 -0E+384 -> 0 -comx918 compare 0 0E+384 -> 0 -comx919 compare 0 -0E+384 -> 0 -comx920 compare -0 0E+384 -> 0 -comx921 compare -0 -0E+384 -> 0 -comx930 compare 0E+384 0 -> 0 -comx931 compare 0E+384 -0 -> 0 -comx932 compare -0E+384 0 -> 0 -comx933 compare -0E+384 -0 -> 0 -comx934 compare 0E+384 0E-383 -> 0 -comx935 compare 0E+384 -0E-383 -> 0 -comx936 compare -0E+384 0E-383 -> 0 -comx937 compare -0E+384 -0E-383 -> 0 -comx938 compare 0 0E-383 -> 0 -comx939 compare 0 -0E-383 -> 0 -comx940 compare -0 0E-383 -> 0 -comx941 compare -0 -0E-383 -> 0 - --- Null tests -comx990 compare 10 # -> NaN Invalid_operation -comx991 compare # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/comparetotal.decTest b/qdecimal/test/tc_full/comparetotal.decTest deleted file mode 100644 index 3bcc3dd..0000000 --- a/qdecimal/test/tc_full/comparetotal.decTest +++ /dev/null @@ -1,798 +0,0 @@ ------------------------------------------------------------------------- --- comparetotal.decTest -- decimal comparison using total ordering -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). --- Similarly, comparetotal will have some radically different paths --- than compare. - -extended: 1 -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - --- sanity checks -cotx001 comparetotal -2 -2 -> 0 -cotx002 comparetotal -2 -1 -> -1 -cotx003 comparetotal -2 0 -> -1 -cotx004 comparetotal -2 1 -> -1 -cotx005 comparetotal -2 2 -> -1 -cotx006 comparetotal -1 -2 -> 1 -cotx007 comparetotal -1 -1 -> 0 -cotx008 comparetotal -1 0 -> -1 -cotx009 comparetotal -1 1 -> -1 -cotx010 comparetotal -1 2 -> -1 -cotx011 comparetotal 0 -2 -> 1 -cotx012 comparetotal 0 -1 -> 1 -cotx013 comparetotal 0 0 -> 0 -cotx014 comparetotal 0 1 -> -1 -cotx015 comparetotal 0 2 -> -1 -cotx016 comparetotal 1 -2 -> 1 -cotx017 comparetotal 1 -1 -> 1 -cotx018 comparetotal 1 0 -> 1 -cotx019 comparetotal 1 1 -> 0 -cotx020 comparetotal 1 2 -> -1 -cotx021 comparetotal 2 -2 -> 1 -cotx022 comparetotal 2 -1 -> 1 -cotx023 comparetotal 2 0 -> 1 -cotx025 comparetotal 2 1 -> 1 -cotx026 comparetotal 2 2 -> 0 - -cotx031 comparetotal -20 -20 -> 0 -cotx032 comparetotal -20 -10 -> -1 -cotx033 comparetotal -20 00 -> -1 -cotx034 comparetotal -20 10 -> -1 -cotx035 comparetotal -20 20 -> -1 -cotx036 comparetotal -10 -20 -> 1 -cotx037 comparetotal -10 -10 -> 0 -cotx038 comparetotal -10 00 -> -1 -cotx039 comparetotal -10 10 -> -1 -cotx040 comparetotal -10 20 -> -1 -cotx041 comparetotal 00 -20 -> 1 -cotx042 comparetotal 00 -10 -> 1 -cotx043 comparetotal 00 00 -> 0 -cotx044 comparetotal 00 10 -> -1 -cotx045 comparetotal 00 20 -> -1 -cotx046 comparetotal 10 -20 -> 1 -cotx047 comparetotal 10 -10 -> 1 -cotx048 comparetotal 10 00 -> 1 -cotx049 comparetotal 10 10 -> 0 -cotx050 comparetotal 10 20 -> -1 -cotx051 comparetotal 20 -20 -> 1 -cotx052 comparetotal 20 -10 -> 1 -cotx053 comparetotal 20 00 -> 1 -cotx055 comparetotal 20 10 -> 1 -cotx056 comparetotal 20 20 -> 0 - -cotx061 comparetotal -2.0 -2.0 -> 0 -cotx062 comparetotal -2.0 -1.0 -> -1 -cotx063 comparetotal -2.0 0.0 -> -1 -cotx064 comparetotal -2.0 1.0 -> -1 -cotx065 comparetotal -2.0 2.0 -> -1 -cotx066 comparetotal -1.0 -2.0 -> 1 -cotx067 comparetotal -1.0 -1.0 -> 0 -cotx068 comparetotal -1.0 0.0 -> -1 -cotx069 comparetotal -1.0 1.0 -> -1 -cotx070 comparetotal -1.0 2.0 -> -1 -cotx071 comparetotal 0.0 -2.0 -> 1 -cotx072 comparetotal 0.0 -1.0 -> 1 -cotx073 comparetotal 0.0 0.0 -> 0 -cotx074 comparetotal 0.0 1.0 -> -1 -cotx075 comparetotal 0.0 2.0 -> -1 -cotx076 comparetotal 1.0 -2.0 -> 1 -cotx077 comparetotal 1.0 -1.0 -> 1 -cotx078 comparetotal 1.0 0.0 -> 1 -cotx079 comparetotal 1.0 1.0 -> 0 -cotx080 comparetotal 1.0 2.0 -> -1 -cotx081 comparetotal 2.0 -2.0 -> 1 -cotx082 comparetotal 2.0 -1.0 -> 1 -cotx083 comparetotal 2.0 0.0 -> 1 -cotx085 comparetotal 2.0 1.0 -> 1 -cotx086 comparetotal 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -maxexponent: 999999999 -minexponent: -999999999 -cotx090 comparetotal 9.99999999E+999999999 9.99999999E+999999999 -> 0 -cotx091 comparetotal -9.99999999E+999999999 9.99999999E+999999999 -> -1 -cotx092 comparetotal 9.99999999E+999999999 -9.99999999E+999999999 -> 1 -cotx093 comparetotal -9.99999999E+999999999 -9.99999999E+999999999 -> 0 - --- Examples -cotx094 comparetotal 12.73 127.9 -> -1 -cotx095 comparetotal -127 12 -> -1 -cotx096 comparetotal 12.30 12.3 -> -1 -cotx097 comparetotal 12.30 12.30 -> 0 -cotx098 comparetotal 12.3 12.300 -> 1 -cotx099 comparetotal 12.3 NaN -> -1 - --- some differing length/exponent cases --- in this first group, compare would compare all equal -cotx100 comparetotal 7.0 7.0 -> 0 -cotx101 comparetotal 7.0 7 -> -1 -cotx102 comparetotal 7 7.0 -> 1 -cotx103 comparetotal 7E+0 7.0 -> 1 -cotx104 comparetotal 70E-1 7.0 -> 0 -cotx105 comparetotal 0.7E+1 7 -> 0 -cotx106 comparetotal 70E-1 7 -> -1 -cotx107 comparetotal 7.0 7E+0 -> -1 -cotx108 comparetotal 7.0 70E-1 -> 0 -cotx109 comparetotal 7 0.7E+1 -> 0 -cotx110 comparetotal 7 70E-1 -> 1 - -cotx120 comparetotal 8.0 7.0 -> 1 -cotx121 comparetotal 8.0 7 -> 1 -cotx122 comparetotal 8 7.0 -> 1 -cotx123 comparetotal 8E+0 7.0 -> 1 -cotx124 comparetotal 80E-1 7.0 -> 1 -cotx125 comparetotal 0.8E+1 7 -> 1 -cotx126 comparetotal 80E-1 7 -> 1 -cotx127 comparetotal 8.0 7E+0 -> 1 -cotx128 comparetotal 8.0 70E-1 -> 1 -cotx129 comparetotal 8 0.7E+1 -> 1 -cotx130 comparetotal 8 70E-1 -> 1 - -cotx140 comparetotal 8.0 9.0 -> -1 -cotx141 comparetotal 8.0 9 -> -1 -cotx142 comparetotal 8 9.0 -> -1 -cotx143 comparetotal 8E+0 9.0 -> -1 -cotx144 comparetotal 80E-1 9.0 -> -1 -cotx145 comparetotal 0.8E+1 9 -> -1 -cotx146 comparetotal 80E-1 9 -> -1 -cotx147 comparetotal 8.0 9E+0 -> -1 -cotx148 comparetotal 8.0 90E-1 -> -1 -cotx149 comparetotal 8 0.9E+1 -> -1 -cotx150 comparetotal 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -cotx200 comparetotal -7.0 7.0 -> -1 -cotx201 comparetotal -7.0 7 -> -1 -cotx202 comparetotal -7 7.0 -> -1 -cotx203 comparetotal -7E+0 7.0 -> -1 -cotx204 comparetotal -70E-1 7.0 -> -1 -cotx205 comparetotal -0.7E+1 7 -> -1 -cotx206 comparetotal -70E-1 7 -> -1 -cotx207 comparetotal -7.0 7E+0 -> -1 -cotx208 comparetotal -7.0 70E-1 -> -1 -cotx209 comparetotal -7 0.7E+1 -> -1 -cotx210 comparetotal -7 70E-1 -> -1 - -cotx220 comparetotal -8.0 7.0 -> -1 -cotx221 comparetotal -8.0 7 -> -1 -cotx222 comparetotal -8 7.0 -> -1 -cotx223 comparetotal -8E+0 7.0 -> -1 -cotx224 comparetotal -80E-1 7.0 -> -1 -cotx225 comparetotal -0.8E+1 7 -> -1 -cotx226 comparetotal -80E-1 7 -> -1 -cotx227 comparetotal -8.0 7E+0 -> -1 -cotx228 comparetotal -8.0 70E-1 -> -1 -cotx229 comparetotal -8 0.7E+1 -> -1 -cotx230 comparetotal -8 70E-1 -> -1 - -cotx240 comparetotal -8.0 9.0 -> -1 -cotx241 comparetotal -8.0 9 -> -1 -cotx242 comparetotal -8 9.0 -> -1 -cotx243 comparetotal -8E+0 9.0 -> -1 -cotx244 comparetotal -80E-1 9.0 -> -1 -cotx245 comparetotal -0.8E+1 9 -> -1 -cotx246 comparetotal -80E-1 9 -> -1 -cotx247 comparetotal -8.0 9E+0 -> -1 -cotx248 comparetotal -8.0 90E-1 -> -1 -cotx249 comparetotal -8 0.9E+1 -> -1 -cotx250 comparetotal -8 90E-1 -> -1 - --- and again, with sign changes +- .. -cotx300 comparetotal 7.0 -7.0 -> 1 -cotx301 comparetotal 7.0 -7 -> 1 -cotx302 comparetotal 7 -7.0 -> 1 -cotx303 comparetotal 7E+0 -7.0 -> 1 -cotx304 comparetotal 70E-1 -7.0 -> 1 -cotx305 comparetotal .7E+1 -7 -> 1 -cotx306 comparetotal 70E-1 -7 -> 1 -cotx307 comparetotal 7.0 -7E+0 -> 1 -cotx308 comparetotal 7.0 -70E-1 -> 1 -cotx309 comparetotal 7 -.7E+1 -> 1 -cotx310 comparetotal 7 -70E-1 -> 1 - -cotx320 comparetotal 8.0 -7.0 -> 1 -cotx321 comparetotal 8.0 -7 -> 1 -cotx322 comparetotal 8 -7.0 -> 1 -cotx323 comparetotal 8E+0 -7.0 -> 1 -cotx324 comparetotal 80E-1 -7.0 -> 1 -cotx325 comparetotal .8E+1 -7 -> 1 -cotx326 comparetotal 80E-1 -7 -> 1 -cotx327 comparetotal 8.0 -7E+0 -> 1 -cotx328 comparetotal 8.0 -70E-1 -> 1 -cotx329 comparetotal 8 -.7E+1 -> 1 -cotx330 comparetotal 8 -70E-1 -> 1 - -cotx340 comparetotal 8.0 -9.0 -> 1 -cotx341 comparetotal 8.0 -9 -> 1 -cotx342 comparetotal 8 -9.0 -> 1 -cotx343 comparetotal 8E+0 -9.0 -> 1 -cotx344 comparetotal 80E-1 -9.0 -> 1 -cotx345 comparetotal .8E+1 -9 -> 1 -cotx346 comparetotal 80E-1 -9 -> 1 -cotx347 comparetotal 8.0 -9E+0 -> 1 -cotx348 comparetotal 8.0 -90E-1 -> 1 -cotx349 comparetotal 8 -.9E+1 -> 1 -cotx350 comparetotal 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -cotx400 comparetotal -7.0 -7.0 -> 0 -cotx401 comparetotal -7.0 -7 -> 1 -cotx402 comparetotal -7 -7.0 -> -1 -cotx403 comparetotal -7E+0 -7.0 -> -1 -cotx404 comparetotal -70E-1 -7.0 -> 0 -cotx405 comparetotal -.7E+1 -7 -> 0 -cotx406 comparetotal -70E-1 -7 -> 1 -cotx407 comparetotal -7.0 -7E+0 -> 1 -cotx408 comparetotal -7.0 -70E-1 -> 0 -cotx409 comparetotal -7 -.7E+1 -> 0 -cotx410 comparetotal -7 -70E-1 -> -1 - -cotx420 comparetotal -8.0 -7.0 -> -1 -cotx421 comparetotal -8.0 -7 -> -1 -cotx422 comparetotal -8 -7.0 -> -1 -cotx423 comparetotal -8E+0 -7.0 -> -1 -cotx424 comparetotal -80E-1 -7.0 -> -1 -cotx425 comparetotal -.8E+1 -7 -> -1 -cotx426 comparetotal -80E-1 -7 -> -1 -cotx427 comparetotal -8.0 -7E+0 -> -1 -cotx428 comparetotal -8.0 -70E-1 -> -1 -cotx429 comparetotal -8 -.7E+1 -> -1 -cotx430 comparetotal -8 -70E-1 -> -1 - -cotx440 comparetotal -8.0 -9.0 -> 1 -cotx441 comparetotal -8.0 -9 -> 1 -cotx442 comparetotal -8 -9.0 -> 1 -cotx443 comparetotal -8E+0 -9.0 -> 1 -cotx444 comparetotal -80E-1 -9.0 -> 1 -cotx445 comparetotal -.8E+1 -9 -> 1 -cotx446 comparetotal -80E-1 -9 -> 1 -cotx447 comparetotal -8.0 -9E+0 -> 1 -cotx448 comparetotal -8.0 -90E-1 -> 1 -cotx449 comparetotal -8 -.9E+1 -> 1 -cotx450 comparetotal -8 -90E-1 -> 1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -precision: 40 -cotx470 comparetotal 123.4560000000000000E789 123.456E789 -> -1 -cotx471 comparetotal 123.456000000000000E-89 123.456E-89 -> -1 -cotx472 comparetotal 123.45600000000000E789 123.456E789 -> -1 -cotx473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1 -cotx474 comparetotal 123.456000000000E789 123.456E789 -> -1 -cotx475 comparetotal 123.45600000000E-89 123.456E-89 -> -1 -cotx476 comparetotal 123.4560000000E789 123.456E789 -> -1 -cotx477 comparetotal 123.456000000E-89 123.456E-89 -> -1 -cotx478 comparetotal 123.45600000E789 123.456E789 -> -1 -cotx479 comparetotal 123.4560000E-89 123.456E-89 -> -1 -cotx480 comparetotal 123.456000E789 123.456E789 -> -1 -cotx481 comparetotal 123.45600E-89 123.456E-89 -> -1 -cotx482 comparetotal 123.4560E789 123.456E789 -> -1 -cotx483 comparetotal 123.456E-89 123.456E-89 -> 0 -cotx484 comparetotal 123.456E-89 123.4560000000000000E-89 -> 1 -cotx485 comparetotal 123.456E789 123.456000000000000E789 -> 1 -cotx486 comparetotal 123.456E-89 123.45600000000000E-89 -> 1 -cotx487 comparetotal 123.456E789 123.4560000000000E789 -> 1 -cotx488 comparetotal 123.456E-89 123.456000000000E-89 -> 1 -cotx489 comparetotal 123.456E789 123.45600000000E789 -> 1 -cotx490 comparetotal 123.456E-89 123.4560000000E-89 -> 1 -cotx491 comparetotal 123.456E789 123.456000000E789 -> 1 -cotx492 comparetotal 123.456E-89 123.45600000E-89 -> 1 -cotx493 comparetotal 123.456E789 123.4560000E789 -> 1 -cotx494 comparetotal 123.456E-89 123.456000E-89 -> 1 -cotx495 comparetotal 123.456E789 123.45600E789 -> 1 -cotx496 comparetotal 123.456E-89 123.4560E-89 -> 1 -cotx497 comparetotal 123.456E789 123.456E789 -> 0 - --- wide-ranging, around precision; signs equal -precision: 9 -cotx500 comparetotal 1 1E-15 -> 1 -cotx501 comparetotal 1 1E-14 -> 1 -cotx502 comparetotal 1 1E-13 -> 1 -cotx503 comparetotal 1 1E-12 -> 1 -cotx504 comparetotal 1 1E-11 -> 1 -cotx505 comparetotal 1 1E-10 -> 1 -cotx506 comparetotal 1 1E-9 -> 1 -cotx507 comparetotal 1 1E-8 -> 1 -cotx508 comparetotal 1 1E-7 -> 1 -cotx509 comparetotal 1 1E-6 -> 1 -cotx510 comparetotal 1 1E-5 -> 1 -cotx511 comparetotal 1 1E-4 -> 1 -cotx512 comparetotal 1 1E-3 -> 1 -cotx513 comparetotal 1 1E-2 -> 1 -cotx514 comparetotal 1 1E-1 -> 1 -cotx515 comparetotal 1 1E-0 -> 0 -cotx516 comparetotal 1 1E+1 -> -1 -cotx517 comparetotal 1 1E+2 -> -1 -cotx518 comparetotal 1 1E+3 -> -1 -cotx519 comparetotal 1 1E+4 -> -1 -cotx521 comparetotal 1 1E+5 -> -1 -cotx522 comparetotal 1 1E+6 -> -1 -cotx523 comparetotal 1 1E+7 -> -1 -cotx524 comparetotal 1 1E+8 -> -1 -cotx525 comparetotal 1 1E+9 -> -1 -cotx526 comparetotal 1 1E+10 -> -1 -cotx527 comparetotal 1 1E+11 -> -1 -cotx528 comparetotal 1 1E+12 -> -1 -cotx529 comparetotal 1 1E+13 -> -1 -cotx530 comparetotal 1 1E+14 -> -1 -cotx531 comparetotal 1 1E+15 -> -1 --- LR swap -cotx540 comparetotal 1E-15 1 -> -1 -cotx541 comparetotal 1E-14 1 -> -1 -cotx542 comparetotal 1E-13 1 -> -1 -cotx543 comparetotal 1E-12 1 -> -1 -cotx544 comparetotal 1E-11 1 -> -1 -cotx545 comparetotal 1E-10 1 -> -1 -cotx546 comparetotal 1E-9 1 -> -1 -cotx547 comparetotal 1E-8 1 -> -1 -cotx548 comparetotal 1E-7 1 -> -1 -cotx549 comparetotal 1E-6 1 -> -1 -cotx550 comparetotal 1E-5 1 -> -1 -cotx551 comparetotal 1E-4 1 -> -1 -cotx552 comparetotal 1E-3 1 -> -1 -cotx553 comparetotal 1E-2 1 -> -1 -cotx554 comparetotal 1E-1 1 -> -1 -cotx555 comparetotal 1E-0 1 -> 0 -cotx556 comparetotal 1E+1 1 -> 1 -cotx557 comparetotal 1E+2 1 -> 1 -cotx558 comparetotal 1E+3 1 -> 1 -cotx559 comparetotal 1E+4 1 -> 1 -cotx561 comparetotal 1E+5 1 -> 1 -cotx562 comparetotal 1E+6 1 -> 1 -cotx563 comparetotal 1E+7 1 -> 1 -cotx564 comparetotal 1E+8 1 -> 1 -cotx565 comparetotal 1E+9 1 -> 1 -cotx566 comparetotal 1E+10 1 -> 1 -cotx567 comparetotal 1E+11 1 -> 1 -cotx568 comparetotal 1E+12 1 -> 1 -cotx569 comparetotal 1E+13 1 -> 1 -cotx570 comparetotal 1E+14 1 -> 1 -cotx571 comparetotal 1E+15 1 -> 1 --- similar with an useful coefficient, one side only -cotx580 comparetotal 0.000000987654321 1E-15 -> 1 -cotx581 comparetotal 0.000000987654321 1E-14 -> 1 -cotx582 comparetotal 0.000000987654321 1E-13 -> 1 -cotx583 comparetotal 0.000000987654321 1E-12 -> 1 -cotx584 comparetotal 0.000000987654321 1E-11 -> 1 -cotx585 comparetotal 0.000000987654321 1E-10 -> 1 -cotx586 comparetotal 0.000000987654321 1E-9 -> 1 -cotx587 comparetotal 0.000000987654321 1E-8 -> 1 -cotx588 comparetotal 0.000000987654321 1E-7 -> 1 -cotx589 comparetotal 0.000000987654321 1E-6 -> -1 -cotx590 comparetotal 0.000000987654321 1E-5 -> -1 -cotx591 comparetotal 0.000000987654321 1E-4 -> -1 -cotx592 comparetotal 0.000000987654321 1E-3 -> -1 -cotx593 comparetotal 0.000000987654321 1E-2 -> -1 -cotx594 comparetotal 0.000000987654321 1E-1 -> -1 -cotx595 comparetotal 0.000000987654321 1E-0 -> -1 -cotx596 comparetotal 0.000000987654321 1E+1 -> -1 -cotx597 comparetotal 0.000000987654321 1E+2 -> -1 -cotx598 comparetotal 0.000000987654321 1E+3 -> -1 -cotx599 comparetotal 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -precision: 20 -cotx600 comparetotal 12 12.2345 -> -1 -cotx601 comparetotal 12.0 12.2345 -> -1 -cotx602 comparetotal 12.00 12.2345 -> -1 -cotx603 comparetotal 12.000 12.2345 -> -1 -cotx604 comparetotal 12.0000 12.2345 -> -1 -cotx605 comparetotal 12.00000 12.2345 -> -1 -cotx606 comparetotal 12.000000 12.2345 -> -1 -cotx607 comparetotal 12.0000000 12.2345 -> -1 -cotx608 comparetotal 12.00000000 12.2345 -> -1 -cotx609 comparetotal 12.000000000 12.2345 -> -1 -cotx610 comparetotal 12.1234 12 -> 1 -cotx611 comparetotal 12.1234 12.0 -> 1 -cotx612 comparetotal 12.1234 12.00 -> 1 -cotx613 comparetotal 12.1234 12.000 -> 1 -cotx614 comparetotal 12.1234 12.0000 -> 1 -cotx615 comparetotal 12.1234 12.00000 -> 1 -cotx616 comparetotal 12.1234 12.000000 -> 1 -cotx617 comparetotal 12.1234 12.0000000 -> 1 -cotx618 comparetotal 12.1234 12.00000000 -> 1 -cotx619 comparetotal 12.1234 12.000000000 -> 1 -cotx620 comparetotal -12 -12.2345 -> 1 -cotx621 comparetotal -12.0 -12.2345 -> 1 -cotx622 comparetotal -12.00 -12.2345 -> 1 -cotx623 comparetotal -12.000 -12.2345 -> 1 -cotx624 comparetotal -12.0000 -12.2345 -> 1 -cotx625 comparetotal -12.00000 -12.2345 -> 1 -cotx626 comparetotal -12.000000 -12.2345 -> 1 -cotx627 comparetotal -12.0000000 -12.2345 -> 1 -cotx628 comparetotal -12.00000000 -12.2345 -> 1 -cotx629 comparetotal -12.000000000 -12.2345 -> 1 -cotx630 comparetotal -12.1234 -12 -> -1 -cotx631 comparetotal -12.1234 -12.0 -> -1 -cotx632 comparetotal -12.1234 -12.00 -> -1 -cotx633 comparetotal -12.1234 -12.000 -> -1 -cotx634 comparetotal -12.1234 -12.0000 -> -1 -cotx635 comparetotal -12.1234 -12.00000 -> -1 -cotx636 comparetotal -12.1234 -12.000000 -> -1 -cotx637 comparetotal -12.1234 -12.0000000 -> -1 -cotx638 comparetotal -12.1234 -12.00000000 -> -1 -cotx639 comparetotal -12.1234 -12.000000000 -> -1 -precision: 9 - --- extended zeros -cotx640 comparetotal 0 0 -> 0 -cotx641 comparetotal 0 -0 -> 1 -cotx642 comparetotal 0 -0.0 -> 1 -cotx643 comparetotal 0 0.0 -> 1 -cotx644 comparetotal -0 0 -> -1 -cotx645 comparetotal -0 -0 -> 0 -cotx646 comparetotal -0 -0.0 -> -1 -cotx647 comparetotal -0 0.0 -> -1 -cotx648 comparetotal 0.0 0 -> -1 -cotx649 comparetotal 0.0 -0 -> 1 -cotx650 comparetotal 0.0 -0.0 -> 1 -cotx651 comparetotal 0.0 0.0 -> 0 -cotx652 comparetotal -0.0 0 -> -1 -cotx653 comparetotal -0.0 -0 -> 1 -cotx654 comparetotal -0.0 -0.0 -> 0 -cotx655 comparetotal -0.0 0.0 -> -1 - -cotx656 comparetotal -0E1 0.0 -> -1 -cotx657 comparetotal -0E2 0.0 -> -1 -cotx658 comparetotal 0E1 0.0 -> 1 -cotx659 comparetotal 0E2 0.0 -> 1 -cotx660 comparetotal -0E1 0 -> -1 -cotx661 comparetotal -0E2 0 -> -1 -cotx662 comparetotal 0E1 0 -> 1 -cotx663 comparetotal 0E2 0 -> 1 -cotx664 comparetotal -0E1 -0E1 -> 0 -cotx665 comparetotal -0E2 -0E1 -> -1 -cotx666 comparetotal 0E1 -0E1 -> 1 -cotx667 comparetotal 0E2 -0E1 -> 1 -cotx668 comparetotal -0E1 -0E2 -> 1 -cotx669 comparetotal -0E2 -0E2 -> 0 -cotx670 comparetotal 0E1 -0E2 -> 1 -cotx671 comparetotal 0E2 -0E2 -> 1 -cotx672 comparetotal -0E1 0E1 -> -1 -cotx673 comparetotal -0E2 0E1 -> -1 -cotx674 comparetotal 0E1 0E1 -> 0 -cotx675 comparetotal 0E2 0E1 -> 1 -cotx676 comparetotal -0E1 0E2 -> -1 -cotx677 comparetotal -0E2 0E2 -> -1 -cotx678 comparetotal 0E1 0E2 -> -1 -cotx679 comparetotal 0E2 0E2 -> 0 - --- trailing zeros; unit-y -precision: 20 -cotx680 comparetotal 12 12 -> 0 -cotx681 comparetotal 12 12.0 -> 1 -cotx682 comparetotal 12 12.00 -> 1 -cotx683 comparetotal 12 12.000 -> 1 -cotx684 comparetotal 12 12.0000 -> 1 -cotx685 comparetotal 12 12.00000 -> 1 -cotx686 comparetotal 12 12.000000 -> 1 -cotx687 comparetotal 12 12.0000000 -> 1 -cotx688 comparetotal 12 12.00000000 -> 1 -cotx689 comparetotal 12 12.000000000 -> 1 -cotx690 comparetotal 12 12 -> 0 -cotx691 comparetotal 12.0 12 -> -1 -cotx692 comparetotal 12.00 12 -> -1 -cotx693 comparetotal 12.000 12 -> -1 -cotx694 comparetotal 12.0000 12 -> -1 -cotx695 comparetotal 12.00000 12 -> -1 -cotx696 comparetotal 12.000000 12 -> -1 -cotx697 comparetotal 12.0000000 12 -> -1 -cotx698 comparetotal 12.00000000 12 -> -1 -cotx699 comparetotal 12.000000000 12 -> -1 - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -cotx701 comparetotal 12345678000 1 -> 1 -cotx702 comparetotal 1 12345678000 -> -1 -cotx703 comparetotal 1234567800 1 -> 1 -cotx704 comparetotal 1 1234567800 -> -1 -cotx705 comparetotal 1234567890 1 -> 1 -cotx706 comparetotal 1 1234567890 -> -1 -cotx707 comparetotal 1234567891 1 -> 1 -cotx708 comparetotal 1 1234567891 -> -1 -cotx709 comparetotal 12345678901 1 -> 1 -cotx710 comparetotal 1 12345678901 -> -1 -cotx711 comparetotal 1234567896 1 -> 1 -cotx712 comparetotal 1 1234567896 -> -1 -cotx713 comparetotal -1234567891 1 -> -1 -cotx714 comparetotal 1 -1234567891 -> 1 -cotx715 comparetotal -12345678901 1 -> -1 -cotx716 comparetotal 1 -12345678901 -> 1 -cotx717 comparetotal -1234567896 1 -> -1 -cotx718 comparetotal 1 -1234567896 -> 1 - -precision: 15 --- same with plenty of precision -cotx721 comparetotal 12345678000 1 -> 1 -cotx722 comparetotal 1 12345678000 -> -1 -cotx723 comparetotal 1234567800 1 -> 1 -cotx724 comparetotal 1 1234567800 -> -1 -cotx725 comparetotal 1234567890 1 -> 1 -cotx726 comparetotal 1 1234567890 -> -1 -cotx727 comparetotal 1234567891 1 -> 1 -cotx728 comparetotal 1 1234567891 -> -1 -cotx729 comparetotal 12345678901 1 -> 1 -cotx730 comparetotal 1 12345678901 -> -1 -cotx731 comparetotal 1234567896 1 -> 1 -cotx732 comparetotal 1 1234567896 -> -1 - --- residue cases -precision: 5 -cotx740 comparetotal 1 0.9999999 -> 1 -cotx741 comparetotal 1 0.999999 -> 1 -cotx742 comparetotal 1 0.99999 -> 1 -cotx743 comparetotal 1 1.0000 -> 1 -cotx744 comparetotal 1 1.00001 -> -1 -cotx745 comparetotal 1 1.000001 -> -1 -cotx746 comparetotal 1 1.0000001 -> -1 -cotx750 comparetotal 0.9999999 1 -> -1 -cotx751 comparetotal 0.999999 1 -> -1 -cotx752 comparetotal 0.99999 1 -> -1 -cotx753 comparetotal 1.0000 1 -> -1 -cotx754 comparetotal 1.00001 1 -> 1 -cotx755 comparetotal 1.000001 1 -> 1 -cotx756 comparetotal 1.0000001 1 -> 1 - --- a selection of longies -cotx760 comparetotal -36852134.84194296250843579428931 -5830629.8347085025808756560357940 -> -1 -cotx761 comparetotal -36852134.84194296250843579428931 -36852134.84194296250843579428931 -> 0 -cotx762 comparetotal -36852134.94194296250843579428931 -36852134.84194296250843579428931 -> -1 -cotx763 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 --- precisions above or below the difference should have no effect -precision: 11 -cotx764 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 10 -cotx765 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 9 -cotx766 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 8 -cotx767 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 7 -cotx768 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 6 -cotx769 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 5 -cotx770 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 4 -cotx771 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 3 -cotx772 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 2 -cotx773 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -precision: 1 -cotx774 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 - --- Specials -precision: 9 -cotx780 comparetotal Inf -Inf -> 1 -cotx781 comparetotal Inf -1000 -> 1 -cotx782 comparetotal Inf -1 -> 1 -cotx783 comparetotal Inf -0 -> 1 -cotx784 comparetotal Inf 0 -> 1 -cotx785 comparetotal Inf 1 -> 1 -cotx786 comparetotal Inf 1000 -> 1 -cotx787 comparetotal Inf Inf -> 0 -cotx788 comparetotal -1000 Inf -> -1 -cotx789 comparetotal -Inf Inf -> -1 -cotx790 comparetotal -1 Inf -> -1 -cotx791 comparetotal -0 Inf -> -1 -cotx792 comparetotal 0 Inf -> -1 -cotx793 comparetotal 1 Inf -> -1 -cotx794 comparetotal 1000 Inf -> -1 -cotx795 comparetotal Inf Inf -> 0 - -cotx800 comparetotal -Inf -Inf -> 0 -cotx801 comparetotal -Inf -1000 -> -1 -cotx802 comparetotal -Inf -1 -> -1 -cotx803 comparetotal -Inf -0 -> -1 -cotx804 comparetotal -Inf 0 -> -1 -cotx805 comparetotal -Inf 1 -> -1 -cotx806 comparetotal -Inf 1000 -> -1 -cotx807 comparetotal -Inf Inf -> -1 -cotx808 comparetotal -Inf -Inf -> 0 -cotx809 comparetotal -1000 -Inf -> 1 -cotx810 comparetotal -1 -Inf -> 1 -cotx811 comparetotal -0 -Inf -> 1 -cotx812 comparetotal 0 -Inf -> 1 -cotx813 comparetotal 1 -Inf -> 1 -cotx814 comparetotal 1000 -Inf -> 1 -cotx815 comparetotal Inf -Inf -> 1 - -cotx821 comparetotal NaN -Inf -> 1 -cotx822 comparetotal NaN -1000 -> 1 -cotx823 comparetotal NaN -1 -> 1 -cotx824 comparetotal NaN -0 -> 1 -cotx825 comparetotal NaN 0 -> 1 -cotx826 comparetotal NaN 1 -> 1 -cotx827 comparetotal NaN 1000 -> 1 -cotx828 comparetotal NaN Inf -> 1 -cotx829 comparetotal NaN NaN -> 0 -cotx830 comparetotal -Inf NaN -> -1 -cotx831 comparetotal -1000 NaN -> -1 -cotx832 comparetotal -1 NaN -> -1 -cotx833 comparetotal -0 NaN -> -1 -cotx834 comparetotal 0 NaN -> -1 -cotx835 comparetotal 1 NaN -> -1 -cotx836 comparetotal 1000 NaN -> -1 -cotx837 comparetotal Inf NaN -> -1 -cotx838 comparetotal -NaN -NaN -> 0 -cotx839 comparetotal +NaN -NaN -> 1 -cotx840 comparetotal -NaN +NaN -> -1 - -cotx841 comparetotal sNaN -sNaN -> 1 -cotx842 comparetotal sNaN -NaN -> 1 -cotx843 comparetotal sNaN -Inf -> 1 -cotx844 comparetotal sNaN -1000 -> 1 -cotx845 comparetotal sNaN -1 -> 1 -cotx846 comparetotal sNaN -0 -> 1 -cotx847 comparetotal sNaN 0 -> 1 -cotx848 comparetotal sNaN 1 -> 1 -cotx849 comparetotal sNaN 1000 -> 1 -cotx850 comparetotal sNaN NaN -> -1 -cotx851 comparetotal sNaN sNaN -> 0 - -cotx852 comparetotal -sNaN sNaN -> -1 -cotx853 comparetotal -NaN sNaN -> -1 -cotx854 comparetotal -Inf sNaN -> -1 -cotx855 comparetotal -1000 sNaN -> -1 -cotx856 comparetotal -1 sNaN -> -1 -cotx857 comparetotal -0 sNaN -> -1 -cotx858 comparetotal 0 sNaN -> -1 -cotx859 comparetotal 1 sNaN -> -1 -cotx860 comparetotal 1000 sNaN -> -1 -cotx861 comparetotal Inf sNaN -> -1 -cotx862 comparetotal NaN sNaN -> 1 -cotx863 comparetotal sNaN sNaN -> 0 - -cotx871 comparetotal -sNaN -sNaN -> 0 -cotx872 comparetotal -sNaN -NaN -> 1 -cotx873 comparetotal -sNaN -Inf -> -1 -cotx874 comparetotal -sNaN -1000 -> -1 -cotx875 comparetotal -sNaN -1 -> -1 -cotx876 comparetotal -sNaN -0 -> -1 -cotx877 comparetotal -sNaN 0 -> -1 -cotx878 comparetotal -sNaN 1 -> -1 -cotx879 comparetotal -sNaN 1000 -> -1 -cotx880 comparetotal -sNaN NaN -> -1 -cotx881 comparetotal -sNaN sNaN -> -1 - -cotx882 comparetotal -sNaN -sNaN -> 0 -cotx883 comparetotal -NaN -sNaN -> -1 -cotx884 comparetotal -Inf -sNaN -> 1 -cotx885 comparetotal -1000 -sNaN -> 1 -cotx886 comparetotal -1 -sNaN -> 1 -cotx887 comparetotal -0 -sNaN -> 1 -cotx888 comparetotal 0 -sNaN -> 1 -cotx889 comparetotal 1 -sNaN -> 1 -cotx890 comparetotal 1000 -sNaN -> 1 -cotx891 comparetotal Inf -sNaN -> 1 -cotx892 comparetotal NaN -sNaN -> 1 -cotx893 comparetotal sNaN -sNaN -> 1 - --- NaNs with payload -cotx960 comparetotal NaN9 -Inf -> 1 -cotx961 comparetotal NaN8 999 -> 1 -cotx962 comparetotal NaN77 Inf -> 1 -cotx963 comparetotal -NaN67 NaN5 -> -1 -cotx964 comparetotal -Inf -NaN4 -> 1 -cotx965 comparetotal -999 -NaN33 -> 1 -cotx966 comparetotal Inf NaN2 -> -1 - -cotx970 comparetotal -NaN41 -NaN42 -> 1 -cotx971 comparetotal +NaN41 -NaN42 -> 1 -cotx972 comparetotal -NaN41 +NaN42 -> -1 -cotx973 comparetotal +NaN41 +NaN42 -> -1 -cotx974 comparetotal -NaN42 -NaN01 -> -1 -cotx975 comparetotal +NaN42 -NaN01 -> 1 -cotx976 comparetotal -NaN42 +NaN01 -> -1 -cotx977 comparetotal +NaN42 +NaN01 -> 1 - -cotx980 comparetotal -sNaN771 -sNaN772 -> 1 -cotx981 comparetotal +sNaN771 -sNaN772 -> 1 -cotx982 comparetotal -sNaN771 +sNaN772 -> -1 -cotx983 comparetotal +sNaN771 +sNaN772 -> -1 -cotx984 comparetotal -sNaN772 -sNaN771 -> -1 -cotx985 comparetotal +sNaN772 -sNaN771 -> 1 -cotx986 comparetotal -sNaN772 +sNaN771 -> -1 -cotx987 comparetotal +sNaN772 +sNaN771 -> 1 - -cotx991 comparetotal -sNaN99 -Inf -> -1 -cotx992 comparetotal sNaN98 -11 -> 1 -cotx993 comparetotal sNaN97 NaN -> -1 -cotx994 comparetotal sNaN16 sNaN94 -> -1 -cotx995 comparetotal NaN85 sNaN83 -> 1 -cotx996 comparetotal -Inf sNaN92 -> -1 -cotx997 comparetotal 088 sNaN81 -> -1 -cotx998 comparetotal Inf sNaN90 -> -1 -cotx999 comparetotal NaN -sNaN89 -> 1 - --- overflow and underflow tests .. subnormal results now allowed -maxExponent: 999999999 -minexponent: -999999999 -cotx1080 comparetotal +1.23456789012345E-0 9E+999999999 -> -1 -cotx1081 comparetotal 9E+999999999 +1.23456789012345E-0 -> 1 -cotx1082 comparetotal +0.100 9E-999999999 -> 1 -cotx1083 comparetotal 9E-999999999 +0.100 -> -1 -cotx1085 comparetotal -1.23456789012345E-0 9E+999999999 -> -1 -cotx1086 comparetotal 9E+999999999 -1.23456789012345E-0 -> 1 -cotx1087 comparetotal -0.100 9E-999999999 -> -1 -cotx1088 comparetotal 9E-999999999 -0.100 -> 1 - -cotx1089 comparetotal 1e-599999999 1e-400000001 -> -1 -cotx1090 comparetotal 1e-599999999 1e-400000000 -> -1 -cotx1091 comparetotal 1e-600000000 1e-400000000 -> -1 -cotx1092 comparetotal 9e-999999998 0.01 -> -1 -cotx1093 comparetotal 9e-999999998 0.1 -> -1 -cotx1094 comparetotal 0.01 9e-999999998 -> 1 -cotx1095 comparetotal 1e599999999 1e400000001 -> 1 -cotx1096 comparetotal 1e599999999 1e400000000 -> 1 -cotx1097 comparetotal 1e600000000 1e400000000 -> 1 -cotx1098 comparetotal 9e999999998 100 -> 1 -cotx1099 comparetotal 9e999999998 10 -> 1 -cotx1100 comparetotal 100 9e999999998 -> -1 --- signs -cotx1101 comparetotal 1e+777777777 1e+411111111 -> 1 -cotx1102 comparetotal 1e+777777777 -1e+411111111 -> 1 -cotx1103 comparetotal -1e+777777777 1e+411111111 -> -1 -cotx1104 comparetotal -1e+777777777 -1e+411111111 -> -1 -cotx1105 comparetotal 1e-777777777 1e-411111111 -> -1 -cotx1106 comparetotal 1e-777777777 -1e-411111111 -> 1 -cotx1107 comparetotal -1e-777777777 1e-411111111 -> -1 -cotx1108 comparetotal -1e-777777777 -1e-411111111 -> 1 - --- spread zeros -cotx1110 comparetotal 0E-383 0 -> -1 -cotx1111 comparetotal 0E-383 -0 -> 1 -cotx1112 comparetotal -0E-383 0 -> -1 -cotx1113 comparetotal -0E-383 -0 -> 1 -cotx1114 comparetotal 0E-383 0E+384 -> -1 -cotx1115 comparetotal 0E-383 -0E+384 -> 1 -cotx1116 comparetotal -0E-383 0E+384 -> -1 -cotx1117 comparetotal -0E-383 -0E+384 -> 1 -cotx1118 comparetotal 0 0E+384 -> -1 -cotx1119 comparetotal 0 -0E+384 -> 1 -cotx1120 comparetotal -0 0E+384 -> -1 -cotx1121 comparetotal -0 -0E+384 -> 1 - -cotx1130 comparetotal 0E+384 0 -> 1 -cotx1131 comparetotal 0E+384 -0 -> 1 -cotx1132 comparetotal -0E+384 0 -> -1 -cotx1133 comparetotal -0E+384 -0 -> -1 -cotx1134 comparetotal 0E+384 0E-383 -> 1 -cotx1135 comparetotal 0E+384 -0E-383 -> 1 -cotx1136 comparetotal -0E+384 0E-383 -> -1 -cotx1137 comparetotal -0E+384 -0E-383 -> -1 -cotx1138 comparetotal 0 0E-383 -> 1 -cotx1139 comparetotal 0 -0E-383 -> 1 -cotx1140 comparetotal -0 0E-383 -> -1 -cotx1141 comparetotal -0 -0E-383 -> -1 - --- Null tests -cotx9990 comparetotal 10 # -> NaN Invalid_operation -cotx9991 comparetotal # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/comparetotmag.decTest b/qdecimal/test/tc_full/comparetotmag.decTest deleted file mode 100644 index c0c7436..0000000 --- a/qdecimal/test/tc_full/comparetotmag.decTest +++ /dev/null @@ -1,790 +0,0 @@ ------------------------------------------------------------------------- --- comparetotmag.decTest -- decimal comparison, abs. total ordering -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that it cannot be assumed that add/subtract tests cover paths --- for this operation adequately, here, because the code might be --- quite different (comparison cannot overflow or underflow, so --- actual subtractions are not necessary). Similarly, comparetotal --- will have some radically different paths than compare. - -extended: 1 -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - --- sanity checks -ctmx001 comparetotmag -2 -2 -> 0 -ctmx002 comparetotmag -2 -1 -> 1 -ctmx003 comparetotmag -2 0 -> 1 -ctmx004 comparetotmag -2 1 -> 1 -ctmx005 comparetotmag -2 2 -> 0 -ctmx006 comparetotmag -1 -2 -> -1 -ctmx007 comparetotmag -1 -1 -> 0 -ctmx008 comparetotmag -1 0 -> 1 -ctmx009 comparetotmag -1 1 -> 0 -ctmx010 comparetotmag -1 2 -> -1 -ctmx011 comparetotmag 0 -2 -> -1 -ctmx012 comparetotmag 0 -1 -> -1 -ctmx013 comparetotmag 0 0 -> 0 -ctmx014 comparetotmag 0 1 -> -1 -ctmx015 comparetotmag 0 2 -> -1 -ctmx016 comparetotmag 1 -2 -> -1 -ctmx017 comparetotmag 1 -1 -> 0 -ctmx018 comparetotmag 1 0 -> 1 -ctmx019 comparetotmag 1 1 -> 0 -ctmx020 comparetotmag 1 2 -> -1 -ctmx021 comparetotmag 2 -2 -> 0 -ctmx022 comparetotmag 2 -1 -> 1 -ctmx023 comparetotmag 2 0 -> 1 -ctmx025 comparetotmag 2 1 -> 1 -ctmx026 comparetotmag 2 2 -> 0 - -ctmx031 comparetotmag -20 -20 -> 0 -ctmx032 comparetotmag -20 -10 -> 1 -ctmx033 comparetotmag -20 00 -> 1 -ctmx034 comparetotmag -20 10 -> 1 -ctmx035 comparetotmag -20 20 -> 0 -ctmx036 comparetotmag -10 -20 -> -1 -ctmx037 comparetotmag -10 -10 -> 0 -ctmx038 comparetotmag -10 00 -> 1 -ctmx039 comparetotmag -10 10 -> 0 -ctmx040 comparetotmag -10 20 -> -1 -ctmx041 comparetotmag 00 -20 -> -1 -ctmx042 comparetotmag 00 -10 -> -1 -ctmx043 comparetotmag 00 00 -> 0 -ctmx044 comparetotmag 00 10 -> -1 -ctmx045 comparetotmag 00 20 -> -1 -ctmx046 comparetotmag 10 -20 -> -1 -ctmx047 comparetotmag 10 -10 -> 0 -ctmx048 comparetotmag 10 00 -> 1 -ctmx049 comparetotmag 10 10 -> 0 -ctmx050 comparetotmag 10 20 -> -1 -ctmx051 comparetotmag 20 -20 -> 0 -ctmx052 comparetotmag 20 -10 -> 1 -ctmx053 comparetotmag 20 00 -> 1 -ctmx055 comparetotmag 20 10 -> 1 -ctmx056 comparetotmag 20 20 -> 0 - -ctmx061 comparetotmag -2.0 -2.0 -> 0 -ctmx062 comparetotmag -2.0 -1.0 -> 1 -ctmx063 comparetotmag -2.0 0.0 -> 1 -ctmx064 comparetotmag -2.0 1.0 -> 1 -ctmx065 comparetotmag -2.0 2.0 -> 0 -ctmx066 comparetotmag -1.0 -2.0 -> -1 -ctmx067 comparetotmag -1.0 -1.0 -> 0 -ctmx068 comparetotmag -1.0 0.0 -> 1 -ctmx069 comparetotmag -1.0 1.0 -> 0 -ctmx070 comparetotmag -1.0 2.0 -> -1 -ctmx071 comparetotmag 0.0 -2.0 -> -1 -ctmx072 comparetotmag 0.0 -1.0 -> -1 -ctmx073 comparetotmag 0.0 0.0 -> 0 -ctmx074 comparetotmag 0.0 1.0 -> -1 -ctmx075 comparetotmag 0.0 2.0 -> -1 -ctmx076 comparetotmag 1.0 -2.0 -> -1 -ctmx077 comparetotmag 1.0 -1.0 -> 0 -ctmx078 comparetotmag 1.0 0.0 -> 1 -ctmx079 comparetotmag 1.0 1.0 -> 0 -ctmx080 comparetotmag 1.0 2.0 -> -1 -ctmx081 comparetotmag 2.0 -2.0 -> 0 -ctmx082 comparetotmag 2.0 -1.0 -> 1 -ctmx083 comparetotmag 2.0 0.0 -> 1 -ctmx085 comparetotmag 2.0 1.0 -> 1 -ctmx086 comparetotmag 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -maxexponent: 999999999 -minexponent: -999999999 -ctmx090 comparetotmag 9.99999999E+999999999 9.99999999E+999999999 -> 0 -ctmx091 comparetotmag -9.99999999E+999999999 9.99999999E+999999999 -> 0 -ctmx092 comparetotmag 9.99999999E+999999999 -9.99999999E+999999999 -> 0 -ctmx093 comparetotmag -9.99999999E+999999999 -9.99999999E+999999999 -> 0 - --- some differing length/exponent cases --- in this first group, compare would compare all equal -ctmx100 comparetotmag 7.0 7.0 -> 0 -ctmx101 comparetotmag 7.0 7 -> -1 -ctmx102 comparetotmag 7 7.0 -> 1 -ctmx103 comparetotmag 7E+0 7.0 -> 1 -ctmx104 comparetotmag 70E-1 7.0 -> 0 -ctmx105 comparetotmag 0.7E+1 7 -> 0 -ctmx106 comparetotmag 70E-1 7 -> -1 -ctmx107 comparetotmag 7.0 7E+0 -> -1 -ctmx108 comparetotmag 7.0 70E-1 -> 0 -ctmx109 comparetotmag 7 0.7E+1 -> 0 -ctmx110 comparetotmag 7 70E-1 -> 1 - -ctmx120 comparetotmag 8.0 7.0 -> 1 -ctmx121 comparetotmag 8.0 7 -> 1 -ctmx122 comparetotmag 8 7.0 -> 1 -ctmx123 comparetotmag 8E+0 7.0 -> 1 -ctmx124 comparetotmag 80E-1 7.0 -> 1 -ctmx125 comparetotmag 0.8E+1 7 -> 1 -ctmx126 comparetotmag 80E-1 7 -> 1 -ctmx127 comparetotmag 8.0 7E+0 -> 1 -ctmx128 comparetotmag 8.0 70E-1 -> 1 -ctmx129 comparetotmag 8 0.7E+1 -> 1 -ctmx130 comparetotmag 8 70E-1 -> 1 - -ctmx140 comparetotmag 8.0 9.0 -> -1 -ctmx141 comparetotmag 8.0 9 -> -1 -ctmx142 comparetotmag 8 9.0 -> -1 -ctmx143 comparetotmag 8E+0 9.0 -> -1 -ctmx144 comparetotmag 80E-1 9.0 -> -1 -ctmx145 comparetotmag 0.8E+1 9 -> -1 -ctmx146 comparetotmag 80E-1 9 -> -1 -ctmx147 comparetotmag 8.0 9E+0 -> -1 -ctmx148 comparetotmag 8.0 90E-1 -> -1 -ctmx149 comparetotmag 8 0.9E+1 -> -1 -ctmx150 comparetotmag 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -ctmx200 comparetotmag -7.0 7.0 -> 0 -ctmx201 comparetotmag -7.0 7 -> -1 -ctmx202 comparetotmag -7 7.0 -> 1 -ctmx203 comparetotmag -7E+0 7.0 -> 1 -ctmx204 comparetotmag -70E-1 7.0 -> 0 -ctmx205 comparetotmag -0.7E+1 7 -> 0 -ctmx206 comparetotmag -70E-1 7 -> -1 -ctmx207 comparetotmag -7.0 7E+0 -> -1 -ctmx208 comparetotmag -7.0 70E-1 -> 0 -ctmx209 comparetotmag -7 0.7E+1 -> 0 -ctmx210 comparetotmag -7 70E-1 -> 1 - -ctmx220 comparetotmag -8.0 7.0 -> 1 -ctmx221 comparetotmag -8.0 7 -> 1 -ctmx222 comparetotmag -8 7.0 -> 1 -ctmx223 comparetotmag -8E+0 7.0 -> 1 -ctmx224 comparetotmag -80E-1 7.0 -> 1 -ctmx225 comparetotmag -0.8E+1 7 -> 1 -ctmx226 comparetotmag -80E-1 7 -> 1 -ctmx227 comparetotmag -8.0 7E+0 -> 1 -ctmx228 comparetotmag -8.0 70E-1 -> 1 -ctmx229 comparetotmag -8 0.7E+1 -> 1 -ctmx230 comparetotmag -8 70E-1 -> 1 - -ctmx240 comparetotmag -8.0 9.0 -> -1 -ctmx241 comparetotmag -8.0 9 -> -1 -ctmx242 comparetotmag -8 9.0 -> -1 -ctmx243 comparetotmag -8E+0 9.0 -> -1 -ctmx244 comparetotmag -80E-1 9.0 -> -1 -ctmx245 comparetotmag -0.8E+1 9 -> -1 -ctmx246 comparetotmag -80E-1 9 -> -1 -ctmx247 comparetotmag -8.0 9E+0 -> -1 -ctmx248 comparetotmag -8.0 90E-1 -> -1 -ctmx249 comparetotmag -8 0.9E+1 -> -1 -ctmx250 comparetotmag -8 90E-1 -> -1 - --- and again, with sign changes +- .. -ctmx300 comparetotmag 7.0 -7.0 -> 0 -ctmx301 comparetotmag 7.0 -7 -> -1 -ctmx302 comparetotmag 7 -7.0 -> 1 -ctmx303 comparetotmag 7E+0 -7.0 -> 1 -ctmx304 comparetotmag 70E-1 -7.0 -> 0 -ctmx305 comparetotmag .7E+1 -7 -> 0 -ctmx306 comparetotmag 70E-1 -7 -> -1 -ctmx307 comparetotmag 7.0 -7E+0 -> -1 -ctmx308 comparetotmag 7.0 -70E-1 -> 0 -ctmx309 comparetotmag 7 -.7E+1 -> 0 -ctmx310 comparetotmag 7 -70E-1 -> 1 - -ctmx320 comparetotmag 8.0 -7.0 -> 1 -ctmx321 comparetotmag 8.0 -7 -> 1 -ctmx322 comparetotmag 8 -7.0 -> 1 -ctmx323 comparetotmag 8E+0 -7.0 -> 1 -ctmx324 comparetotmag 80E-1 -7.0 -> 1 -ctmx325 comparetotmag .8E+1 -7 -> 1 -ctmx326 comparetotmag 80E-1 -7 -> 1 -ctmx327 comparetotmag 8.0 -7E+0 -> 1 -ctmx328 comparetotmag 8.0 -70E-1 -> 1 -ctmx329 comparetotmag 8 -.7E+1 -> 1 -ctmx330 comparetotmag 8 -70E-1 -> 1 - -ctmx340 comparetotmag 8.0 -9.0 -> -1 -ctmx341 comparetotmag 8.0 -9 -> -1 -ctmx342 comparetotmag 8 -9.0 -> -1 -ctmx343 comparetotmag 8E+0 -9.0 -> -1 -ctmx344 comparetotmag 80E-1 -9.0 -> -1 -ctmx345 comparetotmag .8E+1 -9 -> -1 -ctmx346 comparetotmag 80E-1 -9 -> -1 -ctmx347 comparetotmag 8.0 -9E+0 -> -1 -ctmx348 comparetotmag 8.0 -90E-1 -> -1 -ctmx349 comparetotmag 8 -.9E+1 -> -1 -ctmx350 comparetotmag 8 -90E-1 -> -1 - --- and again, with sign changes -- .. -ctmx400 comparetotmag -7.0 -7.0 -> 0 -ctmx401 comparetotmag -7.0 -7 -> -1 -ctmx402 comparetotmag -7 -7.0 -> 1 -ctmx403 comparetotmag -7E+0 -7.0 -> 1 -ctmx404 comparetotmag -70E-1 -7.0 -> 0 -ctmx405 comparetotmag -.7E+1 -7 -> 0 -ctmx406 comparetotmag -70E-1 -7 -> -1 -ctmx407 comparetotmag -7.0 -7E+0 -> -1 -ctmx408 comparetotmag -7.0 -70E-1 -> 0 -ctmx409 comparetotmag -7 -.7E+1 -> 0 -ctmx410 comparetotmag -7 -70E-1 -> 1 - -ctmx420 comparetotmag -8.0 -7.0 -> 1 -ctmx421 comparetotmag -8.0 -7 -> 1 -ctmx422 comparetotmag -8 -7.0 -> 1 -ctmx423 comparetotmag -8E+0 -7.0 -> 1 -ctmx424 comparetotmag -80E-1 -7.0 -> 1 -ctmx425 comparetotmag -.8E+1 -7 -> 1 -ctmx426 comparetotmag -80E-1 -7 -> 1 -ctmx427 comparetotmag -8.0 -7E+0 -> 1 -ctmx428 comparetotmag -8.0 -70E-1 -> 1 -ctmx429 comparetotmag -8 -.7E+1 -> 1 -ctmx430 comparetotmag -8 -70E-1 -> 1 - -ctmx440 comparetotmag -8.0 -9.0 -> -1 -ctmx441 comparetotmag -8.0 -9 -> -1 -ctmx442 comparetotmag -8 -9.0 -> -1 -ctmx443 comparetotmag -8E+0 -9.0 -> -1 -ctmx444 comparetotmag -80E-1 -9.0 -> -1 -ctmx445 comparetotmag -.8E+1 -9 -> -1 -ctmx446 comparetotmag -80E-1 -9 -> -1 -ctmx447 comparetotmag -8.0 -9E+0 -> -1 -ctmx448 comparetotmag -8.0 -90E-1 -> -1 -ctmx449 comparetotmag -8 -.9E+1 -> -1 -ctmx450 comparetotmag -8 -90E-1 -> -1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -precision: 40 -ctmx470 comparetotmag 123.4560000000000000E789 123.456E789 -> -1 -ctmx471 comparetotmag 123.456000000000000E-89 123.456E-89 -> -1 -ctmx472 comparetotmag 123.45600000000000E789 123.456E789 -> -1 -ctmx473 comparetotmag 123.4560000000000E-89 123.456E-89 -> -1 -ctmx474 comparetotmag 123.456000000000E789 123.456E789 -> -1 -ctmx475 comparetotmag 123.45600000000E-89 123.456E-89 -> -1 -ctmx476 comparetotmag 123.4560000000E789 123.456E789 -> -1 -ctmx477 comparetotmag 123.456000000E-89 123.456E-89 -> -1 -ctmx478 comparetotmag 123.45600000E789 123.456E789 -> -1 -ctmx479 comparetotmag 123.4560000E-89 123.456E-89 -> -1 -ctmx480 comparetotmag 123.456000E789 123.456E789 -> -1 -ctmx481 comparetotmag 123.45600E-89 123.456E-89 -> -1 -ctmx482 comparetotmag 123.4560E789 123.456E789 -> -1 -ctmx483 comparetotmag 123.456E-89 123.456E-89 -> 0 -ctmx484 comparetotmag 123.456E-89 123.4560000000000000E-89 -> 1 -ctmx485 comparetotmag 123.456E789 123.456000000000000E789 -> 1 -ctmx486 comparetotmag 123.456E-89 123.45600000000000E-89 -> 1 -ctmx487 comparetotmag 123.456E789 123.4560000000000E789 -> 1 -ctmx488 comparetotmag 123.456E-89 123.456000000000E-89 -> 1 -ctmx489 comparetotmag 123.456E789 123.45600000000E789 -> 1 -ctmx490 comparetotmag 123.456E-89 123.4560000000E-89 -> 1 -ctmx491 comparetotmag 123.456E789 123.456000000E789 -> 1 -ctmx492 comparetotmag 123.456E-89 123.45600000E-89 -> 1 -ctmx493 comparetotmag 123.456E789 123.4560000E789 -> 1 -ctmx494 comparetotmag 123.456E-89 123.456000E-89 -> 1 -ctmx495 comparetotmag 123.456E789 123.45600E789 -> 1 -ctmx496 comparetotmag 123.456E-89 123.4560E-89 -> 1 -ctmx497 comparetotmag 123.456E789 123.456E789 -> 0 - --- wide-ranging, around precision; signs equal -precision: 9 -ctmx500 comparetotmag 1 1E-15 -> 1 -ctmx501 comparetotmag 1 1E-14 -> 1 -ctmx502 comparetotmag 1 1E-13 -> 1 -ctmx503 comparetotmag 1 1E-12 -> 1 -ctmx504 comparetotmag 1 1E-11 -> 1 -ctmx505 comparetotmag 1 1E-10 -> 1 -ctmx506 comparetotmag 1 1E-9 -> 1 -ctmx507 comparetotmag 1 1E-8 -> 1 -ctmx508 comparetotmag 1 1E-7 -> 1 -ctmx509 comparetotmag 1 1E-6 -> 1 -ctmx510 comparetotmag 1 1E-5 -> 1 -ctmx511 comparetotmag 1 1E-4 -> 1 -ctmx512 comparetotmag 1 1E-3 -> 1 -ctmx513 comparetotmag 1 1E-2 -> 1 -ctmx514 comparetotmag 1 1E-1 -> 1 -ctmx515 comparetotmag 1 1E-0 -> 0 -ctmx516 comparetotmag 1 1E+1 -> -1 -ctmx517 comparetotmag 1 1E+2 -> -1 -ctmx518 comparetotmag 1 1E+3 -> -1 -ctmx519 comparetotmag 1 1E+4 -> -1 -ctmx521 comparetotmag 1 1E+5 -> -1 -ctmx522 comparetotmag 1 1E+6 -> -1 -ctmx523 comparetotmag 1 1E+7 -> -1 -ctmx524 comparetotmag 1 1E+8 -> -1 -ctmx525 comparetotmag 1 1E+9 -> -1 -ctmx526 comparetotmag 1 1E+10 -> -1 -ctmx527 comparetotmag 1 1E+11 -> -1 -ctmx528 comparetotmag 1 1E+12 -> -1 -ctmx529 comparetotmag 1 1E+13 -> -1 -ctmx530 comparetotmag 1 1E+14 -> -1 -ctmx531 comparetotmag 1 1E+15 -> -1 --- LR swap -ctmx540 comparetotmag 1E-15 1 -> -1 -ctmx541 comparetotmag 1E-14 1 -> -1 -ctmx542 comparetotmag 1E-13 1 -> -1 -ctmx543 comparetotmag 1E-12 1 -> -1 -ctmx544 comparetotmag 1E-11 1 -> -1 -ctmx545 comparetotmag 1E-10 1 -> -1 -ctmx546 comparetotmag 1E-9 1 -> -1 -ctmx547 comparetotmag 1E-8 1 -> -1 -ctmx548 comparetotmag 1E-7 1 -> -1 -ctmx549 comparetotmag 1E-6 1 -> -1 -ctmx550 comparetotmag 1E-5 1 -> -1 -ctmx551 comparetotmag 1E-4 1 -> -1 -ctmx552 comparetotmag 1E-3 1 -> -1 -ctmx553 comparetotmag 1E-2 1 -> -1 -ctmx554 comparetotmag 1E-1 1 -> -1 -ctmx555 comparetotmag 1E-0 1 -> 0 -ctmx556 comparetotmag 1E+1 1 -> 1 -ctmx557 comparetotmag 1E+2 1 -> 1 -ctmx558 comparetotmag 1E+3 1 -> 1 -ctmx559 comparetotmag 1E+4 1 -> 1 -ctmx561 comparetotmag 1E+5 1 -> 1 -ctmx562 comparetotmag 1E+6 1 -> 1 -ctmx563 comparetotmag 1E+7 1 -> 1 -ctmx564 comparetotmag 1E+8 1 -> 1 -ctmx565 comparetotmag 1E+9 1 -> 1 -ctmx566 comparetotmag 1E+10 1 -> 1 -ctmx567 comparetotmag 1E+11 1 -> 1 -ctmx568 comparetotmag 1E+12 1 -> 1 -ctmx569 comparetotmag 1E+13 1 -> 1 -ctmx570 comparetotmag 1E+14 1 -> 1 -ctmx571 comparetotmag 1E+15 1 -> 1 --- similar with an useful coefficient, one side only -ctmx580 comparetotmag 0.000000987654321 1E-15 -> 1 -ctmx581 comparetotmag 0.000000987654321 1E-14 -> 1 -ctmx582 comparetotmag 0.000000987654321 1E-13 -> 1 -ctmx583 comparetotmag 0.000000987654321 1E-12 -> 1 -ctmx584 comparetotmag 0.000000987654321 1E-11 -> 1 -ctmx585 comparetotmag 0.000000987654321 1E-10 -> 1 -ctmx586 comparetotmag 0.000000987654321 1E-9 -> 1 -ctmx587 comparetotmag 0.000000987654321 1E-8 -> 1 -ctmx588 comparetotmag 0.000000987654321 1E-7 -> 1 -ctmx589 comparetotmag 0.000000987654321 1E-6 -> -1 -ctmx590 comparetotmag 0.000000987654321 1E-5 -> -1 -ctmx591 comparetotmag 0.000000987654321 1E-4 -> -1 -ctmx592 comparetotmag 0.000000987654321 1E-3 -> -1 -ctmx593 comparetotmag 0.000000987654321 1E-2 -> -1 -ctmx594 comparetotmag 0.000000987654321 1E-1 -> -1 -ctmx595 comparetotmag 0.000000987654321 1E-0 -> -1 -ctmx596 comparetotmag 0.000000987654321 1E+1 -> -1 -ctmx597 comparetotmag 0.000000987654321 1E+2 -> -1 -ctmx598 comparetotmag 0.000000987654321 1E+3 -> -1 -ctmx599 comparetotmag 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -precision: 20 -ctmx600 comparetotmag 12 12.2345 -> -1 -ctmx601 comparetotmag 12.0 12.2345 -> -1 -ctmx602 comparetotmag 12.00 12.2345 -> -1 -ctmx603 comparetotmag 12.000 12.2345 -> -1 -ctmx604 comparetotmag 12.0000 12.2345 -> -1 -ctmx605 comparetotmag 12.00000 12.2345 -> -1 -ctmx606 comparetotmag 12.000000 12.2345 -> -1 -ctmx607 comparetotmag 12.0000000 12.2345 -> -1 -ctmx608 comparetotmag 12.00000000 12.2345 -> -1 -ctmx609 comparetotmag 12.000000000 12.2345 -> -1 -ctmx610 comparetotmag 12.1234 12 -> 1 -ctmx611 comparetotmag 12.1234 12.0 -> 1 -ctmx612 comparetotmag 12.1234 12.00 -> 1 -ctmx613 comparetotmag 12.1234 12.000 -> 1 -ctmx614 comparetotmag 12.1234 12.0000 -> 1 -ctmx615 comparetotmag 12.1234 12.00000 -> 1 -ctmx616 comparetotmag 12.1234 12.000000 -> 1 -ctmx617 comparetotmag 12.1234 12.0000000 -> 1 -ctmx618 comparetotmag 12.1234 12.00000000 -> 1 -ctmx619 comparetotmag 12.1234 12.000000000 -> 1 -ctmx620 comparetotmag -12 -12.2345 -> -1 -ctmx621 comparetotmag -12.0 -12.2345 -> -1 -ctmx622 comparetotmag -12.00 -12.2345 -> -1 -ctmx623 comparetotmag -12.000 -12.2345 -> -1 -ctmx624 comparetotmag -12.0000 -12.2345 -> -1 -ctmx625 comparetotmag -12.00000 -12.2345 -> -1 -ctmx626 comparetotmag -12.000000 -12.2345 -> -1 -ctmx627 comparetotmag -12.0000000 -12.2345 -> -1 -ctmx628 comparetotmag -12.00000000 -12.2345 -> -1 -ctmx629 comparetotmag -12.000000000 -12.2345 -> -1 -ctmx630 comparetotmag -12.1234 -12 -> 1 -ctmx631 comparetotmag -12.1234 -12.0 -> 1 -ctmx632 comparetotmag -12.1234 -12.00 -> 1 -ctmx633 comparetotmag -12.1234 -12.000 -> 1 -ctmx634 comparetotmag -12.1234 -12.0000 -> 1 -ctmx635 comparetotmag -12.1234 -12.00000 -> 1 -ctmx636 comparetotmag -12.1234 -12.000000 -> 1 -ctmx637 comparetotmag -12.1234 -12.0000000 -> 1 -ctmx638 comparetotmag -12.1234 -12.00000000 -> 1 -ctmx639 comparetotmag -12.1234 -12.000000000 -> 1 -precision: 9 - --- extended zeros -ctmx640 comparetotmag 0 0 -> 0 -ctmx641 comparetotmag 0 -0 -> 0 -ctmx642 comparetotmag 0 -0.0 -> 1 -ctmx643 comparetotmag 0 0.0 -> 1 -ctmx644 comparetotmag -0 0 -> 0 -ctmx645 comparetotmag -0 -0 -> 0 -ctmx646 comparetotmag -0 -0.0 -> 1 -ctmx647 comparetotmag -0 0.0 -> 1 -ctmx648 comparetotmag 0.0 0 -> -1 -ctmx649 comparetotmag 0.0 -0 -> -1 -ctmx650 comparetotmag 0.0 -0.0 -> 0 -ctmx651 comparetotmag 0.0 0.0 -> 0 -ctmx652 comparetotmag -0.0 0 -> -1 -ctmx653 comparetotmag -0.0 -0 -> -1 -ctmx654 comparetotmag -0.0 -0.0 -> 0 -ctmx655 comparetotmag -0.0 0.0 -> 0 - -ctmx656 comparetotmag -0E1 0.0 -> 1 -ctmx657 comparetotmag -0E2 0.0 -> 1 -ctmx658 comparetotmag 0E1 0.0 -> 1 -ctmx659 comparetotmag 0E2 0.0 -> 1 -ctmx660 comparetotmag -0E1 0 -> 1 -ctmx661 comparetotmag -0E2 0 -> 1 -ctmx662 comparetotmag 0E1 0 -> 1 -ctmx663 comparetotmag 0E2 0 -> 1 -ctmx664 comparetotmag -0E1 -0E1 -> 0 -ctmx665 comparetotmag -0E2 -0E1 -> 1 -ctmx666 comparetotmag 0E1 -0E1 -> 0 -ctmx667 comparetotmag 0E2 -0E1 -> 1 -ctmx668 comparetotmag -0E1 -0E2 -> -1 -ctmx669 comparetotmag -0E2 -0E2 -> 0 -ctmx670 comparetotmag 0E1 -0E2 -> -1 -ctmx671 comparetotmag 0E2 -0E2 -> 0 -ctmx672 comparetotmag -0E1 0E1 -> 0 -ctmx673 comparetotmag -0E2 0E1 -> 1 -ctmx674 comparetotmag 0E1 0E1 -> 0 -ctmx675 comparetotmag 0E2 0E1 -> 1 -ctmx676 comparetotmag -0E1 0E2 -> -1 -ctmx677 comparetotmag -0E2 0E2 -> 0 -ctmx678 comparetotmag 0E1 0E2 -> -1 -ctmx679 comparetotmag 0E2 0E2 -> 0 - --- trailing zeros; unit-y -precision: 20 -ctmx680 comparetotmag 12 12 -> 0 -ctmx681 comparetotmag 12 12.0 -> 1 -ctmx682 comparetotmag 12 12.00 -> 1 -ctmx683 comparetotmag 12 12.000 -> 1 -ctmx684 comparetotmag 12 12.0000 -> 1 -ctmx685 comparetotmag 12 12.00000 -> 1 -ctmx686 comparetotmag 12 12.000000 -> 1 -ctmx687 comparetotmag 12 12.0000000 -> 1 -ctmx688 comparetotmag 12 12.00000000 -> 1 -ctmx689 comparetotmag 12 12.000000000 -> 1 -ctmx690 comparetotmag 12 12 -> 0 -ctmx691 comparetotmag 12.0 12 -> -1 -ctmx692 comparetotmag 12.00 12 -> -1 -ctmx693 comparetotmag 12.000 12 -> -1 -ctmx694 comparetotmag 12.0000 12 -> -1 -ctmx695 comparetotmag 12.00000 12 -> -1 -ctmx696 comparetotmag 12.000000 12 -> -1 -ctmx697 comparetotmag 12.0000000 12 -> -1 -ctmx698 comparetotmag 12.00000000 12 -> -1 -ctmx699 comparetotmag 12.000000000 12 -> -1 - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -ctmx701 comparetotmag 12345678000 1 -> 1 -ctmx702 comparetotmag 1 12345678000 -> -1 -ctmx703 comparetotmag 1234567800 1 -> 1 -ctmx704 comparetotmag 1 1234567800 -> -1 -ctmx705 comparetotmag 1234567890 1 -> 1 -ctmx706 comparetotmag 1 1234567890 -> -1 -ctmx707 comparetotmag 1234567891 1 -> 1 -ctmx708 comparetotmag 1 1234567891 -> -1 -ctmx709 comparetotmag 12345678901 1 -> 1 -ctmx710 comparetotmag 1 12345678901 -> -1 -ctmx711 comparetotmag 1234567896 1 -> 1 -ctmx712 comparetotmag 1 1234567896 -> -1 -ctmx713 comparetotmag -1234567891 1 -> 1 -ctmx714 comparetotmag 1 -1234567891 -> -1 -ctmx715 comparetotmag -12345678901 1 -> 1 -ctmx716 comparetotmag 1 -12345678901 -> -1 -ctmx717 comparetotmag -1234567896 1 -> 1 -ctmx718 comparetotmag 1 -1234567896 -> -1 - -precision: 15 --- same with plenty of precision -ctmx721 comparetotmag 12345678000 1 -> 1 -ctmx722 comparetotmag 1 12345678000 -> -1 -ctmx723 comparetotmag 1234567800 1 -> 1 -ctmx724 comparetotmag 1 1234567800 -> -1 -ctmx725 comparetotmag 1234567890 1 -> 1 -ctmx726 comparetotmag 1 1234567890 -> -1 -ctmx727 comparetotmag 1234567891 1 -> 1 -ctmx728 comparetotmag 1 1234567891 -> -1 -ctmx729 comparetotmag 12345678901 1 -> 1 -ctmx730 comparetotmag 1 12345678901 -> -1 -ctmx731 comparetotmag 1234567896 1 -> 1 -ctmx732 comparetotmag 1 1234567896 -> -1 - --- residue cases -precision: 5 -ctmx740 comparetotmag 1 0.9999999 -> 1 -ctmx741 comparetotmag 1 0.999999 -> 1 -ctmx742 comparetotmag 1 0.99999 -> 1 -ctmx743 comparetotmag 1 1.0000 -> 1 -ctmx744 comparetotmag 1 1.00001 -> -1 -ctmx745 comparetotmag 1 1.000001 -> -1 -ctmx746 comparetotmag 1 1.0000001 -> -1 -ctmx750 comparetotmag 0.9999999 1 -> -1 -ctmx751 comparetotmag 0.999999 1 -> -1 -ctmx752 comparetotmag 0.99999 1 -> -1 -ctmx753 comparetotmag 1.0000 1 -> -1 -ctmx754 comparetotmag 1.00001 1 -> 1 -ctmx755 comparetotmag 1.000001 1 -> 1 -ctmx756 comparetotmag 1.0000001 1 -> 1 - --- a selection of longies -ctmx760 comparetotmag -36852134.84194296250843579428931 -5830629.8347085025808756560357940 -> 1 -ctmx761 comparetotmag -36852134.84194296250843579428931 -36852134.84194296250843579428931 -> 0 -ctmx762 comparetotmag -36852134.94194296250843579428931 -36852134.84194296250843579428931 -> 1 -ctmx763 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 --- precisions above or below the difference should have no effect -precision: 11 -ctmx764 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 10 -ctmx765 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 9 -ctmx766 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 8 -ctmx767 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 7 -ctmx768 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 6 -ctmx769 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 5 -ctmx770 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 4 -ctmx771 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 3 -ctmx772 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 2 -ctmx773 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 -precision: 1 -ctmx774 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1 - --- Specials -precision: 9 -ctmx780 comparetotmag Inf -Inf -> 0 -ctmx781 comparetotmag Inf -1000 -> 1 -ctmx782 comparetotmag Inf -1 -> 1 -ctmx783 comparetotmag Inf -0 -> 1 -ctmx784 comparetotmag Inf 0 -> 1 -ctmx785 comparetotmag Inf 1 -> 1 -ctmx786 comparetotmag Inf 1000 -> 1 -ctmx787 comparetotmag Inf Inf -> 0 -ctmx788 comparetotmag -1000 Inf -> -1 -ctmx789 comparetotmag -Inf Inf -> 0 -ctmx790 comparetotmag -1 Inf -> -1 -ctmx791 comparetotmag -0 Inf -> -1 -ctmx792 comparetotmag 0 Inf -> -1 -ctmx793 comparetotmag 1 Inf -> -1 -ctmx794 comparetotmag 1000 Inf -> -1 -ctmx795 comparetotmag Inf Inf -> 0 - -ctmx800 comparetotmag -Inf -Inf -> 0 -ctmx801 comparetotmag -Inf -1000 -> 1 -ctmx802 comparetotmag -Inf -1 -> 1 -ctmx803 comparetotmag -Inf -0 -> 1 -ctmx804 comparetotmag -Inf 0 -> 1 -ctmx805 comparetotmag -Inf 1 -> 1 -ctmx806 comparetotmag -Inf 1000 -> 1 -ctmx807 comparetotmag -Inf Inf -> 0 -ctmx808 comparetotmag -Inf -Inf -> 0 -ctmx809 comparetotmag -1000 -Inf -> -1 -ctmx810 comparetotmag -1 -Inf -> -1 -ctmx811 comparetotmag -0 -Inf -> -1 -ctmx812 comparetotmag 0 -Inf -> -1 -ctmx813 comparetotmag 1 -Inf -> -1 -ctmx814 comparetotmag 1000 -Inf -> -1 -ctmx815 comparetotmag Inf -Inf -> 0 - -ctmx821 comparetotmag NaN -Inf -> 1 -ctmx822 comparetotmag NaN -1000 -> 1 -ctmx823 comparetotmag NaN -1 -> 1 -ctmx824 comparetotmag NaN -0 -> 1 -ctmx825 comparetotmag NaN 0 -> 1 -ctmx826 comparetotmag NaN 1 -> 1 -ctmx827 comparetotmag NaN 1000 -> 1 -ctmx828 comparetotmag NaN Inf -> 1 -ctmx829 comparetotmag NaN NaN -> 0 -ctmx830 comparetotmag -Inf NaN -> -1 -ctmx831 comparetotmag -1000 NaN -> -1 -ctmx832 comparetotmag -1 NaN -> -1 -ctmx833 comparetotmag -0 NaN -> -1 -ctmx834 comparetotmag 0 NaN -> -1 -ctmx835 comparetotmag 1 NaN -> -1 -ctmx836 comparetotmag 1000 NaN -> -1 -ctmx837 comparetotmag Inf NaN -> -1 -ctmx838 comparetotmag -NaN -NaN -> 0 -ctmx839 comparetotmag +NaN -NaN -> 0 -ctmx840 comparetotmag -NaN +NaN -> 0 - -ctmx841 comparetotmag sNaN -sNaN -> 0 -ctmx842 comparetotmag sNaN -NaN -> -1 -ctmx843 comparetotmag sNaN -Inf -> 1 -ctmx844 comparetotmag sNaN -1000 -> 1 -ctmx845 comparetotmag sNaN -1 -> 1 -ctmx846 comparetotmag sNaN -0 -> 1 -ctmx847 comparetotmag sNaN 0 -> 1 -ctmx848 comparetotmag sNaN 1 -> 1 -ctmx849 comparetotmag sNaN 1000 -> 1 -ctmx850 comparetotmag sNaN NaN -> -1 -ctmx851 comparetotmag sNaN sNaN -> 0 - -ctmx852 comparetotmag -sNaN sNaN -> 0 -ctmx853 comparetotmag -NaN sNaN -> 1 -ctmx854 comparetotmag -Inf sNaN -> -1 -ctmx855 comparetotmag -1000 sNaN -> -1 -ctmx856 comparetotmag -1 sNaN -> -1 -ctmx857 comparetotmag -0 sNaN -> -1 -ctmx858 comparetotmag 0 sNaN -> -1 -ctmx859 comparetotmag 1 sNaN -> -1 -ctmx860 comparetotmag 1000 sNaN -> -1 -ctmx861 comparetotmag Inf sNaN -> -1 -ctmx862 comparetotmag NaN sNaN -> 1 -ctmx863 comparetotmag sNaN sNaN -> 0 - -ctmx871 comparetotmag -sNaN -sNaN -> 0 -ctmx872 comparetotmag -sNaN -NaN -> -1 -ctmx873 comparetotmag -sNaN -Inf -> 1 -ctmx874 comparetotmag -sNaN -1000 -> 1 -ctmx875 comparetotmag -sNaN -1 -> 1 -ctmx876 comparetotmag -sNaN -0 -> 1 -ctmx877 comparetotmag -sNaN 0 -> 1 -ctmx878 comparetotmag -sNaN 1 -> 1 -ctmx879 comparetotmag -sNaN 1000 -> 1 -ctmx880 comparetotmag -sNaN NaN -> -1 -ctmx881 comparetotmag -sNaN sNaN -> 0 - -ctmx882 comparetotmag -sNaN -sNaN -> 0 -ctmx883 comparetotmag -NaN -sNaN -> 1 -ctmx884 comparetotmag -Inf -sNaN -> -1 -ctmx885 comparetotmag -1000 -sNaN -> -1 -ctmx886 comparetotmag -1 -sNaN -> -1 -ctmx887 comparetotmag -0 -sNaN -> -1 -ctmx888 comparetotmag 0 -sNaN -> -1 -ctmx889 comparetotmag 1 -sNaN -> -1 -ctmx890 comparetotmag 1000 -sNaN -> -1 -ctmx891 comparetotmag Inf -sNaN -> -1 -ctmx892 comparetotmag NaN -sNaN -> 1 -ctmx893 comparetotmag sNaN -sNaN -> 0 - --- NaNs with payload -ctmx960 comparetotmag NaN9 -Inf -> 1 -ctmx961 comparetotmag NaN8 999 -> 1 -ctmx962 comparetotmag NaN77 Inf -> 1 -ctmx963 comparetotmag -NaN67 NaN5 -> 1 -ctmx964 comparetotmag -Inf -NaN4 -> -1 -ctmx965 comparetotmag -999 -NaN33 -> -1 -ctmx966 comparetotmag Inf NaN2 -> -1 - -ctmx970 comparetotmag -NaN41 -NaN42 -> -1 -ctmx971 comparetotmag +NaN41 -NaN42 -> -1 -ctmx972 comparetotmag -NaN41 +NaN42 -> -1 -ctmx973 comparetotmag +NaN41 +NaN42 -> -1 -ctmx974 comparetotmag -NaN42 -NaN01 -> 1 -ctmx975 comparetotmag +NaN42 -NaN01 -> 1 -ctmx976 comparetotmag -NaN42 +NaN01 -> 1 -ctmx977 comparetotmag +NaN42 +NaN01 -> 1 - -ctmx980 comparetotmag -sNaN771 -sNaN772 -> -1 -ctmx981 comparetotmag +sNaN771 -sNaN772 -> -1 -ctmx982 comparetotmag -sNaN771 +sNaN772 -> -1 -ctmx983 comparetotmag +sNaN771 +sNaN772 -> -1 -ctmx984 comparetotmag -sNaN772 -sNaN771 -> 1 -ctmx985 comparetotmag +sNaN772 -sNaN771 -> 1 -ctmx986 comparetotmag -sNaN772 +sNaN771 -> 1 -ctmx987 comparetotmag +sNaN772 +sNaN771 -> 1 - -ctmx991 comparetotmag -sNaN99 -Inf -> 1 -ctmx992 comparetotmag sNaN98 -11 -> 1 -ctmx993 comparetotmag sNaN97 NaN -> -1 -ctmx994 comparetotmag sNaN16 sNaN94 -> -1 -ctmx995 comparetotmag NaN85 sNaN83 -> 1 -ctmx996 comparetotmag -Inf sNaN92 -> -1 -ctmx997 comparetotmag 088 sNaN81 -> -1 -ctmx998 comparetotmag Inf sNaN90 -> -1 -ctmx999 comparetotmag NaN -sNaN89 -> 1 - --- overflow and underflow tests .. subnormal results now allowed -maxExponent: 999999999 -minexponent: -999999999 -ctmx1080 comparetotmag +1.23456789012345E-0 9E+999999999 -> -1 -ctmx1081 comparetotmag 9E+999999999 +1.23456789012345E-0 -> 1 -ctmx1082 comparetotmag +0.100 9E-999999999 -> 1 -ctmx1083 comparetotmag 9E-999999999 +0.100 -> -1 -ctmx1085 comparetotmag -1.23456789012345E-0 9E+999999999 -> -1 -ctmx1086 comparetotmag 9E+999999999 -1.23456789012345E-0 -> 1 -ctmx1087 comparetotmag -0.100 9E-999999999 -> 1 -ctmx1088 comparetotmag 9E-999999999 -0.100 -> -1 - -ctmx1089 comparetotmag 1e-599999999 1e-400000001 -> -1 -ctmx1090 comparetotmag 1e-599999999 1e-400000000 -> -1 -ctmx1091 comparetotmag 1e-600000000 1e-400000000 -> -1 -ctmx1092 comparetotmag 9e-999999998 0.01 -> -1 -ctmx1093 comparetotmag 9e-999999998 0.1 -> -1 -ctmx1094 comparetotmag 0.01 9e-999999998 -> 1 -ctmx1095 comparetotmag 1e599999999 1e400000001 -> 1 -ctmx1096 comparetotmag 1e599999999 1e400000000 -> 1 -ctmx1097 comparetotmag 1e600000000 1e400000000 -> 1 -ctmx1098 comparetotmag 9e999999998 100 -> 1 -ctmx1099 comparetotmag 9e999999998 10 -> 1 -ctmx1100 comparetotmag 100 9e999999998 -> -1 --- signs -ctmx1101 comparetotmag 1e+777777777 1e+411111111 -> 1 -ctmx1102 comparetotmag 1e+777777777 -1e+411111111 -> 1 -ctmx1103 comparetotmag -1e+777777777 1e+411111111 -> 1 -ctmx1104 comparetotmag -1e+777777777 -1e+411111111 -> 1 -ctmx1105 comparetotmag 1e-777777777 1e-411111111 -> -1 -ctmx1106 comparetotmag 1e-777777777 -1e-411111111 -> -1 -ctmx1107 comparetotmag -1e-777777777 1e-411111111 -> -1 -ctmx1108 comparetotmag -1e-777777777 -1e-411111111 -> -1 - --- spread zeros -ctmx1110 comparetotmag 0E-383 0 -> -1 -ctmx1111 comparetotmag 0E-383 -0 -> -1 -ctmx1112 comparetotmag -0E-383 0 -> -1 -ctmx1113 comparetotmag -0E-383 -0 -> -1 -ctmx1114 comparetotmag 0E-383 0E+384 -> -1 -ctmx1115 comparetotmag 0E-383 -0E+384 -> -1 -ctmx1116 comparetotmag -0E-383 0E+384 -> -1 -ctmx1117 comparetotmag -0E-383 -0E+384 -> -1 -ctmx1118 comparetotmag 0 0E+384 -> -1 -ctmx1119 comparetotmag 0 -0E+384 -> -1 -ctmx1120 comparetotmag -0 0E+384 -> -1 -ctmx1121 comparetotmag -0 -0E+384 -> -1 - -ctmx1130 comparetotmag 0E+384 0 -> 1 -ctmx1131 comparetotmag 0E+384 -0 -> 1 -ctmx1132 comparetotmag -0E+384 0 -> 1 -ctmx1133 comparetotmag -0E+384 -0 -> 1 -ctmx1134 comparetotmag 0E+384 0E-383 -> 1 -ctmx1135 comparetotmag 0E+384 -0E-383 -> 1 -ctmx1136 comparetotmag -0E+384 0E-383 -> 1 -ctmx1137 comparetotmag -0E+384 -0E-383 -> 1 -ctmx1138 comparetotmag 0 0E-383 -> 1 -ctmx1139 comparetotmag 0 -0E-383 -> 1 -ctmx1140 comparetotmag -0 0E-383 -> 1 -ctmx1141 comparetotmag -0 -0E-383 -> 1 - --- Null tests -ctmx9990 comparetotmag 10 # -> NaN Invalid_operation -ctmx9991 comparetotmag # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/copy.decTest b/qdecimal/test/tc_full/copy.decTest deleted file mode 100644 index e94c539..0000000 --- a/qdecimal/test/tc_full/copy.decTest +++ /dev/null @@ -1,86 +0,0 @@ ------------------------------------------------------------------------- --- copy.decTest -- quiet copy -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check -cpyx001 copy +7.50 -> 7.50 - --- Infinities -cpyx011 copy Infinity -> Infinity -cpyx012 copy -Infinity -> -Infinity - --- NaNs, 0 payload -cpyx021 copy NaN -> NaN -cpyx022 copy -NaN -> -NaN -cpyx023 copy sNaN -> sNaN -cpyx024 copy -sNaN -> -sNaN - --- NaNs, non-0 payload -cpyx031 copy NaN10 -> NaN10 -cpyx032 copy -NaN10 -> -NaN10 -cpyx033 copy sNaN10 -> sNaN10 -cpyx034 copy -sNaN10 -> -sNaN10 -cpyx035 copy NaN7 -> NaN7 -cpyx036 copy -NaN7 -> -NaN7 -cpyx037 copy sNaN101 -> sNaN101 -cpyx038 copy -sNaN101 -> -sNaN101 - --- finites -cpyx101 copy 7 -> 7 -cpyx102 copy -7 -> -7 -cpyx103 copy 75 -> 75 -cpyx104 copy -75 -> -75 -cpyx105 copy 7.50 -> 7.50 -cpyx106 copy -7.50 -> -7.50 -cpyx107 copy 7.500 -> 7.500 -cpyx108 copy -7.500 -> -7.500 - --- zeros -cpyx111 copy 0 -> 0 -cpyx112 copy -0 -> -0 -cpyx113 copy 0E+4 -> 0E+4 -cpyx114 copy -0E+4 -> -0E+4 -cpyx115 copy 0.0000 -> 0.0000 -cpyx116 copy -0.0000 -> -0.0000 -cpyx117 copy 0E-141 -> 0E-141 -cpyx118 copy -0E-141 -> -0E-141 - --- full coefficients, alternating bits -cpyx121 copy 268268268 -> 268268268 -cpyx122 copy -268268268 -> -268268268 -cpyx123 copy 134134134 -> 134134134 -cpyx124 copy -134134134 -> -134134134 - --- Nmax, Nmin, Ntiny -cpyx131 copy 9.99999999E+999 -> 9.99999999E+999 -cpyx132 copy 1E-999 -> 1E-999 -cpyx133 copy 1.00000000E-999 -> 1.00000000E-999 -cpyx134 copy 1E-1007 -> 1E-1007 - -cpyx135 copy -1E-1007 -> -1E-1007 -cpyx136 copy -1.00000000E-999 -> -1.00000000E-999 -cpyx137 copy -1E-999 -> -1E-999 -cpyx138 copy -9.99999999E+999 -> -9.99999999E+999 diff --git a/qdecimal/test/tc_full/copyabs.decTest b/qdecimal/test/tc_full/copyabs.decTest deleted file mode 100644 index 1c83bf4..0000000 --- a/qdecimal/test/tc_full/copyabs.decTest +++ /dev/null @@ -1,86 +0,0 @@ ------------------------------------------------------------------------- --- copyAbs.decTest -- quiet copy and set sign to zero -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check -cpax001 copyabs +7.50 -> 7.50 - --- Infinities -cpax011 copyabs Infinity -> Infinity -cpax012 copyabs -Infinity -> Infinity - --- NaNs, 0 payload -cpax021 copyabs NaN -> NaN -cpax022 copyabs -NaN -> NaN -cpax023 copyabs sNaN -> sNaN -cpax024 copyabs -sNaN -> sNaN - --- NaNs, non-0 payload -cpax031 copyabs NaN10 -> NaN10 -cpax032 copyabs -NaN15 -> NaN15 -cpax033 copyabs sNaN15 -> sNaN15 -cpax034 copyabs -sNaN10 -> sNaN10 -cpax035 copyabs NaN7 -> NaN7 -cpax036 copyabs -NaN7 -> NaN7 -cpax037 copyabs sNaN101 -> sNaN101 -cpax038 copyabs -sNaN101 -> sNaN101 - --- finites -cpax101 copyabs 7 -> 7 -cpax102 copyabs -7 -> 7 -cpax103 copyabs 75 -> 75 -cpax104 copyabs -75 -> 75 -cpax105 copyabs 7.10 -> 7.10 -cpax106 copyabs -7.10 -> 7.10 -cpax107 copyabs 7.500 -> 7.500 -cpax108 copyabs -7.500 -> 7.500 - --- zeros -cpax111 copyabs 0 -> 0 -cpax112 copyabs -0 -> 0 -cpax113 copyabs 0E+6 -> 0E+6 -cpax114 copyabs -0E+6 -> 0E+6 -cpax115 copyabs 0.0000 -> 0.0000 -cpax116 copyabs -0.0000 -> 0.0000 -cpax117 copyabs 0E-141 -> 0E-141 -cpax118 copyabs -0E-141 -> 0E-141 - --- full coefficients, alternating bits -cpax121 copyabs 268268268 -> 268268268 -cpax122 copyabs -268268268 -> 268268268 -cpax123 copyabs 134134134 -> 134134134 -cpax124 copyabs -134134134 -> 134134134 - --- Nmax, Nmin, Ntiny -cpax131 copyabs 9.99999999E+999 -> 9.99999999E+999 -cpax132 copyabs 1E-999 -> 1E-999 -cpax133 copyabs 1.00000000E-999 -> 1.00000000E-999 -cpax134 copyabs 1E-1007 -> 1E-1007 - -cpax135 copyabs -1E-1007 -> 1E-1007 -cpax136 copyabs -1.00000000E-999 -> 1.00000000E-999 -cpax137 copyabs -1E-999 -> 1E-999 -cpax199 copyabs -9.99999999E+999 -> 9.99999999E+999 diff --git a/qdecimal/test/tc_full/copynegate.decTest b/qdecimal/test/tc_full/copynegate.decTest deleted file mode 100644 index 3843a93..0000000 --- a/qdecimal/test/tc_full/copynegate.decTest +++ /dev/null @@ -1,86 +0,0 @@ ------------------------------------------------------------------------- --- copyNegate.decTest -- quiet copy and negate -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check -cpnx001 copynegate +7.50 -> -7.50 - --- Infinities -cpnx011 copynegate Infinity -> -Infinity -cpnx012 copynegate -Infinity -> Infinity - --- NaNs, 0 payload -cpnx021 copynegate NaN -> -NaN -cpnx022 copynegate -NaN -> NaN -cpnx023 copynegate sNaN -> -sNaN -cpnx024 copynegate -sNaN -> sNaN - --- NaNs, non-0 payload -cpnx031 copynegate NaN13 -> -NaN13 -cpnx032 copynegate -NaN13 -> NaN13 -cpnx033 copynegate sNaN13 -> -sNaN13 -cpnx034 copynegate -sNaN13 -> sNaN13 -cpnx035 copynegate NaN70 -> -NaN70 -cpnx036 copynegate -NaN70 -> NaN70 -cpnx037 copynegate sNaN101 -> -sNaN101 -cpnx038 copynegate -sNaN101 -> sNaN101 - --- finites -cpnx101 copynegate 7 -> -7 -cpnx102 copynegate -7 -> 7 -cpnx103 copynegate 75 -> -75 -cpnx104 copynegate -75 -> 75 -cpnx105 copynegate 7.50 -> -7.50 -cpnx106 copynegate -7.50 -> 7.50 -cpnx107 copynegate 7.500 -> -7.500 -cpnx108 copynegate -7.500 -> 7.500 - --- zeros -cpnx111 copynegate 0 -> -0 -cpnx112 copynegate -0 -> 0 -cpnx113 copynegate 0E+4 -> -0E+4 -cpnx114 copynegate -0E+4 -> 0E+4 -cpnx115 copynegate 0.0000 -> -0.0000 -cpnx116 copynegate -0.0000 -> 0.0000 -cpnx117 copynegate 0E-141 -> -0E-141 -cpnx118 copynegate -0E-141 -> 0E-141 - --- full coefficients, alternating bits -cpnx121 copynegate 268268268 -> -268268268 -cpnx122 copynegate -268268268 -> 268268268 -cpnx123 copynegate 134134134 -> -134134134 -cpnx124 copynegate -134134134 -> 134134134 - --- Nmax, Nmin, Ntiny -cpnx131 copynegate 9.99999999E+999 -> -9.99999999E+999 -cpnx132 copynegate 1E-999 -> -1E-999 -cpnx133 copynegate 1.00000000E-999 -> -1.00000000E-999 -cpnx134 copynegate 1E-1007 -> -1E-1007 - -cpnx135 copynegate -1E-1007 -> 1E-1007 -cpnx136 copynegate -1.00000000E-999 -> 1.00000000E-999 -cpnx137 copynegate -1E-999 -> 1E-999 -cpnx138 copynegate -9.99999999E+999 -> 9.99999999E+999 diff --git a/qdecimal/test/tc_full/copysign.decTest b/qdecimal/test/tc_full/copysign.decTest deleted file mode 100644 index f4b8db6..0000000 --- a/qdecimal/test/tc_full/copysign.decTest +++ /dev/null @@ -1,177 +0,0 @@ ------------------------------------------------------------------------- --- copysign.decTest -- quiet copy with sign from rhs -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check, and examples from decArith -cpsx001 copysign +7.50 11 -> 7.50 -cpsx002 copysign '1.50' '7.33' -> 1.50 -cpsx003 copysign '-1.50' '7.33' -> 1.50 -cpsx004 copysign '1.50' '-7.33' -> -1.50 -cpsx005 copysign '-1.50' '-7.33' -> -1.50 - --- Infinities -cpsx011 copysign Infinity 11 -> Infinity -cpsx012 copysign -Infinity 11 -> Infinity - --- NaNs, 0 payload -cpsx021 copysign NaN 11 -> NaN -cpsx022 copysign -NaN 11 -> NaN -cpsx023 copysign sNaN 11 -> sNaN -cpsx024 copysign -sNaN 11 -> sNaN - --- NaNs, non-0 payload -cpsx031 copysign NaN10 11 -> NaN10 -cpsx032 copysign -NaN10 11 -> NaN10 -cpsx033 copysign sNaN10 11 -> sNaN10 -cpsx034 copysign -sNaN10 11 -> sNaN10 -cpsx035 copysign NaN7 11 -> NaN7 -cpsx036 copysign -NaN7 11 -> NaN7 -cpsx037 copysign sNaN101 11 -> sNaN101 -cpsx038 copysign -sNaN101 11 -> sNaN101 - --- finites -cpsx101 copysign 7 11 -> 7 -cpsx102 copysign -7 11 -> 7 -cpsx103 copysign 75 11 -> 75 -cpsx104 copysign -75 11 -> 75 -cpsx105 copysign 7.50 11 -> 7.50 -cpsx106 copysign -7.50 11 -> 7.50 -cpsx107 copysign 7.500 11 -> 7.500 -cpsx108 copysign -7.500 11 -> 7.500 - --- zeros -cpsx111 copysign 0 11 -> 0 -cpsx112 copysign -0 11 -> 0 -cpsx113 copysign 0E+4 11 -> 0E+4 -cpsx114 copysign -0E+4 11 -> 0E+4 -cpsx115 copysign 0.0000 11 -> 0.0000 -cpsx116 copysign -0.0000 11 -> 0.0000 -cpsx117 copysign 0E-141 11 -> 0E-141 -cpsx118 copysign -0E-141 11 -> 0E-141 - --- full coefficients, alternating bits -cpsx121 copysign 268268268 11 -> 268268268 -cpsx122 copysign -268268268 11 -> 268268268 -cpsx123 copysign 134134134 11 -> 134134134 -cpsx124 copysign -134134134 11 -> 134134134 - --- Nmax, Nmin, Ntiny -cpsx131 copysign 9.99999999E+999 11 -> 9.99999999E+999 -cpsx132 copysign 1E-999 11 -> 1E-999 -cpsx133 copysign 1.00000000E-999 11 -> 1.00000000E-999 -cpsx134 copysign 1E-1007 11 -> 1E-1007 - -cpsx135 copysign -1E-1007 11 -> 1E-1007 -cpsx136 copysign -1.00000000E-999 11 -> 1.00000000E-999 -cpsx137 copysign -1E-999 11 -> 1E-999 -cpsx138 copysign -9.99999999E+999 11 -> 9.99999999E+999 - --- repeat with negative RHS - --- Infinities -cpsx211 copysign Infinity -34 -> -Infinity -cpsx212 copysign -Infinity -34 -> -Infinity - --- NaNs, 0 payload -cpsx221 copysign NaN -34 -> -NaN -cpsx222 copysign -NaN -34 -> -NaN -cpsx223 copysign sNaN -34 -> -sNaN -cpsx224 copysign -sNaN -34 -> -sNaN - --- NaNs, non-0 payload -cpsx231 copysign NaN10 -34 -> -NaN10 -cpsx232 copysign -NaN10 -34 -> -NaN10 -cpsx233 copysign sNaN10 -34 -> -sNaN10 -cpsx234 copysign -sNaN10 -34 -> -sNaN10 -cpsx235 copysign NaN7 -34 -> -NaN7 -cpsx236 copysign -NaN7 -34 -> -NaN7 -cpsx237 copysign sNaN101 -34 -> -sNaN101 -cpsx238 copysign -sNaN101 -34 -> -sNaN101 - --- finites -cpsx301 copysign 7 -34 -> -7 -cpsx302 copysign -7 -34 -> -7 -cpsx303 copysign 75 -34 -> -75 -cpsx304 copysign -75 -34 -> -75 -cpsx305 copysign 7.50 -34 -> -7.50 -cpsx306 copysign -7.50 -34 -> -7.50 -cpsx307 copysign 7.500 -34 -> -7.500 -cpsx308 copysign -7.500 -34 -> -7.500 - --- zeros -cpsx311 copysign 0 -34 -> -0 -cpsx312 copysign -0 -34 -> -0 -cpsx313 copysign 0E+4 -34 -> -0E+4 -cpsx314 copysign -0E+4 -34 -> -0E+4 -cpsx315 copysign 0.0000 -34 -> -0.0000 -cpsx316 copysign -0.0000 -34 -> -0.0000 -cpsx317 copysign 0E-141 -34 -> -0E-141 -cpsx318 copysign -0E-141 -34 -> -0E-141 - --- full coefficients, alternating bits -cpsx321 copysign 268268268 -18 -> -268268268 -cpsx322 copysign -268268268 -18 -> -268268268 -cpsx323 copysign 134134134 -18 -> -134134134 -cpsx324 copysign -134134134 -18 -> -134134134 - --- Nmax, Nmin, Ntiny -cpsx331 copysign 9.99999999E+999 -18 -> -9.99999999E+999 -cpsx332 copysign 1E-999 -18 -> -1E-999 -cpsx333 copysign 1.00000000E-999 -18 -> -1.00000000E-999 -cpsx334 copysign 1E-1007 -18 -> -1E-1007 - -cpsx335 copysign -1E-1007 -18 -> -1E-1007 -cpsx336 copysign -1.00000000E-999 -18 -> -1.00000000E-999 -cpsx337 copysign -1E-999 -18 -> -1E-999 -cpsx338 copysign -9.99999999E+999 -18 -> -9.99999999E+999 - --- Other kinds of RHS -cpsx401 copysign 701 -34 -> -701 -cpsx402 copysign -720 -34 -> -720 -cpsx403 copysign 701 -0 -> -701 -cpsx404 copysign -720 -0 -> -720 -cpsx405 copysign 701 +0 -> 701 -cpsx406 copysign -720 +0 -> 720 -cpsx407 copysign 701 +34 -> 701 -cpsx408 copysign -720 +34 -> 720 - -cpsx413 copysign 701 -Inf -> -701 -cpsx414 copysign -720 -Inf -> -720 -cpsx415 copysign 701 +Inf -> 701 -cpsx416 copysign -720 +Inf -> 720 - -cpsx420 copysign 701 -NaN -> -701 -cpsx421 copysign -720 -NaN -> -720 -cpsx422 copysign 701 +NaN -> 701 -cpsx423 copysign -720 +NaN -> 720 -cpsx425 copysign -720 +NaN8 -> 720 - -cpsx426 copysign 701 -sNaN -> -701 -cpsx427 copysign -720 -sNaN -> -720 -cpsx428 copysign 701 +sNaN -> 701 -cpsx429 copysign -720 +sNaN -> 720 -cpsx430 copysign -720 +sNaN3 -> 720 - diff --git a/qdecimal/test/tc_full/ddAbs.decTest b/qdecimal/test/tc_full/ddAbs.decTest deleted file mode 100644 index cc0e6ca..0000000 --- a/qdecimal/test/tc_full/ddAbs.decTest +++ /dev/null @@ -1,126 +0,0 @@ ------------------------------------------------------------------------- --- ddAbs.decTest -- decDouble absolute value, heeding sNaN -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddabs001 abs '1' -> '1' -ddabs002 abs '-1' -> '1' -ddabs003 abs '1.00' -> '1.00' -ddabs004 abs '-1.00' -> '1.00' -ddabs005 abs '0' -> '0' -ddabs006 abs '0.00' -> '0.00' -ddabs007 abs '00.0' -> '0.0' -ddabs008 abs '00.00' -> '0.00' -ddabs009 abs '00' -> '0' - -ddabs010 abs '-2' -> '2' -ddabs011 abs '2' -> '2' -ddabs012 abs '-2.00' -> '2.00' -ddabs013 abs '2.00' -> '2.00' -ddabs014 abs '-0' -> '0' -ddabs015 abs '-0.00' -> '0.00' -ddabs016 abs '-00.0' -> '0.0' -ddabs017 abs '-00.00' -> '0.00' -ddabs018 abs '-00' -> '0' - -ddabs020 abs '-2000000' -> '2000000' -ddabs021 abs '2000000' -> '2000000' - -ddabs030 abs '+0.1' -> '0.1' -ddabs031 abs '-0.1' -> '0.1' -ddabs032 abs '+0.01' -> '0.01' -ddabs033 abs '-0.01' -> '0.01' -ddabs034 abs '+0.001' -> '0.001' -ddabs035 abs '-0.001' -> '0.001' -ddabs036 abs '+0.000001' -> '0.000001' -ddabs037 abs '-0.000001' -> '0.000001' -ddabs038 abs '+0.000000000001' -> '1E-12' -ddabs039 abs '-0.000000000001' -> '1E-12' - --- examples from decArith -ddabs040 abs '2.1' -> '2.1' -ddabs041 abs '-100' -> '100' -ddabs042 abs '101.5' -> '101.5' -ddabs043 abs '-101.5' -> '101.5' - --- more fixed, potential LHS swaps/overlays if done by subtract 0 -ddabs060 abs '-56267E-10' -> '0.0000056267' -ddabs061 abs '-56267E-5' -> '0.56267' -ddabs062 abs '-56267E-2' -> '562.67' -ddabs063 abs '-56267E-1' -> '5626.7' -ddabs065 abs '-56267E-0' -> '56267' - --- subnormals and underflow - --- long operand tests -ddabs321 abs 1234567890123456 -> 1234567890123456 -ddabs322 abs 12345678000 -> 12345678000 -ddabs323 abs 1234567800 -> 1234567800 -ddabs324 abs 1234567890 -> 1234567890 -ddabs325 abs 1234567891 -> 1234567891 -ddabs326 abs 12345678901 -> 12345678901 -ddabs327 abs 1234567896 -> 1234567896 - --- zeros -ddabs111 abs 0 -> 0 -ddabs112 abs -0 -> 0 -ddabs113 abs 0E+6 -> 0E+6 -ddabs114 abs -0E+6 -> 0E+6 -ddabs115 abs 0.0000 -> 0.0000 -ddabs116 abs -0.0000 -> 0.0000 -ddabs117 abs 0E-141 -> 0E-141 -ddabs118 abs -0E-141 -> 0E-141 - --- full coefficients, alternating bits -ddabs121 abs 2682682682682682 -> 2682682682682682 -ddabs122 abs -2682682682682682 -> 2682682682682682 -ddabs123 abs 1341341341341341 -> 1341341341341341 -ddabs124 abs -1341341341341341 -> 1341341341341341 - --- Nmax, Nmin, Ntiny -ddabs131 abs 9.999999999999999E+384 -> 9.999999999999999E+384 -ddabs132 abs 1E-383 -> 1E-383 -ddabs133 abs 1.000000000000000E-383 -> 1.000000000000000E-383 -ddabs134 abs 1E-398 -> 1E-398 Subnormal - -ddabs135 abs -1E-398 -> 1E-398 Subnormal -ddabs136 abs -1.000000000000000E-383 -> 1.000000000000000E-383 -ddabs137 abs -1E-383 -> 1E-383 -ddabs138 abs -9.999999999999999E+384 -> 9.999999999999999E+384 - --- specials -ddabs520 abs 'Inf' -> 'Infinity' -ddabs521 abs '-Inf' -> 'Infinity' -ddabs522 abs NaN -> NaN -ddabs523 abs sNaN -> NaN Invalid_operation -ddabs524 abs NaN22 -> NaN22 -ddabs525 abs sNaN33 -> NaN33 Invalid_operation -ddabs526 abs -NaN22 -> -NaN22 -ddabs527 abs -sNaN33 -> -NaN33 Invalid_operation - --- Null tests -ddabs900 abs # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddAdd.decTest b/qdecimal/test/tc_full/ddAdd.decTest deleted file mode 100644 index 77478ac..0000000 --- a/qdecimal/test/tc_full/ddAdd.decTest +++ /dev/null @@ -1,1328 +0,0 @@ ------------------------------------------------------------------------- --- ddAdd.decTest -- decDouble addition -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests are for decDoubles only; all arguments are --- representable in a decDouble -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- [first group are 'quick confidence check'] -ddadd001 add 1 1 -> 2 -ddadd002 add 2 3 -> 5 -ddadd003 add '5.75' '3.3' -> 9.05 -ddadd004 add '5' '-3' -> 2 -ddadd005 add '-5' '-3' -> -8 -ddadd006 add '-7' '2.5' -> -4.5 -ddadd007 add '0.7' '0.3' -> 1.0 -ddadd008 add '1.25' '1.25' -> 2.50 -ddadd009 add '1.23456789' '1.00000000' -> '2.23456789' -ddadd010 add '1.23456789' '1.00000011' -> '2.23456800' - --- 1234567890123456 1234567890123456 -ddadd011 add '0.4444444444444446' '0.5555555555555555' -> '1.000000000000000' Inexact Rounded -ddadd012 add '0.4444444444444445' '0.5555555555555555' -> '1.000000000000000' Rounded -ddadd013 add '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999' -ddadd014 add '4444444444444444' '0.49' -> '4444444444444444' Inexact Rounded -ddadd015 add '4444444444444444' '0.499' -> '4444444444444444' Inexact Rounded -ddadd016 add '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded -ddadd017 add '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded -ddadd018 add '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded -ddadd019 add '4444444444444444' '0.501' -> '4444444444444445' Inexact Rounded -ddadd020 add '4444444444444444' '0.51' -> '4444444444444445' Inexact Rounded - -ddadd021 add 0 1 -> 1 -ddadd022 add 1 1 -> 2 -ddadd023 add 2 1 -> 3 -ddadd024 add 3 1 -> 4 -ddadd025 add 4 1 -> 5 -ddadd026 add 5 1 -> 6 -ddadd027 add 6 1 -> 7 -ddadd028 add 7 1 -> 8 -ddadd029 add 8 1 -> 9 -ddadd030 add 9 1 -> 10 - --- some carrying effects -ddadd031 add '0.9998' '0.0000' -> '0.9998' -ddadd032 add '0.9998' '0.0001' -> '0.9999' -ddadd033 add '0.9998' '0.0002' -> '1.0000' -ddadd034 add '0.9998' '0.0003' -> '1.0001' - -ddadd035 add '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -ddadd036 add '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -ddadd037 add '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -ddadd038 add '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded -ddadd039 add '700000' '10000e+16' -> '1.000000000000007E+20' Rounded - --- symmetry: -ddadd040 add '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded -ddadd041 add '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded -ddadd042 add '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded -ddadd044 add '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded -ddadd045 add '10000e+16' '700000' -> '1.000000000000007E+20' Rounded - --- same, without rounding -ddadd046 add '10000e+9' '7' -> '10000000000007' -ddadd047 add '10000e+9' '70' -> '10000000000070' -ddadd048 add '10000e+9' '700' -> '10000000000700' -ddadd049 add '10000e+9' '7000' -> '10000000007000' -ddadd050 add '10000e+9' '70000' -> '10000000070000' -ddadd051 add '10000e+9' '700000' -> '10000000700000' -ddadd052 add '10000e+9' '7000000' -> '10000007000000' - --- examples from decarith -ddadd053 add '12' '7.00' -> '19.00' -ddadd054 add '1.3' '-1.07' -> '0.23' -ddadd055 add '1.3' '-1.30' -> '0.00' -ddadd056 add '1.3' '-2.07' -> '-0.77' -ddadd057 add '1E+2' '1E+4' -> '1.01E+4' - --- leading zero preservation -ddadd061 add 1 '0.0001' -> '1.0001' -ddadd062 add 1 '0.00001' -> '1.00001' -ddadd063 add 1 '0.000001' -> '1.000001' -ddadd064 add 1 '0.0000001' -> '1.0000001' -ddadd065 add 1 '0.00000001' -> '1.00000001' - --- some funny zeros [in case of bad signum] -ddadd070 add 1 0 -> 1 -ddadd071 add 1 0. -> 1 -ddadd072 add 1 .0 -> 1.0 -ddadd073 add 1 0.0 -> 1.0 -ddadd074 add 1 0.00 -> 1.00 -ddadd075 add 0 1 -> 1 -ddadd076 add 0. 1 -> 1 -ddadd077 add .0 1 -> 1.0 -ddadd078 add 0.0 1 -> 1.0 -ddadd079 add 0.00 1 -> 1.00 - --- some carries -ddadd080 add 999999998 1 -> 999999999 -ddadd081 add 999999999 1 -> 1000000000 -ddadd082 add 99999999 1 -> 100000000 -ddadd083 add 9999999 1 -> 10000000 -ddadd084 add 999999 1 -> 1000000 -ddadd085 add 99999 1 -> 100000 -ddadd086 add 9999 1 -> 10000 -ddadd087 add 999 1 -> 1000 -ddadd088 add 99 1 -> 100 -ddadd089 add 9 1 -> 10 - - --- more LHS swaps -ddadd090 add '-56267E-10' 0 -> '-0.0000056267' -ddadd091 add '-56267E-6' 0 -> '-0.056267' -ddadd092 add '-56267E-5' 0 -> '-0.56267' -ddadd093 add '-56267E-4' 0 -> '-5.6267' -ddadd094 add '-56267E-3' 0 -> '-56.267' -ddadd095 add '-56267E-2' 0 -> '-562.67' -ddadd096 add '-56267E-1' 0 -> '-5626.7' -ddadd097 add '-56267E-0' 0 -> '-56267' -ddadd098 add '-5E-10' 0 -> '-5E-10' -ddadd099 add '-5E-7' 0 -> '-5E-7' -ddadd100 add '-5E-6' 0 -> '-0.000005' -ddadd101 add '-5E-5' 0 -> '-0.00005' -ddadd102 add '-5E-4' 0 -> '-0.0005' -ddadd103 add '-5E-1' 0 -> '-0.5' -ddadd104 add '-5E0' 0 -> '-5' -ddadd105 add '-5E1' 0 -> '-50' -ddadd106 add '-5E5' 0 -> '-500000' -ddadd107 add '-5E15' 0 -> '-5000000000000000' -ddadd108 add '-5E16' 0 -> '-5.000000000000000E+16' Rounded -ddadd109 add '-5E17' 0 -> '-5.000000000000000E+17' Rounded -ddadd110 add '-5E18' 0 -> '-5.000000000000000E+18' Rounded -ddadd111 add '-5E100' 0 -> '-5.000000000000000E+100' Rounded - --- more RHS swaps -ddadd113 add 0 '-56267E-10' -> '-0.0000056267' -ddadd114 add 0 '-56267E-6' -> '-0.056267' -ddadd116 add 0 '-56267E-5' -> '-0.56267' -ddadd117 add 0 '-56267E-4' -> '-5.6267' -ddadd119 add 0 '-56267E-3' -> '-56.267' -ddadd120 add 0 '-56267E-2' -> '-562.67' -ddadd121 add 0 '-56267E-1' -> '-5626.7' -ddadd122 add 0 '-56267E-0' -> '-56267' -ddadd123 add 0 '-5E-10' -> '-5E-10' -ddadd124 add 0 '-5E-7' -> '-5E-7' -ddadd125 add 0 '-5E-6' -> '-0.000005' -ddadd126 add 0 '-5E-5' -> '-0.00005' -ddadd127 add 0 '-5E-4' -> '-0.0005' -ddadd128 add 0 '-5E-1' -> '-0.5' -ddadd129 add 0 '-5E0' -> '-5' -ddadd130 add 0 '-5E1' -> '-50' -ddadd131 add 0 '-5E5' -> '-500000' -ddadd132 add 0 '-5E15' -> '-5000000000000000' -ddadd133 add 0 '-5E16' -> '-5.000000000000000E+16' Rounded -ddadd134 add 0 '-5E17' -> '-5.000000000000000E+17' Rounded -ddadd135 add 0 '-5E18' -> '-5.000000000000000E+18' Rounded -ddadd136 add 0 '-5E100' -> '-5.000000000000000E+100' Rounded - --- related -ddadd137 add 1 '0E-19' -> '1.000000000000000' Rounded -ddadd138 add -1 '0E-19' -> '-1.000000000000000' Rounded -ddadd139 add '0E-19' 1 -> '1.000000000000000' Rounded -ddadd140 add '0E-19' -1 -> '-1.000000000000000' Rounded -ddadd141 add 1E+11 0.0000 -> '100000000000.0000' -ddadd142 add 1E+11 0.00000 -> '100000000000.0000' Rounded -ddadd143 add 0.000 1E+12 -> '1000000000000.000' -ddadd144 add 0.0000 1E+12 -> '1000000000000.000' Rounded - --- [some of the next group are really constructor tests] -ddadd146 add '00.0' 0 -> '0.0' -ddadd147 add '0.00' 0 -> '0.00' -ddadd148 add 0 '0.00' -> '0.00' -ddadd149 add 0 '00.0' -> '0.0' -ddadd150 add '00.0' '0.00' -> '0.00' -ddadd151 add '0.00' '00.0' -> '0.00' -ddadd152 add '3' '.3' -> '3.3' -ddadd153 add '3.' '.3' -> '3.3' -ddadd154 add '3.0' '.3' -> '3.3' -ddadd155 add '3.00' '.3' -> '3.30' -ddadd156 add '3' '3' -> '6' -ddadd157 add '3' '+3' -> '6' -ddadd158 add '3' '-3' -> '0' -ddadd159 add '0.3' '-0.3' -> '0.0' -ddadd160 add '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -ddadd161 add '1E+12' '-1' -> '999999999999' -ddadd162 add '1E+12' '1.11' -> '1000000000001.11' -ddadd163 add '1.11' '1E+12' -> '1000000000001.11' -ddadd164 add '-1' '1E+12' -> '999999999999' -ddadd165 add '7E+12' '-1' -> '6999999999999' -ddadd166 add '7E+12' '1.11' -> '7000000000001.11' -ddadd167 add '1.11' '7E+12' -> '7000000000001.11' -ddadd168 add '-1' '7E+12' -> '6999999999999' - -rounding: half_up --- 1.234567890123456 1234567890123456 1 234567890123456 -ddadd170 add '4.444444444444444' '0.5555555555555567' -> '5.000000000000001' Inexact Rounded -ddadd171 add '4.444444444444444' '0.5555555555555566' -> '5.000000000000001' Inexact Rounded -ddadd172 add '4.444444444444444' '0.5555555555555565' -> '5.000000000000001' Inexact Rounded -ddadd173 add '4.444444444444444' '0.5555555555555564' -> '5.000000000000000' Inexact Rounded -ddadd174 add '4.444444444444444' '0.5555555555555553' -> '4.999999999999999' Inexact Rounded -ddadd175 add '4.444444444444444' '0.5555555555555552' -> '4.999999999999999' Inexact Rounded -ddadd176 add '4.444444444444444' '0.5555555555555551' -> '4.999999999999999' Inexact Rounded -ddadd177 add '4.444444444444444' '0.5555555555555550' -> '4.999999999999999' Rounded -ddadd178 add '4.444444444444444' '0.5555555555555545' -> '4.999999999999999' Inexact Rounded -ddadd179 add '4.444444444444444' '0.5555555555555544' -> '4.999999999999998' Inexact Rounded -ddadd180 add '4.444444444444444' '0.5555555555555543' -> '4.999999999999998' Inexact Rounded -ddadd181 add '4.444444444444444' '0.5555555555555542' -> '4.999999999999998' Inexact Rounded -ddadd182 add '4.444444444444444' '0.5555555555555541' -> '4.999999999999998' Inexact Rounded -ddadd183 add '4.444444444444444' '0.5555555555555540' -> '4.999999999999998' Rounded - --- and some more, including residue effects and different roundings -rounding: half_up -ddadd200 add '1234560123456789' 0 -> '1234560123456789' -ddadd201 add '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded -ddadd202 add '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded -ddadd203 add '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded -ddadd204 add '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded -ddadd205 add '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded -ddadd206 add '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded -ddadd207 add '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded -ddadd208 add '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded -ddadd209 add '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded -ddadd210 add '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded -ddadd211 add '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded -ddadd212 add '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded -ddadd213 add '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded -ddadd214 add '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded -ddadd215 add '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded -ddadd216 add '1234560123456789' 1 -> '1234560123456790' -ddadd217 add '1234560123456789' 1.000000001 -> '1234560123456790' Inexact Rounded -ddadd218 add '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded -ddadd219 add '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded - -rounding: half_even -ddadd220 add '1234560123456789' 0 -> '1234560123456789' -ddadd221 add '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded -ddadd222 add '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded -ddadd223 add '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded -ddadd224 add '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded -ddadd225 add '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded -ddadd226 add '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded -ddadd227 add '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded -ddadd228 add '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded -ddadd229 add '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded -ddadd230 add '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded -ddadd231 add '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded -ddadd232 add '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded -ddadd233 add '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded -ddadd234 add '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded -ddadd235 add '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded -ddadd236 add '1234560123456789' 1 -> '1234560123456790' -ddadd237 add '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded -ddadd238 add '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded -ddadd239 add '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded --- critical few with even bottom digit... -ddadd240 add '1234560123456788' 0.499999999 -> '1234560123456788' Inexact Rounded -ddadd241 add '1234560123456788' 0.5 -> '1234560123456788' Inexact Rounded -ddadd242 add '1234560123456788' 0.500000001 -> '1234560123456789' Inexact Rounded - -rounding: down -ddadd250 add '1234560123456789' 0 -> '1234560123456789' -ddadd251 add '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded -ddadd252 add '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded -ddadd253 add '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded -ddadd254 add '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded -ddadd255 add '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded -ddadd256 add '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded -ddadd257 add '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded -ddadd258 add '1234560123456789' 0.5 -> '1234560123456789' Inexact Rounded -ddadd259 add '1234560123456789' 0.500000001 -> '1234560123456789' Inexact Rounded -ddadd260 add '1234560123456789' 0.500001 -> '1234560123456789' Inexact Rounded -ddadd261 add '1234560123456789' 0.51 -> '1234560123456789' Inexact Rounded -ddadd262 add '1234560123456789' 0.6 -> '1234560123456789' Inexact Rounded -ddadd263 add '1234560123456789' 0.9 -> '1234560123456789' Inexact Rounded -ddadd264 add '1234560123456789' 0.99999 -> '1234560123456789' Inexact Rounded -ddadd265 add '1234560123456789' 0.999999999 -> '1234560123456789' Inexact Rounded -ddadd266 add '1234560123456789' 1 -> '1234560123456790' -ddadd267 add '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded -ddadd268 add '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded -ddadd269 add '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded - --- 1 in last place tests -rounding: half_up -ddadd301 add -1 1 -> 0 -ddadd302 add 0 1 -> 1 -ddadd303 add 1 1 -> 2 -ddadd304 add 12 1 -> 13 -ddadd305 add 98 1 -> 99 -ddadd306 add 99 1 -> 100 -ddadd307 add 100 1 -> 101 -ddadd308 add 101 1 -> 102 -ddadd309 add -1 -1 -> -2 -ddadd310 add 0 -1 -> -1 -ddadd311 add 1 -1 -> 0 -ddadd312 add 12 -1 -> 11 -ddadd313 add 98 -1 -> 97 -ddadd314 add 99 -1 -> 98 -ddadd315 add 100 -1 -> 99 -ddadd316 add 101 -1 -> 100 - -ddadd321 add -0.01 0.01 -> 0.00 -ddadd322 add 0.00 0.01 -> 0.01 -ddadd323 add 0.01 0.01 -> 0.02 -ddadd324 add 0.12 0.01 -> 0.13 -ddadd325 add 0.98 0.01 -> 0.99 -ddadd326 add 0.99 0.01 -> 1.00 -ddadd327 add 1.00 0.01 -> 1.01 -ddadd328 add 1.01 0.01 -> 1.02 -ddadd329 add -0.01 -0.01 -> -0.02 -ddadd330 add 0.00 -0.01 -> -0.01 -ddadd331 add 0.01 -0.01 -> 0.00 -ddadd332 add 0.12 -0.01 -> 0.11 -ddadd333 add 0.98 -0.01 -> 0.97 -ddadd334 add 0.99 -0.01 -> 0.98 -ddadd335 add 1.00 -0.01 -> 0.99 -ddadd336 add 1.01 -0.01 -> 1.00 - --- some more cases where adding 0 affects the coefficient -ddadd340 add 1E+3 0 -> 1000 -ddadd341 add 1E+15 0 -> 1000000000000000 -ddadd342 add 1E+16 0 -> 1.000000000000000E+16 Rounded -ddadd343 add 1E+20 0 -> 1.000000000000000E+20 Rounded --- which simply follow from these cases ... -ddadd344 add 1E+3 1 -> 1001 -ddadd345 add 1E+15 1 -> 1000000000000001 -ddadd346 add 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded -ddadd347 add 1E+20 1 -> 1.000000000000000E+20 Inexact Rounded -ddadd348 add 1E+3 7 -> 1007 -ddadd349 add 1E+15 7 -> 1000000000000007 -ddadd350 add 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded -ddadd351 add 1E+20 7 -> 1.000000000000000E+20 Inexact Rounded - --- tryzeros cases -rounding: half_up -ddadd360 add 0E+50 10000E+1 -> 1.0000E+5 -ddadd361 add 0E-50 10000E+1 -> 100000.0000000000 Rounded -ddadd362 add 10000E+1 0E-50 -> 100000.0000000000 Rounded -ddadd363 add 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact -ddadd364 add 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369 - --- a curiosity from JSR 13 testing -rounding: half_down -ddadd370 add 999999999999999 815 -> 1000000000000814 -ddadd371 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact -rounding: half_up -ddadd372 add 999999999999999 815 -> 1000000000000814 -ddadd373 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact -rounding: half_even -ddadd374 add 999999999999999 815 -> 1000000000000814 -ddadd375 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact - --- operands folded -ddadd380 add 1E+384 1E+384 -> 2.000000000000000E+384 Clamped -ddadd381 add 1E+380 1E+380 -> 2.00000000000E+380 Clamped -ddadd382 add 1E+376 1E+376 -> 2.0000000E+376 Clamped -ddadd383 add 1E+372 1E+372 -> 2.000E+372 Clamped -ddadd384 add 1E+370 1E+370 -> 2.0E+370 Clamped -ddadd385 add 1E+369 1E+369 -> 2E+369 -ddadd386 add 1E+368 1E+368 -> 2E+368 - --- ulp replacement tests -ddadd400 add 1 77e-14 -> 1.00000000000077 -ddadd401 add 1 77e-15 -> 1.000000000000077 -ddadd402 add 1 77e-16 -> 1.000000000000008 Inexact Rounded -ddadd403 add 1 77e-17 -> 1.000000000000001 Inexact Rounded -ddadd404 add 1 77e-18 -> 1.000000000000000 Inexact Rounded -ddadd405 add 1 77e-19 -> 1.000000000000000 Inexact Rounded -ddadd406 add 1 77e-299 -> 1.000000000000000 Inexact Rounded - -ddadd410 add 10 77e-14 -> 10.00000000000077 -ddadd411 add 10 77e-15 -> 10.00000000000008 Inexact Rounded -ddadd412 add 10 77e-16 -> 10.00000000000001 Inexact Rounded -ddadd413 add 10 77e-17 -> 10.00000000000000 Inexact Rounded -ddadd414 add 10 77e-18 -> 10.00000000000000 Inexact Rounded -ddadd415 add 10 77e-19 -> 10.00000000000000 Inexact Rounded -ddadd416 add 10 77e-299 -> 10.00000000000000 Inexact Rounded - -ddadd420 add 77e-14 1 -> 1.00000000000077 -ddadd421 add 77e-15 1 -> 1.000000000000077 -ddadd422 add 77e-16 1 -> 1.000000000000008 Inexact Rounded -ddadd423 add 77e-17 1 -> 1.000000000000001 Inexact Rounded -ddadd424 add 77e-18 1 -> 1.000000000000000 Inexact Rounded -ddadd425 add 77e-19 1 -> 1.000000000000000 Inexact Rounded -ddadd426 add 77e-299 1 -> 1.000000000000000 Inexact Rounded - -ddadd430 add 77e-14 10 -> 10.00000000000077 -ddadd431 add 77e-15 10 -> 10.00000000000008 Inexact Rounded -ddadd432 add 77e-16 10 -> 10.00000000000001 Inexact Rounded -ddadd433 add 77e-17 10 -> 10.00000000000000 Inexact Rounded -ddadd434 add 77e-18 10 -> 10.00000000000000 Inexact Rounded -ddadd435 add 77e-19 10 -> 10.00000000000000 Inexact Rounded -ddadd436 add 77e-299 10 -> 10.00000000000000 Inexact Rounded - --- fastpath boundary (more in dqadd) --- 1234567890123456 -ddadd539 add '4444444444444444' '3333333333333333' -> '7777777777777777' -ddadd540 add '4444444444444444' '4444444444444444' -> '8888888888888888' -ddadd541 add '4444444444444444' '5555555555555555' -> '9999999999999999' -ddadd542 add '3333333333333333' '4444444444444444' -> '7777777777777777' -ddadd543 add '4444444444444444' '4444444444444444' -> '8888888888888888' -ddadd544 add '5555555555555555' '4444444444444444' -> '9999999999999999' -ddadd545 add '3000004000000000' '3000000000000040' -> '6000004000000040' -ddadd546 add '3000000400000000' '4000000000000400' -> '7000000400000400' -ddadd547 add '3000000040000000' '5000000000004000' -> '8000000040004000' -ddadd548 add '4000000004000000' '3000000000040000' -> '7000000004040000' -ddadd549 add '4000000000400000' '4000000000400000' -> '8000000000800000' -ddadd550 add '4000000000040000' '5000000004000000' -> '9000000004040000' -ddadd551 add '5000000000004000' '3000000040000000' -> '8000000040004000' -ddadd552 add '5000000000000400' '4000000400000000' -> '9000000400000400' -ddadd553 add '5000000000000040' '5000004000000000' -> 1.000000400000004E+16 Rounded --- check propagation -ddadd554 add '8999999999999999' '0000000000000001' -> 9000000000000000 -ddadd555 add '0000000000000001' '8999999999999999' -> 9000000000000000 -ddadd556 add '0999999999999999' '0000000000000001' -> 1000000000000000 -ddadd557 add '0000000000000001' '0999999999999999' -> 1000000000000000 -ddadd558 add '4444444444444444' '4555555555555556' -> 9000000000000000 -ddadd559 add '4555555555555556' '4444444444444444' -> 9000000000000000 - --- negative ulps -ddadd6440 add 1 -77e-14 -> 0.99999999999923 -ddadd6441 add 1 -77e-15 -> 0.999999999999923 -ddadd6442 add 1 -77e-16 -> 0.9999999999999923 -ddadd6443 add 1 -77e-17 -> 0.9999999999999992 Inexact Rounded -ddadd6444 add 1 -77e-18 -> 0.9999999999999999 Inexact Rounded -ddadd6445 add 1 -77e-19 -> 1.000000000000000 Inexact Rounded -ddadd6446 add 1 -77e-99 -> 1.000000000000000 Inexact Rounded - -ddadd6450 add 10 -77e-14 -> 9.99999999999923 -ddadd6451 add 10 -77e-15 -> 9.999999999999923 -ddadd6452 add 10 -77e-16 -> 9.999999999999992 Inexact Rounded -ddadd6453 add 10 -77e-17 -> 9.999999999999999 Inexact Rounded -ddadd6454 add 10 -77e-18 -> 10.00000000000000 Inexact Rounded -ddadd6455 add 10 -77e-19 -> 10.00000000000000 Inexact Rounded -ddadd6456 add 10 -77e-99 -> 10.00000000000000 Inexact Rounded - -ddadd6460 add -77e-14 1 -> 0.99999999999923 -ddadd6461 add -77e-15 1 -> 0.999999999999923 -ddadd6462 add -77e-16 1 -> 0.9999999999999923 -ddadd6463 add -77e-17 1 -> 0.9999999999999992 Inexact Rounded -ddadd6464 add -77e-18 1 -> 0.9999999999999999 Inexact Rounded -ddadd6465 add -77e-19 1 -> 1.000000000000000 Inexact Rounded -ddadd6466 add -77e-99 1 -> 1.000000000000000 Inexact Rounded - -ddadd6470 add -77e-14 10 -> 9.99999999999923 -ddadd6471 add -77e-15 10 -> 9.999999999999923 -ddadd6472 add -77e-16 10 -> 9.999999999999992 Inexact Rounded -ddadd6473 add -77e-17 10 -> 9.999999999999999 Inexact Rounded -ddadd6474 add -77e-18 10 -> 10.00000000000000 Inexact Rounded -ddadd6475 add -77e-19 10 -> 10.00000000000000 Inexact Rounded -ddadd6476 add -77e-99 10 -> 10.00000000000000 Inexact Rounded - --- negative ulps -ddadd6480 add -1 77e-14 -> -0.99999999999923 -ddadd6481 add -1 77e-15 -> -0.999999999999923 -ddadd6482 add -1 77e-16 -> -0.9999999999999923 -ddadd6483 add -1 77e-17 -> -0.9999999999999992 Inexact Rounded -ddadd6484 add -1 77e-18 -> -0.9999999999999999 Inexact Rounded -ddadd6485 add -1 77e-19 -> -1.000000000000000 Inexact Rounded -ddadd6486 add -1 77e-99 -> -1.000000000000000 Inexact Rounded - -ddadd6490 add -10 77e-14 -> -9.99999999999923 -ddadd6491 add -10 77e-15 -> -9.999999999999923 -ddadd6492 add -10 77e-16 -> -9.999999999999992 Inexact Rounded -ddadd6493 add -10 77e-17 -> -9.999999999999999 Inexact Rounded -ddadd6494 add -10 77e-18 -> -10.00000000000000 Inexact Rounded -ddadd6495 add -10 77e-19 -> -10.00000000000000 Inexact Rounded -ddadd6496 add -10 77e-99 -> -10.00000000000000 Inexact Rounded - -ddadd6500 add 77e-14 -1 -> -0.99999999999923 -ddadd6501 add 77e-15 -1 -> -0.999999999999923 -ddadd6502 add 77e-16 -1 -> -0.9999999999999923 -ddadd6503 add 77e-17 -1 -> -0.9999999999999992 Inexact Rounded -ddadd6504 add 77e-18 -1 -> -0.9999999999999999 Inexact Rounded -ddadd6505 add 77e-19 -1 -> -1.000000000000000 Inexact Rounded -ddadd6506 add 77e-99 -1 -> -1.000000000000000 Inexact Rounded - -ddadd6510 add 77e-14 -10 -> -9.99999999999923 -ddadd6511 add 77e-15 -10 -> -9.999999999999923 -ddadd6512 add 77e-16 -10 -> -9.999999999999992 Inexact Rounded -ddadd6513 add 77e-17 -10 -> -9.999999999999999 Inexact Rounded -ddadd6514 add 77e-18 -10 -> -10.00000000000000 Inexact Rounded -ddadd6515 add 77e-19 -10 -> -10.00000000000000 Inexact Rounded -ddadd6516 add 77e-99 -10 -> -10.00000000000000 Inexact Rounded - --- and some more residue effects and different roundings -rounding: half_up -ddadd6540 add '6543210123456789' 0 -> '6543210123456789' -ddadd6541 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -ddadd6542 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -ddadd6543 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -ddadd6544 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -ddadd6545 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -ddadd6546 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -ddadd6547 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -ddadd6548 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -ddadd6549 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -ddadd6550 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -ddadd6551 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -ddadd6552 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -ddadd6553 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -ddadd6554 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -ddadd6555 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded -ddadd6556 add '6543210123456789' 1 -> '6543210123456790' -ddadd6557 add '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded -ddadd6558 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -ddadd6559 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - -rounding: half_even -ddadd6560 add '6543210123456789' 0 -> '6543210123456789' -ddadd6561 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -ddadd6562 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -ddadd6563 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -ddadd6564 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -ddadd6565 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -ddadd6566 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -ddadd6567 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -ddadd6568 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -ddadd6569 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -ddadd6570 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -ddadd6571 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -ddadd6572 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -ddadd6573 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -ddadd6574 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -ddadd6575 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded -ddadd6576 add '6543210123456789' 1 -> '6543210123456790' -ddadd6577 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -ddadd6578 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -ddadd6579 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - --- critical few with even bottom digit... -ddadd7540 add '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded -ddadd7541 add '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded -ddadd7542 add '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded - -rounding: down -ddadd7550 add '6543210123456789' 0 -> '6543210123456789' -ddadd7551 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -ddadd7552 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -ddadd7553 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -ddadd7554 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -ddadd7555 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -ddadd7556 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -ddadd7557 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -ddadd7558 add '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded -ddadd7559 add '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded -ddadd7560 add '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded -ddadd7561 add '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded -ddadd7562 add '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded -ddadd7563 add '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded -ddadd7564 add '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded -ddadd7565 add '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded -ddadd7566 add '6543210123456789' 1 -> '6543210123456790' -ddadd7567 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -ddadd7568 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -ddadd7569 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - --- verify a query -rounding: down -ddadd7661 add 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded -ddadd7662 add 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded -ddadd7663 add 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded -ddadd7664 add 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded - --- more zeros, etc. -rounding: half_even - -ddadd7701 add 5.00 1.00E-3 -> 5.00100 -ddadd7702 add 00.00 0.000 -> 0.000 -ddadd7703 add 00.00 0E-3 -> 0.000 -ddadd7704 add 0E-3 00.00 -> 0.000 - -ddadd7710 add 0E+3 00.00 -> 0.00 -ddadd7711 add 0E+3 00.0 -> 0.0 -ddadd7712 add 0E+3 00. -> 0 -ddadd7713 add 0E+3 00.E+1 -> 0E+1 -ddadd7714 add 0E+3 00.E+2 -> 0E+2 -ddadd7715 add 0E+3 00.E+3 -> 0E+3 -ddadd7716 add 0E+3 00.E+4 -> 0E+3 -ddadd7717 add 0E+3 00.E+5 -> 0E+3 -ddadd7718 add 0E+3 -00.0 -> 0.0 -ddadd7719 add 0E+3 -00. -> 0 -ddadd7731 add 0E+3 -00.E+1 -> 0E+1 - -ddadd7720 add 00.00 0E+3 -> 0.00 -ddadd7721 add 00.0 0E+3 -> 0.0 -ddadd7722 add 00. 0E+3 -> 0 -ddadd7723 add 00.E+1 0E+3 -> 0E+1 -ddadd7724 add 00.E+2 0E+3 -> 0E+2 -ddadd7725 add 00.E+3 0E+3 -> 0E+3 -ddadd7726 add 00.E+4 0E+3 -> 0E+3 -ddadd7727 add 00.E+5 0E+3 -> 0E+3 -ddadd7728 add -00.00 0E+3 -> 0.00 -ddadd7729 add -00.0 0E+3 -> 0.0 -ddadd7730 add -00. 0E+3 -> 0 - -ddadd7732 add 0 0 -> 0 -ddadd7733 add 0 -0 -> 0 -ddadd7734 add -0 0 -> 0 -ddadd7735 add -0 -0 -> -0 -- IEEE 854 special case - -ddadd7736 add 1 -1 -> 0 -ddadd7737 add -1 -1 -> -2 -ddadd7738 add 1 1 -> 2 -ddadd7739 add -1 1 -> 0 - -ddadd7741 add 0 -1 -> -1 -ddadd7742 add -0 -1 -> -1 -ddadd7743 add 0 1 -> 1 -ddadd7744 add -0 1 -> 1 -ddadd7745 add -1 0 -> -1 -ddadd7746 add -1 -0 -> -1 -ddadd7747 add 1 0 -> 1 -ddadd7748 add 1 -0 -> 1 - -ddadd7751 add 0.0 -1 -> -1.0 -ddadd7752 add -0.0 -1 -> -1.0 -ddadd7753 add 0.0 1 -> 1.0 -ddadd7754 add -0.0 1 -> 1.0 -ddadd7755 add -1.0 0 -> -1.0 -ddadd7756 add -1.0 -0 -> -1.0 -ddadd7757 add 1.0 0 -> 1.0 -ddadd7758 add 1.0 -0 -> 1.0 - -ddadd7761 add 0 -1.0 -> -1.0 -ddadd7762 add -0 -1.0 -> -1.0 -ddadd7763 add 0 1.0 -> 1.0 -ddadd7764 add -0 1.0 -> 1.0 -ddadd7765 add -1 0.0 -> -1.0 -ddadd7766 add -1 -0.0 -> -1.0 -ddadd7767 add 1 0.0 -> 1.0 -ddadd7768 add 1 -0.0 -> 1.0 - -ddadd7771 add 0.0 -1.0 -> -1.0 -ddadd7772 add -0.0 -1.0 -> -1.0 -ddadd7773 add 0.0 1.0 -> 1.0 -ddadd7774 add -0.0 1.0 -> 1.0 -ddadd7775 add -1.0 0.0 -> -1.0 -ddadd7776 add -1.0 -0.0 -> -1.0 -ddadd7777 add 1.0 0.0 -> 1.0 -ddadd7778 add 1.0 -0.0 -> 1.0 - --- Specials -ddadd7780 add -Inf -Inf -> -Infinity -ddadd7781 add -Inf -1000 -> -Infinity -ddadd7782 add -Inf -1 -> -Infinity -ddadd7783 add -Inf -0 -> -Infinity -ddadd7784 add -Inf 0 -> -Infinity -ddadd7785 add -Inf 1 -> -Infinity -ddadd7786 add -Inf 1000 -> -Infinity -ddadd7787 add -1000 -Inf -> -Infinity -ddadd7788 add -Inf -Inf -> -Infinity -ddadd7789 add -1 -Inf -> -Infinity -ddadd7790 add -0 -Inf -> -Infinity -ddadd7791 add 0 -Inf -> -Infinity -ddadd7792 add 1 -Inf -> -Infinity -ddadd7793 add 1000 -Inf -> -Infinity -ddadd7794 add Inf -Inf -> NaN Invalid_operation - -ddadd7800 add Inf -Inf -> NaN Invalid_operation -ddadd7801 add Inf -1000 -> Infinity -ddadd7802 add Inf -1 -> Infinity -ddadd7803 add Inf -0 -> Infinity -ddadd7804 add Inf 0 -> Infinity -ddadd7805 add Inf 1 -> Infinity -ddadd7806 add Inf 1000 -> Infinity -ddadd7807 add Inf Inf -> Infinity -ddadd7808 add -1000 Inf -> Infinity -ddadd7809 add -Inf Inf -> NaN Invalid_operation -ddadd7810 add -1 Inf -> Infinity -ddadd7811 add -0 Inf -> Infinity -ddadd7812 add 0 Inf -> Infinity -ddadd7813 add 1 Inf -> Infinity -ddadd7814 add 1000 Inf -> Infinity -ddadd7815 add Inf Inf -> Infinity - -ddadd7821 add NaN -Inf -> NaN -ddadd7822 add NaN -1000 -> NaN -ddadd7823 add NaN -1 -> NaN -ddadd7824 add NaN -0 -> NaN -ddadd7825 add NaN 0 -> NaN -ddadd7826 add NaN 1 -> NaN -ddadd7827 add NaN 1000 -> NaN -ddadd7828 add NaN Inf -> NaN -ddadd7829 add NaN NaN -> NaN -ddadd7830 add -Inf NaN -> NaN -ddadd7831 add -1000 NaN -> NaN -ddadd7832 add -1 NaN -> NaN -ddadd7833 add -0 NaN -> NaN -ddadd7834 add 0 NaN -> NaN -ddadd7835 add 1 NaN -> NaN -ddadd7836 add 1000 NaN -> NaN -ddadd7837 add Inf NaN -> NaN - -ddadd7841 add sNaN -Inf -> NaN Invalid_operation -ddadd7842 add sNaN -1000 -> NaN Invalid_operation -ddadd7843 add sNaN -1 -> NaN Invalid_operation -ddadd7844 add sNaN -0 -> NaN Invalid_operation -ddadd7845 add sNaN 0 -> NaN Invalid_operation -ddadd7846 add sNaN 1 -> NaN Invalid_operation -ddadd7847 add sNaN 1000 -> NaN Invalid_operation -ddadd7848 add sNaN NaN -> NaN Invalid_operation -ddadd7849 add sNaN sNaN -> NaN Invalid_operation -ddadd7850 add NaN sNaN -> NaN Invalid_operation -ddadd7851 add -Inf sNaN -> NaN Invalid_operation -ddadd7852 add -1000 sNaN -> NaN Invalid_operation -ddadd7853 add -1 sNaN -> NaN Invalid_operation -ddadd7854 add -0 sNaN -> NaN Invalid_operation -ddadd7855 add 0 sNaN -> NaN Invalid_operation -ddadd7856 add 1 sNaN -> NaN Invalid_operation -ddadd7857 add 1000 sNaN -> NaN Invalid_operation -ddadd7858 add Inf sNaN -> NaN Invalid_operation -ddadd7859 add NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddadd7861 add NaN1 -Inf -> NaN1 -ddadd7862 add +NaN2 -1000 -> NaN2 -ddadd7863 add NaN3 1000 -> NaN3 -ddadd7864 add NaN4 Inf -> NaN4 -ddadd7865 add NaN5 +NaN6 -> NaN5 -ddadd7866 add -Inf NaN7 -> NaN7 -ddadd7867 add -1000 NaN8 -> NaN8 -ddadd7868 add 1000 NaN9 -> NaN9 -ddadd7869 add Inf +NaN10 -> NaN10 -ddadd7871 add sNaN11 -Inf -> NaN11 Invalid_operation -ddadd7872 add sNaN12 -1000 -> NaN12 Invalid_operation -ddadd7873 add sNaN13 1000 -> NaN13 Invalid_operation -ddadd7874 add sNaN14 NaN17 -> NaN14 Invalid_operation -ddadd7875 add sNaN15 sNaN18 -> NaN15 Invalid_operation -ddadd7876 add NaN16 sNaN19 -> NaN19 Invalid_operation -ddadd7877 add -Inf +sNaN20 -> NaN20 Invalid_operation -ddadd7878 add -1000 sNaN21 -> NaN21 Invalid_operation -ddadd7879 add 1000 sNaN22 -> NaN22 Invalid_operation -ddadd7880 add Inf sNaN23 -> NaN23 Invalid_operation -ddadd7881 add +NaN25 +sNaN24 -> NaN24 Invalid_operation -ddadd7882 add -NaN26 NaN28 -> -NaN26 -ddadd7883 add -sNaN27 sNaN29 -> -NaN27 Invalid_operation -ddadd7884 add 1000 -NaN30 -> -NaN30 -ddadd7885 add 1000 -sNaN31 -> -NaN31 Invalid_operation - --- Here we explore near the boundary of rounding a subnormal to Nmin -ddadd7575 add 1E-383 -1E-398 -> 9.99999999999999E-384 Subnormal -ddadd7576 add -1E-383 +1E-398 -> -9.99999999999999E-384 Subnormal - --- and another curious case -ddadd7577 add 7.000000000000E-385 -1.00000E-391 -> 6.999999000000E-385 Subnormal - --- check overflow edge case --- 1234567890123456 -ddadd7972 apply 9.999999999999999E+384 -> 9.999999999999999E+384 -ddadd7973 add 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded -ddadd7974 add 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded -ddadd7975 add 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded -ddadd7976 add 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded -ddadd7977 add 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded -ddadd7978 add 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded -ddadd7979 add 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded -ddadd7980 add 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded -ddadd7981 add 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded -ddadd7982 add 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded -ddadd7983 add 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded -ddadd7984 add 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded - -ddadd7985 apply -9.999999999999999E+384 -> -9.999999999999999E+384 -ddadd7986 add -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded -ddadd7987 add -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded -ddadd7988 add -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded -ddadd7989 add -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded -ddadd7990 add -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded -ddadd7991 add -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded -ddadd7992 add -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded -ddadd7993 add -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded -ddadd7994 add -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded -ddadd7995 add -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded -ddadd7996 add -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded -ddadd7997 add -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded - --- And for round down full and subnormal results -rounding: down -ddadd71100 add 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact -ddadd71101 add 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact -ddadd71103 add +1 -1e-383 -> 0.9999999999999999 Rounded Inexact -ddadd71104 add 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact -ddadd71105 add 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact -ddadd71106 add 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact -ddadd71107 add 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact -ddadd71108 add 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact -ddadd71109 add 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact - -rounding: ceiling -ddadd71110 add -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact -ddadd71111 add -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact -ddadd71113 add -1 +1e-383 -> -0.9999999999999999 Rounded Inexact -ddadd71114 add -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact -ddadd71115 add -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact -ddadd71116 add -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact -ddadd71117 add -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact -ddadd71118 add -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact -ddadd71119 add -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact - --- tests based on Gunnar Degnbol's edge case -rounding: half_even - -ddadd71300 add 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded -ddadd71310 add 1E16 -0.51 -> 9999999999999999 Inexact Rounded -ddadd71311 add 1E16 -0.501 -> 9999999999999999 Inexact Rounded -ddadd71312 add 1E16 -0.5001 -> 9999999999999999 Inexact Rounded -ddadd71313 add 1E16 -0.50001 -> 9999999999999999 Inexact Rounded -ddadd71314 add 1E16 -0.500001 -> 9999999999999999 Inexact Rounded -ddadd71315 add 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded -ddadd71316 add 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded -ddadd71317 add 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded -ddadd71318 add 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded -ddadd71319 add 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded -ddadd71320 add 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded -ddadd71321 add 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded -ddadd71322 add 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded -ddadd71323 add 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded -ddadd71324 add 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded -ddadd71325 add 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71326 add 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71327 add 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71328 add 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71329 add 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71330 add 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71331 add 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71332 add 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71333 add 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71334 add 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71335 add 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71336 add 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71337 add 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71338 add 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded -ddadd71339 add 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded - -ddadd71340 add 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded -ddadd71341 add 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded - -ddadd71349 add 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded -ddadd71350 add 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded -ddadd71351 add 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded -ddadd71352 add 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded -ddadd71353 add 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded -ddadd71354 add 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded -ddadd71355 add 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded -ddadd71356 add 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded -ddadd71357 add 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded -ddadd71358 add 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded -ddadd71359 add 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded -ddadd71360 add 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded -ddadd71361 add 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded -ddadd71362 add 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded -ddadd71363 add 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded -ddadd71364 add 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded -ddadd71365 add 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71367 add 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71368 add 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71369 add 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71370 add 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71371 add 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71372 add 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71373 add 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71374 add 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71375 add 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71376 add 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71377 add 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71378 add 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded -ddadd71379 add 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded -ddadd71380 add 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded -ddadd71381 add 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded -ddadd71382 add 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71383 add 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71384 add 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71385 add 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71386 add 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71387 add 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71388 add 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71389 add 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71390 add 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71391 add 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71392 add 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71393 add 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71394 add 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded -ddadd71395 add 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded -ddadd71396 add 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -ddadd71420 add 0 1.123456789012345 -> 1.123456789012345 -ddadd71421 add 0 1.123456789012345E-1 -> 0.1123456789012345 -ddadd71422 add 0 1.123456789012345E-2 -> 0.01123456789012345 -ddadd71423 add 0 1.123456789012345E-3 -> 0.001123456789012345 -ddadd71424 add 0 1.123456789012345E-4 -> 0.0001123456789012345 -ddadd71425 add 0 1.123456789012345E-5 -> 0.00001123456789012345 -ddadd71426 add 0 1.123456789012345E-6 -> 0.000001123456789012345 -ddadd71427 add 0 1.123456789012345E-7 -> 1.123456789012345E-7 -ddadd71428 add 0 1.123456789012345E-8 -> 1.123456789012345E-8 -ddadd71429 add 0 1.123456789012345E-9 -> 1.123456789012345E-9 -ddadd71430 add 0 1.123456789012345E-10 -> 1.123456789012345E-10 -ddadd71431 add 0 1.123456789012345E-11 -> 1.123456789012345E-11 -ddadd71432 add 0 1.123456789012345E-12 -> 1.123456789012345E-12 -ddadd71433 add 0 1.123456789012345E-13 -> 1.123456789012345E-13 -ddadd71434 add 0 1.123456789012345E-14 -> 1.123456789012345E-14 -ddadd71435 add 0 1.123456789012345E-15 -> 1.123456789012345E-15 -ddadd71436 add 0 1.123456789012345E-16 -> 1.123456789012345E-16 -ddadd71437 add 0 1.123456789012345E-17 -> 1.123456789012345E-17 -ddadd71438 add 0 1.123456789012345E-18 -> 1.123456789012345E-18 -ddadd71439 add 0 1.123456789012345E-19 -> 1.123456789012345E-19 - --- same, reversed 0 -ddadd71440 add 1.123456789012345 0 -> 1.123456789012345 -ddadd71441 add 1.123456789012345E-1 0 -> 0.1123456789012345 -ddadd71442 add 1.123456789012345E-2 0 -> 0.01123456789012345 -ddadd71443 add 1.123456789012345E-3 0 -> 0.001123456789012345 -ddadd71444 add 1.123456789012345E-4 0 -> 0.0001123456789012345 -ddadd71445 add 1.123456789012345E-5 0 -> 0.00001123456789012345 -ddadd71446 add 1.123456789012345E-6 0 -> 0.000001123456789012345 -ddadd71447 add 1.123456789012345E-7 0 -> 1.123456789012345E-7 -ddadd71448 add 1.123456789012345E-8 0 -> 1.123456789012345E-8 -ddadd71449 add 1.123456789012345E-9 0 -> 1.123456789012345E-9 -ddadd71450 add 1.123456789012345E-10 0 -> 1.123456789012345E-10 -ddadd71451 add 1.123456789012345E-11 0 -> 1.123456789012345E-11 -ddadd71452 add 1.123456789012345E-12 0 -> 1.123456789012345E-12 -ddadd71453 add 1.123456789012345E-13 0 -> 1.123456789012345E-13 -ddadd71454 add 1.123456789012345E-14 0 -> 1.123456789012345E-14 -ddadd71455 add 1.123456789012345E-15 0 -> 1.123456789012345E-15 -ddadd71456 add 1.123456789012345E-16 0 -> 1.123456789012345E-16 -ddadd71457 add 1.123456789012345E-17 0 -> 1.123456789012345E-17 -ddadd71458 add 1.123456789012345E-18 0 -> 1.123456789012345E-18 -ddadd71459 add 1.123456789012345E-19 0 -> 1.123456789012345E-19 - --- same, Es on the 0 -ddadd71460 add 1.123456789012345 0E-0 -> 1.123456789012345 -ddadd71461 add 1.123456789012345 0E-1 -> 1.123456789012345 -ddadd71462 add 1.123456789012345 0E-2 -> 1.123456789012345 -ddadd71463 add 1.123456789012345 0E-3 -> 1.123456789012345 -ddadd71464 add 1.123456789012345 0E-4 -> 1.123456789012345 -ddadd71465 add 1.123456789012345 0E-5 -> 1.123456789012345 -ddadd71466 add 1.123456789012345 0E-6 -> 1.123456789012345 -ddadd71467 add 1.123456789012345 0E-7 -> 1.123456789012345 -ddadd71468 add 1.123456789012345 0E-8 -> 1.123456789012345 -ddadd71469 add 1.123456789012345 0E-9 -> 1.123456789012345 -ddadd71470 add 1.123456789012345 0E-10 -> 1.123456789012345 -ddadd71471 add 1.123456789012345 0E-11 -> 1.123456789012345 -ddadd71472 add 1.123456789012345 0E-12 -> 1.123456789012345 -ddadd71473 add 1.123456789012345 0E-13 -> 1.123456789012345 -ddadd71474 add 1.123456789012345 0E-14 -> 1.123456789012345 -ddadd71475 add 1.123456789012345 0E-15 -> 1.123456789012345 --- next four flag Rounded because the 0 extends the result -ddadd71476 add 1.123456789012345 0E-16 -> 1.123456789012345 Rounded -ddadd71477 add 1.123456789012345 0E-17 -> 1.123456789012345 Rounded -ddadd71478 add 1.123456789012345 0E-18 -> 1.123456789012345 Rounded -ddadd71479 add 1.123456789012345 0E-19 -> 1.123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -rounding: half_up --- exact zeros from zeros -ddadd71500 add 0 0E-19 -> 0E-19 -ddadd71501 add -0 0E-19 -> 0E-19 -ddadd71502 add 0 -0E-19 -> 0E-19 -ddadd71503 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddadd71511 add -11 11 -> 0 -ddadd71512 add 11 -11 -> 0 - -rounding: half_down --- exact zeros from zeros -ddadd71520 add 0 0E-19 -> 0E-19 -ddadd71521 add -0 0E-19 -> 0E-19 -ddadd71522 add 0 -0E-19 -> 0E-19 -ddadd71523 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddadd71531 add -11 11 -> 0 -ddadd71532 add 11 -11 -> 0 - -rounding: half_even --- exact zeros from zeros -ddadd71540 add 0 0E-19 -> 0E-19 -ddadd71541 add -0 0E-19 -> 0E-19 -ddadd71542 add 0 -0E-19 -> 0E-19 -ddadd71543 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddadd71551 add -11 11 -> 0 -ddadd71552 add 11 -11 -> 0 - -rounding: up --- exact zeros from zeros -ddadd71560 add 0 0E-19 -> 0E-19 -ddadd71561 add -0 0E-19 -> 0E-19 -ddadd71562 add 0 -0E-19 -> 0E-19 -ddadd71563 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddadd71571 add -11 11 -> 0 -ddadd71572 add 11 -11 -> 0 - -rounding: down --- exact zeros from zeros -ddadd71580 add 0 0E-19 -> 0E-19 -ddadd71581 add -0 0E-19 -> 0E-19 -ddadd71582 add 0 -0E-19 -> 0E-19 -ddadd71583 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddadd71591 add -11 11 -> 0 -ddadd71592 add 11 -11 -> 0 - -rounding: ceiling --- exact zeros from zeros -ddadd71600 add 0 0E-19 -> 0E-19 -ddadd71601 add -0 0E-19 -> 0E-19 -ddadd71602 add 0 -0E-19 -> 0E-19 -ddadd71603 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddadd71611 add -11 11 -> 0 -ddadd71612 add 11 -11 -> 0 - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -ddadd71620 add 0 0E-19 -> 0E-19 -ddadd71621 add -0 0E-19 -> -0E-19 -- * -ddadd71622 add 0 -0E-19 -> -0E-19 -- * -ddadd71623 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddadd71631 add -11 11 -> -0 -- * -ddadd71632 add 11 -11 -> -0 -- * - --- Examples from SQL proposal (Krishna Kulkarni) -ddadd71701 add 130E-2 120E-2 -> 2.50 -ddadd71702 add 130E-2 12E-1 -> 2.50 -ddadd71703 add 130E-2 1E0 -> 2.30 -ddadd71704 add 1E2 1E4 -> 1.01E+4 -ddadd71705 add 130E-2 -120E-2 -> 0.10 -ddadd71706 add 130E-2 -12E-1 -> 0.10 -ddadd71707 add 130E-2 -1E0 -> 0.30 -ddadd71708 add 1E2 -1E4 -> -9.9E+3 - --- query from Vincent Kulandaisamy -rounding: ceiling -ddadd71801 add 7.8822773805862E+277 -5.1757503820663E-21 -> 7.882277380586200E+277 Inexact Rounded -ddadd71802 add 7.882277380586200E+277 12.341 -> 7.882277380586201E+277 Inexact Rounded -ddadd71803 add 7.882277380586201E+277 2.7270545046613E-31 -> 7.882277380586202E+277 Inexact Rounded - -ddadd71811 add 12.341 -5.1757503820663E-21 -> 12.34100000000000 Inexact Rounded -ddadd71812 add 12.34100000000000 2.7270545046613E-31 -> 12.34100000000001 Inexact Rounded -ddadd71813 add 12.34100000000001 7.8822773805862E+277 -> 7.882277380586201E+277 Inexact Rounded - --- Gappy coefficients; check residue handling even with full coefficient gap -rounding: half_even - -ddadd75001 add 1234567890123456 1 -> 1234567890123457 -ddadd75002 add 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded -ddadd75003 add 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded -ddadd75004 add 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded -ddadd75005 add 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded -ddadd75006 add 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded -ddadd75007 add 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded -ddadd75008 add 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded -ddadd75009 add 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded -ddadd75010 add 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded -ddadd75011 add 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded -ddadd75012 add 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded -ddadd75013 add 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded -ddadd75014 add 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded -ddadd75015 add 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded -ddadd75016 add 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded -ddadd75017 add 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded -ddadd75018 add 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded -ddadd75019 add 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded -ddadd75020 add 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded -ddadd75021 add 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded - --- widening second argument at gap -ddadd75030 add 12345678 1 -> 12345679 -ddadd75031 add 12345678 0.1 -> 12345678.1 -ddadd75032 add 12345678 0.12 -> 12345678.12 -ddadd75033 add 12345678 0.123 -> 12345678.123 -ddadd75034 add 12345678 0.1234 -> 12345678.1234 -ddadd75035 add 12345678 0.12345 -> 12345678.12345 -ddadd75036 add 12345678 0.123456 -> 12345678.123456 -ddadd75037 add 12345678 0.1234567 -> 12345678.1234567 -ddadd75038 add 12345678 0.12345678 -> 12345678.12345678 -ddadd75039 add 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded -ddadd75040 add 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded -ddadd75041 add 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded -ddadd75042 add 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded -ddadd75043 add 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded -ddadd75044 add 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded -ddadd75045 add 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded -ddadd75046 add 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded -ddadd75047 add 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded -ddadd75048 add 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded -ddadd75049 add 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded --- 90123456 -rounding: half_even -ddadd75050 add 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded -ddadd75051 add 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded -ddadd75052 add 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded -ddadd75053 add 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded -ddadd75054 add 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded -ddadd75055 add 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded -ddadd75056 add 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded -ddadd75057 add 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded -ddadd75060 add 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded -ddadd75061 add 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded -ddadd75062 add 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded -ddadd75063 add 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded -ddadd75064 add 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded -ddadd75065 add 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded -ddadd75066 add 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded -ddadd75067 add 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded --- far-out residues (full coefficient gap is 16+15 digits) -rounding: up -ddadd75070 add 12345678 1E-8 -> 12345678.00000001 -ddadd75071 add 12345678 1E-9 -> 12345678.00000001 Inexact Rounded -ddadd75072 add 12345678 1E-10 -> 12345678.00000001 Inexact Rounded -ddadd75073 add 12345678 1E-11 -> 12345678.00000001 Inexact Rounded -ddadd75074 add 12345678 1E-12 -> 12345678.00000001 Inexact Rounded -ddadd75075 add 12345678 1E-13 -> 12345678.00000001 Inexact Rounded -ddadd75076 add 12345678 1E-14 -> 12345678.00000001 Inexact Rounded -ddadd75077 add 12345678 1E-15 -> 12345678.00000001 Inexact Rounded -ddadd75078 add 12345678 1E-16 -> 12345678.00000001 Inexact Rounded -ddadd75079 add 12345678 1E-17 -> 12345678.00000001 Inexact Rounded -ddadd75080 add 12345678 1E-18 -> 12345678.00000001 Inexact Rounded -ddadd75081 add 12345678 1E-19 -> 12345678.00000001 Inexact Rounded -ddadd75082 add 12345678 1E-20 -> 12345678.00000001 Inexact Rounded -ddadd75083 add 12345678 1E-25 -> 12345678.00000001 Inexact Rounded -ddadd75084 add 12345678 1E-30 -> 12345678.00000001 Inexact Rounded -ddadd75085 add 12345678 1E-31 -> 12345678.00000001 Inexact Rounded -ddadd75086 add 12345678 1E-32 -> 12345678.00000001 Inexact Rounded -ddadd75087 add 12345678 1E-33 -> 12345678.00000001 Inexact Rounded -ddadd75088 add 12345678 1E-34 -> 12345678.00000001 Inexact Rounded -ddadd75089 add 12345678 1E-35 -> 12345678.00000001 Inexact Rounded - --- Punit's -ddadd75100 add 1.000 -200.000 -> -199.000 - --- Rounding swathe -rounding: half_even -ddadd81100 add .2300 12345678901234.00 -> 12345678901234.23 Rounded -ddadd81101 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81102 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81103 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81104 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81105 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81106 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81107 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81108 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81109 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81120 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded -ddadd81121 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded - -rounding: half_up -ddadd81200 add .2300 12345678901234.00 -> 12345678901234.23 Rounded -ddadd81201 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81202 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81203 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81204 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81205 add .2450 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81206 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81207 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81208 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81209 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81220 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded -ddadd81221 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded - -rounding: half_down -ddadd81300 add .2300 12345678901234.00 -> 12345678901234.23 Rounded -ddadd81301 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81302 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81303 add .2350 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81304 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81305 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81306 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81307 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81308 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81309 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81320 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded -ddadd81321 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded - -rounding: up -ddadd81400 add .2300 12345678901234.00 -> 12345678901234.23 Rounded -ddadd81401 add .2301 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81402 add .2310 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81403 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81404 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81405 add .2450 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81406 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81407 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81408 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81409 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81411 add -.2399 -12345678901234.00 -> -12345678901234.24 Inexact Rounded -ddadd81420 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded -ddadd81421 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded - -rounding: down -ddadd81500 add .2300 12345678901234.00 -> 12345678901234.23 Rounded -ddadd81501 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81502 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81503 add .2350 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81504 add .2351 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81505 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81506 add .2451 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81507 add .2360 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81508 add .2370 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81509 add .2399 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81511 add -.2399 -12345678901234.00 -> -12345678901234.23 Inexact Rounded -ddadd81520 add 9999999999999999E+369 9E+369 -> 9.999999999999999E+384 Overflow Inexact Rounded -ddadd81521 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow Inexact Rounded - -rounding: ceiling -ddadd81600 add .2300 12345678901234.00 -> 12345678901234.23 Rounded -ddadd81601 add .2301 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81602 add .2310 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81603 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81604 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81605 add .2450 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81606 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded -ddadd81607 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81608 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81609 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81611 add -.2399 -12345678901234.00 -> -12345678901234.23 Inexact Rounded -ddadd81620 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded -ddadd81621 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow Inexact Rounded - -rounding: floor -ddadd81700 add .2300 12345678901234.00 -> 12345678901234.23 Rounded -ddadd81701 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81702 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81703 add .2350 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81704 add .2351 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81705 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81706 add .2451 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd81707 add .2360 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81708 add .2370 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81709 add .2399 12345678901234.00 -> 12345678901234.23 Inexact Rounded -ddadd81711 add -.2399 -12345678901234.00 -> -12345678901234.24 Inexact Rounded -ddadd81720 add 9999999999999999E+369 9E+369 -> 9.999999999999999E+384 Overflow Inexact Rounded -ddadd81721 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded - -rounding: 05up -ddadd81800 add .2000 12345678901234.00 -> 12345678901234.20 Rounded -ddadd81801 add .2001 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81802 add .2010 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81803 add .2050 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81804 add .2051 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81807 add .2060 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81808 add .2070 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81809 add .2099 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81811 add -.2099 -12345678901234.00 -> -12345678901234.21 Inexact Rounded -ddadd81820 add 9999999999999999E+369 9E+369 -> 9.999999999999999E+384 Overflow Inexact Rounded -ddadd81821 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow Inexact Rounded - -ddadd81900 add .2100 12345678901234.00 -> 12345678901234.21 Rounded -ddadd81901 add .2101 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81902 add .2110 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81903 add .2150 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81904 add .2151 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81907 add .2160 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81908 add .2170 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81909 add .2199 12345678901234.00 -> 12345678901234.21 Inexact Rounded -ddadd81911 add -.2199 -12345678901234.00 -> -12345678901234.21 Inexact Rounded - -ddadd82000 add .2400 12345678901234.00 -> 12345678901234.24 Rounded -ddadd82001 add .2401 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd82002 add .2410 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd82003 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd82004 add .2451 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd82007 add .2460 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd82008 add .2470 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd82009 add .2499 12345678901234.00 -> 12345678901234.24 Inexact Rounded -ddadd82011 add -.2499 -12345678901234.00 -> -12345678901234.24 Inexact Rounded - -ddadd82100 add .2500 12345678901234.00 -> 12345678901234.25 Rounded -ddadd82101 add .2501 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82102 add .2510 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82103 add .2550 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82104 add .2551 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82107 add .2560 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82108 add .2570 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82109 add .2599 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82111 add -.2599 -12345678901234.00 -> -12345678901234.26 Inexact Rounded - -ddadd82200 add .2600 12345678901234.00 -> 12345678901234.26 Rounded -ddadd82201 add .2601 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82202 add .2610 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82203 add .2650 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82204 add .2651 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82207 add .2660 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82208 add .2670 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82209 add .2699 12345678901234.00 -> 12345678901234.26 Inexact Rounded -ddadd82211 add -.2699 -12345678901234.00 -> -12345678901234.26 Inexact Rounded - -ddadd82300 add .2900 12345678901234.00 -> 12345678901234.29 Rounded -ddadd82301 add .2901 12345678901234.00 -> 12345678901234.29 Inexact Rounded -ddadd82302 add .2910 12345678901234.00 -> 12345678901234.29 Inexact Rounded -ddadd82303 add .2950 12345678901234.00 -> 12345678901234.29 Inexact Rounded -ddadd82304 add .2951 12345678901234.00 -> 12345678901234.29 Inexact Rounded -ddadd82307 add .2960 12345678901234.00 -> 12345678901234.29 Inexact Rounded -ddadd82308 add .2970 12345678901234.00 -> 12345678901234.29 Inexact Rounded -ddadd82309 add .2999 12345678901234.00 -> 12345678901234.29 Inexact Rounded -ddadd82311 add -.2999 -12345678901234.00 -> -12345678901234.29 Inexact Rounded - --- Null tests -ddadd9990 add 10 # -> NaN Invalid_operation -ddadd9991 add # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddAnd.decTest b/qdecimal/test/tc_full/ddAnd.decTest deleted file mode 100644 index 51a3ccb..0000000 --- a/qdecimal/test/tc_full/ddAnd.decTest +++ /dev/null @@ -1,347 +0,0 @@ ------------------------------------------------------------------------- --- ddAnd.decTest -- digitwise logical AND for decDoubles -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check (truth table) -ddand001 and 0 0 -> 0 -ddand002 and 0 1 -> 0 -ddand003 and 1 0 -> 0 -ddand004 and 1 1 -> 1 -ddand005 and 1100 1010 -> 1000 --- and at msd and msd-1 --- 1234567890123456 1234567890123456 1234567890123456 -ddand006 and 0000000000000000 0000000000000000 -> 0 -ddand007 and 0000000000000000 1000000000000000 -> 0 -ddand008 and 1000000000000000 0000000000000000 -> 0 -ddand009 and 1000000000000000 1000000000000000 -> 1000000000000000 -ddand010 and 0000000000000000 0000000000000000 -> 0 -ddand011 and 0000000000000000 0100000000000000 -> 0 -ddand012 and 0100000000000000 0000000000000000 -> 0 -ddand013 and 0100000000000000 0100000000000000 -> 100000000000000 - --- Various lengths --- 1234567890123456 1234567890123456 1234567890123456 -ddand021 and 1111111111111111 1111111111111111 -> 1111111111111111 -ddand024 and 1111111111111111 111111111111111 -> 111111111111111 -ddand025 and 1111111111111111 11111111111111 -> 11111111111111 -ddand026 and 1111111111111111 1111111111111 -> 1111111111111 -ddand027 and 1111111111111111 111111111111 -> 111111111111 -ddand028 and 1111111111111111 11111111111 -> 11111111111 -ddand029 and 1111111111111111 1111111111 -> 1111111111 -ddand030 and 1111111111111111 111111111 -> 111111111 -ddand031 and 1111111111111111 11111111 -> 11111111 -ddand032 and 1111111111111111 1111111 -> 1111111 -ddand033 and 1111111111111111 111111 -> 111111 -ddand034 and 1111111111111111 11111 -> 11111 -ddand035 and 1111111111111111 1111 -> 1111 -ddand036 and 1111111111111111 111 -> 111 -ddand037 and 1111111111111111 11 -> 11 -ddand038 and 1111111111111111 1 -> 1 -ddand039 and 1111111111111111 0 -> 0 - -ddand040 and 1111111111111111 1111111111111111 -> 1111111111111111 -ddand041 and 111111111111111 1111111111111111 -> 111111111111111 -ddand042 and 111111111111111 1111111111111111 -> 111111111111111 -ddand043 and 11111111111111 1111111111111111 -> 11111111111111 -ddand044 and 1111111111111 1111111111111111 -> 1111111111111 -ddand045 and 111111111111 1111111111111111 -> 111111111111 -ddand046 and 11111111111 1111111111111111 -> 11111111111 -ddand047 and 1111111111 1111111111111111 -> 1111111111 -ddand048 and 111111111 1111111111111111 -> 111111111 -ddand049 and 11111111 1111111111111111 -> 11111111 -ddand050 and 1111111 1111111111111111 -> 1111111 -ddand051 and 111111 1111111111111111 -> 111111 -ddand052 and 11111 1111111111111111 -> 11111 -ddand053 and 1111 1111111111111111 -> 1111 -ddand054 and 111 1111111111111111 -> 111 -ddand055 and 11 1111111111111111 -> 11 -ddand056 and 1 1111111111111111 -> 1 -ddand057 and 0 1111111111111111 -> 0 - -ddand150 and 1111111111 1 -> 1 -ddand151 and 111111111 1 -> 1 -ddand152 and 11111111 1 -> 1 -ddand153 and 1111111 1 -> 1 -ddand154 and 111111 1 -> 1 -ddand155 and 11111 1 -> 1 -ddand156 and 1111 1 -> 1 -ddand157 and 111 1 -> 1 -ddand158 and 11 1 -> 1 -ddand159 and 1 1 -> 1 - -ddand160 and 1111111111 0 -> 0 -ddand161 and 111111111 0 -> 0 -ddand162 and 11111111 0 -> 0 -ddand163 and 1111111 0 -> 0 -ddand164 and 111111 0 -> 0 -ddand165 and 11111 0 -> 0 -ddand166 and 1111 0 -> 0 -ddand167 and 111 0 -> 0 -ddand168 and 11 0 -> 0 -ddand169 and 1 0 -> 0 - -ddand170 and 1 1111111111 -> 1 -ddand171 and 1 111111111 -> 1 -ddand172 and 1 11111111 -> 1 -ddand173 and 1 1111111 -> 1 -ddand174 and 1 111111 -> 1 -ddand175 and 1 11111 -> 1 -ddand176 and 1 1111 -> 1 -ddand177 and 1 111 -> 1 -ddand178 and 1 11 -> 1 -ddand179 and 1 1 -> 1 - -ddand180 and 0 1111111111 -> 0 -ddand181 and 0 111111111 -> 0 -ddand182 and 0 11111111 -> 0 -ddand183 and 0 1111111 -> 0 -ddand184 and 0 111111 -> 0 -ddand185 and 0 11111 -> 0 -ddand186 and 0 1111 -> 0 -ddand187 and 0 111 -> 0 -ddand188 and 0 11 -> 0 -ddand189 and 0 1 -> 0 - -ddand090 and 011111111 111111111 -> 11111111 -ddand091 and 101111111 111111111 -> 101111111 -ddand092 and 110111111 111111111 -> 110111111 -ddand093 and 111011111 111111111 -> 111011111 -ddand094 and 111101111 111111111 -> 111101111 -ddand095 and 111110111 111111111 -> 111110111 -ddand096 and 111111011 111111111 -> 111111011 -ddand097 and 111111101 111111111 -> 111111101 -ddand098 and 111111110 111111111 -> 111111110 - -ddand100 and 111111111 011111111 -> 11111111 -ddand101 and 111111111 101111111 -> 101111111 -ddand102 and 111111111 110111111 -> 110111111 -ddand103 and 111111111 111011111 -> 111011111 -ddand104 and 111111111 111101111 -> 111101111 -ddand105 and 111111111 111110111 -> 111110111 -ddand106 and 111111111 111111011 -> 111111011 -ddand107 and 111111111 111111101 -> 111111101 -ddand108 and 111111111 111111110 -> 111111110 - --- non-0/1 should not be accepted, nor should signs -ddand220 and 111111112 111111111 -> NaN Invalid_operation -ddand221 and 333333333 333333333 -> NaN Invalid_operation -ddand222 and 555555555 555555555 -> NaN Invalid_operation -ddand223 and 777777777 777777777 -> NaN Invalid_operation -ddand224 and 999999999 999999999 -> NaN Invalid_operation -ddand225 and 222222222 999999999 -> NaN Invalid_operation -ddand226 and 444444444 999999999 -> NaN Invalid_operation -ddand227 and 666666666 999999999 -> NaN Invalid_operation -ddand228 and 888888888 999999999 -> NaN Invalid_operation -ddand229 and 999999999 222222222 -> NaN Invalid_operation -ddand230 and 999999999 444444444 -> NaN Invalid_operation -ddand231 and 999999999 666666666 -> NaN Invalid_operation -ddand232 and 999999999 888888888 -> NaN Invalid_operation --- a few randoms -ddand240 and 567468689 -934981942 -> NaN Invalid_operation -ddand241 and 567367689 934981942 -> NaN Invalid_operation -ddand242 and -631917772 -706014634 -> NaN Invalid_operation -ddand243 and -756253257 138579234 -> NaN Invalid_operation -ddand244 and 835590149 567435400 -> NaN Invalid_operation --- test MSD -ddand250 and 2000000000000000 1000000000000000 -> NaN Invalid_operation -ddand251 and 7000000000000000 1000000000000000 -> NaN Invalid_operation -ddand252 and 8000000000000000 1000000000000000 -> NaN Invalid_operation -ddand253 and 9000000000000000 1000000000000000 -> NaN Invalid_operation -ddand254 and 2000000000000000 0000000000000000 -> NaN Invalid_operation -ddand255 and 7000000000000000 0000000000000000 -> NaN Invalid_operation -ddand256 and 8000000000000000 0000000000000000 -> NaN Invalid_operation -ddand257 and 9000000000000000 0000000000000000 -> NaN Invalid_operation -ddand258 and 1000000000000000 2000000000000000 -> NaN Invalid_operation -ddand259 and 1000000000000000 7000000000000000 -> NaN Invalid_operation -ddand260 and 1000000000000000 8000000000000000 -> NaN Invalid_operation -ddand261 and 1000000000000000 9000000000000000 -> NaN Invalid_operation -ddand262 and 0000000000000000 2000000000000000 -> NaN Invalid_operation -ddand263 and 0000000000000000 7000000000000000 -> NaN Invalid_operation -ddand264 and 0000000000000000 8000000000000000 -> NaN Invalid_operation -ddand265 and 0000000000000000 9000000000000000 -> NaN Invalid_operation --- test MSD-1 -ddand270 and 0200001000000000 1000100000000010 -> NaN Invalid_operation -ddand271 and 0700000100000000 1000010000000100 -> NaN Invalid_operation -ddand272 and 0800000010000000 1000001000001000 -> NaN Invalid_operation -ddand273 and 0900000001000000 1000000100010000 -> NaN Invalid_operation -ddand274 and 1000000000100000 0200000010100000 -> NaN Invalid_operation -ddand275 and 1000000000010000 0700000001000000 -> NaN Invalid_operation -ddand276 and 1000000000001000 0800000010100000 -> NaN Invalid_operation -ddand277 and 1000000000000100 0900000000010000 -> NaN Invalid_operation --- test LSD -ddand280 and 0010000000000002 1000000100000001 -> NaN Invalid_operation -ddand281 and 0001000000000007 1000001000000011 -> NaN Invalid_operation -ddand282 and 0000100000000008 1000010000000001 -> NaN Invalid_operation -ddand283 and 0000010000000009 1000100000000001 -> NaN Invalid_operation -ddand284 and 1000001000000000 0001000000000002 -> NaN Invalid_operation -ddand285 and 1000000100000000 0010000000000007 -> NaN Invalid_operation -ddand286 and 1000000010000000 0100000000000008 -> NaN Invalid_operation -ddand287 and 1000000001000000 1000000000000009 -> NaN Invalid_operation --- test Middie -ddand288 and 0010000020000000 1000001000000000 -> NaN Invalid_operation -ddand289 and 0001000070000001 1000000100000000 -> NaN Invalid_operation -ddand290 and 0000100080000010 1000000010000000 -> NaN Invalid_operation -ddand291 and 0000010090000100 1000000001000000 -> NaN Invalid_operation -ddand292 and 1000001000001000 0000000020100000 -> NaN Invalid_operation -ddand293 and 1000000100010000 0000000070010000 -> NaN Invalid_operation -ddand294 and 1000000010100000 0000000080001000 -> NaN Invalid_operation -ddand295 and 1000000001000000 0000000090000100 -> NaN Invalid_operation --- signs -ddand296 and -1000000001000000 -0000010000000100 -> NaN Invalid_operation -ddand297 and -1000000001000000 0000000010000100 -> NaN Invalid_operation -ddand298 and 1000000001000000 -0000001000000100 -> NaN Invalid_operation -ddand299 and 1000000001000000 0000000011000100 -> 1000000 - --- Nmax, Nmin, Ntiny-like -ddand331 and 2 9.99999999E+199 -> NaN Invalid_operation -ddand332 and 3 1E-199 -> NaN Invalid_operation -ddand333 and 4 1.00000000E-199 -> NaN Invalid_operation -ddand334 and 5 1E-100 -> NaN Invalid_operation -ddand335 and 6 -1E-100 -> NaN Invalid_operation -ddand336 and 7 -1.00000000E-199 -> NaN Invalid_operation -ddand337 and 8 -1E-199 -> NaN Invalid_operation -ddand338 and 9 -9.99999999E+199 -> NaN Invalid_operation -ddand341 and 9.99999999E+199 -18 -> NaN Invalid_operation -ddand342 and 1E-199 01 -> NaN Invalid_operation -ddand343 and 1.00000000E-199 -18 -> NaN Invalid_operation -ddand344 and 1E-100 18 -> NaN Invalid_operation -ddand345 and -1E-100 -10 -> NaN Invalid_operation -ddand346 and -1.00000000E-199 18 -> NaN Invalid_operation -ddand347 and -1E-199 10 -> NaN Invalid_operation -ddand348 and -9.99999999E+199 -18 -> NaN Invalid_operation - --- A few other non-integers -ddand361 and 1.0 1 -> NaN Invalid_operation -ddand362 and 1E+1 1 -> NaN Invalid_operation -ddand363 and 0.0 1 -> NaN Invalid_operation -ddand364 and 0E+1 1 -> NaN Invalid_operation -ddand365 and 9.9 1 -> NaN Invalid_operation -ddand366 and 9E+1 1 -> NaN Invalid_operation -ddand371 and 0 1.0 -> NaN Invalid_operation -ddand372 and 0 1E+1 -> NaN Invalid_operation -ddand373 and 0 0.0 -> NaN Invalid_operation -ddand374 and 0 0E+1 -> NaN Invalid_operation -ddand375 and 0 9.9 -> NaN Invalid_operation -ddand376 and 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -ddand780 and -Inf -Inf -> NaN Invalid_operation -ddand781 and -Inf -1000 -> NaN Invalid_operation -ddand782 and -Inf -1 -> NaN Invalid_operation -ddand783 and -Inf -0 -> NaN Invalid_operation -ddand784 and -Inf 0 -> NaN Invalid_operation -ddand785 and -Inf 1 -> NaN Invalid_operation -ddand786 and -Inf 1000 -> NaN Invalid_operation -ddand787 and -1000 -Inf -> NaN Invalid_operation -ddand788 and -Inf -Inf -> NaN Invalid_operation -ddand789 and -1 -Inf -> NaN Invalid_operation -ddand790 and -0 -Inf -> NaN Invalid_operation -ddand791 and 0 -Inf -> NaN Invalid_operation -ddand792 and 1 -Inf -> NaN Invalid_operation -ddand793 and 1000 -Inf -> NaN Invalid_operation -ddand794 and Inf -Inf -> NaN Invalid_operation - -ddand800 and Inf -Inf -> NaN Invalid_operation -ddand801 and Inf -1000 -> NaN Invalid_operation -ddand802 and Inf -1 -> NaN Invalid_operation -ddand803 and Inf -0 -> NaN Invalid_operation -ddand804 and Inf 0 -> NaN Invalid_operation -ddand805 and Inf 1 -> NaN Invalid_operation -ddand806 and Inf 1000 -> NaN Invalid_operation -ddand807 and Inf Inf -> NaN Invalid_operation -ddand808 and -1000 Inf -> NaN Invalid_operation -ddand809 and -Inf Inf -> NaN Invalid_operation -ddand810 and -1 Inf -> NaN Invalid_operation -ddand811 and -0 Inf -> NaN Invalid_operation -ddand812 and 0 Inf -> NaN Invalid_operation -ddand813 and 1 Inf -> NaN Invalid_operation -ddand814 and 1000 Inf -> NaN Invalid_operation -ddand815 and Inf Inf -> NaN Invalid_operation - -ddand821 and NaN -Inf -> NaN Invalid_operation -ddand822 and NaN -1000 -> NaN Invalid_operation -ddand823 and NaN -1 -> NaN Invalid_operation -ddand824 and NaN -0 -> NaN Invalid_operation -ddand825 and NaN 0 -> NaN Invalid_operation -ddand826 and NaN 1 -> NaN Invalid_operation -ddand827 and NaN 1000 -> NaN Invalid_operation -ddand828 and NaN Inf -> NaN Invalid_operation -ddand829 and NaN NaN -> NaN Invalid_operation -ddand830 and -Inf NaN -> NaN Invalid_operation -ddand831 and -1000 NaN -> NaN Invalid_operation -ddand832 and -1 NaN -> NaN Invalid_operation -ddand833 and -0 NaN -> NaN Invalid_operation -ddand834 and 0 NaN -> NaN Invalid_operation -ddand835 and 1 NaN -> NaN Invalid_operation -ddand836 and 1000 NaN -> NaN Invalid_operation -ddand837 and Inf NaN -> NaN Invalid_operation - -ddand841 and sNaN -Inf -> NaN Invalid_operation -ddand842 and sNaN -1000 -> NaN Invalid_operation -ddand843 and sNaN -1 -> NaN Invalid_operation -ddand844 and sNaN -0 -> NaN Invalid_operation -ddand845 and sNaN 0 -> NaN Invalid_operation -ddand846 and sNaN 1 -> NaN Invalid_operation -ddand847 and sNaN 1000 -> NaN Invalid_operation -ddand848 and sNaN NaN -> NaN Invalid_operation -ddand849 and sNaN sNaN -> NaN Invalid_operation -ddand850 and NaN sNaN -> NaN Invalid_operation -ddand851 and -Inf sNaN -> NaN Invalid_operation -ddand852 and -1000 sNaN -> NaN Invalid_operation -ddand853 and -1 sNaN -> NaN Invalid_operation -ddand854 and -0 sNaN -> NaN Invalid_operation -ddand855 and 0 sNaN -> NaN Invalid_operation -ddand856 and 1 sNaN -> NaN Invalid_operation -ddand857 and 1000 sNaN -> NaN Invalid_operation -ddand858 and Inf sNaN -> NaN Invalid_operation -ddand859 and NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddand861 and NaN1 -Inf -> NaN Invalid_operation -ddand862 and +NaN2 -1000 -> NaN Invalid_operation -ddand863 and NaN3 1000 -> NaN Invalid_operation -ddand864 and NaN4 Inf -> NaN Invalid_operation -ddand865 and NaN5 +NaN6 -> NaN Invalid_operation -ddand866 and -Inf NaN7 -> NaN Invalid_operation -ddand867 and -1000 NaN8 -> NaN Invalid_operation -ddand868 and 1000 NaN9 -> NaN Invalid_operation -ddand869 and Inf +NaN10 -> NaN Invalid_operation -ddand871 and sNaN11 -Inf -> NaN Invalid_operation -ddand872 and sNaN12 -1000 -> NaN Invalid_operation -ddand873 and sNaN13 1000 -> NaN Invalid_operation -ddand874 and sNaN14 NaN17 -> NaN Invalid_operation -ddand875 and sNaN15 sNaN18 -> NaN Invalid_operation -ddand876 and NaN16 sNaN19 -> NaN Invalid_operation -ddand877 and -Inf +sNaN20 -> NaN Invalid_operation -ddand878 and -1000 sNaN21 -> NaN Invalid_operation -ddand879 and 1000 sNaN22 -> NaN Invalid_operation -ddand880 and Inf sNaN23 -> NaN Invalid_operation -ddand881 and +NaN25 +sNaN24 -> NaN Invalid_operation -ddand882 and -NaN26 NaN28 -> NaN Invalid_operation -ddand883 and -sNaN27 sNaN29 -> NaN Invalid_operation -ddand884 and 1000 -NaN30 -> NaN Invalid_operation -ddand885 and 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddBase.decTest b/qdecimal/test/tc_full/ddBase.decTest deleted file mode 100644 index 3339eed..0000000 --- a/qdecimal/test/tc_full/ddBase.decTest +++ /dev/null @@ -1,1104 +0,0 @@ ------------------------------------------------------------------------- --- ddBase.decTest -- base decDouble <--> string conversions -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This file tests base conversions from string to a decimal number --- and back to a string (in Scientific form) - --- Note that unlike other operations the operand is subject to rounding --- to conform to emax and precision settings (that is, numbers will --- conform to rules and exponent will be in permitted range). The --- 'left hand side', therefore, may have numbers that cannot be --- represented in a decDouble. Some testcases go to the limit of the --- next-wider format, and hence these testcases may also be used to --- test narrowing and widening operations. - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddbas001 toSci 0 -> 0 -ddbas002 toSci 1 -> 1 -ddbas003 toSci 1.0 -> 1.0 -ddbas004 toSci 1.00 -> 1.00 -ddbas005 toSci 10 -> 10 -ddbas006 toSci 1000 -> 1000 -ddbas007 toSci 10.0 -> 10.0 -ddbas008 toSci 10.1 -> 10.1 -ddbas009 toSci 10.4 -> 10.4 -ddbas010 toSci 10.5 -> 10.5 -ddbas011 toSci 10.6 -> 10.6 -ddbas012 toSci 10.9 -> 10.9 -ddbas013 toSci 11.0 -> 11.0 -ddbas014 toSci 1.234 -> 1.234 -ddbas015 toSci 0.123 -> 0.123 -ddbas016 toSci 0.012 -> 0.012 -ddbas017 toSci -0 -> -0 -ddbas018 toSci -0.0 -> -0.0 -ddbas019 toSci -00.00 -> -0.00 - -ddbas021 toSci -1 -> -1 -ddbas022 toSci -1.0 -> -1.0 -ddbas023 toSci -0.1 -> -0.1 -ddbas024 toSci -9.1 -> -9.1 -ddbas025 toSci -9.11 -> -9.11 -ddbas026 toSci -9.119 -> -9.119 -ddbas027 toSci -9.999 -> -9.999 - -ddbas030 toSci '123456789.123456' -> '123456789.123456' -ddbas031 toSci '123456789.000000' -> '123456789.000000' -ddbas032 toSci '123456789123456' -> '123456789123456' -ddbas033 toSci '0.0000123456789' -> '0.0000123456789' -ddbas034 toSci '0.00000123456789' -> '0.00000123456789' -ddbas035 toSci '0.000000123456789' -> '1.23456789E-7' -ddbas036 toSci '0.0000000123456789' -> '1.23456789E-8' - -ddbas037 toSci '0.123456789012344' -> '0.123456789012344' -ddbas038 toSci '0.123456789012345' -> '0.123456789012345' - --- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax) -ddbsn001 toSci -9.999999999999999E+384 -> -9.999999999999999E+384 -ddbsn002 toSci -1E-383 -> -1E-383 -ddbsn003 toSci -1E-398 -> -1E-398 Subnormal -ddbsn004 toSci -0 -> -0 -ddbsn005 toSci +0 -> 0 -ddbsn006 toSci +1E-398 -> 1E-398 Subnormal -ddbsn007 toSci +1E-383 -> 1E-383 -ddbsn008 toSci +9.999999999999999E+384 -> 9.999999999999999E+384 - --- String [many more examples are implicitly tested elsewhere] --- strings without E cannot generate E in result -ddbas040 toSci "12" -> '12' -ddbas041 toSci "-76" -> '-76' -ddbas042 toSci "12.76" -> '12.76' -ddbas043 toSci "+12.76" -> '12.76' -ddbas044 toSci "012.76" -> '12.76' -ddbas045 toSci "+0.003" -> '0.003' -ddbas046 toSci "17." -> '17' -ddbas047 toSci ".5" -> '0.5' -ddbas048 toSci "044" -> '44' -ddbas049 toSci "0044" -> '44' -ddbas050 toSci "0.0005" -> '0.0005' -ddbas051 toSci "00.00005" -> '0.00005' -ddbas052 toSci "0.000005" -> '0.000005' -ddbas053 toSci "0.0000050" -> '0.0000050' -ddbas054 toSci "0.0000005" -> '5E-7' -ddbas055 toSci "0.00000005" -> '5E-8' -ddbas056 toSci "12345678.543210" -> '12345678.543210' -ddbas057 toSci "2345678.543210" -> '2345678.543210' -ddbas058 toSci "345678.543210" -> '345678.543210' -ddbas059 toSci "0345678.54321" -> '345678.54321' -ddbas060 toSci "345678.5432" -> '345678.5432' -ddbas061 toSci "+345678.5432" -> '345678.5432' -ddbas062 toSci "+0345678.5432" -> '345678.5432' -ddbas063 toSci "+00345678.5432" -> '345678.5432' -ddbas064 toSci "-345678.5432" -> '-345678.5432' -ddbas065 toSci "-0345678.5432" -> '-345678.5432' -ddbas066 toSci "-00345678.5432" -> '-345678.5432' --- examples -ddbas067 toSci "5E-6" -> '0.000005' -ddbas068 toSci "50E-7" -> '0.0000050' -ddbas069 toSci "5E-7" -> '5E-7' - --- [No exotics as no Unicode] - --- rounded with dots in all (including edge) places -ddbas071 toSci .1234567890123456123 -> 0.1234567890123456 Inexact Rounded -ddbas072 toSci 1.234567890123456123 -> 1.234567890123456 Inexact Rounded -ddbas073 toSci 12.34567890123456123 -> 12.34567890123456 Inexact Rounded -ddbas074 toSci 123.4567890123456123 -> 123.4567890123456 Inexact Rounded -ddbas075 toSci 1234.567890123456123 -> 1234.567890123456 Inexact Rounded -ddbas076 toSci 12345.67890123456123 -> 12345.67890123456 Inexact Rounded -ddbas077 toSci 123456.7890123456123 -> 123456.7890123456 Inexact Rounded -ddbas078 toSci 1234567.890123456123 -> 1234567.890123456 Inexact Rounded -ddbas079 toSci 12345678.90123456123 -> 12345678.90123456 Inexact Rounded -ddbas080 toSci 123456789.0123456123 -> 123456789.0123456 Inexact Rounded -ddbas081 toSci 1234567890.123456123 -> 1234567890.123456 Inexact Rounded -ddbas082 toSci 12345678901.23456123 -> 12345678901.23456 Inexact Rounded -ddbas083 toSci 123456789012.3456123 -> 123456789012.3456 Inexact Rounded -ddbas084 toSci 1234567890123.456123 -> 1234567890123.456 Inexact Rounded -ddbas085 toSci 12345678901234.56123 -> 12345678901234.56 Inexact Rounded -ddbas086 toSci 123456789012345.6123 -> 123456789012345.6 Inexact Rounded -ddbas087 toSci 1234567890123456.123 -> 1234567890123456 Inexact Rounded -ddbas088 toSci 12345678901234561.23 -> 1.234567890123456E+16 Inexact Rounded -ddbas089 toSci 123456789012345612.3 -> 1.234567890123456E+17 Inexact Rounded -ddbas090 toSci 1234567890123456123. -> 1.234567890123456E+18 Inexact Rounded - - --- Numbers with E -ddbas130 toSci "0.000E-1" -> '0.0000' -ddbas131 toSci "0.000E-2" -> '0.00000' -ddbas132 toSci "0.000E-3" -> '0.000000' -ddbas133 toSci "0.000E-4" -> '0E-7' -ddbas134 toSci "0.00E-2" -> '0.0000' -ddbas135 toSci "0.00E-3" -> '0.00000' -ddbas136 toSci "0.00E-4" -> '0.000000' -ddbas137 toSci "0.00E-5" -> '0E-7' -ddbas138 toSci "+0E+9" -> '0E+9' -ddbas139 toSci "-0E+9" -> '-0E+9' -ddbas140 toSci "1E+9" -> '1E+9' -ddbas141 toSci "1e+09" -> '1E+9' -ddbas142 toSci "1E+90" -> '1E+90' -ddbas143 toSci "+1E+009" -> '1E+9' -ddbas144 toSci "0E+9" -> '0E+9' -ddbas145 toSci "1E+9" -> '1E+9' -ddbas146 toSci "1E+09" -> '1E+9' -ddbas147 toSci "1e+90" -> '1E+90' -ddbas148 toSci "1E+009" -> '1E+9' -ddbas149 toSci "000E+9" -> '0E+9' -ddbas150 toSci "1E9" -> '1E+9' -ddbas151 toSci "1e09" -> '1E+9' -ddbas152 toSci "1E90" -> '1E+90' -ddbas153 toSci "1E009" -> '1E+9' -ddbas154 toSci "0E9" -> '0E+9' -ddbas155 toSci "0.000e+0" -> '0.000' -ddbas156 toSci "0.000E-1" -> '0.0000' -ddbas157 toSci "4E+9" -> '4E+9' -ddbas158 toSci "44E+9" -> '4.4E+10' -ddbas159 toSci "0.73e-7" -> '7.3E-8' -ddbas160 toSci "00E+9" -> '0E+9' -ddbas161 toSci "00E-9" -> '0E-9' -ddbas162 toSci "10E+9" -> '1.0E+10' -ddbas163 toSci "10E+09" -> '1.0E+10' -ddbas164 toSci "10e+90" -> '1.0E+91' -ddbas165 toSci "10E+009" -> '1.0E+10' -ddbas166 toSci "100e+9" -> '1.00E+11' -ddbas167 toSci "100e+09" -> '1.00E+11' -ddbas168 toSci "100E+90" -> '1.00E+92' -ddbas169 toSci "100e+009" -> '1.00E+11' - -ddbas170 toSci "1.265" -> '1.265' -ddbas171 toSci "1.265E-20" -> '1.265E-20' -ddbas172 toSci "1.265E-8" -> '1.265E-8' -ddbas173 toSci "1.265E-4" -> '0.0001265' -ddbas174 toSci "1.265E-3" -> '0.001265' -ddbas175 toSci "1.265E-2" -> '0.01265' -ddbas176 toSci "1.265E-1" -> '0.1265' -ddbas177 toSci "1.265E-0" -> '1.265' -ddbas178 toSci "1.265E+1" -> '12.65' -ddbas179 toSci "1.265E+2" -> '126.5' -ddbas180 toSci "1.265E+3" -> '1265' -ddbas181 toSci "1.265E+4" -> '1.265E+4' -ddbas182 toSci "1.265E+8" -> '1.265E+8' -ddbas183 toSci "1.265E+20" -> '1.265E+20' - -ddbas190 toSci "12.65" -> '12.65' -ddbas191 toSci "12.65E-20" -> '1.265E-19' -ddbas192 toSci "12.65E-8" -> '1.265E-7' -ddbas193 toSci "12.65E-4" -> '0.001265' -ddbas194 toSci "12.65E-3" -> '0.01265' -ddbas195 toSci "12.65E-2" -> '0.1265' -ddbas196 toSci "12.65E-1" -> '1.265' -ddbas197 toSci "12.65E-0" -> '12.65' -ddbas198 toSci "12.65E+1" -> '126.5' -ddbas199 toSci "12.65E+2" -> '1265' -ddbas200 toSci "12.65E+3" -> '1.265E+4' -ddbas201 toSci "12.65E+4" -> '1.265E+5' -ddbas202 toSci "12.65E+8" -> '1.265E+9' -ddbas203 toSci "12.65E+20" -> '1.265E+21' - -ddbas210 toSci "126.5" -> '126.5' -ddbas211 toSci "126.5E-20" -> '1.265E-18' -ddbas212 toSci "126.5E-8" -> '0.000001265' -ddbas213 toSci "126.5E-4" -> '0.01265' -ddbas214 toSci "126.5E-3" -> '0.1265' -ddbas215 toSci "126.5E-2" -> '1.265' -ddbas216 toSci "126.5E-1" -> '12.65' -ddbas217 toSci "126.5E-0" -> '126.5' -ddbas218 toSci "126.5E+1" -> '1265' -ddbas219 toSci "126.5E+2" -> '1.265E+4' -ddbas220 toSci "126.5E+3" -> '1.265E+5' -ddbas221 toSci "126.5E+4" -> '1.265E+6' -ddbas222 toSci "126.5E+8" -> '1.265E+10' -ddbas223 toSci "126.5E+20" -> '1.265E+22' - -ddbas230 toSci "1265" -> '1265' -ddbas231 toSci "1265E-20" -> '1.265E-17' -ddbas232 toSci "1265E-8" -> '0.00001265' -ddbas233 toSci "1265E-4" -> '0.1265' -ddbas234 toSci "1265E-3" -> '1.265' -ddbas235 toSci "1265E-2" -> '12.65' -ddbas236 toSci "1265E-1" -> '126.5' -ddbas237 toSci "1265E-0" -> '1265' -ddbas238 toSci "1265E+1" -> '1.265E+4' -ddbas239 toSci "1265E+2" -> '1.265E+5' -ddbas240 toSci "1265E+3" -> '1.265E+6' -ddbas241 toSci "1265E+4" -> '1.265E+7' -ddbas242 toSci "1265E+8" -> '1.265E+11' -ddbas243 toSci "1265E+20" -> '1.265E+23' -ddbas244 toSci "1265E-9" -> '0.000001265' -ddbas245 toSci "1265E-10" -> '1.265E-7' -ddbas246 toSci "1265E-11" -> '1.265E-8' -ddbas247 toSci "1265E-12" -> '1.265E-9' - -ddbas250 toSci "0.1265" -> '0.1265' -ddbas251 toSci "0.1265E-20" -> '1.265E-21' -ddbas252 toSci "0.1265E-8" -> '1.265E-9' -ddbas253 toSci "0.1265E-4" -> '0.00001265' -ddbas254 toSci "0.1265E-3" -> '0.0001265' -ddbas255 toSci "0.1265E-2" -> '0.001265' -ddbas256 toSci "0.1265E-1" -> '0.01265' -ddbas257 toSci "0.1265E-0" -> '0.1265' -ddbas258 toSci "0.1265E+1" -> '1.265' -ddbas259 toSci "0.1265E+2" -> '12.65' -ddbas260 toSci "0.1265E+3" -> '126.5' -ddbas261 toSci "0.1265E+4" -> '1265' -ddbas262 toSci "0.1265E+8" -> '1.265E+7' -ddbas263 toSci "0.1265E+20" -> '1.265E+19' - --- some more negative zeros [systematic tests below] -ddbas290 toSci "-0.000E-1" -> '-0.0000' -ddbas291 toSci "-0.000E-2" -> '-0.00000' -ddbas292 toSci "-0.000E-3" -> '-0.000000' -ddbas293 toSci "-0.000E-4" -> '-0E-7' -ddbas294 toSci "-0.00E-2" -> '-0.0000' -ddbas295 toSci "-0.00E-3" -> '-0.00000' -ddbas296 toSci "-0.0E-2" -> '-0.000' -ddbas297 toSci "-0.0E-3" -> '-0.0000' -ddbas298 toSci "-0E-2" -> '-0.00' -ddbas299 toSci "-0E-3" -> '-0.000' - --- Engineering notation tests -ddbas301 toSci 10e12 -> 1.0E+13 -ddbas302 toEng 10e12 -> 10E+12 -ddbas303 toSci 10e11 -> 1.0E+12 -ddbas304 toEng 10e11 -> 1.0E+12 -ddbas305 toSci 10e10 -> 1.0E+11 -ddbas306 toEng 10e10 -> 100E+9 -ddbas307 toSci 10e9 -> 1.0E+10 -ddbas308 toEng 10e9 -> 10E+9 -ddbas309 toSci 10e8 -> 1.0E+9 -ddbas310 toEng 10e8 -> 1.0E+9 -ddbas311 toSci 10e7 -> 1.0E+8 -ddbas312 toEng 10e7 -> 100E+6 -ddbas313 toSci 10e6 -> 1.0E+7 -ddbas314 toEng 10e6 -> 10E+6 -ddbas315 toSci 10e5 -> 1.0E+6 -ddbas316 toEng 10e5 -> 1.0E+6 -ddbas317 toSci 10e4 -> 1.0E+5 -ddbas318 toEng 10e4 -> 100E+3 -ddbas319 toSci 10e3 -> 1.0E+4 -ddbas320 toEng 10e3 -> 10E+3 -ddbas321 toSci 10e2 -> 1.0E+3 -ddbas322 toEng 10e2 -> 1.0E+3 -ddbas323 toSci 10e1 -> 1.0E+2 -ddbas324 toEng 10e1 -> 100 -ddbas325 toSci 10e0 -> 10 -ddbas326 toEng 10e0 -> 10 -ddbas327 toSci 10e-1 -> 1.0 -ddbas328 toEng 10e-1 -> 1.0 -ddbas329 toSci 10e-2 -> 0.10 -ddbas330 toEng 10e-2 -> 0.10 -ddbas331 toSci 10e-3 -> 0.010 -ddbas332 toEng 10e-3 -> 0.010 -ddbas333 toSci 10e-4 -> 0.0010 -ddbas334 toEng 10e-4 -> 0.0010 -ddbas335 toSci 10e-5 -> 0.00010 -ddbas336 toEng 10e-5 -> 0.00010 -ddbas337 toSci 10e-6 -> 0.000010 -ddbas338 toEng 10e-6 -> 0.000010 -ddbas339 toSci 10e-7 -> 0.0000010 -ddbas340 toEng 10e-7 -> 0.0000010 -ddbas341 toSci 10e-8 -> 1.0E-7 -ddbas342 toEng 10e-8 -> 100E-9 -ddbas343 toSci 10e-9 -> 1.0E-8 -ddbas344 toEng 10e-9 -> 10E-9 -ddbas345 toSci 10e-10 -> 1.0E-9 -ddbas346 toEng 10e-10 -> 1.0E-9 -ddbas347 toSci 10e-11 -> 1.0E-10 -ddbas348 toEng 10e-11 -> 100E-12 -ddbas349 toSci 10e-12 -> 1.0E-11 -ddbas350 toEng 10e-12 -> 10E-12 -ddbas351 toSci 10e-13 -> 1.0E-12 -ddbas352 toEng 10e-13 -> 1.0E-12 - -ddbas361 toSci 7E12 -> 7E+12 -ddbas362 toEng 7E12 -> 7E+12 -ddbas363 toSci 7E11 -> 7E+11 -ddbas364 toEng 7E11 -> 700E+9 -ddbas365 toSci 7E10 -> 7E+10 -ddbas366 toEng 7E10 -> 70E+9 -ddbas367 toSci 7E9 -> 7E+9 -ddbas368 toEng 7E9 -> 7E+9 -ddbas369 toSci 7E8 -> 7E+8 -ddbas370 toEng 7E8 -> 700E+6 -ddbas371 toSci 7E7 -> 7E+7 -ddbas372 toEng 7E7 -> 70E+6 -ddbas373 toSci 7E6 -> 7E+6 -ddbas374 toEng 7E6 -> 7E+6 -ddbas375 toSci 7E5 -> 7E+5 -ddbas376 toEng 7E5 -> 700E+3 -ddbas377 toSci 7E4 -> 7E+4 -ddbas378 toEng 7E4 -> 70E+3 -ddbas379 toSci 7E3 -> 7E+3 -ddbas380 toEng 7E3 -> 7E+3 -ddbas381 toSci 7E2 -> 7E+2 -ddbas382 toEng 7E2 -> 700 -ddbas383 toSci 7E1 -> 7E+1 -ddbas384 toEng 7E1 -> 70 -ddbas385 toSci 7E0 -> 7 -ddbas386 toEng 7E0 -> 7 -ddbas387 toSci 7E-1 -> 0.7 -ddbas388 toEng 7E-1 -> 0.7 -ddbas389 toSci 7E-2 -> 0.07 -ddbas390 toEng 7E-2 -> 0.07 -ddbas391 toSci 7E-3 -> 0.007 -ddbas392 toEng 7E-3 -> 0.007 -ddbas393 toSci 7E-4 -> 0.0007 -ddbas394 toEng 7E-4 -> 0.0007 -ddbas395 toSci 7E-5 -> 0.00007 -ddbas396 toEng 7E-5 -> 0.00007 -ddbas397 toSci 7E-6 -> 0.000007 -ddbas398 toEng 7E-6 -> 0.000007 -ddbas399 toSci 7E-7 -> 7E-7 -ddbas400 toEng 7E-7 -> 700E-9 -ddbas401 toSci 7E-8 -> 7E-8 -ddbas402 toEng 7E-8 -> 70E-9 -ddbas403 toSci 7E-9 -> 7E-9 -ddbas404 toEng 7E-9 -> 7E-9 -ddbas405 toSci 7E-10 -> 7E-10 -ddbas406 toEng 7E-10 -> 700E-12 -ddbas407 toSci 7E-11 -> 7E-11 -ddbas408 toEng 7E-11 -> 70E-12 -ddbas409 toSci 7E-12 -> 7E-12 -ddbas410 toEng 7E-12 -> 7E-12 -ddbas411 toSci 7E-13 -> 7E-13 -ddbas412 toEng 7E-13 -> 700E-15 - --- Exacts remain exact up to precision .. -rounding: half_up -ddbas420 toSci 100 -> 100 -ddbas421 toEng 100 -> 100 -ddbas422 toSci 1000 -> 1000 -ddbas423 toEng 1000 -> 1000 -ddbas424 toSci 999.9 -> 999.9 -ddbas425 toEng 999.9 -> 999.9 -ddbas426 toSci 1000.0 -> 1000.0 -ddbas427 toEng 1000.0 -> 1000.0 -ddbas428 toSci 1000.1 -> 1000.1 -ddbas429 toEng 1000.1 -> 1000.1 -ddbas430 toSci 10000 -> 10000 -ddbas431 toEng 10000 -> 10000 -ddbas432 toSci 100000 -> 100000 -ddbas433 toEng 100000 -> 100000 -ddbas434 toSci 1000000 -> 1000000 -ddbas435 toEng 1000000 -> 1000000 -ddbas436 toSci 10000000 -> 10000000 -ddbas437 toEng 10000000 -> 10000000 -ddbas438 toSci 100000000 -> 100000000 -ddbas439 toEng 1000000000000000 -> 1000000000000000 -ddbas440 toSci 10000000000000000 -> 1.000000000000000E+16 Rounded -ddbas441 toEng 10000000000000000 -> 10.00000000000000E+15 Rounded -ddbas442 toSci 10000000000000001 -> 1.000000000000000E+16 Rounded Inexact -ddbas443 toEng 10000000000000001 -> 10.00000000000000E+15 Rounded Inexact -ddbas444 toSci 10000000000000003 -> 1.000000000000000E+16 Rounded Inexact -ddbas445 toEng 10000000000000003 -> 10.00000000000000E+15 Rounded Inexact -ddbas446 toSci 10000000000000005 -> 1.000000000000001E+16 Rounded Inexact -ddbas447 toEng 10000000000000005 -> 10.00000000000001E+15 Rounded Inexact -ddbas448 toSci 100000000000000050 -> 1.000000000000001E+17 Rounded Inexact -ddbas449 toEng 100000000000000050 -> 100.0000000000001E+15 Rounded Inexact -ddbas450 toSci 10000000000000009 -> 1.000000000000001E+16 Rounded Inexact -ddbas451 toEng 10000000000000009 -> 10.00000000000001E+15 Rounded Inexact -ddbas452 toSci 100000000000000000 -> 1.000000000000000E+17 Rounded -ddbas453 toEng 100000000000000000 -> 100.0000000000000E+15 Rounded -ddbas454 toSci 100000000000000003 -> 1.000000000000000E+17 Rounded Inexact -ddbas455 toEng 100000000000000003 -> 100.0000000000000E+15 Rounded Inexact -ddbas456 toSci 100000000000000005 -> 1.000000000000000E+17 Rounded Inexact -ddbas457 toEng 100000000000000005 -> 100.0000000000000E+15 Rounded Inexact -ddbas458 toSci 100000000000000009 -> 1.000000000000000E+17 Rounded Inexact -ddbas459 toEng 100000000000000009 -> 100.0000000000000E+15 Rounded Inexact -ddbas460 toSci 1000000000000000000 -> 1.000000000000000E+18 Rounded -ddbas461 toEng 1000000000000000000 -> 1.000000000000000E+18 Rounded -ddbas462 toSci 1000000000000000300 -> 1.000000000000000E+18 Rounded Inexact -ddbas463 toEng 1000000000000000300 -> 1.000000000000000E+18 Rounded Inexact -ddbas464 toSci 1000000000000000500 -> 1.000000000000001E+18 Rounded Inexact -ddbas465 toEng 1000000000000000500 -> 1.000000000000001E+18 Rounded Inexact -ddbas466 toSci 1000000000000000900 -> 1.000000000000001E+18 Rounded Inexact -ddbas467 toEng 1000000000000000900 -> 1.000000000000001E+18 Rounded Inexact -ddbas468 toSci 10000000000000000000 -> 1.000000000000000E+19 Rounded -ddbas469 toEng 10000000000000000000 -> 10.00000000000000E+18 Rounded -ddbas470 toSci 10000000000000003000 -> 1.000000000000000E+19 Rounded Inexact -ddbas471 toEng 10000000000000003000 -> 10.00000000000000E+18 Rounded Inexact -ddbas472 toSci 10000000000000005000 -> 1.000000000000001E+19 Rounded Inexact -ddbas473 toEng 10000000000000005000 -> 10.00000000000001E+18 Rounded Inexact -ddbas474 toSci 10000000000000009000 -> 1.000000000000001E+19 Rounded Inexact -ddbas475 toEng 10000000000000009000 -> 10.00000000000001E+18 Rounded Inexact - --- check rounding modes heeded -rounding: ceiling -ddbsr401 toSci 1.1111111111123450 -> 1.111111111112345 Rounded -ddbsr402 toSci 1.11111111111234549 -> 1.111111111112346 Rounded Inexact -ddbsr403 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact -ddbsr404 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact -rounding: up -ddbsr405 toSci 1.1111111111123450 -> 1.111111111112345 Rounded -ddbsr406 toSci 1.11111111111234549 -> 1.111111111112346 Rounded Inexact -ddbsr407 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact -ddbsr408 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact -rounding: floor -ddbsr410 toSci 1.1111111111123450 -> 1.111111111112345 Rounded -ddbsr411 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact -ddbsr412 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact -ddbsr413 toSci 1.11111111111234551 -> 1.111111111112345 Rounded Inexact -rounding: half_down -ddbsr415 toSci 1.1111111111123450 -> 1.111111111112345 Rounded -ddbsr416 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact -ddbsr417 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact -ddbsr418 toSci 1.11111111111234650 -> 1.111111111112346 Rounded Inexact -ddbsr419 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact -rounding: half_even -ddbsr421 toSci 1.1111111111123450 -> 1.111111111112345 Rounded -ddbsr422 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact -ddbsr423 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact -ddbsr424 toSci 1.11111111111234650 -> 1.111111111112346 Rounded Inexact -ddbsr425 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact -rounding: down -ddbsr426 toSci 1.1111111111123450 -> 1.111111111112345 Rounded -ddbsr427 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact -ddbsr428 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact -ddbsr429 toSci 1.11111111111234551 -> 1.111111111112345 Rounded Inexact -rounding: half_up -ddbsr431 toSci 1.1111111111123450 -> 1.111111111112345 Rounded -ddbsr432 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact -ddbsr433 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact -ddbsr434 toSci 1.11111111111234650 -> 1.111111111112347 Rounded Inexact -ddbsr435 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact --- negatives -rounding: ceiling -ddbsr501 toSci -1.1111111111123450 -> -1.111111111112345 Rounded -ddbsr502 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact -ddbsr503 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact -ddbsr504 toSci -1.11111111111234551 -> -1.111111111112345 Rounded Inexact -rounding: up -ddbsr505 toSci -1.1111111111123450 -> -1.111111111112345 Rounded -ddbsr506 toSci -1.11111111111234549 -> -1.111111111112346 Rounded Inexact -ddbsr507 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact -ddbsr508 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact -rounding: floor -ddbsr510 toSci -1.1111111111123450 -> -1.111111111112345 Rounded -ddbsr511 toSci -1.11111111111234549 -> -1.111111111112346 Rounded Inexact -ddbsr512 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact -ddbsr513 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact -rounding: half_down -ddbsr515 toSci -1.1111111111123450 -> -1.111111111112345 Rounded -ddbsr516 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact -ddbsr517 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact -ddbsr518 toSci -1.11111111111234650 -> -1.111111111112346 Rounded Inexact -ddbsr519 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact -rounding: half_even -ddbsr521 toSci -1.1111111111123450 -> -1.111111111112345 Rounded -ddbsr522 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact -ddbsr523 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact -ddbsr524 toSci -1.11111111111234650 -> -1.111111111112346 Rounded Inexact -ddbsr525 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact -rounding: down -ddbsr526 toSci -1.1111111111123450 -> -1.111111111112345 Rounded -ddbsr527 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact -ddbsr528 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact -ddbsr529 toSci -1.11111111111234551 -> -1.111111111112345 Rounded Inexact -rounding: half_up -ddbsr531 toSci -1.1111111111123450 -> -1.111111111112345 Rounded -ddbsr532 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact -ddbsr533 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact -ddbsr534 toSci -1.11111111111234650 -> -1.111111111112347 Rounded Inexact -ddbsr535 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact - -rounding: half_even - --- The 'baddies' tests from DiagBigDecimal, plus some new ones -ddbas500 toSci '1..2' -> NaN Conversion_syntax -ddbas501 toSci '.' -> NaN Conversion_syntax -ddbas502 toSci '..' -> NaN Conversion_syntax -ddbas503 toSci '++1' -> NaN Conversion_syntax -ddbas504 toSci '--1' -> NaN Conversion_syntax -ddbas505 toSci '-+1' -> NaN Conversion_syntax -ddbas506 toSci '+-1' -> NaN Conversion_syntax -ddbas507 toSci '12e' -> NaN Conversion_syntax -ddbas508 toSci '12e++' -> NaN Conversion_syntax -ddbas509 toSci '12f4' -> NaN Conversion_syntax -ddbas510 toSci ' +1' -> NaN Conversion_syntax -ddbas511 toSci '+ 1' -> NaN Conversion_syntax -ddbas512 toSci '12 ' -> NaN Conversion_syntax -ddbas513 toSci ' + 1' -> NaN Conversion_syntax -ddbas514 toSci ' - 1 ' -> NaN Conversion_syntax -ddbas515 toSci 'x' -> NaN Conversion_syntax -ddbas516 toSci '-1-' -> NaN Conversion_syntax -ddbas517 toSci '12-' -> NaN Conversion_syntax -ddbas518 toSci '3+' -> NaN Conversion_syntax -ddbas519 toSci '' -> NaN Conversion_syntax -ddbas520 toSci '1e-' -> NaN Conversion_syntax -ddbas521 toSci '7e99999a' -> NaN Conversion_syntax -ddbas522 toSci '7e123567890x' -> NaN Conversion_syntax -ddbas523 toSci '7e12356789012x' -> NaN Conversion_syntax -ddbas524 toSci '' -> NaN Conversion_syntax -ddbas525 toSci 'e100' -> NaN Conversion_syntax -ddbas526 toSci '\u0e5a' -> NaN Conversion_syntax -ddbas527 toSci '\u0b65' -> NaN Conversion_syntax -ddbas528 toSci '123,65' -> NaN Conversion_syntax -ddbas529 toSci '1.34.5' -> NaN Conversion_syntax -ddbas530 toSci '.123.5' -> NaN Conversion_syntax -ddbas531 toSci '01.35.' -> NaN Conversion_syntax -ddbas532 toSci '01.35-' -> NaN Conversion_syntax -ddbas533 toSci '0000..' -> NaN Conversion_syntax -ddbas534 toSci '.0000.' -> NaN Conversion_syntax -ddbas535 toSci '00..00' -> NaN Conversion_syntax -ddbas536 toSci '111e*123' -> NaN Conversion_syntax -ddbas537 toSci '111e123-' -> NaN Conversion_syntax -ddbas538 toSci '111e+12+' -> NaN Conversion_syntax -ddbas539 toSci '111e1-3-' -> NaN Conversion_syntax -ddbas540 toSci '111e1*23' -> NaN Conversion_syntax -ddbas541 toSci '111e1e+3' -> NaN Conversion_syntax -ddbas542 toSci '1e1.0' -> NaN Conversion_syntax -ddbas543 toSci '1e123e' -> NaN Conversion_syntax -ddbas544 toSci 'ten' -> NaN Conversion_syntax -ddbas545 toSci 'ONE' -> NaN Conversion_syntax -ddbas546 toSci '1e.1' -> NaN Conversion_syntax -ddbas547 toSci '1e1.' -> NaN Conversion_syntax -ddbas548 toSci '1ee' -> NaN Conversion_syntax -ddbas549 toSci 'e+1' -> NaN Conversion_syntax -ddbas550 toSci '1.23.4' -> NaN Conversion_syntax -ddbas551 toSci '1.2.1' -> NaN Conversion_syntax -ddbas552 toSci '1E+1.2' -> NaN Conversion_syntax -ddbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax -ddbas554 toSci '1E++1' -> NaN Conversion_syntax -ddbas555 toSci '1E--1' -> NaN Conversion_syntax -ddbas556 toSci '1E+-1' -> NaN Conversion_syntax -ddbas557 toSci '1E-+1' -> NaN Conversion_syntax -ddbas558 toSci '1E''1' -> NaN Conversion_syntax -ddbas559 toSci "1E""1" -> NaN Conversion_syntax -ddbas560 toSci "1E""""" -> NaN Conversion_syntax --- Near-specials -ddbas561 toSci "qNaN" -> NaN Conversion_syntax -ddbas562 toSci "NaNq" -> NaN Conversion_syntax -ddbas563 toSci "NaNs" -> NaN Conversion_syntax -ddbas564 toSci "Infi" -> NaN Conversion_syntax -ddbas565 toSci "Infin" -> NaN Conversion_syntax -ddbas566 toSci "Infini" -> NaN Conversion_syntax -ddbas567 toSci "Infinit" -> NaN Conversion_syntax -ddbas568 toSci "-Infinit" -> NaN Conversion_syntax -ddbas569 toSci "0Inf" -> NaN Conversion_syntax -ddbas570 toSci "9Inf" -> NaN Conversion_syntax -ddbas571 toSci "-0Inf" -> NaN Conversion_syntax -ddbas572 toSci "-9Inf" -> NaN Conversion_syntax -ddbas573 toSci "-sNa" -> NaN Conversion_syntax -ddbas574 toSci "xNaN" -> NaN Conversion_syntax -ddbas575 toSci "0sNaN" -> NaN Conversion_syntax - --- some baddies with dots and Es and dots and specials -ddbas576 toSci 'e+1' -> NaN Conversion_syntax -ddbas577 toSci '.e+1' -> NaN Conversion_syntax -ddbas578 toSci '+.e+1' -> NaN Conversion_syntax -ddbas579 toSci '-.e+' -> NaN Conversion_syntax -ddbas580 toSci '-.e' -> NaN Conversion_syntax -ddbas581 toSci 'E+1' -> NaN Conversion_syntax -ddbas582 toSci '.E+1' -> NaN Conversion_syntax -ddbas583 toSci '+.E+1' -> NaN Conversion_syntax -ddbas584 toSci '-.E+' -> NaN Conversion_syntax -ddbas585 toSci '-.E' -> NaN Conversion_syntax - -ddbas586 toSci '.NaN' -> NaN Conversion_syntax -ddbas587 toSci '-.NaN' -> NaN Conversion_syntax -ddbas588 toSci '+.sNaN' -> NaN Conversion_syntax -ddbas589 toSci '+.Inf' -> NaN Conversion_syntax -ddbas590 toSci '.Infinity' -> NaN Conversion_syntax - --- Zeros -ddbas601 toSci 0.000000000 -> 0E-9 -ddbas602 toSci 0.00000000 -> 0E-8 -ddbas603 toSci 0.0000000 -> 0E-7 -ddbas604 toSci 0.000000 -> 0.000000 -ddbas605 toSci 0.00000 -> 0.00000 -ddbas606 toSci 0.0000 -> 0.0000 -ddbas607 toSci 0.000 -> 0.000 -ddbas608 toSci 0.00 -> 0.00 -ddbas609 toSci 0.0 -> 0.0 -ddbas610 toSci .0 -> 0.0 -ddbas611 toSci 0. -> 0 -ddbas612 toSci -.0 -> -0.0 -ddbas613 toSci -0. -> -0 -ddbas614 toSci -0.0 -> -0.0 -ddbas615 toSci -0.00 -> -0.00 -ddbas616 toSci -0.000 -> -0.000 -ddbas617 toSci -0.0000 -> -0.0000 -ddbas618 toSci -0.00000 -> -0.00000 -ddbas619 toSci -0.000000 -> -0.000000 -ddbas620 toSci -0.0000000 -> -0E-7 -ddbas621 toSci -0.00000000 -> -0E-8 -ddbas622 toSci -0.000000000 -> -0E-9 - -ddbas630 toSci 0.00E+0 -> 0.00 -ddbas631 toSci 0.00E+1 -> 0.0 -ddbas632 toSci 0.00E+2 -> 0 -ddbas633 toSci 0.00E+3 -> 0E+1 -ddbas634 toSci 0.00E+4 -> 0E+2 -ddbas635 toSci 0.00E+5 -> 0E+3 -ddbas636 toSci 0.00E+6 -> 0E+4 -ddbas637 toSci 0.00E+7 -> 0E+5 -ddbas638 toSci 0.00E+8 -> 0E+6 -ddbas639 toSci 0.00E+9 -> 0E+7 - -ddbas640 toSci 0.0E+0 -> 0.0 -ddbas641 toSci 0.0E+1 -> 0 -ddbas642 toSci 0.0E+2 -> 0E+1 -ddbas643 toSci 0.0E+3 -> 0E+2 -ddbas644 toSci 0.0E+4 -> 0E+3 -ddbas645 toSci 0.0E+5 -> 0E+4 -ddbas646 toSci 0.0E+6 -> 0E+5 -ddbas647 toSci 0.0E+7 -> 0E+6 -ddbas648 toSci 0.0E+8 -> 0E+7 -ddbas649 toSci 0.0E+9 -> 0E+8 - -ddbas650 toSci 0E+0 -> 0 -ddbas651 toSci 0E+1 -> 0E+1 -ddbas652 toSci 0E+2 -> 0E+2 -ddbas653 toSci 0E+3 -> 0E+3 -ddbas654 toSci 0E+4 -> 0E+4 -ddbas655 toSci 0E+5 -> 0E+5 -ddbas656 toSci 0E+6 -> 0E+6 -ddbas657 toSci 0E+7 -> 0E+7 -ddbas658 toSci 0E+8 -> 0E+8 -ddbas659 toSci 0E+9 -> 0E+9 - -ddbas660 toSci 0.0E-0 -> 0.0 -ddbas661 toSci 0.0E-1 -> 0.00 -ddbas662 toSci 0.0E-2 -> 0.000 -ddbas663 toSci 0.0E-3 -> 0.0000 -ddbas664 toSci 0.0E-4 -> 0.00000 -ddbas665 toSci 0.0E-5 -> 0.000000 -ddbas666 toSci 0.0E-6 -> 0E-7 -ddbas667 toSci 0.0E-7 -> 0E-8 -ddbas668 toSci 0.0E-8 -> 0E-9 -ddbas669 toSci 0.0E-9 -> 0E-10 - -ddbas670 toSci 0.00E-0 -> 0.00 -ddbas671 toSci 0.00E-1 -> 0.000 -ddbas672 toSci 0.00E-2 -> 0.0000 -ddbas673 toSci 0.00E-3 -> 0.00000 -ddbas674 toSci 0.00E-4 -> 0.000000 -ddbas675 toSci 0.00E-5 -> 0E-7 -ddbas676 toSci 0.00E-6 -> 0E-8 -ddbas677 toSci 0.00E-7 -> 0E-9 -ddbas678 toSci 0.00E-8 -> 0E-10 -ddbas679 toSci 0.00E-9 -> 0E-11 - -ddbas680 toSci 000000. -> 0 -ddbas681 toSci 00000. -> 0 -ddbas682 toSci 0000. -> 0 -ddbas683 toSci 000. -> 0 -ddbas684 toSci 00. -> 0 -ddbas685 toSci 0. -> 0 -ddbas686 toSci +00000. -> 0 -ddbas687 toSci -00000. -> -0 -ddbas688 toSci +0. -> 0 -ddbas689 toSci -0. -> -0 - --- Specials -ddbas700 toSci "NaN" -> NaN -ddbas701 toSci "nan" -> NaN -ddbas702 toSci "nAn" -> NaN -ddbas703 toSci "NAN" -> NaN -ddbas704 toSci "+NaN" -> NaN -ddbas705 toSci "+nan" -> NaN -ddbas706 toSci "+nAn" -> NaN -ddbas707 toSci "+NAN" -> NaN -ddbas708 toSci "-NaN" -> -NaN -ddbas709 toSci "-nan" -> -NaN -ddbas710 toSci "-nAn" -> -NaN -ddbas711 toSci "-NAN" -> -NaN -ddbas712 toSci 'NaN0' -> NaN -ddbas713 toSci 'NaN1' -> NaN1 -ddbas714 toSci 'NaN12' -> NaN12 -ddbas715 toSci 'NaN123' -> NaN123 -ddbas716 toSci 'NaN1234' -> NaN1234 -ddbas717 toSci 'NaN01' -> NaN1 -ddbas718 toSci 'NaN012' -> NaN12 -ddbas719 toSci 'NaN0123' -> NaN123 -ddbas720 toSci 'NaN01234' -> NaN1234 -ddbas721 toSci 'NaN001' -> NaN1 -ddbas722 toSci 'NaN0012' -> NaN12 -ddbas723 toSci 'NaN00123' -> NaN123 -ddbas724 toSci 'NaN001234' -> NaN1234 -ddbas725 toSci 'NaN1234567890123456' -> NaN Conversion_syntax -ddbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax -ddbas727 toSci 'NaN12.45' -> NaN Conversion_syntax -ddbas728 toSci 'NaN-12' -> NaN Conversion_syntax -ddbas729 toSci 'NaN+12' -> NaN Conversion_syntax - -ddbas730 toSci "sNaN" -> sNaN -ddbas731 toSci "snan" -> sNaN -ddbas732 toSci "SnAn" -> sNaN -ddbas733 toSci "SNAN" -> sNaN -ddbas734 toSci "+sNaN" -> sNaN -ddbas735 toSci "+snan" -> sNaN -ddbas736 toSci "+SnAn" -> sNaN -ddbas737 toSci "+SNAN" -> sNaN -ddbas738 toSci "-sNaN" -> -sNaN -ddbas739 toSci "-snan" -> -sNaN -ddbas740 toSci "-SnAn" -> -sNaN -ddbas741 toSci "-SNAN" -> -sNaN -ddbas742 toSci 'sNaN0000' -> sNaN -ddbas743 toSci 'sNaN7' -> sNaN7 -ddbas744 toSci 'sNaN007234' -> sNaN7234 -ddbas745 toSci 'sNaN7234561234567890' -> NaN Conversion_syntax -ddbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax -ddbas747 toSci 'sNaN-72' -> NaN Conversion_syntax - -ddbas748 toSci "Inf" -> Infinity -ddbas749 toSci "inf" -> Infinity -ddbas750 toSci "iNf" -> Infinity -ddbas751 toSci "INF" -> Infinity -ddbas752 toSci "+Inf" -> Infinity -ddbas753 toSci "+inf" -> Infinity -ddbas754 toSci "+iNf" -> Infinity -ddbas755 toSci "+INF" -> Infinity -ddbas756 toSci "-Inf" -> -Infinity -ddbas757 toSci "-inf" -> -Infinity -ddbas758 toSci "-iNf" -> -Infinity -ddbas759 toSci "-INF" -> -Infinity - -ddbas760 toSci "Infinity" -> Infinity -ddbas761 toSci "infinity" -> Infinity -ddbas762 toSci "iNfInItY" -> Infinity -ddbas763 toSci "INFINITY" -> Infinity -ddbas764 toSci "+Infinity" -> Infinity -ddbas765 toSci "+infinity" -> Infinity -ddbas766 toSci "+iNfInItY" -> Infinity -ddbas767 toSci "+INFINITY" -> Infinity -ddbas768 toSci "-Infinity" -> -Infinity -ddbas769 toSci "-infinity" -> -Infinity -ddbas770 toSci "-iNfInItY" -> -Infinity -ddbas771 toSci "-INFINITY" -> -Infinity - --- Specials and zeros for toEng -ddbast772 toEng "NaN" -> NaN -ddbast773 toEng "-Infinity" -> -Infinity -ddbast774 toEng "-sNaN" -> -sNaN -ddbast775 toEng "-NaN" -> -NaN -ddbast776 toEng "+Infinity" -> Infinity -ddbast778 toEng "+sNaN" -> sNaN -ddbast779 toEng "+NaN" -> NaN -ddbast780 toEng "INFINITY" -> Infinity -ddbast781 toEng "SNAN" -> sNaN -ddbast782 toEng "NAN" -> NaN -ddbast783 toEng "infinity" -> Infinity -ddbast784 toEng "snan" -> sNaN -ddbast785 toEng "nan" -> NaN -ddbast786 toEng "InFINITY" -> Infinity -ddbast787 toEng "SnAN" -> sNaN -ddbast788 toEng "nAN" -> NaN -ddbast789 toEng "iNfinity" -> Infinity -ddbast790 toEng "sNan" -> sNaN -ddbast791 toEng "Nan" -> NaN -ddbast792 toEng "Infinity" -> Infinity -ddbast793 toEng "sNaN" -> sNaN - --- Zero toEng, etc. -ddbast800 toEng 0e+1 -> "0.00E+3" -- doc example - -ddbast801 toEng 0.000000000 -> 0E-9 -ddbast802 toEng 0.00000000 -> 0.00E-6 -ddbast803 toEng 0.0000000 -> 0.0E-6 -ddbast804 toEng 0.000000 -> 0.000000 -ddbast805 toEng 0.00000 -> 0.00000 -ddbast806 toEng 0.0000 -> 0.0000 -ddbast807 toEng 0.000 -> 0.000 -ddbast808 toEng 0.00 -> 0.00 -ddbast809 toEng 0.0 -> 0.0 -ddbast810 toEng .0 -> 0.0 -ddbast811 toEng 0. -> 0 -ddbast812 toEng -.0 -> -0.0 -ddbast813 toEng -0. -> -0 -ddbast814 toEng -0.0 -> -0.0 -ddbast815 toEng -0.00 -> -0.00 -ddbast816 toEng -0.000 -> -0.000 -ddbast817 toEng -0.0000 -> -0.0000 -ddbast818 toEng -0.00000 -> -0.00000 -ddbast819 toEng -0.000000 -> -0.000000 -ddbast820 toEng -0.0000000 -> -0.0E-6 -ddbast821 toEng -0.00000000 -> -0.00E-6 -ddbast822 toEng -0.000000000 -> -0E-9 - -ddbast830 toEng 0.00E+0 -> 0.00 -ddbast831 toEng 0.00E+1 -> 0.0 -ddbast832 toEng 0.00E+2 -> 0 -ddbast833 toEng 0.00E+3 -> 0.00E+3 -ddbast834 toEng 0.00E+4 -> 0.0E+3 -ddbast835 toEng 0.00E+5 -> 0E+3 -ddbast836 toEng 0.00E+6 -> 0.00E+6 -ddbast837 toEng 0.00E+7 -> 0.0E+6 -ddbast838 toEng 0.00E+8 -> 0E+6 -ddbast839 toEng 0.00E+9 -> 0.00E+9 - -ddbast840 toEng 0.0E+0 -> 0.0 -ddbast841 toEng 0.0E+1 -> 0 -ddbast842 toEng 0.0E+2 -> 0.00E+3 -ddbast843 toEng 0.0E+3 -> 0.0E+3 -ddbast844 toEng 0.0E+4 -> 0E+3 -ddbast845 toEng 0.0E+5 -> 0.00E+6 -ddbast846 toEng 0.0E+6 -> 0.0E+6 -ddbast847 toEng 0.0E+7 -> 0E+6 -ddbast848 toEng 0.0E+8 -> 0.00E+9 -ddbast849 toEng 0.0E+9 -> 0.0E+9 - -ddbast850 toEng 0E+0 -> 0 -ddbast851 toEng 0E+1 -> 0.00E+3 -ddbast852 toEng 0E+2 -> 0.0E+3 -ddbast853 toEng 0E+3 -> 0E+3 -ddbast854 toEng 0E+4 -> 0.00E+6 -ddbast855 toEng 0E+5 -> 0.0E+6 -ddbast856 toEng 0E+6 -> 0E+6 -ddbast857 toEng 0E+7 -> 0.00E+9 -ddbast858 toEng 0E+8 -> 0.0E+9 -ddbast859 toEng 0E+9 -> 0E+9 - -ddbast860 toEng 0.0E-0 -> 0.0 -ddbast861 toEng 0.0E-1 -> 0.00 -ddbast862 toEng 0.0E-2 -> 0.000 -ddbast863 toEng 0.0E-3 -> 0.0000 -ddbast864 toEng 0.0E-4 -> 0.00000 -ddbast865 toEng 0.0E-5 -> 0.000000 -ddbast866 toEng 0.0E-6 -> 0.0E-6 -ddbast867 toEng 0.0E-7 -> 0.00E-6 -ddbast868 toEng 0.0E-8 -> 0E-9 -ddbast869 toEng 0.0E-9 -> 0.0E-9 - -ddbast870 toEng 0.00E-0 -> 0.00 -ddbast871 toEng 0.00E-1 -> 0.000 -ddbast872 toEng 0.00E-2 -> 0.0000 -ddbast873 toEng 0.00E-3 -> 0.00000 -ddbast874 toEng 0.00E-4 -> 0.000000 -ddbast875 toEng 0.00E-5 -> 0.0E-6 -ddbast876 toEng 0.00E-6 -> 0.00E-6 -ddbast877 toEng 0.00E-7 -> 0E-9 -ddbast878 toEng 0.00E-8 -> 0.0E-9 -ddbast879 toEng 0.00E-9 -> 0.00E-9 - --- long input strings -ddbas801 tosci '01234567890123456' -> 1234567890123456 -ddbas802 tosci '001234567890123456' -> 1234567890123456 -ddbas803 tosci '0001234567890123456' -> 1234567890123456 -ddbas804 tosci '00001234567890123456' -> 1234567890123456 -ddbas805 tosci '000001234567890123456' -> 1234567890123456 -ddbas806 tosci '0000001234567890123456' -> 1234567890123456 -ddbas807 tosci '00000001234567890123456' -> 1234567890123456 -ddbas808 tosci '000000001234567890123456' -> 1234567890123456 -ddbas809 tosci '0000000001234567890123456' -> 1234567890123456 -ddbas810 tosci '00000000001234567890123456' -> 1234567890123456 - -ddbas811 tosci '0.1234567890123456' -> 0.1234567890123456 -ddbas812 tosci '0.01234567890123456' -> 0.01234567890123456 -ddbas813 tosci '0.001234567890123456' -> 0.001234567890123456 -ddbas814 tosci '0.0001234567890123456' -> 0.0001234567890123456 -ddbas815 tosci '0.00001234567890123456' -> 0.00001234567890123456 -ddbas816 tosci '0.000001234567890123456' -> 0.000001234567890123456 -ddbas817 tosci '0.0000001234567890123456' -> 1.234567890123456E-7 -ddbas818 tosci '0.00000001234567890123456' -> 1.234567890123456E-8 -ddbas819 tosci '0.000000001234567890123456' -> 1.234567890123456E-9 -ddbas820 tosci '0.0000000001234567890123456' -> 1.234567890123456E-10 - -ddbas821 tosci '12345678901234567890' -> 1.234567890123457E+19 Inexact Rounded -ddbas822 tosci '123456789012345678901' -> 1.234567890123457E+20 Inexact Rounded -ddbas823 tosci '1234567890123456789012' -> 1.234567890123457E+21 Inexact Rounded -ddbas824 tosci '12345678901234567890123' -> 1.234567890123457E+22 Inexact Rounded -ddbas825 tosci '123456789012345678901234' -> 1.234567890123457E+23 Inexact Rounded -ddbas826 tosci '1234567890123456789012345' -> 1.234567890123457E+24 Inexact Rounded -ddbas827 tosci '12345678901234567890123456' -> 1.234567890123457E+25 Inexact Rounded -ddbas828 tosci '123456789012345678901234567' -> 1.234567890123457E+26 Inexact Rounded -ddbas829 tosci '1234567890123456789012345678' -> 1.234567890123457E+27 Inexact Rounded - --- subnormals and overflows -ddbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded -ddbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded -ddbas908 toSci '0.9e-999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas909 toSci '0.09e-999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded -ddbas911 toSci '10e-1000000000' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded -ddbas913 toSci '99e-9999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded -ddbas915 toSci '1111e-9999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas916 toSci '1111e-99999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded --- negatives the same -ddbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded -ddbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded -ddbas920 toSci '-0.9e-999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas921 toSci '-0.09e-999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded -ddbas923 toSci '-10e-1000000000' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded -ddbas925 toSci '-99e-9999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded -ddbas927 toSci '-1111e-9999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas928 toSci '-1111e-99999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded - --- overflow results at different rounding modes -rounding: ceiling -ddbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded -ddbas931 toSci '-7e10000' -> -9.999999999999999E+384 Overflow Inexact Rounded -rounding: up -ddbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded -ddbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: down -ddbas934 toSci '7e10000' -> 9.999999999999999E+384 Overflow Inexact Rounded -ddbas935 toSci '-7e10000' -> -9.999999999999999E+384 Overflow Inexact Rounded -rounding: floor -ddbas936 toSci '7e10000' -> 9.999999999999999E+384 Overflow Inexact Rounded -ddbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded - -rounding: half_up -ddbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded -ddbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: half_even -ddbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded -ddbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: half_down -ddbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded -ddbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded - -rounding: half_even - --- Now check 854/754r some subnormals and underflow to 0 -ddbem400 toSci 1.0000E-383 -> 1.0000E-383 -ddbem401 toSci 0.1E-394 -> 1E-395 Subnormal -ddbem402 toSci 0.1000E-394 -> 1.000E-395 Subnormal -ddbem403 toSci 0.0100E-394 -> 1.00E-396 Subnormal -ddbem404 toSci 0.0010E-394 -> 1.0E-397 Subnormal -ddbem405 toSci 0.0001E-394 -> 1E-398 Subnormal -ddbem406 toSci 0.00010E-394 -> 1E-398 Subnormal Rounded -ddbem407 toSci 0.00013E-394 -> 1E-398 Underflow Subnormal Inexact Rounded -ddbem408 toSci 0.00015E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem409 toSci 0.00017E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem410 toSci 0.00023E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem411 toSci 0.00025E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem412 toSci 0.00027E-394 -> 3E-398 Underflow Subnormal Inexact Rounded -ddbem413 toSci 0.000149E-394 -> 1E-398 Underflow Subnormal Inexact Rounded -ddbem414 toSci 0.000150E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem415 toSci 0.000151E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem416 toSci 0.000249E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem417 toSci 0.000250E-394 -> 2E-398 Underflow Subnormal Inexact Rounded -ddbem418 toSci 0.000251E-394 -> 3E-398 Underflow Subnormal Inexact Rounded -ddbem419 toSci 0.00009E-394 -> 1E-398 Underflow Subnormal Inexact Rounded -ddbem420 toSci 0.00005E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbem421 toSci 0.00003E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbem422 toSci 0.000009E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbem423 toSci 0.000005E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbem424 toSci 0.000003E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - -ddbem425 toSci 0.001049E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded -ddbem426 toSci 0.001050E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded -ddbem427 toSci 0.001051E-394 -> 1.1E-397 Underflow Subnormal Inexact Rounded -ddbem428 toSci 0.001149E-394 -> 1.1E-397 Underflow Subnormal Inexact Rounded -ddbem429 toSci 0.001150E-394 -> 1.2E-397 Underflow Subnormal Inexact Rounded -ddbem430 toSci 0.001151E-394 -> 1.2E-397 Underflow Subnormal Inexact Rounded - -ddbem432 toSci 0.010049E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded -ddbem433 toSci 0.010050E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded -ddbem434 toSci 0.010051E-394 -> 1.01E-396 Underflow Subnormal Inexact Rounded -ddbem435 toSci 0.010149E-394 -> 1.01E-396 Underflow Subnormal Inexact Rounded -ddbem436 toSci 0.010150E-394 -> 1.02E-396 Underflow Subnormal Inexact Rounded -ddbem437 toSci 0.010151E-394 -> 1.02E-396 Underflow Subnormal Inexact Rounded - -ddbem440 toSci 0.10103E-394 -> 1.010E-395 Underflow Subnormal Inexact Rounded -ddbem441 toSci 0.10105E-394 -> 1.010E-395 Underflow Subnormal Inexact Rounded -ddbem442 toSci 0.10107E-394 -> 1.011E-395 Underflow Subnormal Inexact Rounded -ddbem443 toSci 0.10113E-394 -> 1.011E-395 Underflow Subnormal Inexact Rounded -ddbem444 toSci 0.10115E-394 -> 1.012E-395 Underflow Subnormal Inexact Rounded -ddbem445 toSci 0.10117E-394 -> 1.012E-395 Underflow Subnormal Inexact Rounded - -ddbem450 toSci 1.10730E-395 -> 1.107E-395 Underflow Subnormal Inexact Rounded -ddbem451 toSci 1.10750E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded -ddbem452 toSci 1.10770E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded -ddbem453 toSci 1.10830E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded -ddbem454 toSci 1.10850E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded -ddbem455 toSci 1.10870E-395 -> 1.109E-395 Underflow Subnormal Inexact Rounded - --- make sure sign OK -ddbem456 toSci -0.10103E-394 -> -1.010E-395 Underflow Subnormal Inexact Rounded -ddbem457 toSci -0.10105E-394 -> -1.010E-395 Underflow Subnormal Inexact Rounded -ddbem458 toSci -0.10107E-394 -> -1.011E-395 Underflow Subnormal Inexact Rounded -ddbem459 toSci -0.10113E-394 -> -1.011E-395 Underflow Subnormal Inexact Rounded -ddbem460 toSci -0.10115E-394 -> -1.012E-395 Underflow Subnormal Inexact Rounded -ddbem461 toSci -0.10117E-394 -> -1.012E-395 Underflow Subnormal Inexact Rounded - --- '999s' cases -ddbem464 toSci 999999E-395 -> 9.99999E-390 Subnormal -ddbem465 toSci 99999.0E-394 -> 9.99990E-390 Subnormal -ddbem466 toSci 99999.E-394 -> 9.9999E-390 Subnormal -ddbem467 toSci 9999.9E-394 -> 9.9999E-391 Subnormal -ddbem468 toSci 999.99E-394 -> 9.9999E-392 Subnormal -ddbem469 toSci 99.999E-394 -> 9.9999E-393 Subnormal -ddbem470 toSci 9.9999E-394 -> 9.9999E-394 Subnormal -ddbem471 toSci 0.99999E-394 -> 1.0000E-394 Underflow Subnormal Inexact Rounded -ddbem472 toSci 0.099999E-394 -> 1.000E-395 Underflow Subnormal Inexact Rounded -ddbem473 toSci 0.0099999E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded -ddbem474 toSci 0.00099999E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded -ddbem475 toSci 0.000099999E-394 -> 1E-398 Underflow Subnormal Inexact Rounded -ddbem476 toSci 0.0000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbem477 toSci 0.00000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbem478 toSci 0.000000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - --- Exponents with insignificant leading zeros -ddbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded -ddbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded -ddbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded -ddbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded -ddbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded -ddbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded -ddbas1007 toSci 1e-999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas1008 toSci 1e-0999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas1009 toSci 1e-00999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas1010 toSci 1e-000999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas1011 toSci 1e-000000000000999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddbas1012 toSci 1e-000000000001000000007 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - --- check for double-rounded subnormals -ddbas1041 toSci 1.1111111111152444E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow -ddbas1042 toSci 1.1111111111152445E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow -ddbas1043 toSci 1.1111111111152446E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow - --- clamped large normals -ddbas1070 toSci 1E+369 -> 1E+369 -ddbas1071 toSci 1E+370 -> 1.0E+370 Clamped -ddbas1072 toSci 1E+378 -> 1.000000000E+378 Clamped -ddbas1073 toSci 1E+384 -> 1.000000000000000E+384 Clamped -ddbas1074 toSci 1E+385 -> Infinity Overflow Inexact Rounded - - --- clamped zeros [see also clamp.decTest] -ddbas1075 toSci 0e+10000 -> 0E+369 Clamped -ddbas1076 toSci 0e-10000 -> 0E-398 Clamped -ddbas1077 toSci -0e+10000 -> -0E+369 Clamped -ddbas1078 toSci -0e-10000 -> -0E-398 Clamped - --- extreme values from next-wider -ddbas1101 toSci -9.99999999999999999999999999999999E+6144 -> -Infinity Overflow Inexact Rounded -ddbas1102 toSci -1E-6143 -> -0E-398 Inexact Rounded Subnormal Underflow Clamped -ddbas1103 toSci -1E-6176 -> -0E-398 Inexact Rounded Subnormal Underflow Clamped -ddbas1104 toSci -0 -> -0 -ddbas1105 toSci +0 -> 0 -ddbas1106 toSci +1E-6176 -> 0E-398 Inexact Rounded Subnormal Underflow Clamped -ddbas1107 toSci +1E-6173 -> 0E-398 Inexact Rounded Subnormal Underflow Clamped -ddbas1108 toSci +9.99999999999999999999999999999999E+6144 -> Infinity Overflow Inexact Rounded - diff --git a/qdecimal/test/tc_full/ddCanonical.decTest b/qdecimal/test/tc_full/ddCanonical.decTest deleted file mode 100644 index 2170744..0000000 --- a/qdecimal/test/tc_full/ddCanonical.decTest +++ /dev/null @@ -1,357 +0,0 @@ ------------------------------------------------------------------------- --- ddCanonical.decTest -- test decDouble canonical results -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This file tests that copy operations leave uncanonical operands --- unchanged, and vice versa --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Uncanonical declets are: abc, where: --- a=1,2,3 --- b=6,7,e,f --- c=e,f - --- assert some standard (canonical) values; this tests that FromString --- produces canonical results (many more in decimalNN) -ddcan001 apply 9.999999999999999E+384 -> #77fcff3fcff3fcff -ddcan002 apply 0 -> #2238000000000000 -ddcan003 apply 1 -> #2238000000000001 -ddcan004 apply -1 -> #a238000000000001 -ddcan005 apply Infinity -> #7800000000000000 -ddcan006 apply -Infinity -> #f800000000000000 -ddcan007 apply -NaN -> #fc00000000000000 -ddcan008 apply -sNaN -> #fe00000000000000 -ddcan009 apply NaN999999999999999 -> #7c00ff3fcff3fcff -ddcan010 apply sNaN999999999999999 -> #7e00ff3fcff3fcff -decan011 apply 9999999999999999 -> #6e38ff3fcff3fcff -ddcan012 apply 7.50 -> #22300000000003d0 -ddcan013 apply 9.99 -> #22300000000000ff - --- Base tests for canonical encodings (individual operator --- propagation is tested later) - --- Finites: declets in coefficient -ddcan021 canonical #77fcff3fcff3fcff -> #77fcff3fcff3fcff -ddcan022 canonical #77fcff3fcff3fcff -> #77fcff3fcff3fcff -ddcan023 canonical #77ffff3fcff3fcff -> #77fcff3fcff3fcff -ddcan024 canonical #77ffff3fcff3fcff -> #77fcff3fcff3fcff -ddcan025 canonical #77fcffffcff3fcff -> #77fcff3fcff3fcff -ddcan026 canonical #77fcffffcff3fcff -> #77fcff3fcff3fcff -ddcan027 canonical #77fcff3ffff3fcff -> #77fcff3fcff3fcff -ddcan028 canonical #77fcff3ffff3fcff -> #77fcff3fcff3fcff -ddcan030 canonical #77fcff3fcffffcff -> #77fcff3fcff3fcff -ddcan031 canonical #77fcff3fcffffcff -> #77fcff3fcff3fcff -ddcan032 canonical #77fcff3fcff3ffff -> #77fcff3fcff3fcff -ddcan033 canonical #77fcff3fcff3ffff -> #77fcff3fcff3fcff -ddcan035 canonical #77fcff3fdff3fcff -> #77fcff3fcff3fcff -ddcan036 canonical #77fcff3feff3fcff -> #77fcff3fcff3fcff - --- NaN: declets in payload -ddcan100 canonical NaN999999999999999 -> #7c00ff3fcff3fcff -ddcan101 canonical #7c00ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan102 canonical #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan103 canonical #7c00ffffcff3fcff -> #7c00ff3fcff3fcff -ddcan104 canonical #7c00ff3ffff3fcff -> #7c00ff3fcff3fcff -ddcan105 canonical #7c00ff3fcffffcff -> #7c00ff3fcff3fcff -ddcan106 canonical #7c00ff3fcff3ffff -> #7c00ff3fcff3fcff -ddcan107 canonical #7c00ff3fcff3ffff -> #7c00ff3fcff3fcff --- NaN: exponent continuation bits [excluding sNaN selector] -ddcan110 canonical #7c00ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan112 canonical #7d00ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan113 canonical #7c80ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan114 canonical #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan115 canonical #7c20ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan116 canonical #7c10ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan117 canonical #7c08ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan118 canonical #7c04ff3fcff3fcff -> #7c00ff3fcff3fcff - --- sNaN: declets in payload -ddcan120 canonical sNaN999999999999999 -> #7e00ff3fcff3fcff -ddcan121 canonical #7e00ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan122 canonical #7e03ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan123 canonical #7e00ffffcff3fcff -> #7e00ff3fcff3fcff -ddcan124 canonical #7e00ff3ffff3fcff -> #7e00ff3fcff3fcff -ddcan125 canonical #7e00ff3fcffffcff -> #7e00ff3fcff3fcff -ddcan126 canonical #7e00ff3fcff3ffff -> #7e00ff3fcff3fcff -ddcan127 canonical #7e00ff3fcff3ffff -> #7e00ff3fcff3fcff --- sNaN: exponent continuation bits [excluding sNaN selector] -ddcan130 canonical #7e00ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan132 canonical #7f00ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan133 canonical #7e80ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan134 canonical #7e40ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan135 canonical #7e20ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan136 canonical #7e10ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan137 canonical #7e08ff3fcff3fcff -> #7e00ff3fcff3fcff -ddcan138 canonical #7e04ff3fcff3fcff -> #7e00ff3fcff3fcff - --- Inf: exponent continuation bits -ddcan140 canonical #7800000000000000 -> #7800000000000000 -ddcan141 canonical #7900000000000000 -> #7800000000000000 -ddcan142 canonical #7a00000000000000 -> #7800000000000000 -ddcan143 canonical #7880000000000000 -> #7800000000000000 -ddcan144 canonical #7840000000000000 -> #7800000000000000 -ddcan145 canonical #7820000000000000 -> #7800000000000000 -ddcan146 canonical #7810000000000000 -> #7800000000000000 -ddcan147 canonical #7808000000000000 -> #7800000000000000 -ddcan148 canonical #7804000000000000 -> #7800000000000000 - --- Inf: coefficient continuation bits (first, last, and a few others) -ddcan150 canonical #7800000000000000 -> #7800000000000000 -ddcan151 canonical #7802000000000000 -> #7800000000000000 -ddcan152 canonical #7800000000000001 -> #7800000000000000 -ddcan153 canonical #7801000000000000 -> #7800000000000000 -ddcan154 canonical #7800200000000000 -> #7800000000000000 -ddcan155 canonical #7800080000000000 -> #7800000000000000 -ddcan156 canonical #7800002000000000 -> #7800000000000000 -ddcan157 canonical #7800000400000000 -> #7800000000000000 -ddcan158 canonical #7800000040000000 -> #7800000000000000 -ddcan159 canonical #7800000008000000 -> #7800000000000000 -ddcan160 canonical #7800000000400000 -> #7800000000000000 -ddcan161 canonical #7800000000020000 -> #7800000000000000 -ddcan162 canonical #7800000000008000 -> #7800000000000000 -ddcan163 canonical #7800000000000200 -> #7800000000000000 -ddcan164 canonical #7800000000000040 -> #7800000000000000 -ddcan165 canonical #7800000000000008 -> #7800000000000000 - - --- Now the operators -- trying to check paths that might fail to --- canonicalize propagated operands - ------ Add: --- Finites: neutral 0 -ddcan202 add 0E+384 #77ffff3fcff3fcff -> #77fcff3fcff3fcff -ddcan203 add #77fcffffcff3fcff 0E+384 -> #77fcff3fcff3fcff --- tiny zero -ddcan204 add 0E-398 #77ffff3fcff3fcff -> #77fcff3fcff3fcff Rounded -ddcan205 add #77fcffffcff3fcff 0E-398 -> #77fcff3fcff3fcff Rounded --- tiny non zero -ddcan206 add -1E-398 #77ffff3fcff3fcff -> #77fcff3fcff3fcff Inexact Rounded -ddcan207 add #77ffff3fcff3fcff -1E-398 -> #77fcff3fcff3fcff Inexact Rounded --- NaN: declets in payload -ddcan211 add 0 #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan212 add #7c03ff3fcff3fcff 0 -> #7c00ff3fcff3fcff --- NaN: exponent continuation bits [excluding sNaN selector] -ddcan213 add 0 #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan214 add #7c40ff3fcff3fcff 0 -> #7c00ff3fcff3fcff --- sNaN: declets in payload -ddcan215 add 0 #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan216 add #7e00ffffcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation --- sNaN: exponent continuation bits [excluding sNaN selector] -ddcan217 add 0 #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan218 add #7e80ff3fcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation --- Inf: exponent continuation bits -ddcan220 add 0 #7880000000000000 -> #7800000000000000 -ddcan221 add #7880000000000000 0 -> #7800000000000000 --- Inf: coefficient continuation bits -ddcan222 add 0 #7802000000000000 -> #7800000000000000 -ddcan223 add #7802000000000000 0 -> #7800000000000000 -ddcan224 add 0 #7800000000000001 -> #7800000000000000 -ddcan225 add #7800000000000001 0 -> #7800000000000000 -ddcan226 add 0 #7800002000000000 -> #7800000000000000 -ddcan227 add #7800002000000000 0 -> #7800000000000000 - ------ Class: [does not return encoded] - ------ Compare: -ddcan231 compare -Inf 1 -> #a238000000000001 -ddcan232 compare -Inf -Inf -> #2238000000000000 -ddcan233 compare 1 -Inf -> #2238000000000001 -ddcan234 compare #7c00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff -ddcan235 compare #7e00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff Invalid_operation - ------ CompareSig: -ddcan241 comparesig -Inf 1 -> #a238000000000001 -ddcan242 comparesig -Inf -Inf -> #2238000000000000 -ddcan243 comparesig 1 -Inf -> #2238000000000001 -ddcan244 comparesig #7c00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff Invalid_operation -ddcan245 comparesig #7e00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff Invalid_operation - ------ Copy: [does not usually canonicalize] --- finites -ddcan250 copy #77ffff3fcff3fcff -> #77ffff3fcff3fcff -ddcan251 copy #77fcff3fdff3fcff -> #77fcff3fdff3fcff --- NaNs -ddcan252 copy #7c03ff3fcff3fcff -> #7c03ff3fcff3fcff -ddcan253 copy #7c00ff3fcff3ffff -> #7c00ff3fcff3ffff -ddcan254 copy #7d00ff3fcff3fcff -> #7d00ff3fcff3fcff -ddcan255 copy #7c04ff3fcff3fcff -> #7c04ff3fcff3fcff --- sNaN -ddcan256 copy #7e00ff3fcffffcff -> #7e00ff3fcffffcff -ddcan257 copy #7e40ff3fcff3fcff -> #7e40ff3fcff3fcff --- Inf -ddcan258 copy #7a00000000000000 -> #7a00000000000000 -ddcan259 copy #7800200000000000 -> #7800200000000000 - ------ CopyAbs: [does not usually canonicalize] --- finites -ddcan260 copyabs #f7ffff3fcff3fcff -> #77ffff3fcff3fcff -ddcan261 copyabs #f7fcff3fdff3fcff -> #77fcff3fdff3fcff --- NaNs -ddcan262 copyabs #fc03ff3fcff3fcff -> #7c03ff3fcff3fcff -ddcan263 copyabs #fc00ff3fcff3ffff -> #7c00ff3fcff3ffff -ddcan264 copyabs #fd00ff3fcff3fcff -> #7d00ff3fcff3fcff -ddcan265 copyabs #fc04ff3fcff3fcff -> #7c04ff3fcff3fcff --- sNaN -ddcan266 copyabs #fe00ff3fcffffcff -> #7e00ff3fcffffcff -ddcan267 copyabs #fe40ff3fcff3fcff -> #7e40ff3fcff3fcff --- Inf -ddcan268 copyabs #fa00000000000000 -> #7a00000000000000 -ddcan269 copyabs #f800200000000000 -> #7800200000000000 - ------ CopyNegate: [does not usually canonicalize] --- finites -ddcan270 copynegate #77ffff3fcff3fcff -> #f7ffff3fcff3fcff -ddcan271 copynegate #77fcff3fdff3fcff -> #f7fcff3fdff3fcff --- NaNs -ddcan272 copynegate #7c03ff3fcff3fcff -> #fc03ff3fcff3fcff -ddcan273 copynegate #7c00ff3fcff3ffff -> #fc00ff3fcff3ffff -ddcan274 copynegate #7d00ff3fcff3fcff -> #fd00ff3fcff3fcff -ddcan275 copynegate #7c04ff3fcff3fcff -> #fc04ff3fcff3fcff --- sNaN -ddcan276 copynegate #7e00ff3fcffffcff -> #fe00ff3fcffffcff -ddcan277 copynegate #7e40ff3fcff3fcff -> #fe40ff3fcff3fcff --- Inf -ddcan278 copynegate #7a00000000000000 -> #fa00000000000000 -ddcan279 copynegate #7800200000000000 -> #f800200000000000 - ------ CopySign: [does not usually canonicalize] --- finites -ddcan280 copysign #77ffff3fcff3fcff -1 -> #f7ffff3fcff3fcff -ddcan281 copysign #77fcff3fdff3fcff 1 -> #77fcff3fdff3fcff --- NaNs -ddcan282 copysign #7c03ff3fcff3fcff -1 -> #fc03ff3fcff3fcff -ddcan283 copysign #7c00ff3fcff3ffff 1 -> #7c00ff3fcff3ffff -ddcan284 copysign #7d00ff3fcff3fcff -1 -> #fd00ff3fcff3fcff -ddcan285 copysign #7c04ff3fcff3fcff 1 -> #7c04ff3fcff3fcff --- sNaN -ddcan286 copysign #7e00ff3fcffffcff -1 -> #fe00ff3fcffffcff -ddcan287 copysign #7e40ff3fcff3fcff 1 -> #7e40ff3fcff3fcff --- Inf -ddcan288 copysign #7a00000000000000 -1 -> #fa00000000000000 -ddcan289 copysign #7800200000000000 1 -> #7800200000000000 - ------ Multiply: --- Finites: neutral 0 -ddcan302 multiply 1 #77ffff3fcff3fcff -> #77fcff3fcff3fcff -ddcan303 multiply #77fcffffcff3fcff 1 -> #77fcff3fcff3fcff --- negative -ddcan306 multiply -1 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff -ddcan307 multiply #77fcffffcff3fcff -1 -> #f7fcff3fcff3fcff --- NaN: declets in payload -ddcan311 multiply 1 #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan312 multiply #7c03ff3fcff3fcff 1 -> #7c00ff3fcff3fcff --- NaN: exponent continuation bits [excluding sNaN selector] -ddcan313 multiply 1 #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan314 multiply #7c40ff3fcff3fcff 1 -> #7c00ff3fcff3fcff --- sNaN: declets in payload -ddcan315 multiply 1 #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan316 multiply #7e00ffffcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation --- sNaN: exponent continuation bits [excluding sNaN selector] -ddcan317 multiply 1 #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan318 multiply #7e80ff3fcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation --- Inf: exponent continuation bits -ddcan320 multiply 1 #7880000000000000 -> #7800000000000000 -ddcan321 multiply #7880000000000000 1 -> #7800000000000000 --- Inf: coefficient continuation bits -ddcan322 multiply 1 #7802000000000000 -> #7800000000000000 -ddcan323 multiply #7802000000000000 1 -> #7800000000000000 -ddcan324 multiply 1 #7800000000000001 -> #7800000000000000 -ddcan325 multiply #7800000000000001 1 -> #7800000000000000 -ddcan326 multiply 1 #7800002000000000 -> #7800000000000000 -ddcan327 multiply #7800002000000000 1 -> #7800000000000000 - ------ Quantize: -ddcan401 quantize #6e38ff3ffff3fcff 1 -> #6e38ff3fcff3fcff -ddcan402 quantize #6e38ff3fcff3fdff 0 -> #6e38ff3fcff3fcff -ddcan403 quantize #7880000000000000 Inf -> #7800000000000000 -ddcan404 quantize #7802000000000000 -Inf -> #7800000000000000 -ddcan410 quantize #7c03ff3fcff3fcff 1 -> #7c00ff3fcff3fcff -ddcan411 quantize #7c03ff3fcff3fcff 1 -> #7c00ff3fcff3fcff -ddcan412 quantize #7c40ff3fcff3fcff 1 -> #7c00ff3fcff3fcff -ddcan413 quantize #7c40ff3fcff3fcff 1 -> #7c00ff3fcff3fcff -ddcan414 quantize #7e00ffffcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation -ddcan415 quantize #7e00ffffcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation -ddcan416 quantize #7e80ff3fcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation -ddcan417 quantize #7e80ff3fcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation - ------ Subtract: --- Finites: neutral 0 -ddcan502 subtract 0E+384 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff -ddcan503 subtract #77fcffffcff3fcff 0E+384 -> #77fcff3fcff3fcff --- tiny zero -ddcan504 subtract 0E-398 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff Rounded -ddcan505 subtract #77fcffffcff3fcff 0E-398 -> #77fcff3fcff3fcff Rounded --- tiny non zero -ddcan506 subtract -1E-398 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff Inexact Rounded -ddcan507 subtract #77ffff3fcff3fcff -1E-398 -> #77fcff3fcff3fcff Inexact Rounded --- NaN: declets in payload -ddcan511 subtract 0 #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan512 subtract #7c03ff3fcff3fcff 0 -> #7c00ff3fcff3fcff --- NaN: exponent continuation bits [excluding sNaN selector] -ddcan513 subtract 0 #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan514 subtract #7c40ff3fcff3fcff 0 -> #7c00ff3fcff3fcff --- sNaN: declets in payload -ddcan515 subtract 0 #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan516 subtract #7e00ffffcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation --- sNaN: exponent continuation bits [excluding sNaN selector] -ddcan517 subtract 0 #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan518 subtract #7e80ff3fcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation --- Inf: exponent continuation bits -ddcan520 subtract 0 #7880000000000000 -> #f800000000000000 -ddcan521 subtract #7880000000000000 0 -> #7800000000000000 --- Inf: coefficient continuation bits -ddcan522 subtract 0 #7802000000000000 -> #f800000000000000 -ddcan523 subtract #7802000000000000 0 -> #7800000000000000 -ddcan524 subtract 0 #7800000000000001 -> #f800000000000000 -ddcan525 subtract #7800000000000001 0 -> #7800000000000000 -ddcan526 subtract 0 #7800002000000000 -> #f800000000000000 -ddcan527 subtract #7800002000000000 0 -> #7800000000000000 - ------ ToIntegral: -ddcan601 tointegralx #6e38ff3ffff3fcff -> #6e38ff3fcff3fcff -ddcan602 tointegralx #6e38ff3fcff3fdff -> #6e38ff3fcff3fcff -ddcan603 tointegralx #7880000000000000 -> #7800000000000000 -ddcan604 tointegralx #7802000000000000 -> #7800000000000000 -ddcan610 tointegralx #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan611 tointegralx #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan612 tointegralx #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan613 tointegralx #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff -ddcan614 tointegralx #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan615 tointegralx #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan616 tointegralx #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation -ddcan617 tointegralx #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation --- uncanonical 3999, 39.99, 3.99, 0.399, and negatives -ddcan618 tointegralx #2238000000000fff -> #2238000000000cff -ddcan619 tointegralx #2230000000000fff -> #2238000000000040 Inexact Rounded -ddcan620 tointegralx #222c000000000fff -> #2238000000000004 Inexact Rounded -ddcan621 tointegralx #2228000000000fff -> #2238000000000000 Inexact Rounded -ddcan622 tointegralx #a238000000000fff -> #a238000000000cff -ddcan623 tointegralx #a230000000000fff -> #a238000000000040 Inexact Rounded -ddcan624 tointegralx #a22c000000000fff -> #a238000000000004 Inexact Rounded -ddcan625 tointegralx #a228000000000fff -> #a238000000000000 Inexact Rounded - - - diff --git a/qdecimal/test/tc_full/ddClass.decTest b/qdecimal/test/tc_full/ddClass.decTest deleted file mode 100644 index f7f99c8..0000000 --- a/qdecimal/test/tc_full/ddClass.decTest +++ /dev/null @@ -1,76 +0,0 @@ ------------------------------------------------------------------------- --- ddClass.decTest -- decDouble Class operations -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- [New 2006.11.27] -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddcla001 class 0 -> +Zero -ddcla002 class 0.00 -> +Zero -ddcla003 class 0E+5 -> +Zero -ddcla004 class 1E-396 -> +Subnormal -ddcla005 class 0.1E-383 -> +Subnormal -ddcla006 class 0.999999999999999E-383 -> +Subnormal -ddcla007 class 1.000000000000000E-383 -> +Normal -ddcla008 class 1E-383 -> +Normal -ddcla009 class 1E-100 -> +Normal -ddcla010 class 1E-10 -> +Normal -ddcla012 class 1E-1 -> +Normal -ddcla013 class 1 -> +Normal -ddcla014 class 2.50 -> +Normal -ddcla015 class 100.100 -> +Normal -ddcla016 class 1E+30 -> +Normal -ddcla017 class 1E+384 -> +Normal -ddcla018 class 9.999999999999999E+384 -> +Normal -ddcla019 class Inf -> +Infinity - -ddcla021 class -0 -> -Zero -ddcla022 class -0.00 -> -Zero -ddcla023 class -0E+5 -> -Zero -ddcla024 class -1E-396 -> -Subnormal -ddcla025 class -0.1E-383 -> -Subnormal -ddcla026 class -0.999999999999999E-383 -> -Subnormal -ddcla027 class -1.000000000000000E-383 -> -Normal -ddcla028 class -1E-383 -> -Normal -ddcla029 class -1E-100 -> -Normal -ddcla030 class -1E-10 -> -Normal -ddcla032 class -1E-1 -> -Normal -ddcla033 class -1 -> -Normal -ddcla034 class -2.50 -> -Normal -ddcla035 class -100.100 -> -Normal -ddcla036 class -1E+30 -> -Normal -ddcla037 class -1E+384 -> -Normal -ddcla038 class -9.999999999999999E+384 -> -Normal -ddcla039 class -Inf -> -Infinity - -ddcla041 class NaN -> NaN -ddcla042 class -NaN -> NaN -ddcla043 class +NaN12345 -> NaN -ddcla044 class sNaN -> sNaN -ddcla045 class -sNaN -> sNaN -ddcla046 class +sNaN12345 -> sNaN - - - diff --git a/qdecimal/test/tc_full/ddCompare.decTest b/qdecimal/test/tc_full/ddCompare.decTest deleted file mode 100644 index 3cd8328..0000000 --- a/qdecimal/test/tc_full/ddCompare.decTest +++ /dev/null @@ -1,744 +0,0 @@ ------------------------------------------------------------------------- --- ddCompare.decTest -- decDouble comparison that allows quiet NaNs -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddcom001 compare -2 -2 -> 0 -ddcom002 compare -2 -1 -> -1 -ddcom003 compare -2 0 -> -1 -ddcom004 compare -2 1 -> -1 -ddcom005 compare -2 2 -> -1 -ddcom006 compare -1 -2 -> 1 -ddcom007 compare -1 -1 -> 0 -ddcom008 compare -1 0 -> -1 -ddcom009 compare -1 1 -> -1 -ddcom010 compare -1 2 -> -1 -ddcom011 compare 0 -2 -> 1 -ddcom012 compare 0 -1 -> 1 -ddcom013 compare 0 0 -> 0 -ddcom014 compare 0 1 -> -1 -ddcom015 compare 0 2 -> -1 -ddcom016 compare 1 -2 -> 1 -ddcom017 compare 1 -1 -> 1 -ddcom018 compare 1 0 -> 1 -ddcom019 compare 1 1 -> 0 -ddcom020 compare 1 2 -> -1 -ddcom021 compare 2 -2 -> 1 -ddcom022 compare 2 -1 -> 1 -ddcom023 compare 2 0 -> 1 -ddcom025 compare 2 1 -> 1 -ddcom026 compare 2 2 -> 0 - -ddcom031 compare -20 -20 -> 0 -ddcom032 compare -20 -10 -> -1 -ddcom033 compare -20 00 -> -1 -ddcom034 compare -20 10 -> -1 -ddcom035 compare -20 20 -> -1 -ddcom036 compare -10 -20 -> 1 -ddcom037 compare -10 -10 -> 0 -ddcom038 compare -10 00 -> -1 -ddcom039 compare -10 10 -> -1 -ddcom040 compare -10 20 -> -1 -ddcom041 compare 00 -20 -> 1 -ddcom042 compare 00 -10 -> 1 -ddcom043 compare 00 00 -> 0 -ddcom044 compare 00 10 -> -1 -ddcom045 compare 00 20 -> -1 -ddcom046 compare 10 -20 -> 1 -ddcom047 compare 10 -10 -> 1 -ddcom048 compare 10 00 -> 1 -ddcom049 compare 10 10 -> 0 -ddcom050 compare 10 20 -> -1 -ddcom051 compare 20 -20 -> 1 -ddcom052 compare 20 -10 -> 1 -ddcom053 compare 20 00 -> 1 -ddcom055 compare 20 10 -> 1 -ddcom056 compare 20 20 -> 0 - -ddcom061 compare -2.0 -2.0 -> 0 -ddcom062 compare -2.0 -1.0 -> -1 -ddcom063 compare -2.0 0.0 -> -1 -ddcom064 compare -2.0 1.0 -> -1 -ddcom065 compare -2.0 2.0 -> -1 -ddcom066 compare -1.0 -2.0 -> 1 -ddcom067 compare -1.0 -1.0 -> 0 -ddcom068 compare -1.0 0.0 -> -1 -ddcom069 compare -1.0 1.0 -> -1 -ddcom070 compare -1.0 2.0 -> -1 -ddcom071 compare 0.0 -2.0 -> 1 -ddcom072 compare 0.0 -1.0 -> 1 -ddcom073 compare 0.0 0.0 -> 0 -ddcom074 compare 0.0 1.0 -> -1 -ddcom075 compare 0.0 2.0 -> -1 -ddcom076 compare 1.0 -2.0 -> 1 -ddcom077 compare 1.0 -1.0 -> 1 -ddcom078 compare 1.0 0.0 -> 1 -ddcom079 compare 1.0 1.0 -> 0 -ddcom080 compare 1.0 2.0 -> -1 -ddcom081 compare 2.0 -2.0 -> 1 -ddcom082 compare 2.0 -1.0 -> 1 -ddcom083 compare 2.0 0.0 -> 1 -ddcom085 compare 2.0 1.0 -> 1 -ddcom086 compare 2.0 2.0 -> 0 -ddcom087 compare 1.0 0.1 -> 1 -ddcom088 compare 0.1 1.0 -> -1 - --- now some cases which might overflow if subtract were used -ddcom095 compare 9.999999999999999E+384 9.999999999999999E+384 -> 0 -ddcom096 compare -9.999999999999999E+384 9.999999999999999E+384 -> -1 -ddcom097 compare 9.999999999999999E+384 -9.999999999999999E+384 -> 1 -ddcom098 compare -9.999999999999999E+384 -9.999999999999999E+384 -> 0 - --- some differing length/exponent cases -ddcom100 compare 7.0 7.0 -> 0 -ddcom101 compare 7.0 7 -> 0 -ddcom102 compare 7 7.0 -> 0 -ddcom103 compare 7E+0 7.0 -> 0 -ddcom104 compare 70E-1 7.0 -> 0 -ddcom105 compare 0.7E+1 7 -> 0 -ddcom106 compare 70E-1 7 -> 0 -ddcom107 compare 7.0 7E+0 -> 0 -ddcom108 compare 7.0 70E-1 -> 0 -ddcom109 compare 7 0.7E+1 -> 0 -ddcom110 compare 7 70E-1 -> 0 - -ddcom120 compare 8.0 7.0 -> 1 -ddcom121 compare 8.0 7 -> 1 -ddcom122 compare 8 7.0 -> 1 -ddcom123 compare 8E+0 7.0 -> 1 -ddcom124 compare 80E-1 7.0 -> 1 -ddcom125 compare 0.8E+1 7 -> 1 -ddcom126 compare 80E-1 7 -> 1 -ddcom127 compare 8.0 7E+0 -> 1 -ddcom128 compare 8.0 70E-1 -> 1 -ddcom129 compare 8 0.7E+1 -> 1 -ddcom130 compare 8 70E-1 -> 1 - -ddcom140 compare 8.0 9.0 -> -1 -ddcom141 compare 8.0 9 -> -1 -ddcom142 compare 8 9.0 -> -1 -ddcom143 compare 8E+0 9.0 -> -1 -ddcom144 compare 80E-1 9.0 -> -1 -ddcom145 compare 0.8E+1 9 -> -1 -ddcom146 compare 80E-1 9 -> -1 -ddcom147 compare 8.0 9E+0 -> -1 -ddcom148 compare 8.0 90E-1 -> -1 -ddcom149 compare 8 0.9E+1 -> -1 -ddcom150 compare 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -ddcom200 compare -7.0 7.0 -> -1 -ddcom201 compare -7.0 7 -> -1 -ddcom202 compare -7 7.0 -> -1 -ddcom203 compare -7E+0 7.0 -> -1 -ddcom204 compare -70E-1 7.0 -> -1 -ddcom205 compare -0.7E+1 7 -> -1 -ddcom206 compare -70E-1 7 -> -1 -ddcom207 compare -7.0 7E+0 -> -1 -ddcom208 compare -7.0 70E-1 -> -1 -ddcom209 compare -7 0.7E+1 -> -1 -ddcom210 compare -7 70E-1 -> -1 - -ddcom220 compare -8.0 7.0 -> -1 -ddcom221 compare -8.0 7 -> -1 -ddcom222 compare -8 7.0 -> -1 -ddcom223 compare -8E+0 7.0 -> -1 -ddcom224 compare -80E-1 7.0 -> -1 -ddcom225 compare -0.8E+1 7 -> -1 -ddcom226 compare -80E-1 7 -> -1 -ddcom227 compare -8.0 7E+0 -> -1 -ddcom228 compare -8.0 70E-1 -> -1 -ddcom229 compare -8 0.7E+1 -> -1 -ddcom230 compare -8 70E-1 -> -1 - -ddcom240 compare -8.0 9.0 -> -1 -ddcom241 compare -8.0 9 -> -1 -ddcom242 compare -8 9.0 -> -1 -ddcom243 compare -8E+0 9.0 -> -1 -ddcom244 compare -80E-1 9.0 -> -1 -ddcom245 compare -0.8E+1 9 -> -1 -ddcom246 compare -80E-1 9 -> -1 -ddcom247 compare -8.0 9E+0 -> -1 -ddcom248 compare -8.0 90E-1 -> -1 -ddcom249 compare -8 0.9E+1 -> -1 -ddcom250 compare -8 90E-1 -> -1 - --- and again, with sign changes +- .. -ddcom300 compare 7.0 -7.0 -> 1 -ddcom301 compare 7.0 -7 -> 1 -ddcom302 compare 7 -7.0 -> 1 -ddcom303 compare 7E+0 -7.0 -> 1 -ddcom304 compare 70E-1 -7.0 -> 1 -ddcom305 compare .7E+1 -7 -> 1 -ddcom306 compare 70E-1 -7 -> 1 -ddcom307 compare 7.0 -7E+0 -> 1 -ddcom308 compare 7.0 -70E-1 -> 1 -ddcom309 compare 7 -.7E+1 -> 1 -ddcom310 compare 7 -70E-1 -> 1 - -ddcom320 compare 8.0 -7.0 -> 1 -ddcom321 compare 8.0 -7 -> 1 -ddcom322 compare 8 -7.0 -> 1 -ddcom323 compare 8E+0 -7.0 -> 1 -ddcom324 compare 80E-1 -7.0 -> 1 -ddcom325 compare .8E+1 -7 -> 1 -ddcom326 compare 80E-1 -7 -> 1 -ddcom327 compare 8.0 -7E+0 -> 1 -ddcom328 compare 8.0 -70E-1 -> 1 -ddcom329 compare 8 -.7E+1 -> 1 -ddcom330 compare 8 -70E-1 -> 1 - -ddcom340 compare 8.0 -9.0 -> 1 -ddcom341 compare 8.0 -9 -> 1 -ddcom342 compare 8 -9.0 -> 1 -ddcom343 compare 8E+0 -9.0 -> 1 -ddcom344 compare 80E-1 -9.0 -> 1 -ddcom345 compare .8E+1 -9 -> 1 -ddcom346 compare 80E-1 -9 -> 1 -ddcom347 compare 8.0 -9E+0 -> 1 -ddcom348 compare 8.0 -90E-1 -> 1 -ddcom349 compare 8 -.9E+1 -> 1 -ddcom350 compare 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -ddcom400 compare -7.0 -7.0 -> 0 -ddcom401 compare -7.0 -7 -> 0 -ddcom402 compare -7 -7.0 -> 0 -ddcom403 compare -7E+0 -7.0 -> 0 -ddcom404 compare -70E-1 -7.0 -> 0 -ddcom405 compare -.7E+1 -7 -> 0 -ddcom406 compare -70E-1 -7 -> 0 -ddcom407 compare -7.0 -7E+0 -> 0 -ddcom408 compare -7.0 -70E-1 -> 0 -ddcom409 compare -7 -.7E+1 -> 0 -ddcom410 compare -7 -70E-1 -> 0 - -ddcom420 compare -8.0 -7.0 -> -1 -ddcom421 compare -8.0 -7 -> -1 -ddcom422 compare -8 -7.0 -> -1 -ddcom423 compare -8E+0 -7.0 -> -1 -ddcom424 compare -80E-1 -7.0 -> -1 -ddcom425 compare -.8E+1 -7 -> -1 -ddcom426 compare -80E-1 -7 -> -1 -ddcom427 compare -8.0 -7E+0 -> -1 -ddcom428 compare -8.0 -70E-1 -> -1 -ddcom429 compare -8 -.7E+1 -> -1 -ddcom430 compare -8 -70E-1 -> -1 - -ddcom440 compare -8.0 -9.0 -> 1 -ddcom441 compare -8.0 -9 -> 1 -ddcom442 compare -8 -9.0 -> 1 -ddcom443 compare -8E+0 -9.0 -> 1 -ddcom444 compare -80E-1 -9.0 -> 1 -ddcom445 compare -.8E+1 -9 -> 1 -ddcom446 compare -80E-1 -9 -> 1 -ddcom447 compare -8.0 -9E+0 -> 1 -ddcom448 compare -8.0 -90E-1 -> 1 -ddcom449 compare -8 -.9E+1 -> 1 -ddcom450 compare -8 -90E-1 -> 1 - --- misalignment traps for little-endian -ddcom451 compare 1.0 0.1 -> 1 -ddcom452 compare 0.1 1.0 -> -1 -ddcom453 compare 10.0 0.1 -> 1 -ddcom454 compare 0.1 10.0 -> -1 -ddcom455 compare 100 1.0 -> 1 -ddcom456 compare 1.0 100 -> -1 -ddcom457 compare 1000 10.0 -> 1 -ddcom458 compare 10.0 1000 -> -1 -ddcom459 compare 10000 100.0 -> 1 -ddcom460 compare 100.0 10000 -> -1 -ddcom461 compare 100000 1000.0 -> 1 -ddcom462 compare 1000.0 100000 -> -1 -ddcom463 compare 1000000 10000.0 -> 1 -ddcom464 compare 10000.0 1000000 -> -1 - --- testcases that subtract to lots of zeros at boundaries [pgr] -ddcom473 compare 123.4560000000000E-89 123.456E-89 -> 0 -ddcom474 compare 123.456000000000E+89 123.456E+89 -> 0 -ddcom475 compare 123.45600000000E-89 123.456E-89 -> 0 -ddcom476 compare 123.4560000000E+89 123.456E+89 -> 0 -ddcom477 compare 123.456000000E-89 123.456E-89 -> 0 -ddcom478 compare 123.45600000E+89 123.456E+89 -> 0 -ddcom479 compare 123.4560000E-89 123.456E-89 -> 0 -ddcom480 compare 123.456000E+89 123.456E+89 -> 0 -ddcom481 compare 123.45600E-89 123.456E-89 -> 0 -ddcom482 compare 123.4560E+89 123.456E+89 -> 0 -ddcom483 compare 123.456E-89 123.456E-89 -> 0 -ddcom487 compare 123.456E+89 123.4560000000000E+89 -> 0 -ddcom488 compare 123.456E-89 123.456000000000E-89 -> 0 -ddcom489 compare 123.456E+89 123.45600000000E+89 -> 0 -ddcom490 compare 123.456E-89 123.4560000000E-89 -> 0 -ddcom491 compare 123.456E+89 123.456000000E+89 -> 0 -ddcom492 compare 123.456E-89 123.45600000E-89 -> 0 -ddcom493 compare 123.456E+89 123.4560000E+89 -> 0 -ddcom494 compare 123.456E-89 123.456000E-89 -> 0 -ddcom495 compare 123.456E+89 123.45600E+89 -> 0 -ddcom496 compare 123.456E-89 123.4560E-89 -> 0 -ddcom497 compare 123.456E+89 123.456E+89 -> 0 - --- wide-ranging, around precision; signs equal -ddcom500 compare 1 1E-15 -> 1 -ddcom501 compare 1 1E-14 -> 1 -ddcom502 compare 1 1E-13 -> 1 -ddcom503 compare 1 1E-12 -> 1 -ddcom504 compare 1 1E-11 -> 1 -ddcom505 compare 1 1E-10 -> 1 -ddcom506 compare 1 1E-9 -> 1 -ddcom507 compare 1 1E-8 -> 1 -ddcom508 compare 1 1E-7 -> 1 -ddcom509 compare 1 1E-6 -> 1 -ddcom510 compare 1 1E-5 -> 1 -ddcom511 compare 1 1E-4 -> 1 -ddcom512 compare 1 1E-3 -> 1 -ddcom513 compare 1 1E-2 -> 1 -ddcom514 compare 1 1E-1 -> 1 -ddcom515 compare 1 1E-0 -> 0 -ddcom516 compare 1 1E+1 -> -1 -ddcom517 compare 1 1E+2 -> -1 -ddcom518 compare 1 1E+3 -> -1 -ddcom519 compare 1 1E+4 -> -1 -ddcom521 compare 1 1E+5 -> -1 -ddcom522 compare 1 1E+6 -> -1 -ddcom523 compare 1 1E+7 -> -1 -ddcom524 compare 1 1E+8 -> -1 -ddcom525 compare 1 1E+9 -> -1 -ddcom526 compare 1 1E+10 -> -1 -ddcom527 compare 1 1E+11 -> -1 -ddcom528 compare 1 1E+12 -> -1 -ddcom529 compare 1 1E+13 -> -1 -ddcom530 compare 1 1E+14 -> -1 -ddcom531 compare 1 1E+15 -> -1 --- LR swap -ddcom540 compare 1E-15 1 -> -1 -ddcom541 compare 1E-14 1 -> -1 -ddcom542 compare 1E-13 1 -> -1 -ddcom543 compare 1E-12 1 -> -1 -ddcom544 compare 1E-11 1 -> -1 -ddcom545 compare 1E-10 1 -> -1 -ddcom546 compare 1E-9 1 -> -1 -ddcom547 compare 1E-8 1 -> -1 -ddcom548 compare 1E-7 1 -> -1 -ddcom549 compare 1E-6 1 -> -1 -ddcom550 compare 1E-5 1 -> -1 -ddcom551 compare 1E-4 1 -> -1 -ddcom552 compare 1E-3 1 -> -1 -ddcom553 compare 1E-2 1 -> -1 -ddcom554 compare 1E-1 1 -> -1 -ddcom555 compare 1E-0 1 -> 0 -ddcom556 compare 1E+1 1 -> 1 -ddcom557 compare 1E+2 1 -> 1 -ddcom558 compare 1E+3 1 -> 1 -ddcom559 compare 1E+4 1 -> 1 -ddcom561 compare 1E+5 1 -> 1 -ddcom562 compare 1E+6 1 -> 1 -ddcom563 compare 1E+7 1 -> 1 -ddcom564 compare 1E+8 1 -> 1 -ddcom565 compare 1E+9 1 -> 1 -ddcom566 compare 1E+10 1 -> 1 -ddcom567 compare 1E+11 1 -> 1 -ddcom568 compare 1E+12 1 -> 1 -ddcom569 compare 1E+13 1 -> 1 -ddcom570 compare 1E+14 1 -> 1 -ddcom571 compare 1E+15 1 -> 1 --- similar with a useful coefficient, one side only -ddcom580 compare 0.000000987654321 1E-15 -> 1 -ddcom581 compare 0.000000987654321 1E-14 -> 1 -ddcom582 compare 0.000000987654321 1E-13 -> 1 -ddcom583 compare 0.000000987654321 1E-12 -> 1 -ddcom584 compare 0.000000987654321 1E-11 -> 1 -ddcom585 compare 0.000000987654321 1E-10 -> 1 -ddcom586 compare 0.000000987654321 1E-9 -> 1 -ddcom587 compare 0.000000987654321 1E-8 -> 1 -ddcom588 compare 0.000000987654321 1E-7 -> 1 -ddcom589 compare 0.000000987654321 1E-6 -> -1 -ddcom590 compare 0.000000987654321 1E-5 -> -1 -ddcom591 compare 0.000000987654321 1E-4 -> -1 -ddcom592 compare 0.000000987654321 1E-3 -> -1 -ddcom593 compare 0.000000987654321 1E-2 -> -1 -ddcom594 compare 0.000000987654321 1E-1 -> -1 -ddcom595 compare 0.000000987654321 1E-0 -> -1 -ddcom596 compare 0.000000987654321 1E+1 -> -1 -ddcom597 compare 0.000000987654321 1E+2 -> -1 -ddcom598 compare 0.000000987654321 1E+3 -> -1 -ddcom599 compare 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -ddcom600 compare 12 12.2345 -> -1 -ddcom601 compare 12.0 12.2345 -> -1 -ddcom602 compare 12.00 12.2345 -> -1 -ddcom603 compare 12.000 12.2345 -> -1 -ddcom604 compare 12.0000 12.2345 -> -1 -ddcom605 compare 12.00000 12.2345 -> -1 -ddcom606 compare 12.000000 12.2345 -> -1 -ddcom607 compare 12.0000000 12.2345 -> -1 -ddcom608 compare 12.00000000 12.2345 -> -1 -ddcom609 compare 12.000000000 12.2345 -> -1 -ddcom610 compare 12.1234 12 -> 1 -ddcom611 compare 12.1234 12.0 -> 1 -ddcom612 compare 12.1234 12.00 -> 1 -ddcom613 compare 12.1234 12.000 -> 1 -ddcom614 compare 12.1234 12.0000 -> 1 -ddcom615 compare 12.1234 12.00000 -> 1 -ddcom616 compare 12.1234 12.000000 -> 1 -ddcom617 compare 12.1234 12.0000000 -> 1 -ddcom618 compare 12.1234 12.00000000 -> 1 -ddcom619 compare 12.1234 12.000000000 -> 1 -ddcom620 compare -12 -12.2345 -> 1 -ddcom621 compare -12.0 -12.2345 -> 1 -ddcom622 compare -12.00 -12.2345 -> 1 -ddcom623 compare -12.000 -12.2345 -> 1 -ddcom624 compare -12.0000 -12.2345 -> 1 -ddcom625 compare -12.00000 -12.2345 -> 1 -ddcom626 compare -12.000000 -12.2345 -> 1 -ddcom627 compare -12.0000000 -12.2345 -> 1 -ddcom628 compare -12.00000000 -12.2345 -> 1 -ddcom629 compare -12.000000000 -12.2345 -> 1 -ddcom630 compare -12.1234 -12 -> -1 -ddcom631 compare -12.1234 -12.0 -> -1 -ddcom632 compare -12.1234 -12.00 -> -1 -ddcom633 compare -12.1234 -12.000 -> -1 -ddcom634 compare -12.1234 -12.0000 -> -1 -ddcom635 compare -12.1234 -12.00000 -> -1 -ddcom636 compare -12.1234 -12.000000 -> -1 -ddcom637 compare -12.1234 -12.0000000 -> -1 -ddcom638 compare -12.1234 -12.00000000 -> -1 -ddcom639 compare -12.1234 -12.000000000 -> -1 - --- extended zeros -ddcom640 compare 0 0 -> 0 -ddcom641 compare 0 -0 -> 0 -ddcom642 compare 0 -0.0 -> 0 -ddcom643 compare 0 0.0 -> 0 -ddcom644 compare -0 0 -> 0 -ddcom645 compare -0 -0 -> 0 -ddcom646 compare -0 -0.0 -> 0 -ddcom647 compare -0 0.0 -> 0 -ddcom648 compare 0.0 0 -> 0 -ddcom649 compare 0.0 -0 -> 0 -ddcom650 compare 0.0 -0.0 -> 0 -ddcom651 compare 0.0 0.0 -> 0 -ddcom652 compare -0.0 0 -> 0 -ddcom653 compare -0.0 -0 -> 0 -ddcom654 compare -0.0 -0.0 -> 0 -ddcom655 compare -0.0 0.0 -> 0 - -ddcom656 compare -0E1 0.0 -> 0 -ddcom657 compare -0E2 0.0 -> 0 -ddcom658 compare 0E1 0.0 -> 0 -ddcom659 compare 0E2 0.0 -> 0 -ddcom660 compare -0E1 0 -> 0 -ddcom661 compare -0E2 0 -> 0 -ddcom662 compare 0E1 0 -> 0 -ddcom663 compare 0E2 0 -> 0 -ddcom664 compare -0E1 -0E1 -> 0 -ddcom665 compare -0E2 -0E1 -> 0 -ddcom666 compare 0E1 -0E1 -> 0 -ddcom667 compare 0E2 -0E1 -> 0 -ddcom668 compare -0E1 -0E2 -> 0 -ddcom669 compare -0E2 -0E2 -> 0 -ddcom670 compare 0E1 -0E2 -> 0 -ddcom671 compare 0E2 -0E2 -> 0 -ddcom672 compare -0E1 0E1 -> 0 -ddcom673 compare -0E2 0E1 -> 0 -ddcom674 compare 0E1 0E1 -> 0 -ddcom675 compare 0E2 0E1 -> 0 -ddcom676 compare -0E1 0E2 -> 0 -ddcom677 compare -0E2 0E2 -> 0 -ddcom678 compare 0E1 0E2 -> 0 -ddcom679 compare 0E2 0E2 -> 0 - --- trailing zeros; unit-y -ddcom680 compare 12 12 -> 0 -ddcom681 compare 12 12.0 -> 0 -ddcom682 compare 12 12.00 -> 0 -ddcom683 compare 12 12.000 -> 0 -ddcom684 compare 12 12.0000 -> 0 -ddcom685 compare 12 12.00000 -> 0 -ddcom686 compare 12 12.000000 -> 0 -ddcom687 compare 12 12.0000000 -> 0 -ddcom688 compare 12 12.00000000 -> 0 -ddcom689 compare 12 12.000000000 -> 0 -ddcom690 compare 12 12 -> 0 -ddcom691 compare 12.0 12 -> 0 -ddcom692 compare 12.00 12 -> 0 -ddcom693 compare 12.000 12 -> 0 -ddcom694 compare 12.0000 12 -> 0 -ddcom695 compare 12.00000 12 -> 0 -ddcom696 compare 12.000000 12 -> 0 -ddcom697 compare 12.0000000 12 -> 0 -ddcom698 compare 12.00000000 12 -> 0 -ddcom699 compare 12.000000000 12 -> 0 - --- first, second, & last digit -ddcom700 compare 1234567890123456 1234567890123455 -> 1 -ddcom701 compare 1234567890123456 1234567890123456 -> 0 -ddcom702 compare 1234567890123456 1234567890123457 -> -1 -ddcom703 compare 1234567890123456 0234567890123456 -> 1 -ddcom704 compare 1234567890123456 1234567890123456 -> 0 -ddcom705 compare 1234567890123456 2234567890123456 -> -1 -ddcom706 compare 1134567890123456 1034567890123456 -> 1 -ddcom707 compare 1134567890123456 1134567890123456 -> 0 -ddcom708 compare 1134567890123456 1234567890123456 -> -1 - --- miscellaneous -ddcom721 compare 12345678000 1 -> 1 -ddcom722 compare 1 12345678000 -> -1 -ddcom723 compare 1234567800 1 -> 1 -ddcom724 compare 1 1234567800 -> -1 -ddcom725 compare 1234567890 1 -> 1 -ddcom726 compare 1 1234567890 -> -1 -ddcom727 compare 1234567891 1 -> 1 -ddcom728 compare 1 1234567891 -> -1 -ddcom729 compare 12345678901 1 -> 1 -ddcom730 compare 1 12345678901 -> -1 -ddcom731 compare 1234567896 1 -> 1 -ddcom732 compare 1 1234567896 -> -1 - --- residue cases at lower precision -ddcom740 compare 1 0.9999999 -> 1 -ddcom741 compare 1 0.999999 -> 1 -ddcom742 compare 1 0.99999 -> 1 -ddcom743 compare 1 1.0000 -> 0 -ddcom744 compare 1 1.00001 -> -1 -ddcom745 compare 1 1.000001 -> -1 -ddcom746 compare 1 1.0000001 -> -1 -ddcom750 compare 0.9999999 1 -> -1 -ddcom751 compare 0.999999 1 -> -1 -ddcom752 compare 0.99999 1 -> -1 -ddcom753 compare 1.0000 1 -> 0 -ddcom754 compare 1.00001 1 -> 1 -ddcom755 compare 1.000001 1 -> 1 -ddcom756 compare 1.0000001 1 -> 1 - --- Specials -ddcom780 compare Inf -Inf -> 1 -ddcom781 compare Inf -1000 -> 1 -ddcom782 compare Inf -1 -> 1 -ddcom783 compare Inf -0 -> 1 -ddcom784 compare Inf 0 -> 1 -ddcom785 compare Inf 1 -> 1 -ddcom786 compare Inf 1000 -> 1 -ddcom787 compare Inf Inf -> 0 -ddcom788 compare -1000 Inf -> -1 -ddcom789 compare -Inf Inf -> -1 -ddcom790 compare -1 Inf -> -1 -ddcom791 compare -0 Inf -> -1 -ddcom792 compare 0 Inf -> -1 -ddcom793 compare 1 Inf -> -1 -ddcom794 compare 1000 Inf -> -1 -ddcom795 compare Inf Inf -> 0 - -ddcom800 compare -Inf -Inf -> 0 -ddcom801 compare -Inf -1000 -> -1 -ddcom802 compare -Inf -1 -> -1 -ddcom803 compare -Inf -0 -> -1 -ddcom804 compare -Inf 0 -> -1 -ddcom805 compare -Inf 1 -> -1 -ddcom806 compare -Inf 1000 -> -1 -ddcom807 compare -Inf Inf -> -1 -ddcom808 compare -Inf -Inf -> 0 -ddcom809 compare -1000 -Inf -> 1 -ddcom810 compare -1 -Inf -> 1 -ddcom811 compare -0 -Inf -> 1 -ddcom812 compare 0 -Inf -> 1 -ddcom813 compare 1 -Inf -> 1 -ddcom814 compare 1000 -Inf -> 1 -ddcom815 compare Inf -Inf -> 1 - -ddcom821 compare NaN -Inf -> NaN -ddcom822 compare NaN -1000 -> NaN -ddcom823 compare NaN -1 -> NaN -ddcom824 compare NaN -0 -> NaN -ddcom825 compare NaN 0 -> NaN -ddcom826 compare NaN 1 -> NaN -ddcom827 compare NaN 1000 -> NaN -ddcom828 compare NaN Inf -> NaN -ddcom829 compare NaN NaN -> NaN -ddcom830 compare -Inf NaN -> NaN -ddcom831 compare -1000 NaN -> NaN -ddcom832 compare -1 NaN -> NaN -ddcom833 compare -0 NaN -> NaN -ddcom834 compare 0 NaN -> NaN -ddcom835 compare 1 NaN -> NaN -ddcom836 compare 1000 NaN -> NaN -ddcom837 compare Inf NaN -> NaN -ddcom838 compare -NaN -NaN -> -NaN -ddcom839 compare +NaN -NaN -> NaN -ddcom840 compare -NaN +NaN -> -NaN - -ddcom841 compare sNaN -Inf -> NaN Invalid_operation -ddcom842 compare sNaN -1000 -> NaN Invalid_operation -ddcom843 compare sNaN -1 -> NaN Invalid_operation -ddcom844 compare sNaN -0 -> NaN Invalid_operation -ddcom845 compare sNaN 0 -> NaN Invalid_operation -ddcom846 compare sNaN 1 -> NaN Invalid_operation -ddcom847 compare sNaN 1000 -> NaN Invalid_operation -ddcom848 compare sNaN NaN -> NaN Invalid_operation -ddcom849 compare sNaN sNaN -> NaN Invalid_operation -ddcom850 compare NaN sNaN -> NaN Invalid_operation -ddcom851 compare -Inf sNaN -> NaN Invalid_operation -ddcom852 compare -1000 sNaN -> NaN Invalid_operation -ddcom853 compare -1 sNaN -> NaN Invalid_operation -ddcom854 compare -0 sNaN -> NaN Invalid_operation -ddcom855 compare 0 sNaN -> NaN Invalid_operation -ddcom856 compare 1 sNaN -> NaN Invalid_operation -ddcom857 compare 1000 sNaN -> NaN Invalid_operation -ddcom858 compare Inf sNaN -> NaN Invalid_operation -ddcom859 compare NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddcom860 compare NaN9 -Inf -> NaN9 -ddcom861 compare NaN8 999 -> NaN8 -ddcom862 compare NaN77 Inf -> NaN77 -ddcom863 compare -NaN67 NaN5 -> -NaN67 -ddcom864 compare -Inf -NaN4 -> -NaN4 -ddcom865 compare -999 -NaN33 -> -NaN33 -ddcom866 compare Inf NaN2 -> NaN2 -ddcom867 compare -NaN41 -NaN42 -> -NaN41 -ddcom868 compare +NaN41 -NaN42 -> NaN41 -ddcom869 compare -NaN41 +NaN42 -> -NaN41 -ddcom870 compare +NaN41 +NaN42 -> NaN41 - -ddcom871 compare -sNaN99 -Inf -> -NaN99 Invalid_operation -ddcom872 compare sNaN98 -11 -> NaN98 Invalid_operation -ddcom873 compare sNaN97 NaN -> NaN97 Invalid_operation -ddcom874 compare sNaN16 sNaN94 -> NaN16 Invalid_operation -ddcom875 compare NaN85 sNaN83 -> NaN83 Invalid_operation -ddcom876 compare -Inf sNaN92 -> NaN92 Invalid_operation -ddcom877 compare 088 sNaN81 -> NaN81 Invalid_operation -ddcom878 compare Inf sNaN90 -> NaN90 Invalid_operation -ddcom879 compare NaN -sNaN89 -> -NaN89 Invalid_operation - --- wide range -ddcom880 compare +1.23456789012345E-0 9E+384 -> -1 -ddcom881 compare 9E+384 +1.23456789012345E-0 -> 1 -ddcom882 compare +0.100 9E-383 -> 1 -ddcom883 compare 9E-383 +0.100 -> -1 -ddcom885 compare -1.23456789012345E-0 9E+384 -> -1 -ddcom886 compare 9E+384 -1.23456789012345E-0 -> 1 -ddcom887 compare -0.100 9E-383 -> -1 -ddcom888 compare 9E-383 -0.100 -> 1 - --- spread zeros -ddcom900 compare 0E-383 0 -> 0 -ddcom901 compare 0E-383 -0 -> 0 -ddcom902 compare -0E-383 0 -> 0 -ddcom903 compare -0E-383 -0 -> 0 -ddcom904 compare 0E-383 0E+384 -> 0 -ddcom905 compare 0E-383 -0E+384 -> 0 -ddcom906 compare -0E-383 0E+384 -> 0 -ddcom907 compare -0E-383 -0E+384 -> 0 -ddcom908 compare 0 0E+384 -> 0 -ddcom909 compare 0 -0E+384 -> 0 -ddcom910 compare -0 0E+384 -> 0 -ddcom911 compare -0 -0E+384 -> 0 -ddcom930 compare 0E+384 0 -> 0 -ddcom931 compare 0E+384 -0 -> 0 -ddcom932 compare -0E+384 0 -> 0 -ddcom933 compare -0E+384 -0 -> 0 -ddcom934 compare 0E+384 0E-383 -> 0 -ddcom935 compare 0E+384 -0E-383 -> 0 -ddcom936 compare -0E+384 0E-383 -> 0 -ddcom937 compare -0E+384 -0E-383 -> 0 -ddcom938 compare 0 0E-383 -> 0 -ddcom939 compare 0 -0E-383 -> 0 -ddcom940 compare -0 0E-383 -> 0 -ddcom941 compare -0 -0E-383 -> 0 - --- signs -ddcom961 compare 1e+77 1e+11 -> 1 -ddcom962 compare 1e+77 -1e+11 -> 1 -ddcom963 compare -1e+77 1e+11 -> -1 -ddcom964 compare -1e+77 -1e+11 -> -1 -ddcom965 compare 1e-77 1e-11 -> -1 -ddcom966 compare 1e-77 -1e-11 -> 1 -ddcom967 compare -1e-77 1e-11 -> -1 -ddcom968 compare -1e-77 -1e-11 -> 1 - --- full alignment range, both ways -ddcomp1001 compare 1 1.000000000000000 -> 0 -ddcomp1002 compare 1 1.00000000000000 -> 0 -ddcomp1003 compare 1 1.0000000000000 -> 0 -ddcomp1004 compare 1 1.000000000000 -> 0 -ddcomp1005 compare 1 1.00000000000 -> 0 -ddcomp1006 compare 1 1.0000000000 -> 0 -ddcomp1007 compare 1 1.000000000 -> 0 -ddcomp1008 compare 1 1.00000000 -> 0 -ddcomp1009 compare 1 1.0000000 -> 0 -ddcomp1010 compare 1 1.000000 -> 0 -ddcomp1011 compare 1 1.00000 -> 0 -ddcomp1012 compare 1 1.0000 -> 0 -ddcomp1013 compare 1 1.000 -> 0 -ddcomp1014 compare 1 1.00 -> 0 -ddcomp1015 compare 1 1.0 -> 0 -ddcomp1021 compare 1.000000000000000 1 -> 0 -ddcomp1022 compare 1.00000000000000 1 -> 0 -ddcomp1023 compare 1.0000000000000 1 -> 0 -ddcomp1024 compare 1.000000000000 1 -> 0 -ddcomp1025 compare 1.00000000000 1 -> 0 -ddcomp1026 compare 1.0000000000 1 -> 0 -ddcomp1027 compare 1.000000000 1 -> 0 -ddcomp1028 compare 1.00000000 1 -> 0 -ddcomp1029 compare 1.0000000 1 -> 0 -ddcomp1030 compare 1.000000 1 -> 0 -ddcomp1031 compare 1.00000 1 -> 0 -ddcomp1032 compare 1.0000 1 -> 0 -ddcomp1033 compare 1.000 1 -> 0 -ddcomp1034 compare 1.00 1 -> 0 -ddcomp1035 compare 1.0 1 -> 0 - --- check MSD always detected non-zero -ddcomp1040 compare 0 0.000000000000000 -> 0 -ddcomp1041 compare 0 1.000000000000000 -> -1 -ddcomp1042 compare 0 2.000000000000000 -> -1 -ddcomp1043 compare 0 3.000000000000000 -> -1 -ddcomp1044 compare 0 4.000000000000000 -> -1 -ddcomp1045 compare 0 5.000000000000000 -> -1 -ddcomp1046 compare 0 6.000000000000000 -> -1 -ddcomp1047 compare 0 7.000000000000000 -> -1 -ddcomp1048 compare 0 8.000000000000000 -> -1 -ddcomp1049 compare 0 9.000000000000000 -> -1 -ddcomp1050 compare 0.000000000000000 0 -> 0 -ddcomp1051 compare 1.000000000000000 0 -> 1 -ddcomp1052 compare 2.000000000000000 0 -> 1 -ddcomp1053 compare 3.000000000000000 0 -> 1 -ddcomp1054 compare 4.000000000000000 0 -> 1 -ddcomp1055 compare 5.000000000000000 0 -> 1 -ddcomp1056 compare 6.000000000000000 0 -> 1 -ddcomp1057 compare 7.000000000000000 0 -> 1 -ddcomp1058 compare 8.000000000000000 0 -> 1 -ddcomp1059 compare 9.000000000000000 0 -> 1 - --- Null tests -ddcom9990 compare 10 # -> NaN Invalid_operation -ddcom9991 compare # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddCompareSig.decTest b/qdecimal/test/tc_full/ddCompareSig.decTest deleted file mode 100644 index d3df97c..0000000 --- a/qdecimal/test/tc_full/ddCompareSig.decTest +++ /dev/null @@ -1,647 +0,0 @@ ------------------------------------------------------------------------- --- ddCompareSig.decTest -- decDouble comparison; all NaNs signal -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddcms001 comparesig -2 -2 -> 0 -ddcms002 comparesig -2 -1 -> -1 -ddcms003 comparesig -2 0 -> -1 -ddcms004 comparesig -2 1 -> -1 -ddcms005 comparesig -2 2 -> -1 -ddcms006 comparesig -1 -2 -> 1 -ddcms007 comparesig -1 -1 -> 0 -ddcms008 comparesig -1 0 -> -1 -ddcms009 comparesig -1 1 -> -1 -ddcms010 comparesig -1 2 -> -1 -ddcms011 comparesig 0 -2 -> 1 -ddcms012 comparesig 0 -1 -> 1 -ddcms013 comparesig 0 0 -> 0 -ddcms014 comparesig 0 1 -> -1 -ddcms015 comparesig 0 2 -> -1 -ddcms016 comparesig 1 -2 -> 1 -ddcms017 comparesig 1 -1 -> 1 -ddcms018 comparesig 1 0 -> 1 -ddcms019 comparesig 1 1 -> 0 -ddcms020 comparesig 1 2 -> -1 -ddcms021 comparesig 2 -2 -> 1 -ddcms022 comparesig 2 -1 -> 1 -ddcms023 comparesig 2 0 -> 1 -ddcms025 comparesig 2 1 -> 1 -ddcms026 comparesig 2 2 -> 0 - -ddcms031 comparesig -20 -20 -> 0 -ddcms032 comparesig -20 -10 -> -1 -ddcms033 comparesig -20 00 -> -1 -ddcms034 comparesig -20 10 -> -1 -ddcms035 comparesig -20 20 -> -1 -ddcms036 comparesig -10 -20 -> 1 -ddcms037 comparesig -10 -10 -> 0 -ddcms038 comparesig -10 00 -> -1 -ddcms039 comparesig -10 10 -> -1 -ddcms040 comparesig -10 20 -> -1 -ddcms041 comparesig 00 -20 -> 1 -ddcms042 comparesig 00 -10 -> 1 -ddcms043 comparesig 00 00 -> 0 -ddcms044 comparesig 00 10 -> -1 -ddcms045 comparesig 00 20 -> -1 -ddcms046 comparesig 10 -20 -> 1 -ddcms047 comparesig 10 -10 -> 1 -ddcms048 comparesig 10 00 -> 1 -ddcms049 comparesig 10 10 -> 0 -ddcms050 comparesig 10 20 -> -1 -ddcms051 comparesig 20 -20 -> 1 -ddcms052 comparesig 20 -10 -> 1 -ddcms053 comparesig 20 00 -> 1 -ddcms055 comparesig 20 10 -> 1 -ddcms056 comparesig 20 20 -> 0 - -ddcms061 comparesig -2.0 -2.0 -> 0 -ddcms062 comparesig -2.0 -1.0 -> -1 -ddcms063 comparesig -2.0 0.0 -> -1 -ddcms064 comparesig -2.0 1.0 -> -1 -ddcms065 comparesig -2.0 2.0 -> -1 -ddcms066 comparesig -1.0 -2.0 -> 1 -ddcms067 comparesig -1.0 -1.0 -> 0 -ddcms068 comparesig -1.0 0.0 -> -1 -ddcms069 comparesig -1.0 1.0 -> -1 -ddcms070 comparesig -1.0 2.0 -> -1 -ddcms071 comparesig 0.0 -2.0 -> 1 -ddcms072 comparesig 0.0 -1.0 -> 1 -ddcms073 comparesig 0.0 0.0 -> 0 -ddcms074 comparesig 0.0 1.0 -> -1 -ddcms075 comparesig 0.0 2.0 -> -1 -ddcms076 comparesig 1.0 -2.0 -> 1 -ddcms077 comparesig 1.0 -1.0 -> 1 -ddcms078 comparesig 1.0 0.0 -> 1 -ddcms079 comparesig 1.0 1.0 -> 0 -ddcms080 comparesig 1.0 2.0 -> -1 -ddcms081 comparesig 2.0 -2.0 -> 1 -ddcms082 comparesig 2.0 -1.0 -> 1 -ddcms083 comparesig 2.0 0.0 -> 1 -ddcms085 comparesig 2.0 1.0 -> 1 -ddcms086 comparesig 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -ddcms090 comparesig 9.999999999999999E+384 9.999999999999999E+384 -> 0 -ddcms091 comparesig -9.999999999999999E+384 9.999999999999999E+384 -> -1 -ddcms092 comparesig 9.999999999999999E+384 -9.999999999999999E+384 -> 1 -ddcms093 comparesig -9.999999999999999E+384 -9.999999999999999E+384 -> 0 - --- some differing length/exponent cases -ddcms100 comparesig 7.0 7.0 -> 0 -ddcms101 comparesig 7.0 7 -> 0 -ddcms102 comparesig 7 7.0 -> 0 -ddcms103 comparesig 7E+0 7.0 -> 0 -ddcms104 comparesig 70E-1 7.0 -> 0 -ddcms105 comparesig 0.7E+1 7 -> 0 -ddcms106 comparesig 70E-1 7 -> 0 -ddcms107 comparesig 7.0 7E+0 -> 0 -ddcms108 comparesig 7.0 70E-1 -> 0 -ddcms109 comparesig 7 0.7E+1 -> 0 -ddcms110 comparesig 7 70E-1 -> 0 - -ddcms120 comparesig 8.0 7.0 -> 1 -ddcms121 comparesig 8.0 7 -> 1 -ddcms122 comparesig 8 7.0 -> 1 -ddcms123 comparesig 8E+0 7.0 -> 1 -ddcms124 comparesig 80E-1 7.0 -> 1 -ddcms125 comparesig 0.8E+1 7 -> 1 -ddcms126 comparesig 80E-1 7 -> 1 -ddcms127 comparesig 8.0 7E+0 -> 1 -ddcms128 comparesig 8.0 70E-1 -> 1 -ddcms129 comparesig 8 0.7E+1 -> 1 -ddcms130 comparesig 8 70E-1 -> 1 - -ddcms140 comparesig 8.0 9.0 -> -1 -ddcms141 comparesig 8.0 9 -> -1 -ddcms142 comparesig 8 9.0 -> -1 -ddcms143 comparesig 8E+0 9.0 -> -1 -ddcms144 comparesig 80E-1 9.0 -> -1 -ddcms145 comparesig 0.8E+1 9 -> -1 -ddcms146 comparesig 80E-1 9 -> -1 -ddcms147 comparesig 8.0 9E+0 -> -1 -ddcms148 comparesig 8.0 90E-1 -> -1 -ddcms149 comparesig 8 0.9E+1 -> -1 -ddcms150 comparesig 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -ddcms200 comparesig -7.0 7.0 -> -1 -ddcms201 comparesig -7.0 7 -> -1 -ddcms202 comparesig -7 7.0 -> -1 -ddcms203 comparesig -7E+0 7.0 -> -1 -ddcms204 comparesig -70E-1 7.0 -> -1 -ddcms205 comparesig -0.7E+1 7 -> -1 -ddcms206 comparesig -70E-1 7 -> -1 -ddcms207 comparesig -7.0 7E+0 -> -1 -ddcms208 comparesig -7.0 70E-1 -> -1 -ddcms209 comparesig -7 0.7E+1 -> -1 -ddcms210 comparesig -7 70E-1 -> -1 - -ddcms220 comparesig -8.0 7.0 -> -1 -ddcms221 comparesig -8.0 7 -> -1 -ddcms222 comparesig -8 7.0 -> -1 -ddcms223 comparesig -8E+0 7.0 -> -1 -ddcms224 comparesig -80E-1 7.0 -> -1 -ddcms225 comparesig -0.8E+1 7 -> -1 -ddcms226 comparesig -80E-1 7 -> -1 -ddcms227 comparesig -8.0 7E+0 -> -1 -ddcms228 comparesig -8.0 70E-1 -> -1 -ddcms229 comparesig -8 0.7E+1 -> -1 -ddcms230 comparesig -8 70E-1 -> -1 - -ddcms240 comparesig -8.0 9.0 -> -1 -ddcms241 comparesig -8.0 9 -> -1 -ddcms242 comparesig -8 9.0 -> -1 -ddcms243 comparesig -8E+0 9.0 -> -1 -ddcms244 comparesig -80E-1 9.0 -> -1 -ddcms245 comparesig -0.8E+1 9 -> -1 -ddcms246 comparesig -80E-1 9 -> -1 -ddcms247 comparesig -8.0 9E+0 -> -1 -ddcms248 comparesig -8.0 90E-1 -> -1 -ddcms249 comparesig -8 0.9E+1 -> -1 -ddcms250 comparesig -8 90E-1 -> -1 - --- and again, with sign changes +- .. -ddcms300 comparesig 7.0 -7.0 -> 1 -ddcms301 comparesig 7.0 -7 -> 1 -ddcms302 comparesig 7 -7.0 -> 1 -ddcms303 comparesig 7E+0 -7.0 -> 1 -ddcms304 comparesig 70E-1 -7.0 -> 1 -ddcms305 comparesig .7E+1 -7 -> 1 -ddcms306 comparesig 70E-1 -7 -> 1 -ddcms307 comparesig 7.0 -7E+0 -> 1 -ddcms308 comparesig 7.0 -70E-1 -> 1 -ddcms309 comparesig 7 -.7E+1 -> 1 -ddcms310 comparesig 7 -70E-1 -> 1 - -ddcms320 comparesig 8.0 -7.0 -> 1 -ddcms321 comparesig 8.0 -7 -> 1 -ddcms322 comparesig 8 -7.0 -> 1 -ddcms323 comparesig 8E+0 -7.0 -> 1 -ddcms324 comparesig 80E-1 -7.0 -> 1 -ddcms325 comparesig .8E+1 -7 -> 1 -ddcms326 comparesig 80E-1 -7 -> 1 -ddcms327 comparesig 8.0 -7E+0 -> 1 -ddcms328 comparesig 8.0 -70E-1 -> 1 -ddcms329 comparesig 8 -.7E+1 -> 1 -ddcms330 comparesig 8 -70E-1 -> 1 - -ddcms340 comparesig 8.0 -9.0 -> 1 -ddcms341 comparesig 8.0 -9 -> 1 -ddcms342 comparesig 8 -9.0 -> 1 -ddcms343 comparesig 8E+0 -9.0 -> 1 -ddcms344 comparesig 80E-1 -9.0 -> 1 -ddcms345 comparesig .8E+1 -9 -> 1 -ddcms346 comparesig 80E-1 -9 -> 1 -ddcms347 comparesig 8.0 -9E+0 -> 1 -ddcms348 comparesig 8.0 -90E-1 -> 1 -ddcms349 comparesig 8 -.9E+1 -> 1 -ddcms350 comparesig 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -ddcms400 comparesig -7.0 -7.0 -> 0 -ddcms401 comparesig -7.0 -7 -> 0 -ddcms402 comparesig -7 -7.0 -> 0 -ddcms403 comparesig -7E+0 -7.0 -> 0 -ddcms404 comparesig -70E-1 -7.0 -> 0 -ddcms405 comparesig -.7E+1 -7 -> 0 -ddcms406 comparesig -70E-1 -7 -> 0 -ddcms407 comparesig -7.0 -7E+0 -> 0 -ddcms408 comparesig -7.0 -70E-1 -> 0 -ddcms409 comparesig -7 -.7E+1 -> 0 -ddcms410 comparesig -7 -70E-1 -> 0 - -ddcms420 comparesig -8.0 -7.0 -> -1 -ddcms421 comparesig -8.0 -7 -> -1 -ddcms422 comparesig -8 -7.0 -> -1 -ddcms423 comparesig -8E+0 -7.0 -> -1 -ddcms424 comparesig -80E-1 -7.0 -> -1 -ddcms425 comparesig -.8E+1 -7 -> -1 -ddcms426 comparesig -80E-1 -7 -> -1 -ddcms427 comparesig -8.0 -7E+0 -> -1 -ddcms428 comparesig -8.0 -70E-1 -> -1 -ddcms429 comparesig -8 -.7E+1 -> -1 -ddcms430 comparesig -8 -70E-1 -> -1 - -ddcms440 comparesig -8.0 -9.0 -> 1 -ddcms441 comparesig -8.0 -9 -> 1 -ddcms442 comparesig -8 -9.0 -> 1 -ddcms443 comparesig -8E+0 -9.0 -> 1 -ddcms444 comparesig -80E-1 -9.0 -> 1 -ddcms445 comparesig -.8E+1 -9 -> 1 -ddcms446 comparesig -80E-1 -9 -> 1 -ddcms447 comparesig -8.0 -9E+0 -> 1 -ddcms448 comparesig -8.0 -90E-1 -> 1 -ddcms449 comparesig -8 -.9E+1 -> 1 -ddcms450 comparesig -8 -90E-1 -> 1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -ddcms473 comparesig 123.4560000000000E-89 123.456E-89 -> 0 -ddcms474 comparesig 123.456000000000E+89 123.456E+89 -> 0 -ddcms475 comparesig 123.45600000000E-89 123.456E-89 -> 0 -ddcms476 comparesig 123.4560000000E+89 123.456E+89 -> 0 -ddcms477 comparesig 123.456000000E-89 123.456E-89 -> 0 -ddcms478 comparesig 123.45600000E+89 123.456E+89 -> 0 -ddcms479 comparesig 123.4560000E-89 123.456E-89 -> 0 -ddcms480 comparesig 123.456000E+89 123.456E+89 -> 0 -ddcms481 comparesig 123.45600E-89 123.456E-89 -> 0 -ddcms482 comparesig 123.4560E+89 123.456E+89 -> 0 -ddcms483 comparesig 123.456E-89 123.456E-89 -> 0 -ddcms487 comparesig 123.456E+89 123.4560000000000E+89 -> 0 -ddcms488 comparesig 123.456E-89 123.456000000000E-89 -> 0 -ddcms489 comparesig 123.456E+89 123.45600000000E+89 -> 0 -ddcms490 comparesig 123.456E-89 123.4560000000E-89 -> 0 -ddcms491 comparesig 123.456E+89 123.456000000E+89 -> 0 -ddcms492 comparesig 123.456E-89 123.45600000E-89 -> 0 -ddcms493 comparesig 123.456E+89 123.4560000E+89 -> 0 -ddcms494 comparesig 123.456E-89 123.456000E-89 -> 0 -ddcms495 comparesig 123.456E+89 123.45600E+89 -> 0 -ddcms496 comparesig 123.456E-89 123.4560E-89 -> 0 -ddcms497 comparesig 123.456E+89 123.456E+89 -> 0 - --- wide-ranging, around precision; signs equal -ddcms500 comparesig 1 1E-15 -> 1 -ddcms501 comparesig 1 1E-14 -> 1 -ddcms502 comparesig 1 1E-13 -> 1 -ddcms503 comparesig 1 1E-12 -> 1 -ddcms504 comparesig 1 1E-11 -> 1 -ddcms505 comparesig 1 1E-10 -> 1 -ddcms506 comparesig 1 1E-9 -> 1 -ddcms507 comparesig 1 1E-8 -> 1 -ddcms508 comparesig 1 1E-7 -> 1 -ddcms509 comparesig 1 1E-6 -> 1 -ddcms510 comparesig 1 1E-5 -> 1 -ddcms511 comparesig 1 1E-4 -> 1 -ddcms512 comparesig 1 1E-3 -> 1 -ddcms513 comparesig 1 1E-2 -> 1 -ddcms514 comparesig 1 1E-1 -> 1 -ddcms515 comparesig 1 1E-0 -> 0 -ddcms516 comparesig 1 1E+1 -> -1 -ddcms517 comparesig 1 1E+2 -> -1 -ddcms518 comparesig 1 1E+3 -> -1 -ddcms519 comparesig 1 1E+4 -> -1 -ddcms521 comparesig 1 1E+5 -> -1 -ddcms522 comparesig 1 1E+6 -> -1 -ddcms523 comparesig 1 1E+7 -> -1 -ddcms524 comparesig 1 1E+8 -> -1 -ddcms525 comparesig 1 1E+9 -> -1 -ddcms526 comparesig 1 1E+10 -> -1 -ddcms527 comparesig 1 1E+11 -> -1 -ddcms528 comparesig 1 1E+12 -> -1 -ddcms529 comparesig 1 1E+13 -> -1 -ddcms530 comparesig 1 1E+14 -> -1 -ddcms531 comparesig 1 1E+15 -> -1 --- LR swap -ddcms540 comparesig 1E-15 1 -> -1 -ddcms541 comparesig 1E-14 1 -> -1 -ddcms542 comparesig 1E-13 1 -> -1 -ddcms543 comparesig 1E-12 1 -> -1 -ddcms544 comparesig 1E-11 1 -> -1 -ddcms545 comparesig 1E-10 1 -> -1 -ddcms546 comparesig 1E-9 1 -> -1 -ddcms547 comparesig 1E-8 1 -> -1 -ddcms548 comparesig 1E-7 1 -> -1 -ddcms549 comparesig 1E-6 1 -> -1 -ddcms550 comparesig 1E-5 1 -> -1 -ddcms551 comparesig 1E-4 1 -> -1 -ddcms552 comparesig 1E-3 1 -> -1 -ddcms553 comparesig 1E-2 1 -> -1 -ddcms554 comparesig 1E-1 1 -> -1 -ddcms555 comparesig 1E-0 1 -> 0 -ddcms556 comparesig 1E+1 1 -> 1 -ddcms557 comparesig 1E+2 1 -> 1 -ddcms558 comparesig 1E+3 1 -> 1 -ddcms559 comparesig 1E+4 1 -> 1 -ddcms561 comparesig 1E+5 1 -> 1 -ddcms562 comparesig 1E+6 1 -> 1 -ddcms563 comparesig 1E+7 1 -> 1 -ddcms564 comparesig 1E+8 1 -> 1 -ddcms565 comparesig 1E+9 1 -> 1 -ddcms566 comparesig 1E+10 1 -> 1 -ddcms567 comparesig 1E+11 1 -> 1 -ddcms568 comparesig 1E+12 1 -> 1 -ddcms569 comparesig 1E+13 1 -> 1 -ddcms570 comparesig 1E+14 1 -> 1 -ddcms571 comparesig 1E+15 1 -> 1 --- similar with a useful coefficient, one side only -ddcms580 comparesig 0.000000987654321 1E-15 -> 1 -ddcms581 comparesig 0.000000987654321 1E-14 -> 1 -ddcms582 comparesig 0.000000987654321 1E-13 -> 1 -ddcms583 comparesig 0.000000987654321 1E-12 -> 1 -ddcms584 comparesig 0.000000987654321 1E-11 -> 1 -ddcms585 comparesig 0.000000987654321 1E-10 -> 1 -ddcms586 comparesig 0.000000987654321 1E-9 -> 1 -ddcms587 comparesig 0.000000987654321 1E-8 -> 1 -ddcms588 comparesig 0.000000987654321 1E-7 -> 1 -ddcms589 comparesig 0.000000987654321 1E-6 -> -1 -ddcms590 comparesig 0.000000987654321 1E-5 -> -1 -ddcms591 comparesig 0.000000987654321 1E-4 -> -1 -ddcms592 comparesig 0.000000987654321 1E-3 -> -1 -ddcms593 comparesig 0.000000987654321 1E-2 -> -1 -ddcms594 comparesig 0.000000987654321 1E-1 -> -1 -ddcms595 comparesig 0.000000987654321 1E-0 -> -1 -ddcms596 comparesig 0.000000987654321 1E+1 -> -1 -ddcms597 comparesig 0.000000987654321 1E+2 -> -1 -ddcms598 comparesig 0.000000987654321 1E+3 -> -1 -ddcms599 comparesig 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -ddcms600 comparesig 12 12.2345 -> -1 -ddcms601 comparesig 12.0 12.2345 -> -1 -ddcms602 comparesig 12.00 12.2345 -> -1 -ddcms603 comparesig 12.000 12.2345 -> -1 -ddcms604 comparesig 12.0000 12.2345 -> -1 -ddcms605 comparesig 12.00000 12.2345 -> -1 -ddcms606 comparesig 12.000000 12.2345 -> -1 -ddcms607 comparesig 12.0000000 12.2345 -> -1 -ddcms608 comparesig 12.00000000 12.2345 -> -1 -ddcms609 comparesig 12.000000000 12.2345 -> -1 -ddcms610 comparesig 12.1234 12 -> 1 -ddcms611 comparesig 12.1234 12.0 -> 1 -ddcms612 comparesig 12.1234 12.00 -> 1 -ddcms613 comparesig 12.1234 12.000 -> 1 -ddcms614 comparesig 12.1234 12.0000 -> 1 -ddcms615 comparesig 12.1234 12.00000 -> 1 -ddcms616 comparesig 12.1234 12.000000 -> 1 -ddcms617 comparesig 12.1234 12.0000000 -> 1 -ddcms618 comparesig 12.1234 12.00000000 -> 1 -ddcms619 comparesig 12.1234 12.000000000 -> 1 -ddcms620 comparesig -12 -12.2345 -> 1 -ddcms621 comparesig -12.0 -12.2345 -> 1 -ddcms622 comparesig -12.00 -12.2345 -> 1 -ddcms623 comparesig -12.000 -12.2345 -> 1 -ddcms624 comparesig -12.0000 -12.2345 -> 1 -ddcms625 comparesig -12.00000 -12.2345 -> 1 -ddcms626 comparesig -12.000000 -12.2345 -> 1 -ddcms627 comparesig -12.0000000 -12.2345 -> 1 -ddcms628 comparesig -12.00000000 -12.2345 -> 1 -ddcms629 comparesig -12.000000000 -12.2345 -> 1 -ddcms630 comparesig -12.1234 -12 -> -1 -ddcms631 comparesig -12.1234 -12.0 -> -1 -ddcms632 comparesig -12.1234 -12.00 -> -1 -ddcms633 comparesig -12.1234 -12.000 -> -1 -ddcms634 comparesig -12.1234 -12.0000 -> -1 -ddcms635 comparesig -12.1234 -12.00000 -> -1 -ddcms636 comparesig -12.1234 -12.000000 -> -1 -ddcms637 comparesig -12.1234 -12.0000000 -> -1 -ddcms638 comparesig -12.1234 -12.00000000 -> -1 -ddcms639 comparesig -12.1234 -12.000000000 -> -1 - --- extended zeros -ddcms640 comparesig 0 0 -> 0 -ddcms641 comparesig 0 -0 -> 0 -ddcms642 comparesig 0 -0.0 -> 0 -ddcms643 comparesig 0 0.0 -> 0 -ddcms644 comparesig -0 0 -> 0 -ddcms645 comparesig -0 -0 -> 0 -ddcms646 comparesig -0 -0.0 -> 0 -ddcms647 comparesig -0 0.0 -> 0 -ddcms648 comparesig 0.0 0 -> 0 -ddcms649 comparesig 0.0 -0 -> 0 -ddcms650 comparesig 0.0 -0.0 -> 0 -ddcms651 comparesig 0.0 0.0 -> 0 -ddcms652 comparesig -0.0 0 -> 0 -ddcms653 comparesig -0.0 -0 -> 0 -ddcms654 comparesig -0.0 -0.0 -> 0 -ddcms655 comparesig -0.0 0.0 -> 0 - -ddcms656 comparesig -0E1 0.0 -> 0 -ddcms657 comparesig -0E2 0.0 -> 0 -ddcms658 comparesig 0E1 0.0 -> 0 -ddcms659 comparesig 0E2 0.0 -> 0 -ddcms660 comparesig -0E1 0 -> 0 -ddcms661 comparesig -0E2 0 -> 0 -ddcms662 comparesig 0E1 0 -> 0 -ddcms663 comparesig 0E2 0 -> 0 -ddcms664 comparesig -0E1 -0E1 -> 0 -ddcms665 comparesig -0E2 -0E1 -> 0 -ddcms666 comparesig 0E1 -0E1 -> 0 -ddcms667 comparesig 0E2 -0E1 -> 0 -ddcms668 comparesig -0E1 -0E2 -> 0 -ddcms669 comparesig -0E2 -0E2 -> 0 -ddcms670 comparesig 0E1 -0E2 -> 0 -ddcms671 comparesig 0E2 -0E2 -> 0 -ddcms672 comparesig -0E1 0E1 -> 0 -ddcms673 comparesig -0E2 0E1 -> 0 -ddcms674 comparesig 0E1 0E1 -> 0 -ddcms675 comparesig 0E2 0E1 -> 0 -ddcms676 comparesig -0E1 0E2 -> 0 -ddcms677 comparesig -0E2 0E2 -> 0 -ddcms678 comparesig 0E1 0E2 -> 0 -ddcms679 comparesig 0E2 0E2 -> 0 - --- trailing zeros; unit-y -ddcms680 comparesig 12 12 -> 0 -ddcms681 comparesig 12 12.0 -> 0 -ddcms682 comparesig 12 12.00 -> 0 -ddcms683 comparesig 12 12.000 -> 0 -ddcms684 comparesig 12 12.0000 -> 0 -ddcms685 comparesig 12 12.00000 -> 0 -ddcms686 comparesig 12 12.000000 -> 0 -ddcms687 comparesig 12 12.0000000 -> 0 -ddcms688 comparesig 12 12.00000000 -> 0 -ddcms689 comparesig 12 12.000000000 -> 0 -ddcms690 comparesig 12 12 -> 0 -ddcms691 comparesig 12.0 12 -> 0 -ddcms692 comparesig 12.00 12 -> 0 -ddcms693 comparesig 12.000 12 -> 0 -ddcms694 comparesig 12.0000 12 -> 0 -ddcms695 comparesig 12.00000 12 -> 0 -ddcms696 comparesig 12.000000 12 -> 0 -ddcms697 comparesig 12.0000000 12 -> 0 -ddcms698 comparesig 12.00000000 12 -> 0 -ddcms699 comparesig 12.000000000 12 -> 0 - --- first, second, & last digit -ddcms700 comparesig 1234567890123456 1234567890123455 -> 1 -ddcms701 comparesig 1234567890123456 1234567890123456 -> 0 -ddcms702 comparesig 1234567890123456 1234567890123457 -> -1 -ddcms703 comparesig 1234567890123456 0234567890123456 -> 1 -ddcms704 comparesig 1234567890123456 1234567890123456 -> 0 -ddcms705 comparesig 1234567890123456 2234567890123456 -> -1 -ddcms706 comparesig 1134567890123456 1034567890123456 -> 1 -ddcms707 comparesig 1134567890123456 1134567890123456 -> 0 -ddcms708 comparesig 1134567890123456 1234567890123456 -> -1 - --- miscellaneous -ddcms721 comparesig 12345678000 1 -> 1 -ddcms722 comparesig 1 12345678000 -> -1 -ddcms723 comparesig 1234567800 1 -> 1 -ddcms724 comparesig 1 1234567800 -> -1 -ddcms725 comparesig 1234567890 1 -> 1 -ddcms726 comparesig 1 1234567890 -> -1 -ddcms727 comparesig 1234567891 1 -> 1 -ddcms728 comparesig 1 1234567891 -> -1 -ddcms729 comparesig 12345678901 1 -> 1 -ddcms730 comparesig 1 12345678901 -> -1 -ddcms731 comparesig 1234567896 1 -> 1 -ddcms732 comparesig 1 1234567896 -> -1 - --- residue cases at lower precision -ddcms740 comparesig 1 0.9999999 -> 1 -ddcms741 comparesig 1 0.999999 -> 1 -ddcms742 comparesig 1 0.99999 -> 1 -ddcms743 comparesig 1 1.0000 -> 0 -ddcms744 comparesig 1 1.00001 -> -1 -ddcms745 comparesig 1 1.000001 -> -1 -ddcms746 comparesig 1 1.0000001 -> -1 -ddcms750 comparesig 0.9999999 1 -> -1 -ddcms751 comparesig 0.999999 1 -> -1 -ddcms752 comparesig 0.99999 1 -> -1 -ddcms753 comparesig 1.0000 1 -> 0 -ddcms754 comparesig 1.00001 1 -> 1 -ddcms755 comparesig 1.000001 1 -> 1 -ddcms756 comparesig 1.0000001 1 -> 1 - --- Specials -ddcms780 comparesig Inf -Inf -> 1 -ddcms781 comparesig Inf -1000 -> 1 -ddcms782 comparesig Inf -1 -> 1 -ddcms783 comparesig Inf -0 -> 1 -ddcms784 comparesig Inf 0 -> 1 -ddcms785 comparesig Inf 1 -> 1 -ddcms786 comparesig Inf 1000 -> 1 -ddcms787 comparesig Inf Inf -> 0 -ddcms788 comparesig -1000 Inf -> -1 -ddcms789 comparesig -Inf Inf -> -1 -ddcms790 comparesig -1 Inf -> -1 -ddcms791 comparesig -0 Inf -> -1 -ddcms792 comparesig 0 Inf -> -1 -ddcms793 comparesig 1 Inf -> -1 -ddcms794 comparesig 1000 Inf -> -1 -ddcms795 comparesig Inf Inf -> 0 - -ddcms800 comparesig -Inf -Inf -> 0 -ddcms801 comparesig -Inf -1000 -> -1 -ddcms802 comparesig -Inf -1 -> -1 -ddcms803 comparesig -Inf -0 -> -1 -ddcms804 comparesig -Inf 0 -> -1 -ddcms805 comparesig -Inf 1 -> -1 -ddcms806 comparesig -Inf 1000 -> -1 -ddcms807 comparesig -Inf Inf -> -1 -ddcms808 comparesig -Inf -Inf -> 0 -ddcms809 comparesig -1000 -Inf -> 1 -ddcms810 comparesig -1 -Inf -> 1 -ddcms811 comparesig -0 -Inf -> 1 -ddcms812 comparesig 0 -Inf -> 1 -ddcms813 comparesig 1 -Inf -> 1 -ddcms814 comparesig 1000 -Inf -> 1 -ddcms815 comparesig Inf -Inf -> 1 - -ddcms821 comparesig NaN -Inf -> NaN Invalid_operation -ddcms822 comparesig NaN -1000 -> NaN Invalid_operation -ddcms823 comparesig NaN -1 -> NaN Invalid_operation -ddcms824 comparesig NaN -0 -> NaN Invalid_operation -ddcms825 comparesig NaN 0 -> NaN Invalid_operation -ddcms826 comparesig NaN 1 -> NaN Invalid_operation -ddcms827 comparesig NaN 1000 -> NaN Invalid_operation -ddcms828 comparesig NaN Inf -> NaN Invalid_operation -ddcms829 comparesig NaN NaN -> NaN Invalid_operation -ddcms830 comparesig -Inf NaN -> NaN Invalid_operation -ddcms831 comparesig -1000 NaN -> NaN Invalid_operation -ddcms832 comparesig -1 NaN -> NaN Invalid_operation -ddcms833 comparesig -0 NaN -> NaN Invalid_operation -ddcms834 comparesig 0 NaN -> NaN Invalid_operation -ddcms835 comparesig 1 NaN -> NaN Invalid_operation -ddcms836 comparesig 1000 NaN -> NaN Invalid_operation -ddcms837 comparesig Inf NaN -> NaN Invalid_operation -ddcms838 comparesig -NaN -NaN -> -NaN Invalid_operation -ddcms839 comparesig +NaN -NaN -> NaN Invalid_operation -ddcms840 comparesig -NaN +NaN -> -NaN Invalid_operation - -ddcms841 comparesig sNaN -Inf -> NaN Invalid_operation -ddcms842 comparesig sNaN -1000 -> NaN Invalid_operation -ddcms843 comparesig sNaN -1 -> NaN Invalid_operation -ddcms844 comparesig sNaN -0 -> NaN Invalid_operation -ddcms845 comparesig sNaN 0 -> NaN Invalid_operation -ddcms846 comparesig sNaN 1 -> NaN Invalid_operation -ddcms847 comparesig sNaN 1000 -> NaN Invalid_operation -ddcms848 comparesig sNaN NaN -> NaN Invalid_operation -ddcms849 comparesig sNaN sNaN -> NaN Invalid_operation -ddcms850 comparesig NaN sNaN -> NaN Invalid_operation -ddcms851 comparesig -Inf sNaN -> NaN Invalid_operation -ddcms852 comparesig -1000 sNaN -> NaN Invalid_operation -ddcms853 comparesig -1 sNaN -> NaN Invalid_operation -ddcms854 comparesig -0 sNaN -> NaN Invalid_operation -ddcms855 comparesig 0 sNaN -> NaN Invalid_operation -ddcms856 comparesig 1 sNaN -> NaN Invalid_operation -ddcms857 comparesig 1000 sNaN -> NaN Invalid_operation -ddcms858 comparesig Inf sNaN -> NaN Invalid_operation -ddcms859 comparesig NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddcms860 comparesig NaN9 -Inf -> NaN9 Invalid_operation -ddcms861 comparesig NaN8 999 -> NaN8 Invalid_operation -ddcms862 comparesig NaN77 Inf -> NaN77 Invalid_operation -ddcms863 comparesig -NaN67 NaN5 -> -NaN67 Invalid_operation -ddcms864 comparesig -Inf -NaN4 -> -NaN4 Invalid_operation -ddcms865 comparesig -999 -NaN33 -> -NaN33 Invalid_operation -ddcms866 comparesig Inf NaN2 -> NaN2 Invalid_operation -ddcms867 comparesig -NaN41 -NaN42 -> -NaN41 Invalid_operation -ddcms868 comparesig +NaN41 -NaN42 -> NaN41 Invalid_operation -ddcms869 comparesig -NaN41 +NaN42 -> -NaN41 Invalid_operation -ddcms870 comparesig +NaN41 +NaN42 -> NaN41 Invalid_operation - -ddcms871 comparesig -sNaN99 -Inf -> -NaN99 Invalid_operation -ddcms872 comparesig sNaN98 -11 -> NaN98 Invalid_operation -ddcms873 comparesig sNaN97 NaN -> NaN97 Invalid_operation -ddcms874 comparesig sNaN16 sNaN94 -> NaN16 Invalid_operation -ddcms875 comparesig NaN85 sNaN83 -> NaN83 Invalid_operation -ddcms876 comparesig -Inf sNaN92 -> NaN92 Invalid_operation -ddcms877 comparesig 088 sNaN81 -> NaN81 Invalid_operation -ddcms878 comparesig Inf sNaN90 -> NaN90 Invalid_operation -ddcms879 comparesig NaN -sNaN89 -> -NaN89 Invalid_operation - --- wide range -ddcms880 comparesig +1.23456789012345E-0 9E+384 -> -1 -ddcms881 comparesig 9E+384 +1.23456789012345E-0 -> 1 -ddcms882 comparesig +0.100 9E-383 -> 1 -ddcms883 comparesig 9E-383 +0.100 -> -1 -ddcms885 comparesig -1.23456789012345E-0 9E+384 -> -1 -ddcms886 comparesig 9E+384 -1.23456789012345E-0 -> 1 -ddcms887 comparesig -0.100 9E-383 -> -1 -ddcms888 comparesig 9E-383 -0.100 -> 1 - --- signs -ddcms901 comparesig 1e+77 1e+11 -> 1 -ddcms902 comparesig 1e+77 -1e+11 -> 1 -ddcms903 comparesig -1e+77 1e+11 -> -1 -ddcms904 comparesig -1e+77 -1e+11 -> -1 -ddcms905 comparesig 1e-77 1e-11 -> -1 -ddcms906 comparesig 1e-77 -1e-11 -> 1 -ddcms907 comparesig -1e-77 1e-11 -> -1 -ddcms908 comparesig -1e-77 -1e-11 -> 1 - --- Null tests -ddcms990 comparesig 10 # -> NaN Invalid_operation -ddcms991 comparesig # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddCompareTotal.decTest b/qdecimal/test/tc_full/ddCompareTotal.decTest deleted file mode 100644 index 21aaf1c..0000000 --- a/qdecimal/test/tc_full/ddCompareTotal.decTest +++ /dev/null @@ -1,706 +0,0 @@ ------------------------------------------------------------------------- --- ddCompareTotal.decTest -- decDouble comparison using total ordering-- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). --- Similarly, comparetotal will have some radically different paths --- than compare. - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddcot001 comparetotal -2 -2 -> 0 -ddcot002 comparetotal -2 -1 -> -1 -ddcot003 comparetotal -2 0 -> -1 -ddcot004 comparetotal -2 1 -> -1 -ddcot005 comparetotal -2 2 -> -1 -ddcot006 comparetotal -1 -2 -> 1 -ddcot007 comparetotal -1 -1 -> 0 -ddcot008 comparetotal -1 0 -> -1 -ddcot009 comparetotal -1 1 -> -1 -ddcot010 comparetotal -1 2 -> -1 -ddcot011 comparetotal 0 -2 -> 1 -ddcot012 comparetotal 0 -1 -> 1 -ddcot013 comparetotal 0 0 -> 0 -ddcot014 comparetotal 0 1 -> -1 -ddcot015 comparetotal 0 2 -> -1 -ddcot016 comparetotal 1 -2 -> 1 -ddcot017 comparetotal 1 -1 -> 1 -ddcot018 comparetotal 1 0 -> 1 -ddcot019 comparetotal 1 1 -> 0 -ddcot020 comparetotal 1 2 -> -1 -ddcot021 comparetotal 2 -2 -> 1 -ddcot022 comparetotal 2 -1 -> 1 -ddcot023 comparetotal 2 0 -> 1 -ddcot025 comparetotal 2 1 -> 1 -ddcot026 comparetotal 2 2 -> 0 - -ddcot031 comparetotal -20 -20 -> 0 -ddcot032 comparetotal -20 -10 -> -1 -ddcot033 comparetotal -20 00 -> -1 -ddcot034 comparetotal -20 10 -> -1 -ddcot035 comparetotal -20 20 -> -1 -ddcot036 comparetotal -10 -20 -> 1 -ddcot037 comparetotal -10 -10 -> 0 -ddcot038 comparetotal -10 00 -> -1 -ddcot039 comparetotal -10 10 -> -1 -ddcot040 comparetotal -10 20 -> -1 -ddcot041 comparetotal 00 -20 -> 1 -ddcot042 comparetotal 00 -10 -> 1 -ddcot043 comparetotal 00 00 -> 0 -ddcot044 comparetotal 00 10 -> -1 -ddcot045 comparetotal 00 20 -> -1 -ddcot046 comparetotal 10 -20 -> 1 -ddcot047 comparetotal 10 -10 -> 1 -ddcot048 comparetotal 10 00 -> 1 -ddcot049 comparetotal 10 10 -> 0 -ddcot050 comparetotal 10 20 -> -1 -ddcot051 comparetotal 20 -20 -> 1 -ddcot052 comparetotal 20 -10 -> 1 -ddcot053 comparetotal 20 00 -> 1 -ddcot055 comparetotal 20 10 -> 1 -ddcot056 comparetotal 20 20 -> 0 - -ddcot061 comparetotal -2.0 -2.0 -> 0 -ddcot062 comparetotal -2.0 -1.0 -> -1 -ddcot063 comparetotal -2.0 0.0 -> -1 -ddcot064 comparetotal -2.0 1.0 -> -1 -ddcot065 comparetotal -2.0 2.0 -> -1 -ddcot066 comparetotal -1.0 -2.0 -> 1 -ddcot067 comparetotal -1.0 -1.0 -> 0 -ddcot068 comparetotal -1.0 0.0 -> -1 -ddcot069 comparetotal -1.0 1.0 -> -1 -ddcot070 comparetotal -1.0 2.0 -> -1 -ddcot071 comparetotal 0.0 -2.0 -> 1 -ddcot072 comparetotal 0.0 -1.0 -> 1 -ddcot073 comparetotal 0.0 0.0 -> 0 -ddcot074 comparetotal 0.0 1.0 -> -1 -ddcot075 comparetotal 0.0 2.0 -> -1 -ddcot076 comparetotal 1.0 -2.0 -> 1 -ddcot077 comparetotal 1.0 -1.0 -> 1 -ddcot078 comparetotal 1.0 0.0 -> 1 -ddcot079 comparetotal 1.0 1.0 -> 0 -ddcot080 comparetotal 1.0 2.0 -> -1 -ddcot081 comparetotal 2.0 -2.0 -> 1 -ddcot082 comparetotal 2.0 -1.0 -> 1 -ddcot083 comparetotal 2.0 0.0 -> 1 -ddcot085 comparetotal 2.0 1.0 -> 1 -ddcot086 comparetotal 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -ddcot090 comparetotal 9.99999999E+384 9.99999999E+384 -> 0 -ddcot091 comparetotal -9.99999999E+384 9.99999999E+384 -> -1 -ddcot092 comparetotal 9.99999999E+384 -9.99999999E+384 -> 1 -ddcot093 comparetotal -9.99999999E+384 -9.99999999E+384 -> 0 - --- some differing length/exponent cases --- in this first group, compare would compare all equal -ddcot100 comparetotal 7.0 7.0 -> 0 -ddcot101 comparetotal 7.0 7 -> -1 -ddcot102 comparetotal 7 7.0 -> 1 -ddcot103 comparetotal 7E+0 7.0 -> 1 -ddcot104 comparetotal 70E-1 7.0 -> 0 -ddcot105 comparetotal 0.7E+1 7 -> 0 -ddcot106 comparetotal 70E-1 7 -> -1 -ddcot107 comparetotal 7.0 7E+0 -> -1 -ddcot108 comparetotal 7.0 70E-1 -> 0 -ddcot109 comparetotal 7 0.7E+1 -> 0 -ddcot110 comparetotal 7 70E-1 -> 1 - -ddcot120 comparetotal 8.0 7.0 -> 1 -ddcot121 comparetotal 8.0 7 -> 1 -ddcot122 comparetotal 8 7.0 -> 1 -ddcot123 comparetotal 8E+0 7.0 -> 1 -ddcot124 comparetotal 80E-1 7.0 -> 1 -ddcot125 comparetotal 0.8E+1 7 -> 1 -ddcot126 comparetotal 80E-1 7 -> 1 -ddcot127 comparetotal 8.0 7E+0 -> 1 -ddcot128 comparetotal 8.0 70E-1 -> 1 -ddcot129 comparetotal 8 0.7E+1 -> 1 -ddcot130 comparetotal 8 70E-1 -> 1 - -ddcot140 comparetotal 8.0 9.0 -> -1 -ddcot141 comparetotal 8.0 9 -> -1 -ddcot142 comparetotal 8 9.0 -> -1 -ddcot143 comparetotal 8E+0 9.0 -> -1 -ddcot144 comparetotal 80E-1 9.0 -> -1 -ddcot145 comparetotal 0.8E+1 9 -> -1 -ddcot146 comparetotal 80E-1 9 -> -1 -ddcot147 comparetotal 8.0 9E+0 -> -1 -ddcot148 comparetotal 8.0 90E-1 -> -1 -ddcot149 comparetotal 8 0.9E+1 -> -1 -ddcot150 comparetotal 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -ddcot200 comparetotal -7.0 7.0 -> -1 -ddcot201 comparetotal -7.0 7 -> -1 -ddcot202 comparetotal -7 7.0 -> -1 -ddcot203 comparetotal -7E+0 7.0 -> -1 -ddcot204 comparetotal -70E-1 7.0 -> -1 -ddcot205 comparetotal -0.7E+1 7 -> -1 -ddcot206 comparetotal -70E-1 7 -> -1 -ddcot207 comparetotal -7.0 7E+0 -> -1 -ddcot208 comparetotal -7.0 70E-1 -> -1 -ddcot209 comparetotal -7 0.7E+1 -> -1 -ddcot210 comparetotal -7 70E-1 -> -1 - -ddcot220 comparetotal -8.0 7.0 -> -1 -ddcot221 comparetotal -8.0 7 -> -1 -ddcot222 comparetotal -8 7.0 -> -1 -ddcot223 comparetotal -8E+0 7.0 -> -1 -ddcot224 comparetotal -80E-1 7.0 -> -1 -ddcot225 comparetotal -0.8E+1 7 -> -1 -ddcot226 comparetotal -80E-1 7 -> -1 -ddcot227 comparetotal -8.0 7E+0 -> -1 -ddcot228 comparetotal -8.0 70E-1 -> -1 -ddcot229 comparetotal -8 0.7E+1 -> -1 -ddcot230 comparetotal -8 70E-1 -> -1 - -ddcot240 comparetotal -8.0 9.0 -> -1 -ddcot241 comparetotal -8.0 9 -> -1 -ddcot242 comparetotal -8 9.0 -> -1 -ddcot243 comparetotal -8E+0 9.0 -> -1 -ddcot244 comparetotal -80E-1 9.0 -> -1 -ddcot245 comparetotal -0.8E+1 9 -> -1 -ddcot246 comparetotal -80E-1 9 -> -1 -ddcot247 comparetotal -8.0 9E+0 -> -1 -ddcot248 comparetotal -8.0 90E-1 -> -1 -ddcot249 comparetotal -8 0.9E+1 -> -1 -ddcot250 comparetotal -8 90E-1 -> -1 - --- and again, with sign changes +- .. -ddcot300 comparetotal 7.0 -7.0 -> 1 -ddcot301 comparetotal 7.0 -7 -> 1 -ddcot302 comparetotal 7 -7.0 -> 1 -ddcot303 comparetotal 7E+0 -7.0 -> 1 -ddcot304 comparetotal 70E-1 -7.0 -> 1 -ddcot305 comparetotal .7E+1 -7 -> 1 -ddcot306 comparetotal 70E-1 -7 -> 1 -ddcot307 comparetotal 7.0 -7E+0 -> 1 -ddcot308 comparetotal 7.0 -70E-1 -> 1 -ddcot309 comparetotal 7 -.7E+1 -> 1 -ddcot310 comparetotal 7 -70E-1 -> 1 - -ddcot320 comparetotal 8.0 -7.0 -> 1 -ddcot321 comparetotal 8.0 -7 -> 1 -ddcot322 comparetotal 8 -7.0 -> 1 -ddcot323 comparetotal 8E+0 -7.0 -> 1 -ddcot324 comparetotal 80E-1 -7.0 -> 1 -ddcot325 comparetotal .8E+1 -7 -> 1 -ddcot326 comparetotal 80E-1 -7 -> 1 -ddcot327 comparetotal 8.0 -7E+0 -> 1 -ddcot328 comparetotal 8.0 -70E-1 -> 1 -ddcot329 comparetotal 8 -.7E+1 -> 1 -ddcot330 comparetotal 8 -70E-1 -> 1 - -ddcot340 comparetotal 8.0 -9.0 -> 1 -ddcot341 comparetotal 8.0 -9 -> 1 -ddcot342 comparetotal 8 -9.0 -> 1 -ddcot343 comparetotal 8E+0 -9.0 -> 1 -ddcot344 comparetotal 80E-1 -9.0 -> 1 -ddcot345 comparetotal .8E+1 -9 -> 1 -ddcot346 comparetotal 80E-1 -9 -> 1 -ddcot347 comparetotal 8.0 -9E+0 -> 1 -ddcot348 comparetotal 8.0 -90E-1 -> 1 -ddcot349 comparetotal 8 -.9E+1 -> 1 -ddcot350 comparetotal 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -ddcot400 comparetotal -7.0 -7.0 -> 0 -ddcot401 comparetotal -7.0 -7 -> 1 -ddcot402 comparetotal -7 -7.0 -> -1 -ddcot403 comparetotal -7E+0 -7.0 -> -1 -ddcot404 comparetotal -70E-1 -7.0 -> 0 -ddcot405 comparetotal -.7E+1 -7 -> 0 -ddcot406 comparetotal -70E-1 -7 -> 1 -ddcot407 comparetotal -7.0 -7E+0 -> 1 -ddcot408 comparetotal -7.0 -70E-1 -> 0 -ddcot409 comparetotal -7 -.7E+1 -> 0 -ddcot410 comparetotal -7 -70E-1 -> -1 - -ddcot420 comparetotal -8.0 -7.0 -> -1 -ddcot421 comparetotal -8.0 -7 -> -1 -ddcot422 comparetotal -8 -7.0 -> -1 -ddcot423 comparetotal -8E+0 -7.0 -> -1 -ddcot424 comparetotal -80E-1 -7.0 -> -1 -ddcot425 comparetotal -.8E+1 -7 -> -1 -ddcot426 comparetotal -80E-1 -7 -> -1 -ddcot427 comparetotal -8.0 -7E+0 -> -1 -ddcot428 comparetotal -8.0 -70E-1 -> -1 -ddcot429 comparetotal -8 -.7E+1 -> -1 -ddcot430 comparetotal -8 -70E-1 -> -1 - -ddcot440 comparetotal -8.0 -9.0 -> 1 -ddcot441 comparetotal -8.0 -9 -> 1 -ddcot442 comparetotal -8 -9.0 -> 1 -ddcot443 comparetotal -8E+0 -9.0 -> 1 -ddcot444 comparetotal -80E-1 -9.0 -> 1 -ddcot445 comparetotal -.8E+1 -9 -> 1 -ddcot446 comparetotal -80E-1 -9 -> 1 -ddcot447 comparetotal -8.0 -9E+0 -> 1 -ddcot448 comparetotal -8.0 -90E-1 -> 1 -ddcot449 comparetotal -8 -.9E+1 -> 1 -ddcot450 comparetotal -8 -90E-1 -> 1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -ddcot473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1 -ddcot474 comparetotal 123.456000000000E+89 123.456E+89 -> -1 -ddcot475 comparetotal 123.45600000000E-89 123.456E-89 -> -1 -ddcot476 comparetotal 123.4560000000E+89 123.456E+89 -> -1 -ddcot477 comparetotal 123.456000000E-89 123.456E-89 -> -1 -ddcot478 comparetotal 123.45600000E+89 123.456E+89 -> -1 -ddcot479 comparetotal 123.4560000E-89 123.456E-89 -> -1 -ddcot480 comparetotal 123.456000E+89 123.456E+89 -> -1 -ddcot481 comparetotal 123.45600E-89 123.456E-89 -> -1 -ddcot482 comparetotal 123.4560E+89 123.456E+89 -> -1 -ddcot483 comparetotal 123.456E-89 123.456E-89 -> 0 -ddcot487 comparetotal 123.456E+89 123.4560000000000E+89 -> 1 -ddcot488 comparetotal 123.456E-89 123.456000000000E-89 -> 1 -ddcot489 comparetotal 123.456E+89 123.45600000000E+89 -> 1 -ddcot490 comparetotal 123.456E-89 123.4560000000E-89 -> 1 -ddcot491 comparetotal 123.456E+89 123.456000000E+89 -> 1 -ddcot492 comparetotal 123.456E-89 123.45600000E-89 -> 1 -ddcot493 comparetotal 123.456E+89 123.4560000E+89 -> 1 -ddcot494 comparetotal 123.456E-89 123.456000E-89 -> 1 -ddcot495 comparetotal 123.456E+89 123.45600E+89 -> 1 -ddcot496 comparetotal 123.456E-89 123.4560E-89 -> 1 -ddcot497 comparetotal 123.456E+89 123.456E+89 -> 0 - --- wide-ranging, around precision; signs equal -ddcot498 comparetotal 1 1E-17 -> 1 -ddcot499 comparetotal 1 1E-16 -> 1 -ddcot500 comparetotal 1 1E-15 -> 1 -ddcot501 comparetotal 1 1E-14 -> 1 -ddcot502 comparetotal 1 1E-13 -> 1 -ddcot503 comparetotal 1 1E-12 -> 1 -ddcot504 comparetotal 1 1E-11 -> 1 -ddcot505 comparetotal 1 1E-10 -> 1 -ddcot506 comparetotal 1 1E-9 -> 1 -ddcot507 comparetotal 1 1E-8 -> 1 -ddcot508 comparetotal 1 1E-7 -> 1 -ddcot509 comparetotal 1 1E-6 -> 1 -ddcot510 comparetotal 1 1E-5 -> 1 -ddcot511 comparetotal 1 1E-4 -> 1 -ddcot512 comparetotal 1 1E-3 -> 1 -ddcot513 comparetotal 1 1E-2 -> 1 -ddcot514 comparetotal 1 1E-1 -> 1 -ddcot515 comparetotal 1 1E-0 -> 0 -ddcot516 comparetotal 1 1E+1 -> -1 -ddcot517 comparetotal 1 1E+2 -> -1 -ddcot518 comparetotal 1 1E+3 -> -1 -ddcot519 comparetotal 1 1E+4 -> -1 -ddcot521 comparetotal 1 1E+5 -> -1 -ddcot522 comparetotal 1 1E+6 -> -1 -ddcot523 comparetotal 1 1E+7 -> -1 -ddcot524 comparetotal 1 1E+8 -> -1 -ddcot525 comparetotal 1 1E+9 -> -1 -ddcot526 comparetotal 1 1E+10 -> -1 -ddcot527 comparetotal 1 1E+11 -> -1 -ddcot528 comparetotal 1 1E+12 -> -1 -ddcot529 comparetotal 1 1E+13 -> -1 -ddcot530 comparetotal 1 1E+14 -> -1 -ddcot531 comparetotal 1 1E+15 -> -1 -ddcot532 comparetotal 1 1E+16 -> -1 -ddcot533 comparetotal 1 1E+17 -> -1 --- LR swap -ddcot538 comparetotal 1E-17 1 -> -1 -ddcot539 comparetotal 1E-16 1 -> -1 -ddcot540 comparetotal 1E-15 1 -> -1 -ddcot541 comparetotal 1E-14 1 -> -1 -ddcot542 comparetotal 1E-13 1 -> -1 -ddcot543 comparetotal 1E-12 1 -> -1 -ddcot544 comparetotal 1E-11 1 -> -1 -ddcot545 comparetotal 1E-10 1 -> -1 -ddcot546 comparetotal 1E-9 1 -> -1 -ddcot547 comparetotal 1E-8 1 -> -1 -ddcot548 comparetotal 1E-7 1 -> -1 -ddcot549 comparetotal 1E-6 1 -> -1 -ddcot550 comparetotal 1E-5 1 -> -1 -ddcot551 comparetotal 1E-4 1 -> -1 -ddcot552 comparetotal 1E-3 1 -> -1 -ddcot553 comparetotal 1E-2 1 -> -1 -ddcot554 comparetotal 1E-1 1 -> -1 -ddcot555 comparetotal 1E-0 1 -> 0 -ddcot556 comparetotal 1E+1 1 -> 1 -ddcot557 comparetotal 1E+2 1 -> 1 -ddcot558 comparetotal 1E+3 1 -> 1 -ddcot559 comparetotal 1E+4 1 -> 1 -ddcot561 comparetotal 1E+5 1 -> 1 -ddcot562 comparetotal 1E+6 1 -> 1 -ddcot563 comparetotal 1E+7 1 -> 1 -ddcot564 comparetotal 1E+8 1 -> 1 -ddcot565 comparetotal 1E+9 1 -> 1 -ddcot566 comparetotal 1E+10 1 -> 1 -ddcot567 comparetotal 1E+11 1 -> 1 -ddcot568 comparetotal 1E+12 1 -> 1 -ddcot569 comparetotal 1E+13 1 -> 1 -ddcot570 comparetotal 1E+14 1 -> 1 -ddcot571 comparetotal 1E+15 1 -> 1 -ddcot572 comparetotal 1E+16 1 -> 1 -ddcot573 comparetotal 1E+17 1 -> 1 --- similar with a useful coefficient, one side only -ddcot578 comparetotal 0.000000987654321 1E-17 -> 1 -ddcot579 comparetotal 0.000000987654321 1E-16 -> 1 -ddcot580 comparetotal 0.000000987654321 1E-15 -> 1 -ddcot581 comparetotal 0.000000987654321 1E-14 -> 1 -ddcot582 comparetotal 0.000000987654321 1E-13 -> 1 -ddcot583 comparetotal 0.000000987654321 1E-12 -> 1 -ddcot584 comparetotal 0.000000987654321 1E-11 -> 1 -ddcot585 comparetotal 0.000000987654321 1E-10 -> 1 -ddcot586 comparetotal 0.000000987654321 1E-9 -> 1 -ddcot587 comparetotal 0.000000987654321 1E-8 -> 1 -ddcot588 comparetotal 0.000000987654321 1E-7 -> 1 -ddcot589 comparetotal 0.000000987654321 1E-6 -> -1 -ddcot590 comparetotal 0.000000987654321 1E-5 -> -1 -ddcot591 comparetotal 0.000000987654321 1E-4 -> -1 -ddcot592 comparetotal 0.000000987654321 1E-3 -> -1 -ddcot593 comparetotal 0.000000987654321 1E-2 -> -1 -ddcot594 comparetotal 0.000000987654321 1E-1 -> -1 -ddcot595 comparetotal 0.000000987654321 1E-0 -> -1 -ddcot596 comparetotal 0.000000987654321 1E+1 -> -1 -ddcot597 comparetotal 0.000000987654321 1E+2 -> -1 -ddcot598 comparetotal 0.000000987654321 1E+3 -> -1 -ddcot599 comparetotal 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -ddcot600 comparetotal 12 12.2345 -> -1 -ddcot601 comparetotal 12.0 12.2345 -> -1 -ddcot602 comparetotal 12.00 12.2345 -> -1 -ddcot603 comparetotal 12.000 12.2345 -> -1 -ddcot604 comparetotal 12.0000 12.2345 -> -1 -ddcot605 comparetotal 12.00000 12.2345 -> -1 -ddcot606 comparetotal 12.000000 12.2345 -> -1 -ddcot607 comparetotal 12.0000000 12.2345 -> -1 -ddcot608 comparetotal 12.00000000 12.2345 -> -1 -ddcot609 comparetotal 12.000000000 12.2345 -> -1 -ddcot610 comparetotal 12.1234 12 -> 1 -ddcot611 comparetotal 12.1234 12.0 -> 1 -ddcot612 comparetotal 12.1234 12.00 -> 1 -ddcot613 comparetotal 12.1234 12.000 -> 1 -ddcot614 comparetotal 12.1234 12.0000 -> 1 -ddcot615 comparetotal 12.1234 12.00000 -> 1 -ddcot616 comparetotal 12.1234 12.000000 -> 1 -ddcot617 comparetotal 12.1234 12.0000000 -> 1 -ddcot618 comparetotal 12.1234 12.00000000 -> 1 -ddcot619 comparetotal 12.1234 12.000000000 -> 1 -ddcot620 comparetotal -12 -12.2345 -> 1 -ddcot621 comparetotal -12.0 -12.2345 -> 1 -ddcot622 comparetotal -12.00 -12.2345 -> 1 -ddcot623 comparetotal -12.000 -12.2345 -> 1 -ddcot624 comparetotal -12.0000 -12.2345 -> 1 -ddcot625 comparetotal -12.00000 -12.2345 -> 1 -ddcot626 comparetotal -12.000000 -12.2345 -> 1 -ddcot627 comparetotal -12.0000000 -12.2345 -> 1 -ddcot628 comparetotal -12.00000000 -12.2345 -> 1 -ddcot629 comparetotal -12.000000000 -12.2345 -> 1 -ddcot630 comparetotal -12.1234 -12 -> -1 -ddcot631 comparetotal -12.1234 -12.0 -> -1 -ddcot632 comparetotal -12.1234 -12.00 -> -1 -ddcot633 comparetotal -12.1234 -12.000 -> -1 -ddcot634 comparetotal -12.1234 -12.0000 -> -1 -ddcot635 comparetotal -12.1234 -12.00000 -> -1 -ddcot636 comparetotal -12.1234 -12.000000 -> -1 -ddcot637 comparetotal -12.1234 -12.0000000 -> -1 -ddcot638 comparetotal -12.1234 -12.00000000 -> -1 -ddcot639 comparetotal -12.1234 -12.000000000 -> -1 - --- extended zeros -ddcot640 comparetotal 0 0 -> 0 -ddcot641 comparetotal 0 -0 -> 1 -ddcot642 comparetotal 0 -0.0 -> 1 -ddcot643 comparetotal 0 0.0 -> 1 -ddcot644 comparetotal -0 0 -> -1 -ddcot645 comparetotal -0 -0 -> 0 -ddcot646 comparetotal -0 -0.0 -> -1 -ddcot647 comparetotal -0 0.0 -> -1 -ddcot648 comparetotal 0.0 0 -> -1 -ddcot649 comparetotal 0.0 -0 -> 1 -ddcot650 comparetotal 0.0 -0.0 -> 1 -ddcot651 comparetotal 0.0 0.0 -> 0 -ddcot652 comparetotal -0.0 0 -> -1 -ddcot653 comparetotal -0.0 -0 -> 1 -ddcot654 comparetotal -0.0 -0.0 -> 0 -ddcot655 comparetotal -0.0 0.0 -> -1 - -ddcot656 comparetotal -0E1 0.0 -> -1 -ddcot657 comparetotal -0E2 0.0 -> -1 -ddcot658 comparetotal 0E1 0.0 -> 1 -ddcot659 comparetotal 0E2 0.0 -> 1 -ddcot660 comparetotal -0E1 0 -> -1 -ddcot661 comparetotal -0E2 0 -> -1 -ddcot662 comparetotal 0E1 0 -> 1 -ddcot663 comparetotal 0E2 0 -> 1 -ddcot664 comparetotal -0E1 -0E1 -> 0 -ddcot665 comparetotal -0E2 -0E1 -> -1 -ddcot666 comparetotal 0E1 -0E1 -> 1 -ddcot667 comparetotal 0E2 -0E1 -> 1 -ddcot668 comparetotal -0E1 -0E2 -> 1 -ddcot669 comparetotal -0E2 -0E2 -> 0 -ddcot670 comparetotal 0E1 -0E2 -> 1 -ddcot671 comparetotal 0E2 -0E2 -> 1 -ddcot672 comparetotal -0E1 0E1 -> -1 -ddcot673 comparetotal -0E2 0E1 -> -1 -ddcot674 comparetotal 0E1 0E1 -> 0 -ddcot675 comparetotal 0E2 0E1 -> 1 -ddcot676 comparetotal -0E1 0E2 -> -1 -ddcot677 comparetotal -0E2 0E2 -> -1 -ddcot678 comparetotal 0E1 0E2 -> -1 -ddcot679 comparetotal 0E2 0E2 -> 0 - --- trailing zeros; unit-y -ddcot680 comparetotal 12 12 -> 0 -ddcot681 comparetotal 12 12.0 -> 1 -ddcot682 comparetotal 12 12.00 -> 1 -ddcot683 comparetotal 12 12.000 -> 1 -ddcot684 comparetotal 12 12.0000 -> 1 -ddcot685 comparetotal 12 12.00000 -> 1 -ddcot686 comparetotal 12 12.000000 -> 1 -ddcot687 comparetotal 12 12.0000000 -> 1 -ddcot688 comparetotal 12 12.00000000 -> 1 -ddcot689 comparetotal 12 12.000000000 -> 1 -ddcot690 comparetotal 12 12 -> 0 -ddcot691 comparetotal 12.0 12 -> -1 -ddcot692 comparetotal 12.00 12 -> -1 -ddcot693 comparetotal 12.000 12 -> -1 -ddcot694 comparetotal 12.0000 12 -> -1 -ddcot695 comparetotal 12.00000 12 -> -1 -ddcot696 comparetotal 12.000000 12 -> -1 -ddcot697 comparetotal 12.0000000 12 -> -1 -ddcot698 comparetotal 12.00000000 12 -> -1 -ddcot699 comparetotal 12.000000000 12 -> -1 - --- old long operand checks -ddcot701 comparetotal 12345678000 1 -> 1 -ddcot702 comparetotal 1 12345678000 -> -1 -ddcot703 comparetotal 1234567800 1 -> 1 -ddcot704 comparetotal 1 1234567800 -> -1 -ddcot705 comparetotal 1234567890 1 -> 1 -ddcot706 comparetotal 1 1234567890 -> -1 -ddcot707 comparetotal 1234567891 1 -> 1 -ddcot708 comparetotal 1 1234567891 -> -1 -ddcot709 comparetotal 12345678901 1 -> 1 -ddcot710 comparetotal 1 12345678901 -> -1 -ddcot711 comparetotal 1234567896 1 -> 1 -ddcot712 comparetotal 1 1234567896 -> -1 -ddcot713 comparetotal -1234567891 1 -> -1 -ddcot714 comparetotal 1 -1234567891 -> 1 -ddcot715 comparetotal -12345678901 1 -> -1 -ddcot716 comparetotal 1 -12345678901 -> 1 -ddcot717 comparetotal -1234567896 1 -> -1 -ddcot718 comparetotal 1 -1234567896 -> 1 - --- old residue cases -ddcot740 comparetotal 1 0.9999999 -> 1 -ddcot741 comparetotal 1 0.999999 -> 1 -ddcot742 comparetotal 1 0.99999 -> 1 -ddcot743 comparetotal 1 1.0000 -> 1 -ddcot744 comparetotal 1 1.00001 -> -1 -ddcot745 comparetotal 1 1.000001 -> -1 -ddcot746 comparetotal 1 1.0000001 -> -1 -ddcot750 comparetotal 0.9999999 1 -> -1 -ddcot751 comparetotal 0.999999 1 -> -1 -ddcot752 comparetotal 0.99999 1 -> -1 -ddcot753 comparetotal 1.0000 1 -> -1 -ddcot754 comparetotal 1.00001 1 -> 1 -ddcot755 comparetotal 1.000001 1 -> 1 -ddcot756 comparetotal 1.0000001 1 -> 1 - --- Specials -ddcot780 comparetotal Inf -Inf -> 1 -ddcot781 comparetotal Inf -1000 -> 1 -ddcot782 comparetotal Inf -1 -> 1 -ddcot783 comparetotal Inf -0 -> 1 -ddcot784 comparetotal Inf 0 -> 1 -ddcot785 comparetotal Inf 1 -> 1 -ddcot786 comparetotal Inf 1000 -> 1 -ddcot787 comparetotal Inf Inf -> 0 -ddcot788 comparetotal -1000 Inf -> -1 -ddcot789 comparetotal -Inf Inf -> -1 -ddcot790 comparetotal -1 Inf -> -1 -ddcot791 comparetotal -0 Inf -> -1 -ddcot792 comparetotal 0 Inf -> -1 -ddcot793 comparetotal 1 Inf -> -1 -ddcot794 comparetotal 1000 Inf -> -1 -ddcot795 comparetotal Inf Inf -> 0 - -ddcot800 comparetotal -Inf -Inf -> 0 -ddcot801 comparetotal -Inf -1000 -> -1 -ddcot802 comparetotal -Inf -1 -> -1 -ddcot803 comparetotal -Inf -0 -> -1 -ddcot804 comparetotal -Inf 0 -> -1 -ddcot805 comparetotal -Inf 1 -> -1 -ddcot806 comparetotal -Inf 1000 -> -1 -ddcot807 comparetotal -Inf Inf -> -1 -ddcot808 comparetotal -Inf -Inf -> 0 -ddcot809 comparetotal -1000 -Inf -> 1 -ddcot810 comparetotal -1 -Inf -> 1 -ddcot811 comparetotal -0 -Inf -> 1 -ddcot812 comparetotal 0 -Inf -> 1 -ddcot813 comparetotal 1 -Inf -> 1 -ddcot814 comparetotal 1000 -Inf -> 1 -ddcot815 comparetotal Inf -Inf -> 1 - -ddcot821 comparetotal NaN -Inf -> 1 -ddcot822 comparetotal NaN -1000 -> 1 -ddcot823 comparetotal NaN -1 -> 1 -ddcot824 comparetotal NaN -0 -> 1 -ddcot825 comparetotal NaN 0 -> 1 -ddcot826 comparetotal NaN 1 -> 1 -ddcot827 comparetotal NaN 1000 -> 1 -ddcot828 comparetotal NaN Inf -> 1 -ddcot829 comparetotal NaN NaN -> 0 -ddcot830 comparetotal -Inf NaN -> -1 -ddcot831 comparetotal -1000 NaN -> -1 -ddcot832 comparetotal -1 NaN -> -1 -ddcot833 comparetotal -0 NaN -> -1 -ddcot834 comparetotal 0 NaN -> -1 -ddcot835 comparetotal 1 NaN -> -1 -ddcot836 comparetotal 1000 NaN -> -1 -ddcot837 comparetotal Inf NaN -> -1 -ddcot838 comparetotal -NaN -NaN -> 0 -ddcot839 comparetotal +NaN -NaN -> 1 -ddcot840 comparetotal -NaN +NaN -> -1 - -ddcot841 comparetotal sNaN -sNaN -> 1 -ddcot842 comparetotal sNaN -NaN -> 1 -ddcot843 comparetotal sNaN -Inf -> 1 -ddcot844 comparetotal sNaN -1000 -> 1 -ddcot845 comparetotal sNaN -1 -> 1 -ddcot846 comparetotal sNaN -0 -> 1 -ddcot847 comparetotal sNaN 0 -> 1 -ddcot848 comparetotal sNaN 1 -> 1 -ddcot849 comparetotal sNaN 1000 -> 1 -ddcot850 comparetotal sNaN NaN -> -1 -ddcot851 comparetotal sNaN sNaN -> 0 - -ddcot852 comparetotal -sNaN sNaN -> -1 -ddcot853 comparetotal -NaN sNaN -> -1 -ddcot854 comparetotal -Inf sNaN -> -1 -ddcot855 comparetotal -1000 sNaN -> -1 -ddcot856 comparetotal -1 sNaN -> -1 -ddcot857 comparetotal -0 sNaN -> -1 -ddcot858 comparetotal 0 sNaN -> -1 -ddcot859 comparetotal 1 sNaN -> -1 -ddcot860 comparetotal 1000 sNaN -> -1 -ddcot861 comparetotal Inf sNaN -> -1 -ddcot862 comparetotal NaN sNaN -> 1 -ddcot863 comparetotal sNaN sNaN -> 0 - -ddcot871 comparetotal -sNaN -sNaN -> 0 -ddcot872 comparetotal -sNaN -NaN -> 1 -ddcot873 comparetotal -sNaN -Inf -> -1 -ddcot874 comparetotal -sNaN -1000 -> -1 -ddcot875 comparetotal -sNaN -1 -> -1 -ddcot876 comparetotal -sNaN -0 -> -1 -ddcot877 comparetotal -sNaN 0 -> -1 -ddcot878 comparetotal -sNaN 1 -> -1 -ddcot879 comparetotal -sNaN 1000 -> -1 -ddcot880 comparetotal -sNaN NaN -> -1 -ddcot881 comparetotal -sNaN sNaN -> -1 - -ddcot882 comparetotal -sNaN -sNaN -> 0 -ddcot883 comparetotal -NaN -sNaN -> -1 -ddcot884 comparetotal -Inf -sNaN -> 1 -ddcot885 comparetotal -1000 -sNaN -> 1 -ddcot886 comparetotal -1 -sNaN -> 1 -ddcot887 comparetotal -0 -sNaN -> 1 -ddcot888 comparetotal 0 -sNaN -> 1 -ddcot889 comparetotal 1 -sNaN -> 1 -ddcot890 comparetotal 1000 -sNaN -> 1 -ddcot891 comparetotal Inf -sNaN -> 1 -ddcot892 comparetotal NaN -sNaN -> 1 -ddcot893 comparetotal sNaN -sNaN -> 1 - --- NaNs with payload -ddcot960 comparetotal NaN9 -Inf -> 1 -ddcot961 comparetotal NaN8 999 -> 1 -ddcot962 comparetotal NaN77 Inf -> 1 -ddcot963 comparetotal -NaN67 NaN5 -> -1 -ddcot964 comparetotal -Inf -NaN4 -> 1 -ddcot965 comparetotal -999 -NaN33 -> 1 -ddcot966 comparetotal Inf NaN2 -> -1 - -ddcot970 comparetotal -NaN41 -NaN42 -> 1 -ddcot971 comparetotal +NaN41 -NaN42 -> 1 -ddcot972 comparetotal -NaN41 +NaN42 -> -1 -ddcot973 comparetotal +NaN41 +NaN42 -> -1 -ddcot974 comparetotal -NaN42 -NaN01 -> -1 -ddcot975 comparetotal +NaN42 -NaN01 -> 1 -ddcot976 comparetotal -NaN42 +NaN01 -> -1 -ddcot977 comparetotal +NaN42 +NaN01 -> 1 - -ddcot980 comparetotal -sNaN771 -sNaN772 -> 1 -ddcot981 comparetotal +sNaN771 -sNaN772 -> 1 -ddcot982 comparetotal -sNaN771 +sNaN772 -> -1 -ddcot983 comparetotal +sNaN771 +sNaN772 -> -1 -ddcot984 comparetotal -sNaN772 -sNaN771 -> -1 -ddcot985 comparetotal +sNaN772 -sNaN771 -> 1 -ddcot986 comparetotal -sNaN772 +sNaN771 -> -1 -ddcot987 comparetotal +sNaN772 +sNaN771 -> 1 - -ddcot991 comparetotal -sNaN99 -Inf -> -1 -ddcot992 comparetotal sNaN98 -11 -> 1 -ddcot993 comparetotal sNaN97 NaN -> -1 -ddcot994 comparetotal sNaN16 sNaN94 -> -1 -ddcot995 comparetotal NaN85 sNaN83 -> 1 -ddcot996 comparetotal -Inf sNaN92 -> -1 -ddcot997 comparetotal 088 sNaN81 -> -1 -ddcot998 comparetotal Inf sNaN90 -> -1 -ddcot999 comparetotal NaN -sNaN89 -> 1 - --- spread zeros -ddcot1110 comparetotal 0E-383 0 -> -1 -ddcot1111 comparetotal 0E-383 -0 -> 1 -ddcot1112 comparetotal -0E-383 0 -> -1 -ddcot1113 comparetotal -0E-383 -0 -> 1 -ddcot1114 comparetotal 0E-383 0E+384 -> -1 -ddcot1115 comparetotal 0E-383 -0E+384 -> 1 -ddcot1116 comparetotal -0E-383 0E+384 -> -1 -ddcot1117 comparetotal -0E-383 -0E+384 -> 1 -ddcot1118 comparetotal 0 0E+384 -> -1 -ddcot1119 comparetotal 0 -0E+384 -> 1 -ddcot1120 comparetotal -0 0E+384 -> -1 -ddcot1121 comparetotal -0 -0E+384 -> 1 - -ddcot1130 comparetotal 0E+384 0 -> 1 -ddcot1131 comparetotal 0E+384 -0 -> 1 -ddcot1132 comparetotal -0E+384 0 -> -1 -ddcot1133 comparetotal -0E+384 -0 -> -1 -ddcot1134 comparetotal 0E+384 0E-383 -> 1 -ddcot1135 comparetotal 0E+384 -0E-383 -> 1 -ddcot1136 comparetotal -0E+384 0E-383 -> -1 -ddcot1137 comparetotal -0E+384 -0E-383 -> -1 -ddcot1138 comparetotal 0 0E-383 -> 1 -ddcot1139 comparetotal 0 -0E-383 -> 1 -ddcot1140 comparetotal -0 0E-383 -> -1 -ddcot1141 comparetotal -0 -0E-383 -> -1 - --- Null tests -ddcot9990 comparetotal 10 # -> NaN Invalid_operation -ddcot9991 comparetotal # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddCompareTotalMag.decTest b/qdecimal/test/tc_full/ddCompareTotalMag.decTest deleted file mode 100644 index 7c9eb78..0000000 --- a/qdecimal/test/tc_full/ddCompareTotalMag.decTest +++ /dev/null @@ -1,706 +0,0 @@ ------------------------------------------------------------------------- --- ddCompareTotalMag.decTest -- decDouble comparison; abs. total order-- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). --- Similarly, comparetotal will have some radically different paths --- than compare. - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddctm001 comparetotmag -2 -2 -> 0 -ddctm002 comparetotmag -2 -1 -> 1 -ddctm003 comparetotmag -2 0 -> 1 -ddctm004 comparetotmag -2 1 -> 1 -ddctm005 comparetotmag -2 2 -> 0 -ddctm006 comparetotmag -1 -2 -> -1 -ddctm007 comparetotmag -1 -1 -> 0 -ddctm008 comparetotmag -1 0 -> 1 -ddctm009 comparetotmag -1 1 -> 0 -ddctm010 comparetotmag -1 2 -> -1 -ddctm011 comparetotmag 0 -2 -> -1 -ddctm012 comparetotmag 0 -1 -> -1 -ddctm013 comparetotmag 0 0 -> 0 -ddctm014 comparetotmag 0 1 -> -1 -ddctm015 comparetotmag 0 2 -> -1 -ddctm016 comparetotmag 1 -2 -> -1 -ddctm017 comparetotmag 1 -1 -> 0 -ddctm018 comparetotmag 1 0 -> 1 -ddctm019 comparetotmag 1 1 -> 0 -ddctm020 comparetotmag 1 2 -> -1 -ddctm021 comparetotmag 2 -2 -> 0 -ddctm022 comparetotmag 2 -1 -> 1 -ddctm023 comparetotmag 2 0 -> 1 -ddctm025 comparetotmag 2 1 -> 1 -ddctm026 comparetotmag 2 2 -> 0 - -ddctm031 comparetotmag -20 -20 -> 0 -ddctm032 comparetotmag -20 -10 -> 1 -ddctm033 comparetotmag -20 00 -> 1 -ddctm034 comparetotmag -20 10 -> 1 -ddctm035 comparetotmag -20 20 -> 0 -ddctm036 comparetotmag -10 -20 -> -1 -ddctm037 comparetotmag -10 -10 -> 0 -ddctm038 comparetotmag -10 00 -> 1 -ddctm039 comparetotmag -10 10 -> 0 -ddctm040 comparetotmag -10 20 -> -1 -ddctm041 comparetotmag 00 -20 -> -1 -ddctm042 comparetotmag 00 -10 -> -1 -ddctm043 comparetotmag 00 00 -> 0 -ddctm044 comparetotmag 00 10 -> -1 -ddctm045 comparetotmag 00 20 -> -1 -ddctm046 comparetotmag 10 -20 -> -1 -ddctm047 comparetotmag 10 -10 -> 0 -ddctm048 comparetotmag 10 00 -> 1 -ddctm049 comparetotmag 10 10 -> 0 -ddctm050 comparetotmag 10 20 -> -1 -ddctm051 comparetotmag 20 -20 -> 0 -ddctm052 comparetotmag 20 -10 -> 1 -ddctm053 comparetotmag 20 00 -> 1 -ddctm055 comparetotmag 20 10 -> 1 -ddctm056 comparetotmag 20 20 -> 0 - -ddctm061 comparetotmag -2.0 -2.0 -> 0 -ddctm062 comparetotmag -2.0 -1.0 -> 1 -ddctm063 comparetotmag -2.0 0.0 -> 1 -ddctm064 comparetotmag -2.0 1.0 -> 1 -ddctm065 comparetotmag -2.0 2.0 -> 0 -ddctm066 comparetotmag -1.0 -2.0 -> -1 -ddctm067 comparetotmag -1.0 -1.0 -> 0 -ddctm068 comparetotmag -1.0 0.0 -> 1 -ddctm069 comparetotmag -1.0 1.0 -> 0 -ddctm070 comparetotmag -1.0 2.0 -> -1 -ddctm071 comparetotmag 0.0 -2.0 -> -1 -ddctm072 comparetotmag 0.0 -1.0 -> -1 -ddctm073 comparetotmag 0.0 0.0 -> 0 -ddctm074 comparetotmag 0.0 1.0 -> -1 -ddctm075 comparetotmag 0.0 2.0 -> -1 -ddctm076 comparetotmag 1.0 -2.0 -> -1 -ddctm077 comparetotmag 1.0 -1.0 -> 0 -ddctm078 comparetotmag 1.0 0.0 -> 1 -ddctm079 comparetotmag 1.0 1.0 -> 0 -ddctm080 comparetotmag 1.0 2.0 -> -1 -ddctm081 comparetotmag 2.0 -2.0 -> 0 -ddctm082 comparetotmag 2.0 -1.0 -> 1 -ddctm083 comparetotmag 2.0 0.0 -> 1 -ddctm085 comparetotmag 2.0 1.0 -> 1 -ddctm086 comparetotmag 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -ddctm090 comparetotmag 9.99999999E+384 9.99999999E+384 -> 0 -ddctm091 comparetotmag -9.99999999E+384 9.99999999E+384 -> 0 -ddctm092 comparetotmag 9.99999999E+384 -9.99999999E+384 -> 0 -ddctm093 comparetotmag -9.99999999E+384 -9.99999999E+384 -> 0 - --- some differing length/exponent cases --- in this first group, compare would compare all equal -ddctm100 comparetotmag 7.0 7.0 -> 0 -ddctm101 comparetotmag 7.0 7 -> -1 -ddctm102 comparetotmag 7 7.0 -> 1 -ddctm103 comparetotmag 7E+0 7.0 -> 1 -ddctm104 comparetotmag 70E-1 7.0 -> 0 -ddctm105 comparetotmag 0.7E+1 7 -> 0 -ddctm106 comparetotmag 70E-1 7 -> -1 -ddctm107 comparetotmag 7.0 7E+0 -> -1 -ddctm108 comparetotmag 7.0 70E-1 -> 0 -ddctm109 comparetotmag 7 0.7E+1 -> 0 -ddctm110 comparetotmag 7 70E-1 -> 1 - -ddctm120 comparetotmag 8.0 7.0 -> 1 -ddctm121 comparetotmag 8.0 7 -> 1 -ddctm122 comparetotmag 8 7.0 -> 1 -ddctm123 comparetotmag 8E+0 7.0 -> 1 -ddctm124 comparetotmag 80E-1 7.0 -> 1 -ddctm125 comparetotmag 0.8E+1 7 -> 1 -ddctm126 comparetotmag 80E-1 7 -> 1 -ddctm127 comparetotmag 8.0 7E+0 -> 1 -ddctm128 comparetotmag 8.0 70E-1 -> 1 -ddctm129 comparetotmag 8 0.7E+1 -> 1 -ddctm130 comparetotmag 8 70E-1 -> 1 - -ddctm140 comparetotmag 8.0 9.0 -> -1 -ddctm141 comparetotmag 8.0 9 -> -1 -ddctm142 comparetotmag 8 9.0 -> -1 -ddctm143 comparetotmag 8E+0 9.0 -> -1 -ddctm144 comparetotmag 80E-1 9.0 -> -1 -ddctm145 comparetotmag 0.8E+1 9 -> -1 -ddctm146 comparetotmag 80E-1 9 -> -1 -ddctm147 comparetotmag 8.0 9E+0 -> -1 -ddctm148 comparetotmag 8.0 90E-1 -> -1 -ddctm149 comparetotmag 8 0.9E+1 -> -1 -ddctm150 comparetotmag 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -ddctm200 comparetotmag -7.0 7.0 -> 0 -ddctm201 comparetotmag -7.0 7 -> -1 -ddctm202 comparetotmag -7 7.0 -> 1 -ddctm203 comparetotmag -7E+0 7.0 -> 1 -ddctm204 comparetotmag -70E-1 7.0 -> 0 -ddctm205 comparetotmag -0.7E+1 7 -> 0 -ddctm206 comparetotmag -70E-1 7 -> -1 -ddctm207 comparetotmag -7.0 7E+0 -> -1 -ddctm208 comparetotmag -7.0 70E-1 -> 0 -ddctm209 comparetotmag -7 0.7E+1 -> 0 -ddctm210 comparetotmag -7 70E-1 -> 1 - -ddctm220 comparetotmag -8.0 7.0 -> 1 -ddctm221 comparetotmag -8.0 7 -> 1 -ddctm222 comparetotmag -8 7.0 -> 1 -ddctm223 comparetotmag -8E+0 7.0 -> 1 -ddctm224 comparetotmag -80E-1 7.0 -> 1 -ddctm225 comparetotmag -0.8E+1 7 -> 1 -ddctm226 comparetotmag -80E-1 7 -> 1 -ddctm227 comparetotmag -8.0 7E+0 -> 1 -ddctm228 comparetotmag -8.0 70E-1 -> 1 -ddctm229 comparetotmag -8 0.7E+1 -> 1 -ddctm230 comparetotmag -8 70E-1 -> 1 - -ddctm240 comparetotmag -8.0 9.0 -> -1 -ddctm241 comparetotmag -8.0 9 -> -1 -ddctm242 comparetotmag -8 9.0 -> -1 -ddctm243 comparetotmag -8E+0 9.0 -> -1 -ddctm244 comparetotmag -80E-1 9.0 -> -1 -ddctm245 comparetotmag -0.8E+1 9 -> -1 -ddctm246 comparetotmag -80E-1 9 -> -1 -ddctm247 comparetotmag -8.0 9E+0 -> -1 -ddctm248 comparetotmag -8.0 90E-1 -> -1 -ddctm249 comparetotmag -8 0.9E+1 -> -1 -ddctm250 comparetotmag -8 90E-1 -> -1 - --- and again, with sign changes +- .. -ddctm300 comparetotmag 7.0 -7.0 -> 0 -ddctm301 comparetotmag 7.0 -7 -> -1 -ddctm302 comparetotmag 7 -7.0 -> 1 -ddctm303 comparetotmag 7E+0 -7.0 -> 1 -ddctm304 comparetotmag 70E-1 -7.0 -> 0 -ddctm305 comparetotmag .7E+1 -7 -> 0 -ddctm306 comparetotmag 70E-1 -7 -> -1 -ddctm307 comparetotmag 7.0 -7E+0 -> -1 -ddctm308 comparetotmag 7.0 -70E-1 -> 0 -ddctm309 comparetotmag 7 -.7E+1 -> 0 -ddctm310 comparetotmag 7 -70E-1 -> 1 - -ddctm320 comparetotmag 8.0 -7.0 -> 1 -ddctm321 comparetotmag 8.0 -7 -> 1 -ddctm322 comparetotmag 8 -7.0 -> 1 -ddctm323 comparetotmag 8E+0 -7.0 -> 1 -ddctm324 comparetotmag 80E-1 -7.0 -> 1 -ddctm325 comparetotmag .8E+1 -7 -> 1 -ddctm326 comparetotmag 80E-1 -7 -> 1 -ddctm327 comparetotmag 8.0 -7E+0 -> 1 -ddctm328 comparetotmag 8.0 -70E-1 -> 1 -ddctm329 comparetotmag 8 -.7E+1 -> 1 -ddctm330 comparetotmag 8 -70E-1 -> 1 - -ddctm340 comparetotmag 8.0 -9.0 -> -1 -ddctm341 comparetotmag 8.0 -9 -> -1 -ddctm342 comparetotmag 8 -9.0 -> -1 -ddctm343 comparetotmag 8E+0 -9.0 -> -1 -ddctm344 comparetotmag 80E-1 -9.0 -> -1 -ddctm345 comparetotmag .8E+1 -9 -> -1 -ddctm346 comparetotmag 80E-1 -9 -> -1 -ddctm347 comparetotmag 8.0 -9E+0 -> -1 -ddctm348 comparetotmag 8.0 -90E-1 -> -1 -ddctm349 comparetotmag 8 -.9E+1 -> -1 -ddctm350 comparetotmag 8 -90E-1 -> -1 - --- and again, with sign changes -- .. -ddctm400 comparetotmag -7.0 -7.0 -> 0 -ddctm401 comparetotmag -7.0 -7 -> -1 -ddctm402 comparetotmag -7 -7.0 -> 1 -ddctm403 comparetotmag -7E+0 -7.0 -> 1 -ddctm404 comparetotmag -70E-1 -7.0 -> 0 -ddctm405 comparetotmag -.7E+1 -7 -> 0 -ddctm406 comparetotmag -70E-1 -7 -> -1 -ddctm407 comparetotmag -7.0 -7E+0 -> -1 -ddctm408 comparetotmag -7.0 -70E-1 -> 0 -ddctm409 comparetotmag -7 -.7E+1 -> 0 -ddctm410 comparetotmag -7 -70E-1 -> 1 - -ddctm420 comparetotmag -8.0 -7.0 -> 1 -ddctm421 comparetotmag -8.0 -7 -> 1 -ddctm422 comparetotmag -8 -7.0 -> 1 -ddctm423 comparetotmag -8E+0 -7.0 -> 1 -ddctm424 comparetotmag -80E-1 -7.0 -> 1 -ddctm425 comparetotmag -.8E+1 -7 -> 1 -ddctm426 comparetotmag -80E-1 -7 -> 1 -ddctm427 comparetotmag -8.0 -7E+0 -> 1 -ddctm428 comparetotmag -8.0 -70E-1 -> 1 -ddctm429 comparetotmag -8 -.7E+1 -> 1 -ddctm430 comparetotmag -8 -70E-1 -> 1 - -ddctm440 comparetotmag -8.0 -9.0 -> -1 -ddctm441 comparetotmag -8.0 -9 -> -1 -ddctm442 comparetotmag -8 -9.0 -> -1 -ddctm443 comparetotmag -8E+0 -9.0 -> -1 -ddctm444 comparetotmag -80E-1 -9.0 -> -1 -ddctm445 comparetotmag -.8E+1 -9 -> -1 -ddctm446 comparetotmag -80E-1 -9 -> -1 -ddctm447 comparetotmag -8.0 -9E+0 -> -1 -ddctm448 comparetotmag -8.0 -90E-1 -> -1 -ddctm449 comparetotmag -8 -.9E+1 -> -1 -ddctm450 comparetotmag -8 -90E-1 -> -1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -ddctm473 comparetotmag 123.4560000000000E-89 123.456E-89 -> -1 -ddctm474 comparetotmag 123.456000000000E+89 123.456E+89 -> -1 -ddctm475 comparetotmag 123.45600000000E-89 123.456E-89 -> -1 -ddctm476 comparetotmag 123.4560000000E+89 123.456E+89 -> -1 -ddctm477 comparetotmag 123.456000000E-89 123.456E-89 -> -1 -ddctm478 comparetotmag 123.45600000E+89 123.456E+89 -> -1 -ddctm479 comparetotmag 123.4560000E-89 123.456E-89 -> -1 -ddctm480 comparetotmag 123.456000E+89 123.456E+89 -> -1 -ddctm481 comparetotmag 123.45600E-89 123.456E-89 -> -1 -ddctm482 comparetotmag 123.4560E+89 123.456E+89 -> -1 -ddctm483 comparetotmag 123.456E-89 123.456E-89 -> 0 -ddctm487 comparetotmag 123.456E+89 123.4560000000000E+89 -> 1 -ddctm488 comparetotmag 123.456E-89 123.456000000000E-89 -> 1 -ddctm489 comparetotmag 123.456E+89 123.45600000000E+89 -> 1 -ddctm490 comparetotmag 123.456E-89 123.4560000000E-89 -> 1 -ddctm491 comparetotmag 123.456E+89 123.456000000E+89 -> 1 -ddctm492 comparetotmag 123.456E-89 123.45600000E-89 -> 1 -ddctm493 comparetotmag 123.456E+89 123.4560000E+89 -> 1 -ddctm494 comparetotmag 123.456E-89 123.456000E-89 -> 1 -ddctm495 comparetotmag 123.456E+89 123.45600E+89 -> 1 -ddctm496 comparetotmag 123.456E-89 123.4560E-89 -> 1 -ddctm497 comparetotmag 123.456E+89 123.456E+89 -> 0 - --- wide-ranging, around precision; signs equal -ddctm498 comparetotmag 1 1E-17 -> 1 -ddctm499 comparetotmag 1 1E-16 -> 1 -ddctm500 comparetotmag 1 1E-15 -> 1 -ddctm501 comparetotmag 1 1E-14 -> 1 -ddctm502 comparetotmag 1 1E-13 -> 1 -ddctm503 comparetotmag 1 1E-12 -> 1 -ddctm504 comparetotmag 1 1E-11 -> 1 -ddctm505 comparetotmag 1 1E-10 -> 1 -ddctm506 comparetotmag 1 1E-9 -> 1 -ddctm507 comparetotmag 1 1E-8 -> 1 -ddctm508 comparetotmag 1 1E-7 -> 1 -ddctm509 comparetotmag 1 1E-6 -> 1 -ddctm510 comparetotmag 1 1E-5 -> 1 -ddctm511 comparetotmag 1 1E-4 -> 1 -ddctm512 comparetotmag 1 1E-3 -> 1 -ddctm513 comparetotmag 1 1E-2 -> 1 -ddctm514 comparetotmag 1 1E-1 -> 1 -ddctm515 comparetotmag 1 1E-0 -> 0 -ddctm516 comparetotmag 1 1E+1 -> -1 -ddctm517 comparetotmag 1 1E+2 -> -1 -ddctm518 comparetotmag 1 1E+3 -> -1 -ddctm519 comparetotmag 1 1E+4 -> -1 -ddctm521 comparetotmag 1 1E+5 -> -1 -ddctm522 comparetotmag 1 1E+6 -> -1 -ddctm523 comparetotmag 1 1E+7 -> -1 -ddctm524 comparetotmag 1 1E+8 -> -1 -ddctm525 comparetotmag 1 1E+9 -> -1 -ddctm526 comparetotmag 1 1E+10 -> -1 -ddctm527 comparetotmag 1 1E+11 -> -1 -ddctm528 comparetotmag 1 1E+12 -> -1 -ddctm529 comparetotmag 1 1E+13 -> -1 -ddctm530 comparetotmag 1 1E+14 -> -1 -ddctm531 comparetotmag 1 1E+15 -> -1 -ddctm532 comparetotmag 1 1E+16 -> -1 -ddctm533 comparetotmag 1 1E+17 -> -1 --- LR swap -ddctm538 comparetotmag 1E-17 1 -> -1 -ddctm539 comparetotmag 1E-16 1 -> -1 -ddctm540 comparetotmag 1E-15 1 -> -1 -ddctm541 comparetotmag 1E-14 1 -> -1 -ddctm542 comparetotmag 1E-13 1 -> -1 -ddctm543 comparetotmag 1E-12 1 -> -1 -ddctm544 comparetotmag 1E-11 1 -> -1 -ddctm545 comparetotmag 1E-10 1 -> -1 -ddctm546 comparetotmag 1E-9 1 -> -1 -ddctm547 comparetotmag 1E-8 1 -> -1 -ddctm548 comparetotmag 1E-7 1 -> -1 -ddctm549 comparetotmag 1E-6 1 -> -1 -ddctm550 comparetotmag 1E-5 1 -> -1 -ddctm551 comparetotmag 1E-4 1 -> -1 -ddctm552 comparetotmag 1E-3 1 -> -1 -ddctm553 comparetotmag 1E-2 1 -> -1 -ddctm554 comparetotmag 1E-1 1 -> -1 -ddctm555 comparetotmag 1E-0 1 -> 0 -ddctm556 comparetotmag 1E+1 1 -> 1 -ddctm557 comparetotmag 1E+2 1 -> 1 -ddctm558 comparetotmag 1E+3 1 -> 1 -ddctm559 comparetotmag 1E+4 1 -> 1 -ddctm561 comparetotmag 1E+5 1 -> 1 -ddctm562 comparetotmag 1E+6 1 -> 1 -ddctm563 comparetotmag 1E+7 1 -> 1 -ddctm564 comparetotmag 1E+8 1 -> 1 -ddctm565 comparetotmag 1E+9 1 -> 1 -ddctm566 comparetotmag 1E+10 1 -> 1 -ddctm567 comparetotmag 1E+11 1 -> 1 -ddctm568 comparetotmag 1E+12 1 -> 1 -ddctm569 comparetotmag 1E+13 1 -> 1 -ddctm570 comparetotmag 1E+14 1 -> 1 -ddctm571 comparetotmag 1E+15 1 -> 1 -ddctm572 comparetotmag 1E+16 1 -> 1 -ddctm573 comparetotmag 1E+17 1 -> 1 --- similar with a useful coefficient, one side only -ddctm578 comparetotmag 0.000000987654321 1E-17 -> 1 -ddctm579 comparetotmag 0.000000987654321 1E-16 -> 1 -ddctm580 comparetotmag 0.000000987654321 1E-15 -> 1 -ddctm581 comparetotmag 0.000000987654321 1E-14 -> 1 -ddctm582 comparetotmag 0.000000987654321 1E-13 -> 1 -ddctm583 comparetotmag 0.000000987654321 1E-12 -> 1 -ddctm584 comparetotmag 0.000000987654321 1E-11 -> 1 -ddctm585 comparetotmag 0.000000987654321 1E-10 -> 1 -ddctm586 comparetotmag 0.000000987654321 1E-9 -> 1 -ddctm587 comparetotmag 0.000000987654321 1E-8 -> 1 -ddctm588 comparetotmag 0.000000987654321 1E-7 -> 1 -ddctm589 comparetotmag 0.000000987654321 1E-6 -> -1 -ddctm590 comparetotmag 0.000000987654321 1E-5 -> -1 -ddctm591 comparetotmag 0.000000987654321 1E-4 -> -1 -ddctm592 comparetotmag 0.000000987654321 1E-3 -> -1 -ddctm593 comparetotmag 0.000000987654321 1E-2 -> -1 -ddctm594 comparetotmag 0.000000987654321 1E-1 -> -1 -ddctm595 comparetotmag 0.000000987654321 1E-0 -> -1 -ddctm596 comparetotmag 0.000000987654321 1E+1 -> -1 -ddctm597 comparetotmag 0.000000987654321 1E+2 -> -1 -ddctm598 comparetotmag 0.000000987654321 1E+3 -> -1 -ddctm599 comparetotmag 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -ddctm600 comparetotmag 12 12.2345 -> -1 -ddctm601 comparetotmag 12.0 12.2345 -> -1 -ddctm602 comparetotmag 12.00 12.2345 -> -1 -ddctm603 comparetotmag 12.000 12.2345 -> -1 -ddctm604 comparetotmag 12.0000 12.2345 -> -1 -ddctm605 comparetotmag 12.00000 12.2345 -> -1 -ddctm606 comparetotmag 12.000000 12.2345 -> -1 -ddctm607 comparetotmag 12.0000000 12.2345 -> -1 -ddctm608 comparetotmag 12.00000000 12.2345 -> -1 -ddctm609 comparetotmag 12.000000000 12.2345 -> -1 -ddctm610 comparetotmag 12.1234 12 -> 1 -ddctm611 comparetotmag 12.1234 12.0 -> 1 -ddctm612 comparetotmag 12.1234 12.00 -> 1 -ddctm613 comparetotmag 12.1234 12.000 -> 1 -ddctm614 comparetotmag 12.1234 12.0000 -> 1 -ddctm615 comparetotmag 12.1234 12.00000 -> 1 -ddctm616 comparetotmag 12.1234 12.000000 -> 1 -ddctm617 comparetotmag 12.1234 12.0000000 -> 1 -ddctm618 comparetotmag 12.1234 12.00000000 -> 1 -ddctm619 comparetotmag 12.1234 12.000000000 -> 1 -ddctm620 comparetotmag -12 -12.2345 -> -1 -ddctm621 comparetotmag -12.0 -12.2345 -> -1 -ddctm622 comparetotmag -12.00 -12.2345 -> -1 -ddctm623 comparetotmag -12.000 -12.2345 -> -1 -ddctm624 comparetotmag -12.0000 -12.2345 -> -1 -ddctm625 comparetotmag -12.00000 -12.2345 -> -1 -ddctm626 comparetotmag -12.000000 -12.2345 -> -1 -ddctm627 comparetotmag -12.0000000 -12.2345 -> -1 -ddctm628 comparetotmag -12.00000000 -12.2345 -> -1 -ddctm629 comparetotmag -12.000000000 -12.2345 -> -1 -ddctm630 comparetotmag -12.1234 -12 -> 1 -ddctm631 comparetotmag -12.1234 -12.0 -> 1 -ddctm632 comparetotmag -12.1234 -12.00 -> 1 -ddctm633 comparetotmag -12.1234 -12.000 -> 1 -ddctm634 comparetotmag -12.1234 -12.0000 -> 1 -ddctm635 comparetotmag -12.1234 -12.00000 -> 1 -ddctm636 comparetotmag -12.1234 -12.000000 -> 1 -ddctm637 comparetotmag -12.1234 -12.0000000 -> 1 -ddctm638 comparetotmag -12.1234 -12.00000000 -> 1 -ddctm639 comparetotmag -12.1234 -12.000000000 -> 1 - --- extended zeros -ddctm640 comparetotmag 0 0 -> 0 -ddctm641 comparetotmag 0 -0 -> 0 -ddctm642 comparetotmag 0 -0.0 -> 1 -ddctm643 comparetotmag 0 0.0 -> 1 -ddctm644 comparetotmag -0 0 -> 0 -ddctm645 comparetotmag -0 -0 -> 0 -ddctm646 comparetotmag -0 -0.0 -> 1 -ddctm647 comparetotmag -0 0.0 -> 1 -ddctm648 comparetotmag 0.0 0 -> -1 -ddctm649 comparetotmag 0.0 -0 -> -1 -ddctm650 comparetotmag 0.0 -0.0 -> 0 -ddctm651 comparetotmag 0.0 0.0 -> 0 -ddctm652 comparetotmag -0.0 0 -> -1 -ddctm653 comparetotmag -0.0 -0 -> -1 -ddctm654 comparetotmag -0.0 -0.0 -> 0 -ddctm655 comparetotmag -0.0 0.0 -> 0 - -ddctm656 comparetotmag -0E1 0.0 -> 1 -ddctm657 comparetotmag -0E2 0.0 -> 1 -ddctm658 comparetotmag 0E1 0.0 -> 1 -ddctm659 comparetotmag 0E2 0.0 -> 1 -ddctm660 comparetotmag -0E1 0 -> 1 -ddctm661 comparetotmag -0E2 0 -> 1 -ddctm662 comparetotmag 0E1 0 -> 1 -ddctm663 comparetotmag 0E2 0 -> 1 -ddctm664 comparetotmag -0E1 -0E1 -> 0 -ddctm665 comparetotmag -0E2 -0E1 -> 1 -ddctm666 comparetotmag 0E1 -0E1 -> 0 -ddctm667 comparetotmag 0E2 -0E1 -> 1 -ddctm668 comparetotmag -0E1 -0E2 -> -1 -ddctm669 comparetotmag -0E2 -0E2 -> 0 -ddctm670 comparetotmag 0E1 -0E2 -> -1 -ddctm671 comparetotmag 0E2 -0E2 -> 0 -ddctm672 comparetotmag -0E1 0E1 -> 0 -ddctm673 comparetotmag -0E2 0E1 -> 1 -ddctm674 comparetotmag 0E1 0E1 -> 0 -ddctm675 comparetotmag 0E2 0E1 -> 1 -ddctm676 comparetotmag -0E1 0E2 -> -1 -ddctm677 comparetotmag -0E2 0E2 -> 0 -ddctm678 comparetotmag 0E1 0E2 -> -1 -ddctm679 comparetotmag 0E2 0E2 -> 0 - --- trailing zeros; unit-y -ddctm680 comparetotmag 12 12 -> 0 -ddctm681 comparetotmag 12 12.0 -> 1 -ddctm682 comparetotmag 12 12.00 -> 1 -ddctm683 comparetotmag 12 12.000 -> 1 -ddctm684 comparetotmag 12 12.0000 -> 1 -ddctm685 comparetotmag 12 12.00000 -> 1 -ddctm686 comparetotmag 12 12.000000 -> 1 -ddctm687 comparetotmag 12 12.0000000 -> 1 -ddctm688 comparetotmag 12 12.00000000 -> 1 -ddctm689 comparetotmag 12 12.000000000 -> 1 -ddctm690 comparetotmag 12 12 -> 0 -ddctm691 comparetotmag 12.0 12 -> -1 -ddctm692 comparetotmag 12.00 12 -> -1 -ddctm693 comparetotmag 12.000 12 -> -1 -ddctm694 comparetotmag 12.0000 12 -> -1 -ddctm695 comparetotmag 12.00000 12 -> -1 -ddctm696 comparetotmag 12.000000 12 -> -1 -ddctm697 comparetotmag 12.0000000 12 -> -1 -ddctm698 comparetotmag 12.00000000 12 -> -1 -ddctm699 comparetotmag 12.000000000 12 -> -1 - --- old long operand checks -ddctm701 comparetotmag 12345678000 1 -> 1 -ddctm702 comparetotmag 1 12345678000 -> -1 -ddctm703 comparetotmag 1234567800 1 -> 1 -ddctm704 comparetotmag 1 1234567800 -> -1 -ddctm705 comparetotmag 1234567890 1 -> 1 -ddctm706 comparetotmag 1 1234567890 -> -1 -ddctm707 comparetotmag 1234567891 1 -> 1 -ddctm708 comparetotmag 1 1234567891 -> -1 -ddctm709 comparetotmag 12345678901 1 -> 1 -ddctm710 comparetotmag 1 12345678901 -> -1 -ddctm711 comparetotmag 1234567896 1 -> 1 -ddctm712 comparetotmag 1 1234567896 -> -1 -ddctm713 comparetotmag -1234567891 1 -> 1 -ddctm714 comparetotmag 1 -1234567891 -> -1 -ddctm715 comparetotmag -12345678901 1 -> 1 -ddctm716 comparetotmag 1 -12345678901 -> -1 -ddctm717 comparetotmag -1234567896 1 -> 1 -ddctm718 comparetotmag 1 -1234567896 -> -1 - --- old residue cases -ddctm740 comparetotmag 1 0.9999999 -> 1 -ddctm741 comparetotmag 1 0.999999 -> 1 -ddctm742 comparetotmag 1 0.99999 -> 1 -ddctm743 comparetotmag 1 1.0000 -> 1 -ddctm744 comparetotmag 1 1.00001 -> -1 -ddctm745 comparetotmag 1 1.000001 -> -1 -ddctm746 comparetotmag 1 1.0000001 -> -1 -ddctm750 comparetotmag 0.9999999 1 -> -1 -ddctm751 comparetotmag 0.999999 1 -> -1 -ddctm752 comparetotmag 0.99999 1 -> -1 -ddctm753 comparetotmag 1.0000 1 -> -1 -ddctm754 comparetotmag 1.00001 1 -> 1 -ddctm755 comparetotmag 1.000001 1 -> 1 -ddctm756 comparetotmag 1.0000001 1 -> 1 - --- Specials -ddctm780 comparetotmag Inf -Inf -> 0 -ddctm781 comparetotmag Inf -1000 -> 1 -ddctm782 comparetotmag Inf -1 -> 1 -ddctm783 comparetotmag Inf -0 -> 1 -ddctm784 comparetotmag Inf 0 -> 1 -ddctm785 comparetotmag Inf 1 -> 1 -ddctm786 comparetotmag Inf 1000 -> 1 -ddctm787 comparetotmag Inf Inf -> 0 -ddctm788 comparetotmag -1000 Inf -> -1 -ddctm789 comparetotmag -Inf Inf -> 0 -ddctm790 comparetotmag -1 Inf -> -1 -ddctm791 comparetotmag -0 Inf -> -1 -ddctm792 comparetotmag 0 Inf -> -1 -ddctm793 comparetotmag 1 Inf -> -1 -ddctm794 comparetotmag 1000 Inf -> -1 -ddctm795 comparetotmag Inf Inf -> 0 - -ddctm800 comparetotmag -Inf -Inf -> 0 -ddctm801 comparetotmag -Inf -1000 -> 1 -ddctm802 comparetotmag -Inf -1 -> 1 -ddctm803 comparetotmag -Inf -0 -> 1 -ddctm804 comparetotmag -Inf 0 -> 1 -ddctm805 comparetotmag -Inf 1 -> 1 -ddctm806 comparetotmag -Inf 1000 -> 1 -ddctm807 comparetotmag -Inf Inf -> 0 -ddctm808 comparetotmag -Inf -Inf -> 0 -ddctm809 comparetotmag -1000 -Inf -> -1 -ddctm810 comparetotmag -1 -Inf -> -1 -ddctm811 comparetotmag -0 -Inf -> -1 -ddctm812 comparetotmag 0 -Inf -> -1 -ddctm813 comparetotmag 1 -Inf -> -1 -ddctm814 comparetotmag 1000 -Inf -> -1 -ddctm815 comparetotmag Inf -Inf -> 0 - -ddctm821 comparetotmag NaN -Inf -> 1 -ddctm822 comparetotmag NaN -1000 -> 1 -ddctm823 comparetotmag NaN -1 -> 1 -ddctm824 comparetotmag NaN -0 -> 1 -ddctm825 comparetotmag NaN 0 -> 1 -ddctm826 comparetotmag NaN 1 -> 1 -ddctm827 comparetotmag NaN 1000 -> 1 -ddctm828 comparetotmag NaN Inf -> 1 -ddctm829 comparetotmag NaN NaN -> 0 -ddctm830 comparetotmag -Inf NaN -> -1 -ddctm831 comparetotmag -1000 NaN -> -1 -ddctm832 comparetotmag -1 NaN -> -1 -ddctm833 comparetotmag -0 NaN -> -1 -ddctm834 comparetotmag 0 NaN -> -1 -ddctm835 comparetotmag 1 NaN -> -1 -ddctm836 comparetotmag 1000 NaN -> -1 -ddctm837 comparetotmag Inf NaN -> -1 -ddctm838 comparetotmag -NaN -NaN -> 0 -ddctm839 comparetotmag +NaN -NaN -> 0 -ddctm840 comparetotmag -NaN +NaN -> 0 - -ddctm841 comparetotmag sNaN -sNaN -> 0 -ddctm842 comparetotmag sNaN -NaN -> -1 -ddctm843 comparetotmag sNaN -Inf -> 1 -ddctm844 comparetotmag sNaN -1000 -> 1 -ddctm845 comparetotmag sNaN -1 -> 1 -ddctm846 comparetotmag sNaN -0 -> 1 -ddctm847 comparetotmag sNaN 0 -> 1 -ddctm848 comparetotmag sNaN 1 -> 1 -ddctm849 comparetotmag sNaN 1000 -> 1 -ddctm850 comparetotmag sNaN NaN -> -1 -ddctm851 comparetotmag sNaN sNaN -> 0 - -ddctm852 comparetotmag -sNaN sNaN -> 0 -ddctm853 comparetotmag -NaN sNaN -> 1 -ddctm854 comparetotmag -Inf sNaN -> -1 -ddctm855 comparetotmag -1000 sNaN -> -1 -ddctm856 comparetotmag -1 sNaN -> -1 -ddctm857 comparetotmag -0 sNaN -> -1 -ddctm858 comparetotmag 0 sNaN -> -1 -ddctm859 comparetotmag 1 sNaN -> -1 -ddctm860 comparetotmag 1000 sNaN -> -1 -ddctm861 comparetotmag Inf sNaN -> -1 -ddctm862 comparetotmag NaN sNaN -> 1 -ddctm863 comparetotmag sNaN sNaN -> 0 - -ddctm871 comparetotmag -sNaN -sNaN -> 0 -ddctm872 comparetotmag -sNaN -NaN -> -1 -ddctm873 comparetotmag -sNaN -Inf -> 1 -ddctm874 comparetotmag -sNaN -1000 -> 1 -ddctm875 comparetotmag -sNaN -1 -> 1 -ddctm876 comparetotmag -sNaN -0 -> 1 -ddctm877 comparetotmag -sNaN 0 -> 1 -ddctm878 comparetotmag -sNaN 1 -> 1 -ddctm879 comparetotmag -sNaN 1000 -> 1 -ddctm880 comparetotmag -sNaN NaN -> -1 -ddctm881 comparetotmag -sNaN sNaN -> 0 - -ddctm882 comparetotmag -sNaN -sNaN -> 0 -ddctm883 comparetotmag -NaN -sNaN -> 1 -ddctm884 comparetotmag -Inf -sNaN -> -1 -ddctm885 comparetotmag -1000 -sNaN -> -1 -ddctm886 comparetotmag -1 -sNaN -> -1 -ddctm887 comparetotmag -0 -sNaN -> -1 -ddctm888 comparetotmag 0 -sNaN -> -1 -ddctm889 comparetotmag 1 -sNaN -> -1 -ddctm890 comparetotmag 1000 -sNaN -> -1 -ddctm891 comparetotmag Inf -sNaN -> -1 -ddctm892 comparetotmag NaN -sNaN -> 1 -ddctm893 comparetotmag sNaN -sNaN -> 0 - --- NaNs with payload -ddctm960 comparetotmag NaN9 -Inf -> 1 -ddctm961 comparetotmag NaN8 999 -> 1 -ddctm962 comparetotmag NaN77 Inf -> 1 -ddctm963 comparetotmag -NaN67 NaN5 -> 1 -ddctm964 comparetotmag -Inf -NaN4 -> -1 -ddctm965 comparetotmag -999 -NaN33 -> -1 -ddctm966 comparetotmag Inf NaN2 -> -1 - -ddctm970 comparetotmag -NaN41 -NaN42 -> -1 -ddctm971 comparetotmag +NaN41 -NaN42 -> -1 -ddctm972 comparetotmag -NaN41 +NaN42 -> -1 -ddctm973 comparetotmag +NaN41 +NaN42 -> -1 -ddctm974 comparetotmag -NaN42 -NaN01 -> 1 -ddctm975 comparetotmag +NaN42 -NaN01 -> 1 -ddctm976 comparetotmag -NaN42 +NaN01 -> 1 -ddctm977 comparetotmag +NaN42 +NaN01 -> 1 - -ddctm980 comparetotmag -sNaN771 -sNaN772 -> -1 -ddctm981 comparetotmag +sNaN771 -sNaN772 -> -1 -ddctm982 comparetotmag -sNaN771 +sNaN772 -> -1 -ddctm983 comparetotmag +sNaN771 +sNaN772 -> -1 -ddctm984 comparetotmag -sNaN772 -sNaN771 -> 1 -ddctm985 comparetotmag +sNaN772 -sNaN771 -> 1 -ddctm986 comparetotmag -sNaN772 +sNaN771 -> 1 -ddctm987 comparetotmag +sNaN772 +sNaN771 -> 1 - -ddctm991 comparetotmag -sNaN99 -Inf -> 1 -ddctm992 comparetotmag sNaN98 -11 -> 1 -ddctm993 comparetotmag sNaN97 NaN -> -1 -ddctm994 comparetotmag sNaN16 sNaN94 -> -1 -ddctm995 comparetotmag NaN85 sNaN83 -> 1 -ddctm996 comparetotmag -Inf sNaN92 -> -1 -ddctm997 comparetotmag 088 sNaN81 -> -1 -ddctm998 comparetotmag Inf sNaN90 -> -1 -ddctm999 comparetotmag NaN -sNaN89 -> 1 - --- spread zeros -ddctm1110 comparetotmag 0E-383 0 -> -1 -ddctm1111 comparetotmag 0E-383 -0 -> -1 -ddctm1112 comparetotmag -0E-383 0 -> -1 -ddctm1113 comparetotmag -0E-383 -0 -> -1 -ddctm1114 comparetotmag 0E-383 0E+384 -> -1 -ddctm1115 comparetotmag 0E-383 -0E+384 -> -1 -ddctm1116 comparetotmag -0E-383 0E+384 -> -1 -ddctm1117 comparetotmag -0E-383 -0E+384 -> -1 -ddctm1118 comparetotmag 0 0E+384 -> -1 -ddctm1119 comparetotmag 0 -0E+384 -> -1 -ddctm1120 comparetotmag -0 0E+384 -> -1 -ddctm1121 comparetotmag -0 -0E+384 -> -1 - -ddctm1130 comparetotmag 0E+384 0 -> 1 -ddctm1131 comparetotmag 0E+384 -0 -> 1 -ddctm1132 comparetotmag -0E+384 0 -> 1 -ddctm1133 comparetotmag -0E+384 -0 -> 1 -ddctm1134 comparetotmag 0E+384 0E-383 -> 1 -ddctm1135 comparetotmag 0E+384 -0E-383 -> 1 -ddctm1136 comparetotmag -0E+384 0E-383 -> 1 -ddctm1137 comparetotmag -0E+384 -0E-383 -> 1 -ddctm1138 comparetotmag 0 0E-383 -> 1 -ddctm1139 comparetotmag 0 -0E-383 -> 1 -ddctm1140 comparetotmag -0 0E-383 -> 1 -ddctm1141 comparetotmag -0 -0E-383 -> 1 - --- Null tests -ddctm9990 comparetotmag 10 # -> NaN Invalid_operation -ddctm9991 comparetotmag # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddCopy.decTest b/qdecimal/test/tc_full/ddCopy.decTest deleted file mode 100644 index 4547dd9..0000000 --- a/qdecimal/test/tc_full/ddCopy.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- ddCopy.decTest -- quiet decDouble copy -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddcpy001 copy +7.50 -> 7.50 - --- Infinities -ddcpy011 copy Infinity -> Infinity -ddcpy012 copy -Infinity -> -Infinity - --- NaNs, 0 payload -ddcpy021 copy NaN -> NaN -ddcpy022 copy -NaN -> -NaN -ddcpy023 copy sNaN -> sNaN -ddcpy024 copy -sNaN -> -sNaN - --- NaNs, non-0 payload -ddcpy031 copy NaN10 -> NaN10 -ddcpy032 copy -NaN10 -> -NaN10 -ddcpy033 copy sNaN10 -> sNaN10 -ddcpy034 copy -sNaN10 -> -sNaN10 -ddcpy035 copy NaN7 -> NaN7 -ddcpy036 copy -NaN7 -> -NaN7 -ddcpy037 copy sNaN101 -> sNaN101 -ddcpy038 copy -sNaN101 -> -sNaN101 - --- finites -ddcpy101 copy 7 -> 7 -ddcpy102 copy -7 -> -7 -ddcpy103 copy 75 -> 75 -ddcpy104 copy -75 -> -75 -ddcpy105 copy 7.50 -> 7.50 -ddcpy106 copy -7.50 -> -7.50 -ddcpy107 copy 7.500 -> 7.500 -ddcpy108 copy -7.500 -> -7.500 - --- zeros -ddcpy111 copy 0 -> 0 -ddcpy112 copy -0 -> -0 -ddcpy113 copy 0E+4 -> 0E+4 -ddcpy114 copy -0E+4 -> -0E+4 -ddcpy115 copy 0.0000 -> 0.0000 -ddcpy116 copy -0.0000 -> -0.0000 -ddcpy117 copy 0E-141 -> 0E-141 -ddcpy118 copy -0E-141 -> -0E-141 - --- full coefficients, alternating bits -ddcpy121 copy 2682682682682682 -> 2682682682682682 -ddcpy122 copy -2682682682682682 -> -2682682682682682 -ddcpy123 copy 1341341341341341 -> 1341341341341341 -ddcpy124 copy -1341341341341341 -> -1341341341341341 - --- Nmax, Nmin, Ntiny -ddcpy131 copy 9.999999999999999E+384 -> 9.999999999999999E+384 -ddcpy132 copy 1E-383 -> 1E-383 -ddcpy133 copy 1.000000000000000E-383 -> 1.000000000000000E-383 -ddcpy134 copy 1E-398 -> 1E-398 - -ddcpy135 copy -1E-398 -> -1E-398 -ddcpy136 copy -1.000000000000000E-383 -> -1.000000000000000E-383 -ddcpy137 copy -1E-383 -> -1E-383 -ddcpy138 copy -9.999999999999999E+384 -> -9.999999999999999E+384 diff --git a/qdecimal/test/tc_full/ddCopyAbs.decTest b/qdecimal/test/tc_full/ddCopyAbs.decTest deleted file mode 100644 index ea95b55..0000000 --- a/qdecimal/test/tc_full/ddCopyAbs.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- ddCopyAbs.decTest -- quiet decDouble copy and set sign to zero -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddcpa001 copyabs +7.50 -> 7.50 - --- Infinities -ddcpa011 copyabs Infinity -> Infinity -ddcpa012 copyabs -Infinity -> Infinity - --- NaNs, 0 payload -ddcpa021 copyabs NaN -> NaN -ddcpa022 copyabs -NaN -> NaN -ddcpa023 copyabs sNaN -> sNaN -ddcpa024 copyabs -sNaN -> sNaN - --- NaNs, non-0 payload -ddcpa031 copyabs NaN10 -> NaN10 -ddcpa032 copyabs -NaN15 -> NaN15 -ddcpa033 copyabs sNaN15 -> sNaN15 -ddcpa034 copyabs -sNaN10 -> sNaN10 -ddcpa035 copyabs NaN7 -> NaN7 -ddcpa036 copyabs -NaN7 -> NaN7 -ddcpa037 copyabs sNaN101 -> sNaN101 -ddcpa038 copyabs -sNaN101 -> sNaN101 - --- finites -ddcpa101 copyabs 7 -> 7 -ddcpa102 copyabs -7 -> 7 -ddcpa103 copyabs 75 -> 75 -ddcpa104 copyabs -75 -> 75 -ddcpa105 copyabs 7.10 -> 7.10 -ddcpa106 copyabs -7.10 -> 7.10 -ddcpa107 copyabs 7.500 -> 7.500 -ddcpa108 copyabs -7.500 -> 7.500 - --- zeros -ddcpa111 copyabs 0 -> 0 -ddcpa112 copyabs -0 -> 0 -ddcpa113 copyabs 0E+6 -> 0E+6 -ddcpa114 copyabs -0E+6 -> 0E+6 -ddcpa115 copyabs 0.0000 -> 0.0000 -ddcpa116 copyabs -0.0000 -> 0.0000 -ddcpa117 copyabs 0E-141 -> 0E-141 -ddcpa118 copyabs -0E-141 -> 0E-141 - --- full coefficients, alternating bits -ddcpa121 copyabs 2682682682682682 -> 2682682682682682 -ddcpa122 copyabs -2682682682682682 -> 2682682682682682 -ddcpa123 copyabs 1341341341341341 -> 1341341341341341 -ddcpa124 copyabs -1341341341341341 -> 1341341341341341 - --- Nmax, Nmin, Ntiny -ddcpa131 copyabs 9.999999999999999E+384 -> 9.999999999999999E+384 -ddcpa132 copyabs 1E-383 -> 1E-383 -ddcpa133 copyabs 1.000000000000000E-383 -> 1.000000000000000E-383 -ddcpa134 copyabs 1E-398 -> 1E-398 - -ddcpa135 copyabs -1E-398 -> 1E-398 -ddcpa136 copyabs -1.000000000000000E-383 -> 1.000000000000000E-383 -ddcpa137 copyabs -1E-383 -> 1E-383 -ddcpa138 copyabs -9.999999999999999E+384 -> 9.999999999999999E+384 diff --git a/qdecimal/test/tc_full/ddCopyNegate.decTest b/qdecimal/test/tc_full/ddCopyNegate.decTest deleted file mode 100644 index 91c35f0..0000000 --- a/qdecimal/test/tc_full/ddCopyNegate.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- ddCopyNegate.decTest -- quiet decDouble copy and negate -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddcpn001 copynegate +7.50 -> -7.50 - --- Infinities -ddcpn011 copynegate Infinity -> -Infinity -ddcpn012 copynegate -Infinity -> Infinity - --- NaNs, 0 payload -ddcpn021 copynegate NaN -> -NaN -ddcpn022 copynegate -NaN -> NaN -ddcpn023 copynegate sNaN -> -sNaN -ddcpn024 copynegate -sNaN -> sNaN - --- NaNs, non-0 payload -ddcpn031 copynegate NaN13 -> -NaN13 -ddcpn032 copynegate -NaN13 -> NaN13 -ddcpn033 copynegate sNaN13 -> -sNaN13 -ddcpn034 copynegate -sNaN13 -> sNaN13 -ddcpn035 copynegate NaN70 -> -NaN70 -ddcpn036 copynegate -NaN70 -> NaN70 -ddcpn037 copynegate sNaN101 -> -sNaN101 -ddcpn038 copynegate -sNaN101 -> sNaN101 - --- finites -ddcpn101 copynegate 7 -> -7 -ddcpn102 copynegate -7 -> 7 -ddcpn103 copynegate 75 -> -75 -ddcpn104 copynegate -75 -> 75 -ddcpn105 copynegate 7.50 -> -7.50 -ddcpn106 copynegate -7.50 -> 7.50 -ddcpn107 copynegate 7.500 -> -7.500 -ddcpn108 copynegate -7.500 -> 7.500 - --- zeros -ddcpn111 copynegate 0 -> -0 -ddcpn112 copynegate -0 -> 0 -ddcpn113 copynegate 0E+4 -> -0E+4 -ddcpn114 copynegate -0E+4 -> 0E+4 -ddcpn115 copynegate 0.0000 -> -0.0000 -ddcpn116 copynegate -0.0000 -> 0.0000 -ddcpn117 copynegate 0E-141 -> -0E-141 -ddcpn118 copynegate -0E-141 -> 0E-141 - --- full coefficients, alternating bits -ddcpn121 copynegate 2682682682682682 -> -2682682682682682 -ddcpn122 copynegate -2682682682682682 -> 2682682682682682 -ddcpn123 copynegate 1341341341341341 -> -1341341341341341 -ddcpn124 copynegate -1341341341341341 -> 1341341341341341 - --- Nmax, Nmin, Ntiny -ddcpn131 copynegate 9.999999999999999E+384 -> -9.999999999999999E+384 -ddcpn132 copynegate 1E-383 -> -1E-383 -ddcpn133 copynegate 1.000000000000000E-383 -> -1.000000000000000E-383 -ddcpn134 copynegate 1E-398 -> -1E-398 - -ddcpn135 copynegate -1E-398 -> 1E-398 -ddcpn136 copynegate -1.000000000000000E-383 -> 1.000000000000000E-383 -ddcpn137 copynegate -1E-383 -> 1E-383 -ddcpn138 copynegate -9.999999999999999E+384 -> 9.999999999999999E+384 diff --git a/qdecimal/test/tc_full/ddCopySign.decTest b/qdecimal/test/tc_full/ddCopySign.decTest deleted file mode 100644 index 83ea14d..0000000 --- a/qdecimal/test/tc_full/ddCopySign.decTest +++ /dev/null @@ -1,175 +0,0 @@ ------------------------------------------------------------------------- --- ddCopySign.decTest -- quiet decDouble copy with sign from rhs -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddcps001 copysign +7.50 11 -> 7.50 - --- Infinities -ddcps011 copysign Infinity 11 -> Infinity -ddcps012 copysign -Infinity 11 -> Infinity - --- NaNs, 0 payload -ddcps021 copysign NaN 11 -> NaN -ddcps022 copysign -NaN 11 -> NaN -ddcps023 copysign sNaN 11 -> sNaN -ddcps024 copysign -sNaN 11 -> sNaN - --- NaNs, non-0 payload -ddcps031 copysign NaN10 11 -> NaN10 -ddcps032 copysign -NaN10 11 -> NaN10 -ddcps033 copysign sNaN10 11 -> sNaN10 -ddcps034 copysign -sNaN10 11 -> sNaN10 -ddcps035 copysign NaN7 11 -> NaN7 -ddcps036 copysign -NaN7 11 -> NaN7 -ddcps037 copysign sNaN101 11 -> sNaN101 -ddcps038 copysign -sNaN101 11 -> sNaN101 - --- finites -ddcps101 copysign 7 11 -> 7 -ddcps102 copysign -7 11 -> 7 -ddcps103 copysign 75 11 -> 75 -ddcps104 copysign -75 11 -> 75 -ddcps105 copysign 7.50 11 -> 7.50 -ddcps106 copysign -7.50 11 -> 7.50 -ddcps107 copysign 7.500 11 -> 7.500 -ddcps108 copysign -7.500 11 -> 7.500 - --- zeros -ddcps111 copysign 0 11 -> 0 -ddcps112 copysign -0 11 -> 0 -ddcps113 copysign 0E+4 11 -> 0E+4 -ddcps114 copysign -0E+4 11 -> 0E+4 -ddcps115 copysign 0.0000 11 -> 0.0000 -ddcps116 copysign -0.0000 11 -> 0.0000 -ddcps117 copysign 0E-141 11 -> 0E-141 -ddcps118 copysign -0E-141 11 -> 0E-141 - --- full coefficients, alternating bits -ddcps121 copysign 2682682682682682 11 -> 2682682682682682 -ddcps122 copysign -2682682682682682 11 -> 2682682682682682 -ddcps123 copysign 1341341341341341 11 -> 1341341341341341 -ddcps124 copysign -1341341341341341 11 -> 1341341341341341 - --- Nmax, Nmin, Ntiny -ddcps131 copysign 9.999999999999999E+384 11 -> 9.999999999999999E+384 -ddcps132 copysign 1E-383 11 -> 1E-383 -ddcps133 copysign 1.000000000000000E-383 11 -> 1.000000000000000E-383 -ddcps134 copysign 1E-398 11 -> 1E-398 - -ddcps135 copysign -1E-398 11 -> 1E-398 -ddcps136 copysign -1.000000000000000E-383 11 -> 1.000000000000000E-383 -ddcps137 copysign -1E-383 11 -> 1E-383 -ddcps138 copysign -9.999999999999999E+384 11 -> 9.999999999999999E+384 - --- repeat with negative RHS - --- Infinities -ddcps211 copysign Infinity -34 -> -Infinity -ddcps212 copysign -Infinity -34 -> -Infinity - --- NaNs, 0 payload -ddcps221 copysign NaN -34 -> -NaN -ddcps222 copysign -NaN -34 -> -NaN -ddcps223 copysign sNaN -34 -> -sNaN -ddcps224 copysign -sNaN -34 -> -sNaN - --- NaNs, non-0 payload -ddcps231 copysign NaN10 -34 -> -NaN10 -ddcps232 copysign -NaN10 -34 -> -NaN10 -ddcps233 copysign sNaN10 -34 -> -sNaN10 -ddcps234 copysign -sNaN10 -34 -> -sNaN10 -ddcps235 copysign NaN7 -34 -> -NaN7 -ddcps236 copysign -NaN7 -34 -> -NaN7 -ddcps237 copysign sNaN101 -34 -> -sNaN101 -ddcps238 copysign -sNaN101 -34 -> -sNaN101 - --- finites -ddcps301 copysign 7 -34 -> -7 -ddcps302 copysign -7 -34 -> -7 -ddcps303 copysign 75 -34 -> -75 -ddcps304 copysign -75 -34 -> -75 -ddcps305 copysign 7.50 -34 -> -7.50 -ddcps306 copysign -7.50 -34 -> -7.50 -ddcps307 copysign 7.500 -34 -> -7.500 -ddcps308 copysign -7.500 -34 -> -7.500 - --- zeros -ddcps311 copysign 0 -34 -> -0 -ddcps312 copysign -0 -34 -> -0 -ddcps313 copysign 0E+4 -34 -> -0E+4 -ddcps314 copysign -0E+4 -34 -> -0E+4 -ddcps315 copysign 0.0000 -34 -> -0.0000 -ddcps316 copysign -0.0000 -34 -> -0.0000 -ddcps317 copysign 0E-141 -34 -> -0E-141 -ddcps318 copysign -0E-141 -34 -> -0E-141 - --- full coefficients, alternating bits -ddcps321 copysign 2682682682682682 -34 -> -2682682682682682 -ddcps322 copysign -2682682682682682 -34 -> -2682682682682682 -ddcps323 copysign 1341341341341341 -34 -> -1341341341341341 -ddcps324 copysign -1341341341341341 -34 -> -1341341341341341 - --- Nmax, Nmin, Ntiny -ddcps331 copysign 9.999999999999999E+384 -34 -> -9.999999999999999E+384 -ddcps332 copysign 1E-383 -34 -> -1E-383 -ddcps333 copysign 1.000000000000000E-383 -34 -> -1.000000000000000E-383 -ddcps334 copysign 1E-398 -34 -> -1E-398 - -ddcps335 copysign -1E-398 -34 -> -1E-398 -ddcps336 copysign -1.000000000000000E-383 -34 -> -1.000000000000000E-383 -ddcps337 copysign -1E-383 -34 -> -1E-383 -ddcps338 copysign -9.999999999999999E+384 -34 -> -9.999999999999999E+384 - --- Other kinds of RHS -ddcps401 copysign 701 -34 -> -701 -ddcps402 copysign -720 -34 -> -720 -ddcps403 copysign 701 -0 -> -701 -ddcps404 copysign -720 -0 -> -720 -ddcps405 copysign 701 +0 -> 701 -ddcps406 copysign -720 +0 -> 720 -ddcps407 copysign 701 +34 -> 701 -ddcps408 copysign -720 +34 -> 720 - -ddcps413 copysign 701 -Inf -> -701 -ddcps414 copysign -720 -Inf -> -720 -ddcps415 copysign 701 +Inf -> 701 -ddcps416 copysign -720 +Inf -> 720 - -ddcps420 copysign 701 -NaN -> -701 -ddcps421 copysign -720 -NaN -> -720 -ddcps422 copysign 701 +NaN -> 701 -ddcps423 copysign -720 +NaN -> 720 -ddcps425 copysign -720 +NaN8 -> 720 - -ddcps426 copysign 701 -sNaN -> -701 -ddcps427 copysign -720 -sNaN -> -720 -ddcps428 copysign 701 +sNaN -> 701 -ddcps429 copysign -720 +sNaN -> 720 -ddcps430 copysign -720 +sNaN3 -> 720 - diff --git a/qdecimal/test/tc_full/ddDivide.decTest b/qdecimal/test/tc_full/ddDivide.decTest deleted file mode 100644 index 197c352..0000000 --- a/qdecimal/test/tc_full/ddDivide.decTest +++ /dev/null @@ -1,854 +0,0 @@ ------------------------------------------------------------------------- --- ddDivide.decTest -- decDouble division -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -dddiv001 divide 1 1 -> 1 -dddiv002 divide 2 1 -> 2 -dddiv003 divide 1 2 -> 0.5 -dddiv004 divide 2 2 -> 1 -dddiv005 divide 0 1 -> 0 -dddiv006 divide 0 2 -> 0 -dddiv007 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv008 divide 2 3 -> 0.6666666666666667 Inexact Rounded -dddiv009 divide 3 3 -> 1 - -dddiv010 divide 2.4 1 -> 2.4 -dddiv011 divide 2.4 -1 -> -2.4 -dddiv012 divide -2.4 1 -> -2.4 -dddiv013 divide -2.4 -1 -> 2.4 -dddiv014 divide 2.40 1 -> 2.40 -dddiv015 divide 2.400 1 -> 2.400 -dddiv016 divide 2.4 2 -> 1.2 -dddiv017 divide 2.400 2 -> 1.200 -dddiv018 divide 2. 2 -> 1 -dddiv019 divide 20 20 -> 1 - -dddiv020 divide 187 187 -> 1 -dddiv021 divide 5 2 -> 2.5 -dddiv022 divide 50 20 -> 2.5 -dddiv023 divide 500 200 -> 2.5 -dddiv024 divide 50.0 20.0 -> 2.5 -dddiv025 divide 5.00 2.00 -> 2.5 -dddiv026 divide 5 2.0 -> 2.5 -dddiv027 divide 5 2.000 -> 2.5 -dddiv028 divide 5 0.20 -> 25 -dddiv029 divide 5 0.200 -> 25 -dddiv030 divide 10 1 -> 10 -dddiv031 divide 100 1 -> 100 -dddiv032 divide 1000 1 -> 1000 -dddiv033 divide 1000 100 -> 10 - -dddiv035 divide 1 2 -> 0.5 -dddiv036 divide 1 4 -> 0.25 -dddiv037 divide 1 8 -> 0.125 -dddiv038 divide 1 16 -> 0.0625 -dddiv039 divide 1 32 -> 0.03125 -dddiv040 divide 1 64 -> 0.015625 -dddiv041 divide 1 -2 -> -0.5 -dddiv042 divide 1 -4 -> -0.25 -dddiv043 divide 1 -8 -> -0.125 -dddiv044 divide 1 -16 -> -0.0625 -dddiv045 divide 1 -32 -> -0.03125 -dddiv046 divide 1 -64 -> -0.015625 -dddiv047 divide -1 2 -> -0.5 -dddiv048 divide -1 4 -> -0.25 -dddiv049 divide -1 8 -> -0.125 -dddiv050 divide -1 16 -> -0.0625 -dddiv051 divide -1 32 -> -0.03125 -dddiv052 divide -1 64 -> -0.015625 -dddiv053 divide -1 -2 -> 0.5 -dddiv054 divide -1 -4 -> 0.25 -dddiv055 divide -1 -8 -> 0.125 -dddiv056 divide -1 -16 -> 0.0625 -dddiv057 divide -1 -32 -> 0.03125 -dddiv058 divide -1 -64 -> 0.015625 - --- bcdTime -dddiv060 divide 1 7 -> 0.1428571428571429 Inexact Rounded -dddiv061 divide 1.2345678 1.9876543 -> 0.6211179680490717 Inexact Rounded - --- 1234567890123456 -dddiv071 divide 9999999999999999 1 -> 9999999999999999 -dddiv072 divide 999999999999999 1 -> 999999999999999 -dddiv073 divide 99999999999999 1 -> 99999999999999 -dddiv074 divide 9999999999999 1 -> 9999999999999 -dddiv075 divide 999999999999 1 -> 999999999999 -dddiv076 divide 99999999999 1 -> 99999999999 -dddiv077 divide 9999999999 1 -> 9999999999 -dddiv078 divide 999999999 1 -> 999999999 -dddiv079 divide 99999999 1 -> 99999999 -dddiv080 divide 9999999 1 -> 9999999 -dddiv081 divide 999999 1 -> 999999 -dddiv082 divide 99999 1 -> 99999 -dddiv083 divide 9999 1 -> 9999 -dddiv084 divide 999 1 -> 999 -dddiv085 divide 99 1 -> 99 -dddiv086 divide 9 1 -> 9 - -dddiv090 divide 0. 1 -> 0 -dddiv091 divide .0 1 -> 0.0 -dddiv092 divide 0.00 1 -> 0.00 -dddiv093 divide 0.00E+9 1 -> 0E+7 -dddiv094 divide 0.0000E-50 1 -> 0E-54 - -dddiv095 divide 1 1E-8 -> 1E+8 -dddiv096 divide 1 1E-9 -> 1E+9 -dddiv097 divide 1 1E-10 -> 1E+10 -dddiv098 divide 1 1E-11 -> 1E+11 -dddiv099 divide 1 1E-12 -> 1E+12 - -dddiv100 divide 1 1 -> 1 -dddiv101 divide 1 2 -> 0.5 -dddiv102 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv103 divide 1 4 -> 0.25 -dddiv104 divide 1 5 -> 0.2 -dddiv105 divide 1 6 -> 0.1666666666666667 Inexact Rounded -dddiv106 divide 1 7 -> 0.1428571428571429 Inexact Rounded -dddiv107 divide 1 8 -> 0.125 -dddiv108 divide 1 9 -> 0.1111111111111111 Inexact Rounded -dddiv109 divide 1 10 -> 0.1 -dddiv110 divide 1 1 -> 1 -dddiv111 divide 2 1 -> 2 -dddiv112 divide 3 1 -> 3 -dddiv113 divide 4 1 -> 4 -dddiv114 divide 5 1 -> 5 -dddiv115 divide 6 1 -> 6 -dddiv116 divide 7 1 -> 7 -dddiv117 divide 8 1 -> 8 -dddiv118 divide 9 1 -> 9 -dddiv119 divide 10 1 -> 10 - -dddiv120 divide 3E+1 0.001 -> 3E+4 -dddiv121 divide 2.200 2 -> 1.100 - -dddiv130 divide 12345 4.999 -> 2469.493898779756 Inexact Rounded -dddiv131 divide 12345 4.99 -> 2473.947895791583 Inexact Rounded -dddiv132 divide 12345 4.9 -> 2519.387755102041 Inexact Rounded -dddiv133 divide 12345 5 -> 2469 -dddiv134 divide 12345 5.1 -> 2420.588235294118 Inexact Rounded -dddiv135 divide 12345 5.01 -> 2464.071856287425 Inexact Rounded -dddiv136 divide 12345 5.001 -> 2468.506298740252 Inexact Rounded - --- test possibly imprecise results -dddiv220 divide 391 597 -> 0.6549413735343384 Inexact Rounded -dddiv221 divide 391 -597 -> -0.6549413735343384 Inexact Rounded -dddiv222 divide -391 597 -> -0.6549413735343384 Inexact Rounded -dddiv223 divide -391 -597 -> 0.6549413735343384 Inexact Rounded - --- test some cases that are close to exponent overflow -dddiv270 divide 1 1e384 -> 1E-384 Subnormal -dddiv271 divide 1 0.9e384 -> 1.11111111111111E-384 Rounded Inexact Subnormal Underflow -dddiv272 divide 1 0.99e384 -> 1.01010101010101E-384 Rounded Inexact Subnormal Underflow -dddiv273 divide 1 0.9999999999999999e384 -> 1.00000000000000E-384 Rounded Inexact Subnormal Underflow -dddiv274 divide 9e384 1 -> 9.000000000000000E+384 Clamped -dddiv275 divide 9.9e384 1 -> 9.900000000000000E+384 Clamped -dddiv276 divide 9.99e384 1 -> 9.990000000000000E+384 Clamped -dddiv277 divide 9.999999999999999e384 1 -> 9.999999999999999E+384 - --- Divide into 0 tests -dddiv301 divide 0 7 -> 0 -dddiv302 divide 0 7E-5 -> 0E+5 -dddiv303 divide 0 7E-1 -> 0E+1 -dddiv304 divide 0 7E+1 -> 0.0 -dddiv305 divide 0 7E+5 -> 0.00000 -dddiv306 divide 0 7E+6 -> 0.000000 -dddiv307 divide 0 7E+7 -> 0E-7 -dddiv308 divide 0 70E-5 -> 0E+5 -dddiv309 divide 0 70E-1 -> 0E+1 -dddiv310 divide 0 70E+0 -> 0 -dddiv311 divide 0 70E+1 -> 0.0 -dddiv312 divide 0 70E+5 -> 0.00000 -dddiv313 divide 0 70E+6 -> 0.000000 -dddiv314 divide 0 70E+7 -> 0E-7 -dddiv315 divide 0 700E-5 -> 0E+5 -dddiv316 divide 0 700E-1 -> 0E+1 -dddiv317 divide 0 700E+0 -> 0 -dddiv318 divide 0 700E+1 -> 0.0 -dddiv319 divide 0 700E+5 -> 0.00000 -dddiv320 divide 0 700E+6 -> 0.000000 -dddiv321 divide 0 700E+7 -> 0E-7 -dddiv322 divide 0 700E+77 -> 0E-77 - -dddiv331 divide 0E-3 7E-5 -> 0E+2 -dddiv332 divide 0E-3 7E-1 -> 0.00 -dddiv333 divide 0E-3 7E+1 -> 0.0000 -dddiv334 divide 0E-3 7E+5 -> 0E-8 -dddiv335 divide 0E-1 7E-5 -> 0E+4 -dddiv336 divide 0E-1 7E-1 -> 0 -dddiv337 divide 0E-1 7E+1 -> 0.00 -dddiv338 divide 0E-1 7E+5 -> 0.000000 -dddiv339 divide 0E+1 7E-5 -> 0E+6 -dddiv340 divide 0E+1 7E-1 -> 0E+2 -dddiv341 divide 0E+1 7E+1 -> 0 -dddiv342 divide 0E+1 7E+5 -> 0.0000 -dddiv343 divide 0E+3 7E-5 -> 0E+8 -dddiv344 divide 0E+3 7E-1 -> 0E+4 -dddiv345 divide 0E+3 7E+1 -> 0E+2 -dddiv346 divide 0E+3 7E+5 -> 0.00 - --- These were 'input rounding' -dddiv441 divide 12345678000 1 -> 12345678000 -dddiv442 divide 1 12345678000 -> 8.100000664200054E-11 Inexact Rounded -dddiv443 divide 1234567800 1 -> 1234567800 -dddiv444 divide 1 1234567800 -> 8.100000664200054E-10 Inexact Rounded -dddiv445 divide 1234567890 1 -> 1234567890 -dddiv446 divide 1 1234567890 -> 8.100000073710001E-10 Inexact Rounded -dddiv447 divide 1234567891 1 -> 1234567891 -dddiv448 divide 1 1234567891 -> 8.100000067149001E-10 Inexact Rounded -dddiv449 divide 12345678901 1 -> 12345678901 -dddiv450 divide 1 12345678901 -> 8.100000073053901E-11 Inexact Rounded -dddiv451 divide 1234567896 1 -> 1234567896 -dddiv452 divide 1 1234567896 -> 8.100000034344000E-10 Inexact Rounded - --- high-lows -dddiv453 divide 1e+1 1 -> 1E+1 -dddiv454 divide 1e+1 1.0 -> 1E+1 -dddiv455 divide 1e+1 1.00 -> 1E+1 -dddiv456 divide 1e+2 2 -> 5E+1 -dddiv457 divide 1e+2 2.0 -> 5E+1 -dddiv458 divide 1e+2 2.00 -> 5E+1 - --- some from IEEE discussions -dddiv460 divide 3e0 2e0 -> 1.5 -dddiv461 divide 30e-1 2e0 -> 1.5 -dddiv462 divide 300e-2 2e0 -> 1.50 -dddiv464 divide 3000e-3 2e0 -> 1.500 -dddiv465 divide 3e0 20e-1 -> 1.5 -dddiv466 divide 30e-1 20e-1 -> 1.5 -dddiv467 divide 300e-2 20e-1 -> 1.5 -dddiv468 divide 3000e-3 20e-1 -> 1.50 -dddiv469 divide 3e0 200e-2 -> 1.5 -dddiv470 divide 30e-1 200e-2 -> 1.5 -dddiv471 divide 300e-2 200e-2 -> 1.5 -dddiv472 divide 3000e-3 200e-2 -> 1.5 -dddiv473 divide 3e0 2000e-3 -> 1.5 -dddiv474 divide 30e-1 2000e-3 -> 1.5 -dddiv475 divide 300e-2 2000e-3 -> 1.5 -dddiv476 divide 3000e-3 2000e-3 -> 1.5 - --- some reciprocals -dddiv480 divide 1 1.0E+33 -> 1E-33 -dddiv481 divide 1 10E+33 -> 1E-34 -dddiv482 divide 1 1.0E-33 -> 1E+33 -dddiv483 divide 1 10E-33 -> 1E+32 - --- RMS discussion table -dddiv484 divide 0e5 1e3 -> 0E+2 -dddiv485 divide 0e5 2e3 -> 0E+2 -dddiv486 divide 0e5 10e2 -> 0E+3 -dddiv487 divide 0e5 20e2 -> 0E+3 -dddiv488 divide 0e5 100e1 -> 0E+4 -dddiv489 divide 0e5 200e1 -> 0E+4 - -dddiv491 divide 1e5 1e3 -> 1E+2 -dddiv492 divide 1e5 2e3 -> 5E+1 -dddiv493 divide 1e5 10e2 -> 1E+2 -dddiv494 divide 1e5 20e2 -> 5E+1 -dddiv495 divide 1e5 100e1 -> 1E+2 -dddiv496 divide 1e5 200e1 -> 5E+1 - --- tryzeros cases -rounding: half_up -dddiv497 divide 0E+380 1000E-13 -> 0E+369 Clamped -dddiv498 divide 0E-390 1000E+13 -> 0E-398 Clamped - -rounding: half_up - --- focus on trailing zeros issues -dddiv500 divide 1 9.9 -> 0.1010101010101010 Inexact Rounded -dddiv501 divide 1 9.09 -> 0.1100110011001100 Inexact Rounded -dddiv502 divide 1 9.009 -> 0.1110001110001110 Inexact Rounded - -dddiv511 divide 1 2 -> 0.5 -dddiv512 divide 1.0 2 -> 0.5 -dddiv513 divide 1.00 2 -> 0.50 -dddiv514 divide 1.000 2 -> 0.500 -dddiv515 divide 1.0000 2 -> 0.5000 -dddiv516 divide 1.00000 2 -> 0.50000 -dddiv517 divide 1.000000 2 -> 0.500000 -dddiv518 divide 1.0000000 2 -> 0.5000000 -dddiv519 divide 1.00 2.00 -> 0.5 - -dddiv521 divide 2 1 -> 2 -dddiv522 divide 2 1.0 -> 2 -dddiv523 divide 2 1.00 -> 2 -dddiv524 divide 2 1.000 -> 2 -dddiv525 divide 2 1.0000 -> 2 -dddiv526 divide 2 1.00000 -> 2 -dddiv527 divide 2 1.000000 -> 2 -dddiv528 divide 2 1.0000000 -> 2 -dddiv529 divide 2.00 1.00 -> 2 - -dddiv530 divide 2.40 2 -> 1.20 -dddiv531 divide 2.40 4 -> 0.60 -dddiv532 divide 2.40 10 -> 0.24 -dddiv533 divide 2.40 2.0 -> 1.2 -dddiv534 divide 2.40 4.0 -> 0.6 -dddiv535 divide 2.40 10.0 -> 0.24 -dddiv536 divide 2.40 2.00 -> 1.2 -dddiv537 divide 2.40 4.00 -> 0.6 -dddiv538 divide 2.40 10.00 -> 0.24 -dddiv539 divide 0.9 0.1 -> 9 -dddiv540 divide 0.9 0.01 -> 9E+1 -dddiv541 divide 0.9 0.001 -> 9E+2 -dddiv542 divide 5 2 -> 2.5 -dddiv543 divide 5 2.0 -> 2.5 -dddiv544 divide 5 2.00 -> 2.5 -dddiv545 divide 5 20 -> 0.25 -dddiv546 divide 5 20.0 -> 0.25 -dddiv547 divide 2.400 2 -> 1.200 -dddiv548 divide 2.400 2.0 -> 1.20 -dddiv549 divide 2.400 2.400 -> 1 - -dddiv550 divide 240 1 -> 240 -dddiv551 divide 240 10 -> 24 -dddiv552 divide 240 100 -> 2.4 -dddiv553 divide 240 1000 -> 0.24 -dddiv554 divide 2400 1 -> 2400 -dddiv555 divide 2400 10 -> 240 -dddiv556 divide 2400 100 -> 24 -dddiv557 divide 2400 1000 -> 2.4 - --- +ve exponent -dddiv600 divide 2.4E+9 2 -> 1.2E+9 -dddiv601 divide 2.40E+9 2 -> 1.20E+9 -dddiv602 divide 2.400E+9 2 -> 1.200E+9 -dddiv603 divide 2.4000E+9 2 -> 1.2000E+9 -dddiv604 divide 24E+8 2 -> 1.2E+9 -dddiv605 divide 240E+7 2 -> 1.20E+9 -dddiv606 divide 2400E+6 2 -> 1.200E+9 -dddiv607 divide 24000E+5 2 -> 1.2000E+9 - --- more zeros, etc. -dddiv731 divide 5.00 1E-3 -> 5.00E+3 -dddiv732 divide 00.00 0.000 -> NaN Division_undefined -dddiv733 divide 00.00 0E-3 -> NaN Division_undefined -dddiv734 divide 0 -0 -> NaN Division_undefined -dddiv735 divide -0 0 -> NaN Division_undefined -dddiv736 divide -0 -0 -> NaN Division_undefined - -dddiv741 divide 0 -1 -> -0 -dddiv742 divide -0 -1 -> 0 -dddiv743 divide 0 1 -> 0 -dddiv744 divide -0 1 -> -0 -dddiv745 divide -1 0 -> -Infinity Division_by_zero -dddiv746 divide -1 -0 -> Infinity Division_by_zero -dddiv747 divide 1 0 -> Infinity Division_by_zero -dddiv748 divide 1 -0 -> -Infinity Division_by_zero - -dddiv751 divide 0.0 -1 -> -0.0 -dddiv752 divide -0.0 -1 -> 0.0 -dddiv753 divide 0.0 1 -> 0.0 -dddiv754 divide -0.0 1 -> -0.0 -dddiv755 divide -1.0 0 -> -Infinity Division_by_zero -dddiv756 divide -1.0 -0 -> Infinity Division_by_zero -dddiv757 divide 1.0 0 -> Infinity Division_by_zero -dddiv758 divide 1.0 -0 -> -Infinity Division_by_zero - -dddiv761 divide 0 -1.0 -> -0E+1 -dddiv762 divide -0 -1.0 -> 0E+1 -dddiv763 divide 0 1.0 -> 0E+1 -dddiv764 divide -0 1.0 -> -0E+1 -dddiv765 divide -1 0.0 -> -Infinity Division_by_zero -dddiv766 divide -1 -0.0 -> Infinity Division_by_zero -dddiv767 divide 1 0.0 -> Infinity Division_by_zero -dddiv768 divide 1 -0.0 -> -Infinity Division_by_zero - -dddiv771 divide 0.0 -1.0 -> -0 -dddiv772 divide -0.0 -1.0 -> 0 -dddiv773 divide 0.0 1.0 -> 0 -dddiv774 divide -0.0 1.0 -> -0 -dddiv775 divide -1.0 0.0 -> -Infinity Division_by_zero -dddiv776 divide -1.0 -0.0 -> Infinity Division_by_zero -dddiv777 divide 1.0 0.0 -> Infinity Division_by_zero -dddiv778 divide 1.0 -0.0 -> -Infinity Division_by_zero - --- Specials -dddiv780 divide Inf -Inf -> NaN Invalid_operation -dddiv781 divide Inf -1000 -> -Infinity -dddiv782 divide Inf -1 -> -Infinity -dddiv783 divide Inf -0 -> -Infinity -dddiv784 divide Inf 0 -> Infinity -dddiv785 divide Inf 1 -> Infinity -dddiv786 divide Inf 1000 -> Infinity -dddiv787 divide Inf Inf -> NaN Invalid_operation -dddiv788 divide -1000 Inf -> -0E-398 Clamped -dddiv789 divide -Inf Inf -> NaN Invalid_operation -dddiv790 divide -1 Inf -> -0E-398 Clamped -dddiv791 divide -0 Inf -> -0E-398 Clamped -dddiv792 divide 0 Inf -> 0E-398 Clamped -dddiv793 divide 1 Inf -> 0E-398 Clamped -dddiv794 divide 1000 Inf -> 0E-398 Clamped -dddiv795 divide Inf Inf -> NaN Invalid_operation - -dddiv800 divide -Inf -Inf -> NaN Invalid_operation -dddiv801 divide -Inf -1000 -> Infinity -dddiv802 divide -Inf -1 -> Infinity -dddiv803 divide -Inf -0 -> Infinity -dddiv804 divide -Inf 0 -> -Infinity -dddiv805 divide -Inf 1 -> -Infinity -dddiv806 divide -Inf 1000 -> -Infinity -dddiv807 divide -Inf Inf -> NaN Invalid_operation -dddiv808 divide -1000 Inf -> -0E-398 Clamped -dddiv809 divide -Inf -Inf -> NaN Invalid_operation -dddiv810 divide -1 -Inf -> 0E-398 Clamped -dddiv811 divide -0 -Inf -> 0E-398 Clamped -dddiv812 divide 0 -Inf -> -0E-398 Clamped -dddiv813 divide 1 -Inf -> -0E-398 Clamped -dddiv814 divide 1000 -Inf -> -0E-398 Clamped -dddiv815 divide Inf -Inf -> NaN Invalid_operation - -dddiv821 divide NaN -Inf -> NaN -dddiv822 divide NaN -1000 -> NaN -dddiv823 divide NaN -1 -> NaN -dddiv824 divide NaN -0 -> NaN -dddiv825 divide NaN 0 -> NaN -dddiv826 divide NaN 1 -> NaN -dddiv827 divide NaN 1000 -> NaN -dddiv828 divide NaN Inf -> NaN -dddiv829 divide NaN NaN -> NaN -dddiv830 divide -Inf NaN -> NaN -dddiv831 divide -1000 NaN -> NaN -dddiv832 divide -1 NaN -> NaN -dddiv833 divide -0 NaN -> NaN -dddiv834 divide 0 NaN -> NaN -dddiv835 divide 1 NaN -> NaN -dddiv836 divide 1000 NaN -> NaN -dddiv837 divide Inf NaN -> NaN - -dddiv841 divide sNaN -Inf -> NaN Invalid_operation -dddiv842 divide sNaN -1000 -> NaN Invalid_operation -dddiv843 divide sNaN -1 -> NaN Invalid_operation -dddiv844 divide sNaN -0 -> NaN Invalid_operation -dddiv845 divide sNaN 0 -> NaN Invalid_operation -dddiv846 divide sNaN 1 -> NaN Invalid_operation -dddiv847 divide sNaN 1000 -> NaN Invalid_operation -dddiv848 divide sNaN NaN -> NaN Invalid_operation -dddiv849 divide sNaN sNaN -> NaN Invalid_operation -dddiv850 divide NaN sNaN -> NaN Invalid_operation -dddiv851 divide -Inf sNaN -> NaN Invalid_operation -dddiv852 divide -1000 sNaN -> NaN Invalid_operation -dddiv853 divide -1 sNaN -> NaN Invalid_operation -dddiv854 divide -0 sNaN -> NaN Invalid_operation -dddiv855 divide 0 sNaN -> NaN Invalid_operation -dddiv856 divide 1 sNaN -> NaN Invalid_operation -dddiv857 divide 1000 sNaN -> NaN Invalid_operation -dddiv858 divide Inf sNaN -> NaN Invalid_operation -dddiv859 divide NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dddiv861 divide NaN9 -Inf -> NaN9 -dddiv862 divide NaN8 1000 -> NaN8 -dddiv863 divide NaN7 Inf -> NaN7 -dddiv864 divide NaN6 NaN5 -> NaN6 -dddiv865 divide -Inf NaN4 -> NaN4 -dddiv866 divide -1000 NaN3 -> NaN3 -dddiv867 divide Inf NaN2 -> NaN2 - -dddiv871 divide sNaN99 -Inf -> NaN99 Invalid_operation -dddiv872 divide sNaN98 -1 -> NaN98 Invalid_operation -dddiv873 divide sNaN97 NaN -> NaN97 Invalid_operation -dddiv874 divide sNaN96 sNaN94 -> NaN96 Invalid_operation -dddiv875 divide NaN95 sNaN93 -> NaN93 Invalid_operation -dddiv876 divide -Inf sNaN92 -> NaN92 Invalid_operation -dddiv877 divide 0 sNaN91 -> NaN91 Invalid_operation -dddiv878 divide Inf sNaN90 -> NaN90 Invalid_operation -dddiv879 divide NaN sNaN89 -> NaN89 Invalid_operation - -dddiv881 divide -NaN9 -Inf -> -NaN9 -dddiv882 divide -NaN8 1000 -> -NaN8 -dddiv883 divide -NaN7 Inf -> -NaN7 -dddiv884 divide -NaN6 -NaN5 -> -NaN6 -dddiv885 divide -Inf -NaN4 -> -NaN4 -dddiv886 divide -1000 -NaN3 -> -NaN3 -dddiv887 divide Inf -NaN2 -> -NaN2 - -dddiv891 divide -sNaN99 -Inf -> -NaN99 Invalid_operation -dddiv892 divide -sNaN98 -1 -> -NaN98 Invalid_operation -dddiv893 divide -sNaN97 NaN -> -NaN97 Invalid_operation -dddiv894 divide -sNaN96 -sNaN94 -> -NaN96 Invalid_operation -dddiv895 divide -NaN95 -sNaN93 -> -NaN93 Invalid_operation -dddiv896 divide -Inf -sNaN92 -> -NaN92 Invalid_operation -dddiv897 divide 0 -sNaN91 -> -NaN91 Invalid_operation -dddiv898 divide Inf -sNaN90 -> -NaN90 Invalid_operation -dddiv899 divide -NaN -sNaN89 -> -NaN89 Invalid_operation - --- Various flavours of divide by 0 -dddiv901 divide 0 0 -> NaN Division_undefined -dddiv902 divide 0.0E5 0 -> NaN Division_undefined -dddiv903 divide 0.000 0 -> NaN Division_undefined -dddiv904 divide 0.0001 0 -> Infinity Division_by_zero -dddiv905 divide 0.01 0 -> Infinity Division_by_zero -dddiv906 divide 0.1 0 -> Infinity Division_by_zero -dddiv907 divide 1 0 -> Infinity Division_by_zero -dddiv908 divide 1 0.0 -> Infinity Division_by_zero -dddiv909 divide 10 0.0 -> Infinity Division_by_zero -dddiv910 divide 1E+100 0.0 -> Infinity Division_by_zero -dddiv911 divide 1E+100 0 -> Infinity Division_by_zero - -dddiv921 divide -0.0001 0 -> -Infinity Division_by_zero -dddiv922 divide -0.01 0 -> -Infinity Division_by_zero -dddiv923 divide -0.1 0 -> -Infinity Division_by_zero -dddiv924 divide -1 0 -> -Infinity Division_by_zero -dddiv925 divide -1 0.0 -> -Infinity Division_by_zero -dddiv926 divide -10 0.0 -> -Infinity Division_by_zero -dddiv927 divide -1E+100 0.0 -> -Infinity Division_by_zero -dddiv928 divide -1E+100 0 -> -Infinity Division_by_zero - -dddiv931 divide 0.0001 -0 -> -Infinity Division_by_zero -dddiv932 divide 0.01 -0 -> -Infinity Division_by_zero -dddiv933 divide 0.1 -0 -> -Infinity Division_by_zero -dddiv934 divide 1 -0 -> -Infinity Division_by_zero -dddiv935 divide 1 -0.0 -> -Infinity Division_by_zero -dddiv936 divide 10 -0.0 -> -Infinity Division_by_zero -dddiv937 divide 1E+100 -0.0 -> -Infinity Division_by_zero -dddiv938 divide 1E+100 -0 -> -Infinity Division_by_zero - -dddiv941 divide -0.0001 -0 -> Infinity Division_by_zero -dddiv942 divide -0.01 -0 -> Infinity Division_by_zero -dddiv943 divide -0.1 -0 -> Infinity Division_by_zero -dddiv944 divide -1 -0 -> Infinity Division_by_zero -dddiv945 divide -1 -0.0 -> Infinity Division_by_zero -dddiv946 divide -10 -0.0 -> Infinity Division_by_zero -dddiv947 divide -1E+100 -0.0 -> Infinity Division_by_zero -dddiv948 divide -1E+100 -0 -> Infinity Division_by_zero - --- Examples from SQL proposal (Krishna Kulkarni) -dddiv1021 divide 1E0 1E0 -> 1 -dddiv1022 divide 1E0 2E0 -> 0.5 -dddiv1023 divide 1E0 3E0 -> 0.3333333333333333 Inexact Rounded -dddiv1024 divide 100E-2 1000E-3 -> 1 -dddiv1025 divide 24E-1 2E0 -> 1.2 -dddiv1026 divide 2400E-3 2E0 -> 1.200 -dddiv1027 divide 5E0 2E0 -> 2.5 -dddiv1028 divide 5E0 20E-1 -> 2.5 -dddiv1029 divide 5E0 2000E-3 -> 2.5 -dddiv1030 divide 5E0 2E-1 -> 25 -dddiv1031 divide 5E0 20E-2 -> 25 -dddiv1032 divide 480E-2 3E0 -> 1.60 -dddiv1033 divide 47E-1 2E0 -> 2.35 - --- ECMAScript bad examples -rounding: half_down -dddiv1040 divide 5 9 -> 0.5555555555555556 Inexact Rounded -rounding: half_even -dddiv1041 divide 6 11 -> 0.5454545454545455 Inexact Rounded - --- overflow and underflow tests .. note subnormal results --- signs -dddiv1051 divide 1e+277 1e-311 -> Infinity Overflow Inexact Rounded -dddiv1052 divide 1e+277 -1e-311 -> -Infinity Overflow Inexact Rounded -dddiv1053 divide -1e+277 1e-311 -> -Infinity Overflow Inexact Rounded -dddiv1054 divide -1e+277 -1e-311 -> Infinity Overflow Inexact Rounded -dddiv1055 divide 1e-277 1e+311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1056 divide 1e-277 -1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1057 divide -1e-277 1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1058 divide -1e-277 -1e+311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -dddiv1060 divide 1e-291 1e+101 -> 1E-392 Subnormal -dddiv1061 divide 1e-291 1e+102 -> 1E-393 Subnormal -dddiv1062 divide 1e-291 1e+103 -> 1E-394 Subnormal -dddiv1063 divide 1e-291 1e+104 -> 1E-395 Subnormal -dddiv1064 divide 1e-291 1e+105 -> 1E-396 Subnormal -dddiv1065 divide 1e-291 1e+106 -> 1E-397 Subnormal -dddiv1066 divide 1e-291 1e+107 -> 1E-398 Subnormal -dddiv1067 divide 1e-291 1e+108 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1068 divide 1e-291 1e+109 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1069 divide 1e-291 1e+110 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -dddiv1070 divide 1e+60 1e-321 -> 1.000000000000E+381 Clamped -dddiv1071 divide 1e+60 1e-322 -> 1.0000000000000E+382 Clamped -dddiv1072 divide 1e+60 1e-323 -> 1.00000000000000E+383 Clamped -dddiv1073 divide 1e+60 1e-324 -> 1.000000000000000E+384 Clamped -dddiv1074 divide 1e+60 1e-325 -> Infinity Overflow Inexact Rounded -dddiv1075 divide 1e+60 1e-326 -> Infinity Overflow Inexact Rounded -dddiv1076 divide 1e+60 1e-327 -> Infinity Overflow Inexact Rounded -dddiv1077 divide 1e+60 1e-328 -> Infinity Overflow Inexact Rounded -dddiv1078 divide 1e+60 1e-329 -> Infinity Overflow Inexact Rounded -dddiv1079 divide 1e+60 1e-330 -> Infinity Overflow Inexact Rounded - -dddiv1101 divide 1.0000E-394 1 -> 1.0000E-394 Subnormal -dddiv1102 divide 1.000E-394 1e+1 -> 1.000E-395 Subnormal -dddiv1103 divide 1.00E-394 1e+2 -> 1.00E-396 Subnormal -dddiv1104 divide 1.0E-394 1e+3 -> 1.0E-397 Subnormal -dddiv1105 divide 1.0E-394 1e+4 -> 1E-398 Subnormal Rounded -dddiv1106 divide 1.3E-394 1e+4 -> 1E-398 Underflow Subnormal Inexact Rounded -dddiv1107 divide 1.5E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1108 divide 1.7E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1109 divide 2.3E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1110 divide 2.5E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1111 divide 2.7E-394 1e+4 -> 3E-398 Underflow Subnormal Inexact Rounded -dddiv1112 divide 1.49E-394 1e+4 -> 1E-398 Underflow Subnormal Inexact Rounded -dddiv1113 divide 1.50E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1114 divide 1.51E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1115 divide 2.49E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1116 divide 2.50E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded -dddiv1117 divide 2.51E-394 1e+4 -> 3E-398 Underflow Subnormal Inexact Rounded - -dddiv1118 divide 1E-394 1e+4 -> 1E-398 Subnormal -dddiv1119 divide 3E-394 1e+5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1120 divide 5E-394 1e+5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1121 divide 7E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded -dddiv1122 divide 9E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded -dddiv1123 divide 9.9E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded - -dddiv1124 divide 1E-394 -1e+4 -> -1E-398 Subnormal -dddiv1125 divide 3E-394 -1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1126 divide -5E-394 1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1127 divide 7E-394 -1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded -dddiv1128 divide -9E-394 1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded -dddiv1129 divide 9.9E-394 -1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded -dddiv1130 divide 3.0E-394 -1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped - -dddiv1131 divide 1.0E-199 1e+200 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -dddiv1132 divide 1.0E-199 1e+199 -> 1E-398 Subnormal Rounded -dddiv1133 divide 1.0E-199 1e+198 -> 1.0E-397 Subnormal -dddiv1134 divide 2.0E-199 2e+198 -> 1.0E-397 Subnormal -dddiv1135 divide 4.0E-199 4e+198 -> 1.0E-397 Subnormal -dddiv1136 divide 10.0E-199 10e+198 -> 1.0E-397 Subnormal -dddiv1137 divide 30.0E-199 30e+198 -> 1.0E-397 Subnormal - --- randoms -dddiv2010 divide -3.303226714900711E-35 8.796578842713183E+73 -> -3.755126594058783E-109 Inexact Rounded -dddiv2011 divide 933153327821073.6 68782181090246.25 -> 13.56678885475763 Inexact Rounded -dddiv2012 divide 5.04752436057906E-72 -8.179481771238642E+64 -> -6.170958627632835E-137 Inexact Rounded -dddiv2013 divide -3707613309582318 3394911196503.048 -> -1092.109070010836 Inexact Rounded -dddiv2014 divide 99689.0555190461 -4.735208553891464 -> -21052.72753765411 Inexact Rounded -dddiv2015 divide -1447915775613329 269750797.8184875 -> -5367605.164925653 Inexact Rounded -dddiv2016 divide -9.394881304225258E-19 -830585.0252671636 -> 1.131116143251358E-24 Inexact Rounded -dddiv2017 divide -1.056283432738934 88.58754555124013 -> -0.01192361100159352 Inexact Rounded -dddiv2018 divide 5763220933343.081 689089567025052.1 -> 0.008363529516524456 Inexact Rounded -dddiv2019 divide 873819.122103216 9.740612494523300E-49 -> 8.970884763093948E+53 Inexact Rounded -dddiv2020 divide 8022914.838533576 6178.566801742713 -> 1298.507420243583 Inexact Rounded -dddiv2021 divide 203982.7605650363 -2158.283639053435 -> -94.51156320422168 Inexact Rounded -dddiv2022 divide 803.6310547013030 7101143795399.238 -> 1.131692411611166E-10 Inexact Rounded -dddiv2023 divide 9.251697842123399E-82 -1.342350220606119E-7 -> -6.892163982321936E-75 Inexact Rounded -dddiv2024 divide -1.980600645637992E-53 -5.474262753214457E+77 -> 3.618022617703168E-131 Inexact Rounded -dddiv2025 divide -210.0322996351690 -8.580951835872843E+80 -> 2.447657365434971E-79 Inexact Rounded -dddiv2026 divide -1.821980314020370E+85 -3.018915267138165 -> 6.035215144503042E+84 Inexact Rounded -dddiv2027 divide -772264503601.1047 5.158258271408988E-86 -> -1.497141986630614E+97 Inexact Rounded -dddiv2028 divide -767.0532415847106 2.700027228028939E-59 -> -2.840909282772941E+61 Inexact Rounded -dddiv2029 divide 496724.8548250093 7.32700588163100E+66 -> 6.779370220929013E-62 Inexact Rounded -dddiv2030 divide -304232651447703.9 -108.9730808657440 -> 2791814721862.565 Inexact Rounded -dddiv2031 divide -7.233817192699405E+42 -5711302004.149411 -> 1.266579352211430E+33 Inexact Rounded -dddiv2032 divide -9.999221444912745E+96 4010569406446197 -> -2.493217404202250E+81 Inexact Rounded -dddiv2033 divide -1837272.061937622 8.356322838066762 -> -219866.0939196882 Inexact Rounded -dddiv2034 divide 2168.517555606529 209.1910258615061 -> 10.36620737756784 Inexact Rounded -dddiv2035 divide -1.884389790576371E+88 2.95181953870583E+20 -> -6.383824505079828E+67 Inexact Rounded -dddiv2036 divide 732263.6037438196 961222.3634446889 -> 0.7618045850698269 Inexact Rounded -dddiv2037 divide -813461419.0348336 5.376293753809143E+84 -> -1.513052404285927E-76 Inexact Rounded -dddiv2038 divide -45562133508108.50 -9.776843494690107E+51 -> 4.660208945029519E-39 Inexact Rounded -dddiv2039 divide -6.489393172441016E+80 -9101965.097852113 -> 7.129661674897421E+73 Inexact Rounded -dddiv2040 divide 3.694576237117349E+93 6683512.012622003 -> 5.527896456443912E+86 Inexact Rounded -dddiv2041 divide -2.252877726403272E+19 -7451913256.181367 -> 3023220546.125531 Inexact Rounded -dddiv2042 divide 518303.1989111842 50.01587020474133 -> 10362.77479107123 Inexact Rounded -dddiv2043 divide 2.902087881880103E+24 33.32400992305702 -> 8.708699488989578E+22 Inexact Rounded -dddiv2044 divide 549619.4559510557 1660824845196338 -> 3.309316196351104E-10 Inexact Rounded -dddiv2045 divide -6775670774684043 8292152023.077262 -> -817118.4941891062 Inexact Rounded -dddiv2046 divide -77.50923921524079 -5.636882655425815E+74 -> 1.375037302588405E-73 Inexact Rounded -dddiv2047 divide -2.984889459605149E-10 -88106156784122.99 -> 3.387833005721384E-24 Inexact Rounded -dddiv2048 divide 0.949517293997085 44767115.96450998 -> 2.121015110175589E-8 Inexact Rounded -dddiv2049 divide -2760937211.084521 -1087015876975408 -> 0.000002539923537057024 Inexact Rounded -dddiv2050 divide 28438351.85030536 -4.209397904088624E-47 -> -6.755919135770688E+53 Inexact Rounded -dddiv2051 divide -85562731.6820956 -7.166045442530185E+45 -> 1.194002080621542E-38 Inexact Rounded -dddiv2052 divide 2533802852165.25 7154.119606235955 -> 354173957.3317501 Inexact Rounded -dddiv2053 divide -8858831346851.474 97.59734208801716 -> -90769186509.83577 Inexact Rounded -dddiv2054 divide 176783629801387.5 840073263.3109817 -> 210438.3480848206 Inexact Rounded -dddiv2055 divide -493506471796175.6 79733894790822.03 -> -6.189418854940746 Inexact Rounded -dddiv2056 divide 790.1682542103445 829.9449370367435 -> 0.9520731062371214 Inexact Rounded -dddiv2057 divide -8920459838.583164 -4767.889187899214 -> 1870945.294035581 Inexact Rounded -dddiv2058 divide 53536687164422.1 53137.5007032689 -> 1007512330.385698 Inexact Rounded -dddiv2059 divide 4.051532311146561E-74 -2.343089768972261E+94 -> -1.729140882606332E-168 Inexact Rounded -dddiv2060 divide -14847758778636.88 3.062543516383807E-43 -> -4.848178874587497E+55 Inexact Rounded - --- Division probably has pre-rounding, so need to test rounding --- explicitly rather than assume included through other tests; --- tests include simple rounding and also the tricky cases of sticky --- bits following two zeros --- --- 1/99999 gives 0.0000100001000010000100001000010000100001 --- 1234567890123456 --- --- 1/999999 gives 0.000001000001000001000001000001000001000001 --- 1234567890123456 - -rounding: ceiling -dddiv3001 divide 1 3 -> 0.3333333333333334 Inexact Rounded -dddiv3002 divide 2 3 -> 0.6666666666666667 Inexact Rounded -dddiv3003 divide 1 99999 -> 0.00001000010000100002 Inexact Rounded -dddiv3004 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded - -rounding: floor -dddiv3011 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv3012 divide 2 3 -> 0.6666666666666666 Inexact Rounded -dddiv3013 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded -dddiv3014 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded - -rounding: up -dddiv3021 divide 1 3 -> 0.3333333333333334 Inexact Rounded -dddiv3022 divide 2 3 -> 0.6666666666666667 Inexact Rounded -dddiv3023 divide 1 99999 -> 0.00001000010000100002 Inexact Rounded -dddiv3024 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded - -rounding: down -dddiv3031 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv3032 divide 2 3 -> 0.6666666666666666 Inexact Rounded -dddiv3033 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded -dddiv3034 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded - -rounding: half_up -dddiv3041 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv3042 divide 2 3 -> 0.6666666666666667 Inexact Rounded -dddiv3043 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded -dddiv3044 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded - -rounding: half_down -dddiv3051 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv3052 divide 2 3 -> 0.6666666666666667 Inexact Rounded -dddiv3053 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded -dddiv3054 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded - -rounding: half_even -dddiv3061 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv3062 divide 2 3 -> 0.6666666666666667 Inexact Rounded -dddiv3063 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded -dddiv3064 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded - -rounding: 05up -dddiv3071 divide 1 3 -> 0.3333333333333333 Inexact Rounded -dddiv3072 divide 2 3 -> 0.6666666666666666 Inexact Rounded -dddiv3073 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded -dddiv3074 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded - --- random divide tests with result near 1 -rounding: half_even -dddiv4001 divide 3195385192916917 3195385192946695 -> 0.9999999999906809 Inexact Rounded -dddiv4002 divide 1393723067526993 1393723067519475 -> 1.000000000005394 Inexact Rounded -dddiv4003 divide 759985543702302 759985543674015 -> 1.000000000037220 Inexact Rounded -dddiv4004 divide 9579158456027302 9579158456036864 -> 0.9999999999990018 Inexact Rounded -dddiv4005 divide 7079398299143569 7079398299156904 -> 0.9999999999981164 Inexact Rounded -dddiv4006 divide 6636169255366598 6636169255336386 -> 1.000000000004553 Inexact Rounded -dddiv4007 divide 6964813971340090 6964813971321554 -> 1.000000000002661 Inexact Rounded -dddiv4008 divide 4182275225480784 4182275225454009 -> 1.000000000006402 Inexact Rounded -dddiv4009 divide 9228325124938029 9228325124918730 -> 1.000000000002091 Inexact Rounded -dddiv4010 divide 3428346338630192 3428346338609843 -> 1.000000000005936 Inexact Rounded -dddiv4011 divide 2143511550722893 2143511550751754 -> 0.9999999999865356 Inexact Rounded -dddiv4012 divide 1672732924396785 1672732924401811 -> 0.9999999999969953 Inexact Rounded -dddiv4013 divide 4190714611948216 4190714611948664 -> 0.9999999999998931 Inexact Rounded -dddiv4014 divide 3942254800848877 3942254800814556 -> 1.000000000008706 Inexact Rounded -dddiv4015 divide 2854459826952334 2854459826960762 -> 0.9999999999970474 Inexact Rounded -dddiv4016 divide 2853258953664731 2853258953684471 -> 0.9999999999930816 Inexact Rounded -dddiv4017 divide 9453512638125978 9453512638146425 -> 0.9999999999978371 Inexact Rounded -dddiv4018 divide 339476633940369 339476633912887 -> 1.000000000080954 Inexact Rounded -dddiv4019 divide 4542181492688467 4542181492697735 -> 0.9999999999979596 Inexact Rounded -dddiv4020 divide 7312600192399197 7312600192395424 -> 1.000000000000516 Inexact Rounded -dddiv4021 divide 1811674985570111 1811674985603935 -> 0.9999999999813300 Inexact Rounded -dddiv4022 divide 1706462639003481 1706462639017740 -> 0.9999999999916441 Inexact Rounded -dddiv4023 divide 6697052654940368 6697052654934110 -> 1.000000000000934 Inexact Rounded -dddiv4024 divide 5015283664277539 5015283664310719 -> 0.9999999999933842 Inexact Rounded -dddiv4025 divide 2359501561537464 2359501561502464 -> 1.000000000014834 Inexact Rounded -dddiv4026 divide 2669850227909157 2669850227901548 -> 1.000000000002850 Inexact Rounded -dddiv4027 divide 9329725546974648 9329725547002445 -> 0.9999999999970206 Inexact Rounded -dddiv4028 divide 3228562867071248 3228562867106206 -> 0.9999999999891723 Inexact Rounded -dddiv4029 divide 4862226644921175 4862226644909380 -> 1.000000000002426 Inexact Rounded -dddiv4030 divide 1022267997054529 1022267997071329 -> 0.9999999999835660 Inexact Rounded -dddiv4031 divide 1048777482023719 1048777482000948 -> 1.000000000021712 Inexact Rounded -dddiv4032 divide 9980113777337098 9980113777330539 -> 1.000000000000657 Inexact Rounded -dddiv4033 divide 7506839167963908 7506839167942901 -> 1.000000000002798 Inexact Rounded -dddiv4034 divide 231119751977860 231119751962453 -> 1.000000000066662 Inexact Rounded -dddiv4035 divide 4034903664762962 4034903664795526 -> 0.9999999999919294 Inexact Rounded -dddiv4036 divide 5700122152274696 5700122152251386 -> 1.000000000004089 Inexact Rounded -dddiv4037 divide 6869599590293110 6869599590293495 -> 0.9999999999999440 Inexact Rounded -dddiv4038 divide 5576281960092797 5576281960105579 -> 0.9999999999977078 Inexact Rounded -dddiv4039 divide 2304844888381318 2304844888353073 -> 1.000000000012255 Inexact Rounded -dddiv4040 divide 3265933651656452 3265933651682779 -> 0.9999999999919389 Inexact Rounded -dddiv4041 divide 5235714985079914 5235714985066131 -> 1.000000000002632 Inexact Rounded -dddiv4042 divide 5578481572827551 5578481572822945 -> 1.000000000000826 Inexact Rounded -dddiv4043 divide 4909616081396134 4909616081373076 -> 1.000000000004696 Inexact Rounded -dddiv4044 divide 636447224349537 636447224338757 -> 1.000000000016938 Inexact Rounded -dddiv4045 divide 1539373428396640 1539373428364727 -> 1.000000000020731 Inexact Rounded -dddiv4046 divide 2028786707377893 2028786707378866 -> 0.9999999999995204 Inexact Rounded -dddiv4047 divide 137643260486222 137643260487419 -> 0.9999999999913036 Inexact Rounded -dddiv4048 divide 247451519746765 247451519752267 -> 0.9999999999777653 Inexact Rounded -dddiv4049 divide 7877858475022054 7877858474999794 -> 1.000000000002826 Inexact Rounded -dddiv4050 divide 7333242694766258 7333242694744628 -> 1.000000000002950 Inexact Rounded -dddiv4051 divide 124051503698592 124051503699397 -> 0.9999999999935108 Inexact Rounded -dddiv4052 divide 8944737432385188 8944737432406860 -> 0.9999999999975771 Inexact Rounded -dddiv4053 divide 9883948923406874 9883948923424843 -> 0.9999999999981820 Inexact Rounded -dddiv4054 divide 6829178741654284 6829178741671973 -> 0.9999999999974098 Inexact Rounded -dddiv4055 divide 7342752479768122 7342752479793385 -> 0.9999999999965595 Inexact Rounded -dddiv4056 divide 8066426579008783 8066426578977563 -> 1.000000000003870 Inexact Rounded -dddiv4057 divide 8992775071383295 8992775071352712 -> 1.000000000003401 Inexact Rounded -dddiv4058 divide 5485011755545641 5485011755543611 -> 1.000000000000370 Inexact Rounded -dddiv4059 divide 5779983054353918 5779983054365300 -> 0.9999999999980308 Inexact Rounded -dddiv4060 divide 9502265102713774 9502265102735208 -> 0.9999999999977443 Inexact Rounded -dddiv4061 divide 2109558399130981 2109558399116281 -> 1.000000000006968 Inexact Rounded -dddiv4062 divide 5296182636350471 5296182636351521 -> 0.9999999999998017 Inexact Rounded -dddiv4063 divide 1440019225591883 1440019225601844 -> 0.9999999999930827 Inexact Rounded -dddiv4064 divide 8182110791881341 8182110791847174 -> 1.000000000004176 Inexact Rounded -dddiv4065 divide 489098235512060 489098235534516 -> 0.9999999999540869 Inexact Rounded -dddiv4066 divide 6475687084782038 6475687084756089 -> 1.000000000004007 Inexact Rounded -dddiv4067 divide 8094348555736948 8094348555759236 -> 0.9999999999972465 Inexact Rounded -dddiv4068 divide 1982766816291543 1982766816309463 -> 0.9999999999909621 Inexact Rounded -dddiv4069 divide 9277314300113251 9277314300084467 -> 1.000000000003103 Inexact Rounded -dddiv4070 divide 4335532959318934 4335532959293167 -> 1.000000000005943 Inexact Rounded -dddiv4071 divide 7767113032981348 7767113032968132 -> 1.000000000001702 Inexact Rounded -dddiv4072 divide 1578548053342868 1578548053370448 -> 0.9999999999825282 Inexact Rounded -dddiv4073 divide 3790420686666898 3790420686636315 -> 1.000000000008068 Inexact Rounded -dddiv4074 divide 871682421955147 871682421976441 -> 0.9999999999755714 Inexact Rounded -dddiv4075 divide 744141054479940 744141054512329 -> 0.9999999999564746 Inexact Rounded -dddiv4076 divide 8956824183670735 8956824183641741 -> 1.000000000003237 Inexact Rounded -dddiv4077 divide 8337291694485682 8337291694451193 -> 1.000000000004137 Inexact Rounded -dddiv4078 divide 4107775944683669 4107775944657097 -> 1.000000000006469 Inexact Rounded -dddiv4079 divide 8691900057964648 8691900057997555 -> 0.9999999999962141 Inexact Rounded -dddiv4080 divide 2229528520536462 2229528520502337 -> 1.000000000015306 Inexact Rounded -dddiv4081 divide 398442083774322 398442083746273 -> 1.000000000070397 Inexact Rounded -dddiv4082 divide 5319819776808759 5319819776838313 -> 0.9999999999944445 Inexact Rounded -dddiv4083 divide 7710491299066855 7710491299041858 -> 1.000000000003242 Inexact Rounded -dddiv4084 divide 9083231296087266 9083231296058160 -> 1.000000000003204 Inexact Rounded -dddiv4085 divide 3566873574904559 3566873574890328 -> 1.000000000003990 Inexact Rounded -dddiv4086 divide 596343290550525 596343290555614 -> 0.9999999999914663 Inexact Rounded -dddiv4087 divide 278227925093192 278227925068104 -> 1.000000000090171 Inexact Rounded -dddiv4088 divide 3292902958490649 3292902958519881 -> 0.9999999999911227 Inexact Rounded -dddiv4089 divide 5521871364245881 5521871364229536 -> 1.000000000002960 Inexact Rounded -dddiv4090 divide 2406505602883617 2406505602857997 -> 1.000000000010646 Inexact Rounded -dddiv4091 divide 7741146984869208 7741146984867255 -> 1.000000000000252 Inexact Rounded -dddiv4092 divide 4576041832414909 4576041832405102 -> 1.000000000002143 Inexact Rounded -dddiv4093 divide 9183756982878057 9183756982901934 -> 0.9999999999974001 Inexact Rounded -dddiv4094 divide 6215736513855159 6215736513870342 -> 0.9999999999975573 Inexact Rounded -dddiv4095 divide 248554968534533 248554968551417 -> 0.9999999999320714 Inexact Rounded -dddiv4096 divide 376314165668645 376314165659755 -> 1.000000000023624 Inexact Rounded -dddiv4097 divide 5513569249809718 5513569249808906 -> 1.000000000000147 Inexact Rounded -dddiv4098 divide 3367992242167904 3367992242156228 -> 1.000000000003467 Inexact Rounded -dddiv4099 divide 6134869538966967 6134869538985986 -> 0.9999999999968999 Inexact Rounded - --- Null tests -dddiv9998 divide 10 # -> NaN Invalid_operation -dddiv9999 divide # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddDivideInt.decTest b/qdecimal/test/tc_full/ddDivideInt.decTest deleted file mode 100644 index 20e85d8..0000000 --- a/qdecimal/test/tc_full/ddDivideInt.decTest +++ /dev/null @@ -1,449 +0,0 @@ ------------------------------------------------------------------------- --- ddDivideInt.decTest -- decDouble integer division -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -dddvi001 divideint 1 1 -> 1 -dddvi002 divideint 2 1 -> 2 -dddvi003 divideint 1 2 -> 0 -dddvi004 divideint 2 2 -> 1 -dddvi005 divideint 0 1 -> 0 -dddvi006 divideint 0 2 -> 0 -dddvi007 divideint 1 3 -> 0 -dddvi008 divideint 2 3 -> 0 -dddvi009 divideint 3 3 -> 1 - -dddvi010 divideint 2.4 1 -> 2 -dddvi011 divideint 2.4 -1 -> -2 -dddvi012 divideint -2.4 1 -> -2 -dddvi013 divideint -2.4 -1 -> 2 -dddvi014 divideint 2.40 1 -> 2 -dddvi015 divideint 2.400 1 -> 2 -dddvi016 divideint 2.4 2 -> 1 -dddvi017 divideint 2.400 2 -> 1 -dddvi018 divideint 2. 2 -> 1 -dddvi019 divideint 20 20 -> 1 - -dddvi020 divideint 187 187 -> 1 -dddvi021 divideint 5 2 -> 2 -dddvi022 divideint 5 2.0 -> 2 -dddvi023 divideint 5 2.000 -> 2 -dddvi024 divideint 5 0.200 -> 25 -dddvi025 divideint 5 0.200 -> 25 - -dddvi030 divideint 1 2 -> 0 -dddvi031 divideint 1 4 -> 0 -dddvi032 divideint 1 8 -> 0 -dddvi033 divideint 1 16 -> 0 -dddvi034 divideint 1 32 -> 0 -dddvi035 divideint 1 64 -> 0 -dddvi040 divideint 1 -2 -> -0 -dddvi041 divideint 1 -4 -> -0 -dddvi042 divideint 1 -8 -> -0 -dddvi043 divideint 1 -16 -> -0 -dddvi044 divideint 1 -32 -> -0 -dddvi045 divideint 1 -64 -> -0 -dddvi050 divideint -1 2 -> -0 -dddvi051 divideint -1 4 -> -0 -dddvi052 divideint -1 8 -> -0 -dddvi053 divideint -1 16 -> -0 -dddvi054 divideint -1 32 -> -0 -dddvi055 divideint -1 64 -> -0 -dddvi060 divideint -1 -2 -> 0 -dddvi061 divideint -1 -4 -> 0 -dddvi062 divideint -1 -8 -> 0 -dddvi063 divideint -1 -16 -> 0 -dddvi064 divideint -1 -32 -> 0 -dddvi065 divideint -1 -64 -> 0 - --- similar with powers of ten -dddvi160 divideint 1 1 -> 1 -dddvi161 divideint 1 10 -> 0 -dddvi162 divideint 1 100 -> 0 -dddvi163 divideint 1 1000 -> 0 -dddvi164 divideint 1 10000 -> 0 -dddvi165 divideint 1 100000 -> 0 -dddvi166 divideint 1 1000000 -> 0 -dddvi167 divideint 1 10000000 -> 0 -dddvi168 divideint 1 100000000 -> 0 -dddvi170 divideint 1 -1 -> -1 -dddvi171 divideint 1 -10 -> -0 -dddvi172 divideint 1 -100 -> -0 -dddvi173 divideint 1 -1000 -> -0 -dddvi174 divideint 1 -10000 -> -0 -dddvi175 divideint 1 -100000 -> -0 -dddvi176 divideint 1 -1000000 -> -0 -dddvi177 divideint 1 -10000000 -> -0 -dddvi178 divideint 1 -100000000 -> -0 -dddvi180 divideint -1 1 -> -1 -dddvi181 divideint -1 10 -> -0 -dddvi182 divideint -1 100 -> -0 -dddvi183 divideint -1 1000 -> -0 -dddvi184 divideint -1 10000 -> -0 -dddvi185 divideint -1 100000 -> -0 -dddvi186 divideint -1 1000000 -> -0 -dddvi187 divideint -1 10000000 -> -0 -dddvi188 divideint -1 100000000 -> -0 -dddvi190 divideint -1 -1 -> 1 -dddvi191 divideint -1 -10 -> 0 -dddvi192 divideint -1 -100 -> 0 -dddvi193 divideint -1 -1000 -> 0 -dddvi194 divideint -1 -10000 -> 0 -dddvi195 divideint -1 -100000 -> 0 -dddvi196 divideint -1 -1000000 -> 0 -dddvi197 divideint -1 -10000000 -> 0 -dddvi198 divideint -1 -100000000 -> 0 - --- some long operand (at p=9) cases -dddvi070 divideint 999999999 1 -> 999999999 -dddvi071 divideint 999999999.4 1 -> 999999999 -dddvi072 divideint 999999999.5 1 -> 999999999 -dddvi073 divideint 999999999.9 1 -> 999999999 -dddvi074 divideint 999999999.999 1 -> 999999999 - -dddvi090 divideint 0. 1 -> 0 -dddvi091 divideint .0 1 -> 0 -dddvi092 divideint 0.00 1 -> 0 -dddvi093 divideint 0.00E+9 1 -> 0 -dddvi094 divideint 0.0000E-50 1 -> 0 - -dddvi100 divideint 1 1 -> 1 -dddvi101 divideint 1 2 -> 0 -dddvi102 divideint 1 3 -> 0 -dddvi103 divideint 1 4 -> 0 -dddvi104 divideint 1 5 -> 0 -dddvi105 divideint 1 6 -> 0 -dddvi106 divideint 1 7 -> 0 -dddvi107 divideint 1 8 -> 0 -dddvi108 divideint 1 9 -> 0 -dddvi109 divideint 1 10 -> 0 -dddvi110 divideint 1 1 -> 1 -dddvi111 divideint 2 1 -> 2 -dddvi112 divideint 3 1 -> 3 -dddvi113 divideint 4 1 -> 4 -dddvi114 divideint 5 1 -> 5 -dddvi115 divideint 6 1 -> 6 -dddvi116 divideint 7 1 -> 7 -dddvi117 divideint 8 1 -> 8 -dddvi118 divideint 9 1 -> 9 -dddvi119 divideint 10 1 -> 10 - --- from DiagBigDecimal -dddvi131 divideint 101.3 1 -> 101 -dddvi132 divideint 101.0 1 -> 101 -dddvi133 divideint 101.3 3 -> 33 -dddvi134 divideint 101.0 3 -> 33 -dddvi135 divideint 2.4 1 -> 2 -dddvi136 divideint 2.400 1 -> 2 -dddvi137 divideint 18 18 -> 1 -dddvi138 divideint 1120 1000 -> 1 -dddvi139 divideint 2.4 2 -> 1 -dddvi140 divideint 2.400 2 -> 1 -dddvi141 divideint 0.5 2.000 -> 0 -dddvi142 divideint 8.005 7 -> 1 -dddvi143 divideint 5 2 -> 2 -dddvi144 divideint 0 2 -> 0 -dddvi145 divideint 0.00 2 -> 0 - --- Others -dddvi150 divideint 12345 4.999 -> 2469 -dddvi151 divideint 12345 4.99 -> 2473 -dddvi152 divideint 12345 4.9 -> 2519 -dddvi153 divideint 12345 5 -> 2469 -dddvi154 divideint 12345 5.1 -> 2420 -dddvi155 divideint 12345 5.01 -> 2464 -dddvi156 divideint 12345 5.001 -> 2468 -dddvi157 divideint 101 7.6 -> 13 - --- Various flavours of divideint by 0 -dddvi201 divideint 0 0 -> NaN Division_undefined -dddvi202 divideint 0.0E5 0 -> NaN Division_undefined -dddvi203 divideint 0.000 0 -> NaN Division_undefined -dddvi204 divideint 0.0001 0 -> Infinity Division_by_zero -dddvi205 divideint 0.01 0 -> Infinity Division_by_zero -dddvi206 divideint 0.1 0 -> Infinity Division_by_zero -dddvi207 divideint 1 0 -> Infinity Division_by_zero -dddvi208 divideint 1 0.0 -> Infinity Division_by_zero -dddvi209 divideint 10 0.0 -> Infinity Division_by_zero -dddvi210 divideint 1E+100 0.0 -> Infinity Division_by_zero -dddvi211 divideint 1E+380 0 -> Infinity Division_by_zero -dddvi214 divideint -0.0001 0 -> -Infinity Division_by_zero -dddvi215 divideint -0.01 0 -> -Infinity Division_by_zero -dddvi216 divideint -0.1 0 -> -Infinity Division_by_zero -dddvi217 divideint -1 0 -> -Infinity Division_by_zero -dddvi218 divideint -1 0.0 -> -Infinity Division_by_zero -dddvi219 divideint -10 0.0 -> -Infinity Division_by_zero -dddvi220 divideint -1E+100 0.0 -> -Infinity Division_by_zero -dddvi221 divideint -1E+380 0 -> -Infinity Division_by_zero - --- test some cases that are close to exponent overflow -dddvi270 divideint 1 1e384 -> 0 -dddvi271 divideint 1 0.9e384 -> 0 -dddvi272 divideint 1 0.99e384 -> 0 -dddvi273 divideint 1 0.9999999999999999e384 -> 0 -dddvi274 divideint 9e384 1 -> NaN Division_impossible -dddvi275 divideint 9.9e384 1 -> NaN Division_impossible -dddvi276 divideint 9.99e384 1 -> NaN Division_impossible -dddvi277 divideint 9.999999999999999e384 1 -> NaN Division_impossible - -dddvi280 divideint 0.1 9e-383 -> NaN Division_impossible -dddvi281 divideint 0.1 99e-383 -> NaN Division_impossible -dddvi282 divideint 0.1 999e-383 -> NaN Division_impossible -dddvi283 divideint 0.1 9e-382 -> NaN Division_impossible -dddvi284 divideint 0.1 99e-382 -> NaN Division_impossible - --- GD edge cases: lhs smaller than rhs but more digits -dddvi301 divideint 0.9 2 -> 0 -dddvi302 divideint 0.9 2.0 -> 0 -dddvi303 divideint 0.9 2.1 -> 0 -dddvi304 divideint 0.9 2.00 -> 0 -dddvi305 divideint 0.9 2.01 -> 0 -dddvi306 divideint 0.12 1 -> 0 -dddvi307 divideint 0.12 1.0 -> 0 -dddvi308 divideint 0.12 1.00 -> 0 -dddvi309 divideint 0.12 1.0 -> 0 -dddvi310 divideint 0.12 1.00 -> 0 -dddvi311 divideint 0.12 2 -> 0 -dddvi312 divideint 0.12 2.0 -> 0 -dddvi313 divideint 0.12 2.1 -> 0 -dddvi314 divideint 0.12 2.00 -> 0 -dddvi315 divideint 0.12 2.01 -> 0 - --- edge cases of impossible -dddvi330 divideint 1234567890123456 10 -> 123456789012345 -dddvi331 divideint 1234567890123456 1 -> 1234567890123456 -dddvi332 divideint 1234567890123456 0.1 -> NaN Division_impossible -dddvi333 divideint 1234567890123456 0.01 -> NaN Division_impossible - --- overflow and underflow tests [from divide] -dddvi1051 divideint 1e+277 1e-311 -> NaN Division_impossible -dddvi1052 divideint 1e+277 -1e-311 -> NaN Division_impossible -dddvi1053 divideint -1e+277 1e-311 -> NaN Division_impossible -dddvi1054 divideint -1e+277 -1e-311 -> NaN Division_impossible -dddvi1055 divideint 1e-277 1e+311 -> 0 -dddvi1056 divideint 1e-277 -1e+311 -> -0 -dddvi1057 divideint -1e-277 1e+311 -> -0 -dddvi1058 divideint -1e-277 -1e+311 -> 0 - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -dddvi1060 divideint 1e-291 1e+101 -> 0 -dddvi1061 divideint 1e-291 1e+102 -> 0 -dddvi1062 divideint 1e-291 1e+103 -> 0 -dddvi1063 divideint 1e-291 1e+104 -> 0 -dddvi1064 divideint 1e-291 1e+105 -> 0 -dddvi1065 divideint 1e-291 1e+106 -> 0 -dddvi1066 divideint 1e-291 1e+107 -> 0 -dddvi1067 divideint 1e-291 1e+108 -> 0 -dddvi1068 divideint 1e-291 1e+109 -> 0 -dddvi1069 divideint 1e-291 1e+110 -> 0 - -dddvi1101 divideint 1.0000E-394 1 -> 0 -dddvi1102 divideint 1.000E-394 1e+1 -> 0 -dddvi1103 divideint 1.00E-394 1e+2 -> 0 - -dddvi1118 divideint 1E-394 1e+4 -> 0 -dddvi1119 divideint 3E-394 -1e+5 -> -0 -dddvi1120 divideint 5E-394 1e+5 -> 0 - -dddvi1124 divideint 1E-394 -1e+4 -> -0 -dddvi1130 divideint 3.0E-394 -1e+5 -> -0 - -dddvi1131 divideint 1.0E-199 1e+200 -> 0 -dddvi1132 divideint 1.0E-199 1e+199 -> 0 -dddvi1133 divideint 1.0E-199 1e+198 -> 0 -dddvi1134 divideint 2.0E-199 2e+198 -> 0 -dddvi1135 divideint 4.0E-199 4e+198 -> 0 - --- long operand checks -dddvi401 divideint 12345678000 100 -> 123456780 -dddvi402 divideint 1 12345678000 -> 0 -dddvi403 divideint 1234567800 10 -> 123456780 -dddvi404 divideint 1 1234567800 -> 0 -dddvi405 divideint 1234567890 10 -> 123456789 -dddvi406 divideint 1 1234567890 -> 0 -dddvi407 divideint 1234567891 10 -> 123456789 -dddvi408 divideint 1 1234567891 -> 0 -dddvi409 divideint 12345678901 100 -> 123456789 -dddvi410 divideint 1 12345678901 -> 0 -dddvi411 divideint 1234567896 10 -> 123456789 -dddvi412 divideint 1 1234567896 -> 0 -dddvi413 divideint 12345678948 100 -> 123456789 -dddvi414 divideint 12345678949 100 -> 123456789 -dddvi415 divideint 12345678950 100 -> 123456789 -dddvi416 divideint 12345678951 100 -> 123456789 -dddvi417 divideint 12345678999 100 -> 123456789 -dddvi441 divideint 12345678000 1 -> 12345678000 -dddvi442 divideint 1 12345678000 -> 0 -dddvi443 divideint 1234567800 1 -> 1234567800 -dddvi444 divideint 1 1234567800 -> 0 -dddvi445 divideint 1234567890 1 -> 1234567890 -dddvi446 divideint 1 1234567890 -> 0 -dddvi447 divideint 1234567891 1 -> 1234567891 -dddvi448 divideint 1 1234567891 -> 0 -dddvi449 divideint 12345678901 1 -> 12345678901 -dddvi450 divideint 1 12345678901 -> 0 -dddvi451 divideint 1234567896 1 -> 1234567896 -dddvi452 divideint 1 1234567896 -> 0 - --- more zeros, etc. -dddvi531 divideint 5.00 1E-3 -> 5000 -dddvi532 divideint 00.00 0.000 -> NaN Division_undefined -dddvi533 divideint 00.00 0E-3 -> NaN Division_undefined -dddvi534 divideint 0 -0 -> NaN Division_undefined -dddvi535 divideint -0 0 -> NaN Division_undefined -dddvi536 divideint -0 -0 -> NaN Division_undefined - -dddvi541 divideint 0 -1 -> -0 -dddvi542 divideint -0 -1 -> 0 -dddvi543 divideint 0 1 -> 0 -dddvi544 divideint -0 1 -> -0 -dddvi545 divideint -1 0 -> -Infinity Division_by_zero -dddvi546 divideint -1 -0 -> Infinity Division_by_zero -dddvi547 divideint 1 0 -> Infinity Division_by_zero -dddvi548 divideint 1 -0 -> -Infinity Division_by_zero - -dddvi551 divideint 0.0 -1 -> -0 -dddvi552 divideint -0.0 -1 -> 0 -dddvi553 divideint 0.0 1 -> 0 -dddvi554 divideint -0.0 1 -> -0 -dddvi555 divideint -1.0 0 -> -Infinity Division_by_zero -dddvi556 divideint -1.0 -0 -> Infinity Division_by_zero -dddvi557 divideint 1.0 0 -> Infinity Division_by_zero -dddvi558 divideint 1.0 -0 -> -Infinity Division_by_zero - -dddvi561 divideint 0 -1.0 -> -0 -dddvi562 divideint -0 -1.0 -> 0 -dddvi563 divideint 0 1.0 -> 0 -dddvi564 divideint -0 1.0 -> -0 -dddvi565 divideint -1 0.0 -> -Infinity Division_by_zero -dddvi566 divideint -1 -0.0 -> Infinity Division_by_zero -dddvi567 divideint 1 0.0 -> Infinity Division_by_zero -dddvi568 divideint 1 -0.0 -> -Infinity Division_by_zero - -dddvi571 divideint 0.0 -1.0 -> -0 -dddvi572 divideint -0.0 -1.0 -> 0 -dddvi573 divideint 0.0 1.0 -> 0 -dddvi574 divideint -0.0 1.0 -> -0 -dddvi575 divideint -1.0 0.0 -> -Infinity Division_by_zero -dddvi576 divideint -1.0 -0.0 -> Infinity Division_by_zero -dddvi577 divideint 1.0 0.0 -> Infinity Division_by_zero -dddvi578 divideint 1.0 -0.0 -> -Infinity Division_by_zero - --- Specials -dddvi580 divideint Inf -Inf -> NaN Invalid_operation -dddvi581 divideint Inf -1000 -> -Infinity -dddvi582 divideint Inf -1 -> -Infinity -dddvi583 divideint Inf -0 -> -Infinity -dddvi584 divideint Inf 0 -> Infinity -dddvi585 divideint Inf 1 -> Infinity -dddvi586 divideint Inf 1000 -> Infinity -dddvi587 divideint Inf Inf -> NaN Invalid_operation -dddvi588 divideint -1000 Inf -> -0 -dddvi589 divideint -Inf Inf -> NaN Invalid_operation -dddvi590 divideint -1 Inf -> -0 -dddvi591 divideint -0 Inf -> -0 -dddvi592 divideint 0 Inf -> 0 -dddvi593 divideint 1 Inf -> 0 -dddvi594 divideint 1000 Inf -> 0 -dddvi595 divideint Inf Inf -> NaN Invalid_operation - -dddvi600 divideint -Inf -Inf -> NaN Invalid_operation -dddvi601 divideint -Inf -1000 -> Infinity -dddvi602 divideint -Inf -1 -> Infinity -dddvi603 divideint -Inf -0 -> Infinity -dddvi604 divideint -Inf 0 -> -Infinity -dddvi605 divideint -Inf 1 -> -Infinity -dddvi606 divideint -Inf 1000 -> -Infinity -dddvi607 divideint -Inf Inf -> NaN Invalid_operation -dddvi608 divideint -1000 Inf -> -0 -dddvi609 divideint -Inf -Inf -> NaN Invalid_operation -dddvi610 divideint -1 -Inf -> 0 -dddvi611 divideint -0 -Inf -> 0 -dddvi612 divideint 0 -Inf -> -0 -dddvi613 divideint 1 -Inf -> -0 -dddvi614 divideint 1000 -Inf -> -0 -dddvi615 divideint Inf -Inf -> NaN Invalid_operation - -dddvi621 divideint NaN -Inf -> NaN -dddvi622 divideint NaN -1000 -> NaN -dddvi623 divideint NaN -1 -> NaN -dddvi624 divideint NaN -0 -> NaN -dddvi625 divideint NaN 0 -> NaN -dddvi626 divideint NaN 1 -> NaN -dddvi627 divideint NaN 1000 -> NaN -dddvi628 divideint NaN Inf -> NaN -dddvi629 divideint NaN NaN -> NaN -dddvi630 divideint -Inf NaN -> NaN -dddvi631 divideint -1000 NaN -> NaN -dddvi632 divideint -1 NaN -> NaN -dddvi633 divideint -0 NaN -> NaN -dddvi634 divideint 0 NaN -> NaN -dddvi635 divideint 1 NaN -> NaN -dddvi636 divideint 1000 NaN -> NaN -dddvi637 divideint Inf NaN -> NaN - -dddvi641 divideint sNaN -Inf -> NaN Invalid_operation -dddvi642 divideint sNaN -1000 -> NaN Invalid_operation -dddvi643 divideint sNaN -1 -> NaN Invalid_operation -dddvi644 divideint sNaN -0 -> NaN Invalid_operation -dddvi645 divideint sNaN 0 -> NaN Invalid_operation -dddvi646 divideint sNaN 1 -> NaN Invalid_operation -dddvi647 divideint sNaN 1000 -> NaN Invalid_operation -dddvi648 divideint sNaN NaN -> NaN Invalid_operation -dddvi649 divideint sNaN sNaN -> NaN Invalid_operation -dddvi650 divideint NaN sNaN -> NaN Invalid_operation -dddvi651 divideint -Inf sNaN -> NaN Invalid_operation -dddvi652 divideint -1000 sNaN -> NaN Invalid_operation -dddvi653 divideint -1 sNaN -> NaN Invalid_operation -dddvi654 divideint -0 sNaN -> NaN Invalid_operation -dddvi655 divideint 0 sNaN -> NaN Invalid_operation -dddvi656 divideint 1 sNaN -> NaN Invalid_operation -dddvi657 divideint 1000 sNaN -> NaN Invalid_operation -dddvi658 divideint Inf sNaN -> NaN Invalid_operation -dddvi659 divideint NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dddvi661 divideint NaN9 -Inf -> NaN9 -dddvi662 divideint NaN8 1000 -> NaN8 -dddvi663 divideint NaN7 Inf -> NaN7 -dddvi664 divideint -NaN6 NaN5 -> -NaN6 -dddvi665 divideint -Inf NaN4 -> NaN4 -dddvi666 divideint -1000 NaN3 -> NaN3 -dddvi667 divideint Inf -NaN2 -> -NaN2 - -dddvi671 divideint -sNaN99 -Inf -> -NaN99 Invalid_operation -dddvi672 divideint sNaN98 -1 -> NaN98 Invalid_operation -dddvi673 divideint sNaN97 NaN -> NaN97 Invalid_operation -dddvi674 divideint sNaN96 sNaN94 -> NaN96 Invalid_operation -dddvi675 divideint NaN95 sNaN93 -> NaN93 Invalid_operation -dddvi676 divideint -Inf sNaN92 -> NaN92 Invalid_operation -dddvi677 divideint 0 sNaN91 -> NaN91 Invalid_operation -dddvi678 divideint Inf -sNaN90 -> -NaN90 Invalid_operation -dddvi679 divideint NaN sNaN89 -> NaN89 Invalid_operation - --- Null tests -dddvi900 divideint 10 # -> NaN Invalid_operation -dddvi901 divideint # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddEncode.decTest b/qdecimal/test/tc_full/ddEncode.decTest deleted file mode 100644 index 5ea3b1d..0000000 --- a/qdecimal/test/tc_full/ddEncode.decTest +++ /dev/null @@ -1,495 +0,0 @@ ------------------------------------------------------------------------- --- ddEncode.decTest -- decimal eight-byte format testcases -- --- Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- --- [Previously called decimal64.decTest] -version: 2.58 - --- This set of tests is for the eight-byte concrete representation. --- Its characteristics are: --- --- 1 bit sign --- 5 bits combination field --- 8 bits exponent continuation --- 50 bits coefficient continuation --- --- Total exponent length 10 bits --- Total coefficient length 54 bits (16 digits) --- --- Elimit = 767 (maximum encoded exponent) --- Emax = 384 (largest exponent value) --- Emin = -383 (smallest exponent value) --- bias = 398 (subtracted from encoded exponent) = -Etiny - --- The testcases here have only exactly representable data on the --- 'left-hand-side'; rounding from strings is tested in 'base' --- testcase groups. - -extended: 1 -clamp: 1 -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - --- General testcases --- (mostly derived from the Strawman 4 document and examples) -dece001 apply #A2300000000003D0 -> -7.50 -dece002 apply -7.50 -> #A2300000000003D0 --- derivative canonical plain strings -dece003 apply #A23c0000000003D0 -> -7.50E+3 -dece004 apply -7.50E+3 -> #A23c0000000003D0 -dece005 apply #A2380000000003D0 -> -750 -dece006 apply -750 -> #A2380000000003D0 -dece007 apply #A2340000000003D0 -> -75.0 -dece008 apply -75.0 -> #A2340000000003D0 -dece009 apply #A22c0000000003D0 -> -0.750 -dece010 apply -0.750 -> #A22c0000000003D0 -dece011 apply #A2280000000003D0 -> -0.0750 -dece012 apply -0.0750 -> #A2280000000003D0 -dece013 apply #A2200000000003D0 -> -0.000750 -dece014 apply -0.000750 -> #A2200000000003D0 -dece015 apply #A2180000000003D0 -> -0.00000750 -dece016 apply -0.00000750 -> #A2180000000003D0 -dece017 apply #A2140000000003D0 -> -7.50E-7 -dece018 apply -7.50E-7 -> #A2140000000003D0 - --- Normality -dece020 apply 1234567890123456 -> #263934b9c1e28e56 -dece021 apply -1234567890123456 -> #a63934b9c1e28e56 -dece022 apply 1234.567890123456 -> #260934b9c1e28e56 -dece023 apply #260934b9c1e28e56 -> 1234.567890123456 -dece024 apply 1111111111111111 -> #2638912449124491 -dece025 apply 9999999999999999 -> #6e38ff3fcff3fcff - --- Nmax and similar -dece031 apply 9999999999999999E+369 -> #77fcff3fcff3fcff -dece032 apply 9.999999999999999E+384 -> #77fcff3fcff3fcff -dece033 apply #77fcff3fcff3fcff -> 9.999999999999999E+384 -dece034 apply 1.234567890123456E+384 -> #47fd34b9c1e28e56 -dece035 apply #47fd34b9c1e28e56 -> 1.234567890123456E+384 --- fold-downs (more below) -dece036 apply 1.23E+384 -> #47fd300000000000 Clamped -dece037 apply #47fd300000000000 -> 1.230000000000000E+384 -decd038 apply 1E+384 -> #47fc000000000000 Clamped -decd039 apply #47fc000000000000 -> 1.000000000000000E+384 - -decd051 apply 12345 -> #22380000000049c5 -decd052 apply #22380000000049c5 -> 12345 -decd053 apply 1234 -> #2238000000000534 -decd054 apply #2238000000000534 -> 1234 -decd055 apply 123 -> #22380000000000a3 -decd056 apply #22380000000000a3 -> 123 -decd057 apply 12 -> #2238000000000012 -decd058 apply #2238000000000012 -> 12 -decd059 apply 1 -> #2238000000000001 -decd060 apply #2238000000000001 -> 1 -decd061 apply 1.23 -> #22300000000000a3 -decd062 apply #22300000000000a3 -> 1.23 -decd063 apply 123.45 -> #22300000000049c5 -decd064 apply #22300000000049c5 -> 123.45 - --- Nmin and below -decd071 apply 1E-383 -> #003c000000000001 -decd072 apply #003c000000000001 -> 1E-383 -decd073 apply 1.000000000000000E-383 -> #0400000000000000 -decd074 apply #0400000000000000 -> 1.000000000000000E-383 -decd075 apply 1.000000000000001E-383 -> #0400000000000001 -decd076 apply #0400000000000001 -> 1.000000000000001E-383 - -decd077 apply 0.100000000000000E-383 -> #0000800000000000 Subnormal -decd078 apply #0000800000000000 -> 1.00000000000000E-384 Subnormal -decd079 apply 0.000000000000010E-383 -> #0000000000000010 Subnormal -decd080 apply #0000000000000010 -> 1.0E-397 Subnormal -decd081 apply 0.00000000000001E-383 -> #0004000000000001 Subnormal -decd082 apply #0004000000000001 -> 1E-397 Subnormal -decd083 apply 0.000000000000001E-383 -> #0000000000000001 Subnormal -decd084 apply #0000000000000001 -> 1E-398 Subnormal --- next is smallest all-nines -decd085 apply 9999999999999999E-398 -> #6400ff3fcff3fcff -decd086 apply #6400ff3fcff3fcff -> 9.999999999999999E-383 --- and a problematic divide result -decd088 apply 1.111111111111111E-383 -> #0400912449124491 -decd089 apply #0400912449124491 -> 1.111111111111111E-383 - --- forties -decd090 apply 40 -> #2238000000000040 -decd091 apply 39.99 -> #2230000000000cff - --- underflows cannot be tested as all LHS exact - --- Same again, negatives --- Nmax and similar -decd122 apply -9.999999999999999E+384 -> #f7fcff3fcff3fcff -decd123 apply #f7fcff3fcff3fcff -> -9.999999999999999E+384 -decd124 apply -1.234567890123456E+384 -> #c7fd34b9c1e28e56 -decd125 apply #c7fd34b9c1e28e56 -> -1.234567890123456E+384 --- fold-downs (more below) -decd130 apply -1.23E+384 -> #c7fd300000000000 Clamped -decd131 apply #c7fd300000000000 -> -1.230000000000000E+384 -decd132 apply -1E+384 -> #c7fc000000000000 Clamped -decd133 apply #c7fc000000000000 -> -1.000000000000000E+384 - --- overflows -decd151 apply -12345 -> #a2380000000049c5 -decd152 apply #a2380000000049c5 -> -12345 -decd153 apply -1234 -> #a238000000000534 -decd154 apply #a238000000000534 -> -1234 -decd155 apply -123 -> #a2380000000000a3 -decd156 apply #a2380000000000a3 -> -123 -decd157 apply -12 -> #a238000000000012 -decd158 apply #a238000000000012 -> -12 -decd159 apply -1 -> #a238000000000001 -decd160 apply #a238000000000001 -> -1 -decd161 apply -1.23 -> #a2300000000000a3 -decd162 apply #a2300000000000a3 -> -1.23 -decd163 apply -123.45 -> #a2300000000049c5 -decd164 apply #a2300000000049c5 -> -123.45 - --- Nmin and below -decd171 apply -1E-383 -> #803c000000000001 -decd172 apply #803c000000000001 -> -1E-383 -decd173 apply -1.000000000000000E-383 -> #8400000000000000 -decd174 apply #8400000000000000 -> -1.000000000000000E-383 -decd175 apply -1.000000000000001E-383 -> #8400000000000001 -decd176 apply #8400000000000001 -> -1.000000000000001E-383 - -decd177 apply -0.100000000000000E-383 -> #8000800000000000 Subnormal -decd178 apply #8000800000000000 -> -1.00000000000000E-384 Subnormal -decd179 apply -0.000000000000010E-383 -> #8000000000000010 Subnormal -decd180 apply #8000000000000010 -> -1.0E-397 Subnormal -decd181 apply -0.00000000000001E-383 -> #8004000000000001 Subnormal -decd182 apply #8004000000000001 -> -1E-397 Subnormal -decd183 apply -0.000000000000001E-383 -> #8000000000000001 Subnormal -decd184 apply #8000000000000001 -> -1E-398 Subnormal --- next is smallest all-nines -decd185 apply -9999999999999999E-398 -> #e400ff3fcff3fcff -decd186 apply #e400ff3fcff3fcff -> -9.999999999999999E-383 --- and a tricky subnormal -decd187 apply 1.11111111111524E-384 -> #00009124491246a4 Subnormal -decd188 apply #00009124491246a4 -> 1.11111111111524E-384 Subnormal - --- near-underflows -decd189 apply -1e-398 -> #8000000000000001 Subnormal -decd190 apply -1.0e-398 -> #8000000000000001 Subnormal Rounded - --- zeros -decd401 apply 0E-500 -> #0000000000000000 Clamped -decd402 apply 0E-400 -> #0000000000000000 Clamped -decd403 apply 0E-398 -> #0000000000000000 -decd404 apply #0000000000000000 -> 0E-398 -decd405 apply 0.000000000000000E-383 -> #0000000000000000 -decd406 apply #0000000000000000 -> 0E-398 -decd407 apply 0E-2 -> #2230000000000000 -decd408 apply #2230000000000000 -> 0.00 -decd409 apply 0 -> #2238000000000000 -decd410 apply #2238000000000000 -> 0 -decd411 apply 0E+3 -> #2244000000000000 -decd412 apply #2244000000000000 -> 0E+3 -decd413 apply 0E+369 -> #43fc000000000000 -decd414 apply #43fc000000000000 -> 0E+369 --- clamped zeros... -decd415 apply 0E+370 -> #43fc000000000000 Clamped -decd416 apply #43fc000000000000 -> 0E+369 -decd417 apply 0E+384 -> #43fc000000000000 Clamped -decd418 apply #43fc000000000000 -> 0E+369 -decd419 apply 0E+400 -> #43fc000000000000 Clamped -decd420 apply #43fc000000000000 -> 0E+369 -decd421 apply 0E+500 -> #43fc000000000000 Clamped -decd422 apply #43fc000000000000 -> 0E+369 - --- negative zeros -decd431 apply -0E-400 -> #8000000000000000 Clamped -decd432 apply -0E-400 -> #8000000000000000 Clamped -decd433 apply -0E-398 -> #8000000000000000 -decd434 apply #8000000000000000 -> -0E-398 -decd435 apply -0.000000000000000E-383 -> #8000000000000000 -decd436 apply #8000000000000000 -> -0E-398 -decd437 apply -0E-2 -> #a230000000000000 -decd438 apply #a230000000000000 -> -0.00 -decd439 apply -0 -> #a238000000000000 -decd440 apply #a238000000000000 -> -0 -decd441 apply -0E+3 -> #a244000000000000 -decd442 apply #a244000000000000 -> -0E+3 -decd443 apply -0E+369 -> #c3fc000000000000 -decd444 apply #c3fc000000000000 -> -0E+369 --- clamped zeros... -decd445 apply -0E+370 -> #c3fc000000000000 Clamped -decd446 apply #c3fc000000000000 -> -0E+369 -decd447 apply -0E+384 -> #c3fc000000000000 Clamped -decd448 apply #c3fc000000000000 -> -0E+369 -decd449 apply -0E+400 -> #c3fc000000000000 Clamped -decd450 apply #c3fc000000000000 -> -0E+369 -decd451 apply -0E+500 -> #c3fc000000000000 Clamped -decd452 apply #c3fc000000000000 -> -0E+369 - --- exponents -decd460 apply #225c000000000007 -> 7E+9 -decd461 apply 7E+9 -> #225c000000000007 -decd462 apply #23c4000000000007 -> 7E+99 -decd463 apply 7E+99 -> #23c4000000000007 - --- Specials -decd500 apply Infinity -> #7800000000000000 -decd501 apply #7878787878787878 -> #7800000000000000 -decd502 apply #7800000000000000 -> Infinity -decd503 apply #7979797979797979 -> #7800000000000000 -decd504 apply #7900000000000000 -> Infinity -decd505 apply #7a7a7a7a7a7a7a7a -> #7800000000000000 -decd506 apply #7a00000000000000 -> Infinity -decd507 apply #7b7b7b7b7b7b7b7b -> #7800000000000000 -decd508 apply #7b00000000000000 -> Infinity - -decd509 apply NaN -> #7c00000000000000 -decd510 apply #7c7c7c7c7c7c7c7c -> #7c007c7c7c7c7c7c -decd511 apply #7c00000000000000 -> NaN -decd512 apply #7d7d7d7d7d7d7d7d -> #7c017d7d7d7d7d7d -decd513 apply #7d00000000000000 -> NaN -decd514 apply #7e7e7e7e7e7e7e7e -> #7e007e7e7e7e7c7e -decd515 apply #7e00000000000000 -> sNaN -decd516 apply #7f7f7f7f7f7f7f7f -> #7e007f7f7f7f7c7f -decd517 apply #7f00000000000000 -> sNaN -decd518 apply #7fffffffffffffff -> sNaN999999999999999 -decd519 apply #7fffffffffffffff -> #7e00ff3fcff3fcff - -decd520 apply -Infinity -> #f800000000000000 -decd521 apply #f878787878787878 -> #f800000000000000 -decd522 apply #f800000000000000 -> -Infinity -decd523 apply #f979797979797979 -> #f800000000000000 -decd524 apply #f900000000000000 -> -Infinity -decd525 apply #fa7a7a7a7a7a7a7a -> #f800000000000000 -decd526 apply #fa00000000000000 -> -Infinity -decd527 apply #fb7b7b7b7b7b7b7b -> #f800000000000000 -decd528 apply #fb00000000000000 -> -Infinity - -decd529 apply -NaN -> #fc00000000000000 -decd530 apply #fc7c7c7c7c7c7c7c -> #fc007c7c7c7c7c7c -decd531 apply #fc00000000000000 -> -NaN -decd532 apply #fd7d7d7d7d7d7d7d -> #fc017d7d7d7d7d7d -decd533 apply #fd00000000000000 -> -NaN -decd534 apply #fe7e7e7e7e7e7e7e -> #fe007e7e7e7e7c7e -decd535 apply #fe00000000000000 -> -sNaN -decd536 apply #ff7f7f7f7f7f7f7f -> #fe007f7f7f7f7c7f -decd537 apply #ff00000000000000 -> -sNaN -decd538 apply #ffffffffffffffff -> -sNaN999999999999999 -decd539 apply #ffffffffffffffff -> #fe00ff3fcff3fcff - --- diagnostic NaNs -decd540 apply NaN -> #7c00000000000000 -decd541 apply NaN0 -> #7c00000000000000 -decd542 apply NaN1 -> #7c00000000000001 -decd543 apply NaN12 -> #7c00000000000012 -decd544 apply NaN79 -> #7c00000000000079 -decd545 apply NaN12345 -> #7c000000000049c5 -decd546 apply NaN123456 -> #7c00000000028e56 -decd547 apply NaN799799 -> #7c000000000f7fdf -decd548 apply NaN799799799799799 -> #7c03dff7fdff7fdf -decd549 apply NaN999999999999999 -> #7c00ff3fcff3fcff --- too many digits - --- fold-down full sequence -decd601 apply 1E+384 -> #47fc000000000000 Clamped -decd602 apply #47fc000000000000 -> 1.000000000000000E+384 -decd603 apply 1E+383 -> #43fc800000000000 Clamped -decd604 apply #43fc800000000000 -> 1.00000000000000E+383 -decd605 apply 1E+382 -> #43fc100000000000 Clamped -decd606 apply #43fc100000000000 -> 1.0000000000000E+382 -decd607 apply 1E+381 -> #43fc010000000000 Clamped -decd608 apply #43fc010000000000 -> 1.000000000000E+381 -decd609 apply 1E+380 -> #43fc002000000000 Clamped -decd610 apply #43fc002000000000 -> 1.00000000000E+380 -decd611 apply 1E+379 -> #43fc000400000000 Clamped -decd612 apply #43fc000400000000 -> 1.0000000000E+379 -decd613 apply 1E+378 -> #43fc000040000000 Clamped -decd614 apply #43fc000040000000 -> 1.000000000E+378 -decd615 apply 1E+377 -> #43fc000008000000 Clamped -decd616 apply #43fc000008000000 -> 1.00000000E+377 -decd617 apply 1E+376 -> #43fc000001000000 Clamped -decd618 apply #43fc000001000000 -> 1.0000000E+376 -decd619 apply 1E+375 -> #43fc000000100000 Clamped -decd620 apply #43fc000000100000 -> 1.000000E+375 -decd621 apply 1E+374 -> #43fc000000020000 Clamped -decd622 apply #43fc000000020000 -> 1.00000E+374 -decd623 apply 1E+373 -> #43fc000000004000 Clamped -decd624 apply #43fc000000004000 -> 1.0000E+373 -decd625 apply 1E+372 -> #43fc000000000400 Clamped -decd626 apply #43fc000000000400 -> 1.000E+372 -decd627 apply 1E+371 -> #43fc000000000080 Clamped -decd628 apply #43fc000000000080 -> 1.00E+371 -decd629 apply 1E+370 -> #43fc000000000010 Clamped -decd630 apply #43fc000000000010 -> 1.0E+370 -decd631 apply 1E+369 -> #43fc000000000001 -decd632 apply #43fc000000000001 -> 1E+369 -decd633 apply 1E+368 -> #43f8000000000001 -decd634 apply #43f8000000000001 -> 1E+368 --- same with 9s -decd641 apply 9E+384 -> #77fc000000000000 Clamped -decd642 apply #77fc000000000000 -> 9.000000000000000E+384 -decd643 apply 9E+383 -> #43fc8c0000000000 Clamped -decd644 apply #43fc8c0000000000 -> 9.00000000000000E+383 -decd645 apply 9E+382 -> #43fc1a0000000000 Clamped -decd646 apply #43fc1a0000000000 -> 9.0000000000000E+382 -decd647 apply 9E+381 -> #43fc090000000000 Clamped -decd648 apply #43fc090000000000 -> 9.000000000000E+381 -decd649 apply 9E+380 -> #43fc002300000000 Clamped -decd650 apply #43fc002300000000 -> 9.00000000000E+380 -decd651 apply 9E+379 -> #43fc000680000000 Clamped -decd652 apply #43fc000680000000 -> 9.0000000000E+379 -decd653 apply 9E+378 -> #43fc000240000000 Clamped -decd654 apply #43fc000240000000 -> 9.000000000E+378 -decd655 apply 9E+377 -> #43fc000008c00000 Clamped -decd656 apply #43fc000008c00000 -> 9.00000000E+377 -decd657 apply 9E+376 -> #43fc000001a00000 Clamped -decd658 apply #43fc000001a00000 -> 9.0000000E+376 -decd659 apply 9E+375 -> #43fc000000900000 Clamped -decd660 apply #43fc000000900000 -> 9.000000E+375 -decd661 apply 9E+374 -> #43fc000000023000 Clamped -decd662 apply #43fc000000023000 -> 9.00000E+374 -decd663 apply 9E+373 -> #43fc000000006800 Clamped -decd664 apply #43fc000000006800 -> 9.0000E+373 -decd665 apply 9E+372 -> #43fc000000002400 Clamped -decd666 apply #43fc000000002400 -> 9.000E+372 -decd667 apply 9E+371 -> #43fc00000000008c Clamped -decd668 apply #43fc00000000008c -> 9.00E+371 -decd669 apply 9E+370 -> #43fc00000000001a Clamped -decd670 apply #43fc00000000001a -> 9.0E+370 -decd671 apply 9E+369 -> #43fc000000000009 -decd672 apply #43fc000000000009 -> 9E+369 -decd673 apply 9E+368 -> #43f8000000000009 -decd674 apply #43f8000000000009 -> 9E+368 - - --- Selected DPD codes -decd700 apply #2238000000000000 -> 0 -decd701 apply #2238000000000009 -> 9 -decd702 apply #2238000000000010 -> 10 -decd703 apply #2238000000000019 -> 19 -decd704 apply #2238000000000020 -> 20 -decd705 apply #2238000000000029 -> 29 -decd706 apply #2238000000000030 -> 30 -decd707 apply #2238000000000039 -> 39 -decd708 apply #2238000000000040 -> 40 -decd709 apply #2238000000000049 -> 49 -decd710 apply #2238000000000050 -> 50 -decd711 apply #2238000000000059 -> 59 -decd712 apply #2238000000000060 -> 60 -decd713 apply #2238000000000069 -> 69 -decd714 apply #2238000000000070 -> 70 -decd715 apply #2238000000000071 -> 71 -decd716 apply #2238000000000072 -> 72 -decd717 apply #2238000000000073 -> 73 -decd718 apply #2238000000000074 -> 74 -decd719 apply #2238000000000075 -> 75 -decd720 apply #2238000000000076 -> 76 -decd721 apply #2238000000000077 -> 77 -decd722 apply #2238000000000078 -> 78 -decd723 apply #2238000000000079 -> 79 - -decd725 apply #223800000000029e -> 994 -decd726 apply #223800000000029f -> 995 -decd727 apply #22380000000002a0 -> 520 -decd728 apply #22380000000002a1 -> 521 --- from telco test data -decd730 apply #2238000000000188 -> 308 -decd731 apply #22380000000001a3 -> 323 -decd732 apply #223800000000002a -> 82 -decd733 apply #22380000000001a9 -> 329 -decd734 apply #2238000000000081 -> 101 -decd735 apply #22380000000002a2 -> 522 - --- DPD: one of each of the huffman groups -decd740 apply #22380000000003f7 -> 777 -decd741 apply #22380000000003f8 -> 778 -decd742 apply #22380000000003eb -> 787 -decd743 apply #223800000000037d -> 877 -decd744 apply #223800000000039f -> 997 -decd745 apply #22380000000003bf -> 979 -decd746 apply #22380000000003df -> 799 -decd747 apply #223800000000006e -> 888 - --- DPD all-highs cases (includes the 24 redundant codes) -decd750 apply #223800000000006e -> 888 -decd751 apply #223800000000016e -> 888 -decd752 apply #223800000000026e -> 888 -decd753 apply #223800000000036e -> 888 -decd754 apply #223800000000006f -> 889 -decd755 apply #223800000000016f -> 889 -decd756 apply #223800000000026f -> 889 -decd757 apply #223800000000036f -> 889 - -decd760 apply #223800000000007e -> 898 -decd761 apply #223800000000017e -> 898 -decd762 apply #223800000000027e -> 898 -decd763 apply #223800000000037e -> 898 -decd764 apply #223800000000007f -> 899 -decd765 apply #223800000000017f -> 899 -decd766 apply #223800000000027f -> 899 -decd767 apply #223800000000037f -> 899 - -decd770 apply #22380000000000ee -> 988 -decd771 apply #22380000000001ee -> 988 -decd772 apply #22380000000002ee -> 988 -decd773 apply #22380000000003ee -> 988 -decd774 apply #22380000000000ef -> 989 -decd775 apply #22380000000001ef -> 989 -decd776 apply #22380000000002ef -> 989 -decd777 apply #22380000000003ef -> 989 - -decd780 apply #22380000000000fe -> 998 -decd781 apply #22380000000001fe -> 998 -decd782 apply #22380000000002fe -> 998 -decd783 apply #22380000000003fe -> 998 -decd784 apply #22380000000000ff -> 999 -decd785 apply #22380000000001ff -> 999 -decd786 apply #22380000000002ff -> 999 -decd787 apply #22380000000003ff -> 999 - --- values around [u]int32 edges (zeros done earlier) -decd800 apply -2147483646 -> #a23800008c78af46 -decd801 apply -2147483647 -> #a23800008c78af47 -decd802 apply -2147483648 -> #a23800008c78af48 -decd803 apply -2147483649 -> #a23800008c78af49 -decd804 apply 2147483646 -> #223800008c78af46 -decd805 apply 2147483647 -> #223800008c78af47 -decd806 apply 2147483648 -> #223800008c78af48 -decd807 apply 2147483649 -> #223800008c78af49 -decd808 apply 4294967294 -> #2238000115afb55a -decd809 apply 4294967295 -> #2238000115afb55b -decd810 apply 4294967296 -> #2238000115afb57a -decd811 apply 4294967297 -> #2238000115afb57b - -decd820 apply #a23800008c78af46 -> -2147483646 -decd821 apply #a23800008c78af47 -> -2147483647 -decd822 apply #a23800008c78af48 -> -2147483648 -decd823 apply #a23800008c78af49 -> -2147483649 -decd824 apply #223800008c78af46 -> 2147483646 -decd825 apply #223800008c78af47 -> 2147483647 -decd826 apply #223800008c78af48 -> 2147483648 -decd827 apply #223800008c78af49 -> 2147483649 -decd828 apply #2238000115afb55a -> 4294967294 -decd829 apply #2238000115afb55b -> 4294967295 -decd830 apply #2238000115afb57a -> 4294967296 -decd831 apply #2238000115afb57b -> 4294967297 - --- for narrowing -decd840 apply #2870000000000000 -> 2.000000000000000E-99 - --- some miscellaneous -decd850 apply #0004070000000000 -> 7.000000000000E-385 Subnormal -decd851 apply #0008000000020000 -> 1.00000E-391 Subnormal - diff --git a/qdecimal/test/tc_full/ddFMA.decTest b/qdecimal/test/tc_full/ddFMA.decTest deleted file mode 100644 index 431fcf1..0000000 --- a/qdecimal/test/tc_full/ddFMA.decTest +++ /dev/null @@ -1,1698 +0,0 @@ ------------------------------------------------------------------------- --- ddFMA.decTest -- decDouble Fused Multiply Add -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- These tests comprese three parts: --- 1. Sanity checks and other three-operand tests (especially those --- where the fused operation makes a difference) --- 2. Multiply tests (third operand is neutral zero [0E+emax]) --- 3. Addition tests (first operand is 1) --- The multiply and addition tests are extensive because FMA may have --- its own dedicated multiplication or addition routine(s), and they --- also inherently check the left-to-right properties. - --- Sanity checks -ddfma0001 fma 1 1 1 -> 2 -ddfma0002 fma 1 1 2 -> 3 -ddfma0003 fma 2 2 3 -> 7 -ddfma0004 fma 9 9 9 -> 90 -ddfma0005 fma -1 1 1 -> 0 -ddfma0006 fma -1 1 2 -> 1 -ddfma0007 fma -2 2 3 -> -1 -ddfma0008 fma -9 9 9 -> -72 -ddfma0011 fma 1 -1 1 -> 0 -ddfma0012 fma 1 -1 2 -> 1 -ddfma0013 fma 2 -2 3 -> -1 -ddfma0014 fma 9 -9 9 -> -72 -ddfma0015 fma 1 1 -1 -> 0 -ddfma0016 fma 1 1 -2 -> -1 -ddfma0017 fma 2 2 -3 -> 1 -ddfma0018 fma 9 9 -9 -> 72 - --- non-integer exacts -ddfma0100 fma 25.2 63.6 -438 -> 1164.72 -ddfma0101 fma 0.301 0.380 334 -> 334.114380 -ddfma0102 fma 49.2 -4.8 23.3 -> -212.86 -ddfma0103 fma 4.22 0.079 -94.6 -> -94.26662 -ddfma0104 fma 903 0.797 0.887 -> 720.578 -ddfma0105 fma 6.13 -161 65.9 -> -921.03 -ddfma0106 fma 28.2 727 5.45 -> 20506.85 -ddfma0107 fma 4 605 688 -> 3108 -ddfma0108 fma 93.3 0.19 0.226 -> 17.953 -ddfma0109 fma 0.169 -341 5.61 -> -52.019 -ddfma0110 fma -72.2 30 -51.2 -> -2217.2 -ddfma0111 fma -0.409 13 20.4 -> 15.083 -ddfma0112 fma 317 77.0 19.0 -> 24428.0 -ddfma0113 fma 47 6.58 1.62 -> 310.88 -ddfma0114 fma 1.36 0.984 0.493 -> 1.83124 -ddfma0115 fma 72.7 274 1.56 -> 19921.36 -ddfma0116 fma 335 847 83 -> 283828 -ddfma0117 fma 666 0.247 25.4 -> 189.902 -ddfma0118 fma -3.87 3.06 78.0 -> 66.1578 -ddfma0119 fma 0.742 192 35.6 -> 178.064 -ddfma0120 fma -91.6 5.29 0.153 -> -484.411 - --- cases where result is different from separate multiply + add; each --- is preceded by the result of unfused multiply and add --- [this is about 20% of all similar cases in general] --- -> 7.123356429257969E+16 -ddfma0201 fma 27583489.6645 2582471078.04 2593183.42371 -> 7.123356429257970E+16 Inexact Rounded --- -> 22813275328.80506 -ddfma0208 fma 24280.355566 939577.397653 2032.013252 -> 22813275328.80507 Inexact Rounded --- -> -2.030397734278062E+16 -ddfma0209 fma 7848976432 -2586831.2281 137903.517909 -> -2.030397734278061E+16 Inexact Rounded --- -> 2040774094814.077 -ddfma0217 fma 56890.388731 35872030.4255 339337.123410 -> 2040774094814.078 Inexact Rounded --- -> 2.714469575205049E+18 -ddfma0220 fma 7533543.57445 360317763928 5073392.31638 -> 2.714469575205050E+18 Inexact Rounded --- -> 1.011676297716716E+19 -ddfma0223 fma 739945255.563 13672312784.1 -994381.53572 -> 1.011676297716715E+19 Inexact Rounded --- -> -2.914135721455315E+23 -ddfma0224 fma -413510957218 704729988550 9234162614.0 -> -2.914135721455314E+23 Inexact Rounded --- -> 2.620119863365786E+17 -ddfma0226 fma 437484.00601 598906432790 894450638.442 -> 2.620119863365787E+17 Inexact Rounded --- -> 1.272647995808178E+19 -ddfma0253 fma 73287556929 173651305.784 -358312568.389 -> 1.272647995808177E+19 Inexact Rounded --- -> -1.753769320861851E+18 -ddfma0257 fma 203258304486 -8628278.8066 153127.446727 -> -1.753769320861850E+18 Inexact Rounded --- -> -1.550737835263346E+17 -ddfma0260 fma 42560533.1774 -3643605282.86 178277.96377 -> -1.550737835263347E+17 Inexact Rounded --- -> 2.897624620576005E+22 -ddfma0269 fma 142656587375 203118879670 604576103991 -> 2.897624620576004E+22 Inexact Rounded - --- Cases where multiply would overflow or underflow if separate -fma0300 fma 9e+384 10 0 -> Infinity Overflow Inexact Rounded -fma0301 fma 1e+384 10 0 -> Infinity Overflow Inexact Rounded -fma0302 fma 1e+384 10 -1e+384 -> 9.000000000000000E+384 Clamped -fma0303 fma 1e+384 10 -9e+384 -> 1.000000000000000E+384 Clamped --- subnormal etc. -fma0305 fma 1e-398 0.1 0 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -fma0306 fma 1e-398 0.1 1 -> 1.000000000000000 Inexact Rounded -fma0307 fma 1e-398 0.1 1e-398 -> 1E-398 Underflow Subnormal Inexact Rounded - --- Infinite combinations -ddfma0800 fma Inf Inf Inf -> Infinity -ddfma0801 fma Inf Inf -Inf -> NaN Invalid_operation -ddfma0802 fma Inf -Inf Inf -> NaN Invalid_operation -ddfma0803 fma Inf -Inf -Inf -> -Infinity -ddfma0804 fma -Inf Inf Inf -> NaN Invalid_operation -ddfma0805 fma -Inf Inf -Inf -> -Infinity -ddfma0806 fma -Inf -Inf Inf -> Infinity -ddfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation - --- Triple NaN propagation -ddfma0900 fma NaN2 NaN3 NaN5 -> NaN2 -ddfma0901 fma 0 NaN3 NaN5 -> NaN3 -ddfma0902 fma 0 0 NaN5 -> NaN5 --- first sNaN wins (consider qNaN from earlier sNaN being --- overridden by an sNaN in third operand) -ddfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation -ddfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation -ddfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation -ddfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation -ddfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation -ddfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation - --- MULTIPLICATION TESTS ------------------------------------------------ - --- sanity checks -ddfma2000 fma 2 2 0e+384 -> 4 -ddfma2001 fma 2 3 0e+384 -> 6 -ddfma2002 fma 5 1 0e+384 -> 5 -ddfma2003 fma 5 2 0e+384 -> 10 -ddfma2004 fma 1.20 2 0e+384 -> 2.40 -ddfma2005 fma 1.20 0 0e+384 -> 0.00 -ddfma2006 fma 1.20 -2 0e+384 -> -2.40 -ddfma2007 fma -1.20 2 0e+384 -> -2.40 -ddfma2008 fma -1.20 0 0e+384 -> 0.00 -ddfma2009 fma -1.20 -2 0e+384 -> 2.40 -ddfma2010 fma 5.09 7.1 0e+384 -> 36.139 -ddfma2011 fma 2.5 4 0e+384 -> 10.0 -ddfma2012 fma 2.50 4 0e+384 -> 10.00 -ddfma2013 fma 1.23456789 1.00000000 0e+384 -> 1.234567890000000 Rounded -ddfma2015 fma 2.50 4 0e+384 -> 10.00 -ddfma2016 fma 9.999999999 9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded -ddfma2017 fma 9.999999999 -9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded -ddfma2018 fma -9.999999999 9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded -ddfma2019 fma -9.999999999 -9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded - --- zeros, etc. -ddfma2021 fma 0 0 0e+384 -> 0 -ddfma2022 fma 0 -0 0e+384 -> 0 -ddfma2023 fma -0 0 0e+384 -> 0 -ddfma2024 fma -0 -0 0e+384 -> 0 -ddfma2025 fma -0.0 -0.0 0e+384 -> 0.00 -ddfma2026 fma -0.0 -0.0 0e+384 -> 0.00 -ddfma2027 fma -0.0 -0.0 0e+384 -> 0.00 -ddfma2028 fma -0.0 -0.0 0e+384 -> 0.00 -ddfma2030 fma 5.00 1E-3 0e+384 -> 0.00500 -ddfma2031 fma 00.00 0.000 0e+384 -> 0.00000 -ddfma2032 fma 00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0 -ddfma2033 fma 0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0 -ddfma2034 fma -5.00 1E-3 0e+384 -> -0.00500 -ddfma2035 fma -00.00 0.000 0e+384 -> 0.00000 -ddfma2036 fma -00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0 -ddfma2037 fma -0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0 -ddfma2038 fma 5.00 -1E-3 0e+384 -> -0.00500 -ddfma2039 fma 00.00 -0.000 0e+384 -> 0.00000 -ddfma2040 fma 00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0 -ddfma2041 fma 0E-3 -00.00 0e+384 -> 0.00000 -- lhs is 0 -ddfma2042 fma -5.00 -1E-3 0e+384 -> 0.00500 -ddfma2043 fma -00.00 -0.000 0e+384 -> 0.00000 -ddfma2044 fma -00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0 -ddfma2045 fma -0E-3 -00.00 -0e+384 -> 0.00000 -- lhs is 0 -ddfma2046 fma -0E-3 00.00 -0e+384 -> -0.00000 -ddfma2047 fma 0E-3 -00.00 -0e+384 -> -0.00000 -ddfma2048 fma 0E-3 00.00 -0e+384 -> 0.00000 - --- examples from decarith -ddfma2050 fma 1.20 3 0e+384 -> 3.60 -ddfma2051 fma 7 3 0e+384 -> 21 -ddfma2052 fma 0.9 0.8 0e+384 -> 0.72 -ddfma2053 fma 0.9 -0 0e+384 -> 0.0 -ddfma2054 fma 654321 654321 0e+384 -> 428135971041 - -ddfma2060 fma 123.45 1e7 0e+384 -> 1.2345E+9 -ddfma2061 fma 123.45 1e8 0e+384 -> 1.2345E+10 -ddfma2062 fma 123.45 1e+9 0e+384 -> 1.2345E+11 -ddfma2063 fma 123.45 1e10 0e+384 -> 1.2345E+12 -ddfma2064 fma 123.45 1e11 0e+384 -> 1.2345E+13 -ddfma2065 fma 123.45 1e12 0e+384 -> 1.2345E+14 -ddfma2066 fma 123.45 1e13 0e+384 -> 1.2345E+15 - - --- test some intermediate lengths --- 1234567890123456 -ddfma2080 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9 -ddfma2084 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9 -ddfma2090 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9 -ddfma2094 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9 - --- test some more edge cases and carries -ddfma2101 fma 9 9 0e+384 -> 81 -ddfma2102 fma 9 90 0e+384 -> 810 -ddfma2103 fma 9 900 0e+384 -> 8100 -ddfma2104 fma 9 9000 0e+384 -> 81000 -ddfma2105 fma 9 90000 0e+384 -> 810000 -ddfma2106 fma 9 900000 0e+384 -> 8100000 -ddfma2107 fma 9 9000000 0e+384 -> 81000000 -ddfma2108 fma 9 90000000 0e+384 -> 810000000 -ddfma2109 fma 9 900000000 0e+384 -> 8100000000 -ddfma2110 fma 9 9000000000 0e+384 -> 81000000000 -ddfma2111 fma 9 90000000000 0e+384 -> 810000000000 -ddfma2112 fma 9 900000000000 0e+384 -> 8100000000000 -ddfma2113 fma 9 9000000000000 0e+384 -> 81000000000000 -ddfma2114 fma 9 90000000000000 0e+384 -> 810000000000000 -ddfma2115 fma 9 900000000000000 0e+384 -> 8100000000000000 ---ddfma2116 fma 9 9000000000000000 0e+384 -> 81000000000000000 ---ddfma2117 fma 9 90000000000000000 0e+384 -> 810000000000000000 ---ddfma2118 fma 9 900000000000000000 0e+384 -> 8100000000000000000 ---ddfma2119 fma 9 9000000000000000000 0e+384 -> 81000000000000000000 ---ddfma2120 fma 9 90000000000000000000 0e+384 -> 810000000000000000000 ---ddfma2121 fma 9 900000000000000000000 0e+384 -> 8100000000000000000000 ---ddfma2122 fma 9 9000000000000000000000 0e+384 -> 81000000000000000000000 ---ddfma2123 fma 9 90000000000000000000000 0e+384 -> 810000000000000000000000 --- test some more edge cases without carries -ddfma2131 fma 3 3 0e+384 -> 9 -ddfma2132 fma 3 30 0e+384 -> 90 -ddfma2133 fma 3 300 0e+384 -> 900 -ddfma2134 fma 3 3000 0e+384 -> 9000 -ddfma2135 fma 3 30000 0e+384 -> 90000 -ddfma2136 fma 3 300000 0e+384 -> 900000 -ddfma2137 fma 3 3000000 0e+384 -> 9000000 -ddfma2138 fma 3 30000000 0e+384 -> 90000000 -ddfma2139 fma 3 300000000 0e+384 -> 900000000 -ddfma2140 fma 3 3000000000 0e+384 -> 9000000000 -ddfma2141 fma 3 30000000000 0e+384 -> 90000000000 -ddfma2142 fma 3 300000000000 0e+384 -> 900000000000 -ddfma2143 fma 3 3000000000000 0e+384 -> 9000000000000 -ddfma2144 fma 3 30000000000000 0e+384 -> 90000000000000 -ddfma2145 fma 3 300000000000000 0e+384 -> 900000000000000 - --- test some edge cases with exact rounding -ddfma2301 fma 9 9 0e+384 -> 81 -ddfma2302 fma 9 90 0e+384 -> 810 -ddfma2303 fma 9 900 0e+384 -> 8100 -ddfma2304 fma 9 9000 0e+384 -> 81000 -ddfma2305 fma 9 90000 0e+384 -> 810000 -ddfma2306 fma 9 900000 0e+384 -> 8100000 -ddfma2307 fma 9 9000000 0e+384 -> 81000000 -ddfma2308 fma 9 90000000 0e+384 -> 810000000 -ddfma2309 fma 9 900000000 0e+384 -> 8100000000 -ddfma2310 fma 9 9000000000 0e+384 -> 81000000000 -ddfma2311 fma 9 90000000000 0e+384 -> 810000000000 -ddfma2312 fma 9 900000000000 0e+384 -> 8100000000000 -ddfma2313 fma 9 9000000000000 0e+384 -> 81000000000000 -ddfma2314 fma 9 90000000000000 0e+384 -> 810000000000000 -ddfma2315 fma 9 900000000000000 0e+384 -> 8100000000000000 -ddfma2316 fma 9 9000000000000000 0e+384 -> 8.100000000000000E+16 Rounded -ddfma2317 fma 90 9000000000000000 0e+384 -> 8.100000000000000E+17 Rounded -ddfma2318 fma 900 9000000000000000 0e+384 -> 8.100000000000000E+18 Rounded -ddfma2319 fma 9000 9000000000000000 0e+384 -> 8.100000000000000E+19 Rounded -ddfma2320 fma 90000 9000000000000000 0e+384 -> 8.100000000000000E+20 Rounded -ddfma2321 fma 900000 9000000000000000 0e+384 -> 8.100000000000000E+21 Rounded -ddfma2322 fma 9000000 9000000000000000 0e+384 -> 8.100000000000000E+22 Rounded -ddfma2323 fma 90000000 9000000000000000 0e+384 -> 8.100000000000000E+23 Rounded - --- tryzeros cases -ddfma2504 fma 0E-260 1000E-260 0e+384 -> 0E-398 Clamped -ddfma2505 fma 100E+260 0E+260 0e+384 -> 0E+369 Clamped - --- mixed with zeros -ddfma2541 fma 0 -1 0e+384 -> 0 -ddfma2542 fma -0 -1 0e+384 -> 0 -ddfma2543 fma 0 1 0e+384 -> 0 -ddfma2544 fma -0 1 0e+384 -> 0 -ddfma2545 fma -1 0 0e+384 -> 0 -ddfma2546 fma -1 -0 0e+384 -> 0 -ddfma2547 fma 1 0 0e+384 -> 0 -ddfma2548 fma 1 -0 0e+384 -> 0 - -ddfma2551 fma 0.0 -1 0e+384 -> 0.0 -ddfma2552 fma -0.0 -1 0e+384 -> 0.0 -ddfma2553 fma 0.0 1 0e+384 -> 0.0 -ddfma2554 fma -0.0 1 0e+384 -> 0.0 -ddfma2555 fma -1.0 0 0e+384 -> 0.0 -ddfma2556 fma -1.0 -0 0e+384 -> 0.0 -ddfma2557 fma 1.0 0 0e+384 -> 0.0 -ddfma2558 fma 1.0 -0 0e+384 -> 0.0 - -ddfma2561 fma 0 -1.0 0e+384 -> 0.0 -ddfma2562 fma -0 -1.0 0e+384 -> 0.0 -ddfma2563 fma 0 1.0 0e+384 -> 0.0 -ddfma2564 fma -0 1.0 0e+384 -> 0.0 -ddfma2565 fma -1 0.0 0e+384 -> 0.0 -ddfma2566 fma -1 -0.0 0e+384 -> 0.0 -ddfma2567 fma 1 0.0 0e+384 -> 0.0 -ddfma2568 fma 1 -0.0 0e+384 -> 0.0 - -ddfma2571 fma 0.0 -1.0 0e+384 -> 0.00 -ddfma2572 fma -0.0 -1.0 0e+384 -> 0.00 -ddfma2573 fma 0.0 1.0 0e+384 -> 0.00 -ddfma2574 fma -0.0 1.0 0e+384 -> 0.00 -ddfma2575 fma -1.0 0.0 0e+384 -> 0.00 -ddfma2576 fma -1.0 -0.0 0e+384 -> 0.00 -ddfma2577 fma 1.0 0.0 0e+384 -> 0.00 -ddfma2578 fma 1.0 -0.0 0e+384 -> 0.00 - --- Specials -ddfma2580 fma Inf -Inf 0e+384 -> -Infinity -ddfma2581 fma Inf -1000 0e+384 -> -Infinity -ddfma2582 fma Inf -1 0e+384 -> -Infinity -ddfma2583 fma Inf -0 0e+384 -> NaN Invalid_operation -ddfma2584 fma Inf 0 0e+384 -> NaN Invalid_operation -ddfma2585 fma Inf 1 0e+384 -> Infinity -ddfma2586 fma Inf 1000 0e+384 -> Infinity -ddfma2587 fma Inf Inf 0e+384 -> Infinity -ddfma2588 fma -1000 Inf 0e+384 -> -Infinity -ddfma2589 fma -Inf Inf 0e+384 -> -Infinity -ddfma2590 fma -1 Inf 0e+384 -> -Infinity -ddfma2591 fma -0 Inf 0e+384 -> NaN Invalid_operation -ddfma2592 fma 0 Inf 0e+384 -> NaN Invalid_operation -ddfma2593 fma 1 Inf 0e+384 -> Infinity -ddfma2594 fma 1000 Inf 0e+384 -> Infinity -ddfma2595 fma Inf Inf 0e+384 -> Infinity - -ddfma2600 fma -Inf -Inf 0e+384 -> Infinity -ddfma2601 fma -Inf -1000 0e+384 -> Infinity -ddfma2602 fma -Inf -1 0e+384 -> Infinity -ddfma2603 fma -Inf -0 0e+384 -> NaN Invalid_operation -ddfma2604 fma -Inf 0 0e+384 -> NaN Invalid_operation -ddfma2605 fma -Inf 1 0e+384 -> -Infinity -ddfma2606 fma -Inf 1000 0e+384 -> -Infinity -ddfma2607 fma -Inf Inf 0e+384 -> -Infinity -ddfma2608 fma -1000 Inf 0e+384 -> -Infinity -ddfma2609 fma -Inf -Inf 0e+384 -> Infinity -ddfma2610 fma -1 -Inf 0e+384 -> Infinity -ddfma2611 fma -0 -Inf 0e+384 -> NaN Invalid_operation -ddfma2612 fma 0 -Inf 0e+384 -> NaN Invalid_operation -ddfma2613 fma 1 -Inf 0e+384 -> -Infinity -ddfma2614 fma 1000 -Inf 0e+384 -> -Infinity -ddfma2615 fma Inf -Inf 0e+384 -> -Infinity - -ddfma2621 fma NaN -Inf 0e+384 -> NaN -ddfma2622 fma NaN -1000 0e+384 -> NaN -ddfma2623 fma NaN -1 0e+384 -> NaN -ddfma2624 fma NaN -0 0e+384 -> NaN -ddfma2625 fma NaN 0 0e+384 -> NaN -ddfma2626 fma NaN 1 0e+384 -> NaN -ddfma2627 fma NaN 1000 0e+384 -> NaN -ddfma2628 fma NaN Inf 0e+384 -> NaN -ddfma2629 fma NaN NaN 0e+384 -> NaN -ddfma2630 fma -Inf NaN 0e+384 -> NaN -ddfma2631 fma -1000 NaN 0e+384 -> NaN -ddfma2632 fma -1 NaN 0e+384 -> NaN -ddfma2633 fma -0 NaN 0e+384 -> NaN -ddfma2634 fma 0 NaN 0e+384 -> NaN -ddfma2635 fma 1 NaN 0e+384 -> NaN -ddfma2636 fma 1000 NaN 0e+384 -> NaN -ddfma2637 fma Inf NaN 0e+384 -> NaN - -ddfma2641 fma sNaN -Inf 0e+384 -> NaN Invalid_operation -ddfma2642 fma sNaN -1000 0e+384 -> NaN Invalid_operation -ddfma2643 fma sNaN -1 0e+384 -> NaN Invalid_operation -ddfma2644 fma sNaN -0 0e+384 -> NaN Invalid_operation -ddfma2645 fma sNaN 0 0e+384 -> NaN Invalid_operation -ddfma2646 fma sNaN 1 0e+384 -> NaN Invalid_operation -ddfma2647 fma sNaN 1000 0e+384 -> NaN Invalid_operation -ddfma2648 fma sNaN NaN 0e+384 -> NaN Invalid_operation -ddfma2649 fma sNaN sNaN 0e+384 -> NaN Invalid_operation -ddfma2650 fma NaN sNaN 0e+384 -> NaN Invalid_operation -ddfma2651 fma -Inf sNaN 0e+384 -> NaN Invalid_operation -ddfma2652 fma -1000 sNaN 0e+384 -> NaN Invalid_operation -ddfma2653 fma -1 sNaN 0e+384 -> NaN Invalid_operation -ddfma2654 fma -0 sNaN 0e+384 -> NaN Invalid_operation -ddfma2655 fma 0 sNaN 0e+384 -> NaN Invalid_operation -ddfma2656 fma 1 sNaN 0e+384 -> NaN Invalid_operation -ddfma2657 fma 1000 sNaN 0e+384 -> NaN Invalid_operation -ddfma2658 fma Inf sNaN 0e+384 -> NaN Invalid_operation -ddfma2659 fma NaN sNaN 0e+384 -> NaN Invalid_operation - --- propagating NaNs -ddfma2661 fma NaN9 -Inf 0e+384 -> NaN9 -ddfma2662 fma NaN8 999 0e+384 -> NaN8 -ddfma2663 fma NaN71 Inf 0e+384 -> NaN71 -ddfma2664 fma NaN6 NaN5 0e+384 -> NaN6 -ddfma2665 fma -Inf NaN4 0e+384 -> NaN4 -ddfma2666 fma -999 NaN33 0e+384 -> NaN33 -ddfma2667 fma Inf NaN2 0e+384 -> NaN2 - -ddfma2671 fma sNaN99 -Inf 0e+384 -> NaN99 Invalid_operation -ddfma2672 fma sNaN98 -11 0e+384 -> NaN98 Invalid_operation -ddfma2673 fma sNaN97 NaN 0e+384 -> NaN97 Invalid_operation -ddfma2674 fma sNaN16 sNaN94 0e+384 -> NaN16 Invalid_operation -ddfma2675 fma NaN95 sNaN93 0e+384 -> NaN93 Invalid_operation -ddfma2676 fma -Inf sNaN92 0e+384 -> NaN92 Invalid_operation -ddfma2677 fma 088 sNaN91 0e+384 -> NaN91 Invalid_operation -ddfma2678 fma Inf sNaN90 0e+384 -> NaN90 Invalid_operation -ddfma2679 fma NaN sNaN89 0e+384 -> NaN89 Invalid_operation - -ddfma2681 fma -NaN9 -Inf 0e+384 -> -NaN9 -ddfma2682 fma -NaN8 999 0e+384 -> -NaN8 -ddfma2683 fma -NaN71 Inf 0e+384 -> -NaN71 -ddfma2684 fma -NaN6 -NaN5 0e+384 -> -NaN6 -ddfma2685 fma -Inf -NaN4 0e+384 -> -NaN4 -ddfma2686 fma -999 -NaN33 0e+384 -> -NaN33 -ddfma2687 fma Inf -NaN2 0e+384 -> -NaN2 - -ddfma2691 fma -sNaN99 -Inf 0e+384 -> -NaN99 Invalid_operation -ddfma2692 fma -sNaN98 -11 0e+384 -> -NaN98 Invalid_operation -ddfma2693 fma -sNaN97 NaN 0e+384 -> -NaN97 Invalid_operation -ddfma2694 fma -sNaN16 -sNaN94 0e+384 -> -NaN16 Invalid_operation -ddfma2695 fma -NaN95 -sNaN93 0e+384 -> -NaN93 Invalid_operation -ddfma2696 fma -Inf -sNaN92 0e+384 -> -NaN92 Invalid_operation -ddfma2697 fma 088 -sNaN91 0e+384 -> -NaN91 Invalid_operation -ddfma2698 fma Inf -sNaN90 0e+384 -> -NaN90 Invalid_operation -ddfma2699 fma -NaN -sNaN89 0e+384 -> -NaN89 Invalid_operation - -ddfma2701 fma -NaN -Inf 0e+384 -> -NaN -ddfma2702 fma -NaN 999 0e+384 -> -NaN -ddfma2703 fma -NaN Inf 0e+384 -> -NaN -ddfma2704 fma -NaN -NaN 0e+384 -> -NaN -ddfma2705 fma -Inf -NaN0 0e+384 -> -NaN -ddfma2706 fma -999 -NaN 0e+384 -> -NaN -ddfma2707 fma Inf -NaN 0e+384 -> -NaN - -ddfma2711 fma -sNaN -Inf 0e+384 -> -NaN Invalid_operation -ddfma2712 fma -sNaN -11 0e+384 -> -NaN Invalid_operation -ddfma2713 fma -sNaN00 NaN 0e+384 -> -NaN Invalid_operation -ddfma2714 fma -sNaN -sNaN 0e+384 -> -NaN Invalid_operation -ddfma2715 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation -ddfma2716 fma -Inf -sNaN 0e+384 -> -NaN Invalid_operation -ddfma2717 fma 088 -sNaN 0e+384 -> -NaN Invalid_operation -ddfma2718 fma Inf -sNaN 0e+384 -> -NaN Invalid_operation -ddfma2719 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation - --- overflow and underflow tests .. note subnormal results --- signs -ddfma2751 fma 1e+277 1e+311 0e+384 -> Infinity Overflow Inexact Rounded -ddfma2752 fma 1e+277 -1e+311 0e+384 -> -Infinity Overflow Inexact Rounded -ddfma2753 fma -1e+277 1e+311 0e+384 -> -Infinity Overflow Inexact Rounded -ddfma2754 fma -1e+277 -1e+311 0e+384 -> Infinity Overflow Inexact Rounded -ddfma2755 fma 1e-277 1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2756 fma 1e-277 -1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2757 fma -1e-277 1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2758 fma -1e-277 -1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -ddfma2760 fma 1e-291 1e-101 0e+384 -> 1E-392 Subnormal -ddfma2761 fma 1e-291 1e-102 0e+384 -> 1E-393 Subnormal -ddfma2762 fma 1e-291 1e-103 0e+384 -> 1E-394 Subnormal -ddfma2763 fma 1e-291 1e-104 0e+384 -> 1E-395 Subnormal -ddfma2764 fma 1e-291 1e-105 0e+384 -> 1E-396 Subnormal -ddfma2765 fma 1e-291 1e-106 0e+384 -> 1E-397 Subnormal -ddfma2766 fma 1e-291 1e-107 0e+384 -> 1E-398 Subnormal -ddfma2767 fma 1e-291 1e-108 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2768 fma 1e-291 1e-109 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2769 fma 1e-291 1e-110 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -ddfma2770 fma 1e+60 1e+321 0e+384 -> 1.000000000000E+381 Clamped -ddfma2771 fma 1e+60 1e+322 0e+384 -> 1.0000000000000E+382 Clamped -ddfma2772 fma 1e+60 1e+323 0e+384 -> 1.00000000000000E+383 Clamped -ddfma2773 fma 1e+60 1e+324 0e+384 -> 1.000000000000000E+384 Clamped -ddfma2774 fma 1e+60 1e+325 0e+384 -> Infinity Overflow Inexact Rounded -ddfma2775 fma 1e+60 1e+326 0e+384 -> Infinity Overflow Inexact Rounded -ddfma2776 fma 1e+60 1e+327 0e+384 -> Infinity Overflow Inexact Rounded -ddfma2777 fma 1e+60 1e+328 0e+384 -> Infinity Overflow Inexact Rounded -ddfma2778 fma 1e+60 1e+329 0e+384 -> Infinity Overflow Inexact Rounded -ddfma2779 fma 1e+60 1e+330 0e+384 -> Infinity Overflow Inexact Rounded - -ddfma2801 fma 1.0000E-394 1 0e+384 -> 1.0000E-394 Subnormal -ddfma2802 fma 1.000E-394 1e-1 0e+384 -> 1.000E-395 Subnormal -ddfma2803 fma 1.00E-394 1e-2 0e+384 -> 1.00E-396 Subnormal -ddfma2804 fma 1.0E-394 1e-3 0e+384 -> 1.0E-397 Subnormal -ddfma2805 fma 1.0E-394 1e-4 0e+384 -> 1E-398 Subnormal Rounded -ddfma2806 fma 1.3E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded -ddfma2807 fma 1.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2808 fma 1.7E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2809 fma 2.3E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2810 fma 2.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2811 fma 2.7E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded -ddfma2812 fma 1.49E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded -ddfma2813 fma 1.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2814 fma 1.51E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2815 fma 2.49E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2816 fma 2.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded -ddfma2817 fma 2.51E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded - -ddfma2818 fma 1E-394 1e-4 0e+384 -> 1E-398 Subnormal -ddfma2819 fma 3E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2820 fma 5E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2821 fma 7E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded -ddfma2822 fma 9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded -ddfma2823 fma 9.9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded - -ddfma2824 fma 1E-394 -1e-4 0e+384 -> -1E-398 Subnormal -ddfma2825 fma 3E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2826 fma -5E-394 1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2827 fma 7E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded -ddfma2828 fma -9E-394 1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded -ddfma2829 fma 9.9E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded -ddfma2830 fma 3.0E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped - -ddfma2831 fma 1.0E-199 1e-200 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddfma2832 fma 1.0E-199 1e-199 0e+384 -> 1E-398 Subnormal Rounded -ddfma2833 fma 1.0E-199 1e-198 0e+384 -> 1.0E-397 Subnormal -ddfma2834 fma 2.0E-199 2e-198 0e+384 -> 4.0E-397 Subnormal -ddfma2835 fma 4.0E-199 4e-198 0e+384 -> 1.60E-396 Subnormal -ddfma2836 fma 10.0E-199 10e-198 0e+384 -> 1.000E-395 Subnormal -ddfma2837 fma 30.0E-199 30e-198 0e+384 -> 9.000E-395 Subnormal -ddfma2838 fma 40.0E-199 40e-188 0e+384 -> 1.6000E-384 Subnormal -ddfma2839 fma 40.0E-199 40e-187 0e+384 -> 1.6000E-383 -ddfma2840 fma 40.0E-199 40e-186 0e+384 -> 1.6000E-382 - --- Long operand overflow may be a different path -ddfma2870 fma 100 9.999E+383 0e+384 -> Infinity Inexact Overflow Rounded -ddfma2871 fma 100 -9.999E+383 0e+384 -> -Infinity Inexact Overflow Rounded -ddfma2872 fma 9.999E+383 100 0e+384 -> Infinity Inexact Overflow Rounded -ddfma2873 fma -9.999E+383 100 0e+384 -> -Infinity Inexact Overflow Rounded - --- check for double-rounded subnormals -ddfma2881 fma 1.2347E-355 1.2347E-40 0e+384 -> 1.524E-395 Inexact Rounded Subnormal Underflow -ddfma2882 fma 1.234E-355 1.234E-40 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow -ddfma2883 fma 1.23E-355 1.23E-40 0e+384 -> 1.513E-395 Inexact Rounded Subnormal Underflow -ddfma2884 fma 1.2E-355 1.2E-40 0e+384 -> 1.44E-395 Subnormal -ddfma2885 fma 1.2E-355 1.2E-41 0e+384 -> 1.44E-396 Subnormal -ddfma2886 fma 1.2E-355 1.2E-42 0e+384 -> 1.4E-397 Subnormal Inexact Rounded Underflow -ddfma2887 fma 1.2E-355 1.3E-42 0e+384 -> 1.6E-397 Subnormal Inexact Rounded Underflow -ddfma2888 fma 1.3E-355 1.3E-42 0e+384 -> 1.7E-397 Subnormal Inexact Rounded Underflow -ddfma2889 fma 1.3E-355 1.3E-43 0e+384 -> 2E-398 Subnormal Inexact Rounded Underflow -ddfma2890 fma 1.3E-356 1.3E-43 0e+384 -> 0E-398 Clamped Subnormal Inexact Rounded Underflow - -ddfma2891 fma 1.2345E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow -ddfma2892 fma 1.23456E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow -ddfma2893 fma 1.2345E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow -ddfma2894 fma 1.23456E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow -ddfma2895 fma 1.2345E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow -ddfma2896 fma 1.23456E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow - --- Now explore the case where we get a normal result with Underflow -ddfma2900 fma 0.3000000000E-191 0.3000000000E-191 0e+384 -> 9.00000000000000E-384 Subnormal Rounded -ddfma2901 fma 0.3000000001E-191 0.3000000001E-191 0e+384 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded -ddfma2902 fma 9.999999999999999E-383 0.0999999999999 0e+384 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded -ddfma2903 fma 9.999999999999999E-383 0.09999999999999 0e+384 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded -ddfma2904 fma 9.999999999999999E-383 0.099999999999999 0e+384 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded -ddfma2905 fma 9.999999999999999E-383 0.0999999999999999 0e+384 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded --- prove operands are exact -ddfma2906 fma 9.999999999999999E-383 1 0e+384 -> 9.999999999999999E-383 -ddfma2907 fma 1 0.09999999999999999 0e+384 -> 0.09999999999999999 --- the next rounds to Nmin -ddfma2908 fma 9.999999999999999E-383 0.09999999999999999 0e+384 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded - --- hugest -ddfma2909 fma 9999999999999999 9999999999999999 0e+384 -> 9.999999999999998E+31 Inexact Rounded - --- Null tests -ddfma2990 fma 10 # 0e+384 -> NaN Invalid_operation -ddfma2991 fma # 10 0e+384 -> NaN Invalid_operation - - --- ADDITION TESTS ------------------------------------------------------ - --- [first group are 'quick confidence check'] -ddfma3001 fma 1 1 1 -> 2 -ddfma3002 fma 1 2 3 -> 5 -ddfma3003 fma 1 '5.75' '3.3' -> 9.05 -ddfma3004 fma 1 '5' '-3' -> 2 -ddfma3005 fma 1 '-5' '-3' -> -8 -ddfma3006 fma 1 '-7' '2.5' -> -4.5 -ddfma3007 fma 1 '0.7' '0.3' -> 1.0 -ddfma3008 fma 1 '1.25' '1.25' -> 2.50 -ddfma3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' -ddfma3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' - --- 1234567890123456 1234567890123456 -ddfma3011 fma 1 '0.4444444444444446' '0.5555555555555555' -> '1.000000000000000' Inexact Rounded -ddfma3012 fma 1 '0.4444444444444445' '0.5555555555555555' -> '1.000000000000000' Rounded -ddfma3013 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999' -ddfma3014 fma 1 '4444444444444444' '0.49' -> '4444444444444444' Inexact Rounded -ddfma3015 fma 1 '4444444444444444' '0.499' -> '4444444444444444' Inexact Rounded -ddfma3016 fma 1 '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded -ddfma3017 fma 1 '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded -ddfma3018 fma 1 '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded -ddfma3019 fma 1 '4444444444444444' '0.501' -> '4444444444444445' Inexact Rounded -ddfma3020 fma 1 '4444444444444444' '0.51' -> '4444444444444445' Inexact Rounded - -ddfma3021 fma 1 0 1 -> 1 -ddfma3022 fma 1 1 1 -> 2 -ddfma3023 fma 1 2 1 -> 3 -ddfma3024 fma 1 3 1 -> 4 -ddfma3025 fma 1 4 1 -> 5 -ddfma3026 fma 1 5 1 -> 6 -ddfma3027 fma 1 6 1 -> 7 -ddfma3028 fma 1 7 1 -> 8 -ddfma3029 fma 1 8 1 -> 9 -ddfma3030 fma 1 9 1 -> 10 - --- some carrying effects -ddfma3031 fma 1 '0.9998' '0.0000' -> '0.9998' -ddfma3032 fma 1 '0.9998' '0.0001' -> '0.9999' -ddfma3033 fma 1 '0.9998' '0.0002' -> '1.0000' -ddfma3034 fma 1 '0.9998' '0.0003' -> '1.0001' - -ddfma3035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -ddfma3036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -ddfma3037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -ddfma3038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded -ddfma3039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded - --- symmetry: -ddfma3040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded -ddfma3041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded -ddfma3042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded -ddfma3044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded -ddfma3045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded - --- same, without rounding -ddfma3046 fma 1 '10000e+9' '7' -> '10000000000007' -ddfma3047 fma 1 '10000e+9' '70' -> '10000000000070' -ddfma3048 fma 1 '10000e+9' '700' -> '10000000000700' -ddfma3049 fma 1 '10000e+9' '7000' -> '10000000007000' -ddfma3050 fma 1 '10000e+9' '70000' -> '10000000070000' -ddfma3051 fma 1 '10000e+9' '700000' -> '10000000700000' -ddfma3052 fma 1 '10000e+9' '7000000' -> '10000007000000' - --- examples from decarith -ddfma3053 fma 1 '12' '7.00' -> '19.00' -ddfma3054 fma 1 '1.3' '-1.07' -> '0.23' -ddfma3055 fma 1 '1.3' '-1.30' -> '0.00' -ddfma3056 fma 1 '1.3' '-2.07' -> '-0.77' -ddfma3057 fma 1 '1E+2' '1E+4' -> '1.01E+4' - --- leading zero preservation -ddfma3061 fma 1 1 '0.0001' -> '1.0001' -ddfma3062 fma 1 1 '0.00001' -> '1.00001' -ddfma3063 fma 1 1 '0.000001' -> '1.000001' -ddfma3064 fma 1 1 '0.0000001' -> '1.0000001' -ddfma3065 fma 1 1 '0.00000001' -> '1.00000001' - --- some funny zeros [in case of bad signum] -ddfma3070 fma 1 1 0 -> 1 -ddfma3071 fma 1 1 0. -> 1 -ddfma3072 fma 1 1 .0 -> 1.0 -ddfma3073 fma 1 1 0.0 -> 1.0 -ddfma3074 fma 1 1 0.00 -> 1.00 -ddfma3075 fma 1 0 1 -> 1 -ddfma3076 fma 1 0. 1 -> 1 -ddfma3077 fma 1 .0 1 -> 1.0 -ddfma3078 fma 1 0.0 1 -> 1.0 -ddfma3079 fma 1 0.00 1 -> 1.00 - --- some carries -ddfma3080 fma 1 999999998 1 -> 999999999 -ddfma3081 fma 1 999999999 1 -> 1000000000 -ddfma3082 fma 1 99999999 1 -> 100000000 -ddfma3083 fma 1 9999999 1 -> 10000000 -ddfma3084 fma 1 999999 1 -> 1000000 -ddfma3085 fma 1 99999 1 -> 100000 -ddfma3086 fma 1 9999 1 -> 10000 -ddfma3087 fma 1 999 1 -> 1000 -ddfma3088 fma 1 99 1 -> 100 -ddfma3089 fma 1 9 1 -> 10 - - --- more LHS swaps -ddfma3090 fma 1 '-56267E-10' 0 -> '-0.0000056267' -ddfma3091 fma 1 '-56267E-6' 0 -> '-0.056267' -ddfma3092 fma 1 '-56267E-5' 0 -> '-0.56267' -ddfma3093 fma 1 '-56267E-4' 0 -> '-5.6267' -ddfma3094 fma 1 '-56267E-3' 0 -> '-56.267' -ddfma3095 fma 1 '-56267E-2' 0 -> '-562.67' -ddfma3096 fma 1 '-56267E-1' 0 -> '-5626.7' -ddfma3097 fma 1 '-56267E-0' 0 -> '-56267' -ddfma3098 fma 1 '-5E-10' 0 -> '-5E-10' -ddfma3099 fma 1 '-5E-7' 0 -> '-5E-7' -ddfma3100 fma 1 '-5E-6' 0 -> '-0.000005' -ddfma3101 fma 1 '-5E-5' 0 -> '-0.00005' -ddfma3102 fma 1 '-5E-4' 0 -> '-0.0005' -ddfma3103 fma 1 '-5E-1' 0 -> '-0.5' -ddfma3104 fma 1 '-5E0' 0 -> '-5' -ddfma3105 fma 1 '-5E1' 0 -> '-50' -ddfma3106 fma 1 '-5E5' 0 -> '-500000' -ddfma3107 fma 1 '-5E15' 0 -> '-5000000000000000' -ddfma3108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded -ddfma3109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded -ddfma3110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded -ddfma3111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded - --- more RHS swaps -ddfma3113 fma 1 0 '-56267E-10' -> '-0.0000056267' -ddfma3114 fma 1 0 '-56267E-6' -> '-0.056267' -ddfma3116 fma 1 0 '-56267E-5' -> '-0.56267' -ddfma3117 fma 1 0 '-56267E-4' -> '-5.6267' -ddfma3119 fma 1 0 '-56267E-3' -> '-56.267' -ddfma3120 fma 1 0 '-56267E-2' -> '-562.67' -ddfma3121 fma 1 0 '-56267E-1' -> '-5626.7' -ddfma3122 fma 1 0 '-56267E-0' -> '-56267' -ddfma3123 fma 1 0 '-5E-10' -> '-5E-10' -ddfma3124 fma 1 0 '-5E-7' -> '-5E-7' -ddfma3125 fma 1 0 '-5E-6' -> '-0.000005' -ddfma3126 fma 1 0 '-5E-5' -> '-0.00005' -ddfma3127 fma 1 0 '-5E-4' -> '-0.0005' -ddfma3128 fma 1 0 '-5E-1' -> '-0.5' -ddfma3129 fma 1 0 '-5E0' -> '-5' -ddfma3130 fma 1 0 '-5E1' -> '-50' -ddfma3131 fma 1 0 '-5E5' -> '-500000' -ddfma3132 fma 1 0 '-5E15' -> '-5000000000000000' -ddfma3133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded -ddfma3134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded -ddfma3135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded -ddfma3136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded - --- related -ddfma3137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded -ddfma3138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded -ddfma3139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded -ddfma3140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded -ddfma3141 fma 1 1E+11 0.0000 -> '100000000000.0000' -ddfma3142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded -ddfma3143 fma 1 0.000 1E+12 -> '1000000000000.000' -ddfma3144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded - --- [some of the next group are really constructor tests] -ddfma3146 fma 1 '00.0' 0 -> '0.0' -ddfma3147 fma 1 '0.00' 0 -> '0.00' -ddfma3148 fma 1 0 '0.00' -> '0.00' -ddfma3149 fma 1 0 '00.0' -> '0.0' -ddfma3150 fma 1 '00.0' '0.00' -> '0.00' -ddfma3151 fma 1 '0.00' '00.0' -> '0.00' -ddfma3152 fma 1 '3' '.3' -> '3.3' -ddfma3153 fma 1 '3.' '.3' -> '3.3' -ddfma3154 fma 1 '3.0' '.3' -> '3.3' -ddfma3155 fma 1 '3.00' '.3' -> '3.30' -ddfma3156 fma 1 '3' '3' -> '6' -ddfma3157 fma 1 '3' '+3' -> '6' -ddfma3158 fma 1 '3' '-3' -> '0' -ddfma3159 fma 1 '0.3' '-0.3' -> '0.0' -ddfma3160 fma 1 '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -ddfma3161 fma 1 '1E+12' '-1' -> '999999999999' -ddfma3162 fma 1 '1E+12' '1.11' -> '1000000000001.11' -ddfma3163 fma 1 '1.11' '1E+12' -> '1000000000001.11' -ddfma3164 fma 1 '-1' '1E+12' -> '999999999999' -ddfma3165 fma 1 '7E+12' '-1' -> '6999999999999' -ddfma3166 fma 1 '7E+12' '1.11' -> '7000000000001.11' -ddfma3167 fma 1 '1.11' '7E+12' -> '7000000000001.11' -ddfma3168 fma 1 '-1' '7E+12' -> '6999999999999' - -rounding: half_up --- 1.234567890123456 1234567890123456 1 234567890123456 -ddfma3170 fma 1 '4.444444444444444' '0.5555555555555567' -> '5.000000000000001' Inexact Rounded -ddfma3171 fma 1 '4.444444444444444' '0.5555555555555566' -> '5.000000000000001' Inexact Rounded -ddfma3172 fma 1 '4.444444444444444' '0.5555555555555565' -> '5.000000000000001' Inexact Rounded -ddfma3173 fma 1 '4.444444444444444' '0.5555555555555564' -> '5.000000000000000' Inexact Rounded -ddfma3174 fma 1 '4.444444444444444' '0.5555555555555553' -> '4.999999999999999' Inexact Rounded -ddfma3175 fma 1 '4.444444444444444' '0.5555555555555552' -> '4.999999999999999' Inexact Rounded -ddfma3176 fma 1 '4.444444444444444' '0.5555555555555551' -> '4.999999999999999' Inexact Rounded -ddfma3177 fma 1 '4.444444444444444' '0.5555555555555550' -> '4.999999999999999' Rounded -ddfma3178 fma 1 '4.444444444444444' '0.5555555555555545' -> '4.999999999999999' Inexact Rounded -ddfma3179 fma 1 '4.444444444444444' '0.5555555555555544' -> '4.999999999999998' Inexact Rounded -ddfma3180 fma 1 '4.444444444444444' '0.5555555555555543' -> '4.999999999999998' Inexact Rounded -ddfma3181 fma 1 '4.444444444444444' '0.5555555555555542' -> '4.999999999999998' Inexact Rounded -ddfma3182 fma 1 '4.444444444444444' '0.5555555555555541' -> '4.999999999999998' Inexact Rounded -ddfma3183 fma 1 '4.444444444444444' '0.5555555555555540' -> '4.999999999999998' Rounded - --- and some more, including residue effects and different roundings -rounding: half_up -ddfma3200 fma 1 '1234560123456789' 0 -> '1234560123456789' -ddfma3201 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded -ddfma3202 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded -ddfma3203 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded -ddfma3204 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded -ddfma3205 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded -ddfma3206 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded -ddfma3207 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded -ddfma3208 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded -ddfma3209 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded -ddfma3210 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded -ddfma3211 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded -ddfma3212 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded -ddfma3213 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded -ddfma3214 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded -ddfma3215 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded -ddfma3216 fma 1 '1234560123456789' 1 -> '1234560123456790' -ddfma3217 fma 1 '1234560123456789' 1.000000001 -> '1234560123456790' Inexact Rounded -ddfma3218 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded -ddfma3219 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded - -rounding: half_even -ddfma3220 fma 1 '1234560123456789' 0 -> '1234560123456789' -ddfma3221 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded -ddfma3222 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded -ddfma3223 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded -ddfma3224 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded -ddfma3225 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded -ddfma3226 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded -ddfma3227 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded -ddfma3228 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded -ddfma3229 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded -ddfma3230 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded -ddfma3231 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded -ddfma3232 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded -ddfma3233 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded -ddfma3234 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded -ddfma3235 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded -ddfma3236 fma 1 '1234560123456789' 1 -> '1234560123456790' -ddfma3237 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded -ddfma3238 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded -ddfma3239 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded --- critical few with even bottom digit... -ddfma3240 fma 1 '1234560123456788' 0.499999999 -> '1234560123456788' Inexact Rounded -ddfma3241 fma 1 '1234560123456788' 0.5 -> '1234560123456788' Inexact Rounded -ddfma3242 fma 1 '1234560123456788' 0.500000001 -> '1234560123456789' Inexact Rounded - -rounding: down -ddfma3250 fma 1 '1234560123456789' 0 -> '1234560123456789' -ddfma3251 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded -ddfma3252 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded -ddfma3253 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded -ddfma3254 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded -ddfma3255 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded -ddfma3256 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded -ddfma3257 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded -ddfma3258 fma 1 '1234560123456789' 0.5 -> '1234560123456789' Inexact Rounded -ddfma3259 fma 1 '1234560123456789' 0.500000001 -> '1234560123456789' Inexact Rounded -ddfma3260 fma 1 '1234560123456789' 0.500001 -> '1234560123456789' Inexact Rounded -ddfma3261 fma 1 '1234560123456789' 0.51 -> '1234560123456789' Inexact Rounded -ddfma3262 fma 1 '1234560123456789' 0.6 -> '1234560123456789' Inexact Rounded -ddfma3263 fma 1 '1234560123456789' 0.9 -> '1234560123456789' Inexact Rounded -ddfma3264 fma 1 '1234560123456789' 0.99999 -> '1234560123456789' Inexact Rounded -ddfma3265 fma 1 '1234560123456789' 0.999999999 -> '1234560123456789' Inexact Rounded -ddfma3266 fma 1 '1234560123456789' 1 -> '1234560123456790' -ddfma3267 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded -ddfma3268 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded -ddfma3269 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded - --- 1 in last place tests -rounding: half_up -ddfma3301 fma 1 -1 1 -> 0 -ddfma3302 fma 1 0 1 -> 1 -ddfma3303 fma 1 1 1 -> 2 -ddfma3304 fma 1 12 1 -> 13 -ddfma3305 fma 1 98 1 -> 99 -ddfma3306 fma 1 99 1 -> 100 -ddfma3307 fma 1 100 1 -> 101 -ddfma3308 fma 1 101 1 -> 102 -ddfma3309 fma 1 -1 -1 -> -2 -ddfma3310 fma 1 0 -1 -> -1 -ddfma3311 fma 1 1 -1 -> 0 -ddfma3312 fma 1 12 -1 -> 11 -ddfma3313 fma 1 98 -1 -> 97 -ddfma3314 fma 1 99 -1 -> 98 -ddfma3315 fma 1 100 -1 -> 99 -ddfma3316 fma 1 101 -1 -> 100 - -ddfma3321 fma 1 -0.01 0.01 -> 0.00 -ddfma3322 fma 1 0.00 0.01 -> 0.01 -ddfma3323 fma 1 0.01 0.01 -> 0.02 -ddfma3324 fma 1 0.12 0.01 -> 0.13 -ddfma3325 fma 1 0.98 0.01 -> 0.99 -ddfma3326 fma 1 0.99 0.01 -> 1.00 -ddfma3327 fma 1 1.00 0.01 -> 1.01 -ddfma3328 fma 1 1.01 0.01 -> 1.02 -ddfma3329 fma 1 -0.01 -0.01 -> -0.02 -ddfma3330 fma 1 0.00 -0.01 -> -0.01 -ddfma3331 fma 1 0.01 -0.01 -> 0.00 -ddfma3332 fma 1 0.12 -0.01 -> 0.11 -ddfma3333 fma 1 0.98 -0.01 -> 0.97 -ddfma3334 fma 1 0.99 -0.01 -> 0.98 -ddfma3335 fma 1 1.00 -0.01 -> 0.99 -ddfma3336 fma 1 1.01 -0.01 -> 1.00 - --- some more cases where adding 0 affects the coefficient -ddfma3340 fma 1 1E+3 0 -> 1000 -ddfma3341 fma 1 1E+15 0 -> 1000000000000000 -ddfma3342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded -ddfma3343 fma 1 1E+20 0 -> 1.000000000000000E+20 Rounded --- which simply follow from these cases ... -ddfma3344 fma 1 1E+3 1 -> 1001 -ddfma3345 fma 1 1E+15 1 -> 1000000000000001 -ddfma3346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded -ddfma3347 fma 1 1E+20 1 -> 1.000000000000000E+20 Inexact Rounded -ddfma3348 fma 1 1E+3 7 -> 1007 -ddfma3349 fma 1 1E+15 7 -> 1000000000000007 -ddfma3350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded -ddfma3351 fma 1 1E+20 7 -> 1.000000000000000E+20 Inexact Rounded - --- tryzeros cases -rounding: half_up -ddfma3360 fma 1 0E+50 10000E+1 -> 1.0000E+5 -ddfma3361 fma 1 0E-50 10000E+1 -> 100000.0000000000 Rounded -ddfma3362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded -ddfma3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact -ddfma3364 fma 1 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369 - --- a curiosity from JSR 13 testing -rounding: half_down -ddfma3370 fma 1 999999999999999 815 -> 1000000000000814 -ddfma3371 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact -rounding: half_up -ddfma3372 fma 1 999999999999999 815 -> 1000000000000814 -ddfma3373 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact -rounding: half_even -ddfma3374 fma 1 999999999999999 815 -> 1000000000000814 -ddfma3375 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact - --- ulp replacement tests -ddfma3400 fma 1 1 77e-14 -> 1.00000000000077 -ddfma3401 fma 1 1 77e-15 -> 1.000000000000077 -ddfma3402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded -ddfma3403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded -ddfma3404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded -ddfma3405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded -ddfma3406 fma 1 1 77e-299 -> 1.000000000000000 Inexact Rounded - -ddfma3410 fma 1 10 77e-14 -> 10.00000000000077 -ddfma3411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded -ddfma3412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded -ddfma3413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded -ddfma3414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded -ddfma3415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded -ddfma3416 fma 1 10 77e-299 -> 10.00000000000000 Inexact Rounded - -ddfma3420 fma 1 77e-14 1 -> 1.00000000000077 -ddfma3421 fma 1 77e-15 1 -> 1.000000000000077 -ddfma3422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded -ddfma3423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded -ddfma3424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded -ddfma3425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded -ddfma3426 fma 1 77e-299 1 -> 1.000000000000000 Inexact Rounded - -ddfma3430 fma 1 77e-14 10 -> 10.00000000000077 -ddfma3431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded -ddfma3432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded -ddfma3433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded -ddfma3434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded -ddfma3435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded -ddfma3436 fma 1 77e-299 10 -> 10.00000000000000 Inexact Rounded - --- negative ulps -ddfma36440 fma 1 1 -77e-14 -> 0.99999999999923 -ddfma36441 fma 1 1 -77e-15 -> 0.999999999999923 -ddfma36442 fma 1 1 -77e-16 -> 0.9999999999999923 -ddfma36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded -ddfma36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded -ddfma36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded -ddfma36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded - -ddfma36450 fma 1 10 -77e-14 -> 9.99999999999923 -ddfma36451 fma 1 10 -77e-15 -> 9.999999999999923 -ddfma36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded -ddfma36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded -ddfma36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded -ddfma36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded -ddfma36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded - -ddfma36460 fma 1 -77e-14 1 -> 0.99999999999923 -ddfma36461 fma 1 -77e-15 1 -> 0.999999999999923 -ddfma36462 fma 1 -77e-16 1 -> 0.9999999999999923 -ddfma36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded -ddfma36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded -ddfma36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded -ddfma36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded - -ddfma36470 fma 1 -77e-14 10 -> 9.99999999999923 -ddfma36471 fma 1 -77e-15 10 -> 9.999999999999923 -ddfma36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded -ddfma36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded -ddfma36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded -ddfma36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded -ddfma36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded - --- negative ulps -ddfma36480 fma 1 -1 77e-14 -> -0.99999999999923 -ddfma36481 fma 1 -1 77e-15 -> -0.999999999999923 -ddfma36482 fma 1 -1 77e-16 -> -0.9999999999999923 -ddfma36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded -ddfma36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded -ddfma36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded -ddfma36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded - -ddfma36490 fma 1 -10 77e-14 -> -9.99999999999923 -ddfma36491 fma 1 -10 77e-15 -> -9.999999999999923 -ddfma36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded -ddfma36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded -ddfma36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded -ddfma36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded -ddfma36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded - -ddfma36500 fma 1 77e-14 -1 -> -0.99999999999923 -ddfma36501 fma 1 77e-15 -1 -> -0.999999999999923 -ddfma36502 fma 1 77e-16 -1 -> -0.9999999999999923 -ddfma36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded -ddfma36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded -ddfma36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded -ddfma36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded - -ddfma36510 fma 1 77e-14 -10 -> -9.99999999999923 -ddfma36511 fma 1 77e-15 -10 -> -9.999999999999923 -ddfma36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded -ddfma36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded -ddfma36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded -ddfma36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded -ddfma36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded - --- and a couple more with longer RHS -ddfma36520 fma 1 1 -7777e-16 -> 0.9999999999992223 -ddfma36521 fma 1 1 -7777e-17 -> 0.9999999999999222 Inexact Rounded -ddfma36522 fma 1 1 -7777e-18 -> 0.9999999999999922 Inexact Rounded -ddfma36523 fma 1 1 -7777e-19 -> 0.9999999999999992 Inexact Rounded -ddfma36524 fma 1 1 -7777e-20 -> 0.9999999999999999 Inexact Rounded -ddfma36525 fma 1 1 -7777e-21 -> 1.000000000000000 Inexact Rounded -ddfma36526 fma 1 1 -7777e-22 -> 1.000000000000000 Inexact Rounded - - --- and some more residue effects and different roundings -rounding: half_up -ddfma36540 fma 1 '6543210123456789' 0 -> '6543210123456789' -ddfma36541 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -ddfma36542 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -ddfma36543 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -ddfma36544 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -ddfma36545 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -ddfma36546 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -ddfma36547 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -ddfma36548 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -ddfma36549 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -ddfma36550 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -ddfma36551 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -ddfma36552 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -ddfma36553 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -ddfma36554 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -ddfma36555 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded -ddfma36556 fma 1 '6543210123456789' 1 -> '6543210123456790' -ddfma36557 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded -ddfma36558 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -ddfma36559 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - -rounding: half_even -ddfma36560 fma 1 '6543210123456789' 0 -> '6543210123456789' -ddfma36561 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -ddfma36562 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -ddfma36563 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -ddfma36564 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -ddfma36565 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -ddfma36566 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -ddfma36567 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -ddfma36568 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -ddfma36569 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -ddfma36570 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -ddfma36571 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -ddfma36572 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -ddfma36573 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -ddfma36574 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -ddfma36575 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded -ddfma36576 fma 1 '6543210123456789' 1 -> '6543210123456790' -ddfma36577 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -ddfma36578 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -ddfma36579 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - --- critical few with even bottom digit... -ddfma37540 fma 1 '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded -ddfma37541 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded -ddfma37542 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded - -rounding: down -ddfma37550 fma 1 '6543210123456789' 0 -> '6543210123456789' -ddfma37551 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -ddfma37552 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -ddfma37553 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -ddfma37554 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -ddfma37555 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -ddfma37556 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -ddfma37557 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded -ddfma37558 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded -ddfma37559 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded -ddfma37560 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded -ddfma37561 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded -ddfma37562 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded -ddfma37563 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded -ddfma37564 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded -ddfma37565 fma 1 '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded -ddfma37566 fma 1 '6543210123456789' 1 -> '6543210123456790' -ddfma37567 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -ddfma37568 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -ddfma37569 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - - --- verify a query -rounding: down -ddfma37661 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded -ddfma37662 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded -ddfma37663 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded -ddfma37664 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded - --- more zeros, etc. -rounding: half_even - -ddfma37701 fma 1 5.00 1.00E-3 -> 5.00100 -ddfma37702 fma 1 00.00 0.000 -> 0.000 -ddfma37703 fma 1 00.00 0E-3 -> 0.000 -ddfma37704 fma 1 0E-3 00.00 -> 0.000 - -ddfma37710 fma 1 0E+3 00.00 -> 0.00 -ddfma37711 fma 1 0E+3 00.0 -> 0.0 -ddfma37712 fma 1 0E+3 00. -> 0 -ddfma37713 fma 1 0E+3 00.E+1 -> 0E+1 -ddfma37714 fma 1 0E+3 00.E+2 -> 0E+2 -ddfma37715 fma 1 0E+3 00.E+3 -> 0E+3 -ddfma37716 fma 1 0E+3 00.E+4 -> 0E+3 -ddfma37717 fma 1 0E+3 00.E+5 -> 0E+3 -ddfma37718 fma 1 0E+3 -00.0 -> 0.0 -ddfma37719 fma 1 0E+3 -00. -> 0 -ddfma37731 fma 1 0E+3 -00.E+1 -> 0E+1 - -ddfma37720 fma 1 00.00 0E+3 -> 0.00 -ddfma37721 fma 1 00.0 0E+3 -> 0.0 -ddfma37722 fma 1 00. 0E+3 -> 0 -ddfma37723 fma 1 00.E+1 0E+3 -> 0E+1 -ddfma37724 fma 1 00.E+2 0E+3 -> 0E+2 -ddfma37725 fma 1 00.E+3 0E+3 -> 0E+3 -ddfma37726 fma 1 00.E+4 0E+3 -> 0E+3 -ddfma37727 fma 1 00.E+5 0E+3 -> 0E+3 -ddfma37728 fma 1 -00.00 0E+3 -> 0.00 -ddfma37729 fma 1 -00.0 0E+3 -> 0.0 -ddfma37730 fma 1 -00. 0E+3 -> 0 - -ddfma37732 fma 1 0 0 -> 0 -ddfma37733 fma 1 0 -0 -> 0 -ddfma37734 fma 1 -0 0 -> 0 -ddfma37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case - -ddfma37736 fma 1 1 -1 -> 0 -ddfma37737 fma 1 -1 -1 -> -2 -ddfma37738 fma 1 1 1 -> 2 -ddfma37739 fma 1 -1 1 -> 0 - -ddfma37741 fma 1 0 -1 -> -1 -ddfma37742 fma 1 -0 -1 -> -1 -ddfma37743 fma 1 0 1 -> 1 -ddfma37744 fma 1 -0 1 -> 1 -ddfma37745 fma 1 -1 0 -> -1 -ddfma37746 fma 1 -1 -0 -> -1 -ddfma37747 fma 1 1 0 -> 1 -ddfma37748 fma 1 1 -0 -> 1 - -ddfma37751 fma 1 0.0 -1 -> -1.0 -ddfma37752 fma 1 -0.0 -1 -> -1.0 -ddfma37753 fma 1 0.0 1 -> 1.0 -ddfma37754 fma 1 -0.0 1 -> 1.0 -ddfma37755 fma 1 -1.0 0 -> -1.0 -ddfma37756 fma 1 -1.0 -0 -> -1.0 -ddfma37757 fma 1 1.0 0 -> 1.0 -ddfma37758 fma 1 1.0 -0 -> 1.0 - -ddfma37761 fma 1 0 -1.0 -> -1.0 -ddfma37762 fma 1 -0 -1.0 -> -1.0 -ddfma37763 fma 1 0 1.0 -> 1.0 -ddfma37764 fma 1 -0 1.0 -> 1.0 -ddfma37765 fma 1 -1 0.0 -> -1.0 -ddfma37766 fma 1 -1 -0.0 -> -1.0 -ddfma37767 fma 1 1 0.0 -> 1.0 -ddfma37768 fma 1 1 -0.0 -> 1.0 - -ddfma37771 fma 1 0.0 -1.0 -> -1.0 -ddfma37772 fma 1 -0.0 -1.0 -> -1.0 -ddfma37773 fma 1 0.0 1.0 -> 1.0 -ddfma37774 fma 1 -0.0 1.0 -> 1.0 -ddfma37775 fma 1 -1.0 0.0 -> -1.0 -ddfma37776 fma 1 -1.0 -0.0 -> -1.0 -ddfma37777 fma 1 1.0 0.0 -> 1.0 -ddfma37778 fma 1 1.0 -0.0 -> 1.0 - --- Specials -ddfma37780 fma 1 -Inf -Inf -> -Infinity -ddfma37781 fma 1 -Inf -1000 -> -Infinity -ddfma37782 fma 1 -Inf -1 -> -Infinity -ddfma37783 fma 1 -Inf -0 -> -Infinity -ddfma37784 fma 1 -Inf 0 -> -Infinity -ddfma37785 fma 1 -Inf 1 -> -Infinity -ddfma37786 fma 1 -Inf 1000 -> -Infinity -ddfma37787 fma 1 -1000 -Inf -> -Infinity -ddfma37788 fma 1 -Inf -Inf -> -Infinity -ddfma37789 fma 1 -1 -Inf -> -Infinity -ddfma37790 fma 1 -0 -Inf -> -Infinity -ddfma37791 fma 1 0 -Inf -> -Infinity -ddfma37792 fma 1 1 -Inf -> -Infinity -ddfma37793 fma 1 1000 -Inf -> -Infinity -ddfma37794 fma 1 Inf -Inf -> NaN Invalid_operation - -ddfma37800 fma 1 Inf -Inf -> NaN Invalid_operation -ddfma37801 fma 1 Inf -1000 -> Infinity -ddfma37802 fma 1 Inf -1 -> Infinity -ddfma37803 fma 1 Inf -0 -> Infinity -ddfma37804 fma 1 Inf 0 -> Infinity -ddfma37805 fma 1 Inf 1 -> Infinity -ddfma37806 fma 1 Inf 1000 -> Infinity -ddfma37807 fma 1 Inf Inf -> Infinity -ddfma37808 fma 1 -1000 Inf -> Infinity -ddfma37809 fma 1 -Inf Inf -> NaN Invalid_operation -ddfma37810 fma 1 -1 Inf -> Infinity -ddfma37811 fma 1 -0 Inf -> Infinity -ddfma37812 fma 1 0 Inf -> Infinity -ddfma37813 fma 1 1 Inf -> Infinity -ddfma37814 fma 1 1000 Inf -> Infinity -ddfma37815 fma 1 Inf Inf -> Infinity - -ddfma37821 fma 1 NaN -Inf -> NaN -ddfma37822 fma 1 NaN -1000 -> NaN -ddfma37823 fma 1 NaN -1 -> NaN -ddfma37824 fma 1 NaN -0 -> NaN -ddfma37825 fma 1 NaN 0 -> NaN -ddfma37826 fma 1 NaN 1 -> NaN -ddfma37827 fma 1 NaN 1000 -> NaN -ddfma37828 fma 1 NaN Inf -> NaN -ddfma37829 fma 1 NaN NaN -> NaN -ddfma37830 fma 1 -Inf NaN -> NaN -ddfma37831 fma 1 -1000 NaN -> NaN -ddfma37832 fma 1 -1 NaN -> NaN -ddfma37833 fma 1 -0 NaN -> NaN -ddfma37834 fma 1 0 NaN -> NaN -ddfma37835 fma 1 1 NaN -> NaN -ddfma37836 fma 1 1000 NaN -> NaN -ddfma37837 fma 1 Inf NaN -> NaN - -ddfma37841 fma 1 sNaN -Inf -> NaN Invalid_operation -ddfma37842 fma 1 sNaN -1000 -> NaN Invalid_operation -ddfma37843 fma 1 sNaN -1 -> NaN Invalid_operation -ddfma37844 fma 1 sNaN -0 -> NaN Invalid_operation -ddfma37845 fma 1 sNaN 0 -> NaN Invalid_operation -ddfma37846 fma 1 sNaN 1 -> NaN Invalid_operation -ddfma37847 fma 1 sNaN 1000 -> NaN Invalid_operation -ddfma37848 fma 1 sNaN NaN -> NaN Invalid_operation -ddfma37849 fma 1 sNaN sNaN -> NaN Invalid_operation -ddfma37850 fma 1 NaN sNaN -> NaN Invalid_operation -ddfma37851 fma 1 -Inf sNaN -> NaN Invalid_operation -ddfma37852 fma 1 -1000 sNaN -> NaN Invalid_operation -ddfma37853 fma 1 -1 sNaN -> NaN Invalid_operation -ddfma37854 fma 1 -0 sNaN -> NaN Invalid_operation -ddfma37855 fma 1 0 sNaN -> NaN Invalid_operation -ddfma37856 fma 1 1 sNaN -> NaN Invalid_operation -ddfma37857 fma 1 1000 sNaN -> NaN Invalid_operation -ddfma37858 fma 1 Inf sNaN -> NaN Invalid_operation -ddfma37859 fma 1 NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddfma37861 fma 1 NaN1 -Inf -> NaN1 -ddfma37862 fma 1 +NaN2 -1000 -> NaN2 -ddfma37863 fma 1 NaN3 1000 -> NaN3 -ddfma37864 fma 1 NaN4 Inf -> NaN4 -ddfma37865 fma 1 NaN5 +NaN6 -> NaN5 -ddfma37866 fma 1 -Inf NaN7 -> NaN7 -ddfma37867 fma 1 -1000 NaN8 -> NaN8 -ddfma37868 fma 1 1000 NaN9 -> NaN9 -ddfma37869 fma 1 Inf +NaN10 -> NaN10 -ddfma37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation -ddfma37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation -ddfma37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation -ddfma37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation -ddfma37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation -ddfma37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation -ddfma37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation -ddfma37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation -ddfma37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation -ddfma37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation -ddfma37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation -ddfma37882 fma 1 -NaN26 NaN28 -> -NaN26 -ddfma37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation -ddfma37884 fma 1 1000 -NaN30 -> -NaN30 -ddfma37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation - --- Here we explore near the boundary of rounding a subnormal to Nmin -ddfma37575 fma 1 1E-383 -1E-398 -> 9.99999999999999E-384 Subnormal -ddfma37576 fma 1 -1E-383 +1E-398 -> -9.99999999999999E-384 Subnormal - --- check overflow edge case --- 1234567890123456 -ddfma37972 apply 9.999999999999999E+384 -> 9.999999999999999E+384 -ddfma37973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded -ddfma37974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded -ddfma37975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded -ddfma37976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded -ddfma37977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded -ddfma37978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded -ddfma37979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded -ddfma37980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded -ddfma37981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded -ddfma37982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded -ddfma37983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded -ddfma37984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded - -ddfma37985 apply -9.999999999999999E+384 -> -9.999999999999999E+384 -ddfma37986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded -ddfma37987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded -ddfma37988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded -ddfma37989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded -ddfma37990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded -ddfma37991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded -ddfma37992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded -ddfma37993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded -ddfma37994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded -ddfma37995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded -ddfma37996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded -ddfma37997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded - --- And for round down full and subnormal results -rounding: down -ddfma371100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact -ddfma371101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact -ddfma371103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact -ddfma371104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact -ddfma371105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact -ddfma371106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact -ddfma371107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact -ddfma371108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact -ddfma371109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact - -rounding: ceiling -ddfma371110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact -ddfma371111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact -ddfma371113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact -ddfma371114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact -ddfma371115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact -ddfma371116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact -ddfma371117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact -ddfma371118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact -ddfma371119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact - --- tests based on Gunnar Degnbol's edge case -rounding: half_even - -ddfma371300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded -ddfma371310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded -ddfma371311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded -ddfma371312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded -ddfma371313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded -ddfma371314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded -ddfma371315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded -ddfma371316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded -ddfma371317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded -ddfma371318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded -ddfma371319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded -ddfma371320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded -ddfma371321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded -ddfma371322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded -ddfma371323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded -ddfma371324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded -ddfma371325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded -ddfma371339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded - -ddfma371340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded -ddfma371341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded - -ddfma371349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded -ddfma371350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded -ddfma371351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded -ddfma371352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded -ddfma371353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded -ddfma371354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded -ddfma371355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded -ddfma371356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded -ddfma371357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded -ddfma371358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded -ddfma371359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded -ddfma371360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded -ddfma371361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded -ddfma371362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded -ddfma371363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded -ddfma371364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded -ddfma371365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded -ddfma371379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded -ddfma371380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded -ddfma371381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded -ddfma371382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded -ddfma371395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded -ddfma371396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -ddfma371420 fma 1 0 1.123456789012345 -> 1.123456789012345 -ddfma371421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345 -ddfma371422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345 -ddfma371423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345 -ddfma371424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345 -ddfma371425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345 -ddfma371426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345 -ddfma371427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7 -ddfma371428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8 -ddfma371429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9 -ddfma371430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10 -ddfma371431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11 -ddfma371432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12 -ddfma371433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13 -ddfma371434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14 -ddfma371435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15 -ddfma371436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16 -ddfma371437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17 -ddfma371438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18 -ddfma371439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19 - --- same, reversed 0 -ddfma371440 fma 1 1.123456789012345 0 -> 1.123456789012345 -ddfma371441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345 -ddfma371442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345 -ddfma371443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345 -ddfma371444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345 -ddfma371445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345 -ddfma371446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345 -ddfma371447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7 -ddfma371448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8 -ddfma371449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9 -ddfma371450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10 -ddfma371451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11 -ddfma371452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12 -ddfma371453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13 -ddfma371454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14 -ddfma371455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15 -ddfma371456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16 -ddfma371457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17 -ddfma371458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18 -ddfma371459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19 - --- same, Es on the 0 -ddfma371460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345 -ddfma371461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345 -ddfma371462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345 -ddfma371463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345 -ddfma371464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345 -ddfma371465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345 -ddfma371466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345 -ddfma371467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345 -ddfma371468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345 -ddfma371469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345 -ddfma371470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345 -ddfma371471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345 -ddfma371472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345 -ddfma371473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345 -ddfma371474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345 -ddfma371475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345 --- next four flag Rounded because the 0 extends the result -ddfma371476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded -ddfma371477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded -ddfma371478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded -ddfma371479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -rounding: half_up --- exact zeros from zeros -ddfma371500 fma 1 0 0E-19 -> 0E-19 -ddfma371501 fma 1 -0 0E-19 -> 0E-19 -ddfma371502 fma 1 0 -0E-19 -> 0E-19 -ddfma371503 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddfma371511 fma 1 -11 11 -> 0 -ddfma371512 fma 1 11 -11 -> 0 - -rounding: half_down --- exact zeros from zeros -ddfma371520 fma 1 0 0E-19 -> 0E-19 -ddfma371521 fma 1 -0 0E-19 -> 0E-19 -ddfma371522 fma 1 0 -0E-19 -> 0E-19 -ddfma371523 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddfma371531 fma 1 -11 11 -> 0 -ddfma371532 fma 1 11 -11 -> 0 - -rounding: half_even --- exact zeros from zeros -ddfma371540 fma 1 0 0E-19 -> 0E-19 -ddfma371541 fma 1 -0 0E-19 -> 0E-19 -ddfma371542 fma 1 0 -0E-19 -> 0E-19 -ddfma371543 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddfma371551 fma 1 -11 11 -> 0 -ddfma371552 fma 1 11 -11 -> 0 - -rounding: up --- exact zeros from zeros -ddfma371560 fma 1 0 0E-19 -> 0E-19 -ddfma371561 fma 1 -0 0E-19 -> 0E-19 -ddfma371562 fma 1 0 -0E-19 -> 0E-19 -ddfma371563 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddfma371571 fma 1 -11 11 -> 0 -ddfma371572 fma 1 11 -11 -> 0 - -rounding: down --- exact zeros from zeros -ddfma371580 fma 1 0 0E-19 -> 0E-19 -ddfma371581 fma 1 -0 0E-19 -> 0E-19 -ddfma371582 fma 1 0 -0E-19 -> 0E-19 -ddfma371583 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddfma371591 fma 1 -11 11 -> 0 -ddfma371592 fma 1 11 -11 -> 0 - -rounding: ceiling --- exact zeros from zeros -ddfma371600 fma 1 0 0E-19 -> 0E-19 -ddfma371601 fma 1 -0 0E-19 -> 0E-19 -ddfma371602 fma 1 0 -0E-19 -> 0E-19 -ddfma371603 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddfma371611 fma 1 -11 11 -> 0 -ddfma371612 fma 1 11 -11 -> 0 - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -ddfma371620 fma 1 0 0E-19 -> 0E-19 -ddfma371621 fma 1 -0 0E-19 -> -0E-19 -- * -ddfma371622 fma 1 0 -0E-19 -> -0E-19 -- * -ddfma371623 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -ddfma371631 fma 1 -11 11 -> -0 -- * -ddfma371632 fma 1 11 -11 -> -0 -- * - --- Examples from SQL proposal (Krishna Kulkarni) -ddfma371701 fma 1 130E-2 120E-2 -> 2.50 -ddfma371702 fma 1 130E-2 12E-1 -> 2.50 -ddfma371703 fma 1 130E-2 1E0 -> 2.30 -ddfma371704 fma 1 1E2 1E4 -> 1.01E+4 -ddfma371705 fma 1 130E-2 -120E-2 -> 0.10 -ddfma371706 fma 1 130E-2 -12E-1 -> 0.10 -ddfma371707 fma 1 130E-2 -1E0 -> 0.30 -ddfma371708 fma 1 1E2 -1E4 -> -9.9E+3 - --- Gappy coefficients; check residue handling even with full coefficient gap -rounding: half_even - -ddfma375001 fma 1 1234567890123456 1 -> 1234567890123457 -ddfma375002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded -ddfma375003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded -ddfma375004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded -ddfma375005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded -ddfma375006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded -ddfma375007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded -ddfma375008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded -ddfma375009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded -ddfma375010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded -ddfma375011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded -ddfma375012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded -ddfma375013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded -ddfma375014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded -ddfma375015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded -ddfma375016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded -ddfma375017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded -ddfma375018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded -ddfma375019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded -ddfma375020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded -ddfma375021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded - --- widening second argument at gap -ddfma375030 fma 1 12345678 1 -> 12345679 -ddfma375031 fma 1 12345678 0.1 -> 12345678.1 -ddfma375032 fma 1 12345678 0.12 -> 12345678.12 -ddfma375033 fma 1 12345678 0.123 -> 12345678.123 -ddfma375034 fma 1 12345678 0.1234 -> 12345678.1234 -ddfma375035 fma 1 12345678 0.12345 -> 12345678.12345 -ddfma375036 fma 1 12345678 0.123456 -> 12345678.123456 -ddfma375037 fma 1 12345678 0.1234567 -> 12345678.1234567 -ddfma375038 fma 1 12345678 0.12345678 -> 12345678.12345678 -ddfma375039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded -ddfma375040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded -ddfma375041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded -ddfma375042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded -ddfma375043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded -ddfma375044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded -ddfma375045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded -ddfma375046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded -ddfma375047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded -ddfma375048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded -ddfma375049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded --- 90123456 -rounding: half_even -ddfma375050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded -ddfma375051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded -ddfma375052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded -ddfma375053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded -ddfma375054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded -ddfma375055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded -ddfma375056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded -ddfma375057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded -ddfma375060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded -ddfma375061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded -ddfma375062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded -ddfma375063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded -ddfma375064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded -ddfma375065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded -ddfma375066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded -ddfma375067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded --- far-out residues (full coefficient gap is 16+15 digits) -rounding: up -ddfma375070 fma 1 12345678 1E-8 -> 12345678.00000001 -ddfma375071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded -ddfma375072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded -ddfma375073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded -ddfma375074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded -ddfma375075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded -ddfma375076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded -ddfma375077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded -ddfma375078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded -ddfma375079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded -ddfma375080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded -ddfma375081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded -ddfma375082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded -ddfma375083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded -ddfma375084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded -ddfma375085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded -ddfma375086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded -ddfma375087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded -ddfma375088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded -ddfma375089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded - --- desctructive subtraction (from remainder tests) - --- +++ some of these will be off-by-one remainder vs remainderNear - -ddfma4000 fma -1234567890123454 1.000000000000001 1234567890123456 -> 0.765432109876546 -ddfma4001 fma -1234567890123443 1.00000000000001 1234567890123456 -> 0.65432109876557 -ddfma4002 fma -1234567890123332 1.0000000000001 1234567890123456 -> 0.5432109876668 -ddfma4003 fma -308641972530863 4.000000000000001 1234567890123455 -> 2.691358027469137 -ddfma4004 fma -308641972530863 4.000000000000001 1234567890123456 -> 3.691358027469137 -ddfma4005 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696 -ddfma4006 fma -246913578024691 4.99999999999999 1234567890123456 -> 3.46913578024691 -ddfma4007 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691 -ddfma4008 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309 -ddfma4009 fma -246913578024690 5.00000000000001 1234567890123456 -> 3.53086421975310 -ddfma4010 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314 -ddfma4011 fma -1234567890123455 1.000000000000001 1234567890123456 -> -0.234567890123455 -ddfma4012 fma -1234567890123444 1.00000000000001 1234567890123456 -> -0.34567890123444 -ddfma4013 fma -1234567890123333 1.0000000000001 1234567890123456 -> -0.4567890123333 -ddfma4014 fma -308641972530864 4.000000000000001 1234567890123455 -> -1.308641972530864 -ddfma4015 fma -308641972530864 4.000000000000001 1234567890123456 -> -0.308641972530864 -ddfma4016 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696 -ddfma4017 fma -246913578024692 4.99999999999999 1234567890123456 -> -1.53086421975308 -ddfma4018 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691 -ddfma4019 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309 -ddfma4020 fma -246913578024691 5.00000000000001 1234567890123456 -> -1.46913578024691 -ddfma4021 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314 - - --- Null tests -ddfma39990 fma 1 10 # -> NaN Invalid_operation -ddfma39991 fma 1 # 10 -> NaN Invalid_operation - - diff --git a/qdecimal/test/tc_full/ddInvert.decTest b/qdecimal/test/tc_full/ddInvert.decTest deleted file mode 100644 index e04691c..0000000 --- a/qdecimal/test/tc_full/ddInvert.decTest +++ /dev/null @@ -1,202 +0,0 @@ ------------------------------------------------------------------------- --- ddInvert.decTest -- digitwise logical INVERT for decDoubles -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check (truth table) -ddinv001 invert 0 -> 1111111111111111 -ddinv002 invert 1 -> 1111111111111110 -ddinv003 invert 10 -> 1111111111111101 -ddinv004 invert 111111111 -> 1111111000000000 -ddinv005 invert 000000000 -> 1111111111111111 --- and at msd and msd-1 -ddinv007 invert 0000000000000000 -> 1111111111111111 -ddinv008 invert 1000000000000000 -> 111111111111111 -ddinv009 invert 0000000000000000 -> 1111111111111111 -ddinv010 invert 0100000000000000 -> 1011111111111111 -ddinv011 invert 0111111111111111 -> 1000000000000000 -ddinv012 invert 1111111111111111 -> 0 -ddinv013 invert 0011111111111111 -> 1100000000000000 -ddinv014 invert 0111111111111111 -> 1000000000000000 - --- Various lengths --- 123456789 1234567890123456 -ddinv021 invert 111111111 -> 1111111000000000 -ddinv022 invert 111111111111 -> 1111000000000000 -ddinv023 invert 11111111 -> 1111111100000000 -ddinv025 invert 1111111 -> 1111111110000000 -ddinv026 invert 111111 -> 1111111111000000 -ddinv027 invert 11111 -> 1111111111100000 -ddinv028 invert 1111 -> 1111111111110000 -ddinv029 invert 111 -> 1111111111111000 -ddinv031 invert 11 -> 1111111111111100 -ddinv032 invert 1 -> 1111111111111110 -ddinv033 invert 111111111111 -> 1111000000000000 -ddinv034 invert 11111111111 -> 1111100000000000 -ddinv035 invert 1111111111 -> 1111110000000000 -ddinv036 invert 111111111 -> 1111111000000000 - -ddinv040 invert 011111111 -> 1111111100000000 -ddinv041 invert 101111111 -> 1111111010000000 -ddinv042 invert 110111111 -> 1111111001000000 -ddinv043 invert 111011111 -> 1111111000100000 -ddinv044 invert 111101111 -> 1111111000010000 -ddinv045 invert 111110111 -> 1111111000001000 -ddinv046 invert 111111011 -> 1111111000000100 -ddinv047 invert 111111101 -> 1111111000000010 -ddinv048 invert 111111110 -> 1111111000000001 -ddinv049 invert 011111011 -> 1111111100000100 -ddinv050 invert 101111101 -> 1111111010000010 -ddinv051 invert 110111110 -> 1111111001000001 -ddinv052 invert 111011101 -> 1111111000100010 -ddinv053 invert 111101011 -> 1111111000010100 -ddinv054 invert 111110111 -> 1111111000001000 -ddinv055 invert 111101011 -> 1111111000010100 -ddinv056 invert 111011101 -> 1111111000100010 -ddinv057 invert 110111110 -> 1111111001000001 -ddinv058 invert 101111101 -> 1111111010000010 -ddinv059 invert 011111011 -> 1111111100000100 - -ddinv080 invert 1000000011111111 -> 111111100000000 -ddinv081 invert 0100000101111111 -> 1011111010000000 -ddinv082 invert 0010000110111111 -> 1101111001000000 -ddinv083 invert 0001000111011111 -> 1110111000100000 -ddinv084 invert 0000100111101111 -> 1111011000010000 -ddinv085 invert 0000010111110111 -> 1111101000001000 -ddinv086 invert 0000001111111011 -> 1111110000000100 -ddinv087 invert 0000010111111101 -> 1111101000000010 -ddinv088 invert 0000100111111110 -> 1111011000000001 -ddinv089 invert 0001000011111011 -> 1110111100000100 -ddinv090 invert 0010000101111101 -> 1101111010000010 -ddinv091 invert 0100000110111110 -> 1011111001000001 -ddinv092 invert 1000000111011101 -> 111111000100010 -ddinv093 invert 0100000111101011 -> 1011111000010100 -ddinv094 invert 0010000111110111 -> 1101111000001000 -ddinv095 invert 0001000111101011 -> 1110111000010100 -ddinv096 invert 0000100111011101 -> 1111011000100010 -ddinv097 invert 0000010110111110 -> 1111101001000001 -ddinv098 invert 0000001101111101 -> 1111110010000010 -ddinv099 invert 0000010011111011 -> 1111101100000100 - --- non-0/1 should not be accepted, nor should signs -ddinv220 invert 111111112 -> NaN Invalid_operation -ddinv221 invert 333333333 -> NaN Invalid_operation -ddinv222 invert 555555555 -> NaN Invalid_operation -ddinv223 invert 777777777 -> NaN Invalid_operation -ddinv224 invert 999999999 -> NaN Invalid_operation -ddinv225 invert 222222222 -> NaN Invalid_operation -ddinv226 invert 444444444 -> NaN Invalid_operation -ddinv227 invert 666666666 -> NaN Invalid_operation -ddinv228 invert 888888888 -> NaN Invalid_operation -ddinv229 invert 999999999 -> NaN Invalid_operation -ddinv230 invert 999999999 -> NaN Invalid_operation -ddinv231 invert 999999999 -> NaN Invalid_operation -ddinv232 invert 999999999 -> NaN Invalid_operation --- a few randoms -ddinv240 invert 567468689 -> NaN Invalid_operation -ddinv241 invert 567367689 -> NaN Invalid_operation -ddinv242 invert -631917772 -> NaN Invalid_operation -ddinv243 invert -756253257 -> NaN Invalid_operation -ddinv244 invert 835590149 -> NaN Invalid_operation --- test MSD -ddinv250 invert 2000000000000000 -> NaN Invalid_operation -ddinv251 invert 3000000000000000 -> NaN Invalid_operation -ddinv252 invert 4000000000000000 -> NaN Invalid_operation -ddinv253 invert 5000000000000000 -> NaN Invalid_operation -ddinv254 invert 6000000000000000 -> NaN Invalid_operation -ddinv255 invert 7000000000000000 -> NaN Invalid_operation -ddinv256 invert 8000000000000000 -> NaN Invalid_operation -ddinv257 invert 9000000000000000 -> NaN Invalid_operation --- test MSD-1 -ddinv270 invert 0200001000000000 -> NaN Invalid_operation -ddinv271 invert 0300000100000000 -> NaN Invalid_operation -ddinv272 invert 0400000010000000 -> NaN Invalid_operation -ddinv273 invert 0500000001000000 -> NaN Invalid_operation -ddinv274 invert 1600000000100000 -> NaN Invalid_operation -ddinv275 invert 1700000000010000 -> NaN Invalid_operation -ddinv276 invert 1800000000001000 -> NaN Invalid_operation -ddinv277 invert 1900000000000100 -> NaN Invalid_operation --- test LSD -ddinv280 invert 0010000000000002 -> NaN Invalid_operation -ddinv281 invert 0001000000000003 -> NaN Invalid_operation -ddinv282 invert 0000100000000004 -> NaN Invalid_operation -ddinv283 invert 0000010000000005 -> NaN Invalid_operation -ddinv284 invert 1000001000000006 -> NaN Invalid_operation -ddinv285 invert 1000000100000007 -> NaN Invalid_operation -ddinv286 invert 1000000010000008 -> NaN Invalid_operation -ddinv287 invert 1000000001000009 -> NaN Invalid_operation --- test Middie -ddinv288 invert 0010000020000000 -> NaN Invalid_operation -ddinv289 invert 0001000030000001 -> NaN Invalid_operation -ddinv290 invert 0000100040000010 -> NaN Invalid_operation -ddinv291 invert 0000010050000100 -> NaN Invalid_operation -ddinv292 invert 1000001060001000 -> NaN Invalid_operation -ddinv293 invert 1000000170010000 -> NaN Invalid_operation -ddinv294 invert 1000000080100000 -> NaN Invalid_operation -ddinv295 invert 1000000091000000 -> NaN Invalid_operation --- sign -ddinv296 invert -1000000001000000 -> NaN Invalid_operation -ddinv299 invert 1000000001000000 -> 111111110111111 - - --- Nmax, Nmin, Ntiny-like -ddinv341 invert 9.99999999E+299 -> NaN Invalid_operation -ddinv342 invert 1E-299 -> NaN Invalid_operation -ddinv343 invert 1.00000000E-299 -> NaN Invalid_operation -ddinv344 invert 1E-207 -> NaN Invalid_operation -ddinv345 invert -1E-207 -> NaN Invalid_operation -ddinv346 invert -1.00000000E-299 -> NaN Invalid_operation -ddinv347 invert -1E-299 -> NaN Invalid_operation -ddinv348 invert -9.99999999E+299 -> NaN Invalid_operation - --- A few other non-integers -ddinv361 invert 1.0 -> NaN Invalid_operation -ddinv362 invert 1E+1 -> NaN Invalid_operation -ddinv363 invert 0.0 -> NaN Invalid_operation -ddinv364 invert 0E+1 -> NaN Invalid_operation -ddinv365 invert 9.9 -> NaN Invalid_operation -ddinv366 invert 9E+1 -> NaN Invalid_operation - --- All Specials are in error -ddinv788 invert -Inf -> NaN Invalid_operation -ddinv794 invert Inf -> NaN Invalid_operation -ddinv821 invert NaN -> NaN Invalid_operation -ddinv841 invert sNaN -> NaN Invalid_operation --- propagating NaNs -ddinv861 invert NaN1 -> NaN Invalid_operation -ddinv862 invert +NaN2 -> NaN Invalid_operation -ddinv863 invert NaN3 -> NaN Invalid_operation -ddinv864 invert NaN4 -> NaN Invalid_operation -ddinv865 invert NaN5 -> NaN Invalid_operation -ddinv871 invert sNaN11 -> NaN Invalid_operation -ddinv872 invert sNaN12 -> NaN Invalid_operation -ddinv873 invert sNaN13 -> NaN Invalid_operation -ddinv874 invert sNaN14 -> NaN Invalid_operation -ddinv875 invert sNaN15 -> NaN Invalid_operation -ddinv876 invert NaN16 -> NaN Invalid_operation -ddinv881 invert +NaN25 -> NaN Invalid_operation -ddinv882 invert -NaN26 -> NaN Invalid_operation -ddinv883 invert -sNaN27 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddLogB.decTest b/qdecimal/test/tc_full/ddLogB.decTest deleted file mode 100644 index f90c706..0000000 --- a/qdecimal/test/tc_full/ddLogB.decTest +++ /dev/null @@ -1,159 +0,0 @@ ------------------------------------------------------------------------- --- ddLogB.decTest -- integral 754r adjusted exponent, for decDoubles -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- basics -ddlogb000 logb 0 -> -Infinity Division_by_zero -ddlogb001 logb 1E-398 -> -398 -ddlogb002 logb 1E-383 -> -383 -ddlogb003 logb 0.001 -> -3 -ddlogb004 logb 0.03 -> -2 -ddlogb005 logb 1 -> 0 -ddlogb006 logb 2 -> 0 -ddlogb007 logb 2.5 -> 0 -ddlogb008 logb 2.500 -> 0 -ddlogb009 logb 10 -> 1 -ddlogb010 logb 70 -> 1 -ddlogb011 logb 100 -> 2 -ddlogb012 logb 333 -> 2 -ddlogb013 logb 9E+384 -> 384 -ddlogb014 logb +Infinity -> Infinity - --- negatives appear to be treated as positives -ddlogb021 logb -0 -> -Infinity Division_by_zero -ddlogb022 logb -1E-398 -> -398 -ddlogb023 logb -9E-383 -> -383 -ddlogb024 logb -0.001 -> -3 -ddlogb025 logb -1 -> 0 -ddlogb026 logb -2 -> 0 -ddlogb027 logb -10 -> 1 -ddlogb028 logb -70 -> 1 -ddlogb029 logb -100 -> 2 -ddlogb030 logb -9E+384 -> 384 -ddlogb031 logb -Infinity -> Infinity - --- zeros -ddlogb111 logb 0 -> -Infinity Division_by_zero -ddlogb112 logb -0 -> -Infinity Division_by_zero -ddlogb113 logb 0E+4 -> -Infinity Division_by_zero -ddlogb114 logb -0E+4 -> -Infinity Division_by_zero -ddlogb115 logb 0.0000 -> -Infinity Division_by_zero -ddlogb116 logb -0.0000 -> -Infinity Division_by_zero -ddlogb117 logb 0E-141 -> -Infinity Division_by_zero -ddlogb118 logb -0E-141 -> -Infinity Division_by_zero - --- full coefficients, alternating bits -ddlogb121 logb 268268268 -> 8 -ddlogb122 logb -268268268 -> 8 -ddlogb123 logb 134134134 -> 8 -ddlogb124 logb -134134134 -> 8 - --- Nmax, Nmin, Ntiny -ddlogb131 logb 9.999999999999999E+384 -> 384 -ddlogb132 logb 1E-383 -> -383 -ddlogb133 logb 1.000000000000000E-383 -> -383 -ddlogb134 logb 1E-398 -> -398 - -ddlogb135 logb -1E-398 -> -398 -ddlogb136 logb -1.000000000000000E-383 -> -383 -ddlogb137 logb -1E-383 -> -383 -ddlogb138 logb -9.999999999999999E+384 -> 384 - --- ones -ddlogb0061 logb 1 -> 0 -ddlogb0062 logb 1.0 -> 0 -ddlogb0063 logb 1.000000000000000 -> 0 - --- notable cases -- exact powers of 10 -ddlogb1100 logb 1 -> 0 -ddlogb1101 logb 10 -> 1 -ddlogb1102 logb 100 -> 2 -ddlogb1103 logb 1000 -> 3 -ddlogb1104 logb 10000 -> 4 -ddlogb1105 logb 100000 -> 5 -ddlogb1106 logb 1000000 -> 6 -ddlogb1107 logb 10000000 -> 7 -ddlogb1108 logb 100000000 -> 8 -ddlogb1109 logb 1000000000 -> 9 -ddlogb1110 logb 10000000000 -> 10 -ddlogb1111 logb 100000000000 -> 11 -ddlogb1112 logb 1000000000000 -> 12 -ddlogb1113 logb 0.00000000001 -> -11 -ddlogb1114 logb 0.0000000001 -> -10 -ddlogb1115 logb 0.000000001 -> -9 -ddlogb1116 logb 0.00000001 -> -8 -ddlogb1117 logb 0.0000001 -> -7 -ddlogb1118 logb 0.000001 -> -6 -ddlogb1119 logb 0.00001 -> -5 -ddlogb1120 logb 0.0001 -> -4 -ddlogb1121 logb 0.001 -> -3 -ddlogb1122 logb 0.01 -> -2 -ddlogb1123 logb 0.1 -> -1 -ddlogb1124 logb 1E-99 -> -99 -ddlogb1125 logb 1E-100 -> -100 -ddlogb1127 logb 1E-299 -> -299 -ddlogb1126 logb 1E-383 -> -383 - --- suggestions from Ilan Nehama -ddlogb1400 logb 10E-3 -> -2 -ddlogb1401 logb 10E-2 -> -1 -ddlogb1402 logb 100E-2 -> 0 -ddlogb1403 logb 1000E-2 -> 1 -ddlogb1404 logb 10000E-2 -> 2 -ddlogb1405 logb 10E-1 -> 0 -ddlogb1406 logb 100E-1 -> 1 -ddlogb1407 logb 1000E-1 -> 2 -ddlogb1408 logb 10000E-1 -> 3 -ddlogb1409 logb 10E0 -> 1 -ddlogb1410 logb 100E0 -> 2 -ddlogb1411 logb 1000E0 -> 3 -ddlogb1412 logb 10000E0 -> 4 -ddlogb1413 logb 10E1 -> 2 -ddlogb1414 logb 100E1 -> 3 -ddlogb1415 logb 1000E1 -> 4 -ddlogb1416 logb 10000E1 -> 5 -ddlogb1417 logb 10E2 -> 3 -ddlogb1418 logb 100E2 -> 4 -ddlogb1419 logb 1000E2 -> 5 -ddlogb1420 logb 10000E2 -> 6 - --- special values -ddlogb820 logb Infinity -> Infinity -ddlogb821 logb 0 -> -Infinity Division_by_zero -ddlogb822 logb NaN -> NaN -ddlogb823 logb sNaN -> NaN Invalid_operation --- propagating NaNs -ddlogb824 logb sNaN123 -> NaN123 Invalid_operation -ddlogb825 logb -sNaN321 -> -NaN321 Invalid_operation -ddlogb826 logb NaN456 -> NaN456 -ddlogb827 logb -NaN654 -> -NaN654 -ddlogb828 logb NaN1 -> NaN1 - --- Null test -ddlogb900 logb # -> NaN Invalid_operation - - diff --git a/qdecimal/test/tc_full/ddMax.decTest b/qdecimal/test/tc_full/ddMax.decTest deleted file mode 100644 index ccc7f14..0000000 --- a/qdecimal/test/tc_full/ddMax.decTest +++ /dev/null @@ -1,322 +0,0 @@ ------------------------------------------------------------------------- --- ddMax.decTest -- decDouble maxnum -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddmax001 max -2 -2 -> -2 -ddmax002 max -2 -1 -> -1 -ddmax003 max -2 0 -> 0 -ddmax004 max -2 1 -> 1 -ddmax005 max -2 2 -> 2 -ddmax006 max -1 -2 -> -1 -ddmax007 max -1 -1 -> -1 -ddmax008 max -1 0 -> 0 -ddmax009 max -1 1 -> 1 -ddmax010 max -1 2 -> 2 -ddmax011 max 0 -2 -> 0 -ddmax012 max 0 -1 -> 0 -ddmax013 max 0 0 -> 0 -ddmax014 max 0 1 -> 1 -ddmax015 max 0 2 -> 2 -ddmax016 max 1 -2 -> 1 -ddmax017 max 1 -1 -> 1 -ddmax018 max 1 0 -> 1 -ddmax019 max 1 1 -> 1 -ddmax020 max 1 2 -> 2 -ddmax021 max 2 -2 -> 2 -ddmax022 max 2 -1 -> 2 -ddmax023 max 2 0 -> 2 -ddmax025 max 2 1 -> 2 -ddmax026 max 2 2 -> 2 - --- extended zeros -ddmax030 max 0 0 -> 0 -ddmax031 max 0 -0 -> 0 -ddmax032 max 0 -0.0 -> 0 -ddmax033 max 0 0.0 -> 0 -ddmax034 max -0 0 -> 0 -- note: -0 = 0, but 0 chosen -ddmax035 max -0 -0 -> -0 -ddmax036 max -0 -0.0 -> -0.0 -ddmax037 max -0 0.0 -> 0.0 -ddmax038 max 0.0 0 -> 0 -ddmax039 max 0.0 -0 -> 0.0 -ddmax040 max 0.0 -0.0 -> 0.0 -ddmax041 max 0.0 0.0 -> 0.0 -ddmax042 max -0.0 0 -> 0 -ddmax043 max -0.0 -0 -> -0.0 -ddmax044 max -0.0 -0.0 -> -0.0 -ddmax045 max -0.0 0.0 -> 0.0 - -ddmax050 max -0E1 0E1 -> 0E+1 -ddmax051 max -0E2 0E2 -> 0E+2 -ddmax052 max -0E2 0E1 -> 0E+1 -ddmax053 max -0E1 0E2 -> 0E+2 -ddmax054 max 0E1 -0E1 -> 0E+1 -ddmax055 max 0E2 -0E2 -> 0E+2 -ddmax056 max 0E2 -0E1 -> 0E+2 -ddmax057 max 0E1 -0E2 -> 0E+1 - -ddmax058 max 0E1 0E1 -> 0E+1 -ddmax059 max 0E2 0E2 -> 0E+2 -ddmax060 max 0E2 0E1 -> 0E+2 -ddmax061 max 0E1 0E2 -> 0E+2 -ddmax062 max -0E1 -0E1 -> -0E+1 -ddmax063 max -0E2 -0E2 -> -0E+2 -ddmax064 max -0E2 -0E1 -> -0E+1 -ddmax065 max -0E1 -0E2 -> -0E+1 - --- Specials -ddmax090 max Inf -Inf -> Infinity -ddmax091 max Inf -1000 -> Infinity -ddmax092 max Inf -1 -> Infinity -ddmax093 max Inf -0 -> Infinity -ddmax094 max Inf 0 -> Infinity -ddmax095 max Inf 1 -> Infinity -ddmax096 max Inf 1000 -> Infinity -ddmax097 max Inf Inf -> Infinity -ddmax098 max -1000 Inf -> Infinity -ddmax099 max -Inf Inf -> Infinity -ddmax100 max -1 Inf -> Infinity -ddmax101 max -0 Inf -> Infinity -ddmax102 max 0 Inf -> Infinity -ddmax103 max 1 Inf -> Infinity -ddmax104 max 1000 Inf -> Infinity -ddmax105 max Inf Inf -> Infinity - -ddmax120 max -Inf -Inf -> -Infinity -ddmax121 max -Inf -1000 -> -1000 -ddmax122 max -Inf -1 -> -1 -ddmax123 max -Inf -0 -> -0 -ddmax124 max -Inf 0 -> 0 -ddmax125 max -Inf 1 -> 1 -ddmax126 max -Inf 1000 -> 1000 -ddmax127 max -Inf Inf -> Infinity -ddmax128 max -Inf -Inf -> -Infinity -ddmax129 max -1000 -Inf -> -1000 -ddmax130 max -1 -Inf -> -1 -ddmax131 max -0 -Inf -> -0 -ddmax132 max 0 -Inf -> 0 -ddmax133 max 1 -Inf -> 1 -ddmax134 max 1000 -Inf -> 1000 -ddmax135 max Inf -Inf -> Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -ddmax141 max NaN -Inf -> -Infinity -ddmax142 max NaN -1000 -> -1000 -ddmax143 max NaN -1 -> -1 -ddmax144 max NaN -0 -> -0 -ddmax145 max NaN 0 -> 0 -ddmax146 max NaN 1 -> 1 -ddmax147 max NaN 1000 -> 1000 -ddmax148 max NaN Inf -> Infinity -ddmax149 max NaN NaN -> NaN -ddmax150 max -Inf NaN -> -Infinity -ddmax151 max -1000 NaN -> -1000 -ddmax152 max -1 NaN -> -1 -ddmax153 max -0 NaN -> -0 -ddmax154 max 0 NaN -> 0 -ddmax155 max 1 NaN -> 1 -ddmax156 max 1000 NaN -> 1000 -ddmax157 max Inf NaN -> Infinity - -ddmax161 max sNaN -Inf -> NaN Invalid_operation -ddmax162 max sNaN -1000 -> NaN Invalid_operation -ddmax163 max sNaN -1 -> NaN Invalid_operation -ddmax164 max sNaN -0 -> NaN Invalid_operation -ddmax165 max sNaN 0 -> NaN Invalid_operation -ddmax166 max sNaN 1 -> NaN Invalid_operation -ddmax167 max sNaN 1000 -> NaN Invalid_operation -ddmax168 max sNaN NaN -> NaN Invalid_operation -ddmax169 max sNaN sNaN -> NaN Invalid_operation -ddmax170 max NaN sNaN -> NaN Invalid_operation -ddmax171 max -Inf sNaN -> NaN Invalid_operation -ddmax172 max -1000 sNaN -> NaN Invalid_operation -ddmax173 max -1 sNaN -> NaN Invalid_operation -ddmax174 max -0 sNaN -> NaN Invalid_operation -ddmax175 max 0 sNaN -> NaN Invalid_operation -ddmax176 max 1 sNaN -> NaN Invalid_operation -ddmax177 max 1000 sNaN -> NaN Invalid_operation -ddmax178 max Inf sNaN -> NaN Invalid_operation -ddmax179 max NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddmax181 max NaN9 -Inf -> -Infinity -ddmax182 max NaN8 9 -> 9 -ddmax183 max -NaN7 Inf -> Infinity - -ddmax184 max -NaN1 NaN11 -> -NaN1 -ddmax185 max NaN2 NaN12 -> NaN2 -ddmax186 max -NaN13 -NaN7 -> -NaN13 -ddmax187 max NaN14 -NaN5 -> NaN14 - -ddmax188 max -Inf NaN4 -> -Infinity -ddmax189 max -9 -NaN3 -> -9 -ddmax190 max Inf NaN2 -> Infinity - -ddmax191 max sNaN99 -Inf -> NaN99 Invalid_operation -ddmax192 max sNaN98 -1 -> NaN98 Invalid_operation -ddmax193 max -sNaN97 NaN -> -NaN97 Invalid_operation -ddmax194 max sNaN96 sNaN94 -> NaN96 Invalid_operation -ddmax195 max NaN95 sNaN93 -> NaN93 Invalid_operation -ddmax196 max -Inf sNaN92 -> NaN92 Invalid_operation -ddmax197 max 0 sNaN91 -> NaN91 Invalid_operation -ddmax198 max Inf -sNaN90 -> -NaN90 Invalid_operation -ddmax199 max NaN sNaN89 -> NaN89 Invalid_operation - --- old rounding checks -ddmax221 max 12345678000 1 -> 12345678000 -ddmax222 max 1 12345678000 -> 12345678000 -ddmax223 max 1234567800 1 -> 1234567800 -ddmax224 max 1 1234567800 -> 1234567800 -ddmax225 max 1234567890 1 -> 1234567890 -ddmax226 max 1 1234567890 -> 1234567890 -ddmax227 max 1234567891 1 -> 1234567891 -ddmax228 max 1 1234567891 -> 1234567891 -ddmax229 max 12345678901 1 -> 12345678901 -ddmax230 max 1 12345678901 -> 12345678901 -ddmax231 max 1234567896 1 -> 1234567896 -ddmax232 max 1 1234567896 -> 1234567896 -ddmax233 max -1234567891 1 -> 1 -ddmax234 max 1 -1234567891 -> 1 -ddmax235 max -12345678901 1 -> 1 -ddmax236 max 1 -12345678901 -> 1 -ddmax237 max -1234567896 1 -> 1 -ddmax238 max 1 -1234567896 -> 1 - --- from examples -ddmax280 max '3' '2' -> '3' -ddmax281 max '-10' '3' -> '3' -ddmax282 max '1.0' '1' -> '1' -ddmax283 max '1' '1.0' -> '1' -ddmax284 max '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -ddmax401 max Inf 1.1 -> Infinity -ddmax402 max 1.1 1 -> 1.1 -ddmax403 max 1 1.0 -> 1 -ddmax404 max 1.0 0.1 -> 1.0 -ddmax405 max 0.1 0.10 -> 0.1 -ddmax406 max 0.10 0.100 -> 0.10 -ddmax407 max 0.10 0 -> 0.10 -ddmax408 max 0 0.0 -> 0 -ddmax409 max 0.0 -0 -> 0.0 -ddmax410 max 0.0 -0.0 -> 0.0 -ddmax411 max 0.00 -0.0 -> 0.00 -ddmax412 max 0.0 -0.00 -> 0.0 -ddmax413 max 0 -0.0 -> 0 -ddmax414 max 0 -0 -> 0 -ddmax415 max -0.0 -0 -> -0.0 -ddmax416 max -0 -0.100 -> -0 -ddmax417 max -0.100 -0.10 -> -0.100 -ddmax418 max -0.10 -0.1 -> -0.10 -ddmax419 max -0.1 -1.0 -> -0.1 -ddmax420 max -1.0 -1 -> -1.0 -ddmax421 max -1 -1.1 -> -1 -ddmax423 max -1.1 -Inf -> -1.1 --- same with operands reversed -ddmax431 max 1.1 Inf -> Infinity -ddmax432 max 1 1.1 -> 1.1 -ddmax433 max 1.0 1 -> 1 -ddmax434 max 0.1 1.0 -> 1.0 -ddmax435 max 0.10 0.1 -> 0.1 -ddmax436 max 0.100 0.10 -> 0.10 -ddmax437 max 0 0.10 -> 0.10 -ddmax438 max 0.0 0 -> 0 -ddmax439 max -0 0.0 -> 0.0 -ddmax440 max -0.0 0.0 -> 0.0 -ddmax441 max -0.0 0.00 -> 0.00 -ddmax442 max -0.00 0.0 -> 0.0 -ddmax443 max -0.0 0 -> 0 -ddmax444 max -0 0 -> 0 -ddmax445 max -0 -0.0 -> -0.0 -ddmax446 max -0.100 -0 -> -0 -ddmax447 max -0.10 -0.100 -> -0.100 -ddmax448 max -0.1 -0.10 -> -0.10 -ddmax449 max -1.0 -0.1 -> -0.1 -ddmax450 max -1 -1.0 -> -1.0 -ddmax451 max -1.1 -1 -> -1 -ddmax453 max -Inf -1.1 -> -1.1 --- largies -ddmax460 max 1000 1E+3 -> 1E+3 -ddmax461 max 1E+3 1000 -> 1E+3 -ddmax462 max 1000 -1E+3 -> 1000 -ddmax463 max 1E+3 -1000 -> 1E+3 -ddmax464 max -1000 1E+3 -> 1E+3 -ddmax465 max -1E+3 1000 -> 1000 -ddmax466 max -1000 -1E+3 -> -1000 -ddmax467 max -1E+3 -1000 -> -1000 - --- misalignment traps for little-endian -ddmax471 max 1.0 0.1 -> 1.0 -ddmax472 max 0.1 1.0 -> 1.0 -ddmax473 max 10.0 0.1 -> 10.0 -ddmax474 max 0.1 10.0 -> 10.0 -ddmax475 max 100 1.0 -> 100 -ddmax476 max 1.0 100 -> 100 -ddmax477 max 1000 10.0 -> 1000 -ddmax478 max 10.0 1000 -> 1000 -ddmax479 max 10000 100.0 -> 10000 -ddmax480 max 100.0 10000 -> 10000 -ddmax481 max 100000 1000.0 -> 100000 -ddmax482 max 1000.0 100000 -> 100000 -ddmax483 max 1000000 10000.0 -> 1000000 -ddmax484 max 10000.0 1000000 -> 1000000 - --- subnormals -ddmax510 max 1.00E-383 0 -> 1.00E-383 -ddmax511 max 0.1E-383 0 -> 1E-384 Subnormal -ddmax512 max 0.10E-383 0 -> 1.0E-384 Subnormal -ddmax513 max 0.100E-383 0 -> 1.00E-384 Subnormal -ddmax514 max 0.01E-383 0 -> 1E-385 Subnormal -ddmax515 max 0.999E-383 0 -> 9.99E-384 Subnormal -ddmax516 max 0.099E-383 0 -> 9.9E-385 Subnormal -ddmax517 max 0.009E-383 0 -> 9E-386 Subnormal -ddmax518 max 0.001E-383 0 -> 1E-386 Subnormal -ddmax519 max 0.0009E-383 0 -> 9E-387 Subnormal -ddmax520 max 0.0001E-383 0 -> 1E-387 Subnormal - -ddmax530 max -1.00E-383 0 -> 0 -ddmax531 max -0.1E-383 0 -> 0 -ddmax532 max -0.10E-383 0 -> 0 -ddmax533 max -0.100E-383 0 -> 0 -ddmax534 max -0.01E-383 0 -> 0 -ddmax535 max -0.999E-383 0 -> 0 -ddmax536 max -0.099E-383 0 -> 0 -ddmax537 max -0.009E-383 0 -> 0 -ddmax538 max -0.001E-383 0 -> 0 -ddmax539 max -0.0009E-383 0 -> 0 -ddmax540 max -0.0001E-383 0 -> 0 - --- Null tests -ddmax900 max 10 # -> NaN Invalid_operation -ddmax901 max # 10 -> NaN Invalid_operation - - - diff --git a/qdecimal/test/tc_full/ddMaxMag.decTest b/qdecimal/test/tc_full/ddMaxMag.decTest deleted file mode 100644 index 406d02b..0000000 --- a/qdecimal/test/tc_full/ddMaxMag.decTest +++ /dev/null @@ -1,304 +0,0 @@ ------------------------------------------------------------------------- --- ddMaxMag.decTest -- decDouble maxnummag -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddmxg001 maxmag -2 -2 -> -2 -ddmxg002 maxmag -2 -1 -> -2 -ddmxg003 maxmag -2 0 -> -2 -ddmxg004 maxmag -2 1 -> -2 -ddmxg005 maxmag -2 2 -> 2 -ddmxg006 maxmag -1 -2 -> -2 -ddmxg007 maxmag -1 -1 -> -1 -ddmxg008 maxmag -1 0 -> -1 -ddmxg009 maxmag -1 1 -> 1 -ddmxg010 maxmag -1 2 -> 2 -ddmxg011 maxmag 0 -2 -> -2 -ddmxg012 maxmag 0 -1 -> -1 -ddmxg013 maxmag 0 0 -> 0 -ddmxg014 maxmag 0 1 -> 1 -ddmxg015 maxmag 0 2 -> 2 -ddmxg016 maxmag 1 -2 -> -2 -ddmxg017 maxmag 1 -1 -> 1 -ddmxg018 maxmag 1 0 -> 1 -ddmxg019 maxmag 1 1 -> 1 -ddmxg020 maxmag 1 2 -> 2 -ddmxg021 maxmag 2 -2 -> 2 -ddmxg022 maxmag 2 -1 -> 2 -ddmxg023 maxmag 2 0 -> 2 -ddmxg025 maxmag 2 1 -> 2 -ddmxg026 maxmag 2 2 -> 2 - --- extended zeros -ddmxg030 maxmag 0 0 -> 0 -ddmxg031 maxmag 0 -0 -> 0 -ddmxg032 maxmag 0 -0.0 -> 0 -ddmxg033 maxmag 0 0.0 -> 0 -ddmxg034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen -ddmxg035 maxmag -0 -0 -> -0 -ddmxg036 maxmag -0 -0.0 -> -0.0 -ddmxg037 maxmag -0 0.0 -> 0.0 -ddmxg038 maxmag 0.0 0 -> 0 -ddmxg039 maxmag 0.0 -0 -> 0.0 -ddmxg040 maxmag 0.0 -0.0 -> 0.0 -ddmxg041 maxmag 0.0 0.0 -> 0.0 -ddmxg042 maxmag -0.0 0 -> 0 -ddmxg043 maxmag -0.0 -0 -> -0.0 -ddmxg044 maxmag -0.0 -0.0 -> -0.0 -ddmxg045 maxmag -0.0 0.0 -> 0.0 - -ddmxg050 maxmag -0E1 0E1 -> 0E+1 -ddmxg051 maxmag -0E2 0E2 -> 0E+2 -ddmxg052 maxmag -0E2 0E1 -> 0E+1 -ddmxg053 maxmag -0E1 0E2 -> 0E+2 -ddmxg054 maxmag 0E1 -0E1 -> 0E+1 -ddmxg055 maxmag 0E2 -0E2 -> 0E+2 -ddmxg056 maxmag 0E2 -0E1 -> 0E+2 -ddmxg057 maxmag 0E1 -0E2 -> 0E+1 - -ddmxg058 maxmag 0E1 0E1 -> 0E+1 -ddmxg059 maxmag 0E2 0E2 -> 0E+2 -ddmxg060 maxmag 0E2 0E1 -> 0E+2 -ddmxg061 maxmag 0E1 0E2 -> 0E+2 -ddmxg062 maxmag -0E1 -0E1 -> -0E+1 -ddmxg063 maxmag -0E2 -0E2 -> -0E+2 -ddmxg064 maxmag -0E2 -0E1 -> -0E+1 -ddmxg065 maxmag -0E1 -0E2 -> -0E+1 - --- Specials -ddmxg090 maxmag Inf -Inf -> Infinity -ddmxg091 maxmag Inf -1000 -> Infinity -ddmxg092 maxmag Inf -1 -> Infinity -ddmxg093 maxmag Inf -0 -> Infinity -ddmxg094 maxmag Inf 0 -> Infinity -ddmxg095 maxmag Inf 1 -> Infinity -ddmxg096 maxmag Inf 1000 -> Infinity -ddmxg097 maxmag Inf Inf -> Infinity -ddmxg098 maxmag -1000 Inf -> Infinity -ddmxg099 maxmag -Inf Inf -> Infinity -ddmxg100 maxmag -1 Inf -> Infinity -ddmxg101 maxmag -0 Inf -> Infinity -ddmxg102 maxmag 0 Inf -> Infinity -ddmxg103 maxmag 1 Inf -> Infinity -ddmxg104 maxmag 1000 Inf -> Infinity -ddmxg105 maxmag Inf Inf -> Infinity - -ddmxg120 maxmag -Inf -Inf -> -Infinity -ddmxg121 maxmag -Inf -1000 -> -Infinity -ddmxg122 maxmag -Inf -1 -> -Infinity -ddmxg123 maxmag -Inf -0 -> -Infinity -ddmxg124 maxmag -Inf 0 -> -Infinity -ddmxg125 maxmag -Inf 1 -> -Infinity -ddmxg126 maxmag -Inf 1000 -> -Infinity -ddmxg127 maxmag -Inf Inf -> Infinity -ddmxg128 maxmag -Inf -Inf -> -Infinity -ddmxg129 maxmag -1000 -Inf -> -Infinity -ddmxg130 maxmag -1 -Inf -> -Infinity -ddmxg131 maxmag -0 -Inf -> -Infinity -ddmxg132 maxmag 0 -Inf -> -Infinity -ddmxg133 maxmag 1 -Inf -> -Infinity -ddmxg134 maxmag 1000 -Inf -> -Infinity -ddmxg135 maxmag Inf -Inf -> Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -ddmxg141 maxmag NaN -Inf -> -Infinity -ddmxg142 maxmag NaN -1000 -> -1000 -ddmxg143 maxmag NaN -1 -> -1 -ddmxg144 maxmag NaN -0 -> -0 -ddmxg145 maxmag NaN 0 -> 0 -ddmxg146 maxmag NaN 1 -> 1 -ddmxg147 maxmag NaN 1000 -> 1000 -ddmxg148 maxmag NaN Inf -> Infinity -ddmxg149 maxmag NaN NaN -> NaN -ddmxg150 maxmag -Inf NaN -> -Infinity -ddmxg151 maxmag -1000 NaN -> -1000 -ddmxg152 maxmag -1 NaN -> -1 -ddmxg153 maxmag -0 NaN -> -0 -ddmxg154 maxmag 0 NaN -> 0 -ddmxg155 maxmag 1 NaN -> 1 -ddmxg156 maxmag 1000 NaN -> 1000 -ddmxg157 maxmag Inf NaN -> Infinity - -ddmxg161 maxmag sNaN -Inf -> NaN Invalid_operation -ddmxg162 maxmag sNaN -1000 -> NaN Invalid_operation -ddmxg163 maxmag sNaN -1 -> NaN Invalid_operation -ddmxg164 maxmag sNaN -0 -> NaN Invalid_operation -ddmxg165 maxmag sNaN 0 -> NaN Invalid_operation -ddmxg166 maxmag sNaN 1 -> NaN Invalid_operation -ddmxg167 maxmag sNaN 1000 -> NaN Invalid_operation -ddmxg168 maxmag sNaN NaN -> NaN Invalid_operation -ddmxg169 maxmag sNaN sNaN -> NaN Invalid_operation -ddmxg170 maxmag NaN sNaN -> NaN Invalid_operation -ddmxg171 maxmag -Inf sNaN -> NaN Invalid_operation -ddmxg172 maxmag -1000 sNaN -> NaN Invalid_operation -ddmxg173 maxmag -1 sNaN -> NaN Invalid_operation -ddmxg174 maxmag -0 sNaN -> NaN Invalid_operation -ddmxg175 maxmag 0 sNaN -> NaN Invalid_operation -ddmxg176 maxmag 1 sNaN -> NaN Invalid_operation -ddmxg177 maxmag 1000 sNaN -> NaN Invalid_operation -ddmxg178 maxmag Inf sNaN -> NaN Invalid_operation -ddmxg179 maxmag NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddmxg181 maxmag NaN9 -Inf -> -Infinity -ddmxg182 maxmag NaN8 9 -> 9 -ddmxg183 maxmag -NaN7 Inf -> Infinity - -ddmxg184 maxmag -NaN1 NaN11 -> -NaN1 -ddmxg185 maxmag NaN2 NaN12 -> NaN2 -ddmxg186 maxmag -NaN13 -NaN7 -> -NaN13 -ddmxg187 maxmag NaN14 -NaN5 -> NaN14 - -ddmxg188 maxmag -Inf NaN4 -> -Infinity -ddmxg189 maxmag -9 -NaN3 -> -9 -ddmxg190 maxmag Inf NaN2 -> Infinity - -ddmxg191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation -ddmxg192 maxmag sNaN98 -1 -> NaN98 Invalid_operation -ddmxg193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation -ddmxg194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation -ddmxg195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation -ddmxg196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation -ddmxg197 maxmag 0 sNaN91 -> NaN91 Invalid_operation -ddmxg198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation -ddmxg199 maxmag NaN sNaN89 -> NaN89 Invalid_operation - --- old rounding checks -ddmxg221 maxmag 12345678000 1 -> 12345678000 -ddmxg222 maxmag 1 12345678000 -> 12345678000 -ddmxg223 maxmag 1234567800 1 -> 1234567800 -ddmxg224 maxmag 1 1234567800 -> 1234567800 -ddmxg225 maxmag 1234567890 1 -> 1234567890 -ddmxg226 maxmag 1 1234567890 -> 1234567890 -ddmxg227 maxmag 1234567891 1 -> 1234567891 -ddmxg228 maxmag 1 1234567891 -> 1234567891 -ddmxg229 maxmag 12345678901 1 -> 12345678901 -ddmxg230 maxmag 1 12345678901 -> 12345678901 -ddmxg231 maxmag 1234567896 1 -> 1234567896 -ddmxg232 maxmag 1 1234567896 -> 1234567896 -ddmxg233 maxmag -1234567891 1 -> -1234567891 -ddmxg234 maxmag 1 -1234567891 -> -1234567891 -ddmxg235 maxmag -12345678901 1 -> -12345678901 -ddmxg236 maxmag 1 -12345678901 -> -12345678901 -ddmxg237 maxmag -1234567896 1 -> -1234567896 -ddmxg238 maxmag 1 -1234567896 -> -1234567896 - --- from examples -ddmxg280 maxmag '3' '2' -> '3' -ddmxg281 maxmag '-10' '3' -> '-10' -ddmxg282 maxmag '1.0' '1' -> '1' -ddmxg283 maxmag '1' '1.0' -> '1' -ddmxg284 maxmag '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -ddmxg401 maxmag Inf 1.1 -> Infinity -ddmxg402 maxmag 1.1 1 -> 1.1 -ddmxg403 maxmag 1 1.0 -> 1 -ddmxg404 maxmag 1.0 0.1 -> 1.0 -ddmxg405 maxmag 0.1 0.10 -> 0.1 -ddmxg406 maxmag 0.10 0.100 -> 0.10 -ddmxg407 maxmag 0.10 0 -> 0.10 -ddmxg408 maxmag 0 0.0 -> 0 -ddmxg409 maxmag 0.0 -0 -> 0.0 -ddmxg410 maxmag 0.0 -0.0 -> 0.0 -ddmxg411 maxmag 0.00 -0.0 -> 0.00 -ddmxg412 maxmag 0.0 -0.00 -> 0.0 -ddmxg413 maxmag 0 -0.0 -> 0 -ddmxg414 maxmag 0 -0 -> 0 -ddmxg415 maxmag -0.0 -0 -> -0.0 -ddmxg416 maxmag -0 -0.100 -> -0.100 -ddmxg417 maxmag -0.100 -0.10 -> -0.100 -ddmxg418 maxmag -0.10 -0.1 -> -0.10 -ddmxg419 maxmag -0.1 -1.0 -> -1.0 -ddmxg420 maxmag -1.0 -1 -> -1.0 -ddmxg421 maxmag -1 -1.1 -> -1.1 -ddmxg423 maxmag -1.1 -Inf -> -Infinity --- same with operands reversed -ddmxg431 maxmag 1.1 Inf -> Infinity -ddmxg432 maxmag 1 1.1 -> 1.1 -ddmxg433 maxmag 1.0 1 -> 1 -ddmxg434 maxmag 0.1 1.0 -> 1.0 -ddmxg435 maxmag 0.10 0.1 -> 0.1 -ddmxg436 maxmag 0.100 0.10 -> 0.10 -ddmxg437 maxmag 0 0.10 -> 0.10 -ddmxg438 maxmag 0.0 0 -> 0 -ddmxg439 maxmag -0 0.0 -> 0.0 -ddmxg440 maxmag -0.0 0.0 -> 0.0 -ddmxg441 maxmag -0.0 0.00 -> 0.00 -ddmxg442 maxmag -0.00 0.0 -> 0.0 -ddmxg443 maxmag -0.0 0 -> 0 -ddmxg444 maxmag -0 0 -> 0 -ddmxg445 maxmag -0 -0.0 -> -0.0 -ddmxg446 maxmag -0.100 -0 -> -0.100 -ddmxg447 maxmag -0.10 -0.100 -> -0.100 -ddmxg448 maxmag -0.1 -0.10 -> -0.10 -ddmxg449 maxmag -1.0 -0.1 -> -1.0 -ddmxg450 maxmag -1 -1.0 -> -1.0 -ddmxg451 maxmag -1.1 -1 -> -1.1 -ddmxg453 maxmag -Inf -1.1 -> -Infinity --- largies -ddmxg460 maxmag 1000 1E+3 -> 1E+3 -ddmxg461 maxmag 1E+3 1000 -> 1E+3 -ddmxg462 maxmag 1000 -1E+3 -> 1000 -ddmxg463 maxmag 1E+3 -1000 -> 1E+3 -ddmxg464 maxmag -1000 1E+3 -> 1E+3 -ddmxg465 maxmag -1E+3 1000 -> 1000 -ddmxg466 maxmag -1000 -1E+3 -> -1000 -ddmxg467 maxmag -1E+3 -1000 -> -1000 - --- subnormals -ddmxg510 maxmag 1.00E-383 0 -> 1.00E-383 -ddmxg511 maxmag 0.1E-383 0 -> 1E-384 Subnormal -ddmxg512 maxmag 0.10E-383 0 -> 1.0E-384 Subnormal -ddmxg513 maxmag 0.100E-383 0 -> 1.00E-384 Subnormal -ddmxg514 maxmag 0.01E-383 0 -> 1E-385 Subnormal -ddmxg515 maxmag 0.999E-383 0 -> 9.99E-384 Subnormal -ddmxg516 maxmag 0.099E-383 0 -> 9.9E-385 Subnormal -ddmxg517 maxmag 0.009E-383 0 -> 9E-386 Subnormal -ddmxg518 maxmag 0.001E-383 0 -> 1E-386 Subnormal -ddmxg519 maxmag 0.0009E-383 0 -> 9E-387 Subnormal -ddmxg520 maxmag 0.0001E-383 0 -> 1E-387 Subnormal - -ddmxg530 maxmag -1.00E-383 0 -> -1.00E-383 -ddmxg531 maxmag -0.1E-383 0 -> -1E-384 Subnormal -ddmxg532 maxmag -0.10E-383 0 -> -1.0E-384 Subnormal -ddmxg533 maxmag -0.100E-383 0 -> -1.00E-384 Subnormal -ddmxg534 maxmag -0.01E-383 0 -> -1E-385 Subnormal -ddmxg535 maxmag -0.999E-383 0 -> -9.99E-384 Subnormal -ddmxg536 maxmag -0.099E-383 0 -> -9.9E-385 Subnormal -ddmxg537 maxmag -0.009E-383 0 -> -9E-386 Subnormal -ddmxg538 maxmag -0.001E-383 0 -> -1E-386 Subnormal -ddmxg539 maxmag -0.0009E-383 0 -> -9E-387 Subnormal -ddmxg540 maxmag -0.0001E-383 0 -> -1E-387 Subnormal - --- Null tests -ddmxg900 maxmag 10 # -> NaN Invalid_operation -ddmxg901 maxmag # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddMin.decTest b/qdecimal/test/tc_full/ddMin.decTest deleted file mode 100644 index 9105572..0000000 --- a/qdecimal/test/tc_full/ddMin.decTest +++ /dev/null @@ -1,309 +0,0 @@ ------------------------------------------------------------------------- --- ddMin.decTest -- decDouble minnum -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddmin001 min -2 -2 -> -2 -ddmin002 min -2 -1 -> -2 -ddmin003 min -2 0 -> -2 -ddmin004 min -2 1 -> -2 -ddmin005 min -2 2 -> -2 -ddmin006 min -1 -2 -> -2 -ddmin007 min -1 -1 -> -1 -ddmin008 min -1 0 -> -1 -ddmin009 min -1 1 -> -1 -ddmin010 min -1 2 -> -1 -ddmin011 min 0 -2 -> -2 -ddmin012 min 0 -1 -> -1 -ddmin013 min 0 0 -> 0 -ddmin014 min 0 1 -> 0 -ddmin015 min 0 2 -> 0 -ddmin016 min 1 -2 -> -2 -ddmin017 min 1 -1 -> -1 -ddmin018 min 1 0 -> 0 -ddmin019 min 1 1 -> 1 -ddmin020 min 1 2 -> 1 -ddmin021 min 2 -2 -> -2 -ddmin022 min 2 -1 -> -1 -ddmin023 min 2 0 -> 0 -ddmin025 min 2 1 -> 1 -ddmin026 min 2 2 -> 2 - --- extended zeros -ddmin030 min 0 0 -> 0 -ddmin031 min 0 -0 -> -0 -ddmin032 min 0 -0.0 -> -0.0 -ddmin033 min 0 0.0 -> 0.0 -ddmin034 min -0 0 -> -0 -ddmin035 min -0 -0 -> -0 -ddmin036 min -0 -0.0 -> -0 -ddmin037 min -0 0.0 -> -0 -ddmin038 min 0.0 0 -> 0.0 -ddmin039 min 0.0 -0 -> -0 -ddmin040 min 0.0 -0.0 -> -0.0 -ddmin041 min 0.0 0.0 -> 0.0 -ddmin042 min -0.0 0 -> -0.0 -ddmin043 min -0.0 -0 -> -0 -ddmin044 min -0.0 -0.0 -> -0.0 -ddmin045 min -0.0 0.0 -> -0.0 - -ddmin046 min 0E1 -0E1 -> -0E+1 -ddmin047 min -0E1 0E2 -> -0E+1 -ddmin048 min 0E2 0E1 -> 0E+1 -ddmin049 min 0E1 0E2 -> 0E+1 -ddmin050 min -0E3 -0E2 -> -0E+3 -ddmin051 min -0E2 -0E3 -> -0E+3 - --- Specials -ddmin090 min Inf -Inf -> -Infinity -ddmin091 min Inf -1000 -> -1000 -ddmin092 min Inf -1 -> -1 -ddmin093 min Inf -0 -> -0 -ddmin094 min Inf 0 -> 0 -ddmin095 min Inf 1 -> 1 -ddmin096 min Inf 1000 -> 1000 -ddmin097 min Inf Inf -> Infinity -ddmin098 min -1000 Inf -> -1000 -ddmin099 min -Inf Inf -> -Infinity -ddmin100 min -1 Inf -> -1 -ddmin101 min -0 Inf -> -0 -ddmin102 min 0 Inf -> 0 -ddmin103 min 1 Inf -> 1 -ddmin104 min 1000 Inf -> 1000 -ddmin105 min Inf Inf -> Infinity - -ddmin120 min -Inf -Inf -> -Infinity -ddmin121 min -Inf -1000 -> -Infinity -ddmin122 min -Inf -1 -> -Infinity -ddmin123 min -Inf -0 -> -Infinity -ddmin124 min -Inf 0 -> -Infinity -ddmin125 min -Inf 1 -> -Infinity -ddmin126 min -Inf 1000 -> -Infinity -ddmin127 min -Inf Inf -> -Infinity -ddmin128 min -Inf -Inf -> -Infinity -ddmin129 min -1000 -Inf -> -Infinity -ddmin130 min -1 -Inf -> -Infinity -ddmin131 min -0 -Inf -> -Infinity -ddmin132 min 0 -Inf -> -Infinity -ddmin133 min 1 -Inf -> -Infinity -ddmin134 min 1000 -Inf -> -Infinity -ddmin135 min Inf -Inf -> -Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -ddmin141 min NaN -Inf -> -Infinity -ddmin142 min NaN -1000 -> -1000 -ddmin143 min NaN -1 -> -1 -ddmin144 min NaN -0 -> -0 -ddmin145 min NaN 0 -> 0 -ddmin146 min NaN 1 -> 1 -ddmin147 min NaN 1000 -> 1000 -ddmin148 min NaN Inf -> Infinity -ddmin149 min NaN NaN -> NaN -ddmin150 min -Inf NaN -> -Infinity -ddmin151 min -1000 NaN -> -1000 -ddmin152 min -1 -NaN -> -1 -ddmin153 min -0 NaN -> -0 -ddmin154 min 0 -NaN -> 0 -ddmin155 min 1 NaN -> 1 -ddmin156 min 1000 NaN -> 1000 -ddmin157 min Inf NaN -> Infinity - -ddmin161 min sNaN -Inf -> NaN Invalid_operation -ddmin162 min sNaN -1000 -> NaN Invalid_operation -ddmin163 min sNaN -1 -> NaN Invalid_operation -ddmin164 min sNaN -0 -> NaN Invalid_operation -ddmin165 min -sNaN 0 -> -NaN Invalid_operation -ddmin166 min -sNaN 1 -> -NaN Invalid_operation -ddmin167 min sNaN 1000 -> NaN Invalid_operation -ddmin168 min sNaN NaN -> NaN Invalid_operation -ddmin169 min sNaN sNaN -> NaN Invalid_operation -ddmin170 min NaN sNaN -> NaN Invalid_operation -ddmin171 min -Inf sNaN -> NaN Invalid_operation -ddmin172 min -1000 sNaN -> NaN Invalid_operation -ddmin173 min -1 sNaN -> NaN Invalid_operation -ddmin174 min -0 sNaN -> NaN Invalid_operation -ddmin175 min 0 sNaN -> NaN Invalid_operation -ddmin176 min 1 sNaN -> NaN Invalid_operation -ddmin177 min 1000 sNaN -> NaN Invalid_operation -ddmin178 min Inf sNaN -> NaN Invalid_operation -ddmin179 min NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddmin181 min NaN9 -Inf -> -Infinity -ddmin182 min -NaN8 9990 -> 9990 -ddmin183 min NaN71 Inf -> Infinity - -ddmin184 min NaN1 NaN54 -> NaN1 -ddmin185 min NaN22 -NaN53 -> NaN22 -ddmin186 min -NaN3 NaN6 -> -NaN3 -ddmin187 min -NaN44 NaN7 -> -NaN44 - -ddmin188 min -Inf NaN41 -> -Infinity -ddmin189 min -9999 -NaN33 -> -9999 -ddmin190 min Inf NaN2 -> Infinity - -ddmin191 min sNaN99 -Inf -> NaN99 Invalid_operation -ddmin192 min sNaN98 -11 -> NaN98 Invalid_operation -ddmin193 min -sNaN97 NaN8 -> -NaN97 Invalid_operation -ddmin194 min sNaN69 sNaN94 -> NaN69 Invalid_operation -ddmin195 min NaN95 sNaN93 -> NaN93 Invalid_operation -ddmin196 min -Inf sNaN92 -> NaN92 Invalid_operation -ddmin197 min 088 sNaN91 -> NaN91 Invalid_operation -ddmin198 min Inf -sNaN90 -> -NaN90 Invalid_operation -ddmin199 min NaN sNaN86 -> NaN86 Invalid_operation - --- old rounding checks -ddmin221 min -12345678000 1 -> -12345678000 -ddmin222 min 1 -12345678000 -> -12345678000 -ddmin223 min -1234567800 1 -> -1234567800 -ddmin224 min 1 -1234567800 -> -1234567800 -ddmin225 min -1234567890 1 -> -1234567890 -ddmin226 min 1 -1234567890 -> -1234567890 -ddmin227 min -1234567891 1 -> -1234567891 -ddmin228 min 1 -1234567891 -> -1234567891 -ddmin229 min -12345678901 1 -> -12345678901 -ddmin230 min 1 -12345678901 -> -12345678901 -ddmin231 min -1234567896 1 -> -1234567896 -ddmin232 min 1 -1234567896 -> -1234567896 -ddmin233 min 1234567891 1 -> 1 -ddmin234 min 1 1234567891 -> 1 -ddmin235 min 12345678901 1 -> 1 -ddmin236 min 1 12345678901 -> 1 -ddmin237 min 1234567896 1 -> 1 -ddmin238 min 1 1234567896 -> 1 - --- from examples -ddmin280 min '3' '2' -> '2' -ddmin281 min '-10' '3' -> '-10' -ddmin282 min '1.0' '1' -> '1.0' -ddmin283 min '1' '1.0' -> '1.0' -ddmin284 min '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -ddmin401 min Inf 1.1 -> 1.1 -ddmin402 min 1.1 1 -> 1 -ddmin403 min 1 1.0 -> 1.0 -ddmin404 min 1.0 0.1 -> 0.1 -ddmin405 min 0.1 0.10 -> 0.10 -ddmin406 min 0.10 0.100 -> 0.100 -ddmin407 min 0.10 0 -> 0 -ddmin408 min 0 0.0 -> 0.0 -ddmin409 min 0.0 -0 -> -0 -ddmin410 min 0.0 -0.0 -> -0.0 -ddmin411 min 0.00 -0.0 -> -0.0 -ddmin412 min 0.0 -0.00 -> -0.00 -ddmin413 min 0 -0.0 -> -0.0 -ddmin414 min 0 -0 -> -0 -ddmin415 min -0.0 -0 -> -0 -ddmin416 min -0 -0.100 -> -0.100 -ddmin417 min -0.100 -0.10 -> -0.10 -ddmin418 min -0.10 -0.1 -> -0.1 -ddmin419 min -0.1 -1.0 -> -1.0 -ddmin420 min -1.0 -1 -> -1 -ddmin421 min -1 -1.1 -> -1.1 -ddmin423 min -1.1 -Inf -> -Infinity --- same with operands reversed -ddmin431 min 1.1 Inf -> 1.1 -ddmin432 min 1 1.1 -> 1 -ddmin433 min 1.0 1 -> 1.0 -ddmin434 min 0.1 1.0 -> 0.1 -ddmin435 min 0.10 0.1 -> 0.10 -ddmin436 min 0.100 0.10 -> 0.100 -ddmin437 min 0 0.10 -> 0 -ddmin438 min 0.0 0 -> 0.0 -ddmin439 min -0 0.0 -> -0 -ddmin440 min -0.0 0.0 -> -0.0 -ddmin441 min -0.0 0.00 -> -0.0 -ddmin442 min -0.00 0.0 -> -0.00 -ddmin443 min -0.0 0 -> -0.0 -ddmin444 min -0 0 -> -0 -ddmin445 min -0 -0.0 -> -0 -ddmin446 min -0.100 -0 -> -0.100 -ddmin447 min -0.10 -0.100 -> -0.10 -ddmin448 min -0.1 -0.10 -> -0.1 -ddmin449 min -1.0 -0.1 -> -1.0 -ddmin450 min -1 -1.0 -> -1 -ddmin451 min -1.1 -1 -> -1.1 -ddmin453 min -Inf -1.1 -> -Infinity --- largies -ddmin460 min 1000 1E+3 -> 1000 -ddmin461 min 1E+3 1000 -> 1000 -ddmin462 min 1000 -1E+3 -> -1E+3 -ddmin463 min 1E+3 -384 -> -384 -ddmin464 min -384 1E+3 -> -384 -ddmin465 min -1E+3 1000 -> -1E+3 -ddmin466 min -384 -1E+3 -> -1E+3 -ddmin467 min -1E+3 -384 -> -1E+3 - --- misalignment traps for little-endian -ddmin471 min 1.0 0.1 -> 0.1 -ddmin472 min 0.1 1.0 -> 0.1 -ddmin473 min 10.0 0.1 -> 0.1 -ddmin474 min 0.1 10.0 -> 0.1 -ddmin475 min 100 1.0 -> 1.0 -ddmin476 min 1.0 100 -> 1.0 -ddmin477 min 1000 10.0 -> 10.0 -ddmin478 min 10.0 1000 -> 10.0 -ddmin479 min 10000 100.0 -> 100.0 -ddmin480 min 100.0 10000 -> 100.0 -ddmin481 min 100000 1000.0 -> 1000.0 -ddmin482 min 1000.0 100000 -> 1000.0 -ddmin483 min 1000000 10000.0 -> 10000.0 -ddmin484 min 10000.0 1000000 -> 10000.0 - --- subnormals -ddmin510 min 1.00E-383 0 -> 0 -ddmin511 min 0.1E-383 0 -> 0 -ddmin512 min 0.10E-383 0 -> 0 -ddmin513 min 0.100E-383 0 -> 0 -ddmin514 min 0.01E-383 0 -> 0 -ddmin515 min 0.999E-383 0 -> 0 -ddmin516 min 0.099E-383 0 -> 0 -ddmin517 min 0.009E-383 0 -> 0 -ddmin518 min 0.001E-383 0 -> 0 -ddmin519 min 0.0009E-383 0 -> 0 -ddmin520 min 0.0001E-383 0 -> 0 - -ddmin530 min -1.00E-383 0 -> -1.00E-383 -ddmin531 min -0.1E-383 0 -> -1E-384 Subnormal -ddmin532 min -0.10E-383 0 -> -1.0E-384 Subnormal -ddmin533 min -0.100E-383 0 -> -1.00E-384 Subnormal -ddmin534 min -0.01E-383 0 -> -1E-385 Subnormal -ddmin535 min -0.999E-383 0 -> -9.99E-384 Subnormal -ddmin536 min -0.099E-383 0 -> -9.9E-385 Subnormal -ddmin537 min -0.009E-383 0 -> -9E-386 Subnormal -ddmin538 min -0.001E-383 0 -> -1E-386 Subnormal -ddmin539 min -0.0009E-383 0 -> -9E-387 Subnormal -ddmin540 min -0.0001E-383 0 -> -1E-387 Subnormal - - --- Null tests -ddmin900 min 10 # -> NaN Invalid_operation -ddmin901 min # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddMinMag.decTest b/qdecimal/test/tc_full/ddMinMag.decTest deleted file mode 100644 index 587cbb8..0000000 --- a/qdecimal/test/tc_full/ddMinMag.decTest +++ /dev/null @@ -1,293 +0,0 @@ ------------------------------------------------------------------------- --- ddMinMag.decTest -- decDouble minnummag -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddmng001 minmag -2 -2 -> -2 -ddmng002 minmag -2 -1 -> -1 -ddmng003 minmag -2 0 -> 0 -ddmng004 minmag -2 1 -> 1 -ddmng005 minmag -2 2 -> -2 -ddmng006 minmag -1 -2 -> -1 -ddmng007 minmag -1 -1 -> -1 -ddmng008 minmag -1 0 -> 0 -ddmng009 minmag -1 1 -> -1 -ddmng010 minmag -1 2 -> -1 -ddmng011 minmag 0 -2 -> 0 -ddmng012 minmag 0 -1 -> 0 -ddmng013 minmag 0 0 -> 0 -ddmng014 minmag 0 1 -> 0 -ddmng015 minmag 0 2 -> 0 -ddmng016 minmag 1 -2 -> 1 -ddmng017 minmag 1 -1 -> -1 -ddmng018 minmag 1 0 -> 0 -ddmng019 minmag 1 1 -> 1 -ddmng020 minmag 1 2 -> 1 -ddmng021 minmag 2 -2 -> -2 -ddmng022 minmag 2 -1 -> -1 -ddmng023 minmag 2 0 -> 0 -ddmng025 minmag 2 1 -> 1 -ddmng026 minmag 2 2 -> 2 - --- extended zeros -ddmng030 minmag 0 0 -> 0 -ddmng031 minmag 0 -0 -> -0 -ddmng032 minmag 0 -0.0 -> -0.0 -ddmng033 minmag 0 0.0 -> 0.0 -ddmng034 minmag -0 0 -> -0 -ddmng035 minmag -0 -0 -> -0 -ddmng036 minmag -0 -0.0 -> -0 -ddmng037 minmag -0 0.0 -> -0 -ddmng038 minmag 0.0 0 -> 0.0 -ddmng039 minmag 0.0 -0 -> -0 -ddmng040 minmag 0.0 -0.0 -> -0.0 -ddmng041 minmag 0.0 0.0 -> 0.0 -ddmng042 minmag -0.0 0 -> -0.0 -ddmng043 minmag -0.0 -0 -> -0 -ddmng044 minmag -0.0 -0.0 -> -0.0 -ddmng045 minmag -0.0 0.0 -> -0.0 - -ddmng046 minmag 0E1 -0E1 -> -0E+1 -ddmng047 minmag -0E1 0E2 -> -0E+1 -ddmng048 minmag 0E2 0E1 -> 0E+1 -ddmng049 minmag 0E1 0E2 -> 0E+1 -ddmng050 minmag -0E3 -0E2 -> -0E+3 -ddmng051 minmag -0E2 -0E3 -> -0E+3 - --- Specials -ddmng090 minmag Inf -Inf -> -Infinity -ddmng091 minmag Inf -1000 -> -1000 -ddmng092 minmag Inf -1 -> -1 -ddmng093 minmag Inf -0 -> -0 -ddmng094 minmag Inf 0 -> 0 -ddmng095 minmag Inf 1 -> 1 -ddmng096 minmag Inf 1000 -> 1000 -ddmng097 minmag Inf Inf -> Infinity -ddmng098 minmag -1000 Inf -> -1000 -ddmng099 minmag -Inf Inf -> -Infinity -ddmng100 minmag -1 Inf -> -1 -ddmng101 minmag -0 Inf -> -0 -ddmng102 minmag 0 Inf -> 0 -ddmng103 minmag 1 Inf -> 1 -ddmng104 minmag 1000 Inf -> 1000 -ddmng105 minmag Inf Inf -> Infinity - -ddmng120 minmag -Inf -Inf -> -Infinity -ddmng121 minmag -Inf -1000 -> -1000 -ddmng122 minmag -Inf -1 -> -1 -ddmng123 minmag -Inf -0 -> -0 -ddmng124 minmag -Inf 0 -> 0 -ddmng125 minmag -Inf 1 -> 1 -ddmng126 minmag -Inf 1000 -> 1000 -ddmng127 minmag -Inf Inf -> -Infinity -ddmng128 minmag -Inf -Inf -> -Infinity -ddmng129 minmag -1000 -Inf -> -1000 -ddmng130 minmag -1 -Inf -> -1 -ddmng131 minmag -0 -Inf -> -0 -ddmng132 minmag 0 -Inf -> 0 -ddmng133 minmag 1 -Inf -> 1 -ddmng134 minmag 1000 -Inf -> 1000 -ddmng135 minmag Inf -Inf -> -Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -ddmng141 minmag NaN -Inf -> -Infinity -ddmng142 minmag NaN -1000 -> -1000 -ddmng143 minmag NaN -1 -> -1 -ddmng144 minmag NaN -0 -> -0 -ddmng145 minmag NaN 0 -> 0 -ddmng146 minmag NaN 1 -> 1 -ddmng147 minmag NaN 1000 -> 1000 -ddmng148 minmag NaN Inf -> Infinity -ddmng149 minmag NaN NaN -> NaN -ddmng150 minmag -Inf NaN -> -Infinity -ddmng151 minmag -1000 NaN -> -1000 -ddmng152 minmag -1 -NaN -> -1 -ddmng153 minmag -0 NaN -> -0 -ddmng154 minmag 0 -NaN -> 0 -ddmng155 minmag 1 NaN -> 1 -ddmng156 minmag 1000 NaN -> 1000 -ddmng157 minmag Inf NaN -> Infinity - -ddmng161 minmag sNaN -Inf -> NaN Invalid_operation -ddmng162 minmag sNaN -1000 -> NaN Invalid_operation -ddmng163 minmag sNaN -1 -> NaN Invalid_operation -ddmng164 minmag sNaN -0 -> NaN Invalid_operation -ddmng165 minmag -sNaN 0 -> -NaN Invalid_operation -ddmng166 minmag -sNaN 1 -> -NaN Invalid_operation -ddmng167 minmag sNaN 1000 -> NaN Invalid_operation -ddmng168 minmag sNaN NaN -> NaN Invalid_operation -ddmng169 minmag sNaN sNaN -> NaN Invalid_operation -ddmng170 minmag NaN sNaN -> NaN Invalid_operation -ddmng171 minmag -Inf sNaN -> NaN Invalid_operation -ddmng172 minmag -1000 sNaN -> NaN Invalid_operation -ddmng173 minmag -1 sNaN -> NaN Invalid_operation -ddmng174 minmag -0 sNaN -> NaN Invalid_operation -ddmng175 minmag 0 sNaN -> NaN Invalid_operation -ddmng176 minmag 1 sNaN -> NaN Invalid_operation -ddmng177 minmag 1000 sNaN -> NaN Invalid_operation -ddmng178 minmag Inf sNaN -> NaN Invalid_operation -ddmng179 minmag NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddmng181 minmag NaN9 -Inf -> -Infinity -ddmng182 minmag -NaN8 9990 -> 9990 -ddmng183 minmag NaN71 Inf -> Infinity - -ddmng184 minmag NaN1 NaN54 -> NaN1 -ddmng185 minmag NaN22 -NaN53 -> NaN22 -ddmng186 minmag -NaN3 NaN6 -> -NaN3 -ddmng187 minmag -NaN44 NaN7 -> -NaN44 - -ddmng188 minmag -Inf NaN41 -> -Infinity -ddmng189 minmag -9999 -NaN33 -> -9999 -ddmng190 minmag Inf NaN2 -> Infinity - -ddmng191 minmag sNaN99 -Inf -> NaN99 Invalid_operation -ddmng192 minmag sNaN98 -11 -> NaN98 Invalid_operation -ddmng193 minmag -sNaN97 NaN8 -> -NaN97 Invalid_operation -ddmng194 minmag sNaN69 sNaN94 -> NaN69 Invalid_operation -ddmng195 minmag NaN95 sNaN93 -> NaN93 Invalid_operation -ddmng196 minmag -Inf sNaN92 -> NaN92 Invalid_operation -ddmng197 minmag 088 sNaN91 -> NaN91 Invalid_operation -ddmng198 minmag Inf -sNaN90 -> -NaN90 Invalid_operation -ddmng199 minmag NaN sNaN86 -> NaN86 Invalid_operation - --- old rounding checks -ddmng221 minmag -12345678000 1 -> 1 -ddmng222 minmag 1 -12345678000 -> 1 -ddmng223 minmag -1234567800 1 -> 1 -ddmng224 minmag 1 -1234567800 -> 1 -ddmng225 minmag -1234567890 1 -> 1 -ddmng226 minmag 1 -1234567890 -> 1 -ddmng227 minmag -1234567891 1 -> 1 -ddmng228 minmag 1 -1234567891 -> 1 -ddmng229 minmag -12345678901 1 -> 1 -ddmng230 minmag 1 -12345678901 -> 1 -ddmng231 minmag -1234567896 1 -> 1 -ddmng232 minmag 1 -1234567896 -> 1 -ddmng233 minmag 1234567891 1 -> 1 -ddmng234 minmag 1 1234567891 -> 1 -ddmng235 minmag 12345678901 1 -> 1 -ddmng236 minmag 1 12345678901 -> 1 -ddmng237 minmag 1234567896 1 -> 1 -ddmng238 minmag 1 1234567896 -> 1 - --- from examples -ddmng280 minmag '3' '2' -> '2' -ddmng281 minmag '-10' '3' -> '3' -ddmng282 minmag '1.0' '1' -> '1.0' -ddmng283 minmag '1' '1.0' -> '1.0' -ddmng284 minmag '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -ddmng401 minmag Inf 1.1 -> 1.1 -ddmng402 minmag 1.1 1 -> 1 -ddmng403 minmag 1 1.0 -> 1.0 -ddmng404 minmag 1.0 0.1 -> 0.1 -ddmng405 minmag 0.1 0.10 -> 0.10 -ddmng406 minmag 0.10 0.100 -> 0.100 -ddmng407 minmag 0.10 0 -> 0 -ddmng408 minmag 0 0.0 -> 0.0 -ddmng409 minmag 0.0 -0 -> -0 -ddmng410 minmag 0.0 -0.0 -> -0.0 -ddmng411 minmag 0.00 -0.0 -> -0.0 -ddmng412 minmag 0.0 -0.00 -> -0.00 -ddmng413 minmag 0 -0.0 -> -0.0 -ddmng414 minmag 0 -0 -> -0 -ddmng415 minmag -0.0 -0 -> -0 -ddmng416 minmag -0 -0.100 -> -0 -ddmng417 minmag -0.100 -0.10 -> -0.10 -ddmng418 minmag -0.10 -0.1 -> -0.1 -ddmng419 minmag -0.1 -1.0 -> -0.1 -ddmng420 minmag -1.0 -1 -> -1 -ddmng421 minmag -1 -1.1 -> -1 -ddmng423 minmag -1.1 -Inf -> -1.1 --- same with operands reversed -ddmng431 minmag 1.1 Inf -> 1.1 -ddmng432 minmag 1 1.1 -> 1 -ddmng433 minmag 1.0 1 -> 1.0 -ddmng434 minmag 0.1 1.0 -> 0.1 -ddmng435 minmag 0.10 0.1 -> 0.10 -ddmng436 minmag 0.100 0.10 -> 0.100 -ddmng437 minmag 0 0.10 -> 0 -ddmng438 minmag 0.0 0 -> 0.0 -ddmng439 minmag -0 0.0 -> -0 -ddmng440 minmag -0.0 0.0 -> -0.0 -ddmng441 minmag -0.0 0.00 -> -0.0 -ddmng442 minmag -0.00 0.0 -> -0.00 -ddmng443 minmag -0.0 0 -> -0.0 -ddmng444 minmag -0 0 -> -0 -ddmng445 minmag -0 -0.0 -> -0 -ddmng446 minmag -0.100 -0 -> -0 -ddmng447 minmag -0.10 -0.100 -> -0.10 -ddmng448 minmag -0.1 -0.10 -> -0.1 -ddmng449 minmag -1.0 -0.1 -> -0.1 -ddmng450 minmag -1 -1.0 -> -1 -ddmng451 minmag -1.1 -1 -> -1 -ddmng453 minmag -Inf -1.1 -> -1.1 --- largies -ddmng460 minmag 1000 1E+3 -> 1000 -ddmng461 minmag 1E+3 1000 -> 1000 -ddmng462 minmag 1000 -1E+3 -> -1E+3 -ddmng463 minmag 1E+3 -384 -> -384 -ddmng464 minmag -384 1E+3 -> -384 -ddmng465 minmag -1E+3 1000 -> -1E+3 -ddmng466 minmag -384 -1E+3 -> -384 -ddmng467 minmag -1E+3 -384 -> -384 - --- subnormals -ddmng510 minmag 1.00E-383 0 -> 0 -ddmng511 minmag 0.1E-383 0 -> 0 -ddmng512 minmag 0.10E-383 0 -> 0 -ddmng513 minmag 0.100E-383 0 -> 0 -ddmng514 minmag 0.01E-383 0 -> 0 -ddmng515 minmag 0.999E-383 0 -> 0 -ddmng516 minmag 0.099E-383 0 -> 0 -ddmng517 minmag 0.009E-383 0 -> 0 -ddmng518 minmag 0.001E-383 0 -> 0 -ddmng519 minmag 0.0009E-383 0 -> 0 -ddmng520 minmag 0.0001E-383 0 -> 0 - -ddmng530 minmag -1.00E-383 0 -> 0 -ddmng531 minmag -0.1E-383 0 -> 0 -ddmng532 minmag -0.10E-383 0 -> 0 -ddmng533 minmag -0.100E-383 0 -> 0 -ddmng534 minmag -0.01E-383 0 -> 0 -ddmng535 minmag -0.999E-383 0 -> 0 -ddmng536 minmag -0.099E-383 0 -> 0 -ddmng537 minmag -0.009E-383 0 -> 0 -ddmng538 minmag -0.001E-383 0 -> 0 -ddmng539 minmag -0.0009E-383 0 -> 0 -ddmng540 minmag -0.0001E-383 0 -> 0 - - --- Null tests -ddmng900 minmag 10 # -> NaN Invalid_operation -ddmng901 minmag # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddMinus.decTest b/qdecimal/test/tc_full/ddMinus.decTest deleted file mode 100644 index 91c3325..0000000 --- a/qdecimal/test/tc_full/ddMinus.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- ddMinus.decTest -- decDouble 0-x -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddmns001 minus +7.50 -> -7.50 - --- Infinities -ddmns011 minus Infinity -> -Infinity -ddmns012 minus -Infinity -> Infinity - --- NaNs, 0 payload -ddmns021 minus NaN -> NaN -ddmns022 minus -NaN -> -NaN -ddmns023 minus sNaN -> NaN Invalid_operation -ddmns024 minus -sNaN -> -NaN Invalid_operation - --- NaNs, non-0 payload -ddmns031 minus NaN13 -> NaN13 -ddmns032 minus -NaN13 -> -NaN13 -ddmns033 minus sNaN13 -> NaN13 Invalid_operation -ddmns034 minus -sNaN13 -> -NaN13 Invalid_operation -ddmns035 minus NaN70 -> NaN70 -ddmns036 minus -NaN70 -> -NaN70 -ddmns037 minus sNaN101 -> NaN101 Invalid_operation -ddmns038 minus -sNaN101 -> -NaN101 Invalid_operation - --- finites -ddmns101 minus 7 -> -7 -ddmns102 minus -7 -> 7 -ddmns103 minus 75 -> -75 -ddmns104 minus -75 -> 75 -ddmns105 minus 7.50 -> -7.50 -ddmns106 minus -7.50 -> 7.50 -ddmns107 minus 7.500 -> -7.500 -ddmns108 minus -7.500 -> 7.500 - --- zeros -ddmns111 minus 0 -> 0 -ddmns112 minus -0 -> 0 -ddmns113 minus 0E+4 -> 0E+4 -ddmns114 minus -0E+4 -> 0E+4 -ddmns115 minus 0.0000 -> 0.0000 -ddmns116 minus -0.0000 -> 0.0000 -ddmns117 minus 0E-141 -> 0E-141 -ddmns118 minus -0E-141 -> 0E-141 - --- full coefficients, alternating bits -ddmns121 minus 2682682682682682 -> -2682682682682682 -ddmns122 minus -2682682682682682 -> 2682682682682682 -ddmns123 minus 1341341341341341 -> -1341341341341341 -ddmns124 minus -1341341341341341 -> 1341341341341341 - --- Nmax, Nmin, Ntiny -ddmns131 minus 9.999999999999999E+384 -> -9.999999999999999E+384 -ddmns132 minus 1E-383 -> -1E-383 -ddmns133 minus 1.000000000000000E-383 -> -1.000000000000000E-383 -ddmns134 minus 1E-398 -> -1E-398 Subnormal - -ddmns135 minus -1E-398 -> 1E-398 Subnormal -ddmns136 minus -1.000000000000000E-383 -> 1.000000000000000E-383 -ddmns137 minus -1E-383 -> 1E-383 -ddmns138 minus -9.999999999999999E+384 -> 9.999999999999999E+384 diff --git a/qdecimal/test/tc_full/ddMultiply.decTest b/qdecimal/test/tc_full/ddMultiply.decTest deleted file mode 100644 index d6a689f..0000000 --- a/qdecimal/test/tc_full/ddMultiply.decTest +++ /dev/null @@ -1,553 +0,0 @@ ------------------------------------------------------------------------- --- ddMultiply.decTest -- decDouble multiplication -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests are for decDoubles only; all arguments are --- representable in a decDouble -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddmul000 multiply 2 2 -> 4 -ddmul001 multiply 2 3 -> 6 -ddmul002 multiply 5 1 -> 5 -ddmul003 multiply 5 2 -> 10 -ddmul004 multiply 1.20 2 -> 2.40 -ddmul005 multiply 1.20 0 -> 0.00 -ddmul006 multiply 1.20 -2 -> -2.40 -ddmul007 multiply -1.20 2 -> -2.40 -ddmul008 multiply -1.20 0 -> -0.00 -ddmul009 multiply -1.20 -2 -> 2.40 -ddmul010 multiply 5.09 7.1 -> 36.139 -ddmul011 multiply 2.5 4 -> 10.0 -ddmul012 multiply 2.50 4 -> 10.00 -ddmul013 multiply 1.23456789 1.00000000 -> 1.234567890000000 Rounded -ddmul015 multiply 2.50 4 -> 10.00 -ddmul016 multiply 9.999999999 9.999999999 -> 99.99999998000000 Inexact Rounded -ddmul017 multiply 9.999999999 -9.999999999 -> -99.99999998000000 Inexact Rounded -ddmul018 multiply -9.999999999 9.999999999 -> -99.99999998000000 Inexact Rounded -ddmul019 multiply -9.999999999 -9.999999999 -> 99.99999998000000 Inexact Rounded - --- zeros, etc. -ddmul021 multiply 0 0 -> 0 -ddmul022 multiply 0 -0 -> -0 -ddmul023 multiply -0 0 -> -0 -ddmul024 multiply -0 -0 -> 0 -ddmul025 multiply -0.0 -0.0 -> 0.00 -ddmul026 multiply -0.0 -0.0 -> 0.00 -ddmul027 multiply -0.0 -0.0 -> 0.00 -ddmul028 multiply -0.0 -0.0 -> 0.00 -ddmul030 multiply 5.00 1E-3 -> 0.00500 -ddmul031 multiply 00.00 0.000 -> 0.00000 -ddmul032 multiply 00.00 0E-3 -> 0.00000 -- rhs is 0 -ddmul033 multiply 0E-3 00.00 -> 0.00000 -- lhs is 0 -ddmul034 multiply -5.00 1E-3 -> -0.00500 -ddmul035 multiply -00.00 0.000 -> -0.00000 -ddmul036 multiply -00.00 0E-3 -> -0.00000 -- rhs is 0 -ddmul037 multiply -0E-3 00.00 -> -0.00000 -- lhs is 0 -ddmul038 multiply 5.00 -1E-3 -> -0.00500 -ddmul039 multiply 00.00 -0.000 -> -0.00000 -ddmul040 multiply 00.00 -0E-3 -> -0.00000 -- rhs is 0 -ddmul041 multiply 0E-3 -00.00 -> -0.00000 -- lhs is 0 -ddmul042 multiply -5.00 -1E-3 -> 0.00500 -ddmul043 multiply -00.00 -0.000 -> 0.00000 -ddmul044 multiply -00.00 -0E-3 -> 0.00000 -- rhs is 0 -ddmul045 multiply -0E-3 -00.00 -> 0.00000 -- lhs is 0 - --- examples from decarith -ddmul050 multiply 1.20 3 -> 3.60 -ddmul051 multiply 7 3 -> 21 -ddmul052 multiply 0.9 0.8 -> 0.72 -ddmul053 multiply 0.9 -0 -> -0.0 -ddmul054 multiply 654321 654321 -> 428135971041 - -ddmul060 multiply 123.45 1e7 -> 1.2345E+9 -ddmul061 multiply 123.45 1e8 -> 1.2345E+10 -ddmul062 multiply 123.45 1e+9 -> 1.2345E+11 -ddmul063 multiply 123.45 1e10 -> 1.2345E+12 -ddmul064 multiply 123.45 1e11 -> 1.2345E+13 -ddmul065 multiply 123.45 1e12 -> 1.2345E+14 -ddmul066 multiply 123.45 1e13 -> 1.2345E+15 - - --- test some intermediate lengths --- 1234567890123456 -ddmul080 multiply 0.1 1230123456456789 -> 123012345645678.9 -ddmul084 multiply 0.1 1230123456456789 -> 123012345645678.9 -ddmul090 multiply 1230123456456789 0.1 -> 123012345645678.9 -ddmul094 multiply 1230123456456789 0.1 -> 123012345645678.9 - --- test some more edge cases and carries -ddmul101 multiply 9 9 -> 81 -ddmul102 multiply 9 90 -> 810 -ddmul103 multiply 9 900 -> 8100 -ddmul104 multiply 9 9000 -> 81000 -ddmul105 multiply 9 90000 -> 810000 -ddmul106 multiply 9 900000 -> 8100000 -ddmul107 multiply 9 9000000 -> 81000000 -ddmul108 multiply 9 90000000 -> 810000000 -ddmul109 multiply 9 900000000 -> 8100000000 -ddmul110 multiply 9 9000000000 -> 81000000000 -ddmul111 multiply 9 90000000000 -> 810000000000 -ddmul112 multiply 9 900000000000 -> 8100000000000 -ddmul113 multiply 9 9000000000000 -> 81000000000000 -ddmul114 multiply 9 90000000000000 -> 810000000000000 -ddmul115 multiply 9 900000000000000 -> 8100000000000000 ---ddmul116 multiply 9 9000000000000000 -> 81000000000000000 ---ddmul117 multiply 9 90000000000000000 -> 810000000000000000 ---ddmul118 multiply 9 900000000000000000 -> 8100000000000000000 ---ddmul119 multiply 9 9000000000000000000 -> 81000000000000000000 ---ddmul120 multiply 9 90000000000000000000 -> 810000000000000000000 ---ddmul121 multiply 9 900000000000000000000 -> 8100000000000000000000 ---ddmul122 multiply 9 9000000000000000000000 -> 81000000000000000000000 ---ddmul123 multiply 9 90000000000000000000000 -> 810000000000000000000000 --- test some more edge cases without carries -ddmul131 multiply 3 3 -> 9 -ddmul132 multiply 3 30 -> 90 -ddmul133 multiply 3 300 -> 900 -ddmul134 multiply 3 3000 -> 9000 -ddmul135 multiply 3 30000 -> 90000 -ddmul136 multiply 3 300000 -> 900000 -ddmul137 multiply 3 3000000 -> 9000000 -ddmul138 multiply 3 30000000 -> 90000000 -ddmul139 multiply 3 300000000 -> 900000000 -ddmul140 multiply 3 3000000000 -> 9000000000 -ddmul141 multiply 3 30000000000 -> 90000000000 -ddmul142 multiply 3 300000000000 -> 900000000000 -ddmul143 multiply 3 3000000000000 -> 9000000000000 -ddmul144 multiply 3 30000000000000 -> 90000000000000 -ddmul145 multiply 3 300000000000000 -> 900000000000000 - --- test some edge cases with exact rounding -ddmul301 multiply 9 9 -> 81 -ddmul302 multiply 9 90 -> 810 -ddmul303 multiply 9 900 -> 8100 -ddmul304 multiply 9 9000 -> 81000 -ddmul305 multiply 9 90000 -> 810000 -ddmul306 multiply 9 900000 -> 8100000 -ddmul307 multiply 9 9000000 -> 81000000 -ddmul308 multiply 9 90000000 -> 810000000 -ddmul309 multiply 9 900000000 -> 8100000000 -ddmul310 multiply 9 9000000000 -> 81000000000 -ddmul311 multiply 9 90000000000 -> 810000000000 -ddmul312 multiply 9 900000000000 -> 8100000000000 -ddmul313 multiply 9 9000000000000 -> 81000000000000 -ddmul314 multiply 9 90000000000000 -> 810000000000000 -ddmul315 multiply 9 900000000000000 -> 8100000000000000 -ddmul316 multiply 9 9000000000000000 -> 8.100000000000000E+16 Rounded -ddmul317 multiply 90 9000000000000000 -> 8.100000000000000E+17 Rounded -ddmul318 multiply 900 9000000000000000 -> 8.100000000000000E+18 Rounded -ddmul319 multiply 9000 9000000000000000 -> 8.100000000000000E+19 Rounded -ddmul320 multiply 90000 9000000000000000 -> 8.100000000000000E+20 Rounded -ddmul321 multiply 900000 9000000000000000 -> 8.100000000000000E+21 Rounded -ddmul322 multiply 9000000 9000000000000000 -> 8.100000000000000E+22 Rounded -ddmul323 multiply 90000000 9000000000000000 -> 8.100000000000000E+23 Rounded - --- tryzeros cases -ddmul504 multiply 0E-260 1000E-260 -> 0E-398 Clamped -ddmul505 multiply 100E+260 0E+260 -> 0E+369 Clamped --- 65K-1 case -ddmul506 multiply 77.1 850 -> 65535.0 - --- mixed with zeros -ddmul541 multiply 0 -1 -> -0 -ddmul542 multiply -0 -1 -> 0 -ddmul543 multiply 0 1 -> 0 -ddmul544 multiply -0 1 -> -0 -ddmul545 multiply -1 0 -> -0 -ddmul546 multiply -1 -0 -> 0 -ddmul547 multiply 1 0 -> 0 -ddmul548 multiply 1 -0 -> -0 - -ddmul551 multiply 0.0 -1 -> -0.0 -ddmul552 multiply -0.0 -1 -> 0.0 -ddmul553 multiply 0.0 1 -> 0.0 -ddmul554 multiply -0.0 1 -> -0.0 -ddmul555 multiply -1.0 0 -> -0.0 -ddmul556 multiply -1.0 -0 -> 0.0 -ddmul557 multiply 1.0 0 -> 0.0 -ddmul558 multiply 1.0 -0 -> -0.0 - -ddmul561 multiply 0 -1.0 -> -0.0 -ddmul562 multiply -0 -1.0 -> 0.0 -ddmul563 multiply 0 1.0 -> 0.0 -ddmul564 multiply -0 1.0 -> -0.0 -ddmul565 multiply -1 0.0 -> -0.0 -ddmul566 multiply -1 -0.0 -> 0.0 -ddmul567 multiply 1 0.0 -> 0.0 -ddmul568 multiply 1 -0.0 -> -0.0 - -ddmul571 multiply 0.0 -1.0 -> -0.00 -ddmul572 multiply -0.0 -1.0 -> 0.00 -ddmul573 multiply 0.0 1.0 -> 0.00 -ddmul574 multiply -0.0 1.0 -> -0.00 -ddmul575 multiply -1.0 0.0 -> -0.00 -ddmul576 multiply -1.0 -0.0 -> 0.00 -ddmul577 multiply 1.0 0.0 -> 0.00 -ddmul578 multiply 1.0 -0.0 -> -0.00 - - --- Specials -ddmul580 multiply Inf -Inf -> -Infinity -ddmul581 multiply Inf -1000 -> -Infinity -ddmul582 multiply Inf -1 -> -Infinity -ddmul583 multiply Inf -0 -> NaN Invalid_operation -ddmul584 multiply Inf 0 -> NaN Invalid_operation -ddmul585 multiply Inf 1 -> Infinity -ddmul586 multiply Inf 1000 -> Infinity -ddmul587 multiply Inf Inf -> Infinity -ddmul588 multiply -1000 Inf -> -Infinity -ddmul589 multiply -Inf Inf -> -Infinity -ddmul590 multiply -1 Inf -> -Infinity -ddmul591 multiply -0 Inf -> NaN Invalid_operation -ddmul592 multiply 0 Inf -> NaN Invalid_operation -ddmul593 multiply 1 Inf -> Infinity -ddmul594 multiply 1000 Inf -> Infinity -ddmul595 multiply Inf Inf -> Infinity - -ddmul600 multiply -Inf -Inf -> Infinity -ddmul601 multiply -Inf -1000 -> Infinity -ddmul602 multiply -Inf -1 -> Infinity -ddmul603 multiply -Inf -0 -> NaN Invalid_operation -ddmul604 multiply -Inf 0 -> NaN Invalid_operation -ddmul605 multiply -Inf 1 -> -Infinity -ddmul606 multiply -Inf 1000 -> -Infinity -ddmul607 multiply -Inf Inf -> -Infinity -ddmul608 multiply -1000 Inf -> -Infinity -ddmul609 multiply -Inf -Inf -> Infinity -ddmul610 multiply -1 -Inf -> Infinity -ddmul611 multiply -0 -Inf -> NaN Invalid_operation -ddmul612 multiply 0 -Inf -> NaN Invalid_operation -ddmul613 multiply 1 -Inf -> -Infinity -ddmul614 multiply 1000 -Inf -> -Infinity -ddmul615 multiply Inf -Inf -> -Infinity - -ddmul621 multiply NaN -Inf -> NaN -ddmul622 multiply NaN -1000 -> NaN -ddmul623 multiply NaN -1 -> NaN -ddmul624 multiply NaN -0 -> NaN -ddmul625 multiply NaN 0 -> NaN -ddmul626 multiply NaN 1 -> NaN -ddmul627 multiply NaN 1000 -> NaN -ddmul628 multiply NaN Inf -> NaN -ddmul629 multiply NaN NaN -> NaN -ddmul630 multiply -Inf NaN -> NaN -ddmul631 multiply -1000 NaN -> NaN -ddmul632 multiply -1 NaN -> NaN -ddmul633 multiply -0 NaN -> NaN -ddmul634 multiply 0 NaN -> NaN -ddmul635 multiply 1 NaN -> NaN -ddmul636 multiply 1000 NaN -> NaN -ddmul637 multiply Inf NaN -> NaN - -ddmul641 multiply sNaN -Inf -> NaN Invalid_operation -ddmul642 multiply sNaN -1000 -> NaN Invalid_operation -ddmul643 multiply sNaN -1 -> NaN Invalid_operation -ddmul644 multiply sNaN -0 -> NaN Invalid_operation -ddmul645 multiply sNaN 0 -> NaN Invalid_operation -ddmul646 multiply sNaN 1 -> NaN Invalid_operation -ddmul647 multiply sNaN 1000 -> NaN Invalid_operation -ddmul648 multiply sNaN NaN -> NaN Invalid_operation -ddmul649 multiply sNaN sNaN -> NaN Invalid_operation -ddmul650 multiply NaN sNaN -> NaN Invalid_operation -ddmul651 multiply -Inf sNaN -> NaN Invalid_operation -ddmul652 multiply -1000 sNaN -> NaN Invalid_operation -ddmul653 multiply -1 sNaN -> NaN Invalid_operation -ddmul654 multiply -0 sNaN -> NaN Invalid_operation -ddmul655 multiply 0 sNaN -> NaN Invalid_operation -ddmul656 multiply 1 sNaN -> NaN Invalid_operation -ddmul657 multiply 1000 sNaN -> NaN Invalid_operation -ddmul658 multiply Inf sNaN -> NaN Invalid_operation -ddmul659 multiply NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddmul661 multiply NaN9 -Inf -> NaN9 -ddmul662 multiply NaN8 999 -> NaN8 -ddmul663 multiply NaN71 Inf -> NaN71 -ddmul664 multiply NaN6 NaN5 -> NaN6 -ddmul665 multiply -Inf NaN4 -> NaN4 -ddmul666 multiply -999 NaN33 -> NaN33 -ddmul667 multiply Inf NaN2 -> NaN2 - -ddmul671 multiply sNaN99 -Inf -> NaN99 Invalid_operation -ddmul672 multiply sNaN98 -11 -> NaN98 Invalid_operation -ddmul673 multiply sNaN97 NaN -> NaN97 Invalid_operation -ddmul674 multiply sNaN16 sNaN94 -> NaN16 Invalid_operation -ddmul675 multiply NaN95 sNaN93 -> NaN93 Invalid_operation -ddmul676 multiply -Inf sNaN92 -> NaN92 Invalid_operation -ddmul677 multiply 088 sNaN91 -> NaN91 Invalid_operation -ddmul678 multiply Inf sNaN90 -> NaN90 Invalid_operation -ddmul679 multiply NaN sNaN89 -> NaN89 Invalid_operation - -ddmul681 multiply -NaN9 -Inf -> -NaN9 -ddmul682 multiply -NaN8 999 -> -NaN8 -ddmul683 multiply -NaN71 Inf -> -NaN71 -ddmul684 multiply -NaN6 -NaN5 -> -NaN6 -ddmul685 multiply -Inf -NaN4 -> -NaN4 -ddmul686 multiply -999 -NaN33 -> -NaN33 -ddmul687 multiply Inf -NaN2 -> -NaN2 - -ddmul691 multiply -sNaN99 -Inf -> -NaN99 Invalid_operation -ddmul692 multiply -sNaN98 -11 -> -NaN98 Invalid_operation -ddmul693 multiply -sNaN97 NaN -> -NaN97 Invalid_operation -ddmul694 multiply -sNaN16 -sNaN94 -> -NaN16 Invalid_operation -ddmul695 multiply -NaN95 -sNaN93 -> -NaN93 Invalid_operation -ddmul696 multiply -Inf -sNaN92 -> -NaN92 Invalid_operation -ddmul697 multiply 088 -sNaN91 -> -NaN91 Invalid_operation -ddmul698 multiply Inf -sNaN90 -> -NaN90 Invalid_operation -ddmul699 multiply -NaN -sNaN89 -> -NaN89 Invalid_operation - -ddmul701 multiply -NaN -Inf -> -NaN -ddmul702 multiply -NaN 999 -> -NaN -ddmul703 multiply -NaN Inf -> -NaN -ddmul704 multiply -NaN -NaN -> -NaN -ddmul705 multiply -Inf -NaN0 -> -NaN -ddmul706 multiply -999 -NaN -> -NaN -ddmul707 multiply Inf -NaN -> -NaN - -ddmul711 multiply -sNaN -Inf -> -NaN Invalid_operation -ddmul712 multiply -sNaN -11 -> -NaN Invalid_operation -ddmul713 multiply -sNaN00 NaN -> -NaN Invalid_operation -ddmul714 multiply -sNaN -sNaN -> -NaN Invalid_operation -ddmul715 multiply -NaN -sNaN -> -NaN Invalid_operation -ddmul716 multiply -Inf -sNaN -> -NaN Invalid_operation -ddmul717 multiply 088 -sNaN -> -NaN Invalid_operation -ddmul718 multiply Inf -sNaN -> -NaN Invalid_operation -ddmul719 multiply -NaN -sNaN -> -NaN Invalid_operation - --- overflow and underflow tests .. note subnormal results --- signs -ddmul751 multiply 1e+277 1e+311 -> Infinity Overflow Inexact Rounded -ddmul752 multiply 1e+277 -1e+311 -> -Infinity Overflow Inexact Rounded -ddmul753 multiply -1e+277 1e+311 -> -Infinity Overflow Inexact Rounded -ddmul754 multiply -1e+277 -1e+311 -> Infinity Overflow Inexact Rounded -ddmul755 multiply 1e-277 1e-311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul756 multiply 1e-277 -1e-311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul757 multiply -1e-277 1e-311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul758 multiply -1e-277 -1e-311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -ddmul760 multiply 1e-291 1e-101 -> 1E-392 Subnormal -ddmul761 multiply 1e-291 1e-102 -> 1E-393 Subnormal -ddmul762 multiply 1e-291 1e-103 -> 1E-394 Subnormal -ddmul763 multiply 1e-291 1e-104 -> 1E-395 Subnormal -ddmul764 multiply 1e-291 1e-105 -> 1E-396 Subnormal -ddmul765 multiply 1e-291 1e-106 -> 1E-397 Subnormal -ddmul766 multiply 1e-291 1e-107 -> 1E-398 Subnormal -ddmul767 multiply 1e-291 1e-108 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul768 multiply 1e-291 1e-109 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul769 multiply 1e-291 1e-110 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -ddmul770 multiply 1e+60 1e+321 -> 1.000000000000E+381 Clamped -ddmul771 multiply 1e+60 1e+322 -> 1.0000000000000E+382 Clamped -ddmul772 multiply 1e+60 1e+323 -> 1.00000000000000E+383 Clamped -ddmul773 multiply 1e+60 1e+324 -> 1.000000000000000E+384 Clamped -ddmul774 multiply 1e+60 1e+325 -> Infinity Overflow Inexact Rounded -ddmul775 multiply 1e+60 1e+326 -> Infinity Overflow Inexact Rounded -ddmul776 multiply 1e+60 1e+327 -> Infinity Overflow Inexact Rounded -ddmul777 multiply 1e+60 1e+328 -> Infinity Overflow Inexact Rounded -ddmul778 multiply 1e+60 1e+329 -> Infinity Overflow Inexact Rounded -ddmul779 multiply 1e+60 1e+330 -> Infinity Overflow Inexact Rounded - -ddmul801 multiply 1.0000E-394 1 -> 1.0000E-394 Subnormal -ddmul802 multiply 1.000E-394 1e-1 -> 1.000E-395 Subnormal -ddmul803 multiply 1.00E-394 1e-2 -> 1.00E-396 Subnormal -ddmul804 multiply 1.0E-394 1e-3 -> 1.0E-397 Subnormal -ddmul805 multiply 1.0E-394 1e-4 -> 1E-398 Subnormal Rounded -ddmul806 multiply 1.3E-394 1e-4 -> 1E-398 Underflow Subnormal Inexact Rounded -ddmul807 multiply 1.5E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul808 multiply 1.7E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul809 multiply 2.3E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul810 multiply 2.5E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul811 multiply 2.7E-394 1e-4 -> 3E-398 Underflow Subnormal Inexact Rounded -ddmul812 multiply 1.49E-394 1e-4 -> 1E-398 Underflow Subnormal Inexact Rounded -ddmul813 multiply 1.50E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul814 multiply 1.51E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul815 multiply 2.49E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul816 multiply 2.50E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded -ddmul817 multiply 2.51E-394 1e-4 -> 3E-398 Underflow Subnormal Inexact Rounded - -ddmul818 multiply 1E-394 1e-4 -> 1E-398 Subnormal -ddmul819 multiply 3E-394 1e-5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul820 multiply 5E-394 1e-5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul821 multiply 7E-394 1e-5 -> 1E-398 Underflow Subnormal Inexact Rounded -ddmul822 multiply 9E-394 1e-5 -> 1E-398 Underflow Subnormal Inexact Rounded -ddmul823 multiply 9.9E-394 1e-5 -> 1E-398 Underflow Subnormal Inexact Rounded - -ddmul824 multiply 1E-394 -1e-4 -> -1E-398 Subnormal -ddmul825 multiply 3E-394 -1e-5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul826 multiply -5E-394 1e-5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul827 multiply 7E-394 -1e-5 -> -1E-398 Underflow Subnormal Inexact Rounded -ddmul828 multiply -9E-394 1e-5 -> -1E-398 Underflow Subnormal Inexact Rounded -ddmul829 multiply 9.9E-394 -1e-5 -> -1E-398 Underflow Subnormal Inexact Rounded -ddmul830 multiply 3.0E-394 -1e-5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped - -ddmul831 multiply 1.0E-199 1e-200 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddmul832 multiply 1.0E-199 1e-199 -> 1E-398 Subnormal Rounded -ddmul833 multiply 1.0E-199 1e-198 -> 1.0E-397 Subnormal -ddmul834 multiply 2.0E-199 2e-198 -> 4.0E-397 Subnormal -ddmul835 multiply 4.0E-199 4e-198 -> 1.60E-396 Subnormal -ddmul836 multiply 10.0E-199 10e-198 -> 1.000E-395 Subnormal -ddmul837 multiply 30.0E-199 30e-198 -> 9.000E-395 Subnormal -ddmul838 multiply 40.0E-199 40e-188 -> 1.6000E-384 Subnormal -ddmul839 multiply 40.0E-199 40e-187 -> 1.6000E-383 -ddmul840 multiply 40.0E-199 40e-186 -> 1.6000E-382 - --- Long operand overflow may be a different path -ddmul870 multiply 100 9.999E+383 -> Infinity Inexact Overflow Rounded -ddmul871 multiply 100 -9.999E+383 -> -Infinity Inexact Overflow Rounded -ddmul872 multiply 9.999E+383 100 -> Infinity Inexact Overflow Rounded -ddmul873 multiply -9.999E+383 100 -> -Infinity Inexact Overflow Rounded - --- check for double-rounded subnormals -ddmul881 multiply 1.2347E-355 1.2347E-40 -> 1.524E-395 Inexact Rounded Subnormal Underflow -ddmul882 multiply 1.234E-355 1.234E-40 -> 1.523E-395 Inexact Rounded Subnormal Underflow -ddmul883 multiply 1.23E-355 1.23E-40 -> 1.513E-395 Inexact Rounded Subnormal Underflow -ddmul884 multiply 1.2E-355 1.2E-40 -> 1.44E-395 Subnormal -ddmul885 multiply 1.2E-355 1.2E-41 -> 1.44E-396 Subnormal -ddmul886 multiply 1.2E-355 1.2E-42 -> 1.4E-397 Subnormal Inexact Rounded Underflow -ddmul887 multiply 1.2E-355 1.3E-42 -> 1.6E-397 Subnormal Inexact Rounded Underflow -ddmul888 multiply 1.3E-355 1.3E-42 -> 1.7E-397 Subnormal Inexact Rounded Underflow -ddmul889 multiply 1.3E-355 1.3E-43 -> 2E-398 Subnormal Inexact Rounded Underflow -ddmul890 multiply 1.3E-356 1.3E-43 -> 0E-398 Clamped Subnormal Inexact Rounded Underflow - -ddmul891 multiply 1.2345E-39 1.234E-355 -> 1.5234E-394 Inexact Rounded Subnormal Underflow -ddmul892 multiply 1.23456E-39 1.234E-355 -> 1.5234E-394 Inexact Rounded Subnormal Underflow -ddmul893 multiply 1.2345E-40 1.234E-355 -> 1.523E-395 Inexact Rounded Subnormal Underflow -ddmul894 multiply 1.23456E-40 1.234E-355 -> 1.523E-395 Inexact Rounded Subnormal Underflow -ddmul895 multiply 1.2345E-41 1.234E-355 -> 1.52E-396 Inexact Rounded Subnormal Underflow -ddmul896 multiply 1.23456E-41 1.234E-355 -> 1.52E-396 Inexact Rounded Subnormal Underflow - --- Now explore the case where we get a normal result with Underflow --- 1 234567890123456 -ddmul900 multiply 0.3000000000E-191 0.3000000000E-191 -> 9.00000000000000E-384 Subnormal Rounded -ddmul901 multiply 0.3000000001E-191 0.3000000001E-191 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded -ddmul902 multiply 9.999999999999999E-383 0.0999999999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded -ddmul903 multiply 9.999999999999999E-383 0.09999999999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded -ddmul904 multiply 9.999999999999999E-383 0.099999999999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded -ddmul905 multiply 9.999999999999999E-383 0.0999999999999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded --- The next rounds to Nmin (b**emin); this is the distinguishing case --- for detecting tininess (before or after rounding) -- if after --- rounding then the result would be the same, but the Underflow flag --- would not be set -ddmul906 multiply 9.999999999999999E-383 0.09999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded --- prove those operands were exact -ddmul907 multiply 9.999999999999999E-383 1 -> 9.999999999999999E-383 -ddmul908 multiply 1 0.09999999999999999 -> 0.09999999999999999 - --- reducing tiniest -ddmul910 multiply 1e-398 0.99 -> 1E-398 Subnormal Inexact Rounded Underflow -ddmul911 multiply 1e-398 0.75 -> 1E-398 Subnormal Inexact Rounded Underflow -ddmul912 multiply 1e-398 0.5 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -ddmul913 multiply 1e-398 0.25 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -ddmul914 multiply 1e-398 0.01 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped - --- hugest -ddmul920 multiply 9999999999999999 9999999999999999 -> 9.999999999999998E+31 Inexact Rounded - --- power-of-ten edge cases -ddmul1001 multiply 1 10 -> 10 -ddmul1002 multiply 1 100 -> 100 -ddmul1003 multiply 1 1000 -> 1000 -ddmul1004 multiply 1 10000 -> 10000 -ddmul1005 multiply 1 100000 -> 100000 -ddmul1006 multiply 1 1000000 -> 1000000 -ddmul1007 multiply 1 10000000 -> 10000000 -ddmul1008 multiply 1 100000000 -> 100000000 -ddmul1009 multiply 1 1000000000 -> 1000000000 -ddmul1010 multiply 1 10000000000 -> 10000000000 -ddmul1011 multiply 1 100000000000 -> 100000000000 -ddmul1012 multiply 1 1000000000000 -> 1000000000000 -ddmul1013 multiply 1 10000000000000 -> 10000000000000 -ddmul1014 multiply 1 100000000000000 -> 100000000000000 -ddmul1015 multiply 1 1000000000000000 -> 1000000000000000 -ddmul1021 multiply 10 1 -> 10 -ddmul1022 multiply 10 10 -> 100 -ddmul1023 multiply 10 100 -> 1000 -ddmul1024 multiply 10 1000 -> 10000 -ddmul1025 multiply 10 10000 -> 100000 -ddmul1026 multiply 10 100000 -> 1000000 -ddmul1027 multiply 10 1000000 -> 10000000 -ddmul1028 multiply 10 10000000 -> 100000000 -ddmul1029 multiply 10 100000000 -> 1000000000 -ddmul1030 multiply 10 1000000000 -> 10000000000 -ddmul1031 multiply 10 10000000000 -> 100000000000 -ddmul1032 multiply 10 100000000000 -> 1000000000000 -ddmul1033 multiply 10 1000000000000 -> 10000000000000 -ddmul1034 multiply 10 10000000000000 -> 100000000000000 -ddmul1035 multiply 10 100000000000000 -> 1000000000000000 -ddmul1041 multiply 100 0.1 -> 10.0 -ddmul1042 multiply 100 1 -> 100 -ddmul1043 multiply 100 10 -> 1000 -ddmul1044 multiply 100 100 -> 10000 -ddmul1045 multiply 100 1000 -> 100000 -ddmul1046 multiply 100 10000 -> 1000000 -ddmul1047 multiply 100 100000 -> 10000000 -ddmul1048 multiply 100 1000000 -> 100000000 -ddmul1049 multiply 100 10000000 -> 1000000000 -ddmul1050 multiply 100 100000000 -> 10000000000 -ddmul1051 multiply 100 1000000000 -> 100000000000 -ddmul1052 multiply 100 10000000000 -> 1000000000000 -ddmul1053 multiply 100 100000000000 -> 10000000000000 -ddmul1054 multiply 100 1000000000000 -> 100000000000000 -ddmul1055 multiply 100 10000000000000 -> 1000000000000000 -ddmul1061 multiply 1000 0.01 -> 10.00 -ddmul1062 multiply 1000 0.1 -> 100.0 -ddmul1063 multiply 1000 1 -> 1000 -ddmul1064 multiply 1000 10 -> 10000 -ddmul1065 multiply 1000 100 -> 100000 -ddmul1066 multiply 1000 1000 -> 1000000 -ddmul1067 multiply 1000 10000 -> 10000000 -ddmul1068 multiply 1000 100000 -> 100000000 -ddmul1069 multiply 1000 1000000 -> 1000000000 -ddmul1070 multiply 1000 10000000 -> 10000000000 -ddmul1071 multiply 1000 100000000 -> 100000000000 -ddmul1072 multiply 1000 1000000000 -> 1000000000000 -ddmul1073 multiply 1000 10000000000 -> 10000000000000 -ddmul1074 multiply 1000 100000000000 -> 100000000000000 -ddmul1075 multiply 1000 1000000000000 -> 1000000000000000 -ddmul1081 multiply 10000 0.001 -> 10.000 -ddmul1082 multiply 10000 0.01 -> 100.00 -ddmul1083 multiply 10000 0.1 -> 1000.0 -ddmul1084 multiply 10000 1 -> 10000 -ddmul1085 multiply 10000 10 -> 100000 -ddmul1086 multiply 10000 100 -> 1000000 -ddmul1087 multiply 10000 1000 -> 10000000 -ddmul1088 multiply 10000 10000 -> 100000000 -ddmul1089 multiply 10000 100000 -> 1000000000 -ddmul1090 multiply 10000 1000000 -> 10000000000 -ddmul1091 multiply 10000 10000000 -> 100000000000 -ddmul1092 multiply 10000 100000000 -> 1000000000000 -ddmul1093 multiply 10000 1000000000 -> 10000000000000 -ddmul1094 multiply 10000 10000000000 -> 100000000000000 -ddmul1095 multiply 10000 100000000000 -> 1000000000000000 - -ddmul1097 multiply 10000 99999999999 -> 999999999990000 -ddmul1098 multiply 10000 99999999999 -> 999999999990000 - - --- Null tests -ddmul9990 multiply 10 # -> NaN Invalid_operation -ddmul9991 multiply # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddNextMinus.decTest b/qdecimal/test/tc_full/ddNextMinus.decTest deleted file mode 100644 index 19ec400..0000000 --- a/qdecimal/test/tc_full/ddNextMinus.decTest +++ /dev/null @@ -1,126 +0,0 @@ ------------------------------------------------------------------------- --- ddNextMinus.decTest -- decDouble next that is less [754r nextdown] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddnextm001 nextminus 0.9999999999999995 -> 0.9999999999999994 -ddnextm002 nextminus 0.9999999999999996 -> 0.9999999999999995 -ddnextm003 nextminus 0.9999999999999997 -> 0.9999999999999996 -ddnextm004 nextminus 0.9999999999999998 -> 0.9999999999999997 -ddnextm005 nextminus 0.9999999999999999 -> 0.9999999999999998 -ddnextm006 nextminus 1.000000000000000 -> 0.9999999999999999 -ddnextm007 nextminus 1.0 -> 0.9999999999999999 -ddnextm008 nextminus 1 -> 0.9999999999999999 -ddnextm009 nextminus 1.000000000000001 -> 1.000000000000000 -ddnextm010 nextminus 1.000000000000002 -> 1.000000000000001 -ddnextm011 nextminus 1.000000000000003 -> 1.000000000000002 -ddnextm012 nextminus 1.000000000000004 -> 1.000000000000003 -ddnextm013 nextminus 1.000000000000005 -> 1.000000000000004 -ddnextm014 nextminus 1.000000000000006 -> 1.000000000000005 -ddnextm015 nextminus 1.000000000000007 -> 1.000000000000006 -ddnextm016 nextminus 1.000000000000008 -> 1.000000000000007 -ddnextm017 nextminus 1.000000000000009 -> 1.000000000000008 -ddnextm018 nextminus 1.000000000000010 -> 1.000000000000009 -ddnextm019 nextminus 1.000000000000011 -> 1.000000000000010 -ddnextm020 nextminus 1.000000000000012 -> 1.000000000000011 - -ddnextm021 nextminus -0.9999999999999995 -> -0.9999999999999996 -ddnextm022 nextminus -0.9999999999999996 -> -0.9999999999999997 -ddnextm023 nextminus -0.9999999999999997 -> -0.9999999999999998 -ddnextm024 nextminus -0.9999999999999998 -> -0.9999999999999999 -ddnextm025 nextminus -0.9999999999999999 -> -1.000000000000000 -ddnextm026 nextminus -1.000000000000000 -> -1.000000000000001 -ddnextm027 nextminus -1.0 -> -1.000000000000001 -ddnextm028 nextminus -1 -> -1.000000000000001 -ddnextm029 nextminus -1.000000000000001 -> -1.000000000000002 -ddnextm030 nextminus -1.000000000000002 -> -1.000000000000003 -ddnextm031 nextminus -1.000000000000003 -> -1.000000000000004 -ddnextm032 nextminus -1.000000000000004 -> -1.000000000000005 -ddnextm033 nextminus -1.000000000000005 -> -1.000000000000006 -ddnextm034 nextminus -1.000000000000006 -> -1.000000000000007 -ddnextm035 nextminus -1.000000000000007 -> -1.000000000000008 -ddnextm036 nextminus -1.000000000000008 -> -1.000000000000009 -ddnextm037 nextminus -1.000000000000009 -> -1.000000000000010 -ddnextm038 nextminus -1.000000000000010 -> -1.000000000000011 -ddnextm039 nextminus -1.000000000000011 -> -1.000000000000012 - --- ultra-tiny inputs -ddnextm062 nextminus 1E-398 -> 0E-398 -ddnextm065 nextminus -1E-398 -> -2E-398 - --- Zeros -ddnextm100 nextminus -0 -> -1E-398 -ddnextm101 nextminus 0 -> -1E-398 -ddnextm102 nextminus 0.00 -> -1E-398 -ddnextm103 nextminus -0.00 -> -1E-398 -ddnextm104 nextminus 0E-300 -> -1E-398 -ddnextm105 nextminus 0E+300 -> -1E-398 -ddnextm106 nextminus 0E+30000 -> -1E-398 -ddnextm107 nextminus -0E+30000 -> -1E-398 - --- specials -ddnextm150 nextminus Inf -> 9.999999999999999E+384 -ddnextm151 nextminus -Inf -> -Infinity -ddnextm152 nextminus NaN -> NaN -ddnextm153 nextminus sNaN -> NaN Invalid_operation -ddnextm154 nextminus NaN77 -> NaN77 -ddnextm155 nextminus sNaN88 -> NaN88 Invalid_operation -ddnextm156 nextminus -NaN -> -NaN -ddnextm157 nextminus -sNaN -> -NaN Invalid_operation -ddnextm158 nextminus -NaN77 -> -NaN77 -ddnextm159 nextminus -sNaN88 -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -ddnextm170 nextminus 9.999999999999999E+384 -> 9.999999999999998E+384 -ddnextm171 nextminus 9.999999999999998E+384 -> 9.999999999999997E+384 -ddnextm172 nextminus 1E-383 -> 9.99999999999999E-384 -ddnextm173 nextminus 1.000000000000000E-383 -> 9.99999999999999E-384 -ddnextm174 nextminus 9E-398 -> 8E-398 -ddnextm175 nextminus 9.9E-397 -> 9.8E-397 -ddnextm176 nextminus 9.99999999999E-387 -> 9.99999999998E-387 -ddnextm177 nextminus 9.99999999999999E-384 -> 9.99999999999998E-384 -ddnextm178 nextminus 9.99999999999998E-384 -> 9.99999999999997E-384 -ddnextm179 nextminus 9.99999999999997E-384 -> 9.99999999999996E-384 -ddnextm180 nextminus 0E-398 -> -1E-398 -ddnextm181 nextminus 1E-398 -> 0E-398 -ddnextm182 nextminus 2E-398 -> 1E-398 - -ddnextm183 nextminus -0E-398 -> -1E-398 -ddnextm184 nextminus -1E-398 -> -2E-398 -ddnextm185 nextminus -2E-398 -> -3E-398 -ddnextm186 nextminus -10E-398 -> -1.1E-397 -ddnextm187 nextminus -100E-398 -> -1.01E-396 -ddnextm188 nextminus -100000E-398 -> -1.00001E-393 -ddnextm189 nextminus -1.00000000000E-383 -> -1.000000000000001E-383 -ddnextm190 nextminus -1.000000000000000E-383 -> -1.000000000000001E-383 -ddnextm191 nextminus -1E-383 -> -1.000000000000001E-383 -ddnextm192 nextminus -9.999999999999998E+384 -> -9.999999999999999E+384 -ddnextm193 nextminus -9.999999999999999E+384 -> -Infinity - --- Null tests -ddnextm900 nextminus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddNextPlus.decTest b/qdecimal/test/tc_full/ddNextPlus.decTest deleted file mode 100644 index 4ccc54a..0000000 --- a/qdecimal/test/tc_full/ddNextPlus.decTest +++ /dev/null @@ -1,124 +0,0 @@ ------------------------------------------------------------------------- --- ddNextPlus.decTest -- decDouble next that is greater [754r nextup] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddnextp001 nextplus 0.9999999999999995 -> 0.9999999999999996 -ddnextp002 nextplus 0.9999999999999996 -> 0.9999999999999997 -ddnextp003 nextplus 0.9999999999999997 -> 0.9999999999999998 -ddnextp004 nextplus 0.9999999999999998 -> 0.9999999999999999 -ddnextp005 nextplus 0.9999999999999999 -> 1.000000000000000 -ddnextp006 nextplus 1.000000000000000 -> 1.000000000000001 -ddnextp007 nextplus 1.0 -> 1.000000000000001 -ddnextp008 nextplus 1 -> 1.000000000000001 -ddnextp009 nextplus 1.000000000000001 -> 1.000000000000002 -ddnextp010 nextplus 1.000000000000002 -> 1.000000000000003 -ddnextp011 nextplus 1.000000000000003 -> 1.000000000000004 -ddnextp012 nextplus 1.000000000000004 -> 1.000000000000005 -ddnextp013 nextplus 1.000000000000005 -> 1.000000000000006 -ddnextp014 nextplus 1.000000000000006 -> 1.000000000000007 -ddnextp015 nextplus 1.000000000000007 -> 1.000000000000008 -ddnextp016 nextplus 1.000000000000008 -> 1.000000000000009 -ddnextp017 nextplus 1.000000000000009 -> 1.000000000000010 -ddnextp018 nextplus 1.000000000000010 -> 1.000000000000011 -ddnextp019 nextplus 1.000000000000011 -> 1.000000000000012 - -ddnextp021 nextplus -0.9999999999999995 -> -0.9999999999999994 -ddnextp022 nextplus -0.9999999999999996 -> -0.9999999999999995 -ddnextp023 nextplus -0.9999999999999997 -> -0.9999999999999996 -ddnextp024 nextplus -0.9999999999999998 -> -0.9999999999999997 -ddnextp025 nextplus -0.9999999999999999 -> -0.9999999999999998 -ddnextp026 nextplus -1.000000000000000 -> -0.9999999999999999 -ddnextp027 nextplus -1.0 -> -0.9999999999999999 -ddnextp028 nextplus -1 -> -0.9999999999999999 -ddnextp029 nextplus -1.000000000000001 -> -1.000000000000000 -ddnextp030 nextplus -1.000000000000002 -> -1.000000000000001 -ddnextp031 nextplus -1.000000000000003 -> -1.000000000000002 -ddnextp032 nextplus -1.000000000000004 -> -1.000000000000003 -ddnextp033 nextplus -1.000000000000005 -> -1.000000000000004 -ddnextp034 nextplus -1.000000000000006 -> -1.000000000000005 -ddnextp035 nextplus -1.000000000000007 -> -1.000000000000006 -ddnextp036 nextplus -1.000000000000008 -> -1.000000000000007 -ddnextp037 nextplus -1.000000000000009 -> -1.000000000000008 -ddnextp038 nextplus -1.000000000000010 -> -1.000000000000009 -ddnextp039 nextplus -1.000000000000011 -> -1.000000000000010 -ddnextp040 nextplus -1.000000000000012 -> -1.000000000000011 - --- Zeros -ddnextp100 nextplus 0 -> 1E-398 -ddnextp101 nextplus 0.00 -> 1E-398 -ddnextp102 nextplus 0E-300 -> 1E-398 -ddnextp103 nextplus 0E+300 -> 1E-398 -ddnextp104 nextplus 0E+30000 -> 1E-398 -ddnextp105 nextplus -0 -> 1E-398 -ddnextp106 nextplus -0.00 -> 1E-398 -ddnextp107 nextplus -0E-300 -> 1E-398 -ddnextp108 nextplus -0E+300 -> 1E-398 -ddnextp109 nextplus -0E+30000 -> 1E-398 - --- specials -ddnextp150 nextplus Inf -> Infinity -ddnextp151 nextplus -Inf -> -9.999999999999999E+384 -ddnextp152 nextplus NaN -> NaN -ddnextp153 nextplus sNaN -> NaN Invalid_operation -ddnextp154 nextplus NaN77 -> NaN77 -ddnextp155 nextplus sNaN88 -> NaN88 Invalid_operation -ddnextp156 nextplus -NaN -> -NaN -ddnextp157 nextplus -sNaN -> -NaN Invalid_operation -ddnextp158 nextplus -NaN77 -> -NaN77 -ddnextp159 nextplus -sNaN88 -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -ddnextp170 nextplus -9.999999999999999E+384 -> -9.999999999999998E+384 -ddnextp171 nextplus -9.999999999999998E+384 -> -9.999999999999997E+384 -ddnextp172 nextplus -1E-383 -> -9.99999999999999E-384 -ddnextp173 nextplus -1.000000000000000E-383 -> -9.99999999999999E-384 -ddnextp174 nextplus -9E-398 -> -8E-398 -ddnextp175 nextplus -9.9E-397 -> -9.8E-397 -ddnextp176 nextplus -9.99999999999E-387 -> -9.99999999998E-387 -ddnextp177 nextplus -9.99999999999999E-384 -> -9.99999999999998E-384 -ddnextp178 nextplus -9.99999999999998E-384 -> -9.99999999999997E-384 -ddnextp179 nextplus -9.99999999999997E-384 -> -9.99999999999996E-384 -ddnextp180 nextplus -0E-398 -> 1E-398 -ddnextp181 nextplus -1E-398 -> -0E-398 -ddnextp182 nextplus -2E-398 -> -1E-398 - -ddnextp183 nextplus 0E-398 -> 1E-398 -ddnextp184 nextplus 1E-398 -> 2E-398 -ddnextp185 nextplus 2E-398 -> 3E-398 -ddnextp186 nextplus 10E-398 -> 1.1E-397 -ddnextp187 nextplus 100E-398 -> 1.01E-396 -ddnextp188 nextplus 100000E-398 -> 1.00001E-393 -ddnextp189 nextplus 1.00000000000E-383 -> 1.000000000000001E-383 -ddnextp190 nextplus 1.000000000000000E-383 -> 1.000000000000001E-383 -ddnextp191 nextplus 1E-383 -> 1.000000000000001E-383 -ddnextp192 nextplus 9.999999999999998E+384 -> 9.999999999999999E+384 -ddnextp193 nextplus 9.999999999999999E+384 -> Infinity - --- Null tests -ddnextp900 nextplus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddNextToward.decTest b/qdecimal/test/tc_full/ddNextToward.decTest deleted file mode 100644 index 4c5b48b..0000000 --- a/qdecimal/test/tc_full/ddNextToward.decTest +++ /dev/null @@ -1,374 +0,0 @@ ------------------------------------------------------------------------- --- ddNextToward.decTest -- decDouble next toward rhs [754r nextafter] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check with a scattering of numerics -ddnextt001 nexttoward 10 10 -> 10 -ddnextt002 nexttoward -10 -10 -> -10 -ddnextt003 nexttoward 1 10 -> 1.000000000000001 -ddnextt004 nexttoward 1 -10 -> 0.9999999999999999 -ddnextt005 nexttoward -1 10 -> -0.9999999999999999 -ddnextt006 nexttoward -1 -10 -> -1.000000000000001 -ddnextt007 nexttoward 0 10 -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt008 nexttoward 0 -10 -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt009 nexttoward 9.999999999999999E+384 +Infinity -> Infinity Overflow Inexact Rounded -ddnextt010 nexttoward -9.999999999999999E+384 -Infinity -> -Infinity Overflow Inexact Rounded -ddnextt011 nexttoward 9.999999999999999 10 -> 10.00000000000000 -ddnextt012 nexttoward 10 9.999999999999999 -> 9.999999999999999 -ddnextt013 nexttoward -9.999999999999999 -10 -> -10.00000000000000 -ddnextt014 nexttoward -10 -9.999999999999999 -> -9.999999999999999 -ddnextt015 nexttoward 9.999999999999998 10 -> 9.999999999999999 -ddnextt016 nexttoward 10 9.999999999999998 -> 9.999999999999999 -ddnextt017 nexttoward -9.999999999999998 -10 -> -9.999999999999999 -ddnextt018 nexttoward -10 -9.999999999999998 -> -9.999999999999999 - -------- lhs=rhs --- finites -ddnextt101 nexttoward 7 7 -> 7 -ddnextt102 nexttoward -7 -7 -> -7 -ddnextt103 nexttoward 75 75 -> 75 -ddnextt104 nexttoward -75 -75 -> -75 -ddnextt105 nexttoward 7.50 7.5 -> 7.50 -ddnextt106 nexttoward -7.50 -7.50 -> -7.50 -ddnextt107 nexttoward 7.500 7.5000 -> 7.500 -ddnextt108 nexttoward -7.500 -7.5 -> -7.500 - --- zeros -ddnextt111 nexttoward 0 0 -> 0 -ddnextt112 nexttoward -0 -0 -> -0 -ddnextt113 nexttoward 0E+4 0 -> 0E+4 -ddnextt114 nexttoward -0E+4 -0 -> -0E+4 -ddnextt115 nexttoward 0.00000000000 0.000000000000 -> 0E-11 -ddnextt116 nexttoward -0.00000000000 -0.00 -> -0E-11 -ddnextt117 nexttoward 0E-141 0 -> 0E-141 -ddnextt118 nexttoward -0E-141 -000 -> -0E-141 - --- full coefficients, alternating bits -ddnextt121 nexttoward 268268268 268268268 -> 268268268 -ddnextt122 nexttoward -268268268 -268268268 -> -268268268 -ddnextt123 nexttoward 134134134 134134134 -> 134134134 -ddnextt124 nexttoward -134134134 -134134134 -> -134134134 - --- Nmax, Nmin, Ntiny -ddnextt131 nexttoward 9.999999999999999E+384 9.999999999999999E+384 -> 9.999999999999999E+384 -ddnextt132 nexttoward 1E-383 1E-383 -> 1E-383 -ddnextt133 nexttoward 1.000000000000000E-383 1.000000000000000E-383 -> 1.000000000000000E-383 -ddnextt134 nexttoward 1E-398 1E-398 -> 1E-398 - -ddnextt135 nexttoward -1E-398 -1E-398 -> -1E-398 -ddnextt136 nexttoward -1.000000000000000E-383 -1.000000000000000E-383 -> -1.000000000000000E-383 -ddnextt137 nexttoward -1E-383 -1E-383 -> -1E-383 -ddnextt138 nexttoward -9.999999999999999E+384 -9.999999999999999E+384 -> -9.999999999999999E+384 - -------- lhs 0.9999999999999996 -ddnextt202 nexttoward 0.9999999999999996 Infinity -> 0.9999999999999997 -ddnextt203 nexttoward 0.9999999999999997 Infinity -> 0.9999999999999998 -ddnextt204 nexttoward 0.9999999999999998 Infinity -> 0.9999999999999999 -ddnextt205 nexttoward 0.9999999999999999 Infinity -> 1.000000000000000 -ddnextt206 nexttoward 1.000000000000000 Infinity -> 1.000000000000001 -ddnextt207 nexttoward 1.0 Infinity -> 1.000000000000001 -ddnextt208 nexttoward 1 Infinity -> 1.000000000000001 -ddnextt209 nexttoward 1.000000000000001 Infinity -> 1.000000000000002 -ddnextt210 nexttoward 1.000000000000002 Infinity -> 1.000000000000003 -ddnextt211 nexttoward 1.000000000000003 Infinity -> 1.000000000000004 -ddnextt212 nexttoward 1.000000000000004 Infinity -> 1.000000000000005 -ddnextt213 nexttoward 1.000000000000005 Infinity -> 1.000000000000006 -ddnextt214 nexttoward 1.000000000000006 Infinity -> 1.000000000000007 -ddnextt215 nexttoward 1.000000000000007 Infinity -> 1.000000000000008 -ddnextt216 nexttoward 1.000000000000008 Infinity -> 1.000000000000009 -ddnextt217 nexttoward 1.000000000000009 Infinity -> 1.000000000000010 -ddnextt218 nexttoward 1.000000000000010 Infinity -> 1.000000000000011 -ddnextt219 nexttoward 1.000000000000011 Infinity -> 1.000000000000012 - -ddnextt221 nexttoward -0.9999999999999995 Infinity -> -0.9999999999999994 -ddnextt222 nexttoward -0.9999999999999996 Infinity -> -0.9999999999999995 -ddnextt223 nexttoward -0.9999999999999997 Infinity -> -0.9999999999999996 -ddnextt224 nexttoward -0.9999999999999998 Infinity -> -0.9999999999999997 -ddnextt225 nexttoward -0.9999999999999999 Infinity -> -0.9999999999999998 -ddnextt226 nexttoward -1.000000000000000 Infinity -> -0.9999999999999999 -ddnextt227 nexttoward -1.0 Infinity -> -0.9999999999999999 -ddnextt228 nexttoward -1 Infinity -> -0.9999999999999999 -ddnextt229 nexttoward -1.000000000000001 Infinity -> -1.000000000000000 -ddnextt230 nexttoward -1.000000000000002 Infinity -> -1.000000000000001 -ddnextt231 nexttoward -1.000000000000003 Infinity -> -1.000000000000002 -ddnextt232 nexttoward -1.000000000000004 Infinity -> -1.000000000000003 -ddnextt233 nexttoward -1.000000000000005 Infinity -> -1.000000000000004 -ddnextt234 nexttoward -1.000000000000006 Infinity -> -1.000000000000005 -ddnextt235 nexttoward -1.000000000000007 Infinity -> -1.000000000000006 -ddnextt236 nexttoward -1.000000000000008 Infinity -> -1.000000000000007 -ddnextt237 nexttoward -1.000000000000009 Infinity -> -1.000000000000008 -ddnextt238 nexttoward -1.000000000000010 Infinity -> -1.000000000000009 -ddnextt239 nexttoward -1.000000000000011 Infinity -> -1.000000000000010 -ddnextt240 nexttoward -1.000000000000012 Infinity -> -1.000000000000011 - --- Zeros -ddnextt300 nexttoward 0 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt301 nexttoward 0.00 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt302 nexttoward 0E-300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt303 nexttoward 0E+300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt304 nexttoward 0E+30000 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt305 nexttoward -0 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt306 nexttoward -0.00 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt307 nexttoward -0E-300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt308 nexttoward -0E+300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt309 nexttoward -0E+30000 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded - --- specials -ddnextt350 nexttoward Inf Infinity -> Infinity -ddnextt351 nexttoward -Inf Infinity -> -9.999999999999999E+384 -ddnextt352 nexttoward NaN Infinity -> NaN -ddnextt353 nexttoward sNaN Infinity -> NaN Invalid_operation -ddnextt354 nexttoward NaN77 Infinity -> NaN77 -ddnextt355 nexttoward sNaN88 Infinity -> NaN88 Invalid_operation -ddnextt356 nexttoward -NaN Infinity -> -NaN -ddnextt357 nexttoward -sNaN Infinity -> -NaN Invalid_operation -ddnextt358 nexttoward -NaN77 Infinity -> -NaN77 -ddnextt359 nexttoward -sNaN88 Infinity -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -ddnextt370 nexttoward -9.999999999999999E+384 Infinity -> -9.999999999999998E+384 -ddnextt371 nexttoward -9.999999999999998E+384 Infinity -> -9.999999999999997E+384 -ddnextt372 nexttoward -1E-383 Infinity -> -9.99999999999999E-384 Underflow Subnormal Inexact Rounded -ddnextt373 nexttoward -1.000000000000000E-383 Infinity -> -9.99999999999999E-384 Underflow Subnormal Inexact Rounded -ddnextt374 nexttoward -9E-398 Infinity -> -8E-398 Underflow Subnormal Inexact Rounded -ddnextt375 nexttoward -9.9E-397 Infinity -> -9.8E-397 Underflow Subnormal Inexact Rounded -ddnextt376 nexttoward -9.99999999999E-387 Infinity -> -9.99999999998E-387 Underflow Subnormal Inexact Rounded -ddnextt377 nexttoward -9.99999999999999E-384 Infinity -> -9.99999999999998E-384 Underflow Subnormal Inexact Rounded -ddnextt378 nexttoward -9.99999999999998E-384 Infinity -> -9.99999999999997E-384 Underflow Subnormal Inexact Rounded -ddnextt379 nexttoward -9.99999999999997E-384 Infinity -> -9.99999999999996E-384 Underflow Subnormal Inexact Rounded -ddnextt380 nexttoward -0E-398 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt381 nexttoward -1E-398 Infinity -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddnextt382 nexttoward -2E-398 Infinity -> -1E-398 Underflow Subnormal Inexact Rounded - -ddnextt383 nexttoward 0E-398 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt384 nexttoward 1E-398 Infinity -> 2E-398 Underflow Subnormal Inexact Rounded -ddnextt385 nexttoward 2E-398 Infinity -> 3E-398 Underflow Subnormal Inexact Rounded -ddnextt386 nexttoward 10E-398 Infinity -> 1.1E-397 Underflow Subnormal Inexact Rounded -ddnextt387 nexttoward 100E-398 Infinity -> 1.01E-396 Underflow Subnormal Inexact Rounded -ddnextt388 nexttoward 100000E-398 Infinity -> 1.00001E-393 Underflow Subnormal Inexact Rounded -ddnextt389 nexttoward 1.00000000000E-383 Infinity -> 1.000000000000001E-383 -ddnextt390 nexttoward 1.000000000000000E-383 Infinity -> 1.000000000000001E-383 -ddnextt391 nexttoward 1E-383 Infinity -> 1.000000000000001E-383 -ddnextt392 nexttoward 9.999999999999997E+384 Infinity -> 9.999999999999998E+384 -ddnextt393 nexttoward 9.999999999999998E+384 Infinity -> 9.999999999999999E+384 -ddnextt394 nexttoward 9.999999999999999E+384 Infinity -> Infinity Overflow Inexact Rounded - -------- lhs>rhs -ddnextt401 nexttoward 0.9999999999999995 -Infinity -> 0.9999999999999994 -ddnextt402 nexttoward 0.9999999999999996 -Infinity -> 0.9999999999999995 -ddnextt403 nexttoward 0.9999999999999997 -Infinity -> 0.9999999999999996 -ddnextt404 nexttoward 0.9999999999999998 -Infinity -> 0.9999999999999997 -ddnextt405 nexttoward 0.9999999999999999 -Infinity -> 0.9999999999999998 -ddnextt406 nexttoward 1.000000000000000 -Infinity -> 0.9999999999999999 -ddnextt407 nexttoward 1.0 -Infinity -> 0.9999999999999999 -ddnextt408 nexttoward 1 -Infinity -> 0.9999999999999999 -ddnextt409 nexttoward 1.000000000000001 -Infinity -> 1.000000000000000 -ddnextt410 nexttoward 1.000000000000002 -Infinity -> 1.000000000000001 -ddnextt411 nexttoward 1.000000000000003 -Infinity -> 1.000000000000002 -ddnextt412 nexttoward 1.000000000000004 -Infinity -> 1.000000000000003 -ddnextt413 nexttoward 1.000000000000005 -Infinity -> 1.000000000000004 -ddnextt414 nexttoward 1.000000000000006 -Infinity -> 1.000000000000005 -ddnextt415 nexttoward 1.000000000000007 -Infinity -> 1.000000000000006 -ddnextt416 nexttoward 1.000000000000008 -Infinity -> 1.000000000000007 -ddnextt417 nexttoward 1.000000000000009 -Infinity -> 1.000000000000008 -ddnextt418 nexttoward 1.000000000000010 -Infinity -> 1.000000000000009 -ddnextt419 nexttoward 1.000000000000011 -Infinity -> 1.000000000000010 -ddnextt420 nexttoward 1.000000000000012 -Infinity -> 1.000000000000011 - -ddnextt421 nexttoward -0.9999999999999995 -Infinity -> -0.9999999999999996 -ddnextt422 nexttoward -0.9999999999999996 -Infinity -> -0.9999999999999997 -ddnextt423 nexttoward -0.9999999999999997 -Infinity -> -0.9999999999999998 -ddnextt424 nexttoward -0.9999999999999998 -Infinity -> -0.9999999999999999 -ddnextt425 nexttoward -0.9999999999999999 -Infinity -> -1.000000000000000 -ddnextt426 nexttoward -1.000000000000000 -Infinity -> -1.000000000000001 -ddnextt427 nexttoward -1.0 -Infinity -> -1.000000000000001 -ddnextt428 nexttoward -1 -Infinity -> -1.000000000000001 -ddnextt429 nexttoward -1.000000000000001 -Infinity -> -1.000000000000002 -ddnextt430 nexttoward -1.000000000000002 -Infinity -> -1.000000000000003 -ddnextt431 nexttoward -1.000000000000003 -Infinity -> -1.000000000000004 -ddnextt432 nexttoward -1.000000000000004 -Infinity -> -1.000000000000005 -ddnextt433 nexttoward -1.000000000000005 -Infinity -> -1.000000000000006 -ddnextt434 nexttoward -1.000000000000006 -Infinity -> -1.000000000000007 -ddnextt435 nexttoward -1.000000000000007 -Infinity -> -1.000000000000008 -ddnextt436 nexttoward -1.000000000000008 -Infinity -> -1.000000000000009 -ddnextt437 nexttoward -1.000000000000009 -Infinity -> -1.000000000000010 -ddnextt438 nexttoward -1.000000000000010 -Infinity -> -1.000000000000011 -ddnextt439 nexttoward -1.000000000000011 -Infinity -> -1.000000000000012 - --- Zeros -ddnextt500 nexttoward -0 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt501 nexttoward 0 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt502 nexttoward 0.00 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt503 nexttoward -0.00 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt504 nexttoward 0E-300 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt505 nexttoward 0E+300 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt506 nexttoward 0E+30000 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt507 nexttoward -0E+30000 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded - --- specials -ddnextt550 nexttoward Inf -Infinity -> 9.999999999999999E+384 -ddnextt551 nexttoward -Inf -Infinity -> -Infinity -ddnextt552 nexttoward NaN -Infinity -> NaN -ddnextt553 nexttoward sNaN -Infinity -> NaN Invalid_operation -ddnextt554 nexttoward NaN77 -Infinity -> NaN77 -ddnextt555 nexttoward sNaN88 -Infinity -> NaN88 Invalid_operation -ddnextt556 nexttoward -NaN -Infinity -> -NaN -ddnextt557 nexttoward -sNaN -Infinity -> -NaN Invalid_operation -ddnextt558 nexttoward -NaN77 -Infinity -> -NaN77 -ddnextt559 nexttoward -sNaN88 -Infinity -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -ddnextt670 nexttoward 9.999999999999999E+384 -Infinity -> 9.999999999999998E+384 -ddnextt671 nexttoward 9.999999999999998E+384 -Infinity -> 9.999999999999997E+384 -ddnextt672 nexttoward 1E-383 -Infinity -> 9.99999999999999E-384 Underflow Subnormal Inexact Rounded -ddnextt673 nexttoward 1.000000000000000E-383 -Infinity -> 9.99999999999999E-384 Underflow Subnormal Inexact Rounded -ddnextt674 nexttoward 9E-398 -Infinity -> 8E-398 Underflow Subnormal Inexact Rounded -ddnextt675 nexttoward 9.9E-397 -Infinity -> 9.8E-397 Underflow Subnormal Inexact Rounded -ddnextt676 nexttoward 9.99999999999E-387 -Infinity -> 9.99999999998E-387 Underflow Subnormal Inexact Rounded -ddnextt677 nexttoward 9.99999999999999E-384 -Infinity -> 9.99999999999998E-384 Underflow Subnormal Inexact Rounded -ddnextt678 nexttoward 9.99999999999998E-384 -Infinity -> 9.99999999999997E-384 Underflow Subnormal Inexact Rounded -ddnextt679 nexttoward 9.99999999999997E-384 -Infinity -> 9.99999999999996E-384 Underflow Subnormal Inexact Rounded -ddnextt680 nexttoward 0E-398 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt681 nexttoward 1E-398 -Infinity -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddnextt682 nexttoward 2E-398 -Infinity -> 1E-398 Underflow Subnormal Inexact Rounded - -ddnextt683 nexttoward -0E-398 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt684 nexttoward -1E-398 -Infinity -> -2E-398 Underflow Subnormal Inexact Rounded -ddnextt685 nexttoward -2E-398 -Infinity -> -3E-398 Underflow Subnormal Inexact Rounded -ddnextt686 nexttoward -10E-398 -Infinity -> -1.1E-397 Underflow Subnormal Inexact Rounded -ddnextt687 nexttoward -100E-398 -Infinity -> -1.01E-396 Underflow Subnormal Inexact Rounded -ddnextt688 nexttoward -100000E-398 -Infinity -> -1.00001E-393 Underflow Subnormal Inexact Rounded -ddnextt689 nexttoward -1.00000000000E-383 -Infinity -> -1.000000000000001E-383 -ddnextt690 nexttoward -1.000000000000000E-383 -Infinity -> -1.000000000000001E-383 -ddnextt691 nexttoward -1E-383 -Infinity -> -1.000000000000001E-383 -ddnextt692 nexttoward -9.999999999999998E+384 -Infinity -> -9.999999999999999E+384 -ddnextt693 nexttoward -9.999999999999999E+384 -Infinity -> -Infinity Overflow Inexact Rounded - -------- Specials -ddnextt780 nexttoward -Inf -Inf -> -Infinity -ddnextt781 nexttoward -Inf -1000 -> -9.999999999999999E+384 -ddnextt782 nexttoward -Inf -1 -> -9.999999999999999E+384 -ddnextt783 nexttoward -Inf -0 -> -9.999999999999999E+384 -ddnextt784 nexttoward -Inf 0 -> -9.999999999999999E+384 -ddnextt785 nexttoward -Inf 1 -> -9.999999999999999E+384 -ddnextt786 nexttoward -Inf 1000 -> -9.999999999999999E+384 -ddnextt787 nexttoward -1000 -Inf -> -1000.000000000001 -ddnextt788 nexttoward -Inf -Inf -> -Infinity -ddnextt789 nexttoward -1 -Inf -> -1.000000000000001 -ddnextt790 nexttoward -0 -Inf -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt791 nexttoward 0 -Inf -> -1E-398 Underflow Subnormal Inexact Rounded -ddnextt792 nexttoward 1 -Inf -> 0.9999999999999999 -ddnextt793 nexttoward 1000 -Inf -> 999.9999999999999 -ddnextt794 nexttoward Inf -Inf -> 9.999999999999999E+384 - -ddnextt800 nexttoward Inf -Inf -> 9.999999999999999E+384 -ddnextt801 nexttoward Inf -1000 -> 9.999999999999999E+384 -ddnextt802 nexttoward Inf -1 -> 9.999999999999999E+384 -ddnextt803 nexttoward Inf -0 -> 9.999999999999999E+384 -ddnextt804 nexttoward Inf 0 -> 9.999999999999999E+384 -ddnextt805 nexttoward Inf 1 -> 9.999999999999999E+384 -ddnextt806 nexttoward Inf 1000 -> 9.999999999999999E+384 -ddnextt807 nexttoward Inf Inf -> Infinity -ddnextt808 nexttoward -1000 Inf -> -999.9999999999999 -ddnextt809 nexttoward -Inf Inf -> -9.999999999999999E+384 -ddnextt810 nexttoward -1 Inf -> -0.9999999999999999 -ddnextt811 nexttoward -0 Inf -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt812 nexttoward 0 Inf -> 1E-398 Underflow Subnormal Inexact Rounded -ddnextt813 nexttoward 1 Inf -> 1.000000000000001 -ddnextt814 nexttoward 1000 Inf -> 1000.000000000001 -ddnextt815 nexttoward Inf Inf -> Infinity - -ddnextt821 nexttoward NaN -Inf -> NaN -ddnextt822 nexttoward NaN -1000 -> NaN -ddnextt823 nexttoward NaN -1 -> NaN -ddnextt824 nexttoward NaN -0 -> NaN -ddnextt825 nexttoward NaN 0 -> NaN -ddnextt826 nexttoward NaN 1 -> NaN -ddnextt827 nexttoward NaN 1000 -> NaN -ddnextt828 nexttoward NaN Inf -> NaN -ddnextt829 nexttoward NaN NaN -> NaN -ddnextt830 nexttoward -Inf NaN -> NaN -ddnextt831 nexttoward -1000 NaN -> NaN -ddnextt832 nexttoward -1 NaN -> NaN -ddnextt833 nexttoward -0 NaN -> NaN -ddnextt834 nexttoward 0 NaN -> NaN -ddnextt835 nexttoward 1 NaN -> NaN -ddnextt836 nexttoward 1000 NaN -> NaN -ddnextt837 nexttoward Inf NaN -> NaN - -ddnextt841 nexttoward sNaN -Inf -> NaN Invalid_operation -ddnextt842 nexttoward sNaN -1000 -> NaN Invalid_operation -ddnextt843 nexttoward sNaN -1 -> NaN Invalid_operation -ddnextt844 nexttoward sNaN -0 -> NaN Invalid_operation -ddnextt845 nexttoward sNaN 0 -> NaN Invalid_operation -ddnextt846 nexttoward sNaN 1 -> NaN Invalid_operation -ddnextt847 nexttoward sNaN 1000 -> NaN Invalid_operation -ddnextt848 nexttoward sNaN NaN -> NaN Invalid_operation -ddnextt849 nexttoward sNaN sNaN -> NaN Invalid_operation -ddnextt850 nexttoward NaN sNaN -> NaN Invalid_operation -ddnextt851 nexttoward -Inf sNaN -> NaN Invalid_operation -ddnextt852 nexttoward -1000 sNaN -> NaN Invalid_operation -ddnextt853 nexttoward -1 sNaN -> NaN Invalid_operation -ddnextt854 nexttoward -0 sNaN -> NaN Invalid_operation -ddnextt855 nexttoward 0 sNaN -> NaN Invalid_operation -ddnextt856 nexttoward 1 sNaN -> NaN Invalid_operation -ddnextt857 nexttoward 1000 sNaN -> NaN Invalid_operation -ddnextt858 nexttoward Inf sNaN -> NaN Invalid_operation -ddnextt859 nexttoward NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddnextt861 nexttoward NaN1 -Inf -> NaN1 -ddnextt862 nexttoward +NaN2 -1000 -> NaN2 -ddnextt863 nexttoward NaN3 1000 -> NaN3 -ddnextt864 nexttoward NaN4 Inf -> NaN4 -ddnextt865 nexttoward NaN5 +NaN6 -> NaN5 -ddnextt866 nexttoward -Inf NaN7 -> NaN7 -ddnextt867 nexttoward -1000 NaN8 -> NaN8 -ddnextt868 nexttoward 1000 NaN9 -> NaN9 -ddnextt869 nexttoward Inf +NaN10 -> NaN10 -ddnextt871 nexttoward sNaN11 -Inf -> NaN11 Invalid_operation -ddnextt872 nexttoward sNaN12 -1000 -> NaN12 Invalid_operation -ddnextt873 nexttoward sNaN13 1000 -> NaN13 Invalid_operation -ddnextt874 nexttoward sNaN14 NaN17 -> NaN14 Invalid_operation -ddnextt875 nexttoward sNaN15 sNaN18 -> NaN15 Invalid_operation -ddnextt876 nexttoward NaN16 sNaN19 -> NaN19 Invalid_operation -ddnextt877 nexttoward -Inf +sNaN20 -> NaN20 Invalid_operation -ddnextt878 nexttoward -1000 sNaN21 -> NaN21 Invalid_operation -ddnextt879 nexttoward 1000 sNaN22 -> NaN22 Invalid_operation -ddnextt880 nexttoward Inf sNaN23 -> NaN23 Invalid_operation -ddnextt881 nexttoward +NaN25 +sNaN24 -> NaN24 Invalid_operation -ddnextt882 nexttoward -NaN26 NaN28 -> -NaN26 -ddnextt883 nexttoward -sNaN27 sNaN29 -> -NaN27 Invalid_operation -ddnextt884 nexttoward 1000 -NaN30 -> -NaN30 -ddnextt885 nexttoward 1000 -sNaN31 -> -NaN31 Invalid_operation - --- Null tests -ddnextt900 nexttoward 1 # -> NaN Invalid_operation -ddnextt901 nexttoward # 1 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddOr.decTest b/qdecimal/test/tc_full/ddOr.decTest deleted file mode 100644 index 37c2651..0000000 --- a/qdecimal/test/tc_full/ddOr.decTest +++ /dev/null @@ -1,292 +0,0 @@ ------------------------------------------------------------------------- --- ddOr.decTest -- digitwise logical OR for decDoubles -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check (truth table) -ddor001 or 0 0 -> 0 -ddor002 or 0 1 -> 1 -ddor003 or 1 0 -> 1 -ddor004 or 1 1 -> 1 -ddor005 or 1100 1010 -> 1110 --- and at msd and msd-1 -ddor006 or 0000000000000000 0000000000000000 -> 0 -ddor007 or 0000000000000000 1000000000000000 -> 1000000000000000 -ddor008 or 1000000000000000 0000000000000000 -> 1000000000000000 -ddor009 or 1000000000000000 1000000000000000 -> 1000000000000000 -ddor010 or 0000000000000000 0000000000000000 -> 0 -ddor011 or 0000000000000000 0100000000000000 -> 100000000000000 -ddor012 or 0100000000000000 0000000000000000 -> 100000000000000 -ddor013 or 0100000000000000 0100000000000000 -> 100000000000000 - --- Various lengths --- 1234567890123456 1234567890123456 1234567890123456 -ddor020 or 1111111111111111 1111111111111111 -> 1111111111111111 -ddor021 or 111111111111111 111111111111111 -> 111111111111111 -ddor022 or 11111111111111 11111111111111 -> 11111111111111 -ddor023 or 1111111111111 1111111111111 -> 1111111111111 -ddor024 or 111111111111 111111111111 -> 111111111111 -ddor025 or 11111111111 11111111111 -> 11111111111 -ddor026 or 1111111111 1111111111 -> 1111111111 -ddor027 or 111111111 111111111 -> 111111111 -ddor028 or 11111111 11111111 -> 11111111 -ddor029 or 1111111 1111111 -> 1111111 -ddor030 or 111111 111111 -> 111111 -ddor031 or 11111 11111 -> 11111 -ddor032 or 1111 1111 -> 1111 -ddor033 or 111 111 -> 111 -ddor034 or 11 11 -> 11 -ddor035 or 1 1 -> 1 -ddor036 or 0 0 -> 0 - -ddor042 or 111111110000000 1111111110000000 -> 1111111110000000 -ddor043 or 11111110000000 1000000100000000 -> 1011111110000000 -ddor044 or 1111110000000 1000001000000000 -> 1001111110000000 -ddor045 or 111110000000 1000010000000000 -> 1000111110000000 -ddor046 or 11110000000 1000100000000000 -> 1000111110000000 -ddor047 or 1110000000 1001000000000000 -> 1001001110000000 -ddor048 or 110000000 1010000000000000 -> 1010000110000000 -ddor049 or 10000000 1100000000000000 -> 1100000010000000 - -ddor090 or 011111111 111101111 -> 111111111 -ddor091 or 101111111 111101111 -> 111111111 -ddor092 or 110111111 111101111 -> 111111111 -ddor093 or 111011111 111101111 -> 111111111 -ddor094 or 111101111 111101111 -> 111101111 -ddor095 or 111110111 111101111 -> 111111111 -ddor096 or 111111011 111101111 -> 111111111 -ddor097 or 111111101 111101111 -> 111111111 -ddor098 or 111111110 111101111 -> 111111111 - -ddor100 or 111101111 011111111 -> 111111111 -ddor101 or 111101111 101111111 -> 111111111 -ddor102 or 111101111 110111111 -> 111111111 -ddor103 or 111101111 111011111 -> 111111111 -ddor104 or 111101111 111101111 -> 111101111 -ddor105 or 111101111 111110111 -> 111111111 -ddor106 or 111101111 111111011 -> 111111111 -ddor107 or 111101111 111111101 -> 111111111 -ddor108 or 111101111 111111110 -> 111111111 - --- non-0/1 should not be accepted, nor should signs -ddor220 or 111111112 111111111 -> NaN Invalid_operation -ddor221 or 333333333 333333333 -> NaN Invalid_operation -ddor222 or 555555555 555555555 -> NaN Invalid_operation -ddor223 or 777777777 777777777 -> NaN Invalid_operation -ddor224 or 999999999 999999999 -> NaN Invalid_operation -ddor225 or 222222222 999999999 -> NaN Invalid_operation -ddor226 or 444444444 999999999 -> NaN Invalid_operation -ddor227 or 666666666 999999999 -> NaN Invalid_operation -ddor228 or 888888888 999999999 -> NaN Invalid_operation -ddor229 or 999999999 222222222 -> NaN Invalid_operation -ddor230 or 999999999 444444444 -> NaN Invalid_operation -ddor231 or 999999999 666666666 -> NaN Invalid_operation -ddor232 or 999999999 888888888 -> NaN Invalid_operation --- a few randoms -ddor240 or 567468689 -934981942 -> NaN Invalid_operation -ddor241 or 567367689 934981942 -> NaN Invalid_operation -ddor242 or -631917772 -706014634 -> NaN Invalid_operation -ddor243 or -756253257 138579234 -> NaN Invalid_operation -ddor244 or 835590149 567435400 -> NaN Invalid_operation --- test MSD -ddor250 or 2000000000000000 1000000000000000 -> NaN Invalid_operation -ddor251 or 7000000000000000 1000000000000000 -> NaN Invalid_operation -ddor252 or 8000000000000000 1000000000000000 -> NaN Invalid_operation -ddor253 or 9000000000000000 1000000000000000 -> NaN Invalid_operation -ddor254 or 2000000000000000 0000000000000000 -> NaN Invalid_operation -ddor255 or 7000000000000000 0000000000000000 -> NaN Invalid_operation -ddor256 or 8000000000000000 0000000000000000 -> NaN Invalid_operation -ddor257 or 9000000000000000 0000000000000000 -> NaN Invalid_operation -ddor258 or 1000000000000000 2000000000000000 -> NaN Invalid_operation -ddor259 or 1000000000000000 7000000000000000 -> NaN Invalid_operation -ddor260 or 1000000000000000 8000000000000000 -> NaN Invalid_operation -ddor261 or 1000000000000000 9000000000000000 -> NaN Invalid_operation -ddor262 or 0000000000000000 2000000000000000 -> NaN Invalid_operation -ddor263 or 0000000000000000 7000000000000000 -> NaN Invalid_operation -ddor264 or 0000000000000000 8000000000000000 -> NaN Invalid_operation -ddor265 or 0000000000000000 9000000000000000 -> NaN Invalid_operation --- test MSD-1 -ddor270 or 0200001000000000 1000100000000010 -> NaN Invalid_operation -ddor271 or 0700000100000000 1000010000000100 -> NaN Invalid_operation -ddor272 or 0800000010000000 1000001000001000 -> NaN Invalid_operation -ddor273 or 0900000001000000 1000000100010000 -> NaN Invalid_operation -ddor274 or 1000000000100000 0200000010100000 -> NaN Invalid_operation -ddor275 or 1000000000010000 0700000001000000 -> NaN Invalid_operation -ddor276 or 1000000000001000 0800000010100000 -> NaN Invalid_operation -ddor277 or 1000000000000100 0900000000010000 -> NaN Invalid_operation --- test LSD -ddor280 or 0010000000000002 1000000100000001 -> NaN Invalid_operation -ddor281 or 0001000000000007 1000001000000011 -> NaN Invalid_operation -ddor282 or 0000100000000008 1000010000000001 -> NaN Invalid_operation -ddor283 or 0000010000000009 1000100000000001 -> NaN Invalid_operation -ddor284 or 1000001000000000 0001000000000002 -> NaN Invalid_operation -ddor285 or 1000000100000000 0010000000000007 -> NaN Invalid_operation -ddor286 or 1000000010000000 0100000000000008 -> NaN Invalid_operation -ddor287 or 1000000001000000 1000000000000009 -> NaN Invalid_operation --- test Middie -ddor288 or 0010000020000000 1000001000000000 -> NaN Invalid_operation -ddor289 or 0001000070000001 1000000100000000 -> NaN Invalid_operation -ddor290 or 0000100080000010 1000000010000000 -> NaN Invalid_operation -ddor291 or 0000010090000100 1000000001000000 -> NaN Invalid_operation -ddor292 or 1000001000001000 0000000020100000 -> NaN Invalid_operation -ddor293 or 1000000100010000 0000000070010000 -> NaN Invalid_operation -ddor294 or 1000000010100000 0000000080001000 -> NaN Invalid_operation -ddor295 or 1000000001000000 0000000090000100 -> NaN Invalid_operation --- signs -ddor296 or -1000000001000000 -0000010000000100 -> NaN Invalid_operation -ddor297 or -1000000001000000 0000000010000100 -> NaN Invalid_operation -ddor298 or 1000000001000000 -0000001000000100 -> NaN Invalid_operation -ddor299 or 1000000001000000 0000000011000100 -> 1000000011000100 - --- Nmax, Nmin, Ntiny-like -ddor331 or 2 9.99999999E+199 -> NaN Invalid_operation -ddor332 or 3 1E-199 -> NaN Invalid_operation -ddor333 or 4 1.00000000E-199 -> NaN Invalid_operation -ddor334 or 5 1E-100 -> NaN Invalid_operation -ddor335 or 6 -1E-100 -> NaN Invalid_operation -ddor336 or 7 -1.00000000E-199 -> NaN Invalid_operation -ddor337 or 8 -1E-199 -> NaN Invalid_operation -ddor338 or 9 -9.99999999E+199 -> NaN Invalid_operation -ddor341 or 9.99999999E+299 -18 -> NaN Invalid_operation -ddor342 or 1E-299 01 -> NaN Invalid_operation -ddor343 or 1.00000000E-299 -18 -> NaN Invalid_operation -ddor344 or 1E-100 18 -> NaN Invalid_operation -ddor345 or -1E-100 -10 -> NaN Invalid_operation -ddor346 or -1.00000000E-299 18 -> NaN Invalid_operation -ddor347 or -1E-299 10 -> NaN Invalid_operation -ddor348 or -9.99999999E+299 -18 -> NaN Invalid_operation - --- A few other non-integers -ddor361 or 1.0 1 -> NaN Invalid_operation -ddor362 or 1E+1 1 -> NaN Invalid_operation -ddor363 or 0.0 1 -> NaN Invalid_operation -ddor364 or 0E+1 1 -> NaN Invalid_operation -ddor365 or 9.9 1 -> NaN Invalid_operation -ddor366 or 9E+1 1 -> NaN Invalid_operation -ddor371 or 0 1.0 -> NaN Invalid_operation -ddor372 or 0 1E+1 -> NaN Invalid_operation -ddor373 or 0 0.0 -> NaN Invalid_operation -ddor374 or 0 0E+1 -> NaN Invalid_operation -ddor375 or 0 9.9 -> NaN Invalid_operation -ddor376 or 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -ddor780 or -Inf -Inf -> NaN Invalid_operation -ddor781 or -Inf -1000 -> NaN Invalid_operation -ddor782 or -Inf -1 -> NaN Invalid_operation -ddor783 or -Inf -0 -> NaN Invalid_operation -ddor784 or -Inf 0 -> NaN Invalid_operation -ddor785 or -Inf 1 -> NaN Invalid_operation -ddor786 or -Inf 1000 -> NaN Invalid_operation -ddor787 or -1000 -Inf -> NaN Invalid_operation -ddor788 or -Inf -Inf -> NaN Invalid_operation -ddor789 or -1 -Inf -> NaN Invalid_operation -ddor790 or -0 -Inf -> NaN Invalid_operation -ddor791 or 0 -Inf -> NaN Invalid_operation -ddor792 or 1 -Inf -> NaN Invalid_operation -ddor793 or 1000 -Inf -> NaN Invalid_operation -ddor794 or Inf -Inf -> NaN Invalid_operation - -ddor800 or Inf -Inf -> NaN Invalid_operation -ddor801 or Inf -1000 -> NaN Invalid_operation -ddor802 or Inf -1 -> NaN Invalid_operation -ddor803 or Inf -0 -> NaN Invalid_operation -ddor804 or Inf 0 -> NaN Invalid_operation -ddor805 or Inf 1 -> NaN Invalid_operation -ddor806 or Inf 1000 -> NaN Invalid_operation -ddor807 or Inf Inf -> NaN Invalid_operation -ddor808 or -1000 Inf -> NaN Invalid_operation -ddor809 or -Inf Inf -> NaN Invalid_operation -ddor810 or -1 Inf -> NaN Invalid_operation -ddor811 or -0 Inf -> NaN Invalid_operation -ddor812 or 0 Inf -> NaN Invalid_operation -ddor813 or 1 Inf -> NaN Invalid_operation -ddor814 or 1000 Inf -> NaN Invalid_operation -ddor815 or Inf Inf -> NaN Invalid_operation - -ddor821 or NaN -Inf -> NaN Invalid_operation -ddor822 or NaN -1000 -> NaN Invalid_operation -ddor823 or NaN -1 -> NaN Invalid_operation -ddor824 or NaN -0 -> NaN Invalid_operation -ddor825 or NaN 0 -> NaN Invalid_operation -ddor826 or NaN 1 -> NaN Invalid_operation -ddor827 or NaN 1000 -> NaN Invalid_operation -ddor828 or NaN Inf -> NaN Invalid_operation -ddor829 or NaN NaN -> NaN Invalid_operation -ddor830 or -Inf NaN -> NaN Invalid_operation -ddor831 or -1000 NaN -> NaN Invalid_operation -ddor832 or -1 NaN -> NaN Invalid_operation -ddor833 or -0 NaN -> NaN Invalid_operation -ddor834 or 0 NaN -> NaN Invalid_operation -ddor835 or 1 NaN -> NaN Invalid_operation -ddor836 or 1000 NaN -> NaN Invalid_operation -ddor837 or Inf NaN -> NaN Invalid_operation - -ddor841 or sNaN -Inf -> NaN Invalid_operation -ddor842 or sNaN -1000 -> NaN Invalid_operation -ddor843 or sNaN -1 -> NaN Invalid_operation -ddor844 or sNaN -0 -> NaN Invalid_operation -ddor845 or sNaN 0 -> NaN Invalid_operation -ddor846 or sNaN 1 -> NaN Invalid_operation -ddor847 or sNaN 1000 -> NaN Invalid_operation -ddor848 or sNaN NaN -> NaN Invalid_operation -ddor849 or sNaN sNaN -> NaN Invalid_operation -ddor850 or NaN sNaN -> NaN Invalid_operation -ddor851 or -Inf sNaN -> NaN Invalid_operation -ddor852 or -1000 sNaN -> NaN Invalid_operation -ddor853 or -1 sNaN -> NaN Invalid_operation -ddor854 or -0 sNaN -> NaN Invalid_operation -ddor855 or 0 sNaN -> NaN Invalid_operation -ddor856 or 1 sNaN -> NaN Invalid_operation -ddor857 or 1000 sNaN -> NaN Invalid_operation -ddor858 or Inf sNaN -> NaN Invalid_operation -ddor859 or NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddor861 or NaN1 -Inf -> NaN Invalid_operation -ddor862 or +NaN2 -1000 -> NaN Invalid_operation -ddor863 or NaN3 1000 -> NaN Invalid_operation -ddor864 or NaN4 Inf -> NaN Invalid_operation -ddor865 or NaN5 +NaN6 -> NaN Invalid_operation -ddor866 or -Inf NaN7 -> NaN Invalid_operation -ddor867 or -1000 NaN8 -> NaN Invalid_operation -ddor868 or 1000 NaN9 -> NaN Invalid_operation -ddor869 or Inf +NaN10 -> NaN Invalid_operation -ddor871 or sNaN11 -Inf -> NaN Invalid_operation -ddor872 or sNaN12 -1000 -> NaN Invalid_operation -ddor873 or sNaN13 1000 -> NaN Invalid_operation -ddor874 or sNaN14 NaN17 -> NaN Invalid_operation -ddor875 or sNaN15 sNaN18 -> NaN Invalid_operation -ddor876 or NaN16 sNaN19 -> NaN Invalid_operation -ddor877 or -Inf +sNaN20 -> NaN Invalid_operation -ddor878 or -1000 sNaN21 -> NaN Invalid_operation -ddor879 or 1000 sNaN22 -> NaN Invalid_operation -ddor880 or Inf sNaN23 -> NaN Invalid_operation -ddor881 or +NaN25 +sNaN24 -> NaN Invalid_operation -ddor882 or -NaN26 NaN28 -> NaN Invalid_operation -ddor883 or -sNaN27 sNaN29 -> NaN Invalid_operation -ddor884 or 1000 -NaN30 -> NaN Invalid_operation -ddor885 or 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddPlus.decTest b/qdecimal/test/tc_full/ddPlus.decTest deleted file mode 100644 index 220faf0..0000000 --- a/qdecimal/test/tc_full/ddPlus.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- ddPlus.decTest -- decDouble 0+x -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddpls001 plus +7.50 -> 7.50 - --- Infinities -ddpls011 plus Infinity -> Infinity -ddpls012 plus -Infinity -> -Infinity - --- NaNs, 0 payload -ddpls021 plus NaN -> NaN -ddpls022 plus -NaN -> -NaN -ddpls023 plus sNaN -> NaN Invalid_operation -ddpls024 plus -sNaN -> -NaN Invalid_operation - --- NaNs, non-0 payload -ddpls031 plus NaN13 -> NaN13 -ddpls032 plus -NaN13 -> -NaN13 -ddpls033 plus sNaN13 -> NaN13 Invalid_operation -ddpls034 plus -sNaN13 -> -NaN13 Invalid_operation -ddpls035 plus NaN70 -> NaN70 -ddpls036 plus -NaN70 -> -NaN70 -ddpls037 plus sNaN101 -> NaN101 Invalid_operation -ddpls038 plus -sNaN101 -> -NaN101 Invalid_operation - --- finites -ddpls101 plus 7 -> 7 -ddpls102 plus -7 -> -7 -ddpls103 plus 75 -> 75 -ddpls104 plus -75 -> -75 -ddpls105 plus 7.50 -> 7.50 -ddpls106 plus -7.50 -> -7.50 -ddpls107 plus 7.500 -> 7.500 -ddpls108 plus -7.500 -> -7.500 - --- zeros -ddpls111 plus 0 -> 0 -ddpls112 plus -0 -> 0 -ddpls113 plus 0E+4 -> 0E+4 -ddpls114 plus -0E+4 -> 0E+4 -ddpls115 plus 0.0000 -> 0.0000 -ddpls116 plus -0.0000 -> 0.0000 -ddpls117 plus 0E-141 -> 0E-141 -ddpls118 plus -0E-141 -> 0E-141 - --- full coefficients, alternating bits -ddpls121 plus 2682682682682682 -> 2682682682682682 -ddpls122 plus -2682682682682682 -> -2682682682682682 -ddpls123 plus 1341341341341341 -> 1341341341341341 -ddpls124 plus -1341341341341341 -> -1341341341341341 - --- Nmax, Nmin, Ntiny -ddpls131 plus 9.999999999999999E+384 -> 9.999999999999999E+384 -ddpls132 plus 1E-383 -> 1E-383 -ddpls133 plus 1.000000000000000E-383 -> 1.000000000000000E-383 -ddpls134 plus 1E-398 -> 1E-398 Subnormal - -ddpls135 plus -1E-398 -> -1E-398 Subnormal -ddpls136 plus -1.000000000000000E-383 -> -1.000000000000000E-383 -ddpls137 plus -1E-383 -> -1E-383 -ddpls138 plus -9.999999999999999E+384 -> -9.999999999999999E+384 diff --git a/qdecimal/test/tc_full/ddQuantize.decTest b/qdecimal/test/tc_full/ddQuantize.decTest deleted file mode 100644 index aa38da2..0000000 --- a/qdecimal/test/tc_full/ddQuantize.decTest +++ /dev/null @@ -1,833 +0,0 @@ ------------------------------------------------------------------------- --- ddQuantize.decTest -- decDouble quantize operation -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Most of the tests here assume a "regular pattern", where the --- sign and coefficient are +1. --- 2004.03.15 Underflow for quantize is suppressed --- 2005.06.08 More extensive tests for 'does not fit' -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks -ddqua001 quantize 0 1e0 -> 0 -ddqua002 quantize 1 1e0 -> 1 -ddqua003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded -ddqua005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded -ddqua006 quantize 0.1 1e0 -> 0 Inexact Rounded -ddqua007 quantize 0.1 1e-1 -> 0.1 -ddqua008 quantize 0.1 1e-2 -> 0.10 -ddqua009 quantize 0.1 1e-3 -> 0.100 -ddqua010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded -ddqua011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded -ddqua012 quantize 0.9 1e+0 -> 1 Inexact Rounded -ddqua013 quantize 0.9 1e-1 -> 0.9 -ddqua014 quantize 0.9 1e-2 -> 0.90 -ddqua015 quantize 0.9 1e-3 -> 0.900 --- negatives -ddqua021 quantize -0 1e0 -> -0 -ddqua022 quantize -1 1e0 -> -1 -ddqua023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded -ddqua025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded -ddqua026 quantize -0.1 1e0 -> -0 Inexact Rounded -ddqua027 quantize -0.1 1e-1 -> -0.1 -ddqua028 quantize -0.1 1e-2 -> -0.10 -ddqua029 quantize -0.1 1e-3 -> -0.100 -ddqua030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded -ddqua031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded -ddqua032 quantize -0.9 1e+0 -> -1 Inexact Rounded -ddqua033 quantize -0.9 1e-1 -> -0.9 -ddqua034 quantize -0.9 1e-2 -> -0.90 -ddqua035 quantize -0.9 1e-3 -> -0.900 -ddqua036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded -ddqua037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded -ddqua038 quantize -0.5 1e+0 -> -0 Inexact Rounded -ddqua039 quantize -0.5 1e-1 -> -0.5 -ddqua040 quantize -0.5 1e-2 -> -0.50 -ddqua041 quantize -0.5 1e-3 -> -0.500 -ddqua042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded -ddqua043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded -ddqua044 quantize -0.9 1e+0 -> -1 Inexact Rounded -ddqua045 quantize -0.9 1e-1 -> -0.9 -ddqua046 quantize -0.9 1e-2 -> -0.90 -ddqua047 quantize -0.9 1e-3 -> -0.900 - --- examples from Specification -ddqua060 quantize 2.17 0.001 -> 2.170 -ddqua061 quantize 2.17 0.01 -> 2.17 -ddqua062 quantize 2.17 0.1 -> 2.2 Inexact Rounded -ddqua063 quantize 2.17 1e+0 -> 2 Inexact Rounded -ddqua064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded -ddqua065 quantize -Inf Inf -> -Infinity -ddqua066 quantize 2 Inf -> NaN Invalid_operation -ddqua067 quantize -0.1 1 -> -0 Inexact Rounded -ddqua068 quantize -0 1e+5 -> -0E+5 -ddqua069 quantize +123456789012345.6 1e-2 -> NaN Invalid_operation -ddqua070 quantize -987654335236450.6 1e-2 -> NaN Invalid_operation -ddqua071 quantize 217 1e-1 -> 217.0 -ddqua072 quantize 217 1e+0 -> 217 -ddqua073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded -ddqua074 quantize 217 1e+2 -> 2E+2 Inexact Rounded - --- general tests .. -ddqua089 quantize 12 1e+4 -> 0E+4 Inexact Rounded -ddqua090 quantize 12 1e+3 -> 0E+3 Inexact Rounded -ddqua091 quantize 12 1e+2 -> 0E+2 Inexact Rounded -ddqua092 quantize 12 1e+1 -> 1E+1 Inexact Rounded -ddqua093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded -ddqua094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded -ddqua095 quantize 1.2345 1e-6 -> 1.234500 -ddqua096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded -ddqua097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded -ddqua098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded -ddqua099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded -ddqua100 quantize 92 1e+2 -> 1E+2 Inexact Rounded - -ddqua101 quantize -1 1e0 -> -1 -ddqua102 quantize -1 1e-1 -> -1.0 -ddqua103 quantize -1 1e-2 -> -1.00 -ddqua104 quantize 0 1e0 -> 0 -ddqua105 quantize 0 1e-1 -> 0.0 -ddqua106 quantize 0 1e-2 -> 0.00 -ddqua107 quantize 0.00 1e0 -> 0 -ddqua108 quantize 0 1e+1 -> 0E+1 -ddqua109 quantize 0 1e+2 -> 0E+2 -ddqua110 quantize +1 1e0 -> 1 -ddqua111 quantize +1 1e-1 -> 1.0 -ddqua112 quantize +1 1e-2 -> 1.00 - -ddqua120 quantize 1.04 1e-3 -> 1.040 -ddqua121 quantize 1.04 1e-2 -> 1.04 -ddqua122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded -ddqua123 quantize 1.04 1e0 -> 1 Inexact Rounded -ddqua124 quantize 1.05 1e-3 -> 1.050 -ddqua125 quantize 1.05 1e-2 -> 1.05 -ddqua126 quantize 1.05 1e-1 -> 1.0 Inexact Rounded -ddqua131 quantize 1.05 1e0 -> 1 Inexact Rounded -ddqua132 quantize 1.06 1e-3 -> 1.060 -ddqua133 quantize 1.06 1e-2 -> 1.06 -ddqua134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded -ddqua135 quantize 1.06 1e0 -> 1 Inexact Rounded - -ddqua140 quantize -10 1e-2 -> -10.00 -ddqua141 quantize +1 1e-2 -> 1.00 -ddqua142 quantize +10 1e-2 -> 10.00 -ddqua143 quantize 1E+17 1e-2 -> NaN Invalid_operation -ddqua144 quantize 1E-17 1e-2 -> 0.00 Inexact Rounded -ddqua145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded -ddqua146 quantize 1E-2 1e-2 -> 0.01 -ddqua147 quantize 1E-1 1e-2 -> 0.10 -ddqua148 quantize 0E-17 1e-2 -> 0.00 - -ddqua150 quantize 1.0600 1e-5 -> 1.06000 -ddqua151 quantize 1.0600 1e-4 -> 1.0600 -ddqua152 quantize 1.0600 1e-3 -> 1.060 Rounded -ddqua153 quantize 1.0600 1e-2 -> 1.06 Rounded -ddqua154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded -ddqua155 quantize 1.0600 1e0 -> 1 Inexact Rounded - --- a couple where rounding was different in base tests -rounding: half_up -ddqua157 quantize -0.5 1e+0 -> -1 Inexact Rounded -ddqua158 quantize 1.05 1e-1 -> 1.1 Inexact Rounded -ddqua159 quantize 1.06 1e0 -> 1 Inexact Rounded -rounding: half_even - --- base tests with non-1 coefficients -ddqua161 quantize 0 -9e0 -> 0 -ddqua162 quantize 1 -7e0 -> 1 -ddqua163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded -ddqua165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded -ddqua166 quantize 0.1 2e0 -> 0 Inexact Rounded -ddqua167 quantize 0.1 3e-1 -> 0.1 -ddqua168 quantize 0.1 44e-2 -> 0.10 -ddqua169 quantize 0.1 555e-3 -> 0.100 -ddqua170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded -ddqua171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded -ddqua172 quantize 0.9 -88e+0 -> 1 Inexact Rounded -ddqua173 quantize 0.9 -9e-1 -> 0.9 -ddqua174 quantize 0.9 0e-2 -> 0.90 -ddqua175 quantize 0.9 1.1e-3 -> 0.9000 --- negatives -ddqua181 quantize -0 1.1e0 -> -0.0 -ddqua182 quantize -1 -1e0 -> -1 -ddqua183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded -ddqua185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded -ddqua186 quantize -0.1 71e0 -> -0 Inexact Rounded -ddqua187 quantize -0.1 -91e-1 -> -0.1 -ddqua188 quantize -0.1 -.1e-2 -> -0.100 -ddqua189 quantize -0.1 -1e-3 -> -0.100 -ddqua190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded -ddqua191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded -ddqua192 quantize -0.9 -10e+0 -> -1 Inexact Rounded -ddqua193 quantize -0.9 100e-1 -> -0.9 -ddqua194 quantize -0.9 999e-2 -> -0.90 - --- +ve exponents .. -ddqua201 quantize -1 1e+0 -> -1 -ddqua202 quantize -1 1e+1 -> -0E+1 Inexact Rounded -ddqua203 quantize -1 1e+2 -> -0E+2 Inexact Rounded -ddqua204 quantize 0 1e+0 -> 0 -ddqua205 quantize 0 1e+1 -> 0E+1 -ddqua206 quantize 0 1e+2 -> 0E+2 -ddqua207 quantize +1 1e+0 -> 1 -ddqua208 quantize +1 1e+1 -> 0E+1 Inexact Rounded -ddqua209 quantize +1 1e+2 -> 0E+2 Inexact Rounded - -ddqua220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded -ddqua221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded -ddqua222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded -ddqua223 quantize 1.04 1e+0 -> 1 Inexact Rounded -ddqua224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -ddqua225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -ddqua226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -ddqua227 quantize 1.05 1e+0 -> 1 Inexact Rounded -ddqua228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -ddqua229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -ddqua230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -ddqua231 quantize 1.05 1e+0 -> 1 Inexact Rounded -ddqua232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded -ddqua233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded -ddqua234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded -ddqua235 quantize 1.06 1e+0 -> 1 Inexact Rounded - -ddqua240 quantize -10 1e+1 -> -1E+1 Rounded -ddqua241 quantize +1 1e+1 -> 0E+1 Inexact Rounded -ddqua242 quantize +10 1e+1 -> 1E+1 Rounded -ddqua243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1 -ddqua244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1 -ddqua245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1 -ddqua246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1 -ddqua247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1 -ddqua248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1 -ddqua249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1 -ddqua250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1 -ddqua251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1 --- next one tries to add 9 zeros -ddqua252 quantize 1E+17 1e+1 -> NaN Invalid_operation -ddqua253 quantize 1E-17 1e+1 -> 0E+1 Inexact Rounded -ddqua254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded -ddqua255 quantize 0E-17 1e+1 -> 0E+1 -ddqua256 quantize -0E-17 1e+1 -> -0E+1 -ddqua257 quantize -0E-1 1e+1 -> -0E+1 -ddqua258 quantize -0 1e+1 -> -0E+1 -ddqua259 quantize -0E+1 1e+1 -> -0E+1 - -ddqua260 quantize -10 1e+2 -> -0E+2 Inexact Rounded -ddqua261 quantize +1 1e+2 -> 0E+2 Inexact Rounded -ddqua262 quantize +10 1e+2 -> 0E+2 Inexact Rounded -ddqua263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded -ddqua264 quantize 1E+2 1e+2 -> 1E+2 -ddqua265 quantize 1E+3 1e+2 -> 1.0E+3 -ddqua266 quantize 1E+4 1e+2 -> 1.00E+4 -ddqua267 quantize 1E+5 1e+2 -> 1.000E+5 -ddqua268 quantize 1E+6 1e+2 -> 1.0000E+6 -ddqua269 quantize 1E+7 1e+2 -> 1.00000E+7 -ddqua270 quantize 1E+8 1e+2 -> 1.000000E+8 -ddqua271 quantize 1E+9 1e+2 -> 1.0000000E+9 -ddqua272 quantize 1E+10 1e+2 -> 1.00000000E+10 -ddqua273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded -ddqua274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded -ddqua275 quantize 0E-10 1e+2 -> 0E+2 - -ddqua280 quantize -10 1e+3 -> -0E+3 Inexact Rounded -ddqua281 quantize +1 1e+3 -> 0E+3 Inexact Rounded -ddqua282 quantize +10 1e+3 -> 0E+3 Inexact Rounded -ddqua283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded -ddqua284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded -ddqua285 quantize 1E+3 1e+3 -> 1E+3 -ddqua286 quantize 1E+4 1e+3 -> 1.0E+4 -ddqua287 quantize 1E+5 1e+3 -> 1.00E+5 -ddqua288 quantize 1E+6 1e+3 -> 1.000E+6 -ddqua289 quantize 1E+7 1e+3 -> 1.0000E+7 -ddqua290 quantize 1E+8 1e+3 -> 1.00000E+8 -ddqua291 quantize 1E+9 1e+3 -> 1.000000E+9 -ddqua292 quantize 1E+10 1e+3 -> 1.0000000E+10 -ddqua293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded -ddqua294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded -ddqua295 quantize 0E-10 1e+3 -> 0E+3 - --- round up from below [sign wrong in JIT compiler once] -ddqua300 quantize 0.0078 1e-5 -> 0.00780 -ddqua301 quantize 0.0078 1e-4 -> 0.0078 -ddqua302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded -ddqua303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded -ddqua304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded -ddqua305 quantize 0.0078 1e0 -> 0 Inexact Rounded -ddqua306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded -ddqua307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded - -ddqua310 quantize -0.0078 1e-5 -> -0.00780 -ddqua311 quantize -0.0078 1e-4 -> -0.0078 -ddqua312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded -ddqua313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded -ddqua314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded -ddqua315 quantize -0.0078 1e0 -> -0 Inexact Rounded -ddqua316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded -ddqua317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded - -ddqua320 quantize 0.078 1e-5 -> 0.07800 -ddqua321 quantize 0.078 1e-4 -> 0.0780 -ddqua322 quantize 0.078 1e-3 -> 0.078 -ddqua323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded -ddqua324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded -ddqua325 quantize 0.078 1e0 -> 0 Inexact Rounded -ddqua326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded -ddqua327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded - -ddqua330 quantize -0.078 1e-5 -> -0.07800 -ddqua331 quantize -0.078 1e-4 -> -0.0780 -ddqua332 quantize -0.078 1e-3 -> -0.078 -ddqua333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded -ddqua334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded -ddqua335 quantize -0.078 1e0 -> -0 Inexact Rounded -ddqua336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded -ddqua337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded - -ddqua340 quantize 0.78 1e-5 -> 0.78000 -ddqua341 quantize 0.78 1e-4 -> 0.7800 -ddqua342 quantize 0.78 1e-3 -> 0.780 -ddqua343 quantize 0.78 1e-2 -> 0.78 -ddqua344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded -ddqua345 quantize 0.78 1e0 -> 1 Inexact Rounded -ddqua346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded -ddqua347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded - -ddqua350 quantize -0.78 1e-5 -> -0.78000 -ddqua351 quantize -0.78 1e-4 -> -0.7800 -ddqua352 quantize -0.78 1e-3 -> -0.780 -ddqua353 quantize -0.78 1e-2 -> -0.78 -ddqua354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded -ddqua355 quantize -0.78 1e0 -> -1 Inexact Rounded -ddqua356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded -ddqua357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded - -ddqua360 quantize 7.8 1e-5 -> 7.80000 -ddqua361 quantize 7.8 1e-4 -> 7.8000 -ddqua362 quantize 7.8 1e-3 -> 7.800 -ddqua363 quantize 7.8 1e-2 -> 7.80 -ddqua364 quantize 7.8 1e-1 -> 7.8 -ddqua365 quantize 7.8 1e0 -> 8 Inexact Rounded -ddqua366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded -ddqua367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded -ddqua368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded - -ddqua370 quantize -7.8 1e-5 -> -7.80000 -ddqua371 quantize -7.8 1e-4 -> -7.8000 -ddqua372 quantize -7.8 1e-3 -> -7.800 -ddqua373 quantize -7.8 1e-2 -> -7.80 -ddqua374 quantize -7.8 1e-1 -> -7.8 -ddqua375 quantize -7.8 1e0 -> -8 Inexact Rounded -ddqua376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded -ddqua377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded -ddqua378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded - --- some individuals -ddqua380 quantize 1234567352364.506 1e-2 -> 1234567352364.51 Inexact Rounded -ddqua381 quantize 12345673523645.06 1e-2 -> 12345673523645.06 -ddqua382 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation -ddqua383 quantize 1234567352364506 1e-2 -> NaN Invalid_operation -ddqua384 quantize -1234567352364.506 1e-2 -> -1234567352364.51 Inexact Rounded -ddqua385 quantize -12345673523645.06 1e-2 -> -12345673523645.06 -ddqua386 quantize -123456735236450.6 1e-2 -> NaN Invalid_operation -ddqua387 quantize -1234567352364506 1e-2 -> NaN Invalid_operation - -rounding: down -ddqua389 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation --- ? should that one instead have been: --- ddqua389 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation -rounding: half_up - --- and a few more from e-mail discussions -ddqua391 quantize 12345678912.34567 1e-3 -> 12345678912.346 Inexact Rounded -ddqua392 quantize 123456789123.4567 1e-3 -> 123456789123.457 Inexact Rounded -ddqua393 quantize 1234567891234.567 1e-3 -> 1234567891234.567 -ddqua394 quantize 12345678912345.67 1e-3 -> NaN Invalid_operation -ddqua395 quantize 123456789123456.7 1e-3 -> NaN Invalid_operation -ddqua396 quantize 1234567891234567. 1e-3 -> NaN Invalid_operation - --- some 9999 round-up cases -ddqua400 quantize 9.999 1e-5 -> 9.99900 -ddqua401 quantize 9.999 1e-4 -> 9.9990 -ddqua402 quantize 9.999 1e-3 -> 9.999 -ddqua403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded -ddqua404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded -ddqua405 quantize 9.999 1e0 -> 10 Inexact Rounded -ddqua406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded -ddqua407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded - -ddqua410 quantize 0.999 1e-5 -> 0.99900 -ddqua411 quantize 0.999 1e-4 -> 0.9990 -ddqua412 quantize 0.999 1e-3 -> 0.999 -ddqua413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded -ddqua414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded -ddqua415 quantize 0.999 1e0 -> 1 Inexact Rounded -ddqua416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded - -ddqua420 quantize 0.0999 1e-5 -> 0.09990 -ddqua421 quantize 0.0999 1e-4 -> 0.0999 -ddqua422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded -ddqua423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded -ddqua424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded -ddqua425 quantize 0.0999 1e0 -> 0 Inexact Rounded -ddqua426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded - -ddqua430 quantize 0.00999 1e-5 -> 0.00999 -ddqua431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded -ddqua432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded -ddqua433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded -ddqua434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded -ddqua435 quantize 0.00999 1e0 -> 0 Inexact Rounded -ddqua436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded - -ddqua440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded -ddqua441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded -ddqua442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded -ddqua443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded -ddqua444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded -ddqua445 quantize 0.000999 1e0 -> 0 Inexact Rounded -ddqua446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded - -ddqua1001 quantize 0.000 0.001 -> 0.000 -ddqua1002 quantize 0.001 0.001 -> 0.001 -ddqua1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded -ddqua1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded -ddqua1005 quantize 0.501 0.001 -> 0.501 -ddqua1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded -ddqua1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded -ddqua1008 quantize 0.999 0.001 -> 0.999 - -ddqua481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -ddqua482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -ddqua483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -ddqua484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded -ddqua485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded -ddqua486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded --- a potential double-round -ddqua487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded -ddqua488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded - -ddqua491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -ddqua492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -ddqua493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -ddqua494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded -ddqua495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded -ddqua496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded -ddqua497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded -ddqua498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded - --- Zeros -ddqua500 quantize 0 1e1 -> 0E+1 -ddqua501 quantize 0 1e0 -> 0 -ddqua502 quantize 0 1e-1 -> 0.0 -ddqua503 quantize 0.0 1e-1 -> 0.0 -ddqua504 quantize 0.0 1e0 -> 0 -ddqua505 quantize 0.0 1e+1 -> 0E+1 -ddqua506 quantize 0E+1 1e-1 -> 0.0 -ddqua507 quantize 0E+1 1e0 -> 0 -ddqua508 quantize 0E+1 1e+1 -> 0E+1 -ddqua509 quantize -0 1e1 -> -0E+1 -ddqua510 quantize -0 1e0 -> -0 -ddqua511 quantize -0 1e-1 -> -0.0 -ddqua512 quantize -0.0 1e-1 -> -0.0 -ddqua513 quantize -0.0 1e0 -> -0 -ddqua514 quantize -0.0 1e+1 -> -0E+1 -ddqua515 quantize -0E+1 1e-1 -> -0.0 -ddqua516 quantize -0E+1 1e0 -> -0 -ddqua517 quantize -0E+1 1e+1 -> -0E+1 - --- Suspicious RHS values -ddqua520 quantize 1.234 1e359 -> 0E+359 Inexact Rounded -ddqua521 quantize 123.456 1e359 -> 0E+359 Inexact Rounded -ddqua522 quantize 1.234 1e359 -> 0E+359 Inexact Rounded -ddqua523 quantize 123.456 1e359 -> 0E+359 Inexact Rounded --- next four are "won't fit" overfl -ddqua526 quantize 1.234 1e-299 -> NaN Invalid_operation -ddqua527 quantize 123.456 1e-299 -> NaN Invalid_operation -ddqua528 quantize 1.234 1e-299 -> NaN Invalid_operation -ddqua529 quantize 123.456 1e-299 -> NaN Invalid_operation - -ddqua532 quantize 1.234E+299 1e299 -> 1E+299 Inexact Rounded -ddqua533 quantize 1.234E+298 1e299 -> 0E+299 Inexact Rounded -ddqua534 quantize 1.234 1e299 -> 0E+299 Inexact Rounded -ddqua537 quantize 0 1e-299 -> 0E-299 --- next two are "won't fit" overflows -ddqua538 quantize 1.234 1e-299 -> NaN Invalid_operation -ddqua539 quantize 1.234 1e-300 -> NaN Invalid_operation --- [more below] - --- Specials -ddqua580 quantize Inf -Inf -> Infinity -ddqua581 quantize Inf 1e-299 -> NaN Invalid_operation -ddqua582 quantize Inf 1e-1 -> NaN Invalid_operation -ddqua583 quantize Inf 1e0 -> NaN Invalid_operation -ddqua584 quantize Inf 1e1 -> NaN Invalid_operation -ddqua585 quantize Inf 1e299 -> NaN Invalid_operation -ddqua586 quantize Inf Inf -> Infinity -ddqua587 quantize -1000 Inf -> NaN Invalid_operation -ddqua588 quantize -Inf Inf -> -Infinity -ddqua589 quantize -1 Inf -> NaN Invalid_operation -ddqua590 quantize 0 Inf -> NaN Invalid_operation -ddqua591 quantize 1 Inf -> NaN Invalid_operation -ddqua592 quantize 1000 Inf -> NaN Invalid_operation -ddqua593 quantize Inf Inf -> Infinity -ddqua594 quantize Inf 1e-0 -> NaN Invalid_operation -ddqua595 quantize -0 Inf -> NaN Invalid_operation - -ddqua600 quantize -Inf -Inf -> -Infinity -ddqua601 quantize -Inf 1e-299 -> NaN Invalid_operation -ddqua602 quantize -Inf 1e-1 -> NaN Invalid_operation -ddqua603 quantize -Inf 1e0 -> NaN Invalid_operation -ddqua604 quantize -Inf 1e1 -> NaN Invalid_operation -ddqua605 quantize -Inf 1e299 -> NaN Invalid_operation -ddqua606 quantize -Inf Inf -> -Infinity -ddqua607 quantize -1000 Inf -> NaN Invalid_operation -ddqua608 quantize -Inf -Inf -> -Infinity -ddqua609 quantize -1 -Inf -> NaN Invalid_operation -ddqua610 quantize 0 -Inf -> NaN Invalid_operation -ddqua611 quantize 1 -Inf -> NaN Invalid_operation -ddqua612 quantize 1000 -Inf -> NaN Invalid_operation -ddqua613 quantize Inf -Inf -> Infinity -ddqua614 quantize -Inf 1e-0 -> NaN Invalid_operation -ddqua615 quantize -0 -Inf -> NaN Invalid_operation - -ddqua621 quantize NaN -Inf -> NaN -ddqua622 quantize NaN 1e-299 -> NaN -ddqua623 quantize NaN 1e-1 -> NaN -ddqua624 quantize NaN 1e0 -> NaN -ddqua625 quantize NaN 1e1 -> NaN -ddqua626 quantize NaN 1e299 -> NaN -ddqua627 quantize NaN Inf -> NaN -ddqua628 quantize NaN NaN -> NaN -ddqua629 quantize -Inf NaN -> NaN -ddqua630 quantize -1000 NaN -> NaN -ddqua631 quantize -1 NaN -> NaN -ddqua632 quantize 0 NaN -> NaN -ddqua633 quantize 1 NaN -> NaN -ddqua634 quantize 1000 NaN -> NaN -ddqua635 quantize Inf NaN -> NaN -ddqua636 quantize NaN 1e-0 -> NaN -ddqua637 quantize -0 NaN -> NaN - -ddqua641 quantize sNaN -Inf -> NaN Invalid_operation -ddqua642 quantize sNaN 1e-299 -> NaN Invalid_operation -ddqua643 quantize sNaN 1e-1 -> NaN Invalid_operation -ddqua644 quantize sNaN 1e0 -> NaN Invalid_operation -ddqua645 quantize sNaN 1e1 -> NaN Invalid_operation -ddqua646 quantize sNaN 1e299 -> NaN Invalid_operation -ddqua647 quantize sNaN NaN -> NaN Invalid_operation -ddqua648 quantize sNaN sNaN -> NaN Invalid_operation -ddqua649 quantize NaN sNaN -> NaN Invalid_operation -ddqua650 quantize -Inf sNaN -> NaN Invalid_operation -ddqua651 quantize -1000 sNaN -> NaN Invalid_operation -ddqua652 quantize -1 sNaN -> NaN Invalid_operation -ddqua653 quantize 0 sNaN -> NaN Invalid_operation -ddqua654 quantize 1 sNaN -> NaN Invalid_operation -ddqua655 quantize 1000 sNaN -> NaN Invalid_operation -ddqua656 quantize Inf sNaN -> NaN Invalid_operation -ddqua657 quantize NaN sNaN -> NaN Invalid_operation -ddqua658 quantize sNaN 1e-0 -> NaN Invalid_operation -ddqua659 quantize -0 sNaN -> NaN Invalid_operation - --- propagating NaNs -ddqua661 quantize NaN9 -Inf -> NaN9 -ddqua662 quantize NaN8 919 -> NaN8 -ddqua663 quantize NaN71 Inf -> NaN71 -ddqua664 quantize NaN6 NaN5 -> NaN6 -ddqua665 quantize -Inf NaN4 -> NaN4 -ddqua666 quantize -919 NaN31 -> NaN31 -ddqua667 quantize Inf NaN2 -> NaN2 - -ddqua671 quantize sNaN99 -Inf -> NaN99 Invalid_operation -ddqua672 quantize sNaN98 -11 -> NaN98 Invalid_operation -ddqua673 quantize sNaN97 NaN -> NaN97 Invalid_operation -ddqua674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation -ddqua675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation -ddqua676 quantize -Inf sNaN92 -> NaN92 Invalid_operation -ddqua677 quantize 088 sNaN91 -> NaN91 Invalid_operation -ddqua678 quantize Inf sNaN90 -> NaN90 Invalid_operation -ddqua679 quantize NaN sNaN88 -> NaN88 Invalid_operation - -ddqua681 quantize -NaN9 -Inf -> -NaN9 -ddqua682 quantize -NaN8 919 -> -NaN8 -ddqua683 quantize -NaN71 Inf -> -NaN71 -ddqua684 quantize -NaN6 -NaN5 -> -NaN6 -ddqua685 quantize -Inf -NaN4 -> -NaN4 -ddqua686 quantize -919 -NaN31 -> -NaN31 -ddqua687 quantize Inf -NaN2 -> -NaN2 - -ddqua691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation -ddqua692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation -ddqua693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation -ddqua694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation -ddqua695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation -ddqua696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation -ddqua697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation -ddqua698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation -ddqua699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation - --- subnormals and underflow -ddqua710 quantize 1.00E-383 1e-383 -> 1E-383 Rounded -ddqua711 quantize 0.1E-383 2e-384 -> 1E-384 Subnormal -ddqua712 quantize 0.10E-383 3e-384 -> 1E-384 Subnormal Rounded -ddqua713 quantize 0.100E-383 4e-384 -> 1E-384 Subnormal Rounded -ddqua714 quantize 0.01E-383 5e-385 -> 1E-385 Subnormal --- next is rounded to Emin -ddqua715 quantize 0.999E-383 1e-383 -> 1E-383 Inexact Rounded -ddqua716 quantize 0.099E-383 10e-384 -> 1E-384 Inexact Rounded Subnormal - -ddqua717 quantize 0.009E-383 1e-385 -> 1E-385 Inexact Rounded Subnormal -ddqua718 quantize 0.001E-383 1e-385 -> 0E-385 Inexact Rounded -ddqua719 quantize 0.0009E-383 1e-385 -> 0E-385 Inexact Rounded -ddqua720 quantize 0.0001E-383 1e-385 -> 0E-385 Inexact Rounded - -ddqua730 quantize -1.00E-383 1e-383 -> -1E-383 Rounded -ddqua731 quantize -0.1E-383 1e-383 -> -0E-383 Rounded Inexact -ddqua732 quantize -0.10E-383 1e-383 -> -0E-383 Rounded Inexact -ddqua733 quantize -0.100E-383 1e-383 -> -0E-383 Rounded Inexact -ddqua734 quantize -0.01E-383 1e-383 -> -0E-383 Inexact Rounded --- next is rounded to Emin -ddqua735 quantize -0.999E-383 90e-383 -> -1E-383 Inexact Rounded -ddqua736 quantize -0.099E-383 -1e-383 -> -0E-383 Inexact Rounded -ddqua737 quantize -0.009E-383 -1e-383 -> -0E-383 Inexact Rounded -ddqua738 quantize -0.001E-383 -0e-383 -> -0E-383 Inexact Rounded -ddqua739 quantize -0.0001E-383 0e-383 -> -0E-383 Inexact Rounded - -ddqua740 quantize -1.00E-383 1e-384 -> -1.0E-383 Rounded -ddqua741 quantize -0.1E-383 1e-384 -> -1E-384 Subnormal -ddqua742 quantize -0.10E-383 1e-384 -> -1E-384 Subnormal Rounded -ddqua743 quantize -0.100E-383 1e-384 -> -1E-384 Subnormal Rounded -ddqua744 quantize -0.01E-383 1e-384 -> -0E-384 Inexact Rounded --- next is rounded to Emin -ddqua745 quantize -0.999E-383 1e-384 -> -1.0E-383 Inexact Rounded -ddqua746 quantize -0.099E-383 1e-384 -> -1E-384 Inexact Rounded Subnormal -ddqua747 quantize -0.009E-383 1e-384 -> -0E-384 Inexact Rounded -ddqua748 quantize -0.001E-383 1e-384 -> -0E-384 Inexact Rounded -ddqua749 quantize -0.0001E-383 1e-384 -> -0E-384 Inexact Rounded - -ddqua750 quantize -1.00E-383 1e-385 -> -1.00E-383 -ddqua751 quantize -0.1E-383 1e-385 -> -1.0E-384 Subnormal -ddqua752 quantize -0.10E-383 1e-385 -> -1.0E-384 Subnormal -ddqua753 quantize -0.100E-383 1e-385 -> -1.0E-384 Subnormal Rounded -ddqua754 quantize -0.01E-383 1e-385 -> -1E-385 Subnormal --- next is rounded to Emin -ddqua755 quantize -0.999E-383 1e-385 -> -1.00E-383 Inexact Rounded -ddqua756 quantize -0.099E-383 1e-385 -> -1.0E-384 Inexact Rounded Subnormal -ddqua757 quantize -0.009E-383 1e-385 -> -1E-385 Inexact Rounded Subnormal -ddqua758 quantize -0.001E-383 1e-385 -> -0E-385 Inexact Rounded -ddqua759 quantize -0.0001E-383 1e-385 -> -0E-385 Inexact Rounded - -ddqua760 quantize -1.00E-383 1e-386 -> -1.000E-383 -ddqua761 quantize -0.1E-383 1e-386 -> -1.00E-384 Subnormal -ddqua762 quantize -0.10E-383 1e-386 -> -1.00E-384 Subnormal -ddqua763 quantize -0.100E-383 1e-386 -> -1.00E-384 Subnormal -ddqua764 quantize -0.01E-383 1e-386 -> -1.0E-385 Subnormal -ddqua765 quantize -0.999E-383 1e-386 -> -9.99E-384 Subnormal -ddqua766 quantize -0.099E-383 1e-386 -> -9.9E-385 Subnormal -ddqua767 quantize -0.009E-383 1e-386 -> -9E-386 Subnormal -ddqua768 quantize -0.001E-383 1e-386 -> -1E-386 Subnormal -ddqua769 quantize -0.0001E-383 1e-386 -> -0E-386 Inexact Rounded - --- More from Fung Lee -ddqua1021 quantize 8.666666666666000E+384 1.000000000000000E+384 -> 8.666666666666000E+384 -ddqua1022 quantize -8.666666666666000E+384 1.000000000000000E+384 -> -8.666666666666000E+384 -ddqua1027 quantize 8.666666666666000E+323 1E+31 -> NaN Invalid_operation -ddqua1029 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded - - ---ddqua1030 quantize 8.666666666666000E+384 1E+384 -> 9.000000000000000E+384 Rounded Inexact ---ddqua1031 quantize 8.666666666666000E+384 1E+384 -> 8.666666666666000E+384 Rounded ---ddqua1032 quantize 8.666666666666000E+384 1E+383 -> 8.666666666666000E+384 Rounded ---ddqua1033 quantize 8.666666666666000E+384 1E+382 -> 8.666666666666000E+384 Rounded ---ddqua1034 quantize 8.666666666666000E+384 1E+381 -> 8.666666666666000E+384 Rounded ---ddqua1035 quantize 8.666666666666000E+384 1E+380 -> 8.666666666666000E+384 Rounded - --- Int and uInt32 edge values for testing conversions -ddqua1040 quantize -2147483646 0 -> -2147483646 -ddqua1041 quantize -2147483647 0 -> -2147483647 -ddqua1042 quantize -2147483648 0 -> -2147483648 -ddqua1043 quantize -2147483649 0 -> -2147483649 -ddqua1044 quantize 2147483646 0 -> 2147483646 -ddqua1045 quantize 2147483647 0 -> 2147483647 -ddqua1046 quantize 2147483648 0 -> 2147483648 -ddqua1047 quantize 2147483649 0 -> 2147483649 -ddqua1048 quantize 4294967294 0 -> 4294967294 -ddqua1049 quantize 4294967295 0 -> 4294967295 -ddqua1050 quantize 4294967296 0 -> 4294967296 -ddqua1051 quantize 4294967297 0 -> 4294967297 - --- Rounding swathe -rounding: half_even -ddqua1100 quantize 1.2300 1.00 -> 1.23 Rounded -ddqua1101 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -ddqua1102 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -ddqua1103 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -ddqua1104 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -ddqua1105 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -ddqua1106 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -ddqua1107 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -ddqua1108 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -ddqua1109 quantize 1.2399 1.00 -> 1.24 Inexact Rounded - -rounding: half_up -ddqua1200 quantize 1.2300 1.00 -> 1.23 Rounded -ddqua1201 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -ddqua1202 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -ddqua1203 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -ddqua1204 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -ddqua1205 quantize 1.2450 1.00 -> 1.25 Inexact Rounded -ddqua1206 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -ddqua1207 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -ddqua1208 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -ddqua1209 quantize 1.2399 1.00 -> 1.24 Inexact Rounded - -rounding: half_down -ddqua1300 quantize 1.2300 1.00 -> 1.23 Rounded -ddqua1301 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -ddqua1302 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -ddqua1303 quantize 1.2350 1.00 -> 1.23 Inexact Rounded -ddqua1304 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -ddqua1305 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -ddqua1306 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -ddqua1307 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -ddqua1308 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -ddqua1309 quantize 1.2399 1.00 -> 1.24 Inexact Rounded - -rounding: up -ddqua1400 quantize 1.2300 1.00 -> 1.23 Rounded -ddqua1401 quantize 1.2301 1.00 -> 1.24 Inexact Rounded -ddqua1402 quantize 1.2310 1.00 -> 1.24 Inexact Rounded -ddqua1403 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -ddqua1404 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -ddqua1405 quantize 1.2450 1.00 -> 1.25 Inexact Rounded -ddqua1406 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -ddqua1407 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -ddqua1408 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -ddqua1409 quantize 1.2399 1.00 -> 1.24 Inexact Rounded -ddqua1411 quantize -1.2399 1.00 -> -1.24 Inexact Rounded - -rounding: down -ddqua1500 quantize 1.2300 1.00 -> 1.23 Rounded -ddqua1501 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -ddqua1502 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -ddqua1503 quantize 1.2350 1.00 -> 1.23 Inexact Rounded -ddqua1504 quantize 1.2351 1.00 -> 1.23 Inexact Rounded -ddqua1505 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -ddqua1506 quantize 1.2451 1.00 -> 1.24 Inexact Rounded -ddqua1507 quantize 1.2360 1.00 -> 1.23 Inexact Rounded -ddqua1508 quantize 1.2370 1.00 -> 1.23 Inexact Rounded -ddqua1509 quantize 1.2399 1.00 -> 1.23 Inexact Rounded -ddqua1511 quantize -1.2399 1.00 -> -1.23 Inexact Rounded - -rounding: ceiling -ddqua1600 quantize 1.2300 1.00 -> 1.23 Rounded -ddqua1601 quantize 1.2301 1.00 -> 1.24 Inexact Rounded -ddqua1602 quantize 1.2310 1.00 -> 1.24 Inexact Rounded -ddqua1603 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -ddqua1604 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -ddqua1605 quantize 1.2450 1.00 -> 1.25 Inexact Rounded -ddqua1606 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -ddqua1607 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -ddqua1608 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -ddqua1609 quantize 1.2399 1.00 -> 1.24 Inexact Rounded -ddqua1611 quantize -1.2399 1.00 -> -1.23 Inexact Rounded - -rounding: floor -ddqua1700 quantize 1.2300 1.00 -> 1.23 Rounded -ddqua1701 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -ddqua1702 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -ddqua1703 quantize 1.2350 1.00 -> 1.23 Inexact Rounded -ddqua1704 quantize 1.2351 1.00 -> 1.23 Inexact Rounded -ddqua1705 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -ddqua1706 quantize 1.2451 1.00 -> 1.24 Inexact Rounded -ddqua1707 quantize 1.2360 1.00 -> 1.23 Inexact Rounded -ddqua1708 quantize 1.2370 1.00 -> 1.23 Inexact Rounded -ddqua1709 quantize 1.2399 1.00 -> 1.23 Inexact Rounded -ddqua1711 quantize -1.2399 1.00 -> -1.24 Inexact Rounded - -rounding: 05up -ddqua1800 quantize 1.2000 1.00 -> 1.20 Rounded -ddqua1801 quantize 1.2001 1.00 -> 1.21 Inexact Rounded -ddqua1802 quantize 1.2010 1.00 -> 1.21 Inexact Rounded -ddqua1803 quantize 1.2050 1.00 -> 1.21 Inexact Rounded -ddqua1804 quantize 1.2051 1.00 -> 1.21 Inexact Rounded -ddqua1807 quantize 1.2060 1.00 -> 1.21 Inexact Rounded -ddqua1808 quantize 1.2070 1.00 -> 1.21 Inexact Rounded -ddqua1809 quantize 1.2099 1.00 -> 1.21 Inexact Rounded -ddqua1811 quantize -1.2099 1.00 -> -1.21 Inexact Rounded - -ddqua1900 quantize 1.2100 1.00 -> 1.21 Rounded -ddqua1901 quantize 1.2101 1.00 -> 1.21 Inexact Rounded -ddqua1902 quantize 1.2110 1.00 -> 1.21 Inexact Rounded -ddqua1903 quantize 1.2150 1.00 -> 1.21 Inexact Rounded -ddqua1904 quantize 1.2151 1.00 -> 1.21 Inexact Rounded -ddqua1907 quantize 1.2160 1.00 -> 1.21 Inexact Rounded -ddqua1908 quantize 1.2170 1.00 -> 1.21 Inexact Rounded -ddqua1909 quantize 1.2199 1.00 -> 1.21 Inexact Rounded -ddqua1911 quantize -1.2199 1.00 -> -1.21 Inexact Rounded - -ddqua2000 quantize 1.2400 1.00 -> 1.24 Rounded -ddqua2001 quantize 1.2401 1.00 -> 1.24 Inexact Rounded -ddqua2002 quantize 1.2410 1.00 -> 1.24 Inexact Rounded -ddqua2003 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -ddqua2004 quantize 1.2451 1.00 -> 1.24 Inexact Rounded -ddqua2007 quantize 1.2460 1.00 -> 1.24 Inexact Rounded -ddqua2008 quantize 1.2470 1.00 -> 1.24 Inexact Rounded -ddqua2009 quantize 1.2499 1.00 -> 1.24 Inexact Rounded -ddqua2011 quantize -1.2499 1.00 -> -1.24 Inexact Rounded - -ddqua2100 quantize 1.2500 1.00 -> 1.25 Rounded -ddqua2101 quantize 1.2501 1.00 -> 1.26 Inexact Rounded -ddqua2102 quantize 1.2510 1.00 -> 1.26 Inexact Rounded -ddqua2103 quantize 1.2550 1.00 -> 1.26 Inexact Rounded -ddqua2104 quantize 1.2551 1.00 -> 1.26 Inexact Rounded -ddqua2107 quantize 1.2560 1.00 -> 1.26 Inexact Rounded -ddqua2108 quantize 1.2570 1.00 -> 1.26 Inexact Rounded -ddqua2109 quantize 1.2599 1.00 -> 1.26 Inexact Rounded -ddqua2111 quantize -1.2599 1.00 -> -1.26 Inexact Rounded - -ddqua2200 quantize 1.2600 1.00 -> 1.26 Rounded -ddqua2201 quantize 1.2601 1.00 -> 1.26 Inexact Rounded -ddqua2202 quantize 1.2610 1.00 -> 1.26 Inexact Rounded -ddqua2203 quantize 1.2650 1.00 -> 1.26 Inexact Rounded -ddqua2204 quantize 1.2651 1.00 -> 1.26 Inexact Rounded -ddqua2207 quantize 1.2660 1.00 -> 1.26 Inexact Rounded -ddqua2208 quantize 1.2670 1.00 -> 1.26 Inexact Rounded -ddqua2209 quantize 1.2699 1.00 -> 1.26 Inexact Rounded -ddqua2211 quantize -1.2699 1.00 -> -1.26 Inexact Rounded - -ddqua2300 quantize 1.2900 1.00 -> 1.29 Rounded -ddqua2301 quantize 1.2901 1.00 -> 1.29 Inexact Rounded -ddqua2302 quantize 1.2910 1.00 -> 1.29 Inexact Rounded -ddqua2303 quantize 1.2950 1.00 -> 1.29 Inexact Rounded -ddqua2304 quantize 1.2951 1.00 -> 1.29 Inexact Rounded -ddqua2307 quantize 1.2960 1.00 -> 1.29 Inexact Rounded -ddqua2308 quantize 1.2970 1.00 -> 1.29 Inexact Rounded -ddqua2309 quantize 1.2999 1.00 -> 1.29 Inexact Rounded -ddqua2311 quantize -1.2999 1.00 -> -1.29 Inexact Rounded - --- Null tests -rounding: half_even -ddqua998 quantize 10 # -> NaN Invalid_operation -ddqua999 quantize # 1e10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddReduce.decTest b/qdecimal/test/tc_full/ddReduce.decTest deleted file mode 100644 index 5f3c667..0000000 --- a/qdecimal/test/tc_full/ddReduce.decTest +++ /dev/null @@ -1,182 +0,0 @@ ------------------------------------------------------------------------- --- ddReduce.decTest -- remove trailing zeros from a decDouble -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddred001 reduce '1' -> '1' -ddred002 reduce '-1' -> '-1' -ddred003 reduce '1.00' -> '1' -ddred004 reduce '-1.00' -> '-1' -ddred005 reduce '0' -> '0' -ddred006 reduce '0.00' -> '0' -ddred007 reduce '00.0' -> '0' -ddred008 reduce '00.00' -> '0' -ddred009 reduce '00' -> '0' -ddred010 reduce '0E+1' -> '0' -ddred011 reduce '0E+5' -> '0' - -ddred012 reduce '-2' -> '-2' -ddred013 reduce '2' -> '2' -ddred014 reduce '-2.00' -> '-2' -ddred015 reduce '2.00' -> '2' -ddred016 reduce '-0' -> '-0' -ddred017 reduce '-0.00' -> '-0' -ddred018 reduce '-00.0' -> '-0' -ddred019 reduce '-00.00' -> '-0' -ddred020 reduce '-00' -> '-0' -ddred021 reduce '-0E+5' -> '-0' -ddred022 reduce '-0E+1' -> '-0' - -ddred030 reduce '+0.1' -> '0.1' -ddred031 reduce '-0.1' -> '-0.1' -ddred032 reduce '+0.01' -> '0.01' -ddred033 reduce '-0.01' -> '-0.01' -ddred034 reduce '+0.001' -> '0.001' -ddred035 reduce '-0.001' -> '-0.001' -ddred036 reduce '+0.000001' -> '0.000001' -ddred037 reduce '-0.000001' -> '-0.000001' -ddred038 reduce '+0.000000000001' -> '1E-12' -ddred039 reduce '-0.000000000001' -> '-1E-12' - -ddred041 reduce 1.1 -> 1.1 -ddred042 reduce 1.10 -> 1.1 -ddred043 reduce 1.100 -> 1.1 -ddred044 reduce 1.110 -> 1.11 -ddred045 reduce -1.1 -> -1.1 -ddred046 reduce -1.10 -> -1.1 -ddred047 reduce -1.100 -> -1.1 -ddred048 reduce -1.110 -> -1.11 -ddred049 reduce 9.9 -> 9.9 -ddred050 reduce 9.90 -> 9.9 -ddred051 reduce 9.900 -> 9.9 -ddred052 reduce 9.990 -> 9.99 -ddred053 reduce -9.9 -> -9.9 -ddred054 reduce -9.90 -> -9.9 -ddred055 reduce -9.900 -> -9.9 -ddred056 reduce -9.990 -> -9.99 - --- some trailing fractional zeros with zeros in units -ddred060 reduce 10.0 -> 1E+1 -ddred061 reduce 10.00 -> 1E+1 -ddred062 reduce 100.0 -> 1E+2 -ddred063 reduce 100.00 -> 1E+2 -ddred064 reduce 1.1000E+3 -> 1.1E+3 -ddred065 reduce 1.10000E+3 -> 1.1E+3 -ddred066 reduce -10.0 -> -1E+1 -ddred067 reduce -10.00 -> -1E+1 -ddred068 reduce -100.0 -> -1E+2 -ddred069 reduce -100.00 -> -1E+2 -ddred070 reduce -1.1000E+3 -> -1.1E+3 -ddred071 reduce -1.10000E+3 -> -1.1E+3 - --- some insignificant trailing zeros with positive exponent -ddred080 reduce 10E+1 -> 1E+2 -ddred081 reduce 100E+1 -> 1E+3 -ddred082 reduce 1.0E+2 -> 1E+2 -ddred083 reduce 1.0E+3 -> 1E+3 -ddred084 reduce 1.1E+3 -> 1.1E+3 -ddred085 reduce 1.00E+3 -> 1E+3 -ddred086 reduce 1.10E+3 -> 1.1E+3 -ddred087 reduce -10E+1 -> -1E+2 -ddred088 reduce -100E+1 -> -1E+3 -ddred089 reduce -1.0E+2 -> -1E+2 -ddred090 reduce -1.0E+3 -> -1E+3 -ddred091 reduce -1.1E+3 -> -1.1E+3 -ddred092 reduce -1.00E+3 -> -1E+3 -ddred093 reduce -1.10E+3 -> -1.1E+3 - --- some significant trailing zeros, were we to be trimming -ddred100 reduce 11 -> 11 -ddred101 reduce 10 -> 1E+1 -ddred102 reduce 10. -> 1E+1 -ddred103 reduce 1.1E+1 -> 11 -ddred104 reduce 1.0E+1 -> 1E+1 -ddred105 reduce 1.10E+2 -> 1.1E+2 -ddred106 reduce 1.00E+2 -> 1E+2 -ddred107 reduce 1.100E+3 -> 1.1E+3 -ddred108 reduce 1.000E+3 -> 1E+3 -ddred109 reduce 1.000000E+6 -> 1E+6 -ddred110 reduce -11 -> -11 -ddred111 reduce -10 -> -1E+1 -ddred112 reduce -10. -> -1E+1 -ddred113 reduce -1.1E+1 -> -11 -ddred114 reduce -1.0E+1 -> -1E+1 -ddred115 reduce -1.10E+2 -> -1.1E+2 -ddred116 reduce -1.00E+2 -> -1E+2 -ddred117 reduce -1.100E+3 -> -1.1E+3 -ddred118 reduce -1.000E+3 -> -1E+3 -ddred119 reduce -1.00000E+5 -> -1E+5 -ddred120 reduce -1.000000E+6 -> -1E+6 -ddred121 reduce -10.00000E+6 -> -1E+7 -ddred122 reduce -100.0000E+6 -> -1E+8 -ddred123 reduce -1000.000E+6 -> -1E+9 -ddred124 reduce -10000.00E+6 -> -1E+10 -ddred125 reduce -100000.0E+6 -> -1E+11 -ddred126 reduce -1000000.E+6 -> -1E+12 - --- examples from decArith -ddred140 reduce '2.1' -> '2.1' -ddred141 reduce '-2.0' -> '-2' -ddred142 reduce '1.200' -> '1.2' -ddred143 reduce '-120' -> '-1.2E+2' -ddred144 reduce '120.00' -> '1.2E+2' -ddred145 reduce '0.00' -> '0' - --- Nmax, Nmin, Ntiny --- note origami effect on some of these -ddred151 reduce 9.999999999999999E+384 -> 9.999999999999999E+384 -ddred152 reduce 9.999999000000000E+380 -> 9.99999900000E+380 -ddred153 reduce 9.999999999990000E+384 -> 9.999999999990000E+384 -ddred154 reduce 1E-383 -> 1E-383 -ddred155 reduce 1.000000000000000E-383 -> 1E-383 -ddred156 reduce 2.000E-395 -> 2E-395 Subnormal -ddred157 reduce 1E-398 -> 1E-398 Subnormal - -ddred161 reduce -1E-398 -> -1E-398 Subnormal -ddred162 reduce -2.000E-395 -> -2E-395 Subnormal -ddred163 reduce -1.000000000000000E-383 -> -1E-383 -ddred164 reduce -1E-383 -> -1E-383 -ddred165 reduce -9.999999000000000E+380 -> -9.99999900000E+380 -ddred166 reduce -9.999999999990000E+384 -> -9.999999999990000E+384 -ddred167 reduce -9.999999999999990E+384 -> -9.999999999999990E+384 -ddred168 reduce -9.999999999999999E+384 -> -9.999999999999999E+384 -ddred169 reduce -9.999999999999990E+384 -> -9.999999999999990E+384 - - --- specials (reduce does not affect payload) -ddred820 reduce 'Inf' -> 'Infinity' -ddred821 reduce '-Inf' -> '-Infinity' -ddred822 reduce NaN -> NaN -ddred823 reduce sNaN -> NaN Invalid_operation -ddred824 reduce NaN101 -> NaN101 -ddred825 reduce sNaN010 -> NaN10 Invalid_operation -ddred827 reduce -NaN -> -NaN -ddred828 reduce -sNaN -> -NaN Invalid_operation -ddred829 reduce -NaN101 -> -NaN101 -ddred830 reduce -sNaN010 -> -NaN10 Invalid_operation - --- Null test -ddred900 reduce # -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddRemainder.decTest b/qdecimal/test/tc_full/ddRemainder.decTest deleted file mode 100644 index 504c339..0000000 --- a/qdecimal/test/tc_full/ddRemainder.decTest +++ /dev/null @@ -1,600 +0,0 @@ ------------------------------------------------------------------------- --- ddRemainder.decTest -- decDouble remainder -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks (as base, above) -ddrem001 remainder 1 1 -> 0 -ddrem002 remainder 2 1 -> 0 -ddrem003 remainder 1 2 -> 1 -ddrem004 remainder 2 2 -> 0 -ddrem005 remainder 0 1 -> 0 -ddrem006 remainder 0 2 -> 0 -ddrem007 remainder 1 3 -> 1 -ddrem008 remainder 2 3 -> 2 -ddrem009 remainder 3 3 -> 0 - -ddrem010 remainder 2.4 1 -> 0.4 -ddrem011 remainder 2.4 -1 -> 0.4 -ddrem012 remainder -2.4 1 -> -0.4 -ddrem013 remainder -2.4 -1 -> -0.4 -ddrem014 remainder 2.40 1 -> 0.40 -ddrem015 remainder 2.400 1 -> 0.400 -ddrem016 remainder 2.4 2 -> 0.4 -ddrem017 remainder 2.400 2 -> 0.400 -ddrem018 remainder 2. 2 -> 0 -ddrem019 remainder 20 20 -> 0 - -ddrem020 remainder 187 187 -> 0 -ddrem021 remainder 5 2 -> 1 -ddrem022 remainder 5 2.0 -> 1.0 -ddrem023 remainder 5 2.000 -> 1.000 -ddrem024 remainder 5 0.200 -> 0.000 -ddrem025 remainder 5 0.200 -> 0.000 - -ddrem030 remainder 1 2 -> 1 -ddrem031 remainder 1 4 -> 1 -ddrem032 remainder 1 8 -> 1 - -ddrem033 remainder 1 16 -> 1 -ddrem034 remainder 1 32 -> 1 -ddrem035 remainder 1 64 -> 1 -ddrem040 remainder 1 -2 -> 1 -ddrem041 remainder 1 -4 -> 1 -ddrem042 remainder 1 -8 -> 1 -ddrem043 remainder 1 -16 -> 1 -ddrem044 remainder 1 -32 -> 1 -ddrem045 remainder 1 -64 -> 1 -ddrem050 remainder -1 2 -> -1 -ddrem051 remainder -1 4 -> -1 -ddrem052 remainder -1 8 -> -1 -ddrem053 remainder -1 16 -> -1 -ddrem054 remainder -1 32 -> -1 -ddrem055 remainder -1 64 -> -1 -ddrem060 remainder -1 -2 -> -1 -ddrem061 remainder -1 -4 -> -1 -ddrem062 remainder -1 -8 -> -1 -ddrem063 remainder -1 -16 -> -1 -ddrem064 remainder -1 -32 -> -1 -ddrem065 remainder -1 -64 -> -1 - -ddrem066 remainder 999999999 1 -> 0 -ddrem067 remainder 999999999.4 1 -> 0.4 -ddrem068 remainder 999999999.5 1 -> 0.5 -ddrem069 remainder 999999999.9 1 -> 0.9 -ddrem070 remainder 999999999.999 1 -> 0.999 -ddrem071 remainder 999999.999999 1 -> 0.999999 -ddrem072 remainder 9 1 -> 0 -ddrem073 remainder 9999999999999999 1 -> 0 -ddrem074 remainder 9999999999999999 2 -> 1 -ddrem075 remainder 9999999999999999 3 -> 0 -ddrem076 remainder 9999999999999999 4 -> 3 - -ddrem080 remainder 0. 1 -> 0 -ddrem081 remainder .0 1 -> 0.0 -ddrem082 remainder 0.00 1 -> 0.00 -ddrem083 remainder 0.00E+9 1 -> 0 -ddrem084 remainder 0.00E+3 1 -> 0 -ddrem085 remainder 0.00E+2 1 -> 0 -ddrem086 remainder 0.00E+1 1 -> 0.0 -ddrem087 remainder 0.00E+0 1 -> 0.00 -ddrem088 remainder 0.00E-0 1 -> 0.00 -ddrem089 remainder 0.00E-1 1 -> 0.000 -ddrem090 remainder 0.00E-2 1 -> 0.0000 -ddrem091 remainder 0.00E-3 1 -> 0.00000 -ddrem092 remainder 0.00E-4 1 -> 0.000000 -ddrem093 remainder 0.00E-5 1 -> 0E-7 -ddrem094 remainder 0.00E-6 1 -> 0E-8 -ddrem095 remainder 0.0000E-50 1 -> 0E-54 - --- Various flavours of remainder by 0 -ddrem101 remainder 0 0 -> NaN Division_undefined -ddrem102 remainder 0 -0 -> NaN Division_undefined -ddrem103 remainder -0 0 -> NaN Division_undefined -ddrem104 remainder -0 -0 -> NaN Division_undefined -ddrem105 remainder 0.0E5 0 -> NaN Division_undefined -ddrem106 remainder 0.000 0 -> NaN Division_undefined --- [Some think this next group should be Division_by_zero exception, but --- IEEE 854 is explicit that it is Invalid operation .. for --- remainder-near, anyway] -ddrem107 remainder 0.0001 0 -> NaN Invalid_operation -ddrem108 remainder 0.01 0 -> NaN Invalid_operation -ddrem109 remainder 0.1 0 -> NaN Invalid_operation -ddrem110 remainder 1 0 -> NaN Invalid_operation -ddrem111 remainder 1 0.0 -> NaN Invalid_operation -ddrem112 remainder 10 0.0 -> NaN Invalid_operation -ddrem113 remainder 1E+100 0.0 -> NaN Invalid_operation -ddrem114 remainder 1E+380 0 -> NaN Invalid_operation -ddrem115 remainder 0.0001 -0 -> NaN Invalid_operation -ddrem116 remainder 0.01 -0 -> NaN Invalid_operation -ddrem119 remainder 0.1 -0 -> NaN Invalid_operation -ddrem120 remainder 1 -0 -> NaN Invalid_operation -ddrem121 remainder 1 -0.0 -> NaN Invalid_operation -ddrem122 remainder 10 -0.0 -> NaN Invalid_operation -ddrem123 remainder 1E+100 -0.0 -> NaN Invalid_operation -ddrem124 remainder 1E+384 -0 -> NaN Invalid_operation --- and zeros on left -ddrem130 remainder 0 1 -> 0 -ddrem131 remainder 0 -1 -> 0 -ddrem132 remainder 0.0 1 -> 0.0 -ddrem133 remainder 0.0 -1 -> 0.0 -ddrem134 remainder -0 1 -> -0 -ddrem135 remainder -0 -1 -> -0 -ddrem136 remainder -0.0 1 -> -0.0 -ddrem137 remainder -0.0 -1 -> -0.0 - --- 0.5ers -ddrem143 remainder 0.5 2 -> 0.5 -ddrem144 remainder 0.5 2.1 -> 0.5 -ddrem145 remainder 0.5 2.01 -> 0.50 -ddrem146 remainder 0.5 2.001 -> 0.500 -ddrem147 remainder 0.50 2 -> 0.50 -ddrem148 remainder 0.50 2.01 -> 0.50 -ddrem149 remainder 0.50 2.001 -> 0.500 - --- steadies -ddrem150 remainder 1 1 -> 0 -ddrem151 remainder 1 2 -> 1 -ddrem152 remainder 1 3 -> 1 -ddrem153 remainder 1 4 -> 1 -ddrem154 remainder 1 5 -> 1 -ddrem155 remainder 1 6 -> 1 -ddrem156 remainder 1 7 -> 1 -ddrem157 remainder 1 8 -> 1 -ddrem158 remainder 1 9 -> 1 -ddrem159 remainder 1 10 -> 1 -ddrem160 remainder 1 1 -> 0 -ddrem161 remainder 2 1 -> 0 -ddrem162 remainder 3 1 -> 0 -ddrem163 remainder 4 1 -> 0 -ddrem164 remainder 5 1 -> 0 -ddrem165 remainder 6 1 -> 0 -ddrem166 remainder 7 1 -> 0 -ddrem167 remainder 8 1 -> 0 -ddrem168 remainder 9 1 -> 0 -ddrem169 remainder 10 1 -> 0 - --- some differences from remainderNear -ddrem171 remainder 0.4 1.020 -> 0.400 -ddrem172 remainder 0.50 1.020 -> 0.500 -ddrem173 remainder 0.51 1.020 -> 0.510 -ddrem174 remainder 0.52 1.020 -> 0.520 -ddrem175 remainder 0.6 1.020 -> 0.600 - --- More flavours of remainder by 0 -ddrem201 remainder 0 0 -> NaN Division_undefined -ddrem202 remainder 0.0E5 0 -> NaN Division_undefined -ddrem203 remainder 0.000 0 -> NaN Division_undefined -ddrem204 remainder 0.0001 0 -> NaN Invalid_operation -ddrem205 remainder 0.01 0 -> NaN Invalid_operation -ddrem206 remainder 0.1 0 -> NaN Invalid_operation -ddrem207 remainder 1 0 -> NaN Invalid_operation -ddrem208 remainder 1 0.0 -> NaN Invalid_operation -ddrem209 remainder 10 0.0 -> NaN Invalid_operation -ddrem210 remainder 1E+100 0.0 -> NaN Invalid_operation -ddrem211 remainder 1E+380 0 -> NaN Invalid_operation - --- some differences from remainderNear -ddrem231 remainder -0.4 1.020 -> -0.400 -ddrem232 remainder -0.50 1.020 -> -0.500 -ddrem233 remainder -0.51 1.020 -> -0.510 -ddrem234 remainder -0.52 1.020 -> -0.520 -ddrem235 remainder -0.6 1.020 -> -0.600 - --- high Xs -ddrem240 remainder 1E+2 1.00 -> 0.00 - --- ddrem3xx are from DiagBigDecimal -ddrem301 remainder 1 3 -> 1 -ddrem302 remainder 5 5 -> 0 -ddrem303 remainder 13 10 -> 3 -ddrem304 remainder 13 50 -> 13 -ddrem305 remainder 13 100 -> 13 -ddrem306 remainder 13 1000 -> 13 -ddrem307 remainder .13 1 -> 0.13 -ddrem308 remainder 0.133 1 -> 0.133 -ddrem309 remainder 0.1033 1 -> 0.1033 -ddrem310 remainder 1.033 1 -> 0.033 -ddrem311 remainder 10.33 1 -> 0.33 -ddrem312 remainder 10.33 10 -> 0.33 -ddrem313 remainder 103.3 1 -> 0.3 -ddrem314 remainder 133 10 -> 3 -ddrem315 remainder 1033 10 -> 3 -ddrem316 remainder 1033 50 -> 33 -ddrem317 remainder 101.0 3 -> 2.0 -ddrem318 remainder 102.0 3 -> 0.0 -ddrem319 remainder 103.0 3 -> 1.0 -ddrem320 remainder 2.40 1 -> 0.40 -ddrem321 remainder 2.400 1 -> 0.400 -ddrem322 remainder 2.4 1 -> 0.4 -ddrem323 remainder 2.4 2 -> 0.4 -ddrem324 remainder 2.400 2 -> 0.400 -ddrem325 remainder 1 0.3 -> 0.1 -ddrem326 remainder 1 0.30 -> 0.10 -ddrem327 remainder 1 0.300 -> 0.100 -ddrem328 remainder 1 0.3000 -> 0.1000 -ddrem329 remainder 1.0 0.3 -> 0.1 -ddrem330 remainder 1.00 0.3 -> 0.10 -ddrem331 remainder 1.000 0.3 -> 0.100 -ddrem332 remainder 1.0000 0.3 -> 0.1000 -ddrem333 remainder 0.5 2 -> 0.5 -ddrem334 remainder 0.5 2.1 -> 0.5 -ddrem335 remainder 0.5 2.01 -> 0.50 -ddrem336 remainder 0.5 2.001 -> 0.500 -ddrem337 remainder 0.50 2 -> 0.50 -ddrem338 remainder 0.50 2.01 -> 0.50 -ddrem339 remainder 0.50 2.001 -> 0.500 - -ddrem340 remainder 0.5 0.5000001 -> 0.5000000 -ddrem341 remainder 0.5 0.50000001 -> 0.50000000 -ddrem342 remainder 0.5 0.500000001 -> 0.500000000 -ddrem343 remainder 0.5 0.5000000001 -> 0.5000000000 -ddrem344 remainder 0.5 0.50000000001 -> 0.50000000000 -ddrem345 remainder 0.5 0.4999999 -> 1E-7 -ddrem346 remainder 0.5 0.49999999 -> 1E-8 -ddrem347 remainder 0.5 0.499999999 -> 1E-9 -ddrem348 remainder 0.5 0.4999999999 -> 1E-10 -ddrem349 remainder 0.5 0.49999999999 -> 1E-11 -ddrem350 remainder 0.5 0.499999999999 -> 1E-12 - -ddrem351 remainder 0.03 7 -> 0.03 -ddrem352 remainder 5 2 -> 1 -ddrem353 remainder 4.1 2 -> 0.1 -ddrem354 remainder 4.01 2 -> 0.01 -ddrem355 remainder 4.001 2 -> 0.001 -ddrem356 remainder 4.0001 2 -> 0.0001 -ddrem357 remainder 4.00001 2 -> 0.00001 -ddrem358 remainder 4.000001 2 -> 0.000001 -ddrem359 remainder 4.0000001 2 -> 1E-7 - -ddrem360 remainder 1.2 0.7345 -> 0.4655 -ddrem361 remainder 0.8 12 -> 0.8 -ddrem362 remainder 0.8 0.2 -> 0.0 -ddrem363 remainder 0.8 0.3 -> 0.2 -ddrem364 remainder 0.800 12 -> 0.800 -ddrem365 remainder 0.800 1.7 -> 0.800 -ddrem366 remainder 2.400 2 -> 0.400 - -ddrem371 remainder 2.400 2 -> 0.400 - -ddrem381 remainder 12345 1 -> 0 -ddrem382 remainder 12345 1.0001 -> 0.7657 -ddrem383 remainder 12345 1.001 -> 0.668 -ddrem384 remainder 12345 1.01 -> 0.78 -ddrem385 remainder 12345 1.1 -> 0.8 -ddrem386 remainder 12355 4 -> 3 -ddrem387 remainder 12345 4 -> 1 -ddrem388 remainder 12355 4.0001 -> 2.6912 -ddrem389 remainder 12345 4.0001 -> 0.6914 -ddrem390 remainder 12345 4.9 -> 1.9 -ddrem391 remainder 12345 4.99 -> 4.73 -ddrem392 remainder 12345 4.999 -> 2.469 -ddrem393 remainder 12345 4.9999 -> 0.2469 -ddrem394 remainder 12345 5 -> 0 -ddrem395 remainder 12345 5.0001 -> 4.7532 -ddrem396 remainder 12345 5.001 -> 2.532 -ddrem397 remainder 12345 5.01 -> 0.36 -ddrem398 remainder 12345 5.1 -> 3.0 - --- the nasty division-by-1 cases -ddrem401 remainder 0.5 1 -> 0.5 -ddrem402 remainder 0.55 1 -> 0.55 -ddrem403 remainder 0.555 1 -> 0.555 -ddrem404 remainder 0.5555 1 -> 0.5555 -ddrem405 remainder 0.55555 1 -> 0.55555 -ddrem406 remainder 0.555555 1 -> 0.555555 -ddrem407 remainder 0.5555555 1 -> 0.5555555 -ddrem408 remainder 0.55555555 1 -> 0.55555555 -ddrem409 remainder 0.555555555 1 -> 0.555555555 - --- folddowns -ddrem421 remainder 1E+384 1 -> NaN Division_impossible -ddrem422 remainder 1E+384 1E+383 -> 0E+369 Clamped -ddrem423 remainder 1E+384 2E+383 -> 0E+369 Clamped -ddrem424 remainder 1E+384 3E+383 -> 1.00000000000000E+383 Clamped -ddrem425 remainder 1E+384 4E+383 -> 2.00000000000000E+383 Clamped -ddrem426 remainder 1E+384 5E+383 -> 0E+369 Clamped -ddrem427 remainder 1E+384 6E+383 -> 4.00000000000000E+383 Clamped -ddrem428 remainder 1E+384 7E+383 -> 3.00000000000000E+383 Clamped -ddrem429 remainder 1E+384 8E+383 -> 2.00000000000000E+383 Clamped -ddrem430 remainder 1E+384 9E+383 -> 1.00000000000000E+383 Clamped --- tinies -ddrem431 remainder 1E-397 1E-398 -> 0E-398 -ddrem432 remainder 1E-397 2E-398 -> 0E-398 -ddrem433 remainder 1E-397 3E-398 -> 1E-398 Subnormal -ddrem434 remainder 1E-397 4E-398 -> 2E-398 Subnormal -ddrem435 remainder 1E-397 5E-398 -> 0E-398 -ddrem436 remainder 1E-397 6E-398 -> 4E-398 Subnormal -ddrem437 remainder 1E-397 7E-398 -> 3E-398 Subnormal -ddrem438 remainder 1E-397 8E-398 -> 2E-398 Subnormal -ddrem439 remainder 1E-397 9E-398 -> 1E-398 Subnormal -ddrem440 remainder 1E-397 10E-398 -> 0E-398 -ddrem441 remainder 1E-397 11E-398 -> 1.0E-397 Subnormal -ddrem442 remainder 100E-397 11E-398 -> 1.0E-397 Subnormal -ddrem443 remainder 100E-397 20E-398 -> 0E-398 -ddrem444 remainder 100E-397 21E-398 -> 1.3E-397 Subnormal -ddrem445 remainder 100E-397 30E-398 -> 1.0E-397 Subnormal - --- zero signs -ddrem650 remainder 1 1 -> 0 -ddrem651 remainder -1 1 -> -0 -ddrem652 remainder 1 -1 -> 0 -ddrem653 remainder -1 -1 -> -0 -ddrem654 remainder 0 1 -> 0 -ddrem655 remainder -0 1 -> -0 -ddrem656 remainder 0 -1 -> 0 -ddrem657 remainder -0 -1 -> -0 -ddrem658 remainder 0.00 1 -> 0.00 -ddrem659 remainder -0.00 1 -> -0.00 - --- Specials -ddrem680 remainder Inf -Inf -> NaN Invalid_operation -ddrem681 remainder Inf -1000 -> NaN Invalid_operation -ddrem682 remainder Inf -1 -> NaN Invalid_operation -ddrem683 remainder Inf 0 -> NaN Invalid_operation -ddrem684 remainder Inf -0 -> NaN Invalid_operation -ddrem685 remainder Inf 1 -> NaN Invalid_operation -ddrem686 remainder Inf 1000 -> NaN Invalid_operation -ddrem687 remainder Inf Inf -> NaN Invalid_operation -ddrem688 remainder -1000 Inf -> -1000 -ddrem689 remainder -Inf Inf -> NaN Invalid_operation -ddrem691 remainder -1 Inf -> -1 -ddrem692 remainder 0 Inf -> 0 -ddrem693 remainder -0 Inf -> -0 -ddrem694 remainder 1 Inf -> 1 -ddrem695 remainder 1000 Inf -> 1000 -ddrem696 remainder Inf Inf -> NaN Invalid_operation - -ddrem700 remainder -Inf -Inf -> NaN Invalid_operation -ddrem701 remainder -Inf -1000 -> NaN Invalid_operation -ddrem702 remainder -Inf -1 -> NaN Invalid_operation -ddrem703 remainder -Inf -0 -> NaN Invalid_operation -ddrem704 remainder -Inf 0 -> NaN Invalid_operation -ddrem705 remainder -Inf 1 -> NaN Invalid_operation -ddrem706 remainder -Inf 1000 -> NaN Invalid_operation -ddrem707 remainder -Inf Inf -> NaN Invalid_operation -ddrem708 remainder -Inf -Inf -> NaN Invalid_operation -ddrem709 remainder -1000 Inf -> -1000 -ddrem710 remainder -1 -Inf -> -1 -ddrem711 remainder -0 -Inf -> -0 -ddrem712 remainder 0 -Inf -> 0 -ddrem713 remainder 1 -Inf -> 1 -ddrem714 remainder 1000 -Inf -> 1000 -ddrem715 remainder Inf -Inf -> NaN Invalid_operation - -ddrem721 remainder NaN -Inf -> NaN -ddrem722 remainder NaN -1000 -> NaN -ddrem723 remainder NaN -1 -> NaN -ddrem724 remainder NaN -0 -> NaN -ddrem725 remainder -NaN 0 -> -NaN -ddrem726 remainder NaN 1 -> NaN -ddrem727 remainder NaN 1000 -> NaN -ddrem728 remainder NaN Inf -> NaN -ddrem729 remainder NaN -NaN -> NaN -ddrem730 remainder -Inf NaN -> NaN -ddrem731 remainder -1000 NaN -> NaN -ddrem732 remainder -1 NaN -> NaN -ddrem733 remainder -0 -NaN -> -NaN -ddrem734 remainder 0 NaN -> NaN -ddrem735 remainder 1 -NaN -> -NaN -ddrem736 remainder 1000 NaN -> NaN -ddrem737 remainder Inf NaN -> NaN - -ddrem741 remainder sNaN -Inf -> NaN Invalid_operation -ddrem742 remainder sNaN -1000 -> NaN Invalid_operation -ddrem743 remainder -sNaN -1 -> -NaN Invalid_operation -ddrem744 remainder sNaN -0 -> NaN Invalid_operation -ddrem745 remainder sNaN 0 -> NaN Invalid_operation -ddrem746 remainder sNaN 1 -> NaN Invalid_operation -ddrem747 remainder sNaN 1000 -> NaN Invalid_operation -ddrem749 remainder sNaN NaN -> NaN Invalid_operation -ddrem750 remainder sNaN sNaN -> NaN Invalid_operation -ddrem751 remainder NaN sNaN -> NaN Invalid_operation -ddrem752 remainder -Inf sNaN -> NaN Invalid_operation -ddrem753 remainder -1000 sNaN -> NaN Invalid_operation -ddrem754 remainder -1 sNaN -> NaN Invalid_operation -ddrem755 remainder -0 sNaN -> NaN Invalid_operation -ddrem756 remainder 0 sNaN -> NaN Invalid_operation -ddrem757 remainder 1 sNaN -> NaN Invalid_operation -ddrem758 remainder 1000 sNaN -> NaN Invalid_operation -ddrem759 remainder Inf -sNaN -> -NaN Invalid_operation - --- propaging NaNs -ddrem760 remainder NaN1 NaN7 -> NaN1 -ddrem761 remainder sNaN2 NaN8 -> NaN2 Invalid_operation -ddrem762 remainder NaN3 sNaN9 -> NaN9 Invalid_operation -ddrem763 remainder sNaN4 sNaN10 -> NaN4 Invalid_operation -ddrem764 remainder 15 NaN11 -> NaN11 -ddrem765 remainder NaN6 NaN12 -> NaN6 -ddrem766 remainder Inf NaN13 -> NaN13 -ddrem767 remainder NaN14 -Inf -> NaN14 -ddrem768 remainder 0 NaN15 -> NaN15 -ddrem769 remainder NaN16 -0 -> NaN16 - --- edge cases of impossible -ddrem770 remainder 1234567890123456 10 -> 6 -ddrem771 remainder 1234567890123456 1 -> 0 -ddrem772 remainder 1234567890123456 0.1 -> NaN Division_impossible -ddrem773 remainder 1234567890123456 0.01 -> NaN Division_impossible - --- long operand checks -ddrem801 remainder 12345678000 100 -> 0 -ddrem802 remainder 1 12345678000 -> 1 -ddrem803 remainder 1234567800 10 -> 0 -ddrem804 remainder 1 1234567800 -> 1 -ddrem805 remainder 1234567890 10 -> 0 -ddrem806 remainder 1 1234567890 -> 1 -ddrem807 remainder 1234567891 10 -> 1 -ddrem808 remainder 1 1234567891 -> 1 -ddrem809 remainder 12345678901 100 -> 1 -ddrem810 remainder 1 12345678901 -> 1 -ddrem811 remainder 1234567896 10 -> 6 -ddrem812 remainder 1 1234567896 -> 1 - -ddrem821 remainder 12345678000 100 -> 0 -ddrem822 remainder 1 12345678000 -> 1 -ddrem823 remainder 1234567800 10 -> 0 -ddrem824 remainder 1 1234567800 -> 1 -ddrem825 remainder 1234567890 10 -> 0 -ddrem826 remainder 1 1234567890 -> 1 -ddrem827 remainder 1234567891 10 -> 1 -ddrem828 remainder 1 1234567891 -> 1 -ddrem829 remainder 12345678901 100 -> 1 -ddrem830 remainder 1 12345678901 -> 1 -ddrem831 remainder 1234567896 10 -> 6 -ddrem832 remainder 1 1234567896 -> 1 - --- from divideint -ddrem840 remainder 100000000.0 1 -> 0.0 -ddrem841 remainder 100000000.4 1 -> 0.4 -ddrem842 remainder 100000000.5 1 -> 0.5 -ddrem843 remainder 100000000.9 1 -> 0.9 -ddrem844 remainder 100000000.999 1 -> 0.999 -ddrem850 remainder 100000003 5 -> 3 -ddrem851 remainder 10000003 5 -> 3 -ddrem852 remainder 1000003 5 -> 3 -ddrem853 remainder 100003 5 -> 3 -ddrem854 remainder 10003 5 -> 3 -ddrem855 remainder 1003 5 -> 3 -ddrem856 remainder 103 5 -> 3 -ddrem857 remainder 13 5 -> 3 -ddrem858 remainder 1 5 -> 1 - --- Vladimir's cases 1234567890123456 -ddrem860 remainder 123.0e1 1000000000000000 -> 1230 -ddrem861 remainder 1230 1000000000000000 -> 1230 -ddrem862 remainder 12.3e2 1000000000000000 -> 1230 -ddrem863 remainder 1.23e3 1000000000000000 -> 1230 -ddrem864 remainder 123e1 1000000000000000 -> 1230 -ddrem870 remainder 123e1 1000000000000000 -> 1230 -ddrem871 remainder 123e1 100000000000000 -> 1230 -ddrem872 remainder 123e1 10000000000000 -> 1230 -ddrem873 remainder 123e1 1000000000000 -> 1230 -ddrem874 remainder 123e1 100000000000 -> 1230 -ddrem875 remainder 123e1 10000000000 -> 1230 -ddrem876 remainder 123e1 1000000000 -> 1230 -ddrem877 remainder 123e1 100000000 -> 1230 -ddrem878 remainder 1230 100000000 -> 1230 -ddrem879 remainder 123e1 10000000 -> 1230 -ddrem880 remainder 123e1 1000000 -> 1230 -ddrem881 remainder 123e1 100000 -> 1230 -ddrem882 remainder 123e1 10000 -> 1230 -ddrem883 remainder 123e1 1000 -> 230 -ddrem884 remainder 123e1 100 -> 30 -ddrem885 remainder 123e1 10 -> 0 -ddrem886 remainder 123e1 1 -> 0 - -ddrem890 remainder 123e1 2000000000000000 -> 1230 -ddrem891 remainder 123e1 200000000000000 -> 1230 -ddrem892 remainder 123e1 20000000000000 -> 1230 -ddrem893 remainder 123e1 2000000000000 -> 1230 -ddrem894 remainder 123e1 200000000000 -> 1230 -ddrem895 remainder 123e1 20000000000 -> 1230 -ddrem896 remainder 123e1 2000000000 -> 1230 -ddrem897 remainder 123e1 200000000 -> 1230 -ddrem899 remainder 123e1 20000000 -> 1230 -ddrem900 remainder 123e1 2000000 -> 1230 -ddrem901 remainder 123e1 200000 -> 1230 -ddrem902 remainder 123e1 20000 -> 1230 -ddrem903 remainder 123e1 2000 -> 1230 -ddrem904 remainder 123e1 200 -> 30 -ddrem905 remainder 123e1 20 -> 10 -ddrem906 remainder 123e1 2 -> 0 - -ddrem910 remainder 123e1 5000000000000000 -> 1230 -ddrem911 remainder 123e1 500000000000000 -> 1230 -ddrem912 remainder 123e1 50000000000000 -> 1230 -ddrem913 remainder 123e1 5000000000000 -> 1230 -ddrem914 remainder 123e1 500000000000 -> 1230 -ddrem915 remainder 123e1 50000000000 -> 1230 -ddrem916 remainder 123e1 5000000000 -> 1230 -ddrem917 remainder 123e1 500000000 -> 1230 -ddrem919 remainder 123e1 50000000 -> 1230 -ddrem920 remainder 123e1 5000000 -> 1230 -ddrem921 remainder 123e1 500000 -> 1230 -ddrem922 remainder 123e1 50000 -> 1230 -ddrem923 remainder 123e1 5000 -> 1230 -ddrem924 remainder 123e1 500 -> 230 -ddrem925 remainder 123e1 50 -> 30 -ddrem926 remainder 123e1 5 -> 0 - -ddrem930 remainder 123e1 9000000000000000 -> 1230 -ddrem931 remainder 123e1 900000000000000 -> 1230 -ddrem932 remainder 123e1 90000000000000 -> 1230 -ddrem933 remainder 123e1 9000000000000 -> 1230 -ddrem934 remainder 123e1 900000000000 -> 1230 -ddrem935 remainder 123e1 90000000000 -> 1230 -ddrem936 remainder 123e1 9000000000 -> 1230 -ddrem937 remainder 123e1 900000000 -> 1230 -ddrem939 remainder 123e1 90000000 -> 1230 -ddrem940 remainder 123e1 9000000 -> 1230 -ddrem941 remainder 123e1 900000 -> 1230 -ddrem942 remainder 123e1 90000 -> 1230 -ddrem943 remainder 123e1 9000 -> 1230 -ddrem944 remainder 123e1 900 -> 330 -ddrem945 remainder 123e1 90 -> 60 -ddrem946 remainder 123e1 9 -> 6 - -ddrem950 remainder 123e1 1000000000000000 -> 1230 -ddrem961 remainder 123e1 2999999999999999 -> 1230 -ddrem962 remainder 123e1 3999999999999999 -> 1230 -ddrem963 remainder 123e1 4999999999999999 -> 1230 -ddrem964 remainder 123e1 5999999999999999 -> 1230 -ddrem965 remainder 123e1 6999999999999999 -> 1230 -ddrem966 remainder 123e1 7999999999999999 -> 1230 -ddrem967 remainder 123e1 8999999999999999 -> 1230 -ddrem968 remainder 123e1 9999999999999999 -> 1230 -ddrem969 remainder 123e1 9876543210987654 -> 1230 - -ddrem980 remainder 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally - --- overflow and underflow tests [from divide] -ddrem1051 remainder 1e+277 1e-311 -> NaN Division_impossible -ddrem1052 remainder 1e+277 -1e-311 -> NaN Division_impossible -ddrem1053 remainder -1e+277 1e-311 -> NaN Division_impossible -ddrem1054 remainder -1e+277 -1e-311 -> NaN Division_impossible -ddrem1055 remainder 1e-277 1e+311 -> 1E-277 -ddrem1056 remainder 1e-277 -1e+311 -> 1E-277 -ddrem1057 remainder -1e-277 1e+311 -> -1E-277 -ddrem1058 remainder -1e-277 -1e+311 -> -1E-277 - --- destructive subtract -ddrem1101 remainder 1234567890123456 1.000000000000001 -> 0.765432109876546 -ddrem1102 remainder 1234567890123456 1.00000000000001 -> 0.65432109876557 -ddrem1103 remainder 1234567890123456 1.0000000000001 -> 0.5432109876668 -ddrem1104 remainder 1234567890123455 4.000000000000001 -> 2.691358027469137 -ddrem1105 remainder 1234567890123456 4.000000000000001 -> 3.691358027469137 -ddrem1106 remainder 1234567890123456 4.9999999999999 -> 0.6913578024696 -ddrem1107 remainder 1234567890123456 4.99999999999999 -> 3.46913578024691 -ddrem1108 remainder 1234567890123456 4.999999999999999 -> 1.246913578024691 -ddrem1109 remainder 1234567890123456 5.000000000000001 -> 0.753086421975309 -ddrem1110 remainder 1234567890123456 5.00000000000001 -> 3.53086421975310 -ddrem1111 remainder 1234567890123456 5.0000000000001 -> 1.3086421975314 - --- Null tests -ddrem1000 remainder 10 # -> NaN Invalid_operation -ddrem1001 remainder # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddRemainderNear.decTest b/qdecimal/test/tc_full/ddRemainderNear.decTest deleted file mode 100644 index 3835669..0000000 --- a/qdecimal/test/tc_full/ddRemainderNear.decTest +++ /dev/null @@ -1,629 +0,0 @@ ------------------------------------------------------------------------- --- ddRemainderNear.decTest -- decDouble remainder-near -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- sanity checks (as base, above) -ddrmn001 remaindernear 1 1 -> 0 -ddrmn002 remaindernear 2 1 -> 0 -ddrmn003 remaindernear 1 2 -> 1 -ddrmn004 remaindernear 2 2 -> 0 -ddrmn005 remaindernear 0 1 -> 0 -ddrmn006 remaindernear 0 2 -> 0 -ddrmn007 remaindernear 1 3 -> 1 -ddrmn008 remaindernear 2 3 -> -1 -ddrmn009 remaindernear 3 3 -> 0 - -ddrmn010 remaindernear 2.4 1 -> 0.4 -ddrmn011 remaindernear 2.4 -1 -> 0.4 -ddrmn012 remaindernear -2.4 1 -> -0.4 -ddrmn013 remaindernear -2.4 -1 -> -0.4 -ddrmn014 remaindernear 2.40 1 -> 0.40 -ddrmn015 remaindernear 2.400 1 -> 0.400 -ddrmn016 remaindernear 2.4 2 -> 0.4 -ddrmn017 remaindernear 2.400 2 -> 0.400 -ddrmn018 remaindernear 2. 2 -> 0 -ddrmn019 remaindernear 20 20 -> 0 - -ddrmn020 remaindernear 187 187 -> 0 -ddrmn021 remaindernear 5 2 -> 1 -ddrmn022 remaindernear 5 2.0 -> 1.0 -ddrmn023 remaindernear 5 2.000 -> 1.000 -ddrmn024 remaindernear 5 0.200 -> 0.000 -ddrmn025 remaindernear 5 0.200 -> 0.000 - -ddrmn030 remaindernear 1 2 -> 1 -ddrmn031 remaindernear 1 4 -> 1 -ddrmn032 remaindernear 1 8 -> 1 - -ddrmn033 remaindernear 1 16 -> 1 -ddrmn034 remaindernear 1 32 -> 1 -ddrmn035 remaindernear 1 64 -> 1 -ddrmn040 remaindernear 1 -2 -> 1 -ddrmn041 remaindernear 1 -4 -> 1 -ddrmn042 remaindernear 1 -8 -> 1 -ddrmn043 remaindernear 1 -16 -> 1 -ddrmn044 remaindernear 1 -32 -> 1 -ddrmn045 remaindernear 1 -64 -> 1 -ddrmn050 remaindernear -1 2 -> -1 -ddrmn051 remaindernear -1 4 -> -1 -ddrmn052 remaindernear -1 8 -> -1 -ddrmn053 remaindernear -1 16 -> -1 -ddrmn054 remaindernear -1 32 -> -1 -ddrmn055 remaindernear -1 64 -> -1 -ddrmn060 remaindernear -1 -2 -> -1 -ddrmn061 remaindernear -1 -4 -> -1 -ddrmn062 remaindernear -1 -8 -> -1 -ddrmn063 remaindernear -1 -16 -> -1 -ddrmn064 remaindernear -1 -32 -> -1 -ddrmn065 remaindernear -1 -64 -> -1 - -ddrmn066 remaindernear 9.9 1 -> -0.1 -ddrmn067 remaindernear 99.7 1 -> -0.3 -ddrmn068 remaindernear 999999999 1 -> 0 -ddrmn069 remaindernear 999999999.4 1 -> 0.4 -ddrmn070 remaindernear 999999999.5 1 -> -0.5 -ddrmn071 remaindernear 999999999.9 1 -> -0.1 -ddrmn072 remaindernear 999999999.999 1 -> -0.001 -ddrmn073 remaindernear 999999.999999 1 -> -0.000001 -ddrmn074 remaindernear 9 1 -> 0 -ddrmn075 remaindernear 9999999999999999 1 -> 0 -ddrmn076 remaindernear 9999999999999999 2 -> -1 -ddrmn077 remaindernear 9999999999999999 3 -> 0 -ddrmn078 remaindernear 9999999999999999 4 -> -1 - -ddrmn080 remaindernear 0. 1 -> 0 -ddrmn081 remaindernear .0 1 -> 0.0 -ddrmn082 remaindernear 0.00 1 -> 0.00 -ddrmn083 remaindernear 0.00E+9 1 -> 0 -ddrmn084 remaindernear 0.00E+3 1 -> 0 -ddrmn085 remaindernear 0.00E+2 1 -> 0 -ddrmn086 remaindernear 0.00E+1 1 -> 0.0 -ddrmn087 remaindernear 0.00E+0 1 -> 0.00 -ddrmn088 remaindernear 0.00E-0 1 -> 0.00 -ddrmn089 remaindernear 0.00E-1 1 -> 0.000 -ddrmn090 remaindernear 0.00E-2 1 -> 0.0000 -ddrmn091 remaindernear 0.00E-3 1 -> 0.00000 -ddrmn092 remaindernear 0.00E-4 1 -> 0.000000 -ddrmn093 remaindernear 0.00E-5 1 -> 0E-7 -ddrmn094 remaindernear 0.00E-6 1 -> 0E-8 -ddrmn095 remaindernear 0.0000E-50 1 -> 0E-54 - --- Various flavours of remaindernear by 0 -ddrmn101 remaindernear 0 0 -> NaN Division_undefined -ddrmn102 remaindernear 0 -0 -> NaN Division_undefined -ddrmn103 remaindernear -0 0 -> NaN Division_undefined -ddrmn104 remaindernear -0 -0 -> NaN Division_undefined -ddrmn105 remaindernear 0.0E5 0 -> NaN Division_undefined -ddrmn106 remaindernear 0.000 0 -> NaN Division_undefined --- [Some think this next group should be Division_by_zero exception, but --- IEEE 854 is explicit that it is Invalid operation .. for --- remainder-near, anyway] -ddrmn107 remaindernear 0.0001 0 -> NaN Invalid_operation -ddrmn108 remaindernear 0.01 0 -> NaN Invalid_operation -ddrmn109 remaindernear 0.1 0 -> NaN Invalid_operation -ddrmn110 remaindernear 1 0 -> NaN Invalid_operation -ddrmn111 remaindernear 1 0.0 -> NaN Invalid_operation -ddrmn112 remaindernear 10 0.0 -> NaN Invalid_operation -ddrmn113 remaindernear 1E+100 0.0 -> NaN Invalid_operation -ddrmn114 remaindernear 1E+380 0 -> NaN Invalid_operation -ddrmn115 remaindernear 0.0001 -0 -> NaN Invalid_operation -ddrmn116 remaindernear 0.01 -0 -> NaN Invalid_operation -ddrmn119 remaindernear 0.1 -0 -> NaN Invalid_operation -ddrmn120 remaindernear 1 -0 -> NaN Invalid_operation -ddrmn121 remaindernear 1 -0.0 -> NaN Invalid_operation -ddrmn122 remaindernear 10 -0.0 -> NaN Invalid_operation -ddrmn123 remaindernear 1E+100 -0.0 -> NaN Invalid_operation -ddrmn124 remaindernear 1E+384 -0 -> NaN Invalid_operation --- and zeros on left -ddrmn130 remaindernear 0 1 -> 0 -ddrmn131 remaindernear 0 -1 -> 0 -ddrmn132 remaindernear 0.0 1 -> 0.0 -ddrmn133 remaindernear 0.0 -1 -> 0.0 -ddrmn134 remaindernear -0 1 -> -0 -ddrmn135 remaindernear -0 -1 -> -0 -ddrmn136 remaindernear -0.0 1 -> -0.0 -ddrmn137 remaindernear -0.0 -1 -> -0.0 - --- 0.5ers -ddrmn143 remaindernear 0.5 2 -> 0.5 -ddrmn144 remaindernear 0.5 2.1 -> 0.5 -ddrmn145 remaindernear 0.5 2.01 -> 0.50 -ddrmn146 remaindernear 0.5 2.001 -> 0.500 -ddrmn147 remaindernear 0.50 2 -> 0.50 -ddrmn148 remaindernear 0.50 2.01 -> 0.50 -ddrmn149 remaindernear 0.50 2.001 -> 0.500 - --- steadies -ddrmn150 remaindernear 1 1 -> 0 -ddrmn151 remaindernear 1 2 -> 1 -ddrmn152 remaindernear 1 3 -> 1 -ddrmn153 remaindernear 1 4 -> 1 -ddrmn154 remaindernear 1 5 -> 1 -ddrmn155 remaindernear 1 6 -> 1 -ddrmn156 remaindernear 1 7 -> 1 -ddrmn157 remaindernear 1 8 -> 1 -ddrmn158 remaindernear 1 9 -> 1 -ddrmn159 remaindernear 1 10 -> 1 -ddrmn160 remaindernear 1 1 -> 0 -ddrmn161 remaindernear 2 1 -> 0 -ddrmn162 remaindernear 3 1 -> 0 -ddrmn163 remaindernear 4 1 -> 0 -ddrmn164 remaindernear 5 1 -> 0 -ddrmn165 remaindernear 6 1 -> 0 -ddrmn166 remaindernear 7 1 -> 0 -ddrmn167 remaindernear 8 1 -> 0 -ddrmn168 remaindernear 9 1 -> 0 -ddrmn169 remaindernear 10 1 -> 0 - --- some differences from remainder -ddrmn171 remaindernear 0.4 1.020 -> 0.400 -ddrmn172 remaindernear 0.50 1.020 -> 0.500 -ddrmn173 remaindernear 0.51 1.020 -> 0.510 -ddrmn174 remaindernear 0.52 1.020 -> -0.500 -ddrmn175 remaindernear 0.6 1.020 -> -0.420 - --- More flavours of remaindernear by 0 -ddrmn201 remaindernear 0 0 -> NaN Division_undefined -ddrmn202 remaindernear 0.0E5 0 -> NaN Division_undefined -ddrmn203 remaindernear 0.000 0 -> NaN Division_undefined -ddrmn204 remaindernear 0.0001 0 -> NaN Invalid_operation -ddrmn205 remaindernear 0.01 0 -> NaN Invalid_operation -ddrmn206 remaindernear 0.1 0 -> NaN Invalid_operation -ddrmn207 remaindernear 1 0 -> NaN Invalid_operation -ddrmn208 remaindernear 1 0.0 -> NaN Invalid_operation -ddrmn209 remaindernear 10 0.0 -> NaN Invalid_operation -ddrmn210 remaindernear 1E+100 0.0 -> NaN Invalid_operation -ddrmn211 remaindernear 1E+380 0 -> NaN Invalid_operation - --- tests from the extended specification -ddrmn221 remaindernear 2.1 3 -> -0.9 -ddrmn222 remaindernear 10 6 -> -2 -ddrmn223 remaindernear 10 3 -> 1 -ddrmn224 remaindernear -10 3 -> -1 -ddrmn225 remaindernear 10.2 1 -> 0.2 -ddrmn226 remaindernear 10 0.3 -> 0.1 -ddrmn227 remaindernear 3.6 1.3 -> -0.3 - --- some differences from remainder -ddrmn231 remaindernear -0.4 1.020 -> -0.400 -ddrmn232 remaindernear -0.50 1.020 -> -0.500 -ddrmn233 remaindernear -0.51 1.020 -> -0.510 -ddrmn234 remaindernear -0.52 1.020 -> 0.500 -ddrmn235 remaindernear -0.6 1.020 -> 0.420 - --- high Xs -ddrmn240 remaindernear 1E+2 1.00 -> 0.00 - --- ddrmn3xx are from DiagBigDecimal -ddrmn301 remaindernear 1 3 -> 1 -ddrmn302 remaindernear 5 5 -> 0 -ddrmn303 remaindernear 13 10 -> 3 -ddrmn304 remaindernear 13 50 -> 13 -ddrmn305 remaindernear 13 100 -> 13 -ddrmn306 remaindernear 13 1000 -> 13 -ddrmn307 remaindernear .13 1 -> 0.13 -ddrmn308 remaindernear 0.133 1 -> 0.133 -ddrmn309 remaindernear 0.1033 1 -> 0.1033 -ddrmn310 remaindernear 1.033 1 -> 0.033 -ddrmn311 remaindernear 10.33 1 -> 0.33 -ddrmn312 remaindernear 10.33 10 -> 0.33 -ddrmn313 remaindernear 103.3 1 -> 0.3 -ddrmn314 remaindernear 133 10 -> 3 -ddrmn315 remaindernear 1033 10 -> 3 -ddrmn316 remaindernear 1033 50 -> -17 -ddrmn317 remaindernear 101.0 3 -> -1.0 -ddrmn318 remaindernear 102.0 3 -> 0.0 -ddrmn319 remaindernear 103.0 3 -> 1.0 -ddrmn320 remaindernear 2.40 1 -> 0.40 -ddrmn321 remaindernear 2.400 1 -> 0.400 -ddrmn322 remaindernear 2.4 1 -> 0.4 -ddrmn323 remaindernear 2.4 2 -> 0.4 -ddrmn324 remaindernear 2.400 2 -> 0.400 -ddrmn325 remaindernear 1 0.3 -> 0.1 -ddrmn326 remaindernear 1 0.30 -> 0.10 -ddrmn327 remaindernear 1 0.300 -> 0.100 -ddrmn328 remaindernear 1 0.3000 -> 0.1000 -ddrmn329 remaindernear 1.0 0.3 -> 0.1 -ddrmn330 remaindernear 1.00 0.3 -> 0.10 -ddrmn331 remaindernear 1.000 0.3 -> 0.100 -ddrmn332 remaindernear 1.0000 0.3 -> 0.1000 -ddrmn333 remaindernear 0.5 2 -> 0.5 -ddrmn334 remaindernear 0.5 2.1 -> 0.5 -ddrmn335 remaindernear 0.5 2.01 -> 0.50 -ddrmn336 remaindernear 0.5 2.001 -> 0.500 -ddrmn337 remaindernear 0.50 2 -> 0.50 -ddrmn338 remaindernear 0.50 2.01 -> 0.50 -ddrmn339 remaindernear 0.50 2.001 -> 0.500 - -ddrmn340 remaindernear 0.5 0.5000001 -> -1E-7 -ddrmn341 remaindernear 0.5 0.50000001 -> -1E-8 -ddrmn342 remaindernear 0.5 0.500000001 -> -1E-9 -ddrmn343 remaindernear 0.5 0.5000000001 -> -1E-10 -ddrmn344 remaindernear 0.5 0.50000000001 -> -1E-11 -ddrmn345 remaindernear 0.5 0.4999999 -> 1E-7 -ddrmn346 remaindernear 0.5 0.49999999 -> 1E-8 -ddrmn347 remaindernear 0.5 0.499999999 -> 1E-9 -ddrmn348 remaindernear 0.5 0.4999999999 -> 1E-10 -ddrmn349 remaindernear 0.5 0.49999999999 -> 1E-11 -ddrmn350 remaindernear 0.5 0.499999999999 -> 1E-12 - -ddrmn351 remaindernear 0.03 7 -> 0.03 -ddrmn352 remaindernear 5 2 -> 1 -ddrmn353 remaindernear 4.1 2 -> 0.1 -ddrmn354 remaindernear 4.01 2 -> 0.01 -ddrmn355 remaindernear 4.001 2 -> 0.001 -ddrmn356 remaindernear 4.0001 2 -> 0.0001 -ddrmn357 remaindernear 4.00001 2 -> 0.00001 -ddrmn358 remaindernear 4.000001 2 -> 0.000001 -ddrmn359 remaindernear 4.0000001 2 -> 1E-7 - -ddrmn360 remaindernear 1.2 0.7345 -> -0.2690 -ddrmn361 remaindernear 0.8 12 -> 0.8 -ddrmn362 remaindernear 0.8 0.2 -> 0.0 -ddrmn363 remaindernear 0.8 0.3 -> -0.1 -ddrmn364 remaindernear 0.800 12 -> 0.800 -ddrmn365 remaindernear 0.800 1.7 -> 0.800 -ddrmn366 remaindernear 2.400 2 -> 0.400 - --- round to even -ddrmn371 remaindernear 121 2 -> 1 -ddrmn372 remaindernear 122 2 -> 0 -ddrmn373 remaindernear 123 2 -> -1 -ddrmn374 remaindernear 124 2 -> 0 -ddrmn375 remaindernear 125 2 -> 1 -ddrmn376 remaindernear 126 2 -> 0 -ddrmn377 remaindernear 127 2 -> -1 - -ddrmn381 remaindernear 12345 1 -> 0 -ddrmn382 remaindernear 12345 1.0001 -> -0.2344 -ddrmn383 remaindernear 12345 1.001 -> -0.333 -ddrmn384 remaindernear 12345 1.01 -> -0.23 -ddrmn385 remaindernear 12345 1.1 -> -0.3 -ddrmn386 remaindernear 12355 4 -> -1 -ddrmn387 remaindernear 12345 4 -> 1 -ddrmn388 remaindernear 12355 4.0001 -> -1.3089 -ddrmn389 remaindernear 12345 4.0001 -> 0.6914 -ddrmn390 remaindernear 12345 4.9 -> 1.9 -ddrmn391 remaindernear 12345 4.99 -> -0.26 -ddrmn392 remaindernear 12345 4.999 -> 2.469 -ddrmn393 remaindernear 12345 4.9999 -> 0.2469 -ddrmn394 remaindernear 12345 5 -> 0 -ddrmn395 remaindernear 12345 5.0001 -> -0.2469 -ddrmn396 remaindernear 12345 5.001 -> -2.469 -ddrmn397 remaindernear 12345 5.01 -> 0.36 -ddrmn398 remaindernear 12345 5.1 -> -2.1 - --- the nasty division-by-1 cases -ddrmn401 remaindernear 0.4 1 -> 0.4 -ddrmn402 remaindernear 0.45 1 -> 0.45 -ddrmn403 remaindernear 0.455 1 -> 0.455 -ddrmn404 remaindernear 0.4555 1 -> 0.4555 -ddrmn405 remaindernear 0.45555 1 -> 0.45555 -ddrmn406 remaindernear 0.455555 1 -> 0.455555 -ddrmn407 remaindernear 0.4555555 1 -> 0.4555555 -ddrmn408 remaindernear 0.45555555 1 -> 0.45555555 -ddrmn409 remaindernear 0.455555555 1 -> 0.455555555 --- with spill... [412 exercises sticktab loop] -ddrmn411 remaindernear 0.5 1 -> 0.5 -ddrmn412 remaindernear 0.55 1 -> -0.45 -ddrmn413 remaindernear 0.555 1 -> -0.445 -ddrmn414 remaindernear 0.5555 1 -> -0.4445 -ddrmn415 remaindernear 0.55555 1 -> -0.44445 -ddrmn416 remaindernear 0.555555 1 -> -0.444445 -ddrmn417 remaindernear 0.5555555 1 -> -0.4444445 -ddrmn418 remaindernear 0.55555555 1 -> -0.44444445 -ddrmn419 remaindernear 0.555555555 1 -> -0.444444445 - --- folddowns -ddrmn421 remaindernear 1E+384 1 -> NaN Division_impossible -ddrmn422 remaindernear 1E+384 1E+383 -> 0E+369 Clamped -ddrmn423 remaindernear 1E+384 2E+383 -> 0E+369 Clamped -ddrmn424 remaindernear 1E+384 3E+383 -> 1.00000000000000E+383 Clamped -ddrmn425 remaindernear 1E+384 4E+383 -> 2.00000000000000E+383 Clamped -ddrmn426 remaindernear 1E+384 5E+383 -> 0E+369 Clamped -ddrmn427 remaindernear 1E+384 6E+383 -> -2.00000000000000E+383 Clamped -ddrmn428 remaindernear 1E+384 7E+383 -> 3.00000000000000E+383 Clamped -ddrmn429 remaindernear 1E+384 8E+383 -> 2.00000000000000E+383 Clamped -ddrmn430 remaindernear 1E+384 9E+383 -> 1.00000000000000E+383 Clamped --- tinies -ddrmn431 remaindernear 1E-397 1E-398 -> 0E-398 -ddrmn432 remaindernear 1E-397 2E-398 -> 0E-398 -ddrmn433 remaindernear 1E-397 3E-398 -> 1E-398 Subnormal -ddrmn434 remaindernear 1E-397 4E-398 -> 2E-398 Subnormal -ddrmn435 remaindernear 1E-397 5E-398 -> 0E-398 -ddrmn436 remaindernear 1E-397 6E-398 -> -2E-398 Subnormal -ddrmn437 remaindernear 1E-397 7E-398 -> 3E-398 Subnormal -ddrmn438 remaindernear 1E-397 8E-398 -> 2E-398 Subnormal -ddrmn439 remaindernear 1E-397 9E-398 -> 1E-398 Subnormal -ddrmn440 remaindernear 1E-397 10E-398 -> 0E-398 -ddrmn441 remaindernear 1E-397 11E-398 -> -1E-398 Subnormal -ddrmn442 remaindernear 100E-397 11E-398 -> -1E-398 Subnormal -ddrmn443 remaindernear 100E-397 20E-398 -> 0E-398 -ddrmn444 remaindernear 100E-397 21E-398 -> -8E-398 Subnormal -ddrmn445 remaindernear 100E-397 30E-398 -> 1.0E-397 Subnormal - --- zero signs -ddrmn650 remaindernear 1 1 -> 0 -ddrmn651 remaindernear -1 1 -> -0 -ddrmn652 remaindernear 1 -1 -> 0 -ddrmn653 remaindernear -1 -1 -> -0 -ddrmn654 remaindernear 0 1 -> 0 -ddrmn655 remaindernear -0 1 -> -0 -ddrmn656 remaindernear 0 -1 -> 0 -ddrmn657 remaindernear -0 -1 -> -0 -ddrmn658 remaindernear 0.00 1 -> 0.00 -ddrmn659 remaindernear -0.00 1 -> -0.00 - --- Specials -ddrmn680 remaindernear Inf -Inf -> NaN Invalid_operation -ddrmn681 remaindernear Inf -1000 -> NaN Invalid_operation -ddrmn682 remaindernear Inf -1 -> NaN Invalid_operation -ddrmn683 remaindernear Inf 0 -> NaN Invalid_operation -ddrmn684 remaindernear Inf -0 -> NaN Invalid_operation -ddrmn685 remaindernear Inf 1 -> NaN Invalid_operation -ddrmn686 remaindernear Inf 1000 -> NaN Invalid_operation -ddrmn687 remaindernear Inf Inf -> NaN Invalid_operation -ddrmn688 remaindernear -1000 Inf -> -1000 -ddrmn689 remaindernear -Inf Inf -> NaN Invalid_operation -ddrmn691 remaindernear -1 Inf -> -1 -ddrmn692 remaindernear 0 Inf -> 0 -ddrmn693 remaindernear -0 Inf -> -0 -ddrmn694 remaindernear 1 Inf -> 1 -ddrmn695 remaindernear 1000 Inf -> 1000 -ddrmn696 remaindernear Inf Inf -> NaN Invalid_operation - -ddrmn700 remaindernear -Inf -Inf -> NaN Invalid_operation -ddrmn701 remaindernear -Inf -1000 -> NaN Invalid_operation -ddrmn702 remaindernear -Inf -1 -> NaN Invalid_operation -ddrmn703 remaindernear -Inf -0 -> NaN Invalid_operation -ddrmn704 remaindernear -Inf 0 -> NaN Invalid_operation -ddrmn705 remaindernear -Inf 1 -> NaN Invalid_operation -ddrmn706 remaindernear -Inf 1000 -> NaN Invalid_operation -ddrmn707 remaindernear -Inf Inf -> NaN Invalid_operation -ddrmn708 remaindernear -Inf -Inf -> NaN Invalid_operation -ddrmn709 remaindernear -1000 Inf -> -1000 -ddrmn710 remaindernear -1 -Inf -> -1 -ddrmn711 remaindernear -0 -Inf -> -0 -ddrmn712 remaindernear 0 -Inf -> 0 -ddrmn713 remaindernear 1 -Inf -> 1 -ddrmn714 remaindernear 1000 -Inf -> 1000 -ddrmn715 remaindernear Inf -Inf -> NaN Invalid_operation - -ddrmn721 remaindernear NaN -Inf -> NaN -ddrmn722 remaindernear NaN -1000 -> NaN -ddrmn723 remaindernear NaN -1 -> NaN -ddrmn724 remaindernear NaN -0 -> NaN -ddrmn725 remaindernear -NaN 0 -> -NaN -ddrmn726 remaindernear NaN 1 -> NaN -ddrmn727 remaindernear NaN 1000 -> NaN -ddrmn728 remaindernear NaN Inf -> NaN -ddrmn729 remaindernear NaN -NaN -> NaN -ddrmn730 remaindernear -Inf NaN -> NaN -ddrmn731 remaindernear -1000 NaN -> NaN -ddrmn732 remaindernear -1 NaN -> NaN -ddrmn733 remaindernear -0 -NaN -> -NaN -ddrmn734 remaindernear 0 NaN -> NaN -ddrmn735 remaindernear 1 -NaN -> -NaN -ddrmn736 remaindernear 1000 NaN -> NaN -ddrmn737 remaindernear Inf NaN -> NaN - -ddrmn741 remaindernear sNaN -Inf -> NaN Invalid_operation -ddrmn742 remaindernear sNaN -1000 -> NaN Invalid_operation -ddrmn743 remaindernear -sNaN -1 -> -NaN Invalid_operation -ddrmn744 remaindernear sNaN -0 -> NaN Invalid_operation -ddrmn745 remaindernear sNaN 0 -> NaN Invalid_operation -ddrmn746 remaindernear sNaN 1 -> NaN Invalid_operation -ddrmn747 remaindernear sNaN 1000 -> NaN Invalid_operation -ddrmn749 remaindernear sNaN NaN -> NaN Invalid_operation -ddrmn750 remaindernear sNaN sNaN -> NaN Invalid_operation -ddrmn751 remaindernear NaN sNaN -> NaN Invalid_operation -ddrmn752 remaindernear -Inf sNaN -> NaN Invalid_operation -ddrmn753 remaindernear -1000 sNaN -> NaN Invalid_operation -ddrmn754 remaindernear -1 sNaN -> NaN Invalid_operation -ddrmn755 remaindernear -0 sNaN -> NaN Invalid_operation -ddrmn756 remaindernear 0 sNaN -> NaN Invalid_operation -ddrmn757 remaindernear 1 sNaN -> NaN Invalid_operation -ddrmn758 remaindernear 1000 sNaN -> NaN Invalid_operation -ddrmn759 remaindernear Inf -sNaN -> -NaN Invalid_operation - --- propaging NaNs -ddrmn760 remaindernear NaN1 NaN7 -> NaN1 -ddrmn761 remaindernear sNaN2 NaN8 -> NaN2 Invalid_operation -ddrmn762 remaindernear NaN3 sNaN9 -> NaN9 Invalid_operation -ddrmn763 remaindernear sNaN4 sNaN10 -> NaN4 Invalid_operation -ddrmn764 remaindernear 15 NaN11 -> NaN11 -ddrmn765 remaindernear NaN6 NaN12 -> NaN6 -ddrmn766 remaindernear Inf NaN13 -> NaN13 -ddrmn767 remaindernear NaN14 -Inf -> NaN14 -ddrmn768 remaindernear 0 NaN15 -> NaN15 -ddrmn769 remaindernear NaN16 -0 -> NaN16 - --- edge cases of impossible -ddrmn770 remaindernear 1234567890123456 10 -> -4 -ddrmn771 remaindernear 1234567890123456 1 -> 0 -ddrmn772 remaindernear 1234567890123456 0.1 -> NaN Division_impossible -ddrmn773 remaindernear 1234567890123456 0.01 -> NaN Division_impossible - --- long operand checks -ddrmn801 remaindernear 12345678000 100 -> 0 -ddrmn802 remaindernear 1 12345678000 -> 1 -ddrmn803 remaindernear 1234567800 10 -> 0 -ddrmn804 remaindernear 1 1234567800 -> 1 -ddrmn805 remaindernear 1234567890 10 -> 0 -ddrmn806 remaindernear 1 1234567890 -> 1 -ddrmn807 remaindernear 1234567891 10 -> 1 -ddrmn808 remaindernear 1 1234567891 -> 1 -ddrmn809 remaindernear 12345678901 100 -> 1 -ddrmn810 remaindernear 1 12345678901 -> 1 -ddrmn811 remaindernear 1234567896 10 -> -4 -ddrmn812 remaindernear 1 1234567896 -> 1 - -ddrmn821 remaindernear 12345678000 100 -> 0 -ddrmn822 remaindernear 1 12345678000 -> 1 -ddrmn823 remaindernear 1234567800 10 -> 0 -ddrmn824 remaindernear 1 1234567800 -> 1 -ddrmn825 remaindernear 1234567890 10 -> 0 -ddrmn826 remaindernear 1 1234567890 -> 1 -ddrmn827 remaindernear 1234567891 10 -> 1 -ddrmn828 remaindernear 1 1234567891 -> 1 -ddrmn829 remaindernear 12345678901 100 -> 1 -ddrmn830 remaindernear 1 12345678901 -> 1 -ddrmn831 remaindernear 1234567896 10 -> -4 -ddrmn832 remaindernear 1 1234567896 -> 1 - --- from divideint -ddrmn840 remaindernear 100000000.0 1 -> 0.0 -ddrmn841 remaindernear 100000000.4 1 -> 0.4 -ddrmn842 remaindernear 100000000.5 1 -> 0.5 -ddrmn843 remaindernear 100000000.9 1 -> -0.1 -ddrmn844 remaindernear 100000000.999 1 -> -0.001 -ddrmn850 remaindernear 100000003 5 -> -2 -ddrmn851 remaindernear 10000003 5 -> -2 -ddrmn852 remaindernear 1000003 5 -> -2 -ddrmn853 remaindernear 100003 5 -> -2 -ddrmn854 remaindernear 10003 5 -> -2 -ddrmn855 remaindernear 1003 5 -> -2 -ddrmn856 remaindernear 103 5 -> -2 -ddrmn857 remaindernear 13 5 -> -2 -ddrmn858 remaindernear 1 5 -> 1 - --- Vladimir's cases 1234567890123456 -ddrmn860 remaindernear 123.0e1 1000000000000000 -> 1230 -ddrmn861 remaindernear 1230 1000000000000000 -> 1230 -ddrmn862 remaindernear 12.3e2 1000000000000000 -> 1230 -ddrmn863 remaindernear 1.23e3 1000000000000000 -> 1230 -ddrmn864 remaindernear 123e1 1000000000000000 -> 1230 -ddrmn870 remaindernear 123e1 1000000000000000 -> 1230 -ddrmn871 remaindernear 123e1 100000000000000 -> 1230 -ddrmn872 remaindernear 123e1 10000000000000 -> 1230 -ddrmn873 remaindernear 123e1 1000000000000 -> 1230 -ddrmn874 remaindernear 123e1 100000000000 -> 1230 -ddrmn875 remaindernear 123e1 10000000000 -> 1230 -ddrmn876 remaindernear 123e1 1000000000 -> 1230 -ddrmn877 remaindernear 123e1 100000000 -> 1230 -ddrmn878 remaindernear 1230 100000000 -> 1230 -ddrmn879 remaindernear 123e1 10000000 -> 1230 -ddrmn880 remaindernear 123e1 1000000 -> 1230 -ddrmn881 remaindernear 123e1 100000 -> 1230 -ddrmn882 remaindernear 123e1 10000 -> 1230 -ddrmn883 remaindernear 123e1 1000 -> 230 -ddrmn884 remaindernear 123e1 100 -> 30 -ddrmn885 remaindernear 123e1 10 -> 0 -ddrmn886 remaindernear 123e1 1 -> 0 - -ddrmn890 remaindernear 123e1 2000000000000000 -> 1230 -ddrmn891 remaindernear 123e1 200000000000000 -> 1230 -ddrmn892 remaindernear 123e1 20000000000000 -> 1230 -ddrmn893 remaindernear 123e1 2000000000000 -> 1230 -ddrmn894 remaindernear 123e1 200000000000 -> 1230 -ddrmn895 remaindernear 123e1 20000000000 -> 1230 -ddrmn896 remaindernear 123e1 2000000000 -> 1230 -ddrmn897 remaindernear 123e1 200000000 -> 1230 -ddrmn899 remaindernear 123e1 20000000 -> 1230 -ddrmn900 remaindernear 123e1 2000000 -> 1230 -ddrmn901 remaindernear 123e1 200000 -> 1230 -ddrmn902 remaindernear 123e1 20000 -> 1230 -ddrmn903 remaindernear 123e1 2000 -> -770 -ddrmn904 remaindernear 123e1 200 -> 30 -ddrmn905 remaindernear 123e1 20 -> -10 -ddrmn906 remaindernear 123e1 2 -> 0 - -ddrmn910 remaindernear 123e1 5000000000000000 -> 1230 -ddrmn911 remaindernear 123e1 500000000000000 -> 1230 -ddrmn912 remaindernear 123e1 50000000000000 -> 1230 -ddrmn913 remaindernear 123e1 5000000000000 -> 1230 -ddrmn914 remaindernear 123e1 500000000000 -> 1230 -ddrmn915 remaindernear 123e1 50000000000 -> 1230 -ddrmn916 remaindernear 123e1 5000000000 -> 1230 -ddrmn917 remaindernear 123e1 500000000 -> 1230 -ddrmn919 remaindernear 123e1 50000000 -> 1230 -ddrmn920 remaindernear 123e1 5000000 -> 1230 -ddrmn921 remaindernear 123e1 500000 -> 1230 -ddrmn922 remaindernear 123e1 50000 -> 1230 -ddrmn923 remaindernear 123e1 5000 -> 1230 -ddrmn924 remaindernear 123e1 500 -> 230 -ddrmn925 remaindernear 123e1 50 -> -20 -ddrmn926 remaindernear 123e1 5 -> 0 - -ddrmn930 remaindernear 123e1 9000000000000000 -> 1230 -ddrmn931 remaindernear 123e1 900000000000000 -> 1230 -ddrmn932 remaindernear 123e1 90000000000000 -> 1230 -ddrmn933 remaindernear 123e1 9000000000000 -> 1230 -ddrmn934 remaindernear 123e1 900000000000 -> 1230 -ddrmn935 remaindernear 123e1 90000000000 -> 1230 -ddrmn936 remaindernear 123e1 9000000000 -> 1230 -ddrmn937 remaindernear 123e1 900000000 -> 1230 -ddrmn939 remaindernear 123e1 90000000 -> 1230 -ddrmn940 remaindernear 123e1 9000000 -> 1230 -ddrmn941 remaindernear 123e1 900000 -> 1230 -ddrmn942 remaindernear 123e1 90000 -> 1230 -ddrmn943 remaindernear 123e1 9000 -> 1230 -ddrmn944 remaindernear 123e1 900 -> 330 -ddrmn945 remaindernear 123e1 90 -> -30 -ddrmn946 remaindernear 123e1 9 -> -3 - -ddrmn950 remaindernear 123e1 1000000000000000 -> 1230 -ddrmn961 remaindernear 123e1 2999999999999999 -> 1230 -ddrmn962 remaindernear 123e1 3999999999999999 -> 1230 -ddrmn963 remaindernear 123e1 4999999999999999 -> 1230 -ddrmn964 remaindernear 123e1 5999999999999999 -> 1230 -ddrmn965 remaindernear 123e1 6999999999999999 -> 1230 -ddrmn966 remaindernear 123e1 7999999999999999 -> 1230 -ddrmn967 remaindernear 123e1 8999999999999999 -> 1230 -ddrmn968 remaindernear 123e1 9999999999999999 -> 1230 -ddrmn969 remaindernear 123e1 9876543210987654 -> 1230 - -ddrmn980 remaindernear 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally - - --- overflow and underflow tests [from divide] -ddrmn1051 remaindernear 1e+277 1e-311 -> NaN Division_impossible -ddrmn1052 remaindernear 1e+277 -1e-311 -> NaN Division_impossible -ddrmn1053 remaindernear -1e+277 1e-311 -> NaN Division_impossible -ddrmn1054 remaindernear -1e+277 -1e-311 -> NaN Division_impossible -ddrmn1055 remaindernear 1e-277 1e+311 -> 1E-277 -ddrmn1056 remaindernear 1e-277 -1e+311 -> 1E-277 -ddrmn1057 remaindernear -1e-277 1e+311 -> -1E-277 -ddrmn1058 remaindernear -1e-277 -1e+311 -> -1E-277 - --- destructive subtract -ddrmn1100 remainderNear 1234567890123456 1.000000000000001 -> -0.234567890123455 -ddrmn1101 remainderNear 1234567890123456 1.00000000000001 -> -0.34567890123444 -ddrmn1102 remainderNear 1234567890123456 1.0000000000001 -> -0.4567890123333 -ddrmn1103 remainderNear 1234567890123455 4.000000000000001 -> -1.308641972530864 -ddrmn1104 remainderNear 1234567890123456 4.000000000000001 -> -0.308641972530864 -ddrmn1115 remainderNear 1234567890123456 4.9999999999999 -> 0.6913578024696 -ddrmn1116 remainderNear 1234567890123456 4.99999999999999 -> -1.53086421975308 -ddrmn1117 remainderNear 1234567890123456 4.999999999999999 -> 1.246913578024691 -ddrmn1118 remainderNear 1234567890123456 5.000000000000001 -> 0.753086421975309 -ddrmn1119 remainderNear 1234567890123456 5.00000000000001 -> -1.46913578024691 -ddrmn1110 remainderNear 1234567890123456 5.0000000000001 -> 1.3086421975314 - --- Null tests -ddrmn1000 remaindernear 10 # -> NaN Invalid_operation -ddrmn1001 remaindernear # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/ddRotate.decTest b/qdecimal/test/tc_full/ddRotate.decTest deleted file mode 100644 index 73f99bf..0000000 --- a/qdecimal/test/tc_full/ddRotate.decTest +++ /dev/null @@ -1,262 +0,0 @@ ------------------------------------------------------------------------- --- ddRotate.decTest -- rotate a decDouble coefficient left or right -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddrot001 rotate 0 0 -> 0 -ddrot002 rotate 0 2 -> 0 -ddrot003 rotate 1 2 -> 100 -ddrot004 rotate 1 15 -> 1000000000000000 -ddrot005 rotate 1 16 -> 1 -ddrot006 rotate 1 -1 -> 1000000000000000 -ddrot007 rotate 0 -2 -> 0 -ddrot008 rotate 1234567890123456 -1 -> 6123456789012345 -ddrot009 rotate 1234567890123456 -15 -> 2345678901234561 -ddrot010 rotate 1234567890123456 -16 -> 1234567890123456 -ddrot011 rotate 9934567890123456 -15 -> 9345678901234569 -ddrot012 rotate 9934567890123456 -16 -> 9934567890123456 - --- rhs must be an integer -ddrot015 rotate 1 1.5 -> NaN Invalid_operation -ddrot016 rotate 1 1.0 -> NaN Invalid_operation -ddrot017 rotate 1 0.1 -> NaN Invalid_operation -ddrot018 rotate 1 0.0 -> NaN Invalid_operation -ddrot019 rotate 1 1E+1 -> NaN Invalid_operation -ddrot020 rotate 1 1E+99 -> NaN Invalid_operation -ddrot021 rotate 1 Inf -> NaN Invalid_operation -ddrot022 rotate 1 -Inf -> NaN Invalid_operation --- and |rhs| <= precision -ddrot025 rotate 1 -1000 -> NaN Invalid_operation -ddrot026 rotate 1 -17 -> NaN Invalid_operation -ddrot027 rotate 1 17 -> NaN Invalid_operation -ddrot028 rotate 1 1000 -> NaN Invalid_operation - --- full pattern -ddrot030 rotate 1234567890123456 -16 -> 1234567890123456 -ddrot031 rotate 1234567890123456 -15 -> 2345678901234561 -ddrot032 rotate 1234567890123456 -14 -> 3456789012345612 -ddrot033 rotate 1234567890123456 -13 -> 4567890123456123 -ddrot034 rotate 1234567890123456 -12 -> 5678901234561234 -ddrot035 rotate 1234567890123456 -11 -> 6789012345612345 -ddrot036 rotate 1234567890123456 -10 -> 7890123456123456 -ddrot037 rotate 1234567890123456 -9 -> 8901234561234567 -ddrot038 rotate 1234567890123456 -8 -> 9012345612345678 -ddrot039 rotate 1234567890123456 -7 -> 123456123456789 -ddrot040 rotate 1234567890123456 -6 -> 1234561234567890 -ddrot041 rotate 1234567890123456 -5 -> 2345612345678901 -ddrot042 rotate 1234567890123456 -4 -> 3456123456789012 -ddrot043 rotate 1234567890123456 -3 -> 4561234567890123 -ddrot044 rotate 1234567890123456 -2 -> 5612345678901234 -ddrot045 rotate 1234567890123456 -1 -> 6123456789012345 -ddrot046 rotate 1234567890123456 -0 -> 1234567890123456 - -ddrot047 rotate 1234567890123456 +0 -> 1234567890123456 -ddrot048 rotate 1234567890123456 +1 -> 2345678901234561 -ddrot049 rotate 1234567890123456 +2 -> 3456789012345612 -ddrot050 rotate 1234567890123456 +3 -> 4567890123456123 -ddrot051 rotate 1234567890123456 +4 -> 5678901234561234 -ddrot052 rotate 1234567890123456 +5 -> 6789012345612345 -ddrot053 rotate 1234567890123456 +6 -> 7890123456123456 -ddrot054 rotate 1234567890123456 +7 -> 8901234561234567 -ddrot055 rotate 1234567890123456 +8 -> 9012345612345678 -ddrot056 rotate 1234567890123456 +9 -> 123456123456789 -ddrot057 rotate 1234567890123456 +10 -> 1234561234567890 -ddrot058 rotate 1234567890123456 +11 -> 2345612345678901 -ddrot059 rotate 1234567890123456 +12 -> 3456123456789012 -ddrot060 rotate 1234567890123456 +13 -> 4561234567890123 -ddrot061 rotate 1234567890123456 +14 -> 5612345678901234 -ddrot062 rotate 1234567890123456 +15 -> 6123456789012345 -ddrot063 rotate 1234567890123456 +16 -> 1234567890123456 - --- zeros -ddrot070 rotate 0E-10 +9 -> 0E-10 -ddrot071 rotate 0E-10 -9 -> 0E-10 -ddrot072 rotate 0.000 +9 -> 0.000 -ddrot073 rotate 0.000 -9 -> 0.000 -ddrot074 rotate 0E+10 +9 -> 0E+10 -ddrot075 rotate 0E+10 -9 -> 0E+10 -ddrot076 rotate -0E-10 +9 -> -0E-10 -ddrot077 rotate -0E-10 -9 -> -0E-10 -ddrot078 rotate -0.000 +9 -> -0.000 -ddrot079 rotate -0.000 -9 -> -0.000 -ddrot080 rotate -0E+10 +9 -> -0E+10 -ddrot081 rotate -0E+10 -9 -> -0E+10 - --- Nmax, Nmin, Ntiny -ddrot141 rotate 9.999999999999999E+384 -1 -> 9.999999999999999E+384 -ddrot142 rotate 9.999999999999999E+384 -15 -> 9.999999999999999E+384 -ddrot143 rotate 9.999999999999999E+384 1 -> 9.999999999999999E+384 -ddrot144 rotate 9.999999999999999E+384 15 -> 9.999999999999999E+384 -ddrot145 rotate 1E-383 -1 -> 1.000000000000000E-368 -ddrot146 rotate 1E-383 -15 -> 1.0E-382 -ddrot147 rotate 1E-383 1 -> 1.0E-382 -ddrot148 rotate 1E-383 15 -> 1.000000000000000E-368 -ddrot151 rotate 1.000000000000000E-383 -1 -> 1.00000000000000E-384 -ddrot152 rotate 1.000000000000000E-383 -15 -> 1E-398 -ddrot153 rotate 1.000000000000000E-383 1 -> 1E-398 -ddrot154 rotate 1.000000000000000E-383 15 -> 1.00000000000000E-384 -ddrot155 rotate 9.000000000000000E-383 -1 -> 9.00000000000000E-384 -ddrot156 rotate 9.000000000000000E-383 -15 -> 9E-398 -ddrot157 rotate 9.000000000000000E-383 1 -> 9E-398 -ddrot158 rotate 9.000000000000000E-383 15 -> 9.00000000000000E-384 -ddrot160 rotate 1E-398 -1 -> 1.000000000000000E-383 -ddrot161 rotate 1E-398 -15 -> 1.0E-397 -ddrot162 rotate 1E-398 1 -> 1.0E-397 -ddrot163 rotate 1E-398 15 -> 1.000000000000000E-383 --- negatives -ddrot171 rotate -9.999999999999999E+384 -1 -> -9.999999999999999E+384 -ddrot172 rotate -9.999999999999999E+384 -15 -> -9.999999999999999E+384 -ddrot173 rotate -9.999999999999999E+384 1 -> -9.999999999999999E+384 -ddrot174 rotate -9.999999999999999E+384 15 -> -9.999999999999999E+384 -ddrot175 rotate -1E-383 -1 -> -1.000000000000000E-368 -ddrot176 rotate -1E-383 -15 -> -1.0E-382 -ddrot177 rotate -1E-383 1 -> -1.0E-382 -ddrot178 rotate -1E-383 15 -> -1.000000000000000E-368 -ddrot181 rotate -1.000000000000000E-383 -1 -> -1.00000000000000E-384 -ddrot182 rotate -1.000000000000000E-383 -15 -> -1E-398 -ddrot183 rotate -1.000000000000000E-383 1 -> -1E-398 -ddrot184 rotate -1.000000000000000E-383 15 -> -1.00000000000000E-384 -ddrot185 rotate -9.000000000000000E-383 -1 -> -9.00000000000000E-384 -ddrot186 rotate -9.000000000000000E-383 -15 -> -9E-398 -ddrot187 rotate -9.000000000000000E-383 1 -> -9E-398 -ddrot188 rotate -9.000000000000000E-383 15 -> -9.00000000000000E-384 -ddrot190 rotate -1E-398 -1 -> -1.000000000000000E-383 -ddrot191 rotate -1E-398 -15 -> -1.0E-397 -ddrot192 rotate -1E-398 1 -> -1.0E-397 -ddrot193 rotate -1E-398 15 -> -1.000000000000000E-383 - --- more negatives (of sanities) -ddrot201 rotate -0 0 -> -0 -ddrot202 rotate -0 2 -> -0 -ddrot203 rotate -1 2 -> -100 -ddrot204 rotate -1 15 -> -1000000000000000 -ddrot205 rotate -1 16 -> -1 -ddrot206 rotate -1 -1 -> -1000000000000000 -ddrot207 rotate -0 -2 -> -0 -ddrot208 rotate -1234567890123456 -1 -> -6123456789012345 -ddrot209 rotate -1234567890123456 -15 -> -2345678901234561 -ddrot210 rotate -1234567890123456 -16 -> -1234567890123456 -ddrot211 rotate -9934567890123456 -15 -> -9345678901234569 -ddrot212 rotate -9934567890123456 -16 -> -9934567890123456 - - --- Specials; NaNs are handled as usual -ddrot781 rotate -Inf -8 -> -Infinity -ddrot782 rotate -Inf -1 -> -Infinity -ddrot783 rotate -Inf -0 -> -Infinity -ddrot784 rotate -Inf 0 -> -Infinity -ddrot785 rotate -Inf 1 -> -Infinity -ddrot786 rotate -Inf 8 -> -Infinity -ddrot787 rotate -1000 -Inf -> NaN Invalid_operation -ddrot788 rotate -Inf -Inf -> NaN Invalid_operation -ddrot789 rotate -1 -Inf -> NaN Invalid_operation -ddrot790 rotate -0 -Inf -> NaN Invalid_operation -ddrot791 rotate 0 -Inf -> NaN Invalid_operation -ddrot792 rotate 1 -Inf -> NaN Invalid_operation -ddrot793 rotate 1000 -Inf -> NaN Invalid_operation -ddrot794 rotate Inf -Inf -> NaN Invalid_operation - -ddrot800 rotate Inf -Inf -> NaN Invalid_operation -ddrot801 rotate Inf -8 -> Infinity -ddrot802 rotate Inf -1 -> Infinity -ddrot803 rotate Inf -0 -> Infinity -ddrot804 rotate Inf 0 -> Infinity -ddrot805 rotate Inf 1 -> Infinity -ddrot806 rotate Inf 8 -> Infinity -ddrot807 rotate Inf Inf -> NaN Invalid_operation -ddrot808 rotate -1000 Inf -> NaN Invalid_operation -ddrot809 rotate -Inf Inf -> NaN Invalid_operation -ddrot810 rotate -1 Inf -> NaN Invalid_operation -ddrot811 rotate -0 Inf -> NaN Invalid_operation -ddrot812 rotate 0 Inf -> NaN Invalid_operation -ddrot813 rotate 1 Inf -> NaN Invalid_operation -ddrot814 rotate 1000 Inf -> NaN Invalid_operation -ddrot815 rotate Inf Inf -> NaN Invalid_operation - -ddrot821 rotate NaN -Inf -> NaN -ddrot822 rotate NaN -1000 -> NaN -ddrot823 rotate NaN -1 -> NaN -ddrot824 rotate NaN -0 -> NaN -ddrot825 rotate NaN 0 -> NaN -ddrot826 rotate NaN 1 -> NaN -ddrot827 rotate NaN 1000 -> NaN -ddrot828 rotate NaN Inf -> NaN -ddrot829 rotate NaN NaN -> NaN -ddrot830 rotate -Inf NaN -> NaN -ddrot831 rotate -1000 NaN -> NaN -ddrot832 rotate -1 NaN -> NaN -ddrot833 rotate -0 NaN -> NaN -ddrot834 rotate 0 NaN -> NaN -ddrot835 rotate 1 NaN -> NaN -ddrot836 rotate 1000 NaN -> NaN -ddrot837 rotate Inf NaN -> NaN - -ddrot841 rotate sNaN -Inf -> NaN Invalid_operation -ddrot842 rotate sNaN -1000 -> NaN Invalid_operation -ddrot843 rotate sNaN -1 -> NaN Invalid_operation -ddrot844 rotate sNaN -0 -> NaN Invalid_operation -ddrot845 rotate sNaN 0 -> NaN Invalid_operation -ddrot846 rotate sNaN 1 -> NaN Invalid_operation -ddrot847 rotate sNaN 1000 -> NaN Invalid_operation -ddrot848 rotate sNaN NaN -> NaN Invalid_operation -ddrot849 rotate sNaN sNaN -> NaN Invalid_operation -ddrot850 rotate NaN sNaN -> NaN Invalid_operation -ddrot851 rotate -Inf sNaN -> NaN Invalid_operation -ddrot852 rotate -1000 sNaN -> NaN Invalid_operation -ddrot853 rotate -1 sNaN -> NaN Invalid_operation -ddrot854 rotate -0 sNaN -> NaN Invalid_operation -ddrot855 rotate 0 sNaN -> NaN Invalid_operation -ddrot856 rotate 1 sNaN -> NaN Invalid_operation -ddrot857 rotate 1000 sNaN -> NaN Invalid_operation -ddrot858 rotate Inf sNaN -> NaN Invalid_operation -ddrot859 rotate NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddrot861 rotate NaN1 -Inf -> NaN1 -ddrot862 rotate +NaN2 -1000 -> NaN2 -ddrot863 rotate NaN3 1000 -> NaN3 -ddrot864 rotate NaN4 Inf -> NaN4 -ddrot865 rotate NaN5 +NaN6 -> NaN5 -ddrot866 rotate -Inf NaN7 -> NaN7 -ddrot867 rotate -1000 NaN8 -> NaN8 -ddrot868 rotate 1000 NaN9 -> NaN9 -ddrot869 rotate Inf +NaN10 -> NaN10 -ddrot871 rotate sNaN11 -Inf -> NaN11 Invalid_operation -ddrot872 rotate sNaN12 -1000 -> NaN12 Invalid_operation -ddrot873 rotate sNaN13 1000 -> NaN13 Invalid_operation -ddrot874 rotate sNaN14 NaN17 -> NaN14 Invalid_operation -ddrot875 rotate sNaN15 sNaN18 -> NaN15 Invalid_operation -ddrot876 rotate NaN16 sNaN19 -> NaN19 Invalid_operation -ddrot877 rotate -Inf +sNaN20 -> NaN20 Invalid_operation -ddrot878 rotate -1000 sNaN21 -> NaN21 Invalid_operation -ddrot879 rotate 1000 sNaN22 -> NaN22 Invalid_operation -ddrot880 rotate Inf sNaN23 -> NaN23 Invalid_operation -ddrot881 rotate +NaN25 +sNaN24 -> NaN24 Invalid_operation -ddrot882 rotate -NaN26 NaN28 -> -NaN26 -ddrot883 rotate -sNaN27 sNaN29 -> -NaN27 Invalid_operation -ddrot884 rotate 1000 -NaN30 -> -NaN30 -ddrot885 rotate 1000 -sNaN31 -> -NaN31 Invalid_operation diff --git a/qdecimal/test/tc_full/ddSameQuantum.decTest b/qdecimal/test/tc_full/ddSameQuantum.decTest deleted file mode 100644 index 04c7a0d..0000000 --- a/qdecimal/test/tc_full/ddSameQuantum.decTest +++ /dev/null @@ -1,389 +0,0 @@ ------------------------------------------------------------------------- --- ddSameQuantum.decTest -- check decDouble quantums match -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decDoubles. -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddsamq001 samequantum 0 0 -> 1 -ddsamq002 samequantum 0 1 -> 1 -ddsamq003 samequantum 1 0 -> 1 -ddsamq004 samequantum 1 1 -> 1 - -ddsamq011 samequantum 10 1E+1 -> 0 -ddsamq012 samequantum 10E+1 10E+1 -> 1 -ddsamq013 samequantum 100 10E+1 -> 0 -ddsamq014 samequantum 100 1E+2 -> 0 -ddsamq015 samequantum 0.1 1E-2 -> 0 -ddsamq016 samequantum 0.1 1E-1 -> 1 -ddsamq017 samequantum 0.1 1E-0 -> 0 -ddsamq018 samequantum 999 999 -> 1 -ddsamq019 samequantum 999E-1 99.9 -> 1 -ddsamq020 samequantum 111E-1 22.2 -> 1 -ddsamq021 samequantum 111E-1 1234.2 -> 1 - --- zeros -ddsamq030 samequantum 0.0 1.1 -> 1 -ddsamq031 samequantum 0.0 1.11 -> 0 -ddsamq032 samequantum 0.0 0 -> 0 -ddsamq033 samequantum 0.0 0.0 -> 1 -ddsamq034 samequantum 0.0 0.00 -> 0 -ddsamq035 samequantum 0E+1 0E+0 -> 0 -ddsamq036 samequantum 0E+1 0E+1 -> 1 -ddsamq037 samequantum 0E+1 0E+2 -> 0 -ddsamq038 samequantum 0E-17 0E-16 -> 0 -ddsamq039 samequantum 0E-17 0E-17 -> 1 -ddsamq040 samequantum 0E-17 0E-18 -> 0 -ddsamq041 samequantum 0E-17 0.0E-15 -> 0 -ddsamq042 samequantum 0E-17 0.0E-16 -> 1 -ddsamq043 samequantum 0E-17 0.0E-17 -> 0 -ddsamq044 samequantum -0E-17 0.0E-16 -> 1 -ddsamq045 samequantum 0E-17 -0.0E-17 -> 0 -ddsamq046 samequantum 0E-17 -0.0E-16 -> 1 -ddsamq047 samequantum -0E-17 0.0E-17 -> 0 -ddsamq048 samequantum -0E-17 -0.0E-16 -> 1 -ddsamq049 samequantum -0E-17 -0.0E-17 -> 0 - --- Nmax, Nmin, Ntiny -ddsamq051 samequantum 9.999999999999999E+384 9.999999999999999E+384 -> 1 -ddsamq052 samequantum 1E-383 1E-383 -> 1 -ddsamq053 samequantum 1.000000000000000E-383 1.000000000000000E-383 -> 1 -ddsamq054 samequantum 1E-398 1E-398 -> 1 -ddsamq055 samequantum 9.999999999999999E+384 9.999999999999999E+384 -> 1 -ddsamq056 samequantum 1E-383 1E-383 -> 1 -ddsamq057 samequantum 1.000000000000000E-383 1.000000000000000E-383 -> 1 -ddsamq058 samequantum 1E-398 1E-398 -> 1 - -ddsamq061 samequantum -1E-398 -1E-398 -> 1 -ddsamq062 samequantum -1.000000000000000E-383 -1.000000000000000E-383 -> 1 -ddsamq063 samequantum -1E-383 -1E-383 -> 1 -ddsamq064 samequantum -9.999999999999999E+384 -9.999999999999999E+384 -> 1 -ddsamq065 samequantum -1E-398 -1E-398 -> 1 -ddsamq066 samequantum -1.000000000000000E-383 -1.000000000000000E-383 -> 1 -ddsamq067 samequantum -1E-383 -1E-383 -> 1 -ddsamq068 samequantum -9.999999999999999E+384 -9.999999999999999E+384 -> 1 - -ddsamq071 samequantum -4E-398 -1E-398 -> 1 -ddsamq072 samequantum -4.000000000000000E-383 -1.000040000000000E-383 -> 1 -ddsamq073 samequantum -4E-383 -1E-383 -> 1 -ddsamq074 samequantum -4.999999999999999E+384 -9.999999999949999E+384 -> 1 -ddsamq075 samequantum -4E-398 -1E-398 -> 1 -ddsamq076 samequantum -4.000000000000000E-383 -1.004000000000000E-383 -> 1 -ddsamq077 samequantum -4E-383 -1E-383 -> 1 -ddsamq078 samequantum -4.999999999999999E+384 -9.949999999999999E+384 -> 1 - -ddsamq081 samequantum -4E-397 -1E-398 -> 0 -ddsamq082 samequantum -4.000000000000000E-383 -1.000040000000000E-336 -> 0 -ddsamq083 samequantum -4E-346 -1E-383 -> 0 -ddsamq084 samequantum -4.999999999999999E+384 -9.999499999999999E+336 -> 0 -ddsamq085 samequantum -4E-397 -1E-398 -> 0 -ddsamq086 samequantum -4.000000000000000E-383 -1.004000000000000E-336 -> 0 -ddsamq087 samequantum -4E-346 -1E-383 -> 0 -ddsamq088 samequantum -4.999999999999999E+384 -9.949999999999999E+336 -> 0 - --- specials & combinations -ddsamq0110 samequantum -Inf -Inf -> 1 -ddsamq0111 samequantum -Inf Inf -> 1 -ddsamq0112 samequantum -Inf NaN -> 0 -ddsamq0113 samequantum -Inf -7E+3 -> 0 -ddsamq0114 samequantum -Inf -7 -> 0 -ddsamq0115 samequantum -Inf -7E-3 -> 0 -ddsamq0116 samequantum -Inf -0E-3 -> 0 -ddsamq0117 samequantum -Inf -0 -> 0 -ddsamq0118 samequantum -Inf -0E+3 -> 0 -ddsamq0119 samequantum -Inf 0E-3 -> 0 -ddsamq0120 samequantum -Inf 0 -> 0 -ddsamq0121 samequantum -Inf 0E+3 -> 0 -ddsamq0122 samequantum -Inf 7E-3 -> 0 -ddsamq0123 samequantum -Inf 7 -> 0 -ddsamq0124 samequantum -Inf 7E+3 -> 0 -ddsamq0125 samequantum -Inf sNaN -> 0 - -ddsamq0210 samequantum Inf -Inf -> 1 -ddsamq0211 samequantum Inf Inf -> 1 -ddsamq0212 samequantum Inf NaN -> 0 -ddsamq0213 samequantum Inf -7E+3 -> 0 -ddsamq0214 samequantum Inf -7 -> 0 -ddsamq0215 samequantum Inf -7E-3 -> 0 -ddsamq0216 samequantum Inf -0E-3 -> 0 -ddsamq0217 samequantum Inf -0 -> 0 -ddsamq0218 samequantum Inf -0E+3 -> 0 -ddsamq0219 samequantum Inf 0E-3 -> 0 -ddsamq0220 samequantum Inf 0 -> 0 -ddsamq0221 samequantum Inf 0E+3 -> 0 -ddsamq0222 samequantum Inf 7E-3 -> 0 -ddsamq0223 samequantum Inf 7 -> 0 -ddsamq0224 samequantum Inf 7E+3 -> 0 -ddsamq0225 samequantum Inf sNaN -> 0 - -ddsamq0310 samequantum NaN -Inf -> 0 -ddsamq0311 samequantum NaN Inf -> 0 -ddsamq0312 samequantum NaN NaN -> 1 -ddsamq0313 samequantum NaN -7E+3 -> 0 -ddsamq0314 samequantum NaN -7 -> 0 -ddsamq0315 samequantum NaN -7E-3 -> 0 -ddsamq0316 samequantum NaN -0E-3 -> 0 -ddsamq0317 samequantum NaN -0 -> 0 -ddsamq0318 samequantum NaN -0E+3 -> 0 -ddsamq0319 samequantum NaN 0E-3 -> 0 -ddsamq0320 samequantum NaN 0 -> 0 -ddsamq0321 samequantum NaN 0E+3 -> 0 -ddsamq0322 samequantum NaN 7E-3 -> 0 -ddsamq0323 samequantum NaN 7 -> 0 -ddsamq0324 samequantum NaN 7E+3 -> 0 -ddsamq0325 samequantum NaN sNaN -> 1 - -ddsamq0410 samequantum -7E+3 -Inf -> 0 -ddsamq0411 samequantum -7E+3 Inf -> 0 -ddsamq0412 samequantum -7E+3 NaN -> 0 -ddsamq0413 samequantum -7E+3 -7E+3 -> 1 -ddsamq0414 samequantum -7E+3 -7 -> 0 -ddsamq0415 samequantum -7E+3 -7E-3 -> 0 -ddsamq0416 samequantum -7E+3 -0E-3 -> 0 -ddsamq0417 samequantum -7E+3 -0 -> 0 -ddsamq0418 samequantum -7E+3 -0E+3 -> 1 -ddsamq0419 samequantum -7E+3 0E-3 -> 0 -ddsamq0420 samequantum -7E+3 0 -> 0 -ddsamq0421 samequantum -7E+3 0E+3 -> 1 -ddsamq0422 samequantum -7E+3 7E-3 -> 0 -ddsamq0423 samequantum -7E+3 7 -> 0 -ddsamq0424 samequantum -7E+3 7E+3 -> 1 -ddsamq0425 samequantum -7E+3 sNaN -> 0 - -ddsamq0510 samequantum -7 -Inf -> 0 -ddsamq0511 samequantum -7 Inf -> 0 -ddsamq0512 samequantum -7 NaN -> 0 -ddsamq0513 samequantum -7 -7E+3 -> 0 -ddsamq0514 samequantum -7 -7 -> 1 -ddsamq0515 samequantum -7 -7E-3 -> 0 -ddsamq0516 samequantum -7 -0E-3 -> 0 -ddsamq0517 samequantum -7 -0 -> 1 -ddsamq0518 samequantum -7 -0E+3 -> 0 -ddsamq0519 samequantum -7 0E-3 -> 0 -ddsamq0520 samequantum -7 0 -> 1 -ddsamq0521 samequantum -7 0E+3 -> 0 -ddsamq0522 samequantum -7 7E-3 -> 0 -ddsamq0523 samequantum -7 7 -> 1 -ddsamq0524 samequantum -7 7E+3 -> 0 -ddsamq0525 samequantum -7 sNaN -> 0 - -ddsamq0610 samequantum -7E-3 -Inf -> 0 -ddsamq0611 samequantum -7E-3 Inf -> 0 -ddsamq0612 samequantum -7E-3 NaN -> 0 -ddsamq0613 samequantum -7E-3 -7E+3 -> 0 -ddsamq0614 samequantum -7E-3 -7 -> 0 -ddsamq0615 samequantum -7E-3 -7E-3 -> 1 -ddsamq0616 samequantum -7E-3 -0E-3 -> 1 -ddsamq0617 samequantum -7E-3 -0 -> 0 -ddsamq0618 samequantum -7E-3 -0E+3 -> 0 -ddsamq0619 samequantum -7E-3 0E-3 -> 1 -ddsamq0620 samequantum -7E-3 0 -> 0 -ddsamq0621 samequantum -7E-3 0E+3 -> 0 -ddsamq0622 samequantum -7E-3 7E-3 -> 1 -ddsamq0623 samequantum -7E-3 7 -> 0 -ddsamq0624 samequantum -7E-3 7E+3 -> 0 -ddsamq0625 samequantum -7E-3 sNaN -> 0 - -ddsamq0710 samequantum -0E-3 -Inf -> 0 -ddsamq0711 samequantum -0E-3 Inf -> 0 -ddsamq0712 samequantum -0E-3 NaN -> 0 -ddsamq0713 samequantum -0E-3 -7E+3 -> 0 -ddsamq0714 samequantum -0E-3 -7 -> 0 -ddsamq0715 samequantum -0E-3 -7E-3 -> 1 -ddsamq0716 samequantum -0E-3 -0E-3 -> 1 -ddsamq0717 samequantum -0E-3 -0 -> 0 -ddsamq0718 samequantum -0E-3 -0E+3 -> 0 -ddsamq0719 samequantum -0E-3 0E-3 -> 1 -ddsamq0720 samequantum -0E-3 0 -> 0 -ddsamq0721 samequantum -0E-3 0E+3 -> 0 -ddsamq0722 samequantum -0E-3 7E-3 -> 1 -ddsamq0723 samequantum -0E-3 7 -> 0 -ddsamq0724 samequantum -0E-3 7E+3 -> 0 -ddsamq0725 samequantum -0E-3 sNaN -> 0 - -ddsamq0810 samequantum -0 -Inf -> 0 -ddsamq0811 samequantum -0 Inf -> 0 -ddsamq0812 samequantum -0 NaN -> 0 -ddsamq0813 samequantum -0 -7E+3 -> 0 -ddsamq0814 samequantum -0 -7 -> 1 -ddsamq0815 samequantum -0 -7E-3 -> 0 -ddsamq0816 samequantum -0 -0E-3 -> 0 -ddsamq0817 samequantum -0 -0 -> 1 -ddsamq0818 samequantum -0 -0E+3 -> 0 -ddsamq0819 samequantum -0 0E-3 -> 0 -ddsamq0820 samequantum -0 0 -> 1 -ddsamq0821 samequantum -0 0E+3 -> 0 -ddsamq0822 samequantum -0 7E-3 -> 0 -ddsamq0823 samequantum -0 7 -> 1 -ddsamq0824 samequantum -0 7E+3 -> 0 -ddsamq0825 samequantum -0 sNaN -> 0 - -ddsamq0910 samequantum -0E+3 -Inf -> 0 -ddsamq0911 samequantum -0E+3 Inf -> 0 -ddsamq0912 samequantum -0E+3 NaN -> 0 -ddsamq0913 samequantum -0E+3 -7E+3 -> 1 -ddsamq0914 samequantum -0E+3 -7 -> 0 -ddsamq0915 samequantum -0E+3 -7E-3 -> 0 -ddsamq0916 samequantum -0E+3 -0E-3 -> 0 -ddsamq0917 samequantum -0E+3 -0 -> 0 -ddsamq0918 samequantum -0E+3 -0E+3 -> 1 -ddsamq0919 samequantum -0E+3 0E-3 -> 0 -ddsamq0920 samequantum -0E+3 0 -> 0 -ddsamq0921 samequantum -0E+3 0E+3 -> 1 -ddsamq0922 samequantum -0E+3 7E-3 -> 0 -ddsamq0923 samequantum -0E+3 7 -> 0 -ddsamq0924 samequantum -0E+3 7E+3 -> 1 -ddsamq0925 samequantum -0E+3 sNaN -> 0 - -ddsamq1110 samequantum 0E-3 -Inf -> 0 -ddsamq1111 samequantum 0E-3 Inf -> 0 -ddsamq1112 samequantum 0E-3 NaN -> 0 -ddsamq1113 samequantum 0E-3 -7E+3 -> 0 -ddsamq1114 samequantum 0E-3 -7 -> 0 -ddsamq1115 samequantum 0E-3 -7E-3 -> 1 -ddsamq1116 samequantum 0E-3 -0E-3 -> 1 -ddsamq1117 samequantum 0E-3 -0 -> 0 -ddsamq1118 samequantum 0E-3 -0E+3 -> 0 -ddsamq1119 samequantum 0E-3 0E-3 -> 1 -ddsamq1120 samequantum 0E-3 0 -> 0 -ddsamq1121 samequantum 0E-3 0E+3 -> 0 -ddsamq1122 samequantum 0E-3 7E-3 -> 1 -ddsamq1123 samequantum 0E-3 7 -> 0 -ddsamq1124 samequantum 0E-3 7E+3 -> 0 -ddsamq1125 samequantum 0E-3 sNaN -> 0 - -ddsamq1210 samequantum 0 -Inf -> 0 -ddsamq1211 samequantum 0 Inf -> 0 -ddsamq1212 samequantum 0 NaN -> 0 -ddsamq1213 samequantum 0 -7E+3 -> 0 -ddsamq1214 samequantum 0 -7 -> 1 -ddsamq1215 samequantum 0 -7E-3 -> 0 -ddsamq1216 samequantum 0 -0E-3 -> 0 -ddsamq1217 samequantum 0 -0 -> 1 -ddsamq1218 samequantum 0 -0E+3 -> 0 -ddsamq1219 samequantum 0 0E-3 -> 0 -ddsamq1220 samequantum 0 0 -> 1 -ddsamq1221 samequantum 0 0E+3 -> 0 -ddsamq1222 samequantum 0 7E-3 -> 0 -ddsamq1223 samequantum 0 7 -> 1 -ddsamq1224 samequantum 0 7E+3 -> 0 -ddsamq1225 samequantum 0 sNaN -> 0 - -ddsamq1310 samequantum 0E+3 -Inf -> 0 -ddsamq1311 samequantum 0E+3 Inf -> 0 -ddsamq1312 samequantum 0E+3 NaN -> 0 -ddsamq1313 samequantum 0E+3 -7E+3 -> 1 -ddsamq1314 samequantum 0E+3 -7 -> 0 -ddsamq1315 samequantum 0E+3 -7E-3 -> 0 -ddsamq1316 samequantum 0E+3 -0E-3 -> 0 -ddsamq1317 samequantum 0E+3 -0 -> 0 -ddsamq1318 samequantum 0E+3 -0E+3 -> 1 -ddsamq1319 samequantum 0E+3 0E-3 -> 0 -ddsamq1320 samequantum 0E+3 0 -> 0 -ddsamq1321 samequantum 0E+3 0E+3 -> 1 -ddsamq1322 samequantum 0E+3 7E-3 -> 0 -ddsamq1323 samequantum 0E+3 7 -> 0 -ddsamq1324 samequantum 0E+3 7E+3 -> 1 -ddsamq1325 samequantum 0E+3 sNaN -> 0 - -ddsamq1410 samequantum 7E-3 -Inf -> 0 -ddsamq1411 samequantum 7E-3 Inf -> 0 -ddsamq1412 samequantum 7E-3 NaN -> 0 -ddsamq1413 samequantum 7E-3 -7E+3 -> 0 -ddsamq1414 samequantum 7E-3 -7 -> 0 -ddsamq1415 samequantum 7E-3 -7E-3 -> 1 -ddsamq1416 samequantum 7E-3 -0E-3 -> 1 -ddsamq1417 samequantum 7E-3 -0 -> 0 -ddsamq1418 samequantum 7E-3 -0E+3 -> 0 -ddsamq1419 samequantum 7E-3 0E-3 -> 1 -ddsamq1420 samequantum 7E-3 0 -> 0 -ddsamq1421 samequantum 7E-3 0E+3 -> 0 -ddsamq1422 samequantum 7E-3 7E-3 -> 1 -ddsamq1423 samequantum 7E-3 7 -> 0 -ddsamq1424 samequantum 7E-3 7E+3 -> 0 -ddsamq1425 samequantum 7E-3 sNaN -> 0 - -ddsamq1510 samequantum 7 -Inf -> 0 -ddsamq1511 samequantum 7 Inf -> 0 -ddsamq1512 samequantum 7 NaN -> 0 -ddsamq1513 samequantum 7 -7E+3 -> 0 -ddsamq1514 samequantum 7 -7 -> 1 -ddsamq1515 samequantum 7 -7E-3 -> 0 -ddsamq1516 samequantum 7 -0E-3 -> 0 -ddsamq1517 samequantum 7 -0 -> 1 -ddsamq1518 samequantum 7 -0E+3 -> 0 -ddsamq1519 samequantum 7 0E-3 -> 0 -ddsamq1520 samequantum 7 0 -> 1 -ddsamq1521 samequantum 7 0E+3 -> 0 -ddsamq1522 samequantum 7 7E-3 -> 0 -ddsamq1523 samequantum 7 7 -> 1 -ddsamq1524 samequantum 7 7E+3 -> 0 -ddsamq1525 samequantum 7 sNaN -> 0 - -ddsamq1610 samequantum 7E+3 -Inf -> 0 -ddsamq1611 samequantum 7E+3 Inf -> 0 -ddsamq1612 samequantum 7E+3 NaN -> 0 -ddsamq1613 samequantum 7E+3 -7E+3 -> 1 -ddsamq1614 samequantum 7E+3 -7 -> 0 -ddsamq1615 samequantum 7E+3 -7E-3 -> 0 -ddsamq1616 samequantum 7E+3 -0E-3 -> 0 -ddsamq1617 samequantum 7E+3 -0 -> 0 -ddsamq1618 samequantum 7E+3 -0E+3 -> 1 -ddsamq1619 samequantum 7E+3 0E-3 -> 0 -ddsamq1620 samequantum 7E+3 0 -> 0 -ddsamq1621 samequantum 7E+3 0E+3 -> 1 -ddsamq1622 samequantum 7E+3 7E-3 -> 0 -ddsamq1623 samequantum 7E+3 7 -> 0 -ddsamq1624 samequantum 7E+3 7E+3 -> 1 -ddsamq1625 samequantum 7E+3 sNaN -> 0 - -ddsamq1710 samequantum sNaN -Inf -> 0 -ddsamq1711 samequantum sNaN Inf -> 0 -ddsamq1712 samequantum sNaN NaN -> 1 -ddsamq1713 samequantum sNaN -7E+3 -> 0 -ddsamq1714 samequantum sNaN -7 -> 0 -ddsamq1715 samequantum sNaN -7E-3 -> 0 -ddsamq1716 samequantum sNaN -0E-3 -> 0 -ddsamq1717 samequantum sNaN -0 -> 0 -ddsamq1718 samequantum sNaN -0E+3 -> 0 -ddsamq1719 samequantum sNaN 0E-3 -> 0 -ddsamq1720 samequantum sNaN 0 -> 0 -ddsamq1721 samequantum sNaN 0E+3 -> 0 -ddsamq1722 samequantum sNaN 7E-3 -> 0 -ddsamq1723 samequantum sNaN 7 -> 0 -ddsamq1724 samequantum sNaN 7E+3 -> 0 -ddsamq1725 samequantum sNaN sNaN -> 1 --- noisy NaNs -ddsamq1730 samequantum sNaN3 sNaN3 -> 1 -ddsamq1731 samequantum sNaN3 sNaN4 -> 1 -ddsamq1732 samequantum NaN3 NaN3 -> 1 -ddsamq1733 samequantum NaN3 NaN4 -> 1 -ddsamq1734 samequantum sNaN3 3 -> 0 -ddsamq1735 samequantum NaN3 3 -> 0 -ddsamq1736 samequantum 4 sNaN4 -> 0 -ddsamq1737 samequantum 3 NaN3 -> 0 -ddsamq1738 samequantum Inf sNaN4 -> 0 -ddsamq1739 samequantum -Inf NaN3 -> 0 - diff --git a/qdecimal/test/tc_full/ddScaleB.decTest b/qdecimal/test/tc_full/ddScaleB.decTest deleted file mode 100644 index e68e202..0000000 --- a/qdecimal/test/tc_full/ddScaleB.decTest +++ /dev/null @@ -1,243 +0,0 @@ ------------------------------------------------------------------------- --- ddScalebB.decTest -- scale a decDouble by powers of 10 -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Max |rhs| is 2*(384+16) = 800 - --- Sanity checks -ddscb001 scaleb 7.50 10 -> 7.50E+10 -ddscb002 scaleb 7.50 3 -> 7.50E+3 -ddscb003 scaleb 7.50 2 -> 750 -ddscb004 scaleb 7.50 1 -> 75.0 -ddscb005 scaleb 7.50 0 -> 7.50 -ddscb006 scaleb 7.50 -1 -> 0.750 -ddscb007 scaleb 7.50 -2 -> 0.0750 -ddscb008 scaleb 7.50 -10 -> 7.50E-10 -ddscb009 scaleb -7.50 3 -> -7.50E+3 -ddscb010 scaleb -7.50 2 -> -750 -ddscb011 scaleb -7.50 1 -> -75.0 -ddscb012 scaleb -7.50 0 -> -7.50 -ddscb013 scaleb -7.50 -1 -> -0.750 - --- Infinities -ddscb014 scaleb Infinity 1 -> Infinity -ddscb015 scaleb -Infinity 2 -> -Infinity -ddscb016 scaleb Infinity -1 -> Infinity -ddscb017 scaleb -Infinity -2 -> -Infinity - --- Next two are somewhat undefined in 754r; treat as non-integer -ddscb018 scaleb 10 Infinity -> NaN Invalid_operation -ddscb019 scaleb 10 -Infinity -> NaN Invalid_operation - --- NaNs are undefined in 754r; assume usual processing --- NaNs, 0 payload -ddscb021 scaleb NaN 1 -> NaN -ddscb022 scaleb -NaN -1 -> -NaN -ddscb023 scaleb sNaN 1 -> NaN Invalid_operation -ddscb024 scaleb -sNaN 1 -> -NaN Invalid_operation -ddscb025 scaleb 4 NaN -> NaN -ddscb026 scaleb -Inf -NaN -> -NaN -ddscb027 scaleb 4 sNaN -> NaN Invalid_operation -ddscb028 scaleb Inf -sNaN -> -NaN Invalid_operation - --- non-integer RHS -ddscb030 scaleb 1.23 1 -> 12.3 -ddscb031 scaleb 1.23 1.00 -> NaN Invalid_operation -ddscb032 scaleb 1.23 1.1 -> NaN Invalid_operation -ddscb033 scaleb 1.23 1.01 -> NaN Invalid_operation -ddscb034 scaleb 1.23 0.01 -> NaN Invalid_operation -ddscb035 scaleb 1.23 0.11 -> NaN Invalid_operation -ddscb036 scaleb 1.23 0.999999999 -> NaN Invalid_operation -ddscb037 scaleb 1.23 -1 -> 0.123 -ddscb038 scaleb 1.23 -1.00 -> NaN Invalid_operation -ddscb039 scaleb 1.23 -1.1 -> NaN Invalid_operation -ddscb040 scaleb 1.23 -1.01 -> NaN Invalid_operation -ddscb041 scaleb 1.23 -0.01 -> NaN Invalid_operation -ddscb042 scaleb 1.23 -0.11 -> NaN Invalid_operation -ddscb043 scaleb 1.23 -0.999999999 -> NaN Invalid_operation -ddscb044 scaleb 1.23 0.1 -> NaN Invalid_operation -ddscb045 scaleb 1.23 1E+1 -> NaN Invalid_operation -ddscb046 scaleb 1.23 1.1234E+6 -> NaN Invalid_operation -ddscb047 scaleb 1.23 1.123E+4 -> NaN Invalid_operation - --- out-of range RHS -ddscb120 scaleb 1.23 799 -> Infinity Overflow Inexact Rounded -ddscb121 scaleb 1.23 800 -> Infinity Overflow Inexact Rounded -ddscb122 scaleb 1.23 801 -> NaN Invalid_operation -ddscb123 scaleb 1.23 802 -> NaN Invalid_operation -ddscb124 scaleb 1.23 -799 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddscb125 scaleb 1.23 -800 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddscb126 scaleb 1.23 -801 -> NaN Invalid_operation -ddscb127 scaleb 1.23 -802 -> NaN Invalid_operation - --- NaNs, non-0 payload --- propagating NaNs -ddscb861 scaleb NaN01 -Inf -> NaN1 -ddscb862 scaleb -NaN02 -1000 -> -NaN2 -ddscb863 scaleb NaN03 1000 -> NaN3 -ddscb864 scaleb NaN04 Inf -> NaN4 -ddscb865 scaleb NaN05 NaN61 -> NaN5 -ddscb866 scaleb -Inf -NaN71 -> -NaN71 -ddscb867 scaleb -1000 NaN81 -> NaN81 -ddscb868 scaleb 1000 NaN91 -> NaN91 -ddscb869 scaleb Inf NaN101 -> NaN101 -ddscb871 scaleb sNaN011 -Inf -> NaN11 Invalid_operation -ddscb872 scaleb sNaN012 -1000 -> NaN12 Invalid_operation -ddscb873 scaleb -sNaN013 1000 -> -NaN13 Invalid_operation -ddscb874 scaleb sNaN014 NaN171 -> NaN14 Invalid_operation -ddscb875 scaleb sNaN015 sNaN181 -> NaN15 Invalid_operation -ddscb876 scaleb NaN016 sNaN191 -> NaN191 Invalid_operation -ddscb877 scaleb -Inf sNaN201 -> NaN201 Invalid_operation -ddscb878 scaleb -1000 sNaN211 -> NaN211 Invalid_operation -ddscb879 scaleb 1000 -sNaN221 -> -NaN221 Invalid_operation -ddscb880 scaleb Inf sNaN231 -> NaN231 Invalid_operation -ddscb881 scaleb NaN025 sNaN241 -> NaN241 Invalid_operation - --- finites -ddscb051 scaleb 7 -2 -> 0.07 -ddscb052 scaleb -7 -2 -> -0.07 -ddscb053 scaleb 75 -2 -> 0.75 -ddscb054 scaleb -75 -2 -> -0.75 -ddscb055 scaleb 7.50 -2 -> 0.0750 -ddscb056 scaleb -7.50 -2 -> -0.0750 -ddscb057 scaleb 7.500 -2 -> 0.07500 -ddscb058 scaleb -7.500 -2 -> -0.07500 -ddscb061 scaleb 7 -1 -> 0.7 -ddscb062 scaleb -7 -1 -> -0.7 -ddscb063 scaleb 75 -1 -> 7.5 -ddscb064 scaleb -75 -1 -> -7.5 -ddscb065 scaleb 7.50 -1 -> 0.750 -ddscb066 scaleb -7.50 -1 -> -0.750 -ddscb067 scaleb 7.500 -1 -> 0.7500 -ddscb068 scaleb -7.500 -1 -> -0.7500 -ddscb071 scaleb 7 0 -> 7 -ddscb072 scaleb -7 0 -> -7 -ddscb073 scaleb 75 0 -> 75 -ddscb074 scaleb -75 0 -> -75 -ddscb075 scaleb 7.50 0 -> 7.50 -ddscb076 scaleb -7.50 0 -> -7.50 -ddscb077 scaleb 7.500 0 -> 7.500 -ddscb078 scaleb -7.500 0 -> -7.500 -ddscb081 scaleb 7 1 -> 7E+1 -ddscb082 scaleb -7 1 -> -7E+1 -ddscb083 scaleb 75 1 -> 7.5E+2 -ddscb084 scaleb -75 1 -> -7.5E+2 -ddscb085 scaleb 7.50 1 -> 75.0 -ddscb086 scaleb -7.50 1 -> -75.0 -ddscb087 scaleb 7.500 1 -> 75.00 -ddscb088 scaleb -7.500 1 -> -75.00 -ddscb091 scaleb 7 2 -> 7E+2 -ddscb092 scaleb -7 2 -> -7E+2 -ddscb093 scaleb 75 2 -> 7.5E+3 -ddscb094 scaleb -75 2 -> -7.5E+3 -ddscb095 scaleb 7.50 2 -> 750 -ddscb096 scaleb -7.50 2 -> -750 -ddscb097 scaleb 7.500 2 -> 750.0 -ddscb098 scaleb -7.500 2 -> -750.0 - --- zeros -ddscb111 scaleb 0 1 -> 0E+1 -ddscb112 scaleb -0 2 -> -0E+2 -ddscb113 scaleb 0E+4 3 -> 0E+7 -ddscb114 scaleb -0E+4 4 -> -0E+8 -ddscb115 scaleb 0.0000 5 -> 0E+1 -ddscb116 scaleb -0.0000 6 -> -0E+2 -ddscb117 scaleb 0E-141 7 -> 0E-134 -ddscb118 scaleb -0E-141 8 -> -0E-133 - --- Nmax, Nmin, Ntiny -ddscb132 scaleb 9.999999999999999E+384 +384 -> Infinity Overflow Inexact Rounded -ddscb133 scaleb 9.999999999999999E+384 +10 -> Infinity Overflow Inexact Rounded -ddscb134 scaleb 9.999999999999999E+384 +1 -> Infinity Overflow Inexact Rounded -ddscb135 scaleb 9.999999999999999E+384 0 -> 9.999999999999999E+384 -ddscb136 scaleb 9.999999999999999E+384 -1 -> 9.999999999999999E+383 -ddscb137 scaleb 1E-383 +1 -> 1E-382 -ddscb138 scaleb 1E-383 -0 -> 1E-383 -ddscb139 scaleb 1E-383 -1 -> 1E-384 Subnormal -ddscb140 scaleb 1.000000000000000E-383 +1 -> 1.000000000000000E-382 -ddscb141 scaleb 1.000000000000000E-383 0 -> 1.000000000000000E-383 -ddscb142 scaleb 1.000000000000000E-383 -1 -> 1.00000000000000E-384 Subnormal Rounded -ddscb143 scaleb 1E-398 +1 -> 1E-397 Subnormal -ddscb144 scaleb 1E-398 -0 -> 1E-398 Subnormal -ddscb145 scaleb 1E-398 -1 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - -ddscb150 scaleb -1E-398 +1 -> -1E-397 Subnormal -ddscb151 scaleb -1E-398 -0 -> -1E-398 Subnormal -ddscb152 scaleb -1E-398 -1 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped -ddscb153 scaleb -1.000000000000000E-383 +1 -> -1.000000000000000E-382 -ddscb154 scaleb -1.000000000000000E-383 +0 -> -1.000000000000000E-383 -ddscb155 scaleb -1.000000000000000E-383 -1 -> -1.00000000000000E-384 Subnormal Rounded -ddscb156 scaleb -1E-383 +1 -> -1E-382 -ddscb157 scaleb -1E-383 -0 -> -1E-383 -ddscb158 scaleb -1E-383 -1 -> -1E-384 Subnormal -ddscb159 scaleb -9.999999999999999E+384 +1 -> -Infinity Overflow Inexact Rounded -ddscb160 scaleb -9.999999999999999E+384 +0 -> -9.999999999999999E+384 -ddscb161 scaleb -9.999999999999999E+384 -1 -> -9.999999999999999E+383 -ddscb162 scaleb -9E+384 +1 -> -Infinity Overflow Inexact Rounded -ddscb163 scaleb -1E+384 +1 -> -Infinity Overflow Inexact Rounded - --- some Origami --- (these check that overflow is being done correctly) -ddscb171 scaleb 1000E+365 +1 -> 1.000E+369 -ddscb172 scaleb 1000E+366 +1 -> 1.000E+370 -ddscb173 scaleb 1000E+367 +1 -> 1.000E+371 -ddscb174 scaleb 1000E+368 +1 -> 1.000E+372 -ddscb175 scaleb 1000E+369 +1 -> 1.0000E+373 Clamped -ddscb176 scaleb 1000E+370 +1 -> 1.00000E+374 Clamped -ddscb177 scaleb 1000E+371 +1 -> 1.000000E+375 Clamped -ddscb178 scaleb 1000E+372 +1 -> 1.0000000E+376 Clamped -ddscb179 scaleb 1000E+373 +1 -> 1.00000000E+377 Clamped -ddscb180 scaleb 1000E+374 +1 -> 1.000000000E+378 Clamped -ddscb181 scaleb 1000E+375 +1 -> 1.0000000000E+379 Clamped -ddscb182 scaleb 1000E+376 +1 -> 1.00000000000E+380 Clamped -ddscb183 scaleb 1000E+377 +1 -> 1.000000000000E+381 Clamped -ddscb184 scaleb 1000E+378 +1 -> 1.0000000000000E+382 Clamped -ddscb185 scaleb 1000E+379 +1 -> 1.00000000000000E+383 Clamped -ddscb186 scaleb 1000E+380 +1 -> 1.000000000000000E+384 Clamped -ddscb187 scaleb 1000E+381 +1 -> Infinity Overflow Inexact Rounded - --- and a few more subnormal truncations --- (these check that underflow is being done correctly) -ddscb201 scaleb 1.000000000000000E-383 0 -> 1.000000000000000E-383 -ddscb202 scaleb 1.000000000000000E-383 -1 -> 1.00000000000000E-384 Subnormal Rounded -ddscb203 scaleb 1.000000000000000E-383 -2 -> 1.0000000000000E-385 Subnormal Rounded -ddscb204 scaleb 1.000000000000000E-383 -3 -> 1.000000000000E-386 Subnormal Rounded -ddscb205 scaleb 1.000000000000000E-383 -4 -> 1.00000000000E-387 Subnormal Rounded -ddscb206 scaleb 1.000000000000000E-383 -5 -> 1.0000000000E-388 Subnormal Rounded -ddscb207 scaleb 1.000000000000000E-383 -6 -> 1.000000000E-389 Subnormal Rounded -ddscb208 scaleb 1.000000000000000E-383 -7 -> 1.00000000E-390 Subnormal Rounded -ddscb209 scaleb 1.000000000000000E-383 -8 -> 1.0000000E-391 Subnormal Rounded -ddscb210 scaleb 1.000000000000000E-383 -9 -> 1.000000E-392 Subnormal Rounded -ddscb211 scaleb 1.000000000000000E-383 -10 -> 1.00000E-393 Subnormal Rounded -ddscb212 scaleb 1.000000000000000E-383 -11 -> 1.0000E-394 Subnormal Rounded -ddscb213 scaleb 1.000000000000000E-383 -12 -> 1.000E-395 Subnormal Rounded -ddscb214 scaleb 1.000000000000000E-383 -13 -> 1.00E-396 Subnormal Rounded -ddscb215 scaleb 1.000000000000000E-383 -14 -> 1.0E-397 Subnormal Rounded -ddscb216 scaleb 1.000000000000000E-383 -15 -> 1E-398 Subnormal Rounded -ddscb217 scaleb 1.000000000000000E-383 -16 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -ddscb218 scaleb 1.000000000000000E-383 -17 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped - diff --git a/qdecimal/test/tc_full/ddShift.decTest b/qdecimal/test/tc_full/ddShift.decTest deleted file mode 100644 index 31cb0a3..0000000 --- a/qdecimal/test/tc_full/ddShift.decTest +++ /dev/null @@ -1,262 +0,0 @@ ------------------------------------------------------------------------- --- ddShift.decTest -- shift decDouble coefficient left or right -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check -ddshi001 shift 0 0 -> 0 -ddshi002 shift 0 2 -> 0 -ddshi003 shift 1 2 -> 100 -ddshi004 shift 1 15 -> 1000000000000000 -ddshi005 shift 1 16 -> 0 -ddshi006 shift 1 -1 -> 0 -ddshi007 shift 0 -2 -> 0 -ddshi008 shift 1234567890123456 -1 -> 123456789012345 -ddshi009 shift 1234567890123456 -15 -> 1 -ddshi010 shift 1234567890123456 -16 -> 0 -ddshi011 shift 9934567890123456 -15 -> 9 -ddshi012 shift 9934567890123456 -16 -> 0 - --- rhs must be an integer -ddshi015 shift 1 1.5 -> NaN Invalid_operation -ddshi016 shift 1 1.0 -> NaN Invalid_operation -ddshi017 shift 1 0.1 -> NaN Invalid_operation -ddshi018 shift 1 0.0 -> NaN Invalid_operation -ddshi019 shift 1 1E+1 -> NaN Invalid_operation -ddshi020 shift 1 1E+99 -> NaN Invalid_operation -ddshi021 shift 1 Inf -> NaN Invalid_operation -ddshi022 shift 1 -Inf -> NaN Invalid_operation --- and |rhs| <= precision -ddshi025 shift 1 -1000 -> NaN Invalid_operation -ddshi026 shift 1 -17 -> NaN Invalid_operation -ddshi027 shift 1 17 -> NaN Invalid_operation -ddshi028 shift 1 1000 -> NaN Invalid_operation - --- full shifting pattern -ddshi030 shift 1234567890123456 -16 -> 0 -ddshi031 shift 1234567890123456 -15 -> 1 -ddshi032 shift 1234567890123456 -14 -> 12 -ddshi033 shift 1234567890123456 -13 -> 123 -ddshi034 shift 1234567890123456 -12 -> 1234 -ddshi035 shift 1234567890123456 -11 -> 12345 -ddshi036 shift 1234567890123456 -10 -> 123456 -ddshi037 shift 1234567890123456 -9 -> 1234567 -ddshi038 shift 1234567890123456 -8 -> 12345678 -ddshi039 shift 1234567890123456 -7 -> 123456789 -ddshi040 shift 1234567890123456 -6 -> 1234567890 -ddshi041 shift 1234567890123456 -5 -> 12345678901 -ddshi042 shift 1234567890123456 -4 -> 123456789012 -ddshi043 shift 1234567890123456 -3 -> 1234567890123 -ddshi044 shift 1234567890123456 -2 -> 12345678901234 -ddshi045 shift 1234567890123456 -1 -> 123456789012345 -ddshi046 shift 1234567890123456 -0 -> 1234567890123456 - -ddshi047 shift 1234567890123456 +0 -> 1234567890123456 -ddshi048 shift 1234567890123456 +1 -> 2345678901234560 -ddshi049 shift 1234567890123456 +2 -> 3456789012345600 -ddshi050 shift 1234567890123456 +3 -> 4567890123456000 -ddshi051 shift 1234567890123456 +4 -> 5678901234560000 -ddshi052 shift 1234567890123456 +5 -> 6789012345600000 -ddshi053 shift 1234567890123456 +6 -> 7890123456000000 -ddshi054 shift 1234567890123456 +7 -> 8901234560000000 -ddshi055 shift 1234567890123456 +8 -> 9012345600000000 -ddshi056 shift 1234567890123456 +9 -> 123456000000000 -ddshi057 shift 1234567890123456 +10 -> 1234560000000000 -ddshi058 shift 1234567890123456 +11 -> 2345600000000000 -ddshi059 shift 1234567890123456 +12 -> 3456000000000000 -ddshi060 shift 1234567890123456 +13 -> 4560000000000000 -ddshi061 shift 1234567890123456 +14 -> 5600000000000000 -ddshi062 shift 1234567890123456 +15 -> 6000000000000000 -ddshi063 shift 1234567890123456 +16 -> 0 - --- zeros -ddshi070 shift 0E-10 +9 -> 0E-10 -ddshi071 shift 0E-10 -9 -> 0E-10 -ddshi072 shift 0.000 +9 -> 0.000 -ddshi073 shift 0.000 -9 -> 0.000 -ddshi074 shift 0E+10 +9 -> 0E+10 -ddshi075 shift 0E+10 -9 -> 0E+10 -ddshi076 shift -0E-10 +9 -> -0E-10 -ddshi077 shift -0E-10 -9 -> -0E-10 -ddshi078 shift -0.000 +9 -> -0.000 -ddshi079 shift -0.000 -9 -> -0.000 -ddshi080 shift -0E+10 +9 -> -0E+10 -ddshi081 shift -0E+10 -9 -> -0E+10 - --- Nmax, Nmin, Ntiny -ddshi141 shift 9.999999999999999E+384 -1 -> 9.99999999999999E+383 -ddshi142 shift 9.999999999999999E+384 -15 -> 9E+369 -ddshi143 shift 9.999999999999999E+384 1 -> 9.999999999999990E+384 -ddshi144 shift 9.999999999999999E+384 15 -> 9.000000000000000E+384 -ddshi145 shift 1E-383 -1 -> 0E-383 -ddshi146 shift 1E-383 -15 -> 0E-383 -ddshi147 shift 1E-383 1 -> 1.0E-382 -ddshi148 shift 1E-383 15 -> 1.000000000000000E-368 -ddshi151 shift 1.000000000000000E-383 -1 -> 1.00000000000000E-384 -ddshi152 shift 1.000000000000000E-383 -15 -> 1E-398 -ddshi153 shift 1.000000000000000E-383 1 -> 0E-398 -ddshi154 shift 1.000000000000000E-383 15 -> 0E-398 -ddshi155 shift 9.000000000000000E-383 -1 -> 9.00000000000000E-384 -ddshi156 shift 9.000000000000000E-383 -15 -> 9E-398 -ddshi157 shift 9.000000000000000E-383 1 -> 0E-398 -ddshi158 shift 9.000000000000000E-383 15 -> 0E-398 -ddshi160 shift 1E-398 -1 -> 0E-398 -ddshi161 shift 1E-398 -15 -> 0E-398 -ddshi162 shift 1E-398 1 -> 1.0E-397 -ddshi163 shift 1E-398 15 -> 1.000000000000000E-383 --- negatives -ddshi171 shift -9.999999999999999E+384 -1 -> -9.99999999999999E+383 -ddshi172 shift -9.999999999999999E+384 -15 -> -9E+369 -ddshi173 shift -9.999999999999999E+384 1 -> -9.999999999999990E+384 -ddshi174 shift -9.999999999999999E+384 15 -> -9.000000000000000E+384 -ddshi175 shift -1E-383 -1 -> -0E-383 -ddshi176 shift -1E-383 -15 -> -0E-383 -ddshi177 shift -1E-383 1 -> -1.0E-382 -ddshi178 shift -1E-383 15 -> -1.000000000000000E-368 -ddshi181 shift -1.000000000000000E-383 -1 -> -1.00000000000000E-384 -ddshi182 shift -1.000000000000000E-383 -15 -> -1E-398 -ddshi183 shift -1.000000000000000E-383 1 -> -0E-398 -ddshi184 shift -1.000000000000000E-383 15 -> -0E-398 -ddshi185 shift -9.000000000000000E-383 -1 -> -9.00000000000000E-384 -ddshi186 shift -9.000000000000000E-383 -15 -> -9E-398 -ddshi187 shift -9.000000000000000E-383 1 -> -0E-398 -ddshi188 shift -9.000000000000000E-383 15 -> -0E-398 -ddshi190 shift -1E-398 -1 -> -0E-398 -ddshi191 shift -1E-398 -15 -> -0E-398 -ddshi192 shift -1E-398 1 -> -1.0E-397 -ddshi193 shift -1E-398 15 -> -1.000000000000000E-383 - --- more negatives (of sanities) -ddshi201 shift -0 0 -> -0 -ddshi202 shift -0 2 -> -0 -ddshi203 shift -1 2 -> -100 -ddshi204 shift -1 15 -> -1000000000000000 -ddshi205 shift -1 16 -> -0 -ddshi206 shift -1 -1 -> -0 -ddshi207 shift -0 -2 -> -0 -ddshi208 shift -1234567890123456 -1 -> -123456789012345 -ddshi209 shift -1234567890123456 -15 -> -1 -ddshi210 shift -1234567890123456 -16 -> -0 -ddshi211 shift -9934567890123456 -15 -> -9 -ddshi212 shift -9934567890123456 -16 -> -0 - - --- Specials; NaNs are handled as usual -ddshi781 shift -Inf -8 -> -Infinity -ddshi782 shift -Inf -1 -> -Infinity -ddshi783 shift -Inf -0 -> -Infinity -ddshi784 shift -Inf 0 -> -Infinity -ddshi785 shift -Inf 1 -> -Infinity -ddshi786 shift -Inf 8 -> -Infinity -ddshi787 shift -1000 -Inf -> NaN Invalid_operation -ddshi788 shift -Inf -Inf -> NaN Invalid_operation -ddshi789 shift -1 -Inf -> NaN Invalid_operation -ddshi790 shift -0 -Inf -> NaN Invalid_operation -ddshi791 shift 0 -Inf -> NaN Invalid_operation -ddshi792 shift 1 -Inf -> NaN Invalid_operation -ddshi793 shift 1000 -Inf -> NaN Invalid_operation -ddshi794 shift Inf -Inf -> NaN Invalid_operation - -ddshi800 shift Inf -Inf -> NaN Invalid_operation -ddshi801 shift Inf -8 -> Infinity -ddshi802 shift Inf -1 -> Infinity -ddshi803 shift Inf -0 -> Infinity -ddshi804 shift Inf 0 -> Infinity -ddshi805 shift Inf 1 -> Infinity -ddshi806 shift Inf 8 -> Infinity -ddshi807 shift Inf Inf -> NaN Invalid_operation -ddshi808 shift -1000 Inf -> NaN Invalid_operation -ddshi809 shift -Inf Inf -> NaN Invalid_operation -ddshi810 shift -1 Inf -> NaN Invalid_operation -ddshi811 shift -0 Inf -> NaN Invalid_operation -ddshi812 shift 0 Inf -> NaN Invalid_operation -ddshi813 shift 1 Inf -> NaN Invalid_operation -ddshi814 shift 1000 Inf -> NaN Invalid_operation -ddshi815 shift Inf Inf -> NaN Invalid_operation - -ddshi821 shift NaN -Inf -> NaN -ddshi822 shift NaN -1000 -> NaN -ddshi823 shift NaN -1 -> NaN -ddshi824 shift NaN -0 -> NaN -ddshi825 shift NaN 0 -> NaN -ddshi826 shift NaN 1 -> NaN -ddshi827 shift NaN 1000 -> NaN -ddshi828 shift NaN Inf -> NaN -ddshi829 shift NaN NaN -> NaN -ddshi830 shift -Inf NaN -> NaN -ddshi831 shift -1000 NaN -> NaN -ddshi832 shift -1 NaN -> NaN -ddshi833 shift -0 NaN -> NaN -ddshi834 shift 0 NaN -> NaN -ddshi835 shift 1 NaN -> NaN -ddshi836 shift 1000 NaN -> NaN -ddshi837 shift Inf NaN -> NaN - -ddshi841 shift sNaN -Inf -> NaN Invalid_operation -ddshi842 shift sNaN -1000 -> NaN Invalid_operation -ddshi843 shift sNaN -1 -> NaN Invalid_operation -ddshi844 shift sNaN -0 -> NaN Invalid_operation -ddshi845 shift sNaN 0 -> NaN Invalid_operation -ddshi846 shift sNaN 1 -> NaN Invalid_operation -ddshi847 shift sNaN 1000 -> NaN Invalid_operation -ddshi848 shift sNaN NaN -> NaN Invalid_operation -ddshi849 shift sNaN sNaN -> NaN Invalid_operation -ddshi850 shift NaN sNaN -> NaN Invalid_operation -ddshi851 shift -Inf sNaN -> NaN Invalid_operation -ddshi852 shift -1000 sNaN -> NaN Invalid_operation -ddshi853 shift -1 sNaN -> NaN Invalid_operation -ddshi854 shift -0 sNaN -> NaN Invalid_operation -ddshi855 shift 0 sNaN -> NaN Invalid_operation -ddshi856 shift 1 sNaN -> NaN Invalid_operation -ddshi857 shift 1000 sNaN -> NaN Invalid_operation -ddshi858 shift Inf sNaN -> NaN Invalid_operation -ddshi859 shift NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddshi861 shift NaN1 -Inf -> NaN1 -ddshi862 shift +NaN2 -1000 -> NaN2 -ddshi863 shift NaN3 1000 -> NaN3 -ddshi864 shift NaN4 Inf -> NaN4 -ddshi865 shift NaN5 +NaN6 -> NaN5 -ddshi866 shift -Inf NaN7 -> NaN7 -ddshi867 shift -1000 NaN8 -> NaN8 -ddshi868 shift 1000 NaN9 -> NaN9 -ddshi869 shift Inf +NaN10 -> NaN10 -ddshi871 shift sNaN11 -Inf -> NaN11 Invalid_operation -ddshi872 shift sNaN12 -1000 -> NaN12 Invalid_operation -ddshi873 shift sNaN13 1000 -> NaN13 Invalid_operation -ddshi874 shift sNaN14 NaN17 -> NaN14 Invalid_operation -ddshi875 shift sNaN15 sNaN18 -> NaN15 Invalid_operation -ddshi876 shift NaN16 sNaN19 -> NaN19 Invalid_operation -ddshi877 shift -Inf +sNaN20 -> NaN20 Invalid_operation -ddshi878 shift -1000 sNaN21 -> NaN21 Invalid_operation -ddshi879 shift 1000 sNaN22 -> NaN22 Invalid_operation -ddshi880 shift Inf sNaN23 -> NaN23 Invalid_operation -ddshi881 shift +NaN25 +sNaN24 -> NaN24 Invalid_operation -ddshi882 shift -NaN26 NaN28 -> -NaN26 -ddshi883 shift -sNaN27 sNaN29 -> -NaN27 Invalid_operation -ddshi884 shift 1000 -NaN30 -> -NaN30 -ddshi885 shift 1000 -sNaN31 -> -NaN31 Invalid_operation diff --git a/qdecimal/test/tc_full/ddSubtract.decTest b/qdecimal/test/tc_full/ddSubtract.decTest deleted file mode 100644 index 6e6e31c..0000000 --- a/qdecimal/test/tc_full/ddSubtract.decTest +++ /dev/null @@ -1,629 +0,0 @@ ------------------------------------------------------------------------- --- ddSubtract.decTest -- decDouble subtraction -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests are for decDoubles only; all arguments are --- representable in a decDouble -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- [first group are 'quick confidence check'] -ddsub001 subtract 0 0 -> '0' -ddsub002 subtract 1 1 -> '0' -ddsub003 subtract 1 2 -> '-1' -ddsub004 subtract 2 1 -> '1' -ddsub005 subtract 2 2 -> '0' -ddsub006 subtract 3 2 -> '1' -ddsub007 subtract 2 3 -> '-1' - -ddsub011 subtract -0 0 -> '-0' -ddsub012 subtract -1 1 -> '-2' -ddsub013 subtract -1 2 -> '-3' -ddsub014 subtract -2 1 -> '-3' -ddsub015 subtract -2 2 -> '-4' -ddsub016 subtract -3 2 -> '-5' -ddsub017 subtract -2 3 -> '-5' - -ddsub021 subtract 0 -0 -> '0' -ddsub022 subtract 1 -1 -> '2' -ddsub023 subtract 1 -2 -> '3' -ddsub024 subtract 2 -1 -> '3' -ddsub025 subtract 2 -2 -> '4' -ddsub026 subtract 3 -2 -> '5' -ddsub027 subtract 2 -3 -> '5' - -ddsub030 subtract 11 1 -> 10 -ddsub031 subtract 10 1 -> 9 -ddsub032 subtract 9 1 -> 8 -ddsub033 subtract 1 1 -> 0 -ddsub034 subtract 0 1 -> -1 -ddsub035 subtract -1 1 -> -2 -ddsub036 subtract -9 1 -> -10 -ddsub037 subtract -10 1 -> -11 -ddsub038 subtract -11 1 -> -12 - -ddsub040 subtract '5.75' '3.3' -> '2.45' -ddsub041 subtract '5' '-3' -> '8' -ddsub042 subtract '-5' '-3' -> '-2' -ddsub043 subtract '-7' '2.5' -> '-9.5' -ddsub044 subtract '0.7' '0.3' -> '0.4' -ddsub045 subtract '1.3' '0.3' -> '1.0' -ddsub046 subtract '1.25' '1.25' -> '0.00' - -ddsub050 subtract '1.23456789' '1.00000000' -> '0.23456789' -ddsub051 subtract '1.23456789' '1.00000089' -> '0.23456700' - -ddsub060 subtract '70' '10000e+16' -> '-1.000000000000000E+20' Inexact Rounded -ddsub061 subtract '700' '10000e+16' -> '-1.000000000000000E+20' Inexact Rounded -ddsub062 subtract '7000' '10000e+16' -> '-9.999999999999999E+19' Inexact Rounded -ddsub063 subtract '70000' '10000e+16' -> '-9.999999999999993E+19' Rounded -ddsub064 subtract '700000' '10000e+16' -> '-9.999999999999930E+19' Rounded - -- symmetry: -ddsub065 subtract '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded -ddsub066 subtract '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded -ddsub067 subtract '10000e+16' '7000' -> '9.999999999999999E+19' Inexact Rounded -ddsub068 subtract '10000e+16' '70000' -> '9.999999999999993E+19' Rounded -ddsub069 subtract '10000e+16' '700000' -> '9.999999999999930E+19' Rounded - - -- some of the next group are really constructor tests -ddsub090 subtract '00.0' '0.0' -> '0.0' -ddsub091 subtract '00.0' '0.00' -> '0.00' -ddsub092 subtract '0.00' '00.0' -> '0.00' -ddsub093 subtract '00.0' '0.00' -> '0.00' -ddsub094 subtract '0.00' '00.0' -> '0.00' -ddsub095 subtract '3' '.3' -> '2.7' -ddsub096 subtract '3.' '.3' -> '2.7' -ddsub097 subtract '3.0' '.3' -> '2.7' -ddsub098 subtract '3.00' '.3' -> '2.70' -ddsub099 subtract '3' '3' -> '0' -ddsub100 subtract '3' '+3' -> '0' -ddsub101 subtract '3' '-3' -> '6' -ddsub102 subtract '3' '0.3' -> '2.7' -ddsub103 subtract '3.' '0.3' -> '2.7' -ddsub104 subtract '3.0' '0.3' -> '2.7' -ddsub105 subtract '3.00' '0.3' -> '2.70' -ddsub106 subtract '3' '3.0' -> '0.0' -ddsub107 subtract '3' '+3.0' -> '0.0' -ddsub108 subtract '3' '-3.0' -> '6.0' - --- the above all from add; massaged and extended. Now some new ones... --- [particularly important for comparisons] --- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7 --- with input rounding. -ddsub120 subtract '10.23456784' '10.23456789' -> '-5E-8' -ddsub121 subtract '10.23456785' '10.23456789' -> '-4E-8' -ddsub122 subtract '10.23456786' '10.23456789' -> '-3E-8' -ddsub123 subtract '10.23456787' '10.23456789' -> '-2E-8' -ddsub124 subtract '10.23456788' '10.23456789' -> '-1E-8' -ddsub125 subtract '10.23456789' '10.23456789' -> '0E-8' -ddsub126 subtract '10.23456790' '10.23456789' -> '1E-8' -ddsub127 subtract '10.23456791' '10.23456789' -> '2E-8' -ddsub128 subtract '10.23456792' '10.23456789' -> '3E-8' -ddsub129 subtract '10.23456793' '10.23456789' -> '4E-8' -ddsub130 subtract '10.23456794' '10.23456789' -> '5E-8' -ddsub131 subtract '10.23456781' '10.23456786' -> '-5E-8' -ddsub132 subtract '10.23456782' '10.23456786' -> '-4E-8' -ddsub133 subtract '10.23456783' '10.23456786' -> '-3E-8' -ddsub134 subtract '10.23456784' '10.23456786' -> '-2E-8' -ddsub135 subtract '10.23456785' '10.23456786' -> '-1E-8' -ddsub136 subtract '10.23456786' '10.23456786' -> '0E-8' -ddsub137 subtract '10.23456787' '10.23456786' -> '1E-8' -ddsub138 subtract '10.23456788' '10.23456786' -> '2E-8' -ddsub139 subtract '10.23456789' '10.23456786' -> '3E-8' -ddsub140 subtract '10.23456790' '10.23456786' -> '4E-8' -ddsub141 subtract '10.23456791' '10.23456786' -> '5E-8' -ddsub142 subtract '1' '0.999999999' -> '1E-9' -ddsub143 subtract '0.999999999' '1' -> '-1E-9' -ddsub144 subtract '-10.23456780' '-10.23456786' -> '6E-8' -ddsub145 subtract '-10.23456790' '-10.23456786' -> '-4E-8' -ddsub146 subtract '-10.23456791' '-10.23456786' -> '-5E-8' - --- additional scaled arithmetic tests [0.97 problem] -ddsub160 subtract '0' '.1' -> '-0.1' -ddsub161 subtract '00' '.97983' -> '-0.97983' -ddsub162 subtract '0' '.9' -> '-0.9' -ddsub163 subtract '0' '0.102' -> '-0.102' -ddsub164 subtract '0' '.4' -> '-0.4' -ddsub165 subtract '0' '.307' -> '-0.307' -ddsub166 subtract '0' '.43822' -> '-0.43822' -ddsub167 subtract '0' '.911' -> '-0.911' -ddsub168 subtract '.0' '.02' -> '-0.02' -ddsub169 subtract '00' '.392' -> '-0.392' -ddsub170 subtract '0' '.26' -> '-0.26' -ddsub171 subtract '0' '0.51' -> '-0.51' -ddsub172 subtract '0' '.2234' -> '-0.2234' -ddsub173 subtract '0' '.2' -> '-0.2' -ddsub174 subtract '.0' '.0008' -> '-0.0008' --- 0. on left -ddsub180 subtract '0.0' '-.1' -> '0.1' -ddsub181 subtract '0.00' '-.97983' -> '0.97983' -ddsub182 subtract '0.0' '-.9' -> '0.9' -ddsub183 subtract '0.0' '-0.102' -> '0.102' -ddsub184 subtract '0.0' '-.4' -> '0.4' -ddsub185 subtract '0.0' '-.307' -> '0.307' -ddsub186 subtract '0.0' '-.43822' -> '0.43822' -ddsub187 subtract '0.0' '-.911' -> '0.911' -ddsub188 subtract '0.0' '-.02' -> '0.02' -ddsub189 subtract '0.00' '-.392' -> '0.392' -ddsub190 subtract '0.0' '-.26' -> '0.26' -ddsub191 subtract '0.0' '-0.51' -> '0.51' -ddsub192 subtract '0.0' '-.2234' -> '0.2234' -ddsub193 subtract '0.0' '-.2' -> '0.2' -ddsub194 subtract '0.0' '-.0008' -> '0.0008' --- negatives of same -ddsub200 subtract '0' '-.1' -> '0.1' -ddsub201 subtract '00' '-.97983' -> '0.97983' -ddsub202 subtract '0' '-.9' -> '0.9' -ddsub203 subtract '0' '-0.102' -> '0.102' -ddsub204 subtract '0' '-.4' -> '0.4' -ddsub205 subtract '0' '-.307' -> '0.307' -ddsub206 subtract '0' '-.43822' -> '0.43822' -ddsub207 subtract '0' '-.911' -> '0.911' -ddsub208 subtract '.0' '-.02' -> '0.02' -ddsub209 subtract '00' '-.392' -> '0.392' -ddsub210 subtract '0' '-.26' -> '0.26' -ddsub211 subtract '0' '-0.51' -> '0.51' -ddsub212 subtract '0' '-.2234' -> '0.2234' -ddsub213 subtract '0' '-.2' -> '0.2' -ddsub214 subtract '.0' '-.0008' -> '0.0008' - --- more fixed, LHS swaps [really the same as testcases under add] -ddsub220 subtract '-56267E-12' 0 -> '-5.6267E-8' -ddsub221 subtract '-56267E-11' 0 -> '-5.6267E-7' -ddsub222 subtract '-56267E-10' 0 -> '-0.0000056267' -ddsub223 subtract '-56267E-9' 0 -> '-0.000056267' -ddsub224 subtract '-56267E-8' 0 -> '-0.00056267' -ddsub225 subtract '-56267E-7' 0 -> '-0.0056267' -ddsub226 subtract '-56267E-6' 0 -> '-0.056267' -ddsub227 subtract '-56267E-5' 0 -> '-0.56267' -ddsub228 subtract '-56267E-2' 0 -> '-562.67' -ddsub229 subtract '-56267E-1' 0 -> '-5626.7' -ddsub230 subtract '-56267E-0' 0 -> '-56267' --- symmetry ... -ddsub240 subtract 0 '-56267E-12' -> '5.6267E-8' -ddsub241 subtract 0 '-56267E-11' -> '5.6267E-7' -ddsub242 subtract 0 '-56267E-10' -> '0.0000056267' -ddsub243 subtract 0 '-56267E-9' -> '0.000056267' -ddsub244 subtract 0 '-56267E-8' -> '0.00056267' -ddsub245 subtract 0 '-56267E-7' -> '0.0056267' -ddsub246 subtract 0 '-56267E-6' -> '0.056267' -ddsub247 subtract 0 '-56267E-5' -> '0.56267' -ddsub248 subtract 0 '-56267E-2' -> '562.67' -ddsub249 subtract 0 '-56267E-1' -> '5626.7' -ddsub250 subtract 0 '-56267E-0' -> '56267' - --- now some more from the 'new' add -ddsub301 subtract '1.23456789' '1.00000000' -> '0.23456789' -ddsub302 subtract '1.23456789' '1.00000011' -> '0.23456778' - --- some carrying effects -ddsub321 subtract '0.9998' '0.0000' -> '0.9998' -ddsub322 subtract '0.9998' '0.0001' -> '0.9997' -ddsub323 subtract '0.9998' '0.0002' -> '0.9996' -ddsub324 subtract '0.9998' '0.0003' -> '0.9995' -ddsub325 subtract '0.9998' '-0.0000' -> '0.9998' -ddsub326 subtract '0.9998' '-0.0001' -> '0.9999' -ddsub327 subtract '0.9998' '-0.0002' -> '1.0000' -ddsub328 subtract '0.9998' '-0.0003' -> '1.0001' - --- internal boundaries -ddsub346 subtract '10000e+9' '7' -> '9999999999993' -ddsub347 subtract '10000e+9' '70' -> '9999999999930' -ddsub348 subtract '10000e+9' '700' -> '9999999999300' -ddsub349 subtract '10000e+9' '7000' -> '9999999993000' -ddsub350 subtract '10000e+9' '70000' -> '9999999930000' -ddsub351 subtract '10000e+9' '700000' -> '9999999300000' -ddsub352 subtract '7' '10000e+9' -> '-9999999999993' -ddsub353 subtract '70' '10000e+9' -> '-9999999999930' -ddsub354 subtract '700' '10000e+9' -> '-9999999999300' -ddsub355 subtract '7000' '10000e+9' -> '-9999999993000' -ddsub356 subtract '70000' '10000e+9' -> '-9999999930000' -ddsub357 subtract '700000' '10000e+9' -> '-9999999300000' - --- zero preservation -ddsub361 subtract 1 '0.0001' -> '0.9999' -ddsub362 subtract 1 '0.00001' -> '0.99999' -ddsub363 subtract 1 '0.000001' -> '0.999999' -ddsub364 subtract 1 '0.0000000000000001' -> '0.9999999999999999' -ddsub365 subtract 1 '0.00000000000000001' -> '1.000000000000000' Inexact Rounded -ddsub366 subtract 1 '0.000000000000000001' -> '1.000000000000000' Inexact Rounded - --- some funny zeros [in case of bad signum] -ddsub370 subtract 1 0 -> 1 -ddsub371 subtract 1 0. -> 1 -ddsub372 subtract 1 .0 -> 1.0 -ddsub373 subtract 1 0.0 -> 1.0 -ddsub374 subtract 0 1 -> -1 -ddsub375 subtract 0. 1 -> -1 -ddsub376 subtract .0 1 -> -1.0 -ddsub377 subtract 0.0 1 -> -1.0 - --- leading 0 digit before round -ddsub910 subtract -103519362 -51897955.3 -> -51621406.7 -ddsub911 subtract 159579.444 89827.5229 -> 69751.9211 - -ddsub920 subtract 333.0000000123456 33.00000001234566 -> 299.9999999999999 Inexact Rounded -ddsub921 subtract 333.0000000123456 33.00000001234565 -> 300.0000000000000 Inexact Rounded -ddsub922 subtract 133.0000000123456 33.00000001234565 -> 99.99999999999995 -ddsub923 subtract 133.0000000123456 33.00000001234564 -> 99.99999999999996 -ddsub924 subtract 133.0000000123456 33.00000001234540 -> 100.0000000000002 Rounded -ddsub925 subtract 133.0000000123456 43.00000001234560 -> 90.00000000000000 -ddsub926 subtract 133.0000000123456 43.00000001234561 -> 89.99999999999999 -ddsub927 subtract 133.0000000123456 43.00000001234566 -> 89.99999999999994 -ddsub928 subtract 101.0000000123456 91.00000001234566 -> 9.99999999999994 -ddsub929 subtract 101.0000000123456 99.00000001234566 -> 1.99999999999994 - --- more LHS swaps [were fixed] -ddsub390 subtract '-56267E-10' 0 -> '-0.0000056267' -ddsub391 subtract '-56267E-6' 0 -> '-0.056267' -ddsub392 subtract '-56267E-5' 0 -> '-0.56267' -ddsub393 subtract '-56267E-4' 0 -> '-5.6267' -ddsub394 subtract '-56267E-3' 0 -> '-56.267' -ddsub395 subtract '-56267E-2' 0 -> '-562.67' -ddsub396 subtract '-56267E-1' 0 -> '-5626.7' -ddsub397 subtract '-56267E-0' 0 -> '-56267' -ddsub398 subtract '-5E-10' 0 -> '-5E-10' -ddsub399 subtract '-5E-7' 0 -> '-5E-7' -ddsub400 subtract '-5E-6' 0 -> '-0.000005' -ddsub401 subtract '-5E-5' 0 -> '-0.00005' -ddsub402 subtract '-5E-4' 0 -> '-0.0005' -ddsub403 subtract '-5E-1' 0 -> '-0.5' -ddsub404 subtract '-5E0' 0 -> '-5' -ddsub405 subtract '-5E1' 0 -> '-50' -ddsub406 subtract '-5E5' 0 -> '-500000' -ddsub407 subtract '-5E15' 0 -> '-5000000000000000' -ddsub408 subtract '-5E16' 0 -> '-5.000000000000000E+16' Rounded -ddsub409 subtract '-5E17' 0 -> '-5.000000000000000E+17' Rounded -ddsub410 subtract '-5E18' 0 -> '-5.000000000000000E+18' Rounded -ddsub411 subtract '-5E100' 0 -> '-5.000000000000000E+100' Rounded - --- more RHS swaps [were fixed] -ddsub420 subtract 0 '-56267E-10' -> '0.0000056267' -ddsub421 subtract 0 '-56267E-6' -> '0.056267' -ddsub422 subtract 0 '-56267E-5' -> '0.56267' -ddsub423 subtract 0 '-56267E-4' -> '5.6267' -ddsub424 subtract 0 '-56267E-3' -> '56.267' -ddsub425 subtract 0 '-56267E-2' -> '562.67' -ddsub426 subtract 0 '-56267E-1' -> '5626.7' -ddsub427 subtract 0 '-56267E-0' -> '56267' -ddsub428 subtract 0 '-5E-10' -> '5E-10' -ddsub429 subtract 0 '-5E-7' -> '5E-7' -ddsub430 subtract 0 '-5E-6' -> '0.000005' -ddsub431 subtract 0 '-5E-5' -> '0.00005' -ddsub432 subtract 0 '-5E-4' -> '0.0005' -ddsub433 subtract 0 '-5E-1' -> '0.5' -ddsub434 subtract 0 '-5E0' -> '5' -ddsub435 subtract 0 '-5E1' -> '50' -ddsub436 subtract 0 '-5E5' -> '500000' -ddsub437 subtract 0 '-5E15' -> '5000000000000000' -ddsub438 subtract 0 '-5E16' -> '5.000000000000000E+16' Rounded -ddsub439 subtract 0 '-5E17' -> '5.000000000000000E+17' Rounded -ddsub440 subtract 0 '-5E18' -> '5.000000000000000E+18' Rounded -ddsub441 subtract 0 '-5E100' -> '5.000000000000000E+100' Rounded - - --- try borderline precision, with carries, etc. -ddsub461 subtract '1E+16' '1' -> '9999999999999999' -ddsub462 subtract '1E+12' '-1.111' -> '1000000000001.111' -ddsub463 subtract '1.111' '-1E+12' -> '1000000000001.111' -ddsub464 subtract '-1' '-1E+16' -> '9999999999999999' -ddsub465 subtract '7E+15' '1' -> '6999999999999999' -ddsub466 subtract '7E+12' '-1.111' -> '7000000000001.111' -ddsub467 subtract '1.111' '-7E+12' -> '7000000000001.111' -ddsub468 subtract '-1' '-7E+15' -> '6999999999999999' - --- 1234567890123456 1234567890123456 1 23456789012345 -ddsub470 subtract '0.4444444444444444' '-0.5555555555555563' -> '1.000000000000001' Inexact Rounded -ddsub471 subtract '0.4444444444444444' '-0.5555555555555562' -> '1.000000000000001' Inexact Rounded -ddsub472 subtract '0.4444444444444444' '-0.5555555555555561' -> '1.000000000000000' Inexact Rounded -ddsub473 subtract '0.4444444444444444' '-0.5555555555555560' -> '1.000000000000000' Inexact Rounded -ddsub474 subtract '0.4444444444444444' '-0.5555555555555559' -> '1.000000000000000' Inexact Rounded -ddsub475 subtract '0.4444444444444444' '-0.5555555555555558' -> '1.000000000000000' Inexact Rounded -ddsub476 subtract '0.4444444444444444' '-0.5555555555555557' -> '1.000000000000000' Inexact Rounded -ddsub477 subtract '0.4444444444444444' '-0.5555555555555556' -> '1.000000000000000' Rounded -ddsub478 subtract '0.4444444444444444' '-0.5555555555555555' -> '0.9999999999999999' -ddsub479 subtract '0.4444444444444444' '-0.5555555555555554' -> '0.9999999999999998' -ddsub480 subtract '0.4444444444444444' '-0.5555555555555553' -> '0.9999999999999997' -ddsub481 subtract '0.4444444444444444' '-0.5555555555555552' -> '0.9999999999999996' -ddsub482 subtract '0.4444444444444444' '-0.5555555555555551' -> '0.9999999999999995' -ddsub483 subtract '0.4444444444444444' '-0.5555555555555550' -> '0.9999999999999994' - --- and some more, including residue effects and different roundings -rounding: half_up -ddsub500 subtract '1231234567456789' 0 -> '1231234567456789' -ddsub501 subtract '1231234567456789' 0.000000001 -> '1231234567456789' Inexact Rounded -ddsub502 subtract '1231234567456789' 0.000001 -> '1231234567456789' Inexact Rounded -ddsub503 subtract '1231234567456789' 0.1 -> '1231234567456789' Inexact Rounded -ddsub504 subtract '1231234567456789' 0.4 -> '1231234567456789' Inexact Rounded -ddsub505 subtract '1231234567456789' 0.49 -> '1231234567456789' Inexact Rounded -ddsub506 subtract '1231234567456789' 0.499999 -> '1231234567456789' Inexact Rounded -ddsub507 subtract '1231234567456789' 0.499999999 -> '1231234567456789' Inexact Rounded -ddsub508 subtract '1231234567456789' 0.5 -> '1231234567456789' Inexact Rounded -ddsub509 subtract '1231234567456789' 0.500000001 -> '1231234567456788' Inexact Rounded -ddsub510 subtract '1231234567456789' 0.500001 -> '1231234567456788' Inexact Rounded -ddsub511 subtract '1231234567456789' 0.51 -> '1231234567456788' Inexact Rounded -ddsub512 subtract '1231234567456789' 0.6 -> '1231234567456788' Inexact Rounded -ddsub513 subtract '1231234567456789' 0.9 -> '1231234567456788' Inexact Rounded -ddsub514 subtract '1231234567456789' 0.99999 -> '1231234567456788' Inexact Rounded -ddsub515 subtract '1231234567456789' 0.999999999 -> '1231234567456788' Inexact Rounded -ddsub516 subtract '1231234567456789' 1 -> '1231234567456788' -ddsub517 subtract '1231234567456789' 1.000000001 -> '1231234567456788' Inexact Rounded -ddsub518 subtract '1231234567456789' 1.00001 -> '1231234567456788' Inexact Rounded -ddsub519 subtract '1231234567456789' 1.1 -> '1231234567456788' Inexact Rounded - -rounding: half_even -ddsub520 subtract '1231234567456789' 0 -> '1231234567456789' -ddsub521 subtract '1231234567456789' 0.000000001 -> '1231234567456789' Inexact Rounded -ddsub522 subtract '1231234567456789' 0.000001 -> '1231234567456789' Inexact Rounded -ddsub523 subtract '1231234567456789' 0.1 -> '1231234567456789' Inexact Rounded -ddsub524 subtract '1231234567456789' 0.4 -> '1231234567456789' Inexact Rounded -ddsub525 subtract '1231234567456789' 0.49 -> '1231234567456789' Inexact Rounded -ddsub526 subtract '1231234567456789' 0.499999 -> '1231234567456789' Inexact Rounded -ddsub527 subtract '1231234567456789' 0.499999999 -> '1231234567456789' Inexact Rounded -ddsub528 subtract '1231234567456789' 0.5 -> '1231234567456788' Inexact Rounded -ddsub529 subtract '1231234567456789' 0.500000001 -> '1231234567456788' Inexact Rounded -ddsub530 subtract '1231234567456789' 0.500001 -> '1231234567456788' Inexact Rounded -ddsub531 subtract '1231234567456789' 0.51 -> '1231234567456788' Inexact Rounded -ddsub532 subtract '1231234567456789' 0.6 -> '1231234567456788' Inexact Rounded -ddsub533 subtract '1231234567456789' 0.9 -> '1231234567456788' Inexact Rounded -ddsub534 subtract '1231234567456789' 0.99999 -> '1231234567456788' Inexact Rounded -ddsub535 subtract '1231234567456789' 0.999999999 -> '1231234567456788' Inexact Rounded -ddsub536 subtract '1231234567456789' 1 -> '1231234567456788' -ddsub537 subtract '1231234567456789' 1.00000001 -> '1231234567456788' Inexact Rounded -ddsub538 subtract '1231234567456789' 1.00001 -> '1231234567456788' Inexact Rounded -ddsub539 subtract '1231234567456789' 1.1 -> '1231234567456788' Inexact Rounded --- critical few with even bottom digit... -ddsub540 subtract '1231234567456788' 0.499999999 -> '1231234567456788' Inexact Rounded -ddsub541 subtract '1231234567456788' 0.5 -> '1231234567456788' Inexact Rounded -ddsub542 subtract '1231234567456788' 0.500000001 -> '1231234567456787' Inexact Rounded - -rounding: down -ddsub550 subtract '1231234567456789' 0 -> '1231234567456789' -ddsub551 subtract '1231234567456789' 0.000000001 -> '1231234567456788' Inexact Rounded -ddsub552 subtract '1231234567456789' 0.000001 -> '1231234567456788' Inexact Rounded -ddsub553 subtract '1231234567456789' 0.1 -> '1231234567456788' Inexact Rounded -ddsub554 subtract '1231234567456789' 0.4 -> '1231234567456788' Inexact Rounded -ddsub555 subtract '1231234567456789' 0.49 -> '1231234567456788' Inexact Rounded -ddsub556 subtract '1231234567456789' 0.499999 -> '1231234567456788' Inexact Rounded -ddsub557 subtract '1231234567456789' 0.499999999 -> '1231234567456788' Inexact Rounded -ddsub558 subtract '1231234567456789' 0.5 -> '1231234567456788' Inexact Rounded -ddsub559 subtract '1231234567456789' 0.500000001 -> '1231234567456788' Inexact Rounded -ddsub560 subtract '1231234567456789' 0.500001 -> '1231234567456788' Inexact Rounded -ddsub561 subtract '1231234567456789' 0.51 -> '1231234567456788' Inexact Rounded -ddsub562 subtract '1231234567456789' 0.6 -> '1231234567456788' Inexact Rounded -ddsub563 subtract '1231234567456789' 0.9 -> '1231234567456788' Inexact Rounded -ddsub564 subtract '1231234567456789' 0.99999 -> '1231234567456788' Inexact Rounded -ddsub565 subtract '1231234567456789' 0.999999999 -> '1231234567456788' Inexact Rounded -ddsub566 subtract '1231234567456789' 1 -> '1231234567456788' -ddsub567 subtract '1231234567456789' 1.00000001 -> '1231234567456787' Inexact Rounded -ddsub568 subtract '1231234567456789' 1.00001 -> '1231234567456787' Inexact Rounded -ddsub569 subtract '1231234567456789' 1.1 -> '1231234567456787' Inexact Rounded - --- symmetry... -rounding: half_up -ddsub600 subtract 0 '1231234567456789' -> '-1231234567456789' -ddsub601 subtract 0.000000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub602 subtract 0.000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub603 subtract 0.1 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub604 subtract 0.4 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub605 subtract 0.49 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub606 subtract 0.499999 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub607 subtract 0.499999999 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub608 subtract 0.5 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub609 subtract 0.500000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub610 subtract 0.500001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub611 subtract 0.51 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub612 subtract 0.6 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub613 subtract 0.9 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub614 subtract 0.99999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub615 subtract 0.999999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub616 subtract 1 '1231234567456789' -> '-1231234567456788' -ddsub617 subtract 1.000000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub618 subtract 1.00001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub619 subtract 1.1 '1231234567456789' -> '-1231234567456788' Inexact Rounded - -rounding: half_even -ddsub620 subtract 0 '1231234567456789' -> '-1231234567456789' -ddsub621 subtract 0.000000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub622 subtract 0.000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub623 subtract 0.1 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub624 subtract 0.4 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub625 subtract 0.49 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub626 subtract 0.499999 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub627 subtract 0.499999999 '1231234567456789' -> '-1231234567456789' Inexact Rounded -ddsub628 subtract 0.5 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub629 subtract 0.500000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub630 subtract 0.500001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub631 subtract 0.51 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub632 subtract 0.6 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub633 subtract 0.9 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub634 subtract 0.99999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub635 subtract 0.999999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub636 subtract 1 '1231234567456789' -> '-1231234567456788' -ddsub637 subtract 1.00000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub638 subtract 1.00001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub639 subtract 1.1 '1231234567456789' -> '-1231234567456788' Inexact Rounded --- critical few with even bottom digit... -ddsub640 subtract 0.499999999 '1231234567456788' -> '-1231234567456788' Inexact Rounded -ddsub641 subtract 0.5 '1231234567456788' -> '-1231234567456788' Inexact Rounded -ddsub642 subtract 0.500000001 '1231234567456788' -> '-1231234567456787' Inexact Rounded - -rounding: down -ddsub650 subtract 0 '1231234567456789' -> '-1231234567456789' -ddsub651 subtract 0.000000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub652 subtract 0.000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub653 subtract 0.1 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub654 subtract 0.4 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub655 subtract 0.49 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub656 subtract 0.499999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub657 subtract 0.499999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub658 subtract 0.5 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub659 subtract 0.500000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub660 subtract 0.500001 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub661 subtract 0.51 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub662 subtract 0.6 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub663 subtract 0.9 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub664 subtract 0.99999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub665 subtract 0.999999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded -ddsub666 subtract 1 '1231234567456789' -> '-1231234567456788' -ddsub667 subtract 1.00000001 '1231234567456789' -> '-1231234567456787' Inexact Rounded -ddsub668 subtract 1.00001 '1231234567456789' -> '-1231234567456787' Inexact Rounded -ddsub669 subtract 1.1 '1231234567456789' -> '-1231234567456787' Inexact Rounded - - --- lots of leading zeros in intermediate result, and showing effects of --- input rounding would have affected the following -rounding: half_up -ddsub670 subtract '1234567456789' '1234567456788.1' -> 0.9 -ddsub671 subtract '1234567456789' '1234567456788.9' -> 0.1 -ddsub672 subtract '1234567456789' '1234567456789.1' -> -0.1 -ddsub673 subtract '1234567456789' '1234567456789.5' -> -0.5 -ddsub674 subtract '1234567456789' '1234567456789.9' -> -0.9 - -rounding: half_even -ddsub680 subtract '1234567456789' '1234567456788.1' -> 0.9 -ddsub681 subtract '1234567456789' '1234567456788.9' -> 0.1 -ddsub682 subtract '1234567456789' '1234567456789.1' -> -0.1 -ddsub683 subtract '1234567456789' '1234567456789.5' -> -0.5 -ddsub684 subtract '1234567456789' '1234567456789.9' -> -0.9 - -ddsub685 subtract '1234567456788' '1234567456787.1' -> 0.9 -ddsub686 subtract '1234567456788' '1234567456787.9' -> 0.1 -ddsub687 subtract '1234567456788' '1234567456788.1' -> -0.1 -ddsub688 subtract '1234567456788' '1234567456788.5' -> -0.5 -ddsub689 subtract '1234567456788' '1234567456788.9' -> -0.9 - -rounding: down -ddsub690 subtract '1234567456789' '1234567456788.1' -> 0.9 -ddsub691 subtract '1234567456789' '1234567456788.9' -> 0.1 -ddsub692 subtract '1234567456789' '1234567456789.1' -> -0.1 -ddsub693 subtract '1234567456789' '1234567456789.5' -> -0.5 -ddsub694 subtract '1234567456789' '1234567456789.9' -> -0.9 - --- Specials -ddsub780 subtract -Inf Inf -> -Infinity -ddsub781 subtract -Inf 1000 -> -Infinity -ddsub782 subtract -Inf 1 -> -Infinity -ddsub783 subtract -Inf -0 -> -Infinity -ddsub784 subtract -Inf -1 -> -Infinity -ddsub785 subtract -Inf -1000 -> -Infinity -ddsub787 subtract -1000 Inf -> -Infinity -ddsub788 subtract -Inf Inf -> -Infinity -ddsub789 subtract -1 Inf -> -Infinity -ddsub790 subtract 0 Inf -> -Infinity -ddsub791 subtract 1 Inf -> -Infinity -ddsub792 subtract 1000 Inf -> -Infinity - -ddsub800 subtract Inf Inf -> NaN Invalid_operation -ddsub801 subtract Inf 1000 -> Infinity -ddsub802 subtract Inf 1 -> Infinity -ddsub803 subtract Inf 0 -> Infinity -ddsub804 subtract Inf -0 -> Infinity -ddsub805 subtract Inf -1 -> Infinity -ddsub806 subtract Inf -1000 -> Infinity -ddsub807 subtract Inf -Inf -> Infinity -ddsub808 subtract -1000 -Inf -> Infinity -ddsub809 subtract -Inf -Inf -> NaN Invalid_operation -ddsub810 subtract -1 -Inf -> Infinity -ddsub811 subtract -0 -Inf -> Infinity -ddsub812 subtract 0 -Inf -> Infinity -ddsub813 subtract 1 -Inf -> Infinity -ddsub814 subtract 1000 -Inf -> Infinity -ddsub815 subtract Inf -Inf -> Infinity - -ddsub821 subtract NaN Inf -> NaN -ddsub822 subtract -NaN 1000 -> -NaN -ddsub823 subtract NaN 1 -> NaN -ddsub824 subtract NaN 0 -> NaN -ddsub825 subtract NaN -0 -> NaN -ddsub826 subtract NaN -1 -> NaN -ddsub827 subtract NaN -1000 -> NaN -ddsub828 subtract NaN -Inf -> NaN -ddsub829 subtract -NaN NaN -> -NaN -ddsub830 subtract -Inf NaN -> NaN -ddsub831 subtract -1000 NaN -> NaN -ddsub832 subtract -1 NaN -> NaN -ddsub833 subtract -0 NaN -> NaN -ddsub834 subtract 0 NaN -> NaN -ddsub835 subtract 1 NaN -> NaN -ddsub836 subtract 1000 -NaN -> -NaN -ddsub837 subtract Inf NaN -> NaN - -ddsub841 subtract sNaN Inf -> NaN Invalid_operation -ddsub842 subtract -sNaN 1000 -> -NaN Invalid_operation -ddsub843 subtract sNaN 1 -> NaN Invalid_operation -ddsub844 subtract sNaN 0 -> NaN Invalid_operation -ddsub845 subtract sNaN -0 -> NaN Invalid_operation -ddsub846 subtract sNaN -1 -> NaN Invalid_operation -ddsub847 subtract sNaN -1000 -> NaN Invalid_operation -ddsub848 subtract sNaN NaN -> NaN Invalid_operation -ddsub849 subtract sNaN sNaN -> NaN Invalid_operation -ddsub850 subtract NaN sNaN -> NaN Invalid_operation -ddsub851 subtract -Inf -sNaN -> -NaN Invalid_operation -ddsub852 subtract -1000 sNaN -> NaN Invalid_operation -ddsub853 subtract -1 sNaN -> NaN Invalid_operation -ddsub854 subtract -0 sNaN -> NaN Invalid_operation -ddsub855 subtract 0 sNaN -> NaN Invalid_operation -ddsub856 subtract 1 sNaN -> NaN Invalid_operation -ddsub857 subtract 1000 sNaN -> NaN Invalid_operation -ddsub858 subtract Inf sNaN -> NaN Invalid_operation -ddsub859 subtract NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddsub861 subtract NaN01 -Inf -> NaN1 -ddsub862 subtract -NaN02 -1000 -> -NaN2 -ddsub863 subtract NaN03 1000 -> NaN3 -ddsub864 subtract NaN04 Inf -> NaN4 -ddsub865 subtract NaN05 NaN61 -> NaN5 -ddsub866 subtract -Inf -NaN71 -> -NaN71 -ddsub867 subtract -1000 NaN81 -> NaN81 -ddsub868 subtract 1000 NaN91 -> NaN91 -ddsub869 subtract Inf NaN101 -> NaN101 -ddsub871 subtract sNaN011 -Inf -> NaN11 Invalid_operation -ddsub872 subtract sNaN012 -1000 -> NaN12 Invalid_operation -ddsub873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation -ddsub874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation -ddsub875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation -ddsub876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation -ddsub877 subtract -Inf sNaN201 -> NaN201 Invalid_operation -ddsub878 subtract -1000 sNaN211 -> NaN211 Invalid_operation -ddsub879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation -ddsub880 subtract Inf sNaN231 -> NaN231 Invalid_operation -ddsub881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation - --- edge case spills -ddsub901 subtract 2.E-3 1.002 -> -1.000 -ddsub902 subtract 2.0E-3 1.002 -> -1.0000 -ddsub903 subtract 2.00E-3 1.0020 -> -1.00000 -ddsub904 subtract 2.000E-3 1.00200 -> -1.000000 -ddsub905 subtract 2.0000E-3 1.002000 -> -1.0000000 -ddsub906 subtract 2.00000E-3 1.0020000 -> -1.00000000 -ddsub907 subtract 2.000000E-3 1.00200000 -> -1.000000000 -ddsub908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000 - --- subnormals and overflows covered under Add - --- Null tests -ddsub9990 subtract 10 # -> NaN Invalid_operation -ddsub9991 subtract # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ddToIntegral.decTest b/qdecimal/test/tc_full/ddToIntegral.decTest deleted file mode 100644 index 4c4bd91..0000000 --- a/qdecimal/test/tc_full/ddToIntegral.decTest +++ /dev/null @@ -1,257 +0,0 @@ ------------------------------------------------------------------------- --- ddToIntegral.decTest -- round Double to integral value -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests tests the extended specification 'round-to-integral --- value-exact' operations (from IEEE 854, later modified in 754r). --- All non-zero results are defined as being those from either copy or --- quantize, so those are assumed to have been tested extensively --- elsewhere; the tests here are for integrity, rounding mode, etc. --- Also, it is assumed the test harness will use these tests for both --- ToIntegralExact (which does set Inexact) and the fixed-name --- functions (which do not set Inexact). - --- Note that decNumber implements an earlier definition of toIntegral --- which never sets Inexact; the decTest operator for that is called --- 'tointegral' instead of 'tointegralx'. - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - -ddintx001 tointegralx 0 -> 0 -ddintx002 tointegralx 0.0 -> 0 -ddintx003 tointegralx 0.1 -> 0 Inexact Rounded -ddintx004 tointegralx 0.2 -> 0 Inexact Rounded -ddintx005 tointegralx 0.3 -> 0 Inexact Rounded -ddintx006 tointegralx 0.4 -> 0 Inexact Rounded -ddintx007 tointegralx 0.5 -> 0 Inexact Rounded -ddintx008 tointegralx 0.6 -> 1 Inexact Rounded -ddintx009 tointegralx 0.7 -> 1 Inexact Rounded -ddintx010 tointegralx 0.8 -> 1 Inexact Rounded -ddintx011 tointegralx 0.9 -> 1 Inexact Rounded -ddintx012 tointegralx 1 -> 1 -ddintx013 tointegralx 1.0 -> 1 Rounded -ddintx014 tointegralx 1.1 -> 1 Inexact Rounded -ddintx015 tointegralx 1.2 -> 1 Inexact Rounded -ddintx016 tointegralx 1.3 -> 1 Inexact Rounded -ddintx017 tointegralx 1.4 -> 1 Inexact Rounded -ddintx018 tointegralx 1.5 -> 2 Inexact Rounded -ddintx019 tointegralx 1.6 -> 2 Inexact Rounded -ddintx020 tointegralx 1.7 -> 2 Inexact Rounded -ddintx021 tointegralx 1.8 -> 2 Inexact Rounded -ddintx022 tointegralx 1.9 -> 2 Inexact Rounded --- negatives -ddintx031 tointegralx -0 -> -0 -ddintx032 tointegralx -0.0 -> -0 -ddintx033 tointegralx -0.1 -> -0 Inexact Rounded -ddintx034 tointegralx -0.2 -> -0 Inexact Rounded -ddintx035 tointegralx -0.3 -> -0 Inexact Rounded -ddintx036 tointegralx -0.4 -> -0 Inexact Rounded -ddintx037 tointegralx -0.5 -> -0 Inexact Rounded -ddintx038 tointegralx -0.6 -> -1 Inexact Rounded -ddintx039 tointegralx -0.7 -> -1 Inexact Rounded -ddintx040 tointegralx -0.8 -> -1 Inexact Rounded -ddintx041 tointegralx -0.9 -> -1 Inexact Rounded -ddintx042 tointegralx -1 -> -1 -ddintx043 tointegralx -1.0 -> -1 Rounded -ddintx044 tointegralx -1.1 -> -1 Inexact Rounded -ddintx045 tointegralx -1.2 -> -1 Inexact Rounded -ddintx046 tointegralx -1.3 -> -1 Inexact Rounded -ddintx047 tointegralx -1.4 -> -1 Inexact Rounded -ddintx048 tointegralx -1.5 -> -2 Inexact Rounded -ddintx049 tointegralx -1.6 -> -2 Inexact Rounded -ddintx050 tointegralx -1.7 -> -2 Inexact Rounded -ddintx051 tointegralx -1.8 -> -2 Inexact Rounded -ddintx052 tointegralx -1.9 -> -2 Inexact Rounded --- next two would be NaN using quantize(x, 0) -ddintx053 tointegralx 10E+60 -> 1.0E+61 -ddintx054 tointegralx -10E+60 -> -1.0E+61 - --- numbers around precision -ddintx060 tointegralx '56267E-17' -> '0' Inexact Rounded -ddintx061 tointegralx '56267E-5' -> '1' Inexact Rounded -ddintx062 tointegralx '56267E-2' -> '563' Inexact Rounded -ddintx063 tointegralx '56267E-1' -> '5627' Inexact Rounded -ddintx065 tointegralx '56267E-0' -> '56267' -ddintx066 tointegralx '56267E+0' -> '56267' -ddintx067 tointegralx '56267E+1' -> '5.6267E+5' -ddintx068 tointegralx '56267E+9' -> '5.6267E+13' -ddintx069 tointegralx '56267E+10' -> '5.6267E+14' -ddintx070 tointegralx '56267E+11' -> '5.6267E+15' -ddintx071 tointegralx '56267E+12' -> '5.6267E+16' -ddintx072 tointegralx '56267E+13' -> '5.6267E+17' -ddintx073 tointegralx '1.23E+96' -> '1.23E+96' -ddintx074 tointegralx '1.23E+384' -> #47fd300000000000 Clamped - -ddintx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded -ddintx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded -ddintx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded -ddintx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded -ddintx085 tointegralx '-56267E-0' -> '-56267' -ddintx086 tointegralx '-56267E+0' -> '-56267' -ddintx087 tointegralx '-56267E+1' -> '-5.6267E+5' -ddintx088 tointegralx '-56267E+9' -> '-5.6267E+13' -ddintx089 tointegralx '-56267E+10' -> '-5.6267E+14' -ddintx090 tointegralx '-56267E+11' -> '-5.6267E+15' -ddintx091 tointegralx '-56267E+12' -> '-5.6267E+16' -ddintx092 tointegralx '-56267E+13' -> '-5.6267E+17' -ddintx093 tointegralx '-1.23E+96' -> '-1.23E+96' -ddintx094 tointegralx '-1.23E+384' -> #c7fd300000000000 Clamped - --- subnormal inputs -ddintx100 tointegralx 1E-299 -> 0 Inexact Rounded -ddintx101 tointegralx 0.1E-299 -> 0 Inexact Rounded -ddintx102 tointegralx 0.01E-299 -> 0 Inexact Rounded -ddintx103 tointegralx 0E-299 -> 0 - --- specials and zeros -ddintx120 tointegralx 'Inf' -> Infinity -ddintx121 tointegralx '-Inf' -> -Infinity -ddintx122 tointegralx NaN -> NaN -ddintx123 tointegralx sNaN -> NaN Invalid_operation -ddintx124 tointegralx 0 -> 0 -ddintx125 tointegralx -0 -> -0 -ddintx126 tointegralx 0.000 -> 0 -ddintx127 tointegralx 0.00 -> 0 -ddintx128 tointegralx 0.0 -> 0 -ddintx129 tointegralx 0 -> 0 -ddintx130 tointegralx 0E-3 -> 0 -ddintx131 tointegralx 0E-2 -> 0 -ddintx132 tointegralx 0E-1 -> 0 -ddintx133 tointegralx 0E-0 -> 0 -ddintx134 tointegralx 0E+1 -> 0E+1 -ddintx135 tointegralx 0E+2 -> 0E+2 -ddintx136 tointegralx 0E+3 -> 0E+3 -ddintx137 tointegralx 0E+4 -> 0E+4 -ddintx138 tointegralx 0E+5 -> 0E+5 -ddintx139 tointegralx -0.000 -> -0 -ddintx140 tointegralx -0.00 -> -0 -ddintx141 tointegralx -0.0 -> -0 -ddintx142 tointegralx -0 -> -0 -ddintx143 tointegralx -0E-3 -> -0 -ddintx144 tointegralx -0E-2 -> -0 -ddintx145 tointegralx -0E-1 -> -0 -ddintx146 tointegralx -0E-0 -> -0 -ddintx147 tointegralx -0E+1 -> -0E+1 -ddintx148 tointegralx -0E+2 -> -0E+2 -ddintx149 tointegralx -0E+3 -> -0E+3 -ddintx150 tointegralx -0E+4 -> -0E+4 -ddintx151 tointegralx -0E+5 -> -0E+5 --- propagating NaNs -ddintx152 tointegralx NaN808 -> NaN808 -ddintx153 tointegralx sNaN080 -> NaN80 Invalid_operation -ddintx154 tointegralx -NaN808 -> -NaN808 -ddintx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation -ddintx156 tointegralx -NaN -> -NaN -ddintx157 tointegralx -sNaN -> -NaN Invalid_operation - --- examples -rounding: half_up -ddintx200 tointegralx 2.1 -> 2 Inexact Rounded -ddintx201 tointegralx 100 -> 100 -ddintx202 tointegralx 100.0 -> 100 Rounded -ddintx203 tointegralx 101.5 -> 102 Inexact Rounded -ddintx204 tointegralx -101.5 -> -102 Inexact Rounded -ddintx205 tointegralx 10E+5 -> 1.0E+6 -ddintx206 tointegralx 7.89E+77 -> 7.89E+77 -ddintx207 tointegralx -Inf -> -Infinity - - --- all rounding modes -rounding: half_even -ddintx210 tointegralx 55.5 -> 56 Inexact Rounded -ddintx211 tointegralx 56.5 -> 56 Inexact Rounded -ddintx212 tointegralx 57.5 -> 58 Inexact Rounded -ddintx213 tointegralx -55.5 -> -56 Inexact Rounded -ddintx214 tointegralx -56.5 -> -56 Inexact Rounded -ddintx215 tointegralx -57.5 -> -58 Inexact Rounded - -rounding: half_up - -ddintx220 tointegralx 55.5 -> 56 Inexact Rounded -ddintx221 tointegralx 56.5 -> 57 Inexact Rounded -ddintx222 tointegralx 57.5 -> 58 Inexact Rounded -ddintx223 tointegralx -55.5 -> -56 Inexact Rounded -ddintx224 tointegralx -56.5 -> -57 Inexact Rounded -ddintx225 tointegralx -57.5 -> -58 Inexact Rounded - -rounding: half_down - -ddintx230 tointegralx 55.5 -> 55 Inexact Rounded -ddintx231 tointegralx 56.5 -> 56 Inexact Rounded -ddintx232 tointegralx 57.5 -> 57 Inexact Rounded -ddintx233 tointegralx -55.5 -> -55 Inexact Rounded -ddintx234 tointegralx -56.5 -> -56 Inexact Rounded -ddintx235 tointegralx -57.5 -> -57 Inexact Rounded - -rounding: up - -ddintx240 tointegralx 55.3 -> 56 Inexact Rounded -ddintx241 tointegralx 56.3 -> 57 Inexact Rounded -ddintx242 tointegralx 57.3 -> 58 Inexact Rounded -ddintx243 tointegralx -55.3 -> -56 Inexact Rounded -ddintx244 tointegralx -56.3 -> -57 Inexact Rounded -ddintx245 tointegralx -57.3 -> -58 Inexact Rounded - -rounding: down - -ddintx250 tointegralx 55.7 -> 55 Inexact Rounded -ddintx251 tointegralx 56.7 -> 56 Inexact Rounded -ddintx252 tointegralx 57.7 -> 57 Inexact Rounded -ddintx253 tointegralx -55.7 -> -55 Inexact Rounded -ddintx254 tointegralx -56.7 -> -56 Inexact Rounded -ddintx255 tointegralx -57.7 -> -57 Inexact Rounded - -rounding: ceiling - -ddintx260 tointegralx 55.3 -> 56 Inexact Rounded -ddintx261 tointegralx 56.3 -> 57 Inexact Rounded -ddintx262 tointegralx 57.3 -> 58 Inexact Rounded -ddintx263 tointegralx -55.3 -> -55 Inexact Rounded -ddintx264 tointegralx -56.3 -> -56 Inexact Rounded -ddintx265 tointegralx -57.3 -> -57 Inexact Rounded - -rounding: floor - -ddintx270 tointegralx 55.7 -> 55 Inexact Rounded -ddintx271 tointegralx 56.7 -> 56 Inexact Rounded -ddintx272 tointegralx 57.7 -> 57 Inexact Rounded -ddintx273 tointegralx -55.7 -> -56 Inexact Rounded -ddintx274 tointegralx -56.7 -> -57 Inexact Rounded -ddintx275 tointegralx -57.7 -> -58 Inexact Rounded - --- Int and uInt32 edge values for testing conversions -ddintx300 tointegralx -2147483646 -> -2147483646 -ddintx301 tointegralx -2147483647 -> -2147483647 -ddintx302 tointegralx -2147483648 -> -2147483648 -ddintx303 tointegralx -2147483649 -> -2147483649 -ddintx304 tointegralx 2147483646 -> 2147483646 -ddintx305 tointegralx 2147483647 -> 2147483647 -ddintx306 tointegralx 2147483648 -> 2147483648 -ddintx307 tointegralx 2147483649 -> 2147483649 -ddintx308 tointegralx 4294967294 -> 4294967294 -ddintx309 tointegralx 4294967295 -> 4294967295 -ddintx310 tointegralx 4294967296 -> 4294967296 -ddintx311 tointegralx 4294967297 -> 4294967297 - diff --git a/qdecimal/test/tc_full/ddXor.decTest b/qdecimal/test/tc_full/ddXor.decTest deleted file mode 100644 index bc7ace3..0000000 --- a/qdecimal/test/tc_full/ddXor.decTest +++ /dev/null @@ -1,337 +0,0 @@ ------------------------------------------------------------------------- --- ddXor.decTest -- digitwise logical XOR for decDoubles -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -precision: 16 -maxExponent: 384 -minExponent: -383 -extended: 1 -clamp: 1 -rounding: half_even - --- Sanity check (truth table) -ddxor001 xor 0 0 -> 0 -ddxor002 xor 0 1 -> 1 -ddxor003 xor 1 0 -> 1 -ddxor004 xor 1 1 -> 0 -ddxor005 xor 1100 1010 -> 110 --- and at msd and msd-1 -ddxor006 xor 0000000000000000 0000000000000000 -> 0 -ddxor007 xor 0000000000000000 1000000000000000 -> 1000000000000000 -ddxor008 xor 1000000000000000 0000000000000000 -> 1000000000000000 -ddxor009 xor 1000000000000000 1000000000000000 -> 0 -ddxor010 xor 0000000000000000 0000000000000000 -> 0 -ddxor011 xor 0000000000000000 0100000000000000 -> 100000000000000 -ddxor012 xor 0100000000000000 0000000000000000 -> 100000000000000 -ddxor013 xor 0100000000000000 0100000000000000 -> 0 - --- Various lengths --- 1234567890123456 1234567890123456 1234567890123456 -ddxor021 xor 1111111110000000 1111111110000000 -> 0 -ddxor022 xor 111111110000000 111111110000000 -> 0 -ddxor023 xor 11111110000000 11111110000000 -> 0 -ddxor024 xor 1111110000000 1111110000000 -> 0 -ddxor025 xor 111110000000 111110000000 -> 0 -ddxor026 xor 11110000000 11110000000 -> 0 -ddxor027 xor 1110000000 1110000000 -> 0 -ddxor028 xor 110000000 110000000 -> 0 -ddxor029 xor 10000000 10000000 -> 0 -ddxor030 xor 1000000 1000000 -> 0 -ddxor031 xor 100000 100000 -> 0 -ddxor032 xor 10000 10000 -> 0 -ddxor033 xor 1000 1000 -> 0 -ddxor034 xor 100 100 -> 0 -ddxor035 xor 10 10 -> 0 -ddxor036 xor 1 1 -> 0 - -ddxor040 xor 111111111 111111111111 -> 111000000000 -ddxor041 xor 11111111 111111111111 -> 111100000000 -ddxor042 xor 11111111 111111111 -> 100000000 -ddxor043 xor 1111111 100000010 -> 101111101 -ddxor044 xor 111111 100000100 -> 100111011 -ddxor045 xor 11111 100001000 -> 100010111 -ddxor046 xor 1111 100010000 -> 100011111 -ddxor047 xor 111 100100000 -> 100100111 -ddxor048 xor 11 101000000 -> 101000011 -ddxor049 xor 1 110000000 -> 110000001 - -ddxor050 xor 1111111111 1 -> 1111111110 -ddxor051 xor 111111111 1 -> 111111110 -ddxor052 xor 11111111 1 -> 11111110 -ddxor053 xor 1111111 1 -> 1111110 -ddxor054 xor 111111 1 -> 111110 -ddxor055 xor 11111 1 -> 11110 -ddxor056 xor 1111 1 -> 1110 -ddxor057 xor 111 1 -> 110 -ddxor058 xor 11 1 -> 10 -ddxor059 xor 1 1 -> 0 - -ddxor060 xor 1111111111 0 -> 1111111111 -ddxor061 xor 111111111 0 -> 111111111 -ddxor062 xor 11111111 0 -> 11111111 -ddxor063 xor 1111111 0 -> 1111111 -ddxor064 xor 111111 0 -> 111111 -ddxor065 xor 11111 0 -> 11111 -ddxor066 xor 1111 0 -> 1111 -ddxor067 xor 111 0 -> 111 -ddxor068 xor 11 0 -> 11 -ddxor069 xor 1 0 -> 1 - -ddxor070 xor 1 1111111111 -> 1111111110 -ddxor071 xor 1 111111111 -> 111111110 -ddxor072 xor 1 11111111 -> 11111110 -ddxor073 xor 1 1111111 -> 1111110 -ddxor074 xor 1 111111 -> 111110 -ddxor075 xor 1 11111 -> 11110 -ddxor076 xor 1 1111 -> 1110 -ddxor077 xor 1 111 -> 110 -ddxor078 xor 1 11 -> 10 -ddxor079 xor 1 1 -> 0 - -ddxor080 xor 0 1111111111 -> 1111111111 -ddxor081 xor 0 111111111 -> 111111111 -ddxor082 xor 0 11111111 -> 11111111 -ddxor083 xor 0 1111111 -> 1111111 -ddxor084 xor 0 111111 -> 111111 -ddxor085 xor 0 11111 -> 11111 -ddxor086 xor 0 1111 -> 1111 -ddxor087 xor 0 111 -> 111 -ddxor088 xor 0 11 -> 11 -ddxor089 xor 0 1 -> 1 - -ddxor090 xor 011111111 111101111 -> 100010000 -ddxor091 xor 101111111 111101111 -> 10010000 -ddxor092 xor 110111111 111101111 -> 1010000 -ddxor093 xor 111011111 111101111 -> 110000 -ddxor094 xor 111101111 111101111 -> 0 -ddxor095 xor 111110111 111101111 -> 11000 -ddxor096 xor 111111011 111101111 -> 10100 -ddxor097 xor 111111101 111101111 -> 10010 -ddxor098 xor 111111110 111101111 -> 10001 - -ddxor100 xor 111101111 011111111 -> 100010000 -ddxor101 xor 111101111 101111111 -> 10010000 -ddxor102 xor 111101111 110111111 -> 1010000 -ddxor103 xor 111101111 111011111 -> 110000 -ddxor104 xor 111101111 111101111 -> 0 -ddxor105 xor 111101111 111110111 -> 11000 -ddxor106 xor 111101111 111111011 -> 10100 -ddxor107 xor 111101111 111111101 -> 10010 -ddxor108 xor 111101111 111111110 -> 10001 - --- non-0/1 should not be accepted, nor should signs -ddxor220 xor 111111112 111111111 -> NaN Invalid_operation -ddxor221 xor 333333333 333333333 -> NaN Invalid_operation -ddxor222 xor 555555555 555555555 -> NaN Invalid_operation -ddxor223 xor 777777777 777777777 -> NaN Invalid_operation -ddxor224 xor 999999999 999999999 -> NaN Invalid_operation -ddxor225 xor 222222222 999999999 -> NaN Invalid_operation -ddxor226 xor 444444444 999999999 -> NaN Invalid_operation -ddxor227 xor 666666666 999999999 -> NaN Invalid_operation -ddxor228 xor 888888888 999999999 -> NaN Invalid_operation -ddxor229 xor 999999999 222222222 -> NaN Invalid_operation -ddxor230 xor 999999999 444444444 -> NaN Invalid_operation -ddxor231 xor 999999999 666666666 -> NaN Invalid_operation -ddxor232 xor 999999999 888888888 -> NaN Invalid_operation --- a few randoms -ddxor240 xor 567468689 -934981942 -> NaN Invalid_operation -ddxor241 xor 567367689 934981942 -> NaN Invalid_operation -ddxor242 xor -631917772 -706014634 -> NaN Invalid_operation -ddxor243 xor -756253257 138579234 -> NaN Invalid_operation -ddxor244 xor 835590149 567435400 -> NaN Invalid_operation --- test MSD -ddxor250 xor 2000000000000000 1000000000000000 -> NaN Invalid_operation -ddxor251 xor 7000000000000000 1000000000000000 -> NaN Invalid_operation -ddxor252 xor 8000000000000000 1000000000000000 -> NaN Invalid_operation -ddxor253 xor 9000000000000000 1000000000000000 -> NaN Invalid_operation -ddxor254 xor 2000000000000000 0000000000000000 -> NaN Invalid_operation -ddxor255 xor 7000000000000000 0000000000000000 -> NaN Invalid_operation -ddxor256 xor 8000000000000000 0000000000000000 -> NaN Invalid_operation -ddxor257 xor 9000000000000000 0000000000000000 -> NaN Invalid_operation -ddxor258 xor 1000000000000000 2000000000000000 -> NaN Invalid_operation -ddxor259 xor 1000000000000000 7000000000000000 -> NaN Invalid_operation -ddxor260 xor 1000000000000000 8000000000000000 -> NaN Invalid_operation -ddxor261 xor 1000000000000000 9000000000000000 -> NaN Invalid_operation -ddxor262 xor 0000000000000000 2000000000000000 -> NaN Invalid_operation -ddxor263 xor 0000000000000000 7000000000000000 -> NaN Invalid_operation -ddxor264 xor 0000000000000000 8000000000000000 -> NaN Invalid_operation -ddxor265 xor 0000000000000000 9000000000000000 -> NaN Invalid_operation --- test MSD-1 -ddxor270 xor 0200001000000000 1000100000000010 -> NaN Invalid_operation -ddxor271 xor 0700000100000000 1000010000000100 -> NaN Invalid_operation -ddxor272 xor 0800000010000000 1000001000001000 -> NaN Invalid_operation -ddxor273 xor 0900000001000000 1000000100010000 -> NaN Invalid_operation -ddxor274 xor 1000000000100000 0200000010100000 -> NaN Invalid_operation -ddxor275 xor 1000000000010000 0700000001000000 -> NaN Invalid_operation -ddxor276 xor 1000000000001000 0800000010100000 -> NaN Invalid_operation -ddxor277 xor 1000000000000100 0900000000010000 -> NaN Invalid_operation --- test LSD -ddxor280 xor 0010000000000002 1000000100000001 -> NaN Invalid_operation -ddxor281 xor 0001000000000007 1000001000000011 -> NaN Invalid_operation -ddxor282 xor 0000100000000008 1000010000000001 -> NaN Invalid_operation -ddxor283 xor 0000010000000009 1000100000000001 -> NaN Invalid_operation -ddxor284 xor 1000001000000000 0001000000000002 -> NaN Invalid_operation -ddxor285 xor 1000000100000000 0010000000000007 -> NaN Invalid_operation -ddxor286 xor 1000000010000000 0100000000000008 -> NaN Invalid_operation -ddxor287 xor 1000000001000000 1000000000000009 -> NaN Invalid_operation --- test Middie -ddxor288 xor 0010000020000000 1000001000000000 -> NaN Invalid_operation -ddxor289 xor 0001000070000001 1000000100000000 -> NaN Invalid_operation -ddxor290 xor 0000100080000010 1000000010000000 -> NaN Invalid_operation -ddxor291 xor 0000010090000100 1000000001000000 -> NaN Invalid_operation -ddxor292 xor 1000001000001000 0000000020100000 -> NaN Invalid_operation -ddxor293 xor 1000000100010000 0000000070010000 -> NaN Invalid_operation -ddxor294 xor 1000000010100000 0000000080001000 -> NaN Invalid_operation -ddxor295 xor 1000000001000000 0000000090000100 -> NaN Invalid_operation --- signs -ddxor296 xor -1000000001000000 -0000010000000100 -> NaN Invalid_operation -ddxor297 xor -1000000001000000 0000000010000100 -> NaN Invalid_operation -ddxor298 xor 1000000001000000 -0000001000000100 -> NaN Invalid_operation -ddxor299 xor 1000000001000000 0000000011000100 -> 1000000010000100 - --- Nmax, Nmin, Ntiny-like -ddxor331 xor 2 9.99999999E+299 -> NaN Invalid_operation -ddxor332 xor 3 1E-299 -> NaN Invalid_operation -ddxor333 xor 4 1.00000000E-299 -> NaN Invalid_operation -ddxor334 xor 5 1E-200 -> NaN Invalid_operation -ddxor335 xor 6 -1E-200 -> NaN Invalid_operation -ddxor336 xor 7 -1.00000000E-299 -> NaN Invalid_operation -ddxor337 xor 8 -1E-299 -> NaN Invalid_operation -ddxor338 xor 9 -9.99999999E+299 -> NaN Invalid_operation -ddxor341 xor 9.99999999E+299 -18 -> NaN Invalid_operation -ddxor342 xor 1E-299 01 -> NaN Invalid_operation -ddxor343 xor 1.00000000E-299 -18 -> NaN Invalid_operation -ddxor344 xor 1E-208 18 -> NaN Invalid_operation -ddxor345 xor -1E-207 -10 -> NaN Invalid_operation -ddxor346 xor -1.00000000E-299 18 -> NaN Invalid_operation -ddxor347 xor -1E-299 10 -> NaN Invalid_operation -ddxor348 xor -9.99999999E+299 -18 -> NaN Invalid_operation - --- A few other non-integers -ddxor361 xor 1.0 1 -> NaN Invalid_operation -ddxor362 xor 1E+1 1 -> NaN Invalid_operation -ddxor363 xor 0.0 1 -> NaN Invalid_operation -ddxor364 xor 0E+1 1 -> NaN Invalid_operation -ddxor365 xor 9.9 1 -> NaN Invalid_operation -ddxor366 xor 9E+1 1 -> NaN Invalid_operation -ddxor371 xor 0 1.0 -> NaN Invalid_operation -ddxor372 xor 0 1E+1 -> NaN Invalid_operation -ddxor373 xor 0 0.0 -> NaN Invalid_operation -ddxor374 xor 0 0E+1 -> NaN Invalid_operation -ddxor375 xor 0 9.9 -> NaN Invalid_operation -ddxor376 xor 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -ddxor780 xor -Inf -Inf -> NaN Invalid_operation -ddxor781 xor -Inf -1000 -> NaN Invalid_operation -ddxor782 xor -Inf -1 -> NaN Invalid_operation -ddxor783 xor -Inf -0 -> NaN Invalid_operation -ddxor784 xor -Inf 0 -> NaN Invalid_operation -ddxor785 xor -Inf 1 -> NaN Invalid_operation -ddxor786 xor -Inf 1000 -> NaN Invalid_operation -ddxor787 xor -1000 -Inf -> NaN Invalid_operation -ddxor788 xor -Inf -Inf -> NaN Invalid_operation -ddxor789 xor -1 -Inf -> NaN Invalid_operation -ddxor790 xor -0 -Inf -> NaN Invalid_operation -ddxor791 xor 0 -Inf -> NaN Invalid_operation -ddxor792 xor 1 -Inf -> NaN Invalid_operation -ddxor793 xor 1000 -Inf -> NaN Invalid_operation -ddxor794 xor Inf -Inf -> NaN Invalid_operation - -ddxor800 xor Inf -Inf -> NaN Invalid_operation -ddxor801 xor Inf -1000 -> NaN Invalid_operation -ddxor802 xor Inf -1 -> NaN Invalid_operation -ddxor803 xor Inf -0 -> NaN Invalid_operation -ddxor804 xor Inf 0 -> NaN Invalid_operation -ddxor805 xor Inf 1 -> NaN Invalid_operation -ddxor806 xor Inf 1000 -> NaN Invalid_operation -ddxor807 xor Inf Inf -> NaN Invalid_operation -ddxor808 xor -1000 Inf -> NaN Invalid_operation -ddxor809 xor -Inf Inf -> NaN Invalid_operation -ddxor810 xor -1 Inf -> NaN Invalid_operation -ddxor811 xor -0 Inf -> NaN Invalid_operation -ddxor812 xor 0 Inf -> NaN Invalid_operation -ddxor813 xor 1 Inf -> NaN Invalid_operation -ddxor814 xor 1000 Inf -> NaN Invalid_operation -ddxor815 xor Inf Inf -> NaN Invalid_operation - -ddxor821 xor NaN -Inf -> NaN Invalid_operation -ddxor822 xor NaN -1000 -> NaN Invalid_operation -ddxor823 xor NaN -1 -> NaN Invalid_operation -ddxor824 xor NaN -0 -> NaN Invalid_operation -ddxor825 xor NaN 0 -> NaN Invalid_operation -ddxor826 xor NaN 1 -> NaN Invalid_operation -ddxor827 xor NaN 1000 -> NaN Invalid_operation -ddxor828 xor NaN Inf -> NaN Invalid_operation -ddxor829 xor NaN NaN -> NaN Invalid_operation -ddxor830 xor -Inf NaN -> NaN Invalid_operation -ddxor831 xor -1000 NaN -> NaN Invalid_operation -ddxor832 xor -1 NaN -> NaN Invalid_operation -ddxor833 xor -0 NaN -> NaN Invalid_operation -ddxor834 xor 0 NaN -> NaN Invalid_operation -ddxor835 xor 1 NaN -> NaN Invalid_operation -ddxor836 xor 1000 NaN -> NaN Invalid_operation -ddxor837 xor Inf NaN -> NaN Invalid_operation - -ddxor841 xor sNaN -Inf -> NaN Invalid_operation -ddxor842 xor sNaN -1000 -> NaN Invalid_operation -ddxor843 xor sNaN -1 -> NaN Invalid_operation -ddxor844 xor sNaN -0 -> NaN Invalid_operation -ddxor845 xor sNaN 0 -> NaN Invalid_operation -ddxor846 xor sNaN 1 -> NaN Invalid_operation -ddxor847 xor sNaN 1000 -> NaN Invalid_operation -ddxor848 xor sNaN NaN -> NaN Invalid_operation -ddxor849 xor sNaN sNaN -> NaN Invalid_operation -ddxor850 xor NaN sNaN -> NaN Invalid_operation -ddxor851 xor -Inf sNaN -> NaN Invalid_operation -ddxor852 xor -1000 sNaN -> NaN Invalid_operation -ddxor853 xor -1 sNaN -> NaN Invalid_operation -ddxor854 xor -0 sNaN -> NaN Invalid_operation -ddxor855 xor 0 sNaN -> NaN Invalid_operation -ddxor856 xor 1 sNaN -> NaN Invalid_operation -ddxor857 xor 1000 sNaN -> NaN Invalid_operation -ddxor858 xor Inf sNaN -> NaN Invalid_operation -ddxor859 xor NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -ddxor861 xor NaN1 -Inf -> NaN Invalid_operation -ddxor862 xor +NaN2 -1000 -> NaN Invalid_operation -ddxor863 xor NaN3 1000 -> NaN Invalid_operation -ddxor864 xor NaN4 Inf -> NaN Invalid_operation -ddxor865 xor NaN5 +NaN6 -> NaN Invalid_operation -ddxor866 xor -Inf NaN7 -> NaN Invalid_operation -ddxor867 xor -1000 NaN8 -> NaN Invalid_operation -ddxor868 xor 1000 NaN9 -> NaN Invalid_operation -ddxor869 xor Inf +NaN10 -> NaN Invalid_operation -ddxor871 xor sNaN11 -Inf -> NaN Invalid_operation -ddxor872 xor sNaN12 -1000 -> NaN Invalid_operation -ddxor873 xor sNaN13 1000 -> NaN Invalid_operation -ddxor874 xor sNaN14 NaN17 -> NaN Invalid_operation -ddxor875 xor sNaN15 sNaN18 -> NaN Invalid_operation -ddxor876 xor NaN16 sNaN19 -> NaN Invalid_operation -ddxor877 xor -Inf +sNaN20 -> NaN Invalid_operation -ddxor878 xor -1000 sNaN21 -> NaN Invalid_operation -ddxor879 xor 1000 sNaN22 -> NaN Invalid_operation -ddxor880 xor Inf sNaN23 -> NaN Invalid_operation -ddxor881 xor +NaN25 +sNaN24 -> NaN Invalid_operation -ddxor882 xor -NaN26 NaN28 -> NaN Invalid_operation -ddxor883 xor -sNaN27 sNaN29 -> NaN Invalid_operation -ddxor884 xor 1000 -NaN30 -> NaN Invalid_operation -ddxor885 xor 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/decDouble.decTest b/qdecimal/test/tc_full/decDouble.decTest deleted file mode 100644 index ed6fad4..0000000 --- a/qdecimal/test/tc_full/decDouble.decTest +++ /dev/null @@ -1,65 +0,0 @@ ------------------------------------------------------------------------- --- decDouble.decTest -- run all decDouble decimal arithmetic tests -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- decDouble tests -dectest: ddAbs -dectest: ddAdd -dectest: ddAnd -dectest: ddBase -dectest: ddCanonical -dectest: ddClass -dectest: ddCompare -dectest: ddCompareSig -dectest: ddCompareTotal -dectest: ddCompareTotalMag -dectest: ddCopy -dectest: ddCopyAbs -dectest: ddCopyNegate -dectest: ddCopySign -dectest: ddDivide -dectest: ddDivideInt -dectest: ddEncode -dectest: ddFMA -dectest: ddInvert -dectest: ddLogB -dectest: ddMax -dectest: ddMaxMag -dectest: ddMin -dectest: ddMinMag -dectest: ddMinus -dectest: ddMultiply -dectest: ddNextMinus -dectest: ddNextPlus -dectest: ddNextToward -dectest: ddOr -dectest: ddPlus -dectest: ddQuantize -dectest: ddReduce -dectest: ddRemainder -dectest: ddRemainderNear -dectest: ddRotate -dectest: ddSameQuantum -dectest: ddScaleB -dectest: ddShift -dectest: ddSubtract -dectest: ddToIntegral -dectest: ddXor - diff --git a/qdecimal/test/tc_full/decQuad.decTest b/qdecimal/test/tc_full/decQuad.decTest deleted file mode 100644 index c7ba3ae..0000000 --- a/qdecimal/test/tc_full/decQuad.decTest +++ /dev/null @@ -1,65 +0,0 @@ ------------------------------------------------------------------------- --- decQuad.decTest -- run all decQuad decimal arithmetic tests -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- decQuad tests -dectest: dqAbs -dectest: dqAdd -dectest: dqAnd -dectest: dqBase -dectest: dqCanonical -dectest: dqClass -dectest: dqCompare -dectest: dqCompareSig -dectest: dqCompareTotal -dectest: dqCompareTotalMag -dectest: dqCopy -dectest: dqCopyAbs -dectest: dqCopyNegate -dectest: dqCopySign -dectest: dqDivide -dectest: dqDivideInt -dectest: dqEncode -dectest: dqFMA -dectest: dqInvert -dectest: dqLogB -dectest: dqMax -dectest: dqMaxMag -dectest: dqMin -dectest: dqMinMag -dectest: dqMinus -dectest: dqMultiply -dectest: dqNextMinus -dectest: dqNextPlus -dectest: dqNextToward -dectest: dqOr -dectest: dqPlus -dectest: dqQuantize -dectest: dqReduce -dectest: dqRemainder -dectest: dqRemainderNear -dectest: dqRotate -dectest: dqSameQuantum -dectest: dqScaleB -dectest: dqShift -dectest: dqSubtract -dectest: dqToIntegral -dectest: dqXor - diff --git a/qdecimal/test/tc_full/decSingle.decTest b/qdecimal/test/tc_full/decSingle.decTest deleted file mode 100644 index 38a1f9b..0000000 --- a/qdecimal/test/tc_full/decSingle.decTest +++ /dev/null @@ -1,25 +0,0 @@ ------------------------------------------------------------------------- --- decSingle.decTest -- run all decSingle decimal arithmetic tests -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- decSingle tests -dectest: dsBase -dectest: dsEncode - diff --git a/qdecimal/test/tc_full/divide.decTest b/qdecimal/test/tc_full/divide.decTest deleted file mode 100644 index 0fc6725..0000000 --- a/qdecimal/test/tc_full/divide.decTest +++ /dev/null @@ -1,854 +0,0 @@ ------------------------------------------------------------------------- --- divide.decTest -- decimal division -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- sanity checks -divx001 divide 1 1 -> 1 -divx002 divide 2 1 -> 2 -divx003 divide 1 2 -> 0.5 -divx004 divide 2 2 -> 1 -divx005 divide 0 1 -> 0 -divx006 divide 0 2 -> 0 -divx007 divide 1 3 -> 0.333333333 Inexact Rounded -divx008 divide 2 3 -> 0.666666667 Inexact Rounded -divx009 divide 3 3 -> 1 - -divx010 divide 2.4 1 -> 2.4 -divx011 divide 2.4 -1 -> -2.4 -divx012 divide -2.4 1 -> -2.4 -divx013 divide -2.4 -1 -> 2.4 -divx014 divide 2.40 1 -> 2.40 -divx015 divide 2.400 1 -> 2.400 -divx016 divide 2.4 2 -> 1.2 -divx017 divide 2.400 2 -> 1.200 -divx018 divide 2. 2 -> 1 -divx019 divide 20 20 -> 1 - -divx020 divide 187 187 -> 1 -divx021 divide 5 2 -> 2.5 -divx022 divide 50 20 -> 2.5 -divx023 divide 500 200 -> 2.5 -divx024 divide 50.0 20.0 -> 2.5 -divx025 divide 5.00 2.00 -> 2.5 -divx026 divide 5 2.0 -> 2.5 -divx027 divide 5 2.000 -> 2.5 -divx028 divide 5 0.20 -> 25 -divx029 divide 5 0.200 -> 25 -divx030 divide 10 1 -> 10 -divx031 divide 100 1 -> 100 -divx032 divide 1000 1 -> 1000 -divx033 divide 1000 100 -> 10 - -divx035 divide 1 2 -> 0.5 -divx036 divide 1 4 -> 0.25 -divx037 divide 1 8 -> 0.125 -divx038 divide 1 16 -> 0.0625 -divx039 divide 1 32 -> 0.03125 -divx040 divide 1 64 -> 0.015625 -divx041 divide 1 -2 -> -0.5 -divx042 divide 1 -4 -> -0.25 -divx043 divide 1 -8 -> -0.125 -divx044 divide 1 -16 -> -0.0625 -divx045 divide 1 -32 -> -0.03125 -divx046 divide 1 -64 -> -0.015625 -divx047 divide -1 2 -> -0.5 -divx048 divide -1 4 -> -0.25 -divx049 divide -1 8 -> -0.125 -divx050 divide -1 16 -> -0.0625 -divx051 divide -1 32 -> -0.03125 -divx052 divide -1 64 -> -0.015625 -divx053 divide -1 -2 -> 0.5 -divx054 divide -1 -4 -> 0.25 -divx055 divide -1 -8 -> 0.125 -divx056 divide -1 -16 -> 0.0625 -divx057 divide -1 -32 -> 0.03125 -divx058 divide -1 -64 -> 0.015625 - -divx070 divide 999999999 1 -> 999999999 -divx071 divide 999999999.4 1 -> 999999999 Inexact Rounded -divx072 divide 999999999.5 1 -> 1.00000000E+9 Inexact Rounded -divx073 divide 999999999.9 1 -> 1.00000000E+9 Inexact Rounded -divx074 divide 999999999.999 1 -> 1.00000000E+9 Inexact Rounded -precision: 6 -divx080 divide 999999999 1 -> 1.00000E+9 Inexact Rounded -divx081 divide 99999999 1 -> 1.00000E+8 Inexact Rounded -divx082 divide 9999999 1 -> 1.00000E+7 Inexact Rounded -divx083 divide 999999 1 -> 999999 -divx084 divide 99999 1 -> 99999 -divx085 divide 9999 1 -> 9999 -divx086 divide 999 1 -> 999 -divx087 divide 99 1 -> 99 -divx088 divide 9 1 -> 9 - -precision: 9 -divx090 divide 0. 1 -> 0 -divx091 divide .0 1 -> 0.0 -divx092 divide 0.00 1 -> 0.00 -divx093 divide 0.00E+9 1 -> 0E+7 -divx094 divide 0.0000E-50 1 -> 0E-54 - -divx095 divide 1 1E-8 -> 1E+8 -divx096 divide 1 1E-9 -> 1E+9 -divx097 divide 1 1E-10 -> 1E+10 -divx098 divide 1 1E-11 -> 1E+11 -divx099 divide 1 1E-12 -> 1E+12 - -divx100 divide 1 1 -> 1 -divx101 divide 1 2 -> 0.5 -divx102 divide 1 3 -> 0.333333333 Inexact Rounded -divx103 divide 1 4 -> 0.25 -divx104 divide 1 5 -> 0.2 -divx105 divide 1 6 -> 0.166666667 Inexact Rounded -divx106 divide 1 7 -> 0.142857143 Inexact Rounded -divx107 divide 1 8 -> 0.125 -divx108 divide 1 9 -> 0.111111111 Inexact Rounded -divx109 divide 1 10 -> 0.1 -divx110 divide 1 1 -> 1 -divx111 divide 2 1 -> 2 -divx112 divide 3 1 -> 3 -divx113 divide 4 1 -> 4 -divx114 divide 5 1 -> 5 -divx115 divide 6 1 -> 6 -divx116 divide 7 1 -> 7 -divx117 divide 8 1 -> 8 -divx118 divide 9 1 -> 9 -divx119 divide 10 1 -> 10 - -divx120 divide 3E+1 0.001 -> 3E+4 -divx121 divide 2.200 2 -> 1.100 - -divx130 divide 12345 4.999 -> 2469.49390 Inexact Rounded -divx131 divide 12345 4.99 -> 2473.94790 Inexact Rounded -divx132 divide 12345 4.9 -> 2519.38776 Inexact Rounded -divx133 divide 12345 5 -> 2469 -divx134 divide 12345 5.1 -> 2420.58824 Inexact Rounded -divx135 divide 12345 5.01 -> 2464.07186 Inexact Rounded -divx136 divide 12345 5.001 -> 2468.50630 Inexact Rounded - -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 - --- test possibly imprecise results -divx220 divide 391 597 -> 0.654941374 Inexact Rounded -divx221 divide 391 -597 -> -0.654941374 Inexact Rounded -divx222 divide -391 597 -> -0.654941374 Inexact Rounded -divx223 divide -391 -597 -> 0.654941374 Inexact Rounded - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -divx270 divide 1 1e999999999 -> 1E-999999999 -divx271 divide 1 0.9e999999999 -> 1.11111111E-999999999 Inexact Rounded -divx272 divide 1 0.99e999999999 -> 1.01010101E-999999999 Inexact Rounded -divx273 divide 1 0.999999999e999999999 -> 1.00000000E-999999999 Inexact Rounded -divx274 divide 9e999999999 1 -> 9E+999999999 -divx275 divide 9.9e999999999 1 -> 9.9E+999999999 -divx276 divide 9.99e999999999 1 -> 9.99E+999999999 -divx277 divide 9.99999999e999999999 1 -> 9.99999999E+999999999 - -divx280 divide 0.1 9e-999999999 -> 1.11111111E+999999997 Inexact Rounded -divx281 divide 0.1 99e-999999999 -> 1.01010101E+999999996 Inexact Rounded -divx282 divide 0.1 999e-999999999 -> 1.00100100E+999999995 Inexact Rounded - -divx283 divide 0.1 9e-999999998 -> 1.11111111E+999999996 Inexact Rounded -divx284 divide 0.1 99e-999999998 -> 1.01010101E+999999995 Inexact Rounded -divx285 divide 0.1 999e-999999998 -> 1.00100100E+999999994 Inexact Rounded -divx286 divide 0.1 999e-999999997 -> 1.00100100E+999999993 Inexact Rounded -divx287 divide 0.1 9999e-999999997 -> 1.00010001E+999999992 Inexact Rounded -divx288 divide 0.1 99999e-999999997 -> 1.00001000E+999999991 Inexact Rounded - --- Divide into 0 tests - -divx301 divide 0 7 -> 0 -divx302 divide 0 7E-5 -> 0E+5 -divx303 divide 0 7E-1 -> 0E+1 -divx304 divide 0 7E+1 -> 0.0 -divx305 divide 0 7E+5 -> 0.00000 -divx306 divide 0 7E+6 -> 0.000000 -divx307 divide 0 7E+7 -> 0E-7 -divx308 divide 0 70E-5 -> 0E+5 -divx309 divide 0 70E-1 -> 0E+1 -divx310 divide 0 70E+0 -> 0 -divx311 divide 0 70E+1 -> 0.0 -divx312 divide 0 70E+5 -> 0.00000 -divx313 divide 0 70E+6 -> 0.000000 -divx314 divide 0 70E+7 -> 0E-7 -divx315 divide 0 700E-5 -> 0E+5 -divx316 divide 0 700E-1 -> 0E+1 -divx317 divide 0 700E+0 -> 0 -divx318 divide 0 700E+1 -> 0.0 -divx319 divide 0 700E+5 -> 0.00000 -divx320 divide 0 700E+6 -> 0.000000 -divx321 divide 0 700E+7 -> 0E-7 -divx322 divide 0 700E+77 -> 0E-77 - -divx331 divide 0E-3 7E-5 -> 0E+2 -divx332 divide 0E-3 7E-1 -> 0.00 -divx333 divide 0E-3 7E+1 -> 0.0000 -divx334 divide 0E-3 7E+5 -> 0E-8 -divx335 divide 0E-1 7E-5 -> 0E+4 -divx336 divide 0E-1 7E-1 -> 0 -divx337 divide 0E-1 7E+1 -> 0.00 -divx338 divide 0E-1 7E+5 -> 0.000000 -divx339 divide 0E+1 7E-5 -> 0E+6 -divx340 divide 0E+1 7E-1 -> 0E+2 -divx341 divide 0E+1 7E+1 -> 0 -divx342 divide 0E+1 7E+5 -> 0.0000 -divx343 divide 0E+3 7E-5 -> 0E+8 -divx344 divide 0E+3 7E-1 -> 0E+4 -divx345 divide 0E+3 7E+1 -> 0E+2 -divx346 divide 0E+3 7E+5 -> 0.00 - -maxexponent: 92 -minexponent: -92 -precision: 7 -divx351 divide 0E-92 7E-1 -> 0E-91 -divx352 divide 0E-92 7E+1 -> 0E-93 -divx353 divide 0E-92 7E+5 -> 0E-97 -divx354 divide 0E-92 7E+6 -> 0E-98 -divx355 divide 0E-92 7E+7 -> 0E-98 Clamped -divx356 divide 0E-92 777E-1 -> 0E-91 -divx357 divide 0E-92 777E+1 -> 0E-93 -divx358 divide 0E-92 777E+3 -> 0E-95 -divx359 divide 0E-92 777E+4 -> 0E-96 -divx360 divide 0E-92 777E+5 -> 0E-97 -divx361 divide 0E-92 777E+6 -> 0E-98 -divx362 divide 0E-92 777E+7 -> 0E-98 Clamped -divx363 divide 0E-92 7E+92 -> 0E-98 Clamped - -divx371 divide 0E-92 700E-1 -> 0E-91 -divx372 divide 0E-92 700E+1 -> 0E-93 -divx373 divide 0E-92 700E+3 -> 0E-95 -divx374 divide 0E-92 700E+4 -> 0E-96 -divx375 divide 0E-92 700E+5 -> 0E-97 -divx376 divide 0E-92 700E+6 -> 0E-98 -divx377 divide 0E-92 700E+7 -> 0E-98 Clamped - -divx381 divide 0E+92 7E+1 -> 0E+91 -divx382 divide 0E+92 7E+0 -> 0E+92 -divx383 divide 0E+92 7E-1 -> 0E+92 Clamped -divx384 divide 0E+90 777E+1 -> 0E+89 -divx385 divide 0E+90 777E-1 -> 0E+91 -divx386 divide 0E+90 777E-2 -> 0E+92 -divx387 divide 0E+90 777E-3 -> 0E+92 Clamped -divx388 divide 0E+90 777E-4 -> 0E+92 Clamped - -divx391 divide 0E+90 700E+1 -> 0E+89 -divx392 divide 0E+90 700E-1 -> 0E+91 -divx393 divide 0E+90 700E-2 -> 0E+92 -divx394 divide 0E+90 700E-3 -> 0E+92 Clamped -divx395 divide 0E+90 700E-4 -> 0E+92 Clamped - --- input rounding checks -maxexponent: 999 -minexponent: -999 -precision: 9 -divx401 divide 12345678000 1 -> 1.23456780E+10 Rounded -divx402 divide 1 12345678000 -> 8.10000066E-11 Inexact Rounded -divx403 divide 1234567800 1 -> 1.23456780E+9 Rounded -divx404 divide 1 1234567800 -> 8.10000066E-10 Inexact Rounded -divx405 divide 1234567890 1 -> 1.23456789E+9 Rounded -divx406 divide 1 1234567890 -> 8.10000007E-10 Inexact Rounded -divx407 divide 1234567891 1 -> 1.23456789E+9 Inexact Rounded -divx408 divide 1 1234567891 -> 8.10000007E-10 Inexact Rounded -divx409 divide 12345678901 1 -> 1.23456789E+10 Inexact Rounded -divx410 divide 1 12345678901 -> 8.10000007E-11 Inexact Rounded -divx411 divide 1234567896 1 -> 1.23456790E+9 Inexact Rounded -divx412 divide 1 1234567896 -> 8.10000003E-10 Inexact Rounded -divx413 divide 1 1234567897 -> 8.10000003E-10 Inexact Rounded -divx414 divide 1 1234567898 -> 8.10000002E-10 Inexact Rounded -divx415 divide 1 1234567899 -> 8.10000001E-10 Inexact Rounded -divx416 divide 1 1234567900 -> 8.10000001E-10 Inexact Rounded -divx417 divide 1 1234567901 -> 8.10000000E-10 Inexact Rounded -divx418 divide 1 1234567902 -> 8.09999999E-10 Inexact Rounded --- some longies -divx421 divide 1234567896.000000000000 1 -> 1.23456790E+9 Inexact Rounded -divx422 divide 1 1234567896.000000000000 -> 8.10000003E-10 Inexact Rounded -divx423 divide 1234567896.000000000001 1 -> 1.23456790E+9 Inexact Rounded -divx424 divide 1 1234567896.000000000001 -> 8.10000003E-10 Inexact Rounded -divx425 divide 1234567896.000000000000000000000000000000000000000009 1 -> 1.23456790E+9 Inexact Rounded -divx426 divide 1 1234567896.000000000000000000000000000000000000000009 -> 8.10000003E-10 Inexact Rounded -divx427 divide 1234567897.900010000000000000000000000000000000000009 1 -> 1.23456790E+9 Inexact Rounded -divx428 divide 1 1234567897.900010000000000000000000000000000000000009 -> 8.10000002E-10 Inexact Rounded - -precision: 15 --- still checking... -divx441 divide 12345678000 1 -> 12345678000 -divx442 divide 1 12345678000 -> 8.10000066420005E-11 Inexact Rounded -divx443 divide 1234567800 1 -> 1234567800 -divx444 divide 1 1234567800 -> 8.10000066420005E-10 Inexact Rounded -divx445 divide 1234567890 1 -> 1234567890 -divx446 divide 1 1234567890 -> 8.10000007371000E-10 Inexact Rounded -divx447 divide 1234567891 1 -> 1234567891 -divx448 divide 1 1234567891 -> 8.10000006714900E-10 Inexact Rounded -divx449 divide 12345678901 1 -> 12345678901 -divx450 divide 1 12345678901 -> 8.10000007305390E-11 Inexact Rounded -divx451 divide 1234567896 1 -> 1234567896 -divx452 divide 1 1234567896 -> 8.10000003434400E-10 Inexact Rounded - --- high-lows -divx453 divide 1e+1 1 -> 1E+1 -divx454 divide 1e+1 1.0 -> 1E+1 -divx455 divide 1e+1 1.00 -> 1E+1 -divx456 divide 1e+2 2 -> 5E+1 -divx457 divide 1e+2 2.0 -> 5E+1 -divx458 divide 1e+2 2.00 -> 5E+1 - --- some from IEEE discussions -divx460 divide 3e0 2e0 -> 1.5 -divx461 divide 30e-1 2e0 -> 1.5 -divx462 divide 300e-2 2e0 -> 1.50 -divx464 divide 3000e-3 2e0 -> 1.500 -divx465 divide 3e0 20e-1 -> 1.5 -divx466 divide 30e-1 20e-1 -> 1.5 -divx467 divide 300e-2 20e-1 -> 1.5 -divx468 divide 3000e-3 20e-1 -> 1.50 -divx469 divide 3e0 200e-2 -> 1.5 -divx470 divide 30e-1 200e-2 -> 1.5 -divx471 divide 300e-2 200e-2 -> 1.5 -divx472 divide 3000e-3 200e-2 -> 1.5 -divx473 divide 3e0 2000e-3 -> 1.5 -divx474 divide 30e-1 2000e-3 -> 1.5 -divx475 divide 300e-2 2000e-3 -> 1.5 -divx476 divide 3000e-3 2000e-3 -> 1.5 - --- some reciprocals -divx480 divide 1 1.0E+33 -> 1E-33 -divx481 divide 1 10E+33 -> 1E-34 -divx482 divide 1 1.0E-33 -> 1E+33 -divx483 divide 1 10E-33 -> 1E+32 - --- RMS discussion table -maxexponent: 96 -minexponent: -95 -precision: 7 - -divx484 divide 0e5 1e3 -> 0E+2 -divx485 divide 0e5 2e3 -> 0E+2 -divx486 divide 0e5 10e2 -> 0E+3 -divx487 divide 0e5 20e2 -> 0E+3 -divx488 divide 0e5 100e1 -> 0E+4 -divx489 divide 0e5 200e1 -> 0E+4 - -divx491 divide 1e5 1e3 -> 1E+2 -divx492 divide 1e5 2e3 -> 5E+1 -divx493 divide 1e5 10e2 -> 1E+2 -divx494 divide 1e5 20e2 -> 5E+1 -divx495 divide 1e5 100e1 -> 1E+2 -divx496 divide 1e5 200e1 -> 5E+1 - --- tryzeros cases -precision: 7 -rounding: half_up -maxExponent: 92 -minexponent: -92 -divx497 divide 0E+86 1000E-13 -> 0E+92 Clamped -divx498 divide 0E-98 1000E+13 -> 0E-98 Clamped - -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- focus on trailing zeros issues -precision: 9 -divx500 divide 1 9.9 -> 0.101010101 Inexact Rounded -precision: 8 -divx501 divide 1 9.9 -> 0.10101010 Inexact Rounded -precision: 7 -divx502 divide 1 9.9 -> 0.1010101 Inexact Rounded -precision: 6 -divx503 divide 1 9.9 -> 0.101010 Inexact Rounded -precision: 9 - -divx511 divide 1 2 -> 0.5 -divx512 divide 1.0 2 -> 0.5 -divx513 divide 1.00 2 -> 0.50 -divx514 divide 1.000 2 -> 0.500 -divx515 divide 1.0000 2 -> 0.5000 -divx516 divide 1.00000 2 -> 0.50000 -divx517 divide 1.000000 2 -> 0.500000 -divx518 divide 1.0000000 2 -> 0.5000000 -divx519 divide 1.00 2.00 -> 0.5 - -divx521 divide 2 1 -> 2 -divx522 divide 2 1.0 -> 2 -divx523 divide 2 1.00 -> 2 -divx524 divide 2 1.000 -> 2 -divx525 divide 2 1.0000 -> 2 -divx526 divide 2 1.00000 -> 2 -divx527 divide 2 1.000000 -> 2 -divx528 divide 2 1.0000000 -> 2 -divx529 divide 2.00 1.00 -> 2 - -divx530 divide 2.40 2 -> 1.20 -divx531 divide 2.40 4 -> 0.60 -divx532 divide 2.40 10 -> 0.24 -divx533 divide 2.40 2.0 -> 1.2 -divx534 divide 2.40 4.0 -> 0.6 -divx535 divide 2.40 10.0 -> 0.24 -divx536 divide 2.40 2.00 -> 1.2 -divx537 divide 2.40 4.00 -> 0.6 -divx538 divide 2.40 10.00 -> 0.24 -divx539 divide 0.9 0.1 -> 9 -divx540 divide 0.9 0.01 -> 9E+1 -divx541 divide 0.9 0.001 -> 9E+2 -divx542 divide 5 2 -> 2.5 -divx543 divide 5 2.0 -> 2.5 -divx544 divide 5 2.00 -> 2.5 -divx545 divide 5 20 -> 0.25 -divx546 divide 5 20.0 -> 0.25 -divx547 divide 2.400 2 -> 1.200 -divx548 divide 2.400 2.0 -> 1.20 -divx549 divide 2.400 2.400 -> 1 - -divx550 divide 240 1 -> 240 -divx551 divide 240 10 -> 24 -divx552 divide 240 100 -> 2.4 -divx553 divide 240 1000 -> 0.24 -divx554 divide 2400 1 -> 2400 -divx555 divide 2400 10 -> 240 -divx556 divide 2400 100 -> 24 -divx557 divide 2400 1000 -> 2.4 - --- +ve exponent -precision: 5 -divx570 divide 2.4E+6 2 -> 1.2E+6 -divx571 divide 2.40E+6 2 -> 1.20E+6 -divx572 divide 2.400E+6 2 -> 1.200E+6 -divx573 divide 2.4000E+6 2 -> 1.2000E+6 -divx574 divide 24E+5 2 -> 1.2E+6 -divx575 divide 240E+4 2 -> 1.20E+6 -divx576 divide 2400E+3 2 -> 1.200E+6 -divx577 divide 24000E+2 2 -> 1.2000E+6 -precision: 6 -divx580 divide 2.4E+6 2 -> 1.2E+6 -divx581 divide 2.40E+6 2 -> 1.20E+6 -divx582 divide 2.400E+6 2 -> 1.200E+6 -divx583 divide 2.4000E+6 2 -> 1.2000E+6 -divx584 divide 24E+5 2 -> 1.2E+6 -divx585 divide 240E+4 2 -> 1.20E+6 -divx586 divide 2400E+3 2 -> 1.200E+6 -divx587 divide 24000E+2 2 -> 1.2000E+6 -precision: 7 -divx590 divide 2.4E+6 2 -> 1.2E+6 -divx591 divide 2.40E+6 2 -> 1.20E+6 -divx592 divide 2.400E+6 2 -> 1.200E+6 -divx593 divide 2.4000E+6 2 -> 1.2000E+6 -divx594 divide 24E+5 2 -> 1.2E+6 -divx595 divide 240E+4 2 -> 1.20E+6 -divx596 divide 2400E+3 2 -> 1.200E+6 -divx597 divide 24000E+2 2 -> 1.2000E+6 -precision: 9 -divx600 divide 2.4E+9 2 -> 1.2E+9 -divx601 divide 2.40E+9 2 -> 1.20E+9 -divx602 divide 2.400E+9 2 -> 1.200E+9 -divx603 divide 2.4000E+9 2 -> 1.2000E+9 -divx604 divide 24E+8 2 -> 1.2E+9 -divx605 divide 240E+7 2 -> 1.20E+9 -divx606 divide 2400E+6 2 -> 1.200E+9 -divx607 divide 24000E+5 2 -> 1.2000E+9 - --- long operand triangle -precision: 33 -divx610 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.8131097703792 Inexact Rounded -precision: 32 -divx611 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.813109770379 Inexact Rounded -precision: 31 -divx612 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.81310977038 Inexact Rounded -precision: 30 -divx613 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.8131097704 Inexact Rounded -precision: 29 -divx614 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.813109770 Inexact Rounded -precision: 28 -divx615 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.81310977 Inexact Rounded -precision: 27 -divx616 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.8131098 Inexact Rounded -precision: 26 -divx617 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.813110 Inexact Rounded -precision: 25 -divx618 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.81311 Inexact Rounded -precision: 24 -divx619 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.8131 Inexact Rounded -precision: 23 -divx620 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.813 Inexact Rounded -precision: 22 -divx621 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.81 Inexact Rounded -precision: 21 -divx622 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.8 Inexact Rounded -precision: 20 -divx623 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817798 Inexact Rounded -precision: 19 -divx624 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.101140888379681780E+19 Inexact Rounded -precision: 18 -divx625 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.10114088837968178E+19 Inexact Rounded -precision: 17 -divx626 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.1011408883796818E+19 Inexact Rounded -precision: 16 -divx627 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.101140888379682E+19 Inexact Rounded -precision: 15 -divx628 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.10114088837968E+19 Inexact Rounded -precision: 14 -divx629 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.1011408883797E+19 Inexact Rounded -precision: 13 -divx630 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.101140888380E+19 Inexact Rounded -precision: 12 -divx631 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.10114088838E+19 Inexact Rounded -precision: 11 -divx632 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.1011408884E+19 Inexact Rounded -precision: 10 -divx633 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.101140888E+19 Inexact Rounded -precision: 9 -divx634 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.10114089E+19 Inexact Rounded -precision: 8 -divx635 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.1011409E+19 Inexact Rounded -precision: 7 -divx636 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.101141E+19 Inexact Rounded -precision: 6 -divx637 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.10114E+19 Inexact Rounded -precision: 5 -divx638 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.1011E+19 Inexact Rounded -precision: 4 -divx639 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.101E+19 Inexact Rounded -precision: 3 -divx640 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.10E+19 Inexact Rounded -precision: 2 -divx641 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4.1E+19 Inexact Rounded -precision: 1 -divx642 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -4E+19 Inexact Rounded - --- more zeros, etc. -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - -divx731 divide 5.00 1E-3 -> 5.00E+3 -divx732 divide 00.00 0.000 -> NaN Division_undefined -divx733 divide 00.00 0E-3 -> NaN Division_undefined -divx734 divide 0 -0 -> NaN Division_undefined -divx735 divide -0 0 -> NaN Division_undefined -divx736 divide -0 -0 -> NaN Division_undefined - -divx741 divide 0 -1 -> -0 -divx742 divide -0 -1 -> 0 -divx743 divide 0 1 -> 0 -divx744 divide -0 1 -> -0 -divx745 divide -1 0 -> -Infinity Division_by_zero -divx746 divide -1 -0 -> Infinity Division_by_zero -divx747 divide 1 0 -> Infinity Division_by_zero -divx748 divide 1 -0 -> -Infinity Division_by_zero - -divx751 divide 0.0 -1 -> -0.0 -divx752 divide -0.0 -1 -> 0.0 -divx753 divide 0.0 1 -> 0.0 -divx754 divide -0.0 1 -> -0.0 -divx755 divide -1.0 0 -> -Infinity Division_by_zero -divx756 divide -1.0 -0 -> Infinity Division_by_zero -divx757 divide 1.0 0 -> Infinity Division_by_zero -divx758 divide 1.0 -0 -> -Infinity Division_by_zero - -divx761 divide 0 -1.0 -> -0E+1 -divx762 divide -0 -1.0 -> 0E+1 -divx763 divide 0 1.0 -> 0E+1 -divx764 divide -0 1.0 -> -0E+1 -divx765 divide -1 0.0 -> -Infinity Division_by_zero -divx766 divide -1 -0.0 -> Infinity Division_by_zero -divx767 divide 1 0.0 -> Infinity Division_by_zero -divx768 divide 1 -0.0 -> -Infinity Division_by_zero - -divx771 divide 0.0 -1.0 -> -0 -divx772 divide -0.0 -1.0 -> 0 -divx773 divide 0.0 1.0 -> 0 -divx774 divide -0.0 1.0 -> -0 -divx775 divide -1.0 0.0 -> -Infinity Division_by_zero -divx776 divide -1.0 -0.0 -> Infinity Division_by_zero -divx777 divide 1.0 0.0 -> Infinity Division_by_zero -divx778 divide 1.0 -0.0 -> -Infinity Division_by_zero - --- Specials -divx780 divide Inf -Inf -> NaN Invalid_operation -divx781 divide Inf -1000 -> -Infinity -divx782 divide Inf -1 -> -Infinity -divx783 divide Inf -0 -> -Infinity -divx784 divide Inf 0 -> Infinity -divx785 divide Inf 1 -> Infinity -divx786 divide Inf 1000 -> Infinity -divx787 divide Inf Inf -> NaN Invalid_operation -divx788 divide -1000 Inf -> -0E-398 Clamped -divx789 divide -Inf Inf -> NaN Invalid_operation -divx790 divide -1 Inf -> -0E-398 Clamped -divx791 divide -0 Inf -> -0E-398 Clamped -divx792 divide 0 Inf -> 0E-398 Clamped -divx793 divide 1 Inf -> 0E-398 Clamped -divx794 divide 1000 Inf -> 0E-398 Clamped -divx795 divide Inf Inf -> NaN Invalid_operation - -divx800 divide -Inf -Inf -> NaN Invalid_operation -divx801 divide -Inf -1000 -> Infinity -divx802 divide -Inf -1 -> Infinity -divx803 divide -Inf -0 -> Infinity -divx804 divide -Inf 0 -> -Infinity -divx805 divide -Inf 1 -> -Infinity -divx806 divide -Inf 1000 -> -Infinity -divx807 divide -Inf Inf -> NaN Invalid_operation -divx808 divide -1000 Inf -> -0E-398 Clamped -divx809 divide -Inf -Inf -> NaN Invalid_operation -divx810 divide -1 -Inf -> 0E-398 Clamped -divx811 divide -0 -Inf -> 0E-398 Clamped -divx812 divide 0 -Inf -> -0E-398 Clamped -divx813 divide 1 -Inf -> -0E-398 Clamped -divx814 divide 1000 -Inf -> -0E-398 Clamped -divx815 divide Inf -Inf -> NaN Invalid_operation - -divx821 divide NaN -Inf -> NaN -divx822 divide NaN -1000 -> NaN -divx823 divide NaN -1 -> NaN -divx824 divide NaN -0 -> NaN -divx825 divide NaN 0 -> NaN -divx826 divide NaN 1 -> NaN -divx827 divide NaN 1000 -> NaN -divx828 divide NaN Inf -> NaN -divx829 divide NaN NaN -> NaN -divx830 divide -Inf NaN -> NaN -divx831 divide -1000 NaN -> NaN -divx832 divide -1 NaN -> NaN -divx833 divide -0 NaN -> NaN -divx834 divide 0 NaN -> NaN -divx835 divide 1 NaN -> NaN -divx836 divide 1000 NaN -> NaN -divx837 divide Inf NaN -> NaN - -divx841 divide sNaN -Inf -> NaN Invalid_operation -divx842 divide sNaN -1000 -> NaN Invalid_operation -divx843 divide sNaN -1 -> NaN Invalid_operation -divx844 divide sNaN -0 -> NaN Invalid_operation -divx845 divide sNaN 0 -> NaN Invalid_operation -divx846 divide sNaN 1 -> NaN Invalid_operation -divx847 divide sNaN 1000 -> NaN Invalid_operation -divx848 divide sNaN NaN -> NaN Invalid_operation -divx849 divide sNaN sNaN -> NaN Invalid_operation -divx850 divide NaN sNaN -> NaN Invalid_operation -divx851 divide -Inf sNaN -> NaN Invalid_operation -divx852 divide -1000 sNaN -> NaN Invalid_operation -divx853 divide -1 sNaN -> NaN Invalid_operation -divx854 divide -0 sNaN -> NaN Invalid_operation -divx855 divide 0 sNaN -> NaN Invalid_operation -divx856 divide 1 sNaN -> NaN Invalid_operation -divx857 divide 1000 sNaN -> NaN Invalid_operation -divx858 divide Inf sNaN -> NaN Invalid_operation -divx859 divide NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -divx861 divide NaN9 -Inf -> NaN9 -divx862 divide NaN8 1000 -> NaN8 -divx863 divide NaN7 Inf -> NaN7 -divx864 divide NaN6 NaN5 -> NaN6 -divx865 divide -Inf NaN4 -> NaN4 -divx866 divide -1000 NaN3 -> NaN3 -divx867 divide Inf NaN2 -> NaN2 - -divx871 divide sNaN99 -Inf -> NaN99 Invalid_operation -divx872 divide sNaN98 -1 -> NaN98 Invalid_operation -divx873 divide sNaN97 NaN -> NaN97 Invalid_operation -divx874 divide sNaN96 sNaN94 -> NaN96 Invalid_operation -divx875 divide NaN95 sNaN93 -> NaN93 Invalid_operation -divx876 divide -Inf sNaN92 -> NaN92 Invalid_operation -divx877 divide 0 sNaN91 -> NaN91 Invalid_operation -divx878 divide Inf sNaN90 -> NaN90 Invalid_operation -divx879 divide NaN sNaN89 -> NaN89 Invalid_operation - -divx881 divide -NaN9 -Inf -> -NaN9 -divx882 divide -NaN8 1000 -> -NaN8 -divx883 divide -NaN7 Inf -> -NaN7 -divx884 divide -NaN6 -NaN5 -> -NaN6 -divx885 divide -Inf -NaN4 -> -NaN4 -divx886 divide -1000 -NaN3 -> -NaN3 -divx887 divide Inf -NaN2 -> -NaN2 - -divx891 divide -sNaN99 -Inf -> -NaN99 Invalid_operation -divx892 divide -sNaN98 -1 -> -NaN98 Invalid_operation -divx893 divide -sNaN97 NaN -> -NaN97 Invalid_operation -divx894 divide -sNaN96 -sNaN94 -> -NaN96 Invalid_operation -divx895 divide -NaN95 -sNaN93 -> -NaN93 Invalid_operation -divx896 divide -Inf -sNaN92 -> -NaN92 Invalid_operation -divx897 divide 0 -sNaN91 -> -NaN91 Invalid_operation -divx898 divide Inf -sNaN90 -> -NaN90 Invalid_operation -divx899 divide -NaN -sNaN89 -> -NaN89 Invalid_operation - -maxexponent: 999999999 -minexponent: -999999999 - --- Various flavours of divide by 0 -divx901 divide 0 0 -> NaN Division_undefined -divx902 divide 0.0E5 0 -> NaN Division_undefined -divx903 divide 0.000 0 -> NaN Division_undefined -divx904 divide 0.0001 0 -> Infinity Division_by_zero -divx905 divide 0.01 0 -> Infinity Division_by_zero -divx906 divide 0.1 0 -> Infinity Division_by_zero -divx907 divide 1 0 -> Infinity Division_by_zero -divx908 divide 1 0.0 -> Infinity Division_by_zero -divx909 divide 10 0.0 -> Infinity Division_by_zero -divx910 divide 1E+100 0.0 -> Infinity Division_by_zero -divx911 divide 1E+1000 0 -> Infinity Division_by_zero - -divx921 divide -0.0001 0 -> -Infinity Division_by_zero -divx922 divide -0.01 0 -> -Infinity Division_by_zero -divx923 divide -0.1 0 -> -Infinity Division_by_zero -divx924 divide -1 0 -> -Infinity Division_by_zero -divx925 divide -1 0.0 -> -Infinity Division_by_zero -divx926 divide -10 0.0 -> -Infinity Division_by_zero -divx927 divide -1E+100 0.0 -> -Infinity Division_by_zero -divx928 divide -1E+1000 0 -> -Infinity Division_by_zero - -divx931 divide 0.0001 -0 -> -Infinity Division_by_zero -divx932 divide 0.01 -0 -> -Infinity Division_by_zero -divx933 divide 0.1 -0 -> -Infinity Division_by_zero -divx934 divide 1 -0 -> -Infinity Division_by_zero -divx935 divide 1 -0.0 -> -Infinity Division_by_zero -divx936 divide 10 -0.0 -> -Infinity Division_by_zero -divx937 divide 1E+100 -0.0 -> -Infinity Division_by_zero -divx938 divide 1E+1000 -0 -> -Infinity Division_by_zero - -divx941 divide -0.0001 -0 -> Infinity Division_by_zero -divx942 divide -0.01 -0 -> Infinity Division_by_zero -divx943 divide -0.1 -0 -> Infinity Division_by_zero -divx944 divide -1 -0 -> Infinity Division_by_zero -divx945 divide -1 -0.0 -> Infinity Division_by_zero -divx946 divide -10 -0.0 -> Infinity Division_by_zero -divx947 divide -1E+100 -0.0 -> Infinity Division_by_zero -divx948 divide -1E+1000 -0 -> Infinity Division_by_zero - --- overflow and underflow tests -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -divx951 divide 9E+999999999 +0.23456789012345E-0 -> Infinity Inexact Overflow Rounded -divx952 divide +0.100 9E+999999999 -> 1.111111E-1000000001 Inexact Rounded Underflow Subnormal -divx953 divide 9E-999999999 +9.100 -> 9.8901099E-1000000000 Inexact Rounded Underflow Subnormal -divx954 divide -1.23456789 9E+999999999 -> -1.3717421E-1000000000 Subnormal -divx955 divide -1.23456789012345E-0 9E+999999999 -> -1.3717421E-1000000000 Underflow Subnormal Rounded Inexact -divx956 divide -1.23456789012345E-0 7E+999999999 -> -1.7636684E-1000000000 Inexact Rounded Underflow Subnormal -divx957 divide 9E+999999999 -0.83456789012345E-0 -> -Infinity Inexact Overflow Rounded -divx958 divide -0.100 9E+999999999 -> -1.111111E-1000000001 Subnormal Inexact Rounded Underflow -divx959 divide 9E-999999999 -9.100 -> -9.8901099E-1000000000 Inexact Rounded Underflow Subnormal - --- overflow and underflow (additional edge tests in multiply.decTest) --- 'subnormal' results now possible (all hard underflow or overflow in --- base arithemtic) -divx960 divide 1e-600000000 1e+400000001 -> 1E-1000000001 Subnormal -divx961 divide 1e-600000000 1e+400000002 -> 1E-1000000002 Subnormal -divx962 divide 1e-600000000 1e+400000003 -> 1E-1000000003 Subnormal -divx963 divide 1e-600000000 1e+400000004 -> 1E-1000000004 Subnormal -divx964 divide 1e-600000000 1e+400000005 -> 1E-1000000005 Subnormal -divx965 divide 1e-600000000 1e+400000006 -> 1E-1000000006 Subnormal -divx966 divide 1e-600000000 1e+400000007 -> 1E-1000000007 Subnormal -divx967 divide 1e-600000000 1e+400000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -divx968 divide 1e-600000000 1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -divx969 divide 1e-600000000 1e+400000010 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -divx970 divide 1e+600000000 1e-400000001 -> Infinity Overflow Inexact Rounded -divx971 divide 1e+600000000 1e-400000002 -> Infinity Overflow Inexact Rounded -divx972 divide 1e+600000000 1e-400000003 -> Infinity Overflow Inexact Rounded -divx973 divide 1e+600000000 1e-400000004 -> Infinity Overflow Inexact Rounded -divx974 divide 1e+600000000 1e-400000005 -> Infinity Overflow Inexact Rounded -divx975 divide 1e+600000000 1e-400000006 -> Infinity Overflow Inexact Rounded -divx976 divide 1e+600000000 1e-400000007 -> Infinity Overflow Inexact Rounded -divx977 divide 1e+600000000 1e-400000008 -> Infinity Overflow Inexact Rounded -divx978 divide 1e+600000000 1e-400000009 -> Infinity Overflow Inexact Rounded -divx979 divide 1e+600000000 1e-400000010 -> Infinity Overflow Inexact Rounded - --- Sign after overflow and underflow -divx980 divide 1e-600000000 1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -divx981 divide 1e-600000000 -1e+400000009 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -divx982 divide -1e-600000000 1e+400000009 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -divx983 divide -1e-600000000 -1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -divx984 divide 1e+600000000 1e-400000009 -> Infinity Overflow Inexact Rounded -divx985 divide 1e+600000000 -1e-400000009 -> -Infinity Overflow Inexact Rounded -divx986 divide -1e+600000000 1e-400000009 -> -Infinity Overflow Inexact Rounded -divx987 divide -1e+600000000 -1e-400000009 -> Infinity Overflow Inexact Rounded - --- Long operand overflow may be a different path -precision: 3 -divx990 divide 1000 9.999E-999999999 -> Infinity Inexact Overflow Rounded -divx991 divide 1000 -9.999E-999999999 -> -Infinity Inexact Overflow Rounded -divx992 divide 9.999E+999999999 0.01 -> Infinity Inexact Overflow Rounded -divx993 divide -9.999E+999999999 0.01 -> -Infinity Inexact Overflow Rounded - --- check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 -divx1001 divide 1.52444E-80 1 -> 1.524E-80 Inexact Rounded Subnormal Underflow -divx1002 divide 1.52445E-80 1 -> 1.524E-80 Inexact Rounded Subnormal Underflow -divx1003 divide 1.52446E-80 1 -> 1.524E-80 Inexact Rounded Subnormal Underflow - --- a rounding problem in one implementation -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 --- Unbounded answer to 40 digits: --- 1.465811965811965811965811965811965811966E+7000 -divx1010 divide 343E6000 234E-1000 -> Infinity Overflow Inexact Rounded - -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 - --- Examples from SQL proposal (Krishna Kulkarni) -precision: 7 -divx1021 divide 1E0 1E0 -> 1 -divx1022 divide 1E0 2E0 -> 0.5 -divx1023 divide 1E0 3E0 -> 0.3333333 Inexact Rounded -divx1024 divide 100E-2 1000E-3 -> 1 -divx1025 divide 24E-1 2E0 -> 1.2 -divx1026 divide 2400E-3 2E0 -> 1.200 -divx1027 divide 5E0 2E0 -> 2.5 -divx1028 divide 5E0 20E-1 -> 2.5 -divx1029 divide 5E0 2000E-3 -> 2.5 -divx1030 divide 5E0 2E-1 -> 25 -divx1031 divide 5E0 20E-2 -> 25 -divx1032 divide 480E-2 3E0 -> 1.60 -divx1033 divide 47E-1 2E0 -> 2.35 - --- ECMAScript bad examples -rounding: half_down -precision: 7 -divx1050 divide 5 9 -> 0.5555556 Inexact Rounded -rounding: half_even -divx1051 divide 5 11 -> 0.4545455 Inexact Rounded - --- payload decapitate -precision: 5 -divx1055 divide sNaN987654321 1 -> NaN54321 Invalid_operation - --- Null tests -divx9998 divide 10 # -> NaN Invalid_operation -divx9999 divide # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/divideint.decTest b/qdecimal/test/tc_full/divideint.decTest deleted file mode 100644 index f7c3202..0000000 --- a/qdecimal/test/tc_full/divideint.decTest +++ /dev/null @@ -1,486 +0,0 @@ ------------------------------------------------------------------------- --- divideint.decTest -- decimal integer division -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -dvix001 divideint 1 1 -> 1 -dvix002 divideint 2 1 -> 2 -dvix003 divideint 1 2 -> 0 -dvix004 divideint 2 2 -> 1 -dvix005 divideint 0 1 -> 0 -dvix006 divideint 0 2 -> 0 -dvix007 divideint 1 3 -> 0 -dvix008 divideint 2 3 -> 0 -dvix009 divideint 3 3 -> 1 - -dvix010 divideint 2.4 1 -> 2 -dvix011 divideint 2.4 -1 -> -2 -dvix012 divideint -2.4 1 -> -2 -dvix013 divideint -2.4 -1 -> 2 -dvix014 divideint 2.40 1 -> 2 -dvix015 divideint 2.400 1 -> 2 -dvix016 divideint 2.4 2 -> 1 -dvix017 divideint 2.400 2 -> 1 -dvix018 divideint 2. 2 -> 1 -dvix019 divideint 20 20 -> 1 - -dvix020 divideint 187 187 -> 1 -dvix021 divideint 5 2 -> 2 -dvix022 divideint 5 2.0 -> 2 -dvix023 divideint 5 2.000 -> 2 -dvix024 divideint 5 0.200 -> 25 -dvix025 divideint 5 0.200 -> 25 - -dvix030 divideint 1 2 -> 0 -dvix031 divideint 1 4 -> 0 -dvix032 divideint 1 8 -> 0 -dvix033 divideint 1 16 -> 0 -dvix034 divideint 1 32 -> 0 -dvix035 divideint 1 64 -> 0 -dvix040 divideint 1 -2 -> -0 -dvix041 divideint 1 -4 -> -0 -dvix042 divideint 1 -8 -> -0 -dvix043 divideint 1 -16 -> -0 -dvix044 divideint 1 -32 -> -0 -dvix045 divideint 1 -64 -> -0 -dvix050 divideint -1 2 -> -0 -dvix051 divideint -1 4 -> -0 -dvix052 divideint -1 8 -> -0 -dvix053 divideint -1 16 -> -0 -dvix054 divideint -1 32 -> -0 -dvix055 divideint -1 64 -> -0 -dvix060 divideint -1 -2 -> 0 -dvix061 divideint -1 -4 -> 0 -dvix062 divideint -1 -8 -> 0 -dvix063 divideint -1 -16 -> 0 -dvix064 divideint -1 -32 -> 0 -dvix065 divideint -1 -64 -> 0 - --- similar with powers of ten -dvix160 divideint 1 1 -> 1 -dvix161 divideint 1 10 -> 0 -dvix162 divideint 1 100 -> 0 -dvix163 divideint 1 1000 -> 0 -dvix164 divideint 1 10000 -> 0 -dvix165 divideint 1 100000 -> 0 -dvix166 divideint 1 1000000 -> 0 -dvix167 divideint 1 10000000 -> 0 -dvix168 divideint 1 100000000 -> 0 -dvix170 divideint 1 -1 -> -1 -dvix171 divideint 1 -10 -> -0 -dvix172 divideint 1 -100 -> -0 -dvix173 divideint 1 -1000 -> -0 -dvix174 divideint 1 -10000 -> -0 -dvix175 divideint 1 -100000 -> -0 -dvix176 divideint 1 -1000000 -> -0 -dvix177 divideint 1 -10000000 -> -0 -dvix178 divideint 1 -100000000 -> -0 -dvix180 divideint -1 1 -> -1 -dvix181 divideint -1 10 -> -0 -dvix182 divideint -1 100 -> -0 -dvix183 divideint -1 1000 -> -0 -dvix184 divideint -1 10000 -> -0 -dvix185 divideint -1 100000 -> -0 -dvix186 divideint -1 1000000 -> -0 -dvix187 divideint -1 10000000 -> -0 -dvix188 divideint -1 100000000 -> -0 -dvix190 divideint -1 -1 -> 1 -dvix191 divideint -1 -10 -> 0 -dvix192 divideint -1 -100 -> 0 -dvix193 divideint -1 -1000 -> 0 -dvix194 divideint -1 -10000 -> 0 -dvix195 divideint -1 -100000 -> 0 -dvix196 divideint -1 -1000000 -> 0 -dvix197 divideint -1 -10000000 -> 0 -dvix198 divideint -1 -100000000 -> 0 - --- some long operand cases here -dvix070 divideint 999999999 1 -> 999999999 -dvix071 divideint 999999999.4 1 -> 999999999 -dvix072 divideint 999999999.5 1 -> 999999999 -dvix073 divideint 999999999.9 1 -> 999999999 -dvix074 divideint 999999999.999 1 -> 999999999 -precision: 6 -dvix080 divideint 999999999 1 -> NaN Division_impossible -dvix081 divideint 99999999 1 -> NaN Division_impossible -dvix082 divideint 9999999 1 -> NaN Division_impossible -dvix083 divideint 999999 1 -> 999999 -dvix084 divideint 99999 1 -> 99999 -dvix085 divideint 9999 1 -> 9999 -dvix086 divideint 999 1 -> 999 -dvix087 divideint 99 1 -> 99 -dvix088 divideint 9 1 -> 9 - -precision: 9 -dvix090 divideint 0. 1 -> 0 -dvix091 divideint .0 1 -> 0 -dvix092 divideint 0.00 1 -> 0 -dvix093 divideint 0.00E+9 1 -> 0 -dvix094 divideint 0.0000E-50 1 -> 0 - -dvix100 divideint 1 1 -> 1 -dvix101 divideint 1 2 -> 0 -dvix102 divideint 1 3 -> 0 -dvix103 divideint 1 4 -> 0 -dvix104 divideint 1 5 -> 0 -dvix105 divideint 1 6 -> 0 -dvix106 divideint 1 7 -> 0 -dvix107 divideint 1 8 -> 0 -dvix108 divideint 1 9 -> 0 -dvix109 divideint 1 10 -> 0 -dvix110 divideint 1 1 -> 1 -dvix111 divideint 2 1 -> 2 -dvix112 divideint 3 1 -> 3 -dvix113 divideint 4 1 -> 4 -dvix114 divideint 5 1 -> 5 -dvix115 divideint 6 1 -> 6 -dvix116 divideint 7 1 -> 7 -dvix117 divideint 8 1 -> 8 -dvix118 divideint 9 1 -> 9 -dvix119 divideint 10 1 -> 10 - --- from DiagBigDecimal -dvix131 divideint 101.3 1 -> 101 -dvix132 divideint 101.0 1 -> 101 -dvix133 divideint 101.3 3 -> 33 -dvix134 divideint 101.0 3 -> 33 -dvix135 divideint 2.4 1 -> 2 -dvix136 divideint 2.400 1 -> 2 -dvix137 divideint 18 18 -> 1 -dvix138 divideint 1120 1000 -> 1 -dvix139 divideint 2.4 2 -> 1 -dvix140 divideint 2.400 2 -> 1 -dvix141 divideint 0.5 2.000 -> 0 -dvix142 divideint 8.005 7 -> 1 -dvix143 divideint 5 2 -> 2 -dvix144 divideint 0 2 -> 0 -dvix145 divideint 0.00 2 -> 0 - --- Others -dvix150 divideint 12345 4.999 -> 2469 -dvix151 divideint 12345 4.99 -> 2473 -dvix152 divideint 12345 4.9 -> 2519 -dvix153 divideint 12345 5 -> 2469 -dvix154 divideint 12345 5.1 -> 2420 -dvix155 divideint 12345 5.01 -> 2464 -dvix156 divideint 12345 5.001 -> 2468 -dvix157 divideint 101 7.6 -> 13 - --- Various flavours of divideint by 0 -maxexponent: 999999999 -minexponent: -999999999 -dvix201 divideint 0 0 -> NaN Division_undefined -dvix202 divideint 0.0E5 0 -> NaN Division_undefined -dvix203 divideint 0.000 0 -> NaN Division_undefined -dvix204 divideint 0.0001 0 -> Infinity Division_by_zero -dvix205 divideint 0.01 0 -> Infinity Division_by_zero -dvix206 divideint 0.1 0 -> Infinity Division_by_zero -dvix207 divideint 1 0 -> Infinity Division_by_zero -dvix208 divideint 1 0.0 -> Infinity Division_by_zero -dvix209 divideint 10 0.0 -> Infinity Division_by_zero -dvix210 divideint 1E+100 0.0 -> Infinity Division_by_zero -dvix211 divideint 1E+1000 0 -> Infinity Division_by_zero -dvix214 divideint -0.0001 0 -> -Infinity Division_by_zero -dvix215 divideint -0.01 0 -> -Infinity Division_by_zero -dvix216 divideint -0.1 0 -> -Infinity Division_by_zero -dvix217 divideint -1 0 -> -Infinity Division_by_zero -dvix218 divideint -1 0.0 -> -Infinity Division_by_zero -dvix219 divideint -10 0.0 -> -Infinity Division_by_zero -dvix220 divideint -1E+100 0.0 -> -Infinity Division_by_zero -dvix221 divideint -1E+1000 0 -> -Infinity Division_by_zero - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -dvix270 divideint 1 1e999999999 -> 0 -dvix271 divideint 1 0.9e999999999 -> 0 -dvix272 divideint 1 0.99e999999999 -> 0 -dvix273 divideint 1 0.999999999e999999999 -> 0 -dvix274 divideint 9e999999999 1 -> NaN Division_impossible -dvix275 divideint 9.9e999999999 1 -> NaN Division_impossible -dvix276 divideint 9.99e999999999 1 -> NaN Division_impossible -dvix277 divideint 9.99999999e999999999 1 -> NaN Division_impossible - -dvix280 divideint 0.1 9e-999999999 -> NaN Division_impossible -dvix281 divideint 0.1 99e-999999999 -> NaN Division_impossible -dvix282 divideint 0.1 999e-999999999 -> NaN Division_impossible - -dvix283 divideint 0.1 9e-999999998 -> NaN Division_impossible -dvix284 divideint 0.1 99e-999999998 -> NaN Division_impossible -dvix285 divideint 0.1 999e-999999998 -> NaN Division_impossible -dvix286 divideint 0.1 999e-999999997 -> NaN Division_impossible -dvix287 divideint 0.1 9999e-999999997 -> NaN Division_impossible -dvix288 divideint 0.1 99999e-999999997 -> NaN Division_impossible - --- GD edge cases: lhs smaller than rhs but more digits -dvix301 divideint 0.9 2 -> 0 -dvix302 divideint 0.9 2.0 -> 0 -dvix303 divideint 0.9 2.1 -> 0 -dvix304 divideint 0.9 2.00 -> 0 -dvix305 divideint 0.9 2.01 -> 0 -dvix306 divideint 0.12 1 -> 0 -dvix307 divideint 0.12 1.0 -> 0 -dvix308 divideint 0.12 1.00 -> 0 -dvix309 divideint 0.12 1.0 -> 0 -dvix310 divideint 0.12 1.00 -> 0 -dvix311 divideint 0.12 2 -> 0 -dvix312 divideint 0.12 2.0 -> 0 -dvix313 divideint 0.12 2.1 -> 0 -dvix314 divideint 0.12 2.00 -> 0 -dvix315 divideint 0.12 2.01 -> 0 - --- overflow and underflow tests [from divide] -maxexponent: 999999999 -minexponent: -999999999 -dvix330 divideint +1.23456789012345E-0 9E+999999999 -> 0 -dvix331 divideint 9E+999999999 +0.23456789012345E-0 -> NaN Division_impossible -dvix332 divideint +0.100 9E+999999999 -> 0 -dvix333 divideint 9E-999999999 +9.100 -> 0 -dvix335 divideint -1.23456789012345E-0 9E+999999999 -> -0 -dvix336 divideint 9E+999999999 -0.83456789012345E-0 -> NaN Division_impossible -dvix337 divideint -0.100 9E+999999999 -> -0 -dvix338 divideint 9E-999999999 -9.100 -> -0 - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -dvix401 divideint 12345678000 100 -> 123456780 -dvix402 divideint 1 12345678000 -> 0 -dvix403 divideint 1234567800 10 -> 123456780 -dvix404 divideint 1 1234567800 -> 0 -dvix405 divideint 1234567890 10 -> 123456789 -dvix406 divideint 1 1234567890 -> 0 -dvix407 divideint 1234567891 10 -> 123456789 -dvix408 divideint 1 1234567891 -> 0 -dvix409 divideint 12345678901 100 -> 123456789 -dvix410 divideint 1 12345678901 -> 0 -dvix411 divideint 1234567896 10 -> 123456789 -dvix412 divideint 1 1234567896 -> 0 -dvix413 divideint 12345678948 100 -> 123456789 -dvix414 divideint 12345678949 100 -> 123456789 -dvix415 divideint 12345678950 100 -> 123456789 -dvix416 divideint 12345678951 100 -> 123456789 -dvix417 divideint 12345678999 100 -> 123456789 - -precision: 15 -dvix441 divideint 12345678000 1 -> 12345678000 -dvix442 divideint 1 12345678000 -> 0 -dvix443 divideint 1234567800 1 -> 1234567800 -dvix444 divideint 1 1234567800 -> 0 -dvix445 divideint 1234567890 1 -> 1234567890 -dvix446 divideint 1 1234567890 -> 0 -dvix447 divideint 1234567891 1 -> 1234567891 -dvix448 divideint 1 1234567891 -> 0 -dvix449 divideint 12345678901 1 -> 12345678901 -dvix450 divideint 1 12345678901 -> 0 -dvix451 divideint 1234567896 1 -> 1234567896 -dvix452 divideint 1 1234567896 -> 0 - -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- more zeros, etc. -dvix531 divideint 5.00 1E-3 -> 5000 -dvix532 divideint 00.00 0.000 -> NaN Division_undefined -dvix533 divideint 00.00 0E-3 -> NaN Division_undefined -dvix534 divideint 0 -0 -> NaN Division_undefined -dvix535 divideint -0 0 -> NaN Division_undefined -dvix536 divideint -0 -0 -> NaN Division_undefined - -dvix541 divideint 0 -1 -> -0 -dvix542 divideint -0 -1 -> 0 -dvix543 divideint 0 1 -> 0 -dvix544 divideint -0 1 -> -0 -dvix545 divideint -1 0 -> -Infinity Division_by_zero -dvix546 divideint -1 -0 -> Infinity Division_by_zero -dvix547 divideint 1 0 -> Infinity Division_by_zero -dvix548 divideint 1 -0 -> -Infinity Division_by_zero - -dvix551 divideint 0.0 -1 -> -0 -dvix552 divideint -0.0 -1 -> 0 -dvix553 divideint 0.0 1 -> 0 -dvix554 divideint -0.0 1 -> -0 -dvix555 divideint -1.0 0 -> -Infinity Division_by_zero -dvix556 divideint -1.0 -0 -> Infinity Division_by_zero -dvix557 divideint 1.0 0 -> Infinity Division_by_zero -dvix558 divideint 1.0 -0 -> -Infinity Division_by_zero - -dvix561 divideint 0 -1.0 -> -0 -dvix562 divideint -0 -1.0 -> 0 -dvix563 divideint 0 1.0 -> 0 -dvix564 divideint -0 1.0 -> -0 -dvix565 divideint -1 0.0 -> -Infinity Division_by_zero -dvix566 divideint -1 -0.0 -> Infinity Division_by_zero -dvix567 divideint 1 0.0 -> Infinity Division_by_zero -dvix568 divideint 1 -0.0 -> -Infinity Division_by_zero - -dvix571 divideint 0.0 -1.0 -> -0 -dvix572 divideint -0.0 -1.0 -> 0 -dvix573 divideint 0.0 1.0 -> 0 -dvix574 divideint -0.0 1.0 -> -0 -dvix575 divideint -1.0 0.0 -> -Infinity Division_by_zero -dvix576 divideint -1.0 -0.0 -> Infinity Division_by_zero -dvix577 divideint 1.0 0.0 -> Infinity Division_by_zero -dvix578 divideint 1.0 -0.0 -> -Infinity Division_by_zero - --- Specials -dvix580 divideint Inf -Inf -> NaN Invalid_operation -dvix581 divideint Inf -1000 -> -Infinity -dvix582 divideint Inf -1 -> -Infinity -dvix583 divideint Inf -0 -> -Infinity -dvix584 divideint Inf 0 -> Infinity -dvix585 divideint Inf 1 -> Infinity -dvix586 divideint Inf 1000 -> Infinity -dvix587 divideint Inf Inf -> NaN Invalid_operation -dvix588 divideint -1000 Inf -> -0 -dvix589 divideint -Inf Inf -> NaN Invalid_operation -dvix590 divideint -1 Inf -> -0 -dvix591 divideint -0 Inf -> -0 -dvix592 divideint 0 Inf -> 0 -dvix593 divideint 1 Inf -> 0 -dvix594 divideint 1000 Inf -> 0 -dvix595 divideint Inf Inf -> NaN Invalid_operation - -dvix600 divideint -Inf -Inf -> NaN Invalid_operation -dvix601 divideint -Inf -1000 -> Infinity -dvix602 divideint -Inf -1 -> Infinity -dvix603 divideint -Inf -0 -> Infinity -dvix604 divideint -Inf 0 -> -Infinity -dvix605 divideint -Inf 1 -> -Infinity -dvix606 divideint -Inf 1000 -> -Infinity -dvix607 divideint -Inf Inf -> NaN Invalid_operation -dvix608 divideint -1000 Inf -> -0 -dvix609 divideint -Inf -Inf -> NaN Invalid_operation -dvix610 divideint -1 -Inf -> 0 -dvix611 divideint -0 -Inf -> 0 -dvix612 divideint 0 -Inf -> -0 -dvix613 divideint 1 -Inf -> -0 -dvix614 divideint 1000 -Inf -> -0 -dvix615 divideint Inf -Inf -> NaN Invalid_operation - -dvix621 divideint NaN -Inf -> NaN -dvix622 divideint NaN -1000 -> NaN -dvix623 divideint NaN -1 -> NaN -dvix624 divideint NaN -0 -> NaN -dvix625 divideint NaN 0 -> NaN -dvix626 divideint NaN 1 -> NaN -dvix627 divideint NaN 1000 -> NaN -dvix628 divideint NaN Inf -> NaN -dvix629 divideint NaN NaN -> NaN -dvix630 divideint -Inf NaN -> NaN -dvix631 divideint -1000 NaN -> NaN -dvix632 divideint -1 NaN -> NaN -dvix633 divideint -0 NaN -> NaN -dvix634 divideint 0 NaN -> NaN -dvix635 divideint 1 NaN -> NaN -dvix636 divideint 1000 NaN -> NaN -dvix637 divideint Inf NaN -> NaN - -dvix641 divideint sNaN -Inf -> NaN Invalid_operation -dvix642 divideint sNaN -1000 -> NaN Invalid_operation -dvix643 divideint sNaN -1 -> NaN Invalid_operation -dvix644 divideint sNaN -0 -> NaN Invalid_operation -dvix645 divideint sNaN 0 -> NaN Invalid_operation -dvix646 divideint sNaN 1 -> NaN Invalid_operation -dvix647 divideint sNaN 1000 -> NaN Invalid_operation -dvix648 divideint sNaN NaN -> NaN Invalid_operation -dvix649 divideint sNaN sNaN -> NaN Invalid_operation -dvix650 divideint NaN sNaN -> NaN Invalid_operation -dvix651 divideint -Inf sNaN -> NaN Invalid_operation -dvix652 divideint -1000 sNaN -> NaN Invalid_operation -dvix653 divideint -1 sNaN -> NaN Invalid_operation -dvix654 divideint -0 sNaN -> NaN Invalid_operation -dvix655 divideint 0 sNaN -> NaN Invalid_operation -dvix656 divideint 1 sNaN -> NaN Invalid_operation -dvix657 divideint 1000 sNaN -> NaN Invalid_operation -dvix658 divideint Inf sNaN -> NaN Invalid_operation -dvix659 divideint NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dvix661 divideint NaN9 -Inf -> NaN9 -dvix662 divideint NaN8 1000 -> NaN8 -dvix663 divideint NaN7 Inf -> NaN7 -dvix664 divideint -NaN6 NaN5 -> -NaN6 -dvix665 divideint -Inf NaN4 -> NaN4 -dvix666 divideint -1000 NaN3 -> NaN3 -dvix667 divideint Inf -NaN2 -> -NaN2 - -dvix671 divideint -sNaN99 -Inf -> -NaN99 Invalid_operation -dvix672 divideint sNaN98 -1 -> NaN98 Invalid_operation -dvix673 divideint sNaN97 NaN -> NaN97 Invalid_operation -dvix674 divideint sNaN96 sNaN94 -> NaN96 Invalid_operation -dvix675 divideint NaN95 sNaN93 -> NaN93 Invalid_operation -dvix676 divideint -Inf sNaN92 -> NaN92 Invalid_operation -dvix677 divideint 0 sNaN91 -> NaN91 Invalid_operation -dvix678 divideint Inf -sNaN90 -> -NaN90 Invalid_operation -dvix679 divideint NaN sNaN89 -> NaN89 Invalid_operation - --- some long operand cases again -precision: 8 -dvix710 divideint 100000001 1 -> NaN Division_impossible -dvix711 divideint 100000000.4 1 -> NaN Division_impossible -dvix712 divideint 100000000.5 1 -> NaN Division_impossible -dvix713 divideint 100000000.9 1 -> NaN Division_impossible -dvix714 divideint 100000000.999 1 -> NaN Division_impossible -precision: 6 -dvix720 divideint 100000000 1 -> NaN Division_impossible -dvix721 divideint 10000000 1 -> NaN Division_impossible -dvix722 divideint 1000000 1 -> NaN Division_impossible -dvix723 divideint 100000 1 -> 100000 -dvix724 divideint 10000 1 -> 10000 -dvix725 divideint 1000 1 -> 1000 -dvix726 divideint 100 1 -> 100 -dvix727 divideint 10 1 -> 10 -dvix728 divideint 1 1 -> 1 -dvix729 divideint 1 10 -> 0 - -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -dvix732 divideint 1 0.99e999999999 -> 0 -dvix733 divideint 1 0.999999999e999999999 -> 0 -dvix734 divideint 9e999999999 1 -> NaN Division_impossible -dvix735 divideint 9.9e999999999 1 -> NaN Division_impossible -dvix736 divideint 9.99e999999999 1 -> NaN Division_impossible -dvix737 divideint 9.99999999e999999999 1 -> NaN Division_impossible - -dvix740 divideint 0.1 9e-999999999 -> NaN Division_impossible -dvix741 divideint 0.1 99e-999999999 -> NaN Division_impossible -dvix742 divideint 0.1 999e-999999999 -> NaN Division_impossible - -dvix743 divideint 0.1 9e-999999998 -> NaN Division_impossible -dvix744 divideint 0.1 99e-999999998 -> NaN Division_impossible -dvix745 divideint 0.1 999e-999999998 -> NaN Division_impossible -dvix746 divideint 0.1 999e-999999997 -> NaN Division_impossible -dvix747 divideint 0.1 9999e-999999997 -> NaN Division_impossible -dvix748 divideint 0.1 99999e-999999997 -> NaN Division_impossible - - --- Null tests -dvix900 divideint 10 # -> NaN Invalid_operation -dvix901 divideint # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqAbs.decTest b/qdecimal/test/tc_full/dqAbs.decTest deleted file mode 100644 index 34ced4e..0000000 --- a/qdecimal/test/tc_full/dqAbs.decTest +++ /dev/null @@ -1,126 +0,0 @@ ------------------------------------------------------------------------- --- dqAbs.decTest -- decQuad absolute value, heeding sNaN -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqabs001 abs '1' -> '1' -dqabs002 abs '-1' -> '1' -dqabs003 abs '1.00' -> '1.00' -dqabs004 abs '-1.00' -> '1.00' -dqabs005 abs '0' -> '0' -dqabs006 abs '0.00' -> '0.00' -dqabs007 abs '00.0' -> '0.0' -dqabs008 abs '00.00' -> '0.00' -dqabs009 abs '00' -> '0' - -dqabs010 abs '-2' -> '2' -dqabs011 abs '2' -> '2' -dqabs012 abs '-2.00' -> '2.00' -dqabs013 abs '2.00' -> '2.00' -dqabs014 abs '-0' -> '0' -dqabs015 abs '-0.00' -> '0.00' -dqabs016 abs '-00.0' -> '0.0' -dqabs017 abs '-00.00' -> '0.00' -dqabs018 abs '-00' -> '0' - -dqabs020 abs '-2000000' -> '2000000' -dqabs021 abs '2000000' -> '2000000' - -dqabs030 abs '+0.1' -> '0.1' -dqabs031 abs '-0.1' -> '0.1' -dqabs032 abs '+0.01' -> '0.01' -dqabs033 abs '-0.01' -> '0.01' -dqabs034 abs '+0.001' -> '0.001' -dqabs035 abs '-0.001' -> '0.001' -dqabs036 abs '+0.000001' -> '0.000001' -dqabs037 abs '-0.000001' -> '0.000001' -dqabs038 abs '+0.000000000001' -> '1E-12' -dqabs039 abs '-0.000000000001' -> '1E-12' - --- examples from decArith -dqabs040 abs '2.1' -> '2.1' -dqabs041 abs '-100' -> '100' -dqabs042 abs '101.5' -> '101.5' -dqabs043 abs '-101.5' -> '101.5' - --- more fixed, potential LHS swaps/overlays if done by subtract 0 -dqabs060 abs '-56267E-10' -> '0.0000056267' -dqabs061 abs '-56267E-5' -> '0.56267' -dqabs062 abs '-56267E-2' -> '562.67' -dqabs063 abs '-56267E-1' -> '5626.7' -dqabs065 abs '-56267E-0' -> '56267' - --- subnormals and underflow - --- long operand tests -dqabs321 abs 1234567890123456 -> 1234567890123456 -dqabs322 abs 12345678000 -> 12345678000 -dqabs323 abs 1234567800 -> 1234567800 -dqabs324 abs 1234567890 -> 1234567890 -dqabs325 abs 1234567891 -> 1234567891 -dqabs326 abs 12345678901 -> 12345678901 -dqabs327 abs 1234567896 -> 1234567896 - --- zeros -dqabs111 abs 0 -> 0 -dqabs112 abs -0 -> 0 -dqabs113 abs 0E+6 -> 0E+6 -dqabs114 abs -0E+6 -> 0E+6 -dqabs115 abs 0.0000 -> 0.0000 -dqabs116 abs -0.0000 -> 0.0000 -dqabs117 abs 0E-141 -> 0E-141 -dqabs118 abs -0E-141 -> 0E-141 - --- full coefficients, alternating bits -dqabs121 abs 2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqabs122 abs -2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqabs123 abs 1341341341341341341341341341341341 -> 1341341341341341341341341341341341 -dqabs124 abs -1341341341341341341341341341341341 -> 1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqabs131 abs 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqabs132 abs 1E-6143 -> 1E-6143 -dqabs133 abs 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqabs134 abs 1E-6176 -> 1E-6176 Subnormal - -dqabs135 abs -1E-6176 -> 1E-6176 Subnormal -dqabs136 abs -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqabs137 abs -1E-6143 -> 1E-6143 -dqabs138 abs -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 - --- specials -dqabs520 abs 'Inf' -> 'Infinity' -dqabs521 abs '-Inf' -> 'Infinity' -dqabs522 abs NaN -> NaN -dqabs523 abs sNaN -> NaN Invalid_operation -dqabs524 abs NaN22 -> NaN22 -dqabs525 abs sNaN33 -> NaN33 Invalid_operation -dqabs526 abs -NaN22 -> -NaN22 -dqabs527 abs -sNaN33 -> -NaN33 Invalid_operation - --- Null tests -dqabs900 abs # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqAdd.decTest b/qdecimal/test/tc_full/dqAdd.decTest deleted file mode 100644 index 4a70410..0000000 --- a/qdecimal/test/tc_full/dqAdd.decTest +++ /dev/null @@ -1,1215 +0,0 @@ ------------------------------------------------------------------------- --- dqAdd.decTest -- decQuad addition -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests are for decQuads only; all arguments are --- representable in a decQuad -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- [first group are 'quick confidence check'] -dqadd001 add 1 1 -> 2 -dqadd002 add 2 3 -> 5 -dqadd003 add '5.75' '3.3' -> 9.05 -dqadd004 add '5' '-3' -> 2 -dqadd005 add '-5' '-3' -> -8 -dqadd006 add '-7' '2.5' -> -4.5 -dqadd007 add '0.7' '0.3' -> 1.0 -dqadd008 add '1.25' '1.25' -> 2.50 -dqadd009 add '1.23456789' '1.00000000' -> '2.23456789' -dqadd010 add '1.23456789' '1.00000011' -> '2.23456800' - --- 1234567890123456 1234567890123456 -dqadd011 add '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded -dqadd012 add '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded -dqadd013 add '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999' -dqadd014 add '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd015 add '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd016 add '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd017 add '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd018 add '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded -dqadd019 add '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded -dqadd020 add '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded - -dqadd021 add 0 1 -> 1 -dqadd022 add 1 1 -> 2 -dqadd023 add 2 1 -> 3 -dqadd024 add 3 1 -> 4 -dqadd025 add 4 1 -> 5 -dqadd026 add 5 1 -> 6 -dqadd027 add 6 1 -> 7 -dqadd028 add 7 1 -> 8 -dqadd029 add 8 1 -> 9 -dqadd030 add 9 1 -> 10 - --- some carrying effects -dqadd031 add '0.9998' '0.0000' -> '0.9998' -dqadd032 add '0.9998' '0.0001' -> '0.9999' -dqadd033 add '0.9998' '0.0002' -> '1.0000' -dqadd034 add '0.9998' '0.0003' -> '1.0001' - -dqadd035 add '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd036 add '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd037 add '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd038 add '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded -dqadd039 add '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded - --- symmetry: -dqadd040 add '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd041 add '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd042 add '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd044 add '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded -dqadd045 add '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded - --- same, without rounding -dqadd046 add '10000e+9' '7' -> '10000000000007' -dqadd047 add '10000e+9' '70' -> '10000000000070' -dqadd048 add '10000e+9' '700' -> '10000000000700' -dqadd049 add '10000e+9' '7000' -> '10000000007000' -dqadd050 add '10000e+9' '70000' -> '10000000070000' -dqadd051 add '10000e+9' '700000' -> '10000000700000' -dqadd052 add '10000e+9' '7000000' -> '10000007000000' - --- examples from decarith -dqadd053 add '12' '7.00' -> '19.00' -dqadd054 add '1.3' '-1.07' -> '0.23' -dqadd055 add '1.3' '-1.30' -> '0.00' -dqadd056 add '1.3' '-2.07' -> '-0.77' -dqadd057 add '1E+2' '1E+4' -> '1.01E+4' - --- leading zero preservation -dqadd061 add 1 '0.0001' -> '1.0001' -dqadd062 add 1 '0.00001' -> '1.00001' -dqadd063 add 1 '0.000001' -> '1.000001' -dqadd064 add 1 '0.0000001' -> '1.0000001' -dqadd065 add 1 '0.00000001' -> '1.00000001' - --- some funny zeros [in case of bad signum] -dqadd070 add 1 0 -> 1 -dqadd071 add 1 0. -> 1 -dqadd072 add 1 .0 -> 1.0 -dqadd073 add 1 0.0 -> 1.0 -dqadd074 add 1 0.00 -> 1.00 -dqadd075 add 0 1 -> 1 -dqadd076 add 0. 1 -> 1 -dqadd077 add .0 1 -> 1.0 -dqadd078 add 0.0 1 -> 1.0 -dqadd079 add 0.00 1 -> 1.00 - --- some carries -dqadd080 add 999999998 1 -> 999999999 -dqadd081 add 999999999 1 -> 1000000000 -dqadd082 add 99999999 1 -> 100000000 -dqadd083 add 9999999 1 -> 10000000 -dqadd084 add 999999 1 -> 1000000 -dqadd085 add 99999 1 -> 100000 -dqadd086 add 9999 1 -> 10000 -dqadd087 add 999 1 -> 1000 -dqadd088 add 99 1 -> 100 -dqadd089 add 9 1 -> 10 - - --- more LHS swaps -dqadd090 add '-56267E-10' 0 -> '-0.0000056267' -dqadd091 add '-56267E-6' 0 -> '-0.056267' -dqadd092 add '-56267E-5' 0 -> '-0.56267' -dqadd093 add '-56267E-4' 0 -> '-5.6267' -dqadd094 add '-56267E-3' 0 -> '-56.267' -dqadd095 add '-56267E-2' 0 -> '-562.67' -dqadd096 add '-56267E-1' 0 -> '-5626.7' -dqadd097 add '-56267E-0' 0 -> '-56267' -dqadd098 add '-5E-10' 0 -> '-5E-10' -dqadd099 add '-5E-7' 0 -> '-5E-7' -dqadd100 add '-5E-6' 0 -> '-0.000005' -dqadd101 add '-5E-5' 0 -> '-0.00005' -dqadd102 add '-5E-4' 0 -> '-0.0005' -dqadd103 add '-5E-1' 0 -> '-0.5' -dqadd104 add '-5E0' 0 -> '-5' -dqadd105 add '-5E1' 0 -> '-50' -dqadd106 add '-5E5' 0 -> '-500000' -dqadd107 add '-5E33' 0 -> '-5000000000000000000000000000000000' -dqadd108 add '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded -dqadd109 add '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded -dqadd110 add '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded -dqadd111 add '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded - --- more RHS swaps -dqadd113 add 0 '-56267E-10' -> '-0.0000056267' -dqadd114 add 0 '-56267E-6' -> '-0.056267' -dqadd116 add 0 '-56267E-5' -> '-0.56267' -dqadd117 add 0 '-56267E-4' -> '-5.6267' -dqadd119 add 0 '-56267E-3' -> '-56.267' -dqadd120 add 0 '-56267E-2' -> '-562.67' -dqadd121 add 0 '-56267E-1' -> '-5626.7' -dqadd122 add 0 '-56267E-0' -> '-56267' -dqadd123 add 0 '-5E-10' -> '-5E-10' -dqadd124 add 0 '-5E-7' -> '-5E-7' -dqadd125 add 0 '-5E-6' -> '-0.000005' -dqadd126 add 0 '-5E-5' -> '-0.00005' -dqadd127 add 0 '-5E-4' -> '-0.0005' -dqadd128 add 0 '-5E-1' -> '-0.5' -dqadd129 add 0 '-5E0' -> '-5' -dqadd130 add 0 '-5E1' -> '-50' -dqadd131 add 0 '-5E5' -> '-500000' -dqadd132 add 0 '-5E33' -> '-5000000000000000000000000000000000' -dqadd133 add 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded -dqadd134 add 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded -dqadd135 add 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded -dqadd136 add 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded - --- related -dqadd137 add 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded -dqadd138 add -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded -dqadd139 add '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded -dqadd140 add '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded -dqadd141 add 1E+29 0.0000 -> '100000000000000000000000000000.0000' -dqadd142 add 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded -dqadd143 add 0.000 1E+30 -> '1000000000000000000000000000000.000' -dqadd144 add 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded - --- [some of the next group are really constructor tests] -dqadd146 add '00.0' 0 -> '0.0' -dqadd147 add '0.00' 0 -> '0.00' -dqadd148 add 0 '0.00' -> '0.00' -dqadd149 add 0 '00.0' -> '0.0' -dqadd150 add '00.0' '0.00' -> '0.00' -dqadd151 add '0.00' '00.0' -> '0.00' -dqadd152 add '3' '.3' -> '3.3' -dqadd153 add '3.' '.3' -> '3.3' -dqadd154 add '3.0' '.3' -> '3.3' -dqadd155 add '3.00' '.3' -> '3.30' -dqadd156 add '3' '3' -> '6' -dqadd157 add '3' '+3' -> '6' -dqadd158 add '3' '-3' -> '0' -dqadd159 add '0.3' '-0.3' -> '0.0' -dqadd160 add '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -dqadd161 add '1E+12' '-1' -> '999999999999' -dqadd162 add '1E+12' '1.11' -> '1000000000001.11' -dqadd163 add '1.11' '1E+12' -> '1000000000001.11' -dqadd164 add '-1' '1E+12' -> '999999999999' -dqadd165 add '7E+12' '-1' -> '6999999999999' -dqadd166 add '7E+12' '1.11' -> '7000000000001.11' -dqadd167 add '1.11' '7E+12' -> '7000000000001.11' -dqadd168 add '-1' '7E+12' -> '6999999999999' - -rounding: half_up -dqadd170 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded -dqadd171 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded -dqadd172 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded -dqadd173 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded -dqadd174 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd175 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd176 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd177 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded -dqadd178 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd179 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd180 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd181 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd182 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd183 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded - --- and some more, including residue effects and different roundings -rounding: half_up -dqadd200 add '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' -dqadd201 add '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd202 add '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd203 add '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd204 add '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd205 add '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd206 add '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd207 add '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd208 add '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd209 add '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd210 add '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd211 add '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd212 add '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd213 add '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd214 add '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd215 add '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd216 add '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' -dqadd217 add '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd218 add '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd219 add '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded - -rounding: half_even -dqadd220 add '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' -dqadd221 add '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd222 add '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd223 add '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd224 add '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd225 add '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd226 add '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd227 add '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd228 add '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd229 add '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd230 add '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd231 add '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd232 add '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd233 add '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd234 add '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd235 add '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd236 add '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' -dqadd237 add '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd238 add '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd239 add '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded --- critical few with even bottom digit... -dqadd240 add '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded -dqadd241 add '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded -dqadd242 add '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded - -rounding: down -dqadd250 add '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' -dqadd251 add '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd252 add '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd253 add '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd254 add '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd255 add '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd256 add '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd257 add '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd258 add '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd259 add '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd260 add '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd261 add '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd262 add '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd263 add '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd264 add '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd265 add '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd266 add '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' -dqadd267 add '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd268 add '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd269 add '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded - --- 1 in last place tests -rounding: half_up -dqadd301 add -1 1 -> 0 -dqadd302 add 0 1 -> 1 -dqadd303 add 1 1 -> 2 -dqadd304 add 12 1 -> 13 -dqadd305 add 98 1 -> 99 -dqadd306 add 99 1 -> 100 -dqadd307 add 100 1 -> 101 -dqadd308 add 101 1 -> 102 -dqadd309 add -1 -1 -> -2 -dqadd310 add 0 -1 -> -1 -dqadd311 add 1 -1 -> 0 -dqadd312 add 12 -1 -> 11 -dqadd313 add 98 -1 -> 97 -dqadd314 add 99 -1 -> 98 -dqadd315 add 100 -1 -> 99 -dqadd316 add 101 -1 -> 100 - -dqadd321 add -0.01 0.01 -> 0.00 -dqadd322 add 0.00 0.01 -> 0.01 -dqadd323 add 0.01 0.01 -> 0.02 -dqadd324 add 0.12 0.01 -> 0.13 -dqadd325 add 0.98 0.01 -> 0.99 -dqadd326 add 0.99 0.01 -> 1.00 -dqadd327 add 1.00 0.01 -> 1.01 -dqadd328 add 1.01 0.01 -> 1.02 -dqadd329 add -0.01 -0.01 -> -0.02 -dqadd330 add 0.00 -0.01 -> -0.01 -dqadd331 add 0.01 -0.01 -> 0.00 -dqadd332 add 0.12 -0.01 -> 0.11 -dqadd333 add 0.98 -0.01 -> 0.97 -dqadd334 add 0.99 -0.01 -> 0.98 -dqadd335 add 1.00 -0.01 -> 0.99 -dqadd336 add 1.01 -0.01 -> 1.00 - --- some more cases where adding 0 affects the coefficient -dqadd340 add 1E+3 0 -> 1000 -dqadd341 add 1E+33 0 -> 1000000000000000000000000000000000 -dqadd342 add 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded -dqadd343 add 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded --- which simply follow from these cases ... -dqadd344 add 1E+3 1 -> 1001 -dqadd345 add 1E+33 1 -> 1000000000000000000000000000000001 -dqadd346 add 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd347 add 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded -dqadd348 add 1E+3 7 -> 1007 -dqadd349 add 1E+33 7 -> 1000000000000000000000000000000007 -dqadd350 add 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded -dqadd351 add 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded - --- tryzeros cases -rounding: half_up -dqadd360 add 0E+50 10000E+1 -> 1.0000E+5 -dqadd361 add 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded -dqadd362 add 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded -dqadd363 add 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact -dqadd364 add 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111 --- 1 234567890123456789012345678901234 - --- a curiosity from JSR 13 testing -rounding: half_down -dqadd370 add 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 -dqadd371 add 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact -rounding: half_up -dqadd372 add 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 -dqadd373 add 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact -rounding: half_even -dqadd374 add 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 -dqadd375 add 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact - --- ulp replacement tests -dqadd400 add 1 77e-32 -> 1.00000000000000000000000000000077 -dqadd401 add 1 77e-33 -> 1.000000000000000000000000000000077 -dqadd402 add 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded -dqadd403 add 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded -dqadd404 add 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd405 add 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd406 add 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd410 add 10 77e-32 -> 10.00000000000000000000000000000077 -dqadd411 add 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded -dqadd412 add 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded -dqadd413 add 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd414 add 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd415 add 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd416 add 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded - -dqadd420 add 77e-32 1 -> 1.00000000000000000000000000000077 -dqadd421 add 77e-33 1 -> 1.000000000000000000000000000000077 -dqadd422 add 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded -dqadd423 add 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded -dqadd424 add 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd425 add 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd426 add 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd430 add 77e-32 10 -> 10.00000000000000000000000000000077 -dqadd431 add 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded -dqadd432 add 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded -dqadd433 add 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd434 add 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd435 add 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd436 add 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded - --- fastpath boundaries --- 1234567890123456789012345678901234 -dqadd501 add '4444444444444444444444444444444444' '5555555555555555555555555555555555' -> '9999999999999999999999999999999999' -dqadd502 add '4444444444444444444444444444444444' '4555555555555555555555555555555555' -> '8999999999999999999999999999999999' -dqadd503 add '4444444444444444444444444444444444' '3555555555555555555055555555555555' -> '7999999999999999999499999999999999' -dqadd504 add '4444444444444444444444444444444444' '3955555555555555555555555555555555' -> '8399999999999999999999999999999999' -dqadd505 add '4444444444444444444444444444444444' '4955555555555555555555555555555555' -> '9399999999999999999999999999999999' -dqadd506 add '4444444444444444444444444444444444' '5955555555555555555555555555555555' -> 1.040000000000000000000000000000000E+34 Inexact Rounded -dqadd511 add '344444444444444444444444444444444' '555555555555555555555555555555555' -> '899999999999999999999999999999999' -dqadd512 add '34444444444444444444444444444444' '55555555555555555555555555555555' -> '89999999999999999999999999999999' -dqadd513 add '3444444444444444444444444444444' '5555555555555555555555555555555' -> '8999999999999999999999999999999' -dqadd514 add '344444444444444444444444444444' '555555555555555555555555555555' -> '899999999999999999999999999999' -dqadd515 add '34444444444444444444444444444' '55555555555555555555555555555' -> '89999999999999999999999999999' -dqadd516 add '3444444444444444444444444444' '5555555555555555555555555555' -> '8999999999999999999999999999' -dqadd517 add '344444444444444444444444444' '555555555555555555555555555' -> '899999999999999999999999999' -dqadd518 add '34444444444444444444444444' '55555555555555555555555555' -> '89999999999999999999999999' -dqadd519 add '3444444444444444444444444' '5555555555555555555555555' -> '8999999999999999999999999' -dqadd520 add '344444444444444444444444' '555555555555555555555555' -> '899999999999999999999999' -dqadd521 add '34444444444444444444444' '55555555555555555555555' -> '89999999999999999999999' -dqadd522 add '3444444444444444444444' '5555555555555555555555' -> '8999999999999999999999' -dqadd523 add '4444444444444444444444' '3333333333333333333333' -> '7777777777777777777777' -dqadd524 add '344444444444444444444' '555555555555555555555' -> '899999999999999999999' -dqadd525 add '34444444444444444444' '55555555555555555555' -> '89999999999999999999' -dqadd526 add '3444444444444444444' '5555555555555555555' -> '8999999999999999999' -dqadd527 add '344444444444444444' '555555555555555555' -> '899999999999999999' -dqadd528 add '34444444444444444' '55555555555555555' -> '89999999999999999' -dqadd529 add '3444444444444444' '5555555555555555' -> '8999999999999999' -dqadd530 add '344444444444444' '555555555555555' -> '899999999999999' -dqadd531 add '34444444444444' '55555555555555' -> '89999999999999' -dqadd532 add '3444444444444' '5555555555555' -> '8999999999999' -dqadd533 add '344444444444' '555555555555' -> '899999999999' -dqadd534 add '34444444444' '55555555555' -> '89999999999' -dqadd535 add '3444444444' '5555555555' -> '8999999999' -dqadd536 add '344444444' '555555555' -> '899999999' -dqadd537 add '34444444' '55555555' -> '89999999' -dqadd538 add '3444444' '5555555' -> '8999999' -dqadd539 add '344444' '555555' -> '899999' -dqadd540 add '34444' '55555' -> '89999' -dqadd541 add '3444' '5555' -> '8999' -dqadd542 add '344' '555' -> '899' -dqadd543 add '34' '55' -> '89' -dqadd544 add '3' '5' -> '8' - -dqadd545 add '3000004000000000000000000000000000' '3000000000000040000000000000000000' -> '6000004000000040000000000000000000' -dqadd546 add '3000000400000000000000000000000000' '4000000000000400000000000000000000' -> '7000000400000400000000000000000000' -dqadd547 add '3000000040000000000000000000000000' '5000000000004000000000000000000000' -> '8000000040004000000000000000000000' -dqadd548 add '4000000004000000000000000000000000' '3000000000040000000000000000000000' -> '7000000004040000000000000000000000' -dqadd549 add '4000000000400000000000000000000000' '4000000000400000000000000000000000' -> '8000000000800000000000000000000000' -dqadd550 add '4000000000040000000000000000000000' '5000000004000000000000000000000000' -> '9000000004040000000000000000000000' -dqadd551 add '5000000000004000000000000000000000' '3000000040000000000000000000000000' -> '8000000040004000000000000000000000' -dqadd552 add '5000000000000400000000000000000000' '4000000400000000000000000000000000' -> '9000000400000400000000000000000000' -dqadd553 add '5000000000000040000000000000000000' '5000004000000000000000000000000000' -> 1.000000400000004000000000000000000E+34 Rounded --- check propagation -dqadd554 add '8999999999999999999999999999999999' '0000000000000000000000000000000001' -> 9000000000000000000000000000000000 -dqadd555 add '0000000000000000000000000000000001' '8999999999999999999999999999999999' -> 9000000000000000000000000000000000 -dqadd556 add '4444444444444444444444444444444444' '4555555555555555555555555555555556' -> 9000000000000000000000000000000000 -dqadd557 add '4555555555555555555555555555555556' '4444444444444444444444444444444444' -> 9000000000000000000000000000000000 - --- negative ulps -dqadd6440 add 1 -77e-32 -> 0.99999999999999999999999999999923 -dqadd6441 add 1 -77e-33 -> 0.999999999999999999999999999999923 -dqadd6442 add 1 -77e-34 -> 0.9999999999999999999999999999999923 -dqadd6443 add 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded -dqadd6444 add 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded -dqadd6445 add 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd6446 add 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd6450 add 10 -77e-32 -> 9.99999999999999999999999999999923 -dqadd6451 add 10 -77e-33 -> 9.999999999999999999999999999999923 -dqadd6452 add 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded -dqadd6453 add 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded -dqadd6454 add 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd6455 add 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd6456 add 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded - -dqadd6460 add -77e-32 1 -> 0.99999999999999999999999999999923 -dqadd6461 add -77e-33 1 -> 0.999999999999999999999999999999923 -dqadd6462 add -77e-34 1 -> 0.9999999999999999999999999999999923 -dqadd6463 add -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded -dqadd6464 add -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded -dqadd6465 add -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd6466 add -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd6470 add -77e-32 10 -> 9.99999999999999999999999999999923 -dqadd6471 add -77e-33 10 -> 9.999999999999999999999999999999923 -dqadd6472 add -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded -dqadd6473 add -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded -dqadd6474 add -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd6475 add -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd6476 add -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded - --- negative ulps -dqadd6480 add -1 77e-32 -> -0.99999999999999999999999999999923 -dqadd6481 add -1 77e-33 -> -0.999999999999999999999999999999923 -dqadd6482 add -1 77e-34 -> -0.9999999999999999999999999999999923 -dqadd6483 add -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded -dqadd6484 add -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded -dqadd6485 add -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded -dqadd6486 add -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded - -dqadd6490 add -10 77e-32 -> -9.99999999999999999999999999999923 -dqadd6491 add -10 77e-33 -> -9.999999999999999999999999999999923 -dqadd6492 add -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded -dqadd6493 add -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded -dqadd6494 add -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd6495 add -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd6496 add -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded - -dqadd6500 add 77e-32 -1 -> -0.99999999999999999999999999999923 -dqadd6501 add 77e-33 -1 -> -0.999999999999999999999999999999923 -dqadd6502 add 77e-34 -1 -> -0.9999999999999999999999999999999923 -dqadd6503 add 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded -dqadd6504 add 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded -dqadd6505 add 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded -dqadd6506 add 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded - -dqadd6510 add 77e-32 -10 -> -9.99999999999999999999999999999923 -dqadd6511 add 77e-33 -10 -> -9.999999999999999999999999999999923 -dqadd6512 add 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded -dqadd6513 add 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded -dqadd6514 add 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd6515 add 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd6516 add 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded - --- and some more residue effects and different roundings -rounding: half_up -dqadd6540 add '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' -dqadd6541 add '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6542 add '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6543 add '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6544 add '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6545 add '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6546 add '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6547 add '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6548 add '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6549 add '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6550 add '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6551 add '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6552 add '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6553 add '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6554 add '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6555 add '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6556 add '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' -dqadd6557 add '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6558 add '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6559 add '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded - -rounding: half_even -dqadd6560 add '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' -dqadd6561 add '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6562 add '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6563 add '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6564 add '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6565 add '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6566 add '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6567 add '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd6568 add '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6569 add '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6570 add '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6571 add '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6572 add '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6573 add '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6574 add '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6575 add '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6576 add '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' -dqadd6577 add '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6578 add '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd6579 add '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded - --- critical few with even bottom digit... -dqadd7540 add '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded -dqadd7541 add '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded -dqadd7542 add '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded - -rounding: down -dqadd7550 add '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' -dqadd7551 add '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7552 add '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7553 add '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7554 add '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7555 add '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7556 add '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7557 add '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7558 add '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7559 add '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7560 add '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7561 add '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7562 add '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7563 add '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7564 add '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7565 add '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd7566 add '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' -dqadd7567 add '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd7568 add '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd7569 add '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded - --- more zeros, etc. -rounding: half_even - -dqadd7701 add 5.00 1.00E-3 -> 5.00100 -dqadd7702 add 00.00 0.000 -> 0.000 -dqadd7703 add 00.00 0E-3 -> 0.000 -dqadd7704 add 0E-3 00.00 -> 0.000 - -dqadd7710 add 0E+3 00.00 -> 0.00 -dqadd7711 add 0E+3 00.0 -> 0.0 -dqadd7712 add 0E+3 00. -> 0 -dqadd7713 add 0E+3 00.E+1 -> 0E+1 -dqadd7714 add 0E+3 00.E+2 -> 0E+2 -dqadd7715 add 0E+3 00.E+3 -> 0E+3 -dqadd7716 add 0E+3 00.E+4 -> 0E+3 -dqadd7717 add 0E+3 00.E+5 -> 0E+3 -dqadd7718 add 0E+3 -00.0 -> 0.0 -dqadd7719 add 0E+3 -00. -> 0 -dqadd7731 add 0E+3 -00.E+1 -> 0E+1 - -dqadd7720 add 00.00 0E+3 -> 0.00 -dqadd7721 add 00.0 0E+3 -> 0.0 -dqadd7722 add 00. 0E+3 -> 0 -dqadd7723 add 00.E+1 0E+3 -> 0E+1 -dqadd7724 add 00.E+2 0E+3 -> 0E+2 -dqadd7725 add 00.E+3 0E+3 -> 0E+3 -dqadd7726 add 00.E+4 0E+3 -> 0E+3 -dqadd7727 add 00.E+5 0E+3 -> 0E+3 -dqadd7728 add -00.00 0E+3 -> 0.00 -dqadd7729 add -00.0 0E+3 -> 0.0 -dqadd7730 add -00. 0E+3 -> 0 - -dqadd7732 add 0 0 -> 0 -dqadd7733 add 0 -0 -> 0 -dqadd7734 add -0 0 -> 0 -dqadd7735 add -0 -0 -> -0 -- IEEE 854 special case - -dqadd7736 add 1 -1 -> 0 -dqadd7737 add -1 -1 -> -2 -dqadd7738 add 1 1 -> 2 -dqadd7739 add -1 1 -> 0 - -dqadd7741 add 0 -1 -> -1 -dqadd7742 add -0 -1 -> -1 -dqadd7743 add 0 1 -> 1 -dqadd7744 add -0 1 -> 1 -dqadd7745 add -1 0 -> -1 -dqadd7746 add -1 -0 -> -1 -dqadd7747 add 1 0 -> 1 -dqadd7748 add 1 -0 -> 1 - -dqadd7751 add 0.0 -1 -> -1.0 -dqadd7752 add -0.0 -1 -> -1.0 -dqadd7753 add 0.0 1 -> 1.0 -dqadd7754 add -0.0 1 -> 1.0 -dqadd7755 add -1.0 0 -> -1.0 -dqadd7756 add -1.0 -0 -> -1.0 -dqadd7757 add 1.0 0 -> 1.0 -dqadd7758 add 1.0 -0 -> 1.0 - -dqadd7761 add 0 -1.0 -> -1.0 -dqadd7762 add -0 -1.0 -> -1.0 -dqadd7763 add 0 1.0 -> 1.0 -dqadd7764 add -0 1.0 -> 1.0 -dqadd7765 add -1 0.0 -> -1.0 -dqadd7766 add -1 -0.0 -> -1.0 -dqadd7767 add 1 0.0 -> 1.0 -dqadd7768 add 1 -0.0 -> 1.0 - -dqadd7771 add 0.0 -1.0 -> -1.0 -dqadd7772 add -0.0 -1.0 -> -1.0 -dqadd7773 add 0.0 1.0 -> 1.0 -dqadd7774 add -0.0 1.0 -> 1.0 -dqadd7775 add -1.0 0.0 -> -1.0 -dqadd7776 add -1.0 -0.0 -> -1.0 -dqadd7777 add 1.0 0.0 -> 1.0 -dqadd7778 add 1.0 -0.0 -> 1.0 - --- Specials -dqadd7780 add -Inf -Inf -> -Infinity -dqadd7781 add -Inf -1000 -> -Infinity -dqadd7782 add -Inf -1 -> -Infinity -dqadd7783 add -Inf -0 -> -Infinity -dqadd7784 add -Inf 0 -> -Infinity -dqadd7785 add -Inf 1 -> -Infinity -dqadd7786 add -Inf 1000 -> -Infinity -dqadd7787 add -1000 -Inf -> -Infinity -dqadd7788 add -Inf -Inf -> -Infinity -dqadd7789 add -1 -Inf -> -Infinity -dqadd7790 add -0 -Inf -> -Infinity -dqadd7791 add 0 -Inf -> -Infinity -dqadd7792 add 1 -Inf -> -Infinity -dqadd7793 add 1000 -Inf -> -Infinity -dqadd7794 add Inf -Inf -> NaN Invalid_operation - -dqadd7800 add Inf -Inf -> NaN Invalid_operation -dqadd7801 add Inf -1000 -> Infinity -dqadd7802 add Inf -1 -> Infinity -dqadd7803 add Inf -0 -> Infinity -dqadd7804 add Inf 0 -> Infinity -dqadd7805 add Inf 1 -> Infinity -dqadd7806 add Inf 1000 -> Infinity -dqadd7807 add Inf Inf -> Infinity -dqadd7808 add -1000 Inf -> Infinity -dqadd7809 add -Inf Inf -> NaN Invalid_operation -dqadd7810 add -1 Inf -> Infinity -dqadd7811 add -0 Inf -> Infinity -dqadd7812 add 0 Inf -> Infinity -dqadd7813 add 1 Inf -> Infinity -dqadd7814 add 1000 Inf -> Infinity -dqadd7815 add Inf Inf -> Infinity - -dqadd7821 add NaN -Inf -> NaN -dqadd7822 add NaN -1000 -> NaN -dqadd7823 add NaN -1 -> NaN -dqadd7824 add NaN -0 -> NaN -dqadd7825 add NaN 0 -> NaN -dqadd7826 add NaN 1 -> NaN -dqadd7827 add NaN 1000 -> NaN -dqadd7828 add NaN Inf -> NaN -dqadd7829 add NaN NaN -> NaN -dqadd7830 add -Inf NaN -> NaN -dqadd7831 add -1000 NaN -> NaN -dqadd7832 add -1 NaN -> NaN -dqadd7833 add -0 NaN -> NaN -dqadd7834 add 0 NaN -> NaN -dqadd7835 add 1 NaN -> NaN -dqadd7836 add 1000 NaN -> NaN -dqadd7837 add Inf NaN -> NaN - -dqadd7841 add sNaN -Inf -> NaN Invalid_operation -dqadd7842 add sNaN -1000 -> NaN Invalid_operation -dqadd7843 add sNaN -1 -> NaN Invalid_operation -dqadd7844 add sNaN -0 -> NaN Invalid_operation -dqadd7845 add sNaN 0 -> NaN Invalid_operation -dqadd7846 add sNaN 1 -> NaN Invalid_operation -dqadd7847 add sNaN 1000 -> NaN Invalid_operation -dqadd7848 add sNaN NaN -> NaN Invalid_operation -dqadd7849 add sNaN sNaN -> NaN Invalid_operation -dqadd7850 add NaN sNaN -> NaN Invalid_operation -dqadd7851 add -Inf sNaN -> NaN Invalid_operation -dqadd7852 add -1000 sNaN -> NaN Invalid_operation -dqadd7853 add -1 sNaN -> NaN Invalid_operation -dqadd7854 add -0 sNaN -> NaN Invalid_operation -dqadd7855 add 0 sNaN -> NaN Invalid_operation -dqadd7856 add 1 sNaN -> NaN Invalid_operation -dqadd7857 add 1000 sNaN -> NaN Invalid_operation -dqadd7858 add Inf sNaN -> NaN Invalid_operation -dqadd7859 add NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqadd7861 add NaN1 -Inf -> NaN1 -dqadd7862 add +NaN2 -1000 -> NaN2 -dqadd7863 add NaN3 1000 -> NaN3 -dqadd7864 add NaN4 Inf -> NaN4 -dqadd7865 add NaN5 +NaN6 -> NaN5 -dqadd7866 add -Inf NaN7 -> NaN7 -dqadd7867 add -1000 NaN8 -> NaN8 -dqadd7868 add 1000 NaN9 -> NaN9 -dqadd7869 add Inf +NaN10 -> NaN10 -dqadd7871 add sNaN11 -Inf -> NaN11 Invalid_operation -dqadd7872 add sNaN12 -1000 -> NaN12 Invalid_operation -dqadd7873 add sNaN13 1000 -> NaN13 Invalid_operation -dqadd7874 add sNaN14 NaN17 -> NaN14 Invalid_operation -dqadd7875 add sNaN15 sNaN18 -> NaN15 Invalid_operation -dqadd7876 add NaN16 sNaN19 -> NaN19 Invalid_operation -dqadd7877 add -Inf +sNaN20 -> NaN20 Invalid_operation -dqadd7878 add -1000 sNaN21 -> NaN21 Invalid_operation -dqadd7879 add 1000 sNaN22 -> NaN22 Invalid_operation -dqadd7880 add Inf sNaN23 -> NaN23 Invalid_operation -dqadd7881 add +NaN25 +sNaN24 -> NaN24 Invalid_operation -dqadd7882 add -NaN26 NaN28 -> -NaN26 -dqadd7883 add -sNaN27 sNaN29 -> -NaN27 Invalid_operation -dqadd7884 add 1000 -NaN30 -> -NaN30 -dqadd7885 add 1000 -sNaN31 -> -NaN31 Invalid_operation - --- Here we explore near the boundary of rounding a subnormal to Nmin -dqadd7575 add 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal -dqadd7576 add -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal - --- check overflow edge case --- 1234567890123456 -dqadd7972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqadd7973 add 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7974 add 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7975 add 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded -dqadd7976 add 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded -dqadd7977 add 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded -dqadd7978 add 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded -dqadd7979 add 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded -dqadd7980 add 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded -dqadd7981 add 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7982 add 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7983 add 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7984 add 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded - -dqadd7985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 -dqadd7986 add -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7987 add -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7988 add -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded -dqadd7989 add -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded -dqadd7990 add -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded -dqadd7991 add -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded -dqadd7992 add -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded -dqadd7993 add -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded -dqadd7994 add -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7995 add -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7996 add -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd7997 add -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded - --- And for round down full and subnormal results -rounding: down -dqadd71100 add 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact -dqadd71101 add 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact -dqadd71103 add +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact -dqadd71104 add 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact -dqadd71105 add 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact -dqadd71106 add 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact -dqadd71107 add 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact -dqadd71108 add 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact -dqadd71109 add 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact - -rounding: ceiling -dqadd71110 add -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact -dqadd71111 add -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact -dqadd71113 add -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact -dqadd71114 add -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact -dqadd71115 add -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact -dqadd71116 add -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact -dqadd71117 add -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact -dqadd71118 add -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact -dqadd71119 add -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact - --- tests based on Gunnar Degnbol's edge case -rounding: half_even - -dqadd71300 add 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71310 add 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71311 add 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71312 add 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71313 add 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71314 add 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71315 add 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71316 add 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71317 add 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71318 add 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71319 add 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71320 add 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71321 add 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71322 add 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71323 add 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71324 add 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71325 add 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71326 add 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71327 add 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71328 add 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71329 add 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71330 add 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71331 add 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71332 add 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71333 add 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71334 add 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71335 add 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71336 add 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71337 add 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71338 add 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71339 add 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded - -dqadd71340 add 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded -dqadd71341 add 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded - -dqadd71349 add 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71350 add 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71351 add 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71352 add 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71353 add 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71354 add 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71355 add 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71356 add 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71357 add 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71358 add 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71359 add 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71360 add 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71361 add 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71362 add 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71363 add 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71364 add 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd71365 add 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71367 add 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71368 add 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71369 add 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71370 add 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71371 add 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71372 add 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71373 add 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71374 add 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71375 add 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71376 add 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71377 add 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71378 add 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71379 add 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71380 add 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71381 add 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71382 add 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71383 add 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71384 add 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71385 add 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71386 add 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71387 add 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71388 add 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71389 add 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71390 add 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71391 add 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71392 add 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71393 add 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71394 add 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71395 add 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd71396 add 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -dqadd71420 add 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345 -dqadd71421 add 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345 -dqadd71422 add 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345 -dqadd71423 add 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345 -dqadd71424 add 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345 -dqadd71425 add 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345 -dqadd71426 add 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345 -dqadd71427 add 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7 -dqadd71428 add 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8 -dqadd71429 add 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9 -dqadd71430 add 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10 -dqadd71431 add 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11 -dqadd71432 add 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12 -dqadd71433 add 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13 -dqadd71434 add 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14 -dqadd71435 add 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15 -dqadd71436 add 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16 -dqadd71437 add 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17 -dqadd71438 add 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18 -dqadd71439 add 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19 -dqadd71440 add 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20 -dqadd71441 add 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21 -dqadd71442 add 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22 -dqadd71443 add 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23 -dqadd71444 add 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24 -dqadd71445 add 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25 -dqadd71446 add 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26 -dqadd71447 add 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27 -dqadd71448 add 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28 -dqadd71449 add 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29 -dqadd71450 add 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30 -dqadd71451 add 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31 -dqadd71452 add 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32 -dqadd71453 add 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33 -dqadd71454 add 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34 -dqadd71455 add 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35 -dqadd71456 add 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36 - --- same, reversed 0 -dqadd71460 add 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345 -dqadd71461 add 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345 -dqadd71462 add 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345 -dqadd71463 add 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345 -dqadd71464 add 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345 -dqadd71465 add 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345 -dqadd71466 add 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345 -dqadd71467 add 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7 -dqadd71468 add 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8 -dqadd71469 add 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9 -dqadd71470 add 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10 -dqadd71471 add 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11 -dqadd71472 add 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12 -dqadd71473 add 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13 -dqadd71474 add 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14 -dqadd71475 add 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15 -dqadd71476 add 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16 -dqadd71477 add 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17 -dqadd71478 add 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18 -dqadd71479 add 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19 -dqadd71480 add 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20 -dqadd71481 add 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21 -dqadd71482 add 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22 -dqadd71483 add 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23 -dqadd71484 add 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24 -dqadd71485 add 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25 -dqadd71486 add 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26 -dqadd71487 add 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27 -dqadd71488 add 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28 -dqadd71489 add 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29 -dqadd71490 add 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30 -dqadd71491 add 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31 -dqadd71492 add 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32 -dqadd71493 add 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33 -dqadd71494 add 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34 -dqadd71495 add 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35 -dqadd71496 add 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36 - --- same, Es on the 0 -dqadd71500 add 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345 -dqadd71501 add 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345 -dqadd71502 add 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345 -dqadd71503 add 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345 -dqadd71504 add 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345 -dqadd71505 add 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345 -dqadd71506 add 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345 -dqadd71507 add 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345 -dqadd71508 add 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345 -dqadd71509 add 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345 -dqadd71510 add 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345 -dqadd71511 add 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345 -dqadd71512 add 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345 -dqadd71513 add 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345 -dqadd71514 add 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345 -dqadd71515 add 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345 -dqadd71516 add 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345 -dqadd71517 add 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345 -dqadd71518 add 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345 -dqadd71519 add 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345 -dqadd71520 add 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345 -dqadd71521 add 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345 -dqadd71522 add 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345 -dqadd71523 add 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345 -dqadd71524 add 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345 -dqadd71525 add 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345 -dqadd71526 add 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345 -dqadd71527 add 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345 -dqadd71528 add 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345 -dqadd71529 add 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345 -dqadd71530 add 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345 -dqadd71531 add 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345 -dqadd71532 add 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345 -dqadd71533 add 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345 --- next four flag Rounded because the 0 extends the result -dqadd71534 add 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded -dqadd71535 add 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded -dqadd71536 add 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded -dqadd71537 add 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -rounding: half_up --- exact zeros from zeros -dqadd71600 add 0 0E-19 -> 0E-19 -dqadd71601 add -0 0E-19 -> 0E-19 -dqadd71602 add 0 -0E-19 -> 0E-19 -dqadd71603 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd71611 add -11 11 -> 0 -dqadd71612 add 11 -11 -> 0 - -rounding: half_down --- exact zeros from zeros -dqadd71620 add 0 0E-19 -> 0E-19 -dqadd71621 add -0 0E-19 -> 0E-19 -dqadd71622 add 0 -0E-19 -> 0E-19 -dqadd71623 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd71631 add -11 11 -> 0 -dqadd71632 add 11 -11 -> 0 - -rounding: half_even --- exact zeros from zeros -dqadd71640 add 0 0E-19 -> 0E-19 -dqadd71641 add -0 0E-19 -> 0E-19 -dqadd71642 add 0 -0E-19 -> 0E-19 -dqadd71643 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd71651 add -11 11 -> 0 -dqadd71652 add 11 -11 -> 0 - -rounding: up --- exact zeros from zeros -dqadd71660 add 0 0E-19 -> 0E-19 -dqadd71661 add -0 0E-19 -> 0E-19 -dqadd71662 add 0 -0E-19 -> 0E-19 -dqadd71663 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd71671 add -11 11 -> 0 -dqadd71672 add 11 -11 -> 0 - -rounding: down --- exact zeros from zeros -dqadd71680 add 0 0E-19 -> 0E-19 -dqadd71681 add -0 0E-19 -> 0E-19 -dqadd71682 add 0 -0E-19 -> 0E-19 -dqadd71683 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd71691 add -11 11 -> 0 -dqadd71692 add 11 -11 -> 0 - -rounding: ceiling --- exact zeros from zeros -dqadd71700 add 0 0E-19 -> 0E-19 -dqadd71701 add -0 0E-19 -> 0E-19 -dqadd71702 add 0 -0E-19 -> 0E-19 -dqadd71703 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd71711 add -11 11 -> 0 -dqadd71712 add 11 -11 -> 0 - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -dqadd71720 add 0 0E-19 -> 0E-19 -dqadd71721 add -0 0E-19 -> -0E-19 -- * -dqadd71722 add 0 -0E-19 -> -0E-19 -- * -dqadd71723 add -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd71731 add -11 11 -> -0 -- * -dqadd71732 add 11 -11 -> -0 -- * - --- Examples from SQL proposal (Krishna Kulkarni) -dqadd71741 add 130E-2 120E-2 -> 2.50 -dqadd71742 add 130E-2 12E-1 -> 2.50 -dqadd71743 add 130E-2 1E0 -> 2.30 -dqadd71744 add 1E2 1E4 -> 1.01E+4 -dqadd71745 add 130E-2 -120E-2 -> 0.10 -dqadd71746 add 130E-2 -12E-1 -> 0.10 -dqadd71747 add 130E-2 -1E0 -> 0.30 -dqadd71748 add 1E2 -1E4 -> -9.9E+3 - --- Gappy coefficients; check residue handling even with full coefficient gap -rounding: half_even - -dqadd75001 add 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457 -dqadd75002 add 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded -dqadd75003 add 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75004 add 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75005 add 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75006 add 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75007 add 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75008 add 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75009 add 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75010 add 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75011 add 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75012 add 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75013 add 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75014 add 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75015 add 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75016 add 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75017 add 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75018 add 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75019 add 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75020 add 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd75021 add 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded - --- widening second argument at gap -dqadd75030 add 12398765432112345678945678 1 -> 12398765432112345678945679 -dqadd75031 add 12398765432112345678945678 0.1 -> 12398765432112345678945678.1 -dqadd75032 add 12398765432112345678945678 0.12 -> 12398765432112345678945678.12 -dqadd75033 add 12398765432112345678945678 0.123 -> 12398765432112345678945678.123 -dqadd75034 add 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234 -dqadd75035 add 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345 -dqadd75036 add 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456 -dqadd75037 add 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567 -dqadd75038 add 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678 -dqadd75039 add 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75040 add 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded -dqadd75041 add 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded -dqadd75042 add 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75043 add 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75044 add 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75045 add 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75046 add 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75047 add 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75048 add 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd75049 add 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded --- 90123456 -rounding: half_even -dqadd75050 add 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded -dqadd75051 add 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded -dqadd75052 add 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded -dqadd75053 add 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded -dqadd75054 add 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded -dqadd75055 add 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded -dqadd75056 add 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded -dqadd75057 add 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded -dqadd75060 add 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded -dqadd75061 add 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded -dqadd75062 add 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded -dqadd75063 add 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded -dqadd75064 add 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded -dqadd75065 add 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded -dqadd75066 add 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded -dqadd75067 add 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded --- far-out residues (full coefficient gap is 16+15 digits) -rounding: up -dqadd75070 add 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001 -dqadd75071 add 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75072 add 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75073 add 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75074 add 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75075 add 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75076 add 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75077 add 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75078 add 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75079 add 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75080 add 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75081 add 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75082 add 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75083 add 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75084 add 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75085 add 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75086 add 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75087 add 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75088 add 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd75089 add 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded - --- Null tests -dqadd9990 add 10 # -> NaN Invalid_operation -dqadd9991 add # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqAnd.decTest b/qdecimal/test/tc_full/dqAnd.decTest deleted file mode 100644 index e869a02..0000000 --- a/qdecimal/test/tc_full/dqAnd.decTest +++ /dev/null @@ -1,420 +0,0 @@ ------------------------------------------------------------------------- --- dqAnd.decTest -- digitwise logical AND for decQuads -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check (truth table) -dqand001 and 0 0 -> 0 -dqand002 and 0 1 -> 0 -dqand003 and 1 0 -> 0 -dqand004 and 1 1 -> 1 -dqand005 and 1100 1010 -> 1000 --- and at msd and msd-1 --- 1234567890123456789012345678901234 -dqand006 and 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqand007 and 0000000000000000000000000000000000 1000000000000000000000000000000000 -> 0 -dqand008 and 1000000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqand009 and 1000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000 -dqand010 and 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqand011 and 0000000000000000000000000000000000 0100000000000000000000000000000000 -> 0 -dqand012 and 0100000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqand013 and 0100000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000 - --- Various lengths --- 1234567890123456789012345678901234 - -dqand601 and 0111111111111111111111111111111111 1111111111111111111111111111111111 -> 111111111111111111111111111111111 -dqand602 and 1011111111111111111111111111111111 1111111111111111111111111111111111 -> 1011111111111111111111111111111111 -dqand603 and 1101111111111111111111111111111111 1111111111111111111111111111111111 -> 1101111111111111111111111111111111 -dqand604 and 1110111111111111111111111111111111 1111111111111111111111111111111111 -> 1110111111111111111111111111111111 -dqand605 and 1111011111111111111111111111111111 1111111111111111111111111111111111 -> 1111011111111111111111111111111111 -dqand606 and 1111101111111111111111111111111111 1111111111111111111111111111111111 -> 1111101111111111111111111111111111 -dqand607 and 1111110111111111111111111111111111 1111111111111111111111111111111111 -> 1111110111111111111111111111111111 -dqand608 and 1111111011111111111111111111111111 1111111111111111111111111111111111 -> 1111111011111111111111111111111111 -dqand609 and 1111111101111111111111111111111111 1111111111111111111111111111111111 -> 1111111101111111111111111111111111 -dqand610 and 1111111110111111111111111111111111 1111111111111111111111111111111111 -> 1111111110111111111111111111111111 -dqand611 and 1111111111011111111111111111111111 1111111111111111111111111111111111 -> 1111111111011111111111111111111111 -dqand612 and 1111111111101111111111111111111111 1111111111111111111111111111111111 -> 1111111111101111111111111111111111 -dqand613 and 1111111111110111111111111111111111 1111111111111111111111111111111111 -> 1111111111110111111111111111111111 -dqand614 and 1111111111111011111111111111111111 1111111111111111111111111111111111 -> 1111111111111011111111111111111111 -dqand615 and 1111111111111101111111111111111111 1111111111111111111111111111111111 -> 1111111111111101111111111111111111 -dqand616 and 1111111111111110111111111111111111 1111111111111111111111111111111111 -> 1111111111111110111111111111111111 -dqand617 and 1111111111111111011111111111111111 1111111111111111111111111111111111 -> 1111111111111111011111111111111111 -dqand618 and 1111111111111111101111111111111111 1111111111111111111111111111111111 -> 1111111111111111101111111111111111 -dqand619 and 1111111111111111110111111111111111 1111111111111111111111111111111111 -> 1111111111111111110111111111111111 -dqand620 and 1111111111111111111011111111111111 1111111111111111111111111111111111 -> 1111111111111111111011111111111111 -dqand621 and 1111111111111111111101111111111111 1111111111111111111111111111111111 -> 1111111111111111111101111111111111 -dqand622 and 1111111111111111111110111111111111 1111111111111111111111111111111111 -> 1111111111111111111110111111111111 -dqand623 and 1111111111111111111111011111111111 1111111111111111111111111111111111 -> 1111111111111111111111011111111111 -dqand624 and 1111111111111111111111101111111111 1111111111111111111111111111111111 -> 1111111111111111111111101111111111 -dqand625 and 1111111111111111111111110111111111 1111111111111111111111111111111111 -> 1111111111111111111111110111111111 -dqand626 and 1111111111111111111111111011111111 1111111111111111111111111111111111 -> 1111111111111111111111111011111111 -dqand627 and 1111111111111111111111111101111111 1111111111111111111111111111111111 -> 1111111111111111111111111101111111 -dqand628 and 1111111111111111111111111110111111 1111111111111111111111111111111111 -> 1111111111111111111111111110111111 -dqand629 and 1111111111111111111111111111011111 1111111111111111111111111111111111 -> 1111111111111111111111111111011111 -dqand630 and 1111111111111111111111111111101111 1111111111111111111111111111111111 -> 1111111111111111111111111111101111 -dqand631 and 1111111111111111111111111111110111 1111111111111111111111111111111111 -> 1111111111111111111111111111110111 -dqand632 and 1111111111111111111111111111111011 1111111111111111111111111111111111 -> 1111111111111111111111111111111011 -dqand633 and 1111111111111111111111111111111101 1111111111111111111111111111111111 -> 1111111111111111111111111111111101 -dqand634 and 1111111111111111111111111111111110 1111111111111111111111111111111111 -> 1111111111111111111111111111111110 - -dqand641 and 1111111111111111111111111111111111 0111111111111111111111111111111111 -> 111111111111111111111111111111111 -dqand642 and 1111111111111111111111111111111111 1011111111111111111111111111111111 -> 1011111111111111111111111111111111 -dqand643 and 1111111111111111111111111111111111 1101111111111111111111111111111111 -> 1101111111111111111111111111111111 -dqand644 and 1111111111111111111111111111111111 1110111111111111111111111111111111 -> 1110111111111111111111111111111111 -dqand645 and 1111111111111111111111111111111111 1111011111111111111111111111111111 -> 1111011111111111111111111111111111 -dqand646 and 1111111111111111111111111111111111 1111101111111111111111111111111111 -> 1111101111111111111111111111111111 -dqand647 and 1111111111111111111111111111111111 1111110111111111111111111111111111 -> 1111110111111111111111111111111111 -dqand648 and 1111111111111111111111111111111111 1111111011111111111111111111111111 -> 1111111011111111111111111111111111 -dqand649 and 1111111111111111111111111111111111 1111111101111111111111111111111111 -> 1111111101111111111111111111111111 -dqand650 and 1111111111111111111111111111111111 1111111110111111111111111111111111 -> 1111111110111111111111111111111111 -dqand651 and 1111111111111111111111111111111111 1111111111011111111111111111111111 -> 1111111111011111111111111111111111 -dqand652 and 1111111111111111111111111111111111 1111111111101111111111111111111111 -> 1111111111101111111111111111111111 -dqand653 and 1111111111111111111111111111111111 1111111111110111111111111111111111 -> 1111111111110111111111111111111111 -dqand654 and 1111111111111111111111111111111111 1111111111111011111111111111111111 -> 1111111111111011111111111111111111 -dqand655 and 1111111111111111111111111111111111 1111111111111101111111111111111111 -> 1111111111111101111111111111111111 -dqand656 and 1111111111111111111111111111111111 1111111111111110111111111111111111 -> 1111111111111110111111111111111111 -dqand657 and 1111111111111111111111111111111111 1111111111111111011111111111111111 -> 1111111111111111011111111111111111 -dqand658 and 1111111111111111111111111111111111 1111111111111111101111111111111111 -> 1111111111111111101111111111111111 -dqand659 and 1111111111111111111111111111111111 1111111111111111110111111111111111 -> 1111111111111111110111111111111111 -dqand660 and 1111111111111111111111111111111111 1111111111111111111011111111111111 -> 1111111111111111111011111111111111 -dqand661 and 1111111111111111111111111111111111 1111111111111111111101111111111111 -> 1111111111111111111101111111111111 -dqand662 and 1111111111111111111111111111111111 1111111111111111111110111111111111 -> 1111111111111111111110111111111111 -dqand663 and 1111111111111111111111111111111111 1111111111111111111111011111111111 -> 1111111111111111111111011111111111 -dqand664 and 1111111111111111111111111111111111 1111111111111111111111101111111111 -> 1111111111111111111111101111111111 -dqand665 and 1111111111111111111111111111111111 1111111111111111111111110111111111 -> 1111111111111111111111110111111111 -dqand666 and 1111111111111111111111111111111111 1111111111111111111111111011111111 -> 1111111111111111111111111011111111 -dqand667 and 1111111111111111111111111111111111 1111111111111111111111111101111111 -> 1111111111111111111111111101111111 -dqand668 and 1111111111111111111111111111111111 1111111111111111111111111110111111 -> 1111111111111111111111111110111111 -dqand669 and 1111111111111111111111111111111111 1111111111111111111111111111011111 -> 1111111111111111111111111111011111 -dqand670 and 1111111111111111111111111111111111 1111111111111111111111111111101111 -> 1111111111111111111111111111101111 -dqand671 and 1111111111111111111111111111111111 1111111111111111111111111111110111 -> 1111111111111111111111111111110111 -dqand672 and 1111111111111111111111111111111111 1111111111111111111111111111111011 -> 1111111111111111111111111111111011 -dqand673 and 1111111111111111111111111111111111 1111111111111111111111111111111101 -> 1111111111111111111111111111111101 -dqand674 and 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111110 -dqand675 and 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 111111111111111111111111111111110 -dqand676 and 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111110 - -dqand021 and 1111111111111111 1111111111111111 -> 1111111111111111 -dqand024 and 1111111111111111 111111111111111 -> 111111111111111 -dqand025 and 1111111111111111 11111111111111 -> 11111111111111 -dqand026 and 1111111111111111 1111111111111 -> 1111111111111 -dqand027 and 1111111111111111 111111111111 -> 111111111111 -dqand028 and 1111111111111111 11111111111 -> 11111111111 -dqand029 and 1111111111111111 1111111111 -> 1111111111 -dqand030 and 1111111111111111 111111111 -> 111111111 -dqand031 and 1111111111111111 11111111 -> 11111111 -dqand032 and 1111111111111111 1111111 -> 1111111 -dqand033 and 1111111111111111 111111 -> 111111 -dqand034 and 1111111111111111 11111 -> 11111 -dqand035 and 1111111111111111 1111 -> 1111 -dqand036 and 1111111111111111 111 -> 111 -dqand037 and 1111111111111111 11 -> 11 -dqand038 and 1111111111111111 1 -> 1 -dqand039 and 1111111111111111 0 -> 0 - -dqand040 and 1111111111111111 1111111111111111 -> 1111111111111111 -dqand041 and 111111111111111 1111111111111111 -> 111111111111111 -dqand042 and 111111111111111 1111111111111111 -> 111111111111111 -dqand043 and 11111111111111 1111111111111111 -> 11111111111111 -dqand044 and 1111111111111 1111111111111111 -> 1111111111111 -dqand045 and 111111111111 1111111111111111 -> 111111111111 -dqand046 and 11111111111 1111111111111111 -> 11111111111 -dqand047 and 1111111111 1111111111111111 -> 1111111111 -dqand048 and 111111111 1111111111111111 -> 111111111 -dqand049 and 11111111 1111111111111111 -> 11111111 -dqand050 and 1111111 1111111111111111 -> 1111111 -dqand051 and 111111 1111111111111111 -> 111111 -dqand052 and 11111 1111111111111111 -> 11111 -dqand053 and 1111 1111111111111111 -> 1111 -dqand054 and 111 1111111111111111 -> 111 -dqand055 and 11 1111111111111111 -> 11 -dqand056 and 1 1111111111111111 -> 1 -dqand057 and 0 1111111111111111 -> 0 - -dqand150 and 1111111111 1 -> 1 -dqand151 and 111111111 1 -> 1 -dqand152 and 11111111 1 -> 1 -dqand153 and 1111111 1 -> 1 -dqand154 and 111111 1 -> 1 -dqand155 and 11111 1 -> 1 -dqand156 and 1111 1 -> 1 -dqand157 and 111 1 -> 1 -dqand158 and 11 1 -> 1 -dqand159 and 1 1 -> 1 - -dqand160 and 1111111111 0 -> 0 -dqand161 and 111111111 0 -> 0 -dqand162 and 11111111 0 -> 0 -dqand163 and 1111111 0 -> 0 -dqand164 and 111111 0 -> 0 -dqand165 and 11111 0 -> 0 -dqand166 and 1111 0 -> 0 -dqand167 and 111 0 -> 0 -dqand168 and 11 0 -> 0 -dqand169 and 1 0 -> 0 - -dqand170 and 1 1111111111 -> 1 -dqand171 and 1 111111111 -> 1 -dqand172 and 1 11111111 -> 1 -dqand173 and 1 1111111 -> 1 -dqand174 and 1 111111 -> 1 -dqand175 and 1 11111 -> 1 -dqand176 and 1 1111 -> 1 -dqand177 and 1 111 -> 1 -dqand178 and 1 11 -> 1 -dqand179 and 1 1 -> 1 - -dqand180 and 0 1111111111 -> 0 -dqand181 and 0 111111111 -> 0 -dqand182 and 0 11111111 -> 0 -dqand183 and 0 1111111 -> 0 -dqand184 and 0 111111 -> 0 -dqand185 and 0 11111 -> 0 -dqand186 and 0 1111 -> 0 -dqand187 and 0 111 -> 0 -dqand188 and 0 11 -> 0 -dqand189 and 0 1 -> 0 - -dqand090 and 011111111 111111111 -> 11111111 -dqand091 and 101111111 111111111 -> 101111111 -dqand092 and 110111111 111111111 -> 110111111 -dqand093 and 111011111 111111111 -> 111011111 -dqand094 and 111101111 111111111 -> 111101111 -dqand095 and 111110111 111111111 -> 111110111 -dqand096 and 111111011 111111111 -> 111111011 -dqand097 and 111111101 111111111 -> 111111101 -dqand098 and 111111110 111111111 -> 111111110 - -dqand100 and 111111111 011111111 -> 11111111 -dqand101 and 111111111 101111111 -> 101111111 -dqand102 and 111111111 110111111 -> 110111111 -dqand103 and 111111111 111011111 -> 111011111 -dqand104 and 111111111 111101111 -> 111101111 -dqand105 and 111111111 111110111 -> 111110111 -dqand106 and 111111111 111111011 -> 111111011 -dqand107 and 111111111 111111101 -> 111111101 -dqand108 and 111111111 111111110 -> 111111110 - --- non-0/1 should not be accepted, nor should signs -dqand220 and 111111112 111111111 -> NaN Invalid_operation -dqand221 and 333333333 333333333 -> NaN Invalid_operation -dqand222 and 555555555 555555555 -> NaN Invalid_operation -dqand223 and 777777777 777777777 -> NaN Invalid_operation -dqand224 and 999999999 999999999 -> NaN Invalid_operation -dqand225 and 222222222 999999999 -> NaN Invalid_operation -dqand226 and 444444444 999999999 -> NaN Invalid_operation -dqand227 and 666666666 999999999 -> NaN Invalid_operation -dqand228 and 888888888 999999999 -> NaN Invalid_operation -dqand229 and 999999999 222222222 -> NaN Invalid_operation -dqand230 and 999999999 444444444 -> NaN Invalid_operation -dqand231 and 999999999 666666666 -> NaN Invalid_operation -dqand232 and 999999999 888888888 -> NaN Invalid_operation --- a few randoms -dqand240 and 567468689 -934981942 -> NaN Invalid_operation -dqand241 and 567367689 934981942 -> NaN Invalid_operation -dqand242 and -631917772 -706014634 -> NaN Invalid_operation -dqand243 and -756253257 138579234 -> NaN Invalid_operation -dqand244 and 835590149 567435400 -> NaN Invalid_operation --- test MSD -dqand250 and 2000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqand251 and 7000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqand252 and 8000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqand253 and 9000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqand254 and 2000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqand255 and 7000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqand256 and 8000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqand257 and 9000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqand258 and 1000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation -dqand259 and 1000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation -dqand260 and 1000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation -dqand261 and 1000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation -dqand262 and 0000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation -dqand263 and 0000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation -dqand264 and 0000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation -dqand265 and 0000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation --- test MSD-1 -dqand270 and 0200000111000111000111001000000000 1000000111000111000111100000000010 -> NaN Invalid_operation -dqand271 and 0700000111000111000111000100000000 1000000111000111000111010000000100 -> NaN Invalid_operation -dqand272 and 0800000111000111000111000010000000 1000000111000111000111001000001000 -> NaN Invalid_operation -dqand273 and 0900000111000111000111000001000000 1000000111000111000111000100010000 -> NaN Invalid_operation -dqand274 and 1000000111000111000111000000100000 0200000111000111000111000010100000 -> NaN Invalid_operation -dqand275 and 1000000111000111000111000000010000 0700000111000111000111000001000000 -> NaN Invalid_operation -dqand276 and 1000000111000111000111000000001000 0800000111000111000111000010100000 -> NaN Invalid_operation -dqand277 and 1000000111000111000111000000000100 0900000111000111000111000000010000 -> NaN Invalid_operation --- test LSD -dqand280 and 0010000111000111000111000000000002 1000000111000111000111000100000001 -> NaN Invalid_operation -dqand281 and 0001000111000111000111000000000007 1000000111000111000111001000000011 -> NaN Invalid_operation -dqand282 and 0000000111000111000111100000000008 1000000111000111000111010000000001 -> NaN Invalid_operation -dqand283 and 0000000111000111000111010000000009 1000000111000111000111100000000001 -> NaN Invalid_operation -dqand284 and 1000000111000111000111001000000000 0001000111000111000111000000000002 -> NaN Invalid_operation -dqand285 and 1000000111000111000111000100000000 0010000111000111000111000000000007 -> NaN Invalid_operation -dqand286 and 1000000111000111000111000010000000 0100000111000111000111000000000008 -> NaN Invalid_operation -dqand287 and 1000000111000111000111000001000000 1000000111000111000111000000000009 -> NaN Invalid_operation --- test Middie -dqand288 and 0010000111000111000111000020000000 1000000111000111000111001000000000 -> NaN Invalid_operation -dqand289 and 0001000111000111000111000070000001 1000000111000111000111000100000000 -> NaN Invalid_operation -dqand290 and 0000000111000111000111100080000010 1000000111000111000111000010000000 -> NaN Invalid_operation -dqand291 and 0000000111000111000111010090000100 1000000111000111000111000001000000 -> NaN Invalid_operation -dqand292 and 1000000111000111000111001000001000 0000000111000111000111000020100000 -> NaN Invalid_operation -dqand293 and 1000000111000111000111000100010000 0000000111000111000111000070010000 -> NaN Invalid_operation -dqand294 and 1000000111000111000111000010100000 0000000111000111000111000080001000 -> NaN Invalid_operation -dqand295 and 1000000111000111000111000001000000 0000000111000111000111000090000100 -> NaN Invalid_operation --- signs -dqand296 and -1000000111000111000111000001000000 -0000001110001110001110010000000100 -> NaN Invalid_operation -dqand297 and -1000000111000111000111000001000000 0000001110001110001110000010000100 -> NaN Invalid_operation -dqand298 and 1000000111000111000111000001000000 -0000001110001110001110001000000100 -> NaN Invalid_operation -dqand299 and 1000000111000111000111000001000000 0000001110001110001110000011000100 -> 110000110000110000001000000 - --- Nmax, Nmin, Ntiny-like -dqand331 and 2 9.99999999E+999 -> NaN Invalid_operation -dqand332 and 3 1E-999 -> NaN Invalid_operation -dqand333 and 4 1.00000000E-999 -> NaN Invalid_operation -dqand334 and 5 1E-900 -> NaN Invalid_operation -dqand335 and 6 -1E-900 -> NaN Invalid_operation -dqand336 and 7 -1.00000000E-999 -> NaN Invalid_operation -dqand337 and 8 -1E-999 -> NaN Invalid_operation -dqand338 and 9 -9.99999999E+999 -> NaN Invalid_operation -dqand341 and 9.99999999E+999 -18 -> NaN Invalid_operation -dqand342 and 1E-999 01 -> NaN Invalid_operation -dqand343 and 1.00000000E-999 -18 -> NaN Invalid_operation -dqand344 and 1E-900 18 -> NaN Invalid_operation -dqand345 and -1E-900 -10 -> NaN Invalid_operation -dqand346 and -1.00000000E-999 18 -> NaN Invalid_operation -dqand347 and -1E-999 10 -> NaN Invalid_operation -dqand348 and -9.99999999E+999 -18 -> NaN Invalid_operation - --- A few other non-integers -dqand361 and 1.0 1 -> NaN Invalid_operation -dqand362 and 1E+1 1 -> NaN Invalid_operation -dqand363 and 0.0 1 -> NaN Invalid_operation -dqand364 and 0E+1 1 -> NaN Invalid_operation -dqand365 and 9.9 1 -> NaN Invalid_operation -dqand366 and 9E+1 1 -> NaN Invalid_operation -dqand371 and 0 1.0 -> NaN Invalid_operation -dqand372 and 0 1E+1 -> NaN Invalid_operation -dqand373 and 0 0.0 -> NaN Invalid_operation -dqand374 and 0 0E+1 -> NaN Invalid_operation -dqand375 and 0 9.9 -> NaN Invalid_operation -dqand376 and 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -dqand780 and -Inf -Inf -> NaN Invalid_operation -dqand781 and -Inf -1000 -> NaN Invalid_operation -dqand782 and -Inf -1 -> NaN Invalid_operation -dqand783 and -Inf -0 -> NaN Invalid_operation -dqand784 and -Inf 0 -> NaN Invalid_operation -dqand785 and -Inf 1 -> NaN Invalid_operation -dqand786 and -Inf 1000 -> NaN Invalid_operation -dqand787 and -1000 -Inf -> NaN Invalid_operation -dqand788 and -Inf -Inf -> NaN Invalid_operation -dqand789 and -1 -Inf -> NaN Invalid_operation -dqand790 and -0 -Inf -> NaN Invalid_operation -dqand791 and 0 -Inf -> NaN Invalid_operation -dqand792 and 1 -Inf -> NaN Invalid_operation -dqand793 and 1000 -Inf -> NaN Invalid_operation -dqand794 and Inf -Inf -> NaN Invalid_operation - -dqand800 and Inf -Inf -> NaN Invalid_operation -dqand801 and Inf -1000 -> NaN Invalid_operation -dqand802 and Inf -1 -> NaN Invalid_operation -dqand803 and Inf -0 -> NaN Invalid_operation -dqand804 and Inf 0 -> NaN Invalid_operation -dqand805 and Inf 1 -> NaN Invalid_operation -dqand806 and Inf 1000 -> NaN Invalid_operation -dqand807 and Inf Inf -> NaN Invalid_operation -dqand808 and -1000 Inf -> NaN Invalid_operation -dqand809 and -Inf Inf -> NaN Invalid_operation -dqand810 and -1 Inf -> NaN Invalid_operation -dqand811 and -0 Inf -> NaN Invalid_operation -dqand812 and 0 Inf -> NaN Invalid_operation -dqand813 and 1 Inf -> NaN Invalid_operation -dqand814 and 1000 Inf -> NaN Invalid_operation -dqand815 and Inf Inf -> NaN Invalid_operation - -dqand821 and NaN -Inf -> NaN Invalid_operation -dqand822 and NaN -1000 -> NaN Invalid_operation -dqand823 and NaN -1 -> NaN Invalid_operation -dqand824 and NaN -0 -> NaN Invalid_operation -dqand825 and NaN 0 -> NaN Invalid_operation -dqand826 and NaN 1 -> NaN Invalid_operation -dqand827 and NaN 1000 -> NaN Invalid_operation -dqand828 and NaN Inf -> NaN Invalid_operation -dqand829 and NaN NaN -> NaN Invalid_operation -dqand830 and -Inf NaN -> NaN Invalid_operation -dqand831 and -1000 NaN -> NaN Invalid_operation -dqand832 and -1 NaN -> NaN Invalid_operation -dqand833 and -0 NaN -> NaN Invalid_operation -dqand834 and 0 NaN -> NaN Invalid_operation -dqand835 and 1 NaN -> NaN Invalid_operation -dqand836 and 1000 NaN -> NaN Invalid_operation -dqand837 and Inf NaN -> NaN Invalid_operation - -dqand841 and sNaN -Inf -> NaN Invalid_operation -dqand842 and sNaN -1000 -> NaN Invalid_operation -dqand843 and sNaN -1 -> NaN Invalid_operation -dqand844 and sNaN -0 -> NaN Invalid_operation -dqand845 and sNaN 0 -> NaN Invalid_operation -dqand846 and sNaN 1 -> NaN Invalid_operation -dqand847 and sNaN 1000 -> NaN Invalid_operation -dqand848 and sNaN NaN -> NaN Invalid_operation -dqand849 and sNaN sNaN -> NaN Invalid_operation -dqand850 and NaN sNaN -> NaN Invalid_operation -dqand851 and -Inf sNaN -> NaN Invalid_operation -dqand852 and -1000 sNaN -> NaN Invalid_operation -dqand853 and -1 sNaN -> NaN Invalid_operation -dqand854 and -0 sNaN -> NaN Invalid_operation -dqand855 and 0 sNaN -> NaN Invalid_operation -dqand856 and 1 sNaN -> NaN Invalid_operation -dqand857 and 1000 sNaN -> NaN Invalid_operation -dqand858 and Inf sNaN -> NaN Invalid_operation -dqand859 and NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqand861 and NaN1 -Inf -> NaN Invalid_operation -dqand862 and +NaN2 -1000 -> NaN Invalid_operation -dqand863 and NaN3 1000 -> NaN Invalid_operation -dqand864 and NaN4 Inf -> NaN Invalid_operation -dqand865 and NaN5 +NaN6 -> NaN Invalid_operation -dqand866 and -Inf NaN7 -> NaN Invalid_operation -dqand867 and -1000 NaN8 -> NaN Invalid_operation -dqand868 and 1000 NaN9 -> NaN Invalid_operation -dqand869 and Inf +NaN10 -> NaN Invalid_operation -dqand871 and sNaN11 -Inf -> NaN Invalid_operation -dqand872 and sNaN12 -1000 -> NaN Invalid_operation -dqand873 and sNaN13 1000 -> NaN Invalid_operation -dqand874 and sNaN14 NaN17 -> NaN Invalid_operation -dqand875 and sNaN15 sNaN18 -> NaN Invalid_operation -dqand876 and NaN16 sNaN19 -> NaN Invalid_operation -dqand877 and -Inf +sNaN20 -> NaN Invalid_operation -dqand878 and -1000 sNaN21 -> NaN Invalid_operation -dqand879 and 1000 sNaN22 -> NaN Invalid_operation -dqand880 and Inf sNaN23 -> NaN Invalid_operation -dqand881 and +NaN25 +sNaN24 -> NaN Invalid_operation -dqand882 and -NaN26 NaN28 -> NaN Invalid_operation -dqand883 and -sNaN27 sNaN29 -> NaN Invalid_operation -dqand884 and 1000 -NaN30 -> NaN Invalid_operation -dqand885 and 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqBase.decTest b/qdecimal/test/tc_full/dqBase.decTest deleted file mode 100644 index f299e8a..0000000 --- a/qdecimal/test/tc_full/dqBase.decTest +++ /dev/null @@ -1,1081 +0,0 @@ ------------------------------------------------------------------------- --- dqBase.decTest -- base decQuad <--> string conversions -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This file tests base conversions from string to a decimal number --- and back to a string (in Scientific form) - --- Note that unlike other operations the operand is subject to rounding --- to conform to emax and precision settings (that is, numbers will --- conform to rules and exponent will be in permitted range). The --- 'left hand side', therefore, may have numbers that cannot be --- represented in a decQuad. Some testcases go to the limit of the --- next-wider format, and hence these testcases may also be used to --- test narrowing and widening operations. - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqbas001 toSci 0 -> 0 -dqbas002 toSci 1 -> 1 -dqbas003 toSci 1.0 -> 1.0 -dqbas004 toSci 1.00 -> 1.00 -dqbas005 toSci 10 -> 10 -dqbas006 toSci 1000 -> 1000 -dqbas007 toSci 10.0 -> 10.0 -dqbas008 toSci 10.1 -> 10.1 -dqbas009 toSci 10.4 -> 10.4 -dqbas010 toSci 10.5 -> 10.5 -dqbas011 toSci 10.6 -> 10.6 -dqbas012 toSci 10.9 -> 10.9 -dqbas013 toSci 11.0 -> 11.0 -dqbas014 toSci 1.234 -> 1.234 -dqbas015 toSci 0.123 -> 0.123 -dqbas016 toSci 0.012 -> 0.012 -dqbas017 toSci -0 -> -0 -dqbas018 toSci -0.0 -> -0.0 -dqbas019 toSci -00.00 -> -0.00 - -dqbas021 toSci -1 -> -1 -dqbas022 toSci -1.0 -> -1.0 -dqbas023 toSci -0.1 -> -0.1 -dqbas024 toSci -9.1 -> -9.1 -dqbas025 toSci -9.11 -> -9.11 -dqbas026 toSci -9.119 -> -9.119 -dqbas027 toSci -9.999 -> -9.999 - -dqbas030 toSci '123456789.123456' -> '123456789.123456' -dqbas031 toSci '123456789.000000' -> '123456789.000000' -dqbas032 toSci '123456789123456' -> '123456789123456' -dqbas033 toSci '0.0000123456789' -> '0.0000123456789' -dqbas034 toSci '0.00000123456789' -> '0.00000123456789' -dqbas035 toSci '0.000000123456789' -> '1.23456789E-7' -dqbas036 toSci '0.0000000123456789' -> '1.23456789E-8' - -dqbas037 toSci '0.123456789012344' -> '0.123456789012344' -dqbas038 toSci '0.123456789012345' -> '0.123456789012345' - --- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax) -dqbsn001 toSci -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 -dqbsn002 toSci -1E-6143 -> -1E-6143 -dqbsn003 toSci -1E-6176 -> -1E-6176 Subnormal -dqbsn004 toSci -0 -> -0 -dqbsn005 toSci +0 -> 0 -dqbsn006 toSci +1E-6176 -> 1E-6176 Subnormal -dqbsn007 toSci +1E-6143 -> 1E-6143 -dqbsn008 toSci +9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 - --- String [many more examples are implicitly tested elsewhere] --- strings without E cannot generate E in result -dqbas040 toSci "12" -> '12' -dqbas041 toSci "-76" -> '-76' -dqbas042 toSci "12.76" -> '12.76' -dqbas043 toSci "+12.76" -> '12.76' -dqbas044 toSci "012.76" -> '12.76' -dqbas045 toSci "+0.003" -> '0.003' -dqbas046 toSci "17." -> '17' -dqbas047 toSci ".5" -> '0.5' -dqbas048 toSci "044" -> '44' -dqbas049 toSci "0044" -> '44' -dqbas050 toSci "0.0005" -> '0.0005' -dqbas051 toSci "00.00005" -> '0.00005' -dqbas052 toSci "0.000005" -> '0.000005' -dqbas053 toSci "0.0000050" -> '0.0000050' -dqbas054 toSci "0.0000005" -> '5E-7' -dqbas055 toSci "0.00000005" -> '5E-8' -dqbas056 toSci "12345678.543210" -> '12345678.543210' -dqbas057 toSci "2345678.543210" -> '2345678.543210' -dqbas058 toSci "345678.543210" -> '345678.543210' -dqbas059 toSci "0345678.54321" -> '345678.54321' -dqbas060 toSci "345678.5432" -> '345678.5432' -dqbas061 toSci "+345678.5432" -> '345678.5432' -dqbas062 toSci "+0345678.5432" -> '345678.5432' -dqbas063 toSci "+00345678.5432" -> '345678.5432' -dqbas064 toSci "-345678.5432" -> '-345678.5432' -dqbas065 toSci "-0345678.5432" -> '-345678.5432' -dqbas066 toSci "-00345678.5432" -> '-345678.5432' --- examples -dqbas067 toSci "5E-6" -> '0.000005' -dqbas068 toSci "50E-7" -> '0.0000050' -dqbas069 toSci "5E-7" -> '5E-7' - --- [No exotics as no Unicode] - --- rounded with dots in all (including edge) places -dqbas071 toSci .1234567891234567890123456780123456123 -> 0.1234567891234567890123456780123456 Inexact Rounded -dqbas072 toSci 1.234567891234567890123456780123456123 -> 1.234567891234567890123456780123456 Inexact Rounded -dqbas073 toSci 12.34567891234567890123456780123456123 -> 12.34567891234567890123456780123456 Inexact Rounded -dqbas074 toSci 123.4567891234567890123456780123456123 -> 123.4567891234567890123456780123456 Inexact Rounded -dqbas075 toSci 1234.567891234567890123456780123456123 -> 1234.567891234567890123456780123456 Inexact Rounded -dqbas076 toSci 12345.67891234567890123456780123456123 -> 12345.67891234567890123456780123456 Inexact Rounded -dqbas077 toSci 123456.7891234567890123456780123456123 -> 123456.7891234567890123456780123456 Inexact Rounded -dqbas078 toSci 1234567.891234567890123456780123456123 -> 1234567.891234567890123456780123456 Inexact Rounded -dqbas079 toSci 12345678.91234567890123456780123456123 -> 12345678.91234567890123456780123456 Inexact Rounded -dqbas080 toSci 123456789.1234567890123456780123456123 -> 123456789.1234567890123456780123456 Inexact Rounded -dqbas081 toSci 1234567891.234567890123456780123456123 -> 1234567891.234567890123456780123456 Inexact Rounded -dqbas082 toSci 12345678912.34567890123456780123456123 -> 12345678912.34567890123456780123456 Inexact Rounded -dqbas083 toSci 123456789123.4567890123456780123456123 -> 123456789123.4567890123456780123456 Inexact Rounded -dqbas084 toSci 1234567891234.567890123456780123456123 -> 1234567891234.567890123456780123456 Inexact Rounded -dqbas085 toSci 12345678912345.67890123456780123456123 -> 12345678912345.67890123456780123456 Inexact Rounded -dqbas086 toSci 123456789123456.7890123456780123456123 -> 123456789123456.7890123456780123456 Inexact Rounded -dqbas087 toSci 1234567891234567.890123456780123456123 -> 1234567891234567.890123456780123456 Inexact Rounded -dqbas088 toSci 12345678912345678.90123456780123456123 -> 12345678912345678.90123456780123456 Inexact Rounded -dqbas089 toSci 123456789123456789.0123456780123456123 -> 123456789123456789.0123456780123456 Inexact Rounded -dqbas090 toSci 1234567891234567890.123456780123456123 -> 1234567891234567890.123456780123456 Inexact Rounded -dqbas091 toSci 12345678912345678901.23456780123456123 -> 12345678912345678901.23456780123456 Inexact Rounded -dqbas092 toSci 123456789123456789012.3456780123456123 -> 123456789123456789012.3456780123456 Inexact Rounded -dqbas093 toSci 1234567891234567890123.456780123456123 -> 1234567891234567890123.456780123456 Inexact Rounded -dqbas094 toSci 12345678912345678901234.56780123456123 -> 12345678912345678901234.56780123456 Inexact Rounded -dqbas095 toSci 123456789123456789012345.6780123456123 -> 123456789123456789012345.6780123456 Inexact Rounded -dqbas096 toSci 1234567891234567890123456.780123456123 -> 1234567891234567890123456.780123456 Inexact Rounded -dqbas097 toSci 12345678912345678901234567.80123456123 -> 12345678912345678901234567.80123456 Inexact Rounded -dqbas098 toSci 123456789123456789012345678.0123456123 -> 123456789123456789012345678.0123456 Inexact Rounded -dqbas099 toSci 1234567891234567890123456780.123456123 -> 1234567891234567890123456780.123456 Inexact Rounded -dqbas100 toSci 12345678912345678901234567801.23456123 -> 12345678912345678901234567801.23456 Inexact Rounded -dqbas101 toSci 123456789123456789012345678012.3456123 -> 123456789123456789012345678012.3456 Inexact Rounded -dqbas102 toSci 1234567891234567890123456780123.456123 -> 1234567891234567890123456780123.456 Inexact Rounded -dqbas103 toSci 12345678912345678901234567801234.56123 -> 12345678912345678901234567801234.56 Inexact Rounded -dqbas104 toSci 123456789123456789012345678012345.6123 -> 123456789123456789012345678012345.6 Inexact Rounded -dqbas105 toSci 1234567891234567890123456780123456.123 -> 1234567891234567890123456780123456 Inexact Rounded -dqbas106 toSci 12345678912345678901234567801234561.23 -> 1.234567891234567890123456780123456E+34 Inexact Rounded -dqbas107 toSci 123456789123456789012345678012345612.3 -> 1.234567891234567890123456780123456E+35 Inexact Rounded -dqbas108 toSci 1234567891234567890123456780123456123. -> 1.234567891234567890123456780123456E+36 Inexact Rounded --- 123456789012345678 - --- Numbers with E -dqbas130 toSci "0.000E-1" -> '0.0000' -dqbas131 toSci "0.000E-2" -> '0.00000' -dqbas132 toSci "0.000E-3" -> '0.000000' -dqbas133 toSci "0.000E-4" -> '0E-7' -dqbas134 toSci "0.00E-2" -> '0.0000' -dqbas135 toSci "0.00E-3" -> '0.00000' -dqbas136 toSci "0.00E-4" -> '0.000000' -dqbas137 toSci "0.00E-5" -> '0E-7' -dqbas138 toSci "+0E+9" -> '0E+9' -dqbas139 toSci "-0E+9" -> '-0E+9' -dqbas140 toSci "1E+9" -> '1E+9' -dqbas141 toSci "1e+09" -> '1E+9' -dqbas142 toSci "1E+90" -> '1E+90' -dqbas143 toSci "+1E+009" -> '1E+9' -dqbas144 toSci "0E+9" -> '0E+9' -dqbas145 toSci "1E+9" -> '1E+9' -dqbas146 toSci "1E+09" -> '1E+9' -dqbas147 toSci "1e+90" -> '1E+90' -dqbas148 toSci "1E+009" -> '1E+9' -dqbas149 toSci "000E+9" -> '0E+9' -dqbas150 toSci "1E9" -> '1E+9' -dqbas151 toSci "1e09" -> '1E+9' -dqbas152 toSci "1E90" -> '1E+90' -dqbas153 toSci "1E009" -> '1E+9' -dqbas154 toSci "0E9" -> '0E+9' -dqbas155 toSci "0.000e+0" -> '0.000' -dqbas156 toSci "0.000E-1" -> '0.0000' -dqbas157 toSci "4E+9" -> '4E+9' -dqbas158 toSci "44E+9" -> '4.4E+10' -dqbas159 toSci "0.73e-7" -> '7.3E-8' -dqbas160 toSci "00E+9" -> '0E+9' -dqbas161 toSci "00E-9" -> '0E-9' -dqbas162 toSci "10E+9" -> '1.0E+10' -dqbas163 toSci "10E+09" -> '1.0E+10' -dqbas164 toSci "10e+90" -> '1.0E+91' -dqbas165 toSci "10E+009" -> '1.0E+10' -dqbas166 toSci "100e+9" -> '1.00E+11' -dqbas167 toSci "100e+09" -> '1.00E+11' -dqbas168 toSci "100E+90" -> '1.00E+92' -dqbas169 toSci "100e+009" -> '1.00E+11' - -dqbas170 toSci "1.265" -> '1.265' -dqbas171 toSci "1.265E-20" -> '1.265E-20' -dqbas172 toSci "1.265E-8" -> '1.265E-8' -dqbas173 toSci "1.265E-4" -> '0.0001265' -dqbas174 toSci "1.265E-3" -> '0.001265' -dqbas175 toSci "1.265E-2" -> '0.01265' -dqbas176 toSci "1.265E-1" -> '0.1265' -dqbas177 toSci "1.265E-0" -> '1.265' -dqbas178 toSci "1.265E+1" -> '12.65' -dqbas179 toSci "1.265E+2" -> '126.5' -dqbas180 toSci "1.265E+3" -> '1265' -dqbas181 toSci "1.265E+4" -> '1.265E+4' -dqbas182 toSci "1.265E+8" -> '1.265E+8' -dqbas183 toSci "1.265E+20" -> '1.265E+20' - -dqbas190 toSci "12.65" -> '12.65' -dqbas191 toSci "12.65E-20" -> '1.265E-19' -dqbas192 toSci "12.65E-8" -> '1.265E-7' -dqbas193 toSci "12.65E-4" -> '0.001265' -dqbas194 toSci "12.65E-3" -> '0.01265' -dqbas195 toSci "12.65E-2" -> '0.1265' -dqbas196 toSci "12.65E-1" -> '1.265' -dqbas197 toSci "12.65E-0" -> '12.65' -dqbas198 toSci "12.65E+1" -> '126.5' -dqbas199 toSci "12.65E+2" -> '1265' -dqbas200 toSci "12.65E+3" -> '1.265E+4' -dqbas201 toSci "12.65E+4" -> '1.265E+5' -dqbas202 toSci "12.65E+8" -> '1.265E+9' -dqbas203 toSci "12.65E+20" -> '1.265E+21' - -dqbas210 toSci "126.5" -> '126.5' -dqbas211 toSci "126.5E-20" -> '1.265E-18' -dqbas212 toSci "126.5E-8" -> '0.000001265' -dqbas213 toSci "126.5E-4" -> '0.01265' -dqbas214 toSci "126.5E-3" -> '0.1265' -dqbas215 toSci "126.5E-2" -> '1.265' -dqbas216 toSci "126.5E-1" -> '12.65' -dqbas217 toSci "126.5E-0" -> '126.5' -dqbas218 toSci "126.5E+1" -> '1265' -dqbas219 toSci "126.5E+2" -> '1.265E+4' -dqbas220 toSci "126.5E+3" -> '1.265E+5' -dqbas221 toSci "126.5E+4" -> '1.265E+6' -dqbas222 toSci "126.5E+8" -> '1.265E+10' -dqbas223 toSci "126.5E+20" -> '1.265E+22' - -dqbas230 toSci "1265" -> '1265' -dqbas231 toSci "1265E-20" -> '1.265E-17' -dqbas232 toSci "1265E-8" -> '0.00001265' -dqbas233 toSci "1265E-4" -> '0.1265' -dqbas234 toSci "1265E-3" -> '1.265' -dqbas235 toSci "1265E-2" -> '12.65' -dqbas236 toSci "1265E-1" -> '126.5' -dqbas237 toSci "1265E-0" -> '1265' -dqbas238 toSci "1265E+1" -> '1.265E+4' -dqbas239 toSci "1265E+2" -> '1.265E+5' -dqbas240 toSci "1265E+3" -> '1.265E+6' -dqbas241 toSci "1265E+4" -> '1.265E+7' -dqbas242 toSci "1265E+8" -> '1.265E+11' -dqbas243 toSci "1265E+20" -> '1.265E+23' - -dqbas250 toSci "0.1265" -> '0.1265' -dqbas251 toSci "0.1265E-20" -> '1.265E-21' -dqbas252 toSci "0.1265E-8" -> '1.265E-9' -dqbas253 toSci "0.1265E-4" -> '0.00001265' -dqbas254 toSci "0.1265E-3" -> '0.0001265' -dqbas255 toSci "0.1265E-2" -> '0.001265' -dqbas256 toSci "0.1265E-1" -> '0.01265' -dqbas257 toSci "0.1265E-0" -> '0.1265' -dqbas258 toSci "0.1265E+1" -> '1.265' -dqbas259 toSci "0.1265E+2" -> '12.65' -dqbas260 toSci "0.1265E+3" -> '126.5' -dqbas261 toSci "0.1265E+4" -> '1265' -dqbas262 toSci "0.1265E+8" -> '1.265E+7' -dqbas263 toSci "0.1265E+20" -> '1.265E+19' - --- some more negative zeros [systematic tests below] -dqbas290 toSci "-0.000E-1" -> '-0.0000' -dqbas291 toSci "-0.000E-2" -> '-0.00000' -dqbas292 toSci "-0.000E-3" -> '-0.000000' -dqbas293 toSci "-0.000E-4" -> '-0E-7' -dqbas294 toSci "-0.00E-2" -> '-0.0000' -dqbas295 toSci "-0.00E-3" -> '-0.00000' -dqbas296 toSci "-0.0E-2" -> '-0.000' -dqbas297 toSci "-0.0E-3" -> '-0.0000' -dqbas298 toSci "-0E-2" -> '-0.00' -dqbas299 toSci "-0E-3" -> '-0.000' - --- Engineering notation tests -dqbas301 toSci 10e12 -> 1.0E+13 -dqbas302 toEng 10e12 -> 10E+12 -dqbas303 toSci 10e11 -> 1.0E+12 -dqbas304 toEng 10e11 -> 1.0E+12 -dqbas305 toSci 10e10 -> 1.0E+11 -dqbas306 toEng 10e10 -> 100E+9 -dqbas307 toSci 10e9 -> 1.0E+10 -dqbas308 toEng 10e9 -> 10E+9 -dqbas309 toSci 10e8 -> 1.0E+9 -dqbas310 toEng 10e8 -> 1.0E+9 -dqbas311 toSci 10e7 -> 1.0E+8 -dqbas312 toEng 10e7 -> 100E+6 -dqbas313 toSci 10e6 -> 1.0E+7 -dqbas314 toEng 10e6 -> 10E+6 -dqbas315 toSci 10e5 -> 1.0E+6 -dqbas316 toEng 10e5 -> 1.0E+6 -dqbas317 toSci 10e4 -> 1.0E+5 -dqbas318 toEng 10e4 -> 100E+3 -dqbas319 toSci 10e3 -> 1.0E+4 -dqbas320 toEng 10e3 -> 10E+3 -dqbas321 toSci 10e2 -> 1.0E+3 -dqbas322 toEng 10e2 -> 1.0E+3 -dqbas323 toSci 10e1 -> 1.0E+2 -dqbas324 toEng 10e1 -> 100 -dqbas325 toSci 10e0 -> 10 -dqbas326 toEng 10e0 -> 10 -dqbas327 toSci 10e-1 -> 1.0 -dqbas328 toEng 10e-1 -> 1.0 -dqbas329 toSci 10e-2 -> 0.10 -dqbas330 toEng 10e-2 -> 0.10 -dqbas331 toSci 10e-3 -> 0.010 -dqbas332 toEng 10e-3 -> 0.010 -dqbas333 toSci 10e-4 -> 0.0010 -dqbas334 toEng 10e-4 -> 0.0010 -dqbas335 toSci 10e-5 -> 0.00010 -dqbas336 toEng 10e-5 -> 0.00010 -dqbas337 toSci 10e-6 -> 0.000010 -dqbas338 toEng 10e-6 -> 0.000010 -dqbas339 toSci 10e-7 -> 0.0000010 -dqbas340 toEng 10e-7 -> 0.0000010 -dqbas341 toSci 10e-8 -> 1.0E-7 -dqbas342 toEng 10e-8 -> 100E-9 -dqbas343 toSci 10e-9 -> 1.0E-8 -dqbas344 toEng 10e-9 -> 10E-9 -dqbas345 toSci 10e-10 -> 1.0E-9 -dqbas346 toEng 10e-10 -> 1.0E-9 -dqbas347 toSci 10e-11 -> 1.0E-10 -dqbas348 toEng 10e-11 -> 100E-12 -dqbas349 toSci 10e-12 -> 1.0E-11 -dqbas350 toEng 10e-12 -> 10E-12 -dqbas351 toSci 10e-13 -> 1.0E-12 -dqbas352 toEng 10e-13 -> 1.0E-12 - -dqbas361 toSci 7E12 -> 7E+12 -dqbas362 toEng 7E12 -> 7E+12 -dqbas363 toSci 7E11 -> 7E+11 -dqbas364 toEng 7E11 -> 700E+9 -dqbas365 toSci 7E10 -> 7E+10 -dqbas366 toEng 7E10 -> 70E+9 -dqbas367 toSci 7E9 -> 7E+9 -dqbas368 toEng 7E9 -> 7E+9 -dqbas369 toSci 7E8 -> 7E+8 -dqbas370 toEng 7E8 -> 700E+6 -dqbas371 toSci 7E7 -> 7E+7 -dqbas372 toEng 7E7 -> 70E+6 -dqbas373 toSci 7E6 -> 7E+6 -dqbas374 toEng 7E6 -> 7E+6 -dqbas375 toSci 7E5 -> 7E+5 -dqbas376 toEng 7E5 -> 700E+3 -dqbas377 toSci 7E4 -> 7E+4 -dqbas378 toEng 7E4 -> 70E+3 -dqbas379 toSci 7E3 -> 7E+3 -dqbas380 toEng 7E3 -> 7E+3 -dqbas381 toSci 7E2 -> 7E+2 -dqbas382 toEng 7E2 -> 700 -dqbas383 toSci 7E1 -> 7E+1 -dqbas384 toEng 7E1 -> 70 -dqbas385 toSci 7E0 -> 7 -dqbas386 toEng 7E0 -> 7 -dqbas387 toSci 7E-1 -> 0.7 -dqbas388 toEng 7E-1 -> 0.7 -dqbas389 toSci 7E-2 -> 0.07 -dqbas390 toEng 7E-2 -> 0.07 -dqbas391 toSci 7E-3 -> 0.007 -dqbas392 toEng 7E-3 -> 0.007 -dqbas393 toSci 7E-4 -> 0.0007 -dqbas394 toEng 7E-4 -> 0.0007 -dqbas395 toSci 7E-5 -> 0.00007 -dqbas396 toEng 7E-5 -> 0.00007 -dqbas397 toSci 7E-6 -> 0.000007 -dqbas398 toEng 7E-6 -> 0.000007 -dqbas399 toSci 7E-7 -> 7E-7 -dqbas400 toEng 7E-7 -> 700E-9 -dqbas401 toSci 7E-8 -> 7E-8 -dqbas402 toEng 7E-8 -> 70E-9 -dqbas403 toSci 7E-9 -> 7E-9 -dqbas404 toEng 7E-9 -> 7E-9 -dqbas405 toSci 7E-10 -> 7E-10 -dqbas406 toEng 7E-10 -> 700E-12 -dqbas407 toSci 7E-11 -> 7E-11 -dqbas408 toEng 7E-11 -> 70E-12 -dqbas409 toSci 7E-12 -> 7E-12 -dqbas410 toEng 7E-12 -> 7E-12 -dqbas411 toSci 7E-13 -> 7E-13 -dqbas412 toEng 7E-13 -> 700E-15 - --- Exacts remain exact up to precision .. -dqbas420 toSci 100 -> 100 -dqbas422 toSci 1000 -> 1000 -dqbas424 toSci 999.9 -> 999.9 -dqbas426 toSci 1000.0 -> 1000.0 -dqbas428 toSci 1000.1 -> 1000.1 -dqbas430 toSci 10000 -> 10000 -dqbas432 toSci 1000000000000000000000000000000 -> 1000000000000000000000000000000 -dqbas434 toSci 10000000000000000000000000000000 -> 10000000000000000000000000000000 -dqbas436 toSci 100000000000000000000000000000000 -> 100000000000000000000000000000000 -dqbas438 toSci 1000000000000000000000000000000000 -> 1000000000000000000000000000000000 -dqbas440 toSci 10000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+34 Rounded -dqbas442 toSci 10000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+34 Rounded -dqbas444 toSci 10000000000000000000000000000000003 -> 1.000000000000000000000000000000000E+34 Rounded Inexact -dqbas446 toSci 10000000000000000000000000000000005 -> 1.000000000000000000000000000000000E+34 Rounded Inexact -dqbas448 toSci 100000000000000000000000000000000050 -> 1.000000000000000000000000000000000E+35 Rounded Inexact -dqbas450 toSci 10000000000000000000000000000000009 -> 1.000000000000000000000000000000001E+34 Rounded Inexact -dqbas452 toSci 100000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+35 Rounded -dqbas454 toSci 100000000000000000000000000000000003 -> 1.000000000000000000000000000000000E+35 Rounded Inexact -dqbas456 toSci 100000000000000000000000000000000005 -> 1.000000000000000000000000000000000E+35 Rounded Inexact -dqbas458 toSci 100000000000000000000000000000000009 -> 1.000000000000000000000000000000000E+35 Rounded Inexact -dqbas460 toSci 1000000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+36 Rounded -dqbas462 toSci 1000000000000000000000000000000000300 -> 1.000000000000000000000000000000000E+36 Rounded Inexact -dqbas464 toSci 1000000000000000000000000000000000500 -> 1.000000000000000000000000000000000E+36 Rounded Inexact -dqbas466 toSci 1000000000000000000000000000000000900 -> 1.000000000000000000000000000000001E+36 Rounded Inexact -dqbas468 toSci 10000000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+37 Rounded -dqbas470 toSci 10000000000000000000000000000000003000 -> 1.000000000000000000000000000000000E+37 Rounded Inexact -dqbas472 toSci 10000000000000000000000000000000005000 -> 1.000000000000000000000000000000000E+37 Rounded Inexact -dqbas474 toSci 10000000000000000000000000000000009000 -> 1.000000000000000000000000000000001E+37 Rounded Inexact - --- check rounding modes heeded -rounding: ceiling -dqbsr401 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded -dqbsr402 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr403 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr404 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact -rounding: up -dqbsr405 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded -dqbsr406 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr407 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr408 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact -rounding: floor -dqbsr410 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded -dqbsr411 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr412 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr413 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112345 Rounded Inexact -rounding: half_down -dqbsr415 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded -dqbsr416 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr417 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr418 toSci 1.11111111111111111111111111111234650 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr419 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact -rounding: half_even -dqbsr421 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded -dqbsr422 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr423 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr424 toSci 1.11111111111111111111111111111234650 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr425 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact -rounding: down -dqbsr426 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded -dqbsr427 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr428 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr429 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112345 Rounded Inexact -rounding: half_up -dqbsr431 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded -dqbsr432 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact -dqbsr433 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact -dqbsr434 toSci 1.11111111111111111111111111111234650 -> 1.111111111111111111111111111112347 Rounded Inexact -dqbsr435 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact --- negatives -rounding: ceiling -dqbsr501 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded -dqbsr502 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr503 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr504 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112345 Rounded Inexact -rounding: up -dqbsr505 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded -dqbsr506 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr507 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr508 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact -rounding: floor -dqbsr510 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded -dqbsr511 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr512 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr513 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact -rounding: half_down -dqbsr515 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded -dqbsr516 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr517 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr518 toSci -1.11111111111111111111111111111234650 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr519 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact -rounding: half_even -dqbsr521 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded -dqbsr522 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr523 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr524 toSci -1.11111111111111111111111111111234650 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr525 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact -rounding: down -dqbsr526 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded -dqbsr527 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr528 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr529 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112345 Rounded Inexact -rounding: half_up -dqbsr531 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded -dqbsr532 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact -dqbsr533 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact -dqbsr534 toSci -1.11111111111111111111111111111234650 -> -1.111111111111111111111111111112347 Rounded Inexact -dqbsr535 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact - -rounding: half_even - --- The 'baddies' tests from DiagBigDecimal, plus some new ones -dqbas500 toSci '1..2' -> NaN Conversion_syntax -dqbas501 toSci '.' -> NaN Conversion_syntax -dqbas502 toSci '..' -> NaN Conversion_syntax -dqbas503 toSci '++1' -> NaN Conversion_syntax -dqbas504 toSci '--1' -> NaN Conversion_syntax -dqbas505 toSci '-+1' -> NaN Conversion_syntax -dqbas506 toSci '+-1' -> NaN Conversion_syntax -dqbas507 toSci '12e' -> NaN Conversion_syntax -dqbas508 toSci '12e++' -> NaN Conversion_syntax -dqbas509 toSci '12f4' -> NaN Conversion_syntax -dqbas510 toSci ' +1' -> NaN Conversion_syntax -dqbas511 toSci '+ 1' -> NaN Conversion_syntax -dqbas512 toSci '12 ' -> NaN Conversion_syntax -dqbas513 toSci ' + 1' -> NaN Conversion_syntax -dqbas514 toSci ' - 1 ' -> NaN Conversion_syntax -dqbas515 toSci 'x' -> NaN Conversion_syntax -dqbas516 toSci '-1-' -> NaN Conversion_syntax -dqbas517 toSci '12-' -> NaN Conversion_syntax -dqbas518 toSci '3+' -> NaN Conversion_syntax -dqbas519 toSci '' -> NaN Conversion_syntax -dqbas520 toSci '1e-' -> NaN Conversion_syntax -dqbas521 toSci '7e99999a' -> NaN Conversion_syntax -dqbas522 toSci '7e123567890x' -> NaN Conversion_syntax -dqbas523 toSci '7e12356789012x' -> NaN Conversion_syntax -dqbas524 toSci '' -> NaN Conversion_syntax -dqbas525 toSci 'e100' -> NaN Conversion_syntax -dqbas526 toSci '\u0e5a' -> NaN Conversion_syntax -dqbas527 toSci '\u0b65' -> NaN Conversion_syntax -dqbas528 toSci '123,65' -> NaN Conversion_syntax -dqbas529 toSci '1.34.5' -> NaN Conversion_syntax -dqbas530 toSci '.123.5' -> NaN Conversion_syntax -dqbas531 toSci '01.35.' -> NaN Conversion_syntax -dqbas532 toSci '01.35-' -> NaN Conversion_syntax -dqbas533 toSci '0000..' -> NaN Conversion_syntax -dqbas534 toSci '.0000.' -> NaN Conversion_syntax -dqbas535 toSci '00..00' -> NaN Conversion_syntax -dqbas536 toSci '111e*123' -> NaN Conversion_syntax -dqbas537 toSci '111e123-' -> NaN Conversion_syntax -dqbas538 toSci '111e+12+' -> NaN Conversion_syntax -dqbas539 toSci '111e1-3-' -> NaN Conversion_syntax -dqbas540 toSci '111e1*23' -> NaN Conversion_syntax -dqbas541 toSci '111e1e+3' -> NaN Conversion_syntax -dqbas542 toSci '1e1.0' -> NaN Conversion_syntax -dqbas543 toSci '1e123e' -> NaN Conversion_syntax -dqbas544 toSci 'ten' -> NaN Conversion_syntax -dqbas545 toSci 'ONE' -> NaN Conversion_syntax -dqbas546 toSci '1e.1' -> NaN Conversion_syntax -dqbas547 toSci '1e1.' -> NaN Conversion_syntax -dqbas548 toSci '1ee' -> NaN Conversion_syntax -dqbas549 toSci 'e+1' -> NaN Conversion_syntax -dqbas550 toSci '1.23.4' -> NaN Conversion_syntax -dqbas551 toSci '1.2.1' -> NaN Conversion_syntax -dqbas552 toSci '1E+1.2' -> NaN Conversion_syntax -dqbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax -dqbas554 toSci '1E++1' -> NaN Conversion_syntax -dqbas555 toSci '1E--1' -> NaN Conversion_syntax -dqbas556 toSci '1E+-1' -> NaN Conversion_syntax -dqbas557 toSci '1E-+1' -> NaN Conversion_syntax -dqbas558 toSci '1E''1' -> NaN Conversion_syntax -dqbas559 toSci "1E""1" -> NaN Conversion_syntax -dqbas560 toSci "1E""""" -> NaN Conversion_syntax --- Near-specials -dqbas561 toSci "qNaN" -> NaN Conversion_syntax -dqbas562 toSci "NaNq" -> NaN Conversion_syntax -dqbas563 toSci "NaNs" -> NaN Conversion_syntax -dqbas564 toSci "Infi" -> NaN Conversion_syntax -dqbas565 toSci "Infin" -> NaN Conversion_syntax -dqbas566 toSci "Infini" -> NaN Conversion_syntax -dqbas567 toSci "Infinit" -> NaN Conversion_syntax -dqbas568 toSci "-Infinit" -> NaN Conversion_syntax -dqbas569 toSci "0Inf" -> NaN Conversion_syntax -dqbas570 toSci "9Inf" -> NaN Conversion_syntax -dqbas571 toSci "-0Inf" -> NaN Conversion_syntax -dqbas572 toSci "-9Inf" -> NaN Conversion_syntax -dqbas573 toSci "-sNa" -> NaN Conversion_syntax -dqbas574 toSci "xNaN" -> NaN Conversion_syntax -dqbas575 toSci "0sNaN" -> NaN Conversion_syntax - --- some baddies with dots and Es and dots and specials -dqbas576 toSci 'e+1' -> NaN Conversion_syntax -dqbas577 toSci '.e+1' -> NaN Conversion_syntax -dqbas578 toSci '+.e+1' -> NaN Conversion_syntax -dqbas579 toSci '-.e+' -> NaN Conversion_syntax -dqbas580 toSci '-.e' -> NaN Conversion_syntax -dqbas581 toSci 'E+1' -> NaN Conversion_syntax -dqbas582 toSci '.E+1' -> NaN Conversion_syntax -dqbas583 toSci '+.E+1' -> NaN Conversion_syntax -dqbas584 toSci '-.E+' -> NaN Conversion_syntax -dqbas585 toSci '-.E' -> NaN Conversion_syntax - -dqbas586 toSci '.NaN' -> NaN Conversion_syntax -dqbas587 toSci '-.NaN' -> NaN Conversion_syntax -dqbas588 toSci '+.sNaN' -> NaN Conversion_syntax -dqbas589 toSci '+.Inf' -> NaN Conversion_syntax -dqbas590 toSci '.Infinity' -> NaN Conversion_syntax - --- Zeros -dqbas601 toSci 0.000000000 -> 0E-9 -dqbas602 toSci 0.00000000 -> 0E-8 -dqbas603 toSci 0.0000000 -> 0E-7 -dqbas604 toSci 0.000000 -> 0.000000 -dqbas605 toSci 0.00000 -> 0.00000 -dqbas606 toSci 0.0000 -> 0.0000 -dqbas607 toSci 0.000 -> 0.000 -dqbas608 toSci 0.00 -> 0.00 -dqbas609 toSci 0.0 -> 0.0 -dqbas610 toSci .0 -> 0.0 -dqbas611 toSci 0. -> 0 -dqbas612 toSci -.0 -> -0.0 -dqbas613 toSci -0. -> -0 -dqbas614 toSci -0.0 -> -0.0 -dqbas615 toSci -0.00 -> -0.00 -dqbas616 toSci -0.000 -> -0.000 -dqbas617 toSci -0.0000 -> -0.0000 -dqbas618 toSci -0.00000 -> -0.00000 -dqbas619 toSci -0.000000 -> -0.000000 -dqbas620 toSci -0.0000000 -> -0E-7 -dqbas621 toSci -0.00000000 -> -0E-8 -dqbas622 toSci -0.000000000 -> -0E-9 - -dqbas630 toSci 0.00E+0 -> 0.00 -dqbas631 toSci 0.00E+1 -> 0.0 -dqbas632 toSci 0.00E+2 -> 0 -dqbas633 toSci 0.00E+3 -> 0E+1 -dqbas634 toSci 0.00E+4 -> 0E+2 -dqbas635 toSci 0.00E+5 -> 0E+3 -dqbas636 toSci 0.00E+6 -> 0E+4 -dqbas637 toSci 0.00E+7 -> 0E+5 -dqbas638 toSci 0.00E+8 -> 0E+6 -dqbas639 toSci 0.00E+9 -> 0E+7 - -dqbas640 toSci 0.0E+0 -> 0.0 -dqbas641 toSci 0.0E+1 -> 0 -dqbas642 toSci 0.0E+2 -> 0E+1 -dqbas643 toSci 0.0E+3 -> 0E+2 -dqbas644 toSci 0.0E+4 -> 0E+3 -dqbas645 toSci 0.0E+5 -> 0E+4 -dqbas646 toSci 0.0E+6 -> 0E+5 -dqbas647 toSci 0.0E+7 -> 0E+6 -dqbas648 toSci 0.0E+8 -> 0E+7 -dqbas649 toSci 0.0E+9 -> 0E+8 - -dqbas650 toSci 0E+0 -> 0 -dqbas651 toSci 0E+1 -> 0E+1 -dqbas652 toSci 0E+2 -> 0E+2 -dqbas653 toSci 0E+3 -> 0E+3 -dqbas654 toSci 0E+4 -> 0E+4 -dqbas655 toSci 0E+5 -> 0E+5 -dqbas656 toSci 0E+6 -> 0E+6 -dqbas657 toSci 0E+7 -> 0E+7 -dqbas658 toSci 0E+8 -> 0E+8 -dqbas659 toSci 0E+9 -> 0E+9 - -dqbas660 toSci 0.0E-0 -> 0.0 -dqbas661 toSci 0.0E-1 -> 0.00 -dqbas662 toSci 0.0E-2 -> 0.000 -dqbas663 toSci 0.0E-3 -> 0.0000 -dqbas664 toSci 0.0E-4 -> 0.00000 -dqbas665 toSci 0.0E-5 -> 0.000000 -dqbas666 toSci 0.0E-6 -> 0E-7 -dqbas667 toSci 0.0E-7 -> 0E-8 -dqbas668 toSci 0.0E-8 -> 0E-9 -dqbas669 toSci 0.0E-9 -> 0E-10 - -dqbas670 toSci 0.00E-0 -> 0.00 -dqbas671 toSci 0.00E-1 -> 0.000 -dqbas672 toSci 0.00E-2 -> 0.0000 -dqbas673 toSci 0.00E-3 -> 0.00000 -dqbas674 toSci 0.00E-4 -> 0.000000 -dqbas675 toSci 0.00E-5 -> 0E-7 -dqbas676 toSci 0.00E-6 -> 0E-8 -dqbas677 toSci 0.00E-7 -> 0E-9 -dqbas678 toSci 0.00E-8 -> 0E-10 -dqbas679 toSci 0.00E-9 -> 0E-11 - -dqbas680 toSci 000000. -> 0 -dqbas681 toSci 00000. -> 0 -dqbas682 toSci 0000. -> 0 -dqbas683 toSci 000. -> 0 -dqbas684 toSci 00. -> 0 -dqbas685 toSci 0. -> 0 -dqbas686 toSci +00000. -> 0 -dqbas687 toSci -00000. -> -0 -dqbas688 toSci +0. -> 0 -dqbas689 toSci -0. -> -0 - --- Specials -dqbas700 toSci "NaN" -> NaN -dqbas701 toSci "nan" -> NaN -dqbas702 toSci "nAn" -> NaN -dqbas703 toSci "NAN" -> NaN -dqbas704 toSci "+NaN" -> NaN -dqbas705 toSci "+nan" -> NaN -dqbas706 toSci "+nAn" -> NaN -dqbas707 toSci "+NAN" -> NaN -dqbas708 toSci "-NaN" -> -NaN -dqbas709 toSci "-nan" -> -NaN -dqbas710 toSci "-nAn" -> -NaN -dqbas711 toSci "-NAN" -> -NaN -dqbas712 toSci 'NaN0' -> NaN -dqbas713 toSci 'NaN1' -> NaN1 -dqbas714 toSci 'NaN12' -> NaN12 -dqbas715 toSci 'NaN123' -> NaN123 -dqbas716 toSci 'NaN1234' -> NaN1234 -dqbas717 toSci 'NaN01' -> NaN1 -dqbas718 toSci 'NaN012' -> NaN12 -dqbas719 toSci 'NaN0123' -> NaN123 -dqbas720 toSci 'NaN01234' -> NaN1234 -dqbas721 toSci 'NaN001' -> NaN1 -dqbas722 toSci 'NaN0012' -> NaN12 -dqbas723 toSci 'NaN00123' -> NaN123 -dqbas724 toSci 'NaN001234' -> NaN1234 -dqbas725 toSci 'NaN1234567890123456781234567890123456' -> NaN Conversion_syntax -dqbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax -dqbas727 toSci 'NaN12.45' -> NaN Conversion_syntax -dqbas728 toSci 'NaN-12' -> NaN Conversion_syntax -dqbas729 toSci 'NaN+12' -> NaN Conversion_syntax - -dqbas730 toSci "sNaN" -> sNaN -dqbas731 toSci "snan" -> sNaN -dqbas732 toSci "SnAn" -> sNaN -dqbas733 toSci "SNAN" -> sNaN -dqbas734 toSci "+sNaN" -> sNaN -dqbas735 toSci "+snan" -> sNaN -dqbas736 toSci "+SnAn" -> sNaN -dqbas737 toSci "+SNAN" -> sNaN -dqbas738 toSci "-sNaN" -> -sNaN -dqbas739 toSci "-snan" -> -sNaN -dqbas740 toSci "-SnAn" -> -sNaN -dqbas741 toSci "-SNAN" -> -sNaN -dqbas742 toSci 'sNaN0000' -> sNaN -dqbas743 toSci 'sNaN7' -> sNaN7 -dqbas744 toSci 'sNaN007234' -> sNaN7234 -dqbas745 toSci 'sNaN1234567890123456787234561234567890' -> NaN Conversion_syntax -dqbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax -dqbas747 toSci 'sNaN-72' -> NaN Conversion_syntax - -dqbas748 toSci "Inf" -> Infinity -dqbas749 toSci "inf" -> Infinity -dqbas750 toSci "iNf" -> Infinity -dqbas751 toSci "INF" -> Infinity -dqbas752 toSci "+Inf" -> Infinity -dqbas753 toSci "+inf" -> Infinity -dqbas754 toSci "+iNf" -> Infinity -dqbas755 toSci "+INF" -> Infinity -dqbas756 toSci "-Inf" -> -Infinity -dqbas757 toSci "-inf" -> -Infinity -dqbas758 toSci "-iNf" -> -Infinity -dqbas759 toSci "-INF" -> -Infinity - -dqbas760 toSci "Infinity" -> Infinity -dqbas761 toSci "infinity" -> Infinity -dqbas762 toSci "iNfInItY" -> Infinity -dqbas763 toSci "INFINITY" -> Infinity -dqbas764 toSci "+Infinity" -> Infinity -dqbas765 toSci "+infinity" -> Infinity -dqbas766 toSci "+iNfInItY" -> Infinity -dqbas767 toSci "+INFINITY" -> Infinity -dqbas768 toSci "-Infinity" -> -Infinity -dqbas769 toSci "-infinity" -> -Infinity -dqbas770 toSci "-iNfInItY" -> -Infinity -dqbas771 toSci "-INFINITY" -> -Infinity - --- Specials and zeros for toEng -dqbast772 toEng "NaN" -> NaN -dqbast773 toEng "-Infinity" -> -Infinity -dqbast774 toEng "-sNaN" -> -sNaN -dqbast775 toEng "-NaN" -> -NaN -dqbast776 toEng "+Infinity" -> Infinity -dqbast778 toEng "+sNaN" -> sNaN -dqbast779 toEng "+NaN" -> NaN -dqbast780 toEng "INFINITY" -> Infinity -dqbast781 toEng "SNAN" -> sNaN -dqbast782 toEng "NAN" -> NaN -dqbast783 toEng "infinity" -> Infinity -dqbast784 toEng "snan" -> sNaN -dqbast785 toEng "nan" -> NaN -dqbast786 toEng "InFINITY" -> Infinity -dqbast787 toEng "SnAN" -> sNaN -dqbast788 toEng "nAN" -> NaN -dqbast789 toEng "iNfinity" -> Infinity -dqbast790 toEng "sNan" -> sNaN -dqbast791 toEng "Nan" -> NaN -dqbast792 toEng "Infinity" -> Infinity -dqbast793 toEng "sNaN" -> sNaN - --- Zero toEng, etc. -dqbast800 toEng 0e+1 -> "0.00E+3" -- doc example - -dqbast801 toEng 0.000000000 -> 0E-9 -dqbast802 toEng 0.00000000 -> 0.00E-6 -dqbast803 toEng 0.0000000 -> 0.0E-6 -dqbast804 toEng 0.000000 -> 0.000000 -dqbast805 toEng 0.00000 -> 0.00000 -dqbast806 toEng 0.0000 -> 0.0000 -dqbast807 toEng 0.000 -> 0.000 -dqbast808 toEng 0.00 -> 0.00 -dqbast809 toEng 0.0 -> 0.0 -dqbast810 toEng .0 -> 0.0 -dqbast811 toEng 0. -> 0 -dqbast812 toEng -.0 -> -0.0 -dqbast813 toEng -0. -> -0 -dqbast814 toEng -0.0 -> -0.0 -dqbast815 toEng -0.00 -> -0.00 -dqbast816 toEng -0.000 -> -0.000 -dqbast817 toEng -0.0000 -> -0.0000 -dqbast818 toEng -0.00000 -> -0.00000 -dqbast819 toEng -0.000000 -> -0.000000 -dqbast820 toEng -0.0000000 -> -0.0E-6 -dqbast821 toEng -0.00000000 -> -0.00E-6 -dqbast822 toEng -0.000000000 -> -0E-9 - -dqbast830 toEng 0.00E+0 -> 0.00 -dqbast831 toEng 0.00E+1 -> 0.0 -dqbast832 toEng 0.00E+2 -> 0 -dqbast833 toEng 0.00E+3 -> 0.00E+3 -dqbast834 toEng 0.00E+4 -> 0.0E+3 -dqbast835 toEng 0.00E+5 -> 0E+3 -dqbast836 toEng 0.00E+6 -> 0.00E+6 -dqbast837 toEng 0.00E+7 -> 0.0E+6 -dqbast838 toEng 0.00E+8 -> 0E+6 -dqbast839 toEng 0.00E+9 -> 0.00E+9 - -dqbast840 toEng 0.0E+0 -> 0.0 -dqbast841 toEng 0.0E+1 -> 0 -dqbast842 toEng 0.0E+2 -> 0.00E+3 -dqbast843 toEng 0.0E+3 -> 0.0E+3 -dqbast844 toEng 0.0E+4 -> 0E+3 -dqbast845 toEng 0.0E+5 -> 0.00E+6 -dqbast846 toEng 0.0E+6 -> 0.0E+6 -dqbast847 toEng 0.0E+7 -> 0E+6 -dqbast848 toEng 0.0E+8 -> 0.00E+9 -dqbast849 toEng 0.0E+9 -> 0.0E+9 - -dqbast850 toEng 0E+0 -> 0 -dqbast851 toEng 0E+1 -> 0.00E+3 -dqbast852 toEng 0E+2 -> 0.0E+3 -dqbast853 toEng 0E+3 -> 0E+3 -dqbast854 toEng 0E+4 -> 0.00E+6 -dqbast855 toEng 0E+5 -> 0.0E+6 -dqbast856 toEng 0E+6 -> 0E+6 -dqbast857 toEng 0E+7 -> 0.00E+9 -dqbast858 toEng 0E+8 -> 0.0E+9 -dqbast859 toEng 0E+9 -> 0E+9 - -dqbast860 toEng 0.0E-0 -> 0.0 -dqbast861 toEng 0.0E-1 -> 0.00 -dqbast862 toEng 0.0E-2 -> 0.000 -dqbast863 toEng 0.0E-3 -> 0.0000 -dqbast864 toEng 0.0E-4 -> 0.00000 -dqbast865 toEng 0.0E-5 -> 0.000000 -dqbast866 toEng 0.0E-6 -> 0.0E-6 -dqbast867 toEng 0.0E-7 -> 0.00E-6 -dqbast868 toEng 0.0E-8 -> 0E-9 -dqbast869 toEng 0.0E-9 -> 0.0E-9 - -dqbast870 toEng 0.00E-0 -> 0.00 -dqbast871 toEng 0.00E-1 -> 0.000 -dqbast872 toEng 0.00E-2 -> 0.0000 -dqbast873 toEng 0.00E-3 -> 0.00000 -dqbast874 toEng 0.00E-4 -> 0.000000 -dqbast875 toEng 0.00E-5 -> 0.0E-6 -dqbast876 toEng 0.00E-6 -> 0.00E-6 -dqbast877 toEng 0.00E-7 -> 0E-9 -dqbast878 toEng 0.00E-8 -> 0.0E-9 -dqbast879 toEng 0.00E-9 -> 0.00E-9 - --- long input strings -dqbas801 tosci '01234567890123456' -> 1234567890123456 -dqbas802 tosci '001234567890123456' -> 1234567890123456 -dqbas803 tosci '0001234567890123456' -> 1234567890123456 -dqbas804 tosci '00001234567890123456' -> 1234567890123456 -dqbas805 tosci '000001234567890123456' -> 1234567890123456 -dqbas806 tosci '0000001234567890123456' -> 1234567890123456 -dqbas807 tosci '00000001234567890123456' -> 1234567890123456 -dqbas808 tosci '000000001234567890123456' -> 1234567890123456 -dqbas809 tosci '0000000001234567890123456' -> 1234567890123456 -dqbas810 tosci '00000000001234567890123456' -> 1234567890123456 - -dqbas811 tosci '0.1234567890123456' -> 0.1234567890123456 -dqbas812 tosci '0.01234567890123456' -> 0.01234567890123456 -dqbas813 tosci '0.001234567890123456' -> 0.001234567890123456 -dqbas814 tosci '0.0001234567890123456' -> 0.0001234567890123456 -dqbas815 tosci '0.00001234567890123456' -> 0.00001234567890123456 -dqbas816 tosci '0.000001234567890123456' -> 0.000001234567890123456 -dqbas817 tosci '0.0000001234567890123456' -> 1.234567890123456E-7 -dqbas818 tosci '0.00000001234567890123456' -> 1.234567890123456E-8 -dqbas819 tosci '0.000000001234567890123456' -> 1.234567890123456E-9 -dqbas820 tosci '0.0000000001234567890123456' -> 1.234567890123456E-10 - -dqbas821 tosci '12345678912345678901234567801234567890' -> 1.234567891234567890123456780123457E+37 Inexact Rounded -dqbas822 tosci '123456789123456789012345678012345678901' -> 1.234567891234567890123456780123457E+38 Inexact Rounded -dqbas823 tosci '1234567891234567890123456780123456789012' -> 1.234567891234567890123456780123457E+39 Inexact Rounded -dqbas824 tosci '12345678912345678901234567801234567890123' -> 1.234567891234567890123456780123457E+40 Inexact Rounded -dqbas825 tosci '123456789123456789012345678012345678901234' -> 1.234567891234567890123456780123457E+41 Inexact Rounded -dqbas826 tosci '1234567891234567890123456780123456789012345' -> 1.234567891234567890123456780123457E+42 Inexact Rounded -dqbas827 tosci '12345678912345678901234567801234567890123456' -> 1.234567891234567890123456780123457E+43 Inexact Rounded -dqbas828 tosci '123456789123456789012345678012345678901234567' -> 1.234567891234567890123456780123457E+44 Inexact Rounded -dqbas829 tosci '1234567891234567890123456780123456789012345678' -> 1.234567891234567890123456780123457E+45 Inexact Rounded - --- subnormals and overflows -dqbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded -dqbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded -dqbas908 toSci '0.9e-999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas909 toSci '0.09e-999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded -dqbas911 toSci '10e-1000000000' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded -dqbas913 toSci '99e-9999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded -dqbas915 toSci '1111e-9999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas916 toSci '1111e-99999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded --- negatives the same -dqbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded -dqbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded -dqbas920 toSci '-0.9e-999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas921 toSci '-0.09e-999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded -dqbas923 toSci '-10e-1000000000' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded -dqbas925 toSci '-99e-9999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded -dqbas927 toSci '-1111e-9999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas928 toSci '-1111e-99999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded - --- overflow results at different rounding modes -rounding: ceiling -dqbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dqbas931 toSci '-7e10000' -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded -rounding: up -dqbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dqbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: down -dqbas934 toSci '7e10000' -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded -dqbas935 toSci '-7e10000' -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded -rounding: floor -dqbas936 toSci '7e10000' -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded -dqbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded - -rounding: half_up -dqbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dqbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: half_even -dqbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dqbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: half_down -dqbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dqbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded - -rounding: half_even - --- Now check 854/754r some subnormals and underflow to 0 -dqbem400 toSci 1.0000E-383 -> 1.0000E-383 -dqbem401 toSci 0.1E-6172 -> 1E-6173 Subnormal -dqbem402 toSci 0.1000E-6172 -> 1.000E-6173 Subnormal -dqbem403 toSci 0.0100E-6172 -> 1.00E-6174 Subnormal -dqbem404 toSci 0.0010E-6172 -> 1.0E-6175 Subnormal -dqbem405 toSci 0.0001E-6172 -> 1E-6176 Subnormal -dqbem406 toSci 0.00010E-6172 -> 1E-6176 Subnormal Rounded -dqbem407 toSci 0.00013E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqbem408 toSci 0.00015E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem409 toSci 0.00017E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem410 toSci 0.00023E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem411 toSci 0.00025E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem412 toSci 0.00027E-6172 -> 3E-6176 Underflow Subnormal Inexact Rounded -dqbem413 toSci 0.000149E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqbem414 toSci 0.000150E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem415 toSci 0.000151E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem416 toSci 0.000249E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem417 toSci 0.000250E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqbem418 toSci 0.000251E-6172 -> 3E-6176 Underflow Subnormal Inexact Rounded -dqbem419 toSci 0.00009E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqbem420 toSci 0.00005E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbem421 toSci 0.00003E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbem422 toSci 0.000009E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbem423 toSci 0.000005E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbem424 toSci 0.000003E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped - -dqbem425 toSci 0.001049E-6172 -> 1.0E-6175 Underflow Subnormal Inexact Rounded -dqbem426 toSci 0.001050E-6172 -> 1.0E-6175 Underflow Subnormal Inexact Rounded -dqbem427 toSci 0.001051E-6172 -> 1.1E-6175 Underflow Subnormal Inexact Rounded -dqbem428 toSci 0.001149E-6172 -> 1.1E-6175 Underflow Subnormal Inexact Rounded -dqbem429 toSci 0.001150E-6172 -> 1.2E-6175 Underflow Subnormal Inexact Rounded -dqbem430 toSci 0.001151E-6172 -> 1.2E-6175 Underflow Subnormal Inexact Rounded - -dqbem432 toSci 0.010049E-6172 -> 1.00E-6174 Underflow Subnormal Inexact Rounded -dqbem433 toSci 0.010050E-6172 -> 1.00E-6174 Underflow Subnormal Inexact Rounded -dqbem434 toSci 0.010051E-6172 -> 1.01E-6174 Underflow Subnormal Inexact Rounded -dqbem435 toSci 0.010149E-6172 -> 1.01E-6174 Underflow Subnormal Inexact Rounded -dqbem436 toSci 0.010150E-6172 -> 1.02E-6174 Underflow Subnormal Inexact Rounded -dqbem437 toSci 0.010151E-6172 -> 1.02E-6174 Underflow Subnormal Inexact Rounded - -dqbem440 toSci 0.10103E-6172 -> 1.010E-6173 Underflow Subnormal Inexact Rounded -dqbem441 toSci 0.10105E-6172 -> 1.010E-6173 Underflow Subnormal Inexact Rounded -dqbem442 toSci 0.10107E-6172 -> 1.011E-6173 Underflow Subnormal Inexact Rounded -dqbem443 toSci 0.10113E-6172 -> 1.011E-6173 Underflow Subnormal Inexact Rounded -dqbem444 toSci 0.10115E-6172 -> 1.012E-6173 Underflow Subnormal Inexact Rounded -dqbem445 toSci 0.10117E-6172 -> 1.012E-6173 Underflow Subnormal Inexact Rounded - -dqbem450 toSci 1.10730E-6173 -> 1.107E-6173 Underflow Subnormal Inexact Rounded -dqbem451 toSci 1.10750E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded -dqbem452 toSci 1.10770E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded -dqbem453 toSci 1.10830E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded -dqbem454 toSci 1.10850E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded -dqbem455 toSci 1.10870E-6173 -> 1.109E-6173 Underflow Subnormal Inexact Rounded - --- make sure sign OK -dqbem456 toSci -0.10103E-6172 -> -1.010E-6173 Underflow Subnormal Inexact Rounded -dqbem457 toSci -0.10105E-6172 -> -1.010E-6173 Underflow Subnormal Inexact Rounded -dqbem458 toSci -0.10107E-6172 -> -1.011E-6173 Underflow Subnormal Inexact Rounded -dqbem459 toSci -0.10113E-6172 -> -1.011E-6173 Underflow Subnormal Inexact Rounded -dqbem460 toSci -0.10115E-6172 -> -1.012E-6173 Underflow Subnormal Inexact Rounded -dqbem461 toSci -0.10117E-6172 -> -1.012E-6173 Underflow Subnormal Inexact Rounded - --- '999s' cases -dqbem464 toSci 999999E-6173 -> 9.99999E-6168 Subnormal -dqbem465 toSci 99999.0E-6172 -> 9.99990E-6168 Subnormal -dqbem466 toSci 99999.E-6172 -> 9.9999E-6168 Subnormal -dqbem467 toSci 9999.9E-6172 -> 9.9999E-6169 Subnormal -dqbem468 toSci 999.99E-6172 -> 9.9999E-6170 Subnormal -dqbem469 toSci 99.999E-6172 -> 9.9999E-6171 Subnormal -dqbem470 toSci 9.9999E-6172 -> 9.9999E-6172 Subnormal -dqbem471 toSci 0.99999E-6172 -> 1.0000E-6172 Underflow Subnormal Inexact Rounded -dqbem472 toSci 0.099999E-6172 -> 1.000E-6173 Underflow Subnormal Inexact Rounded -dqbem473 toSci 0.0099999E-6172 -> 1.00E-6174 Underflow Subnormal Inexact Rounded -dqbem474 toSci 0.00099999E-6172 -> 1.0E-6175 Underflow Subnormal Inexact Rounded -dqbem475 toSci 0.000099999E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqbem476 toSci 0.0000099999E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbem477 toSci 0.00000099999E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbem478 toSci 0.000000099999E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped - --- Exponents with insignificant leading zeros -dqbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded -dqbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded -dqbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded -dqbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded -dqbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded -dqbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded -dqbas1007 toSci 1e-999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas1008 toSci 1e-0999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas1009 toSci 1e-00999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas1010 toSci 1e-000999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas1011 toSci 1e-000000000000999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqbas1012 toSci 1e-000000000001000000007 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped - --- check for double-rounded subnormals -dqbas1041 toSci 1.1111111111111111111111111111152444E-6144 -> 1.11111111111111111111111111111524E-6144 Inexact Rounded Subnormal Underflow -dqbas1042 toSci 1.1111111111111111111111111111152445E-6144 -> 1.11111111111111111111111111111524E-6144 Inexact Rounded Subnormal Underflow -dqbas1043 toSci 1.1111111111111111111111111111152446E-6144 -> 1.11111111111111111111111111111524E-6144 Inexact Rounded Subnormal Underflow - --- clamped zeros [see also clamp.decTest] -dqbas1075 toSci 0e+10000 -> 0E+6111 Clamped -dqbas1076 toSci 0e-10000 -> 0E-6176 Clamped -dqbas1077 toSci -0e+10000 -> -0E+6111 Clamped -dqbas1078 toSci -0e-10000 -> -0E-6176 Clamped - --- extreme values from next-wider -dqbas1101 toSci -9.9999999999999999999999999999999999999999999999999999999999999999999E+1572864 -> -Infinity Overflow Inexact Rounded -dqbas1102 toSci -1E-1572863 -> -0E-6176 Inexact Rounded Subnormal Underflow Clamped -dqbas1103 toSci -1E-1572932 -> -0E-6176 Inexact Rounded Subnormal Underflow Clamped -dqbas1104 toSci -0 -> -0 -dqbas1105 toSci +0 -> 0 -dqbas1106 toSci +1E-1572932 -> 0E-6176 Inexact Rounded Subnormal Underflow Clamped -dqbas1107 toSci +1E-1572863 -> 0E-6176 Inexact Rounded Subnormal Underflow Clamped -dqbas1108 toSci +9.9999999999999999999999999999999999999999999999999999999999999999999E+1572864 -> Infinity Overflow Inexact Rounded - diff --git a/qdecimal/test/tc_full/dqCanonical.decTest b/qdecimal/test/tc_full/dqCanonical.decTest deleted file mode 100644 index c72f165..0000000 --- a/qdecimal/test/tc_full/dqCanonical.decTest +++ /dev/null @@ -1,372 +0,0 @@ ------------------------------------------------------------------------- --- dqCanonical.decTest -- test decQuad canonical results -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This file tests that copy operations leave uncanonical operands --- unchanged, and vice versa - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Uncanonical declets are: abc, where: --- a=1,2,3 --- b=6,7,e,f --- c=e,f - --- assert some standard (canonical) values; this tests that FromString --- produces canonical results (many more in decimalNN) -dqcan001 apply 9.999999999999999999999999999999999E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan002 apply 0 -> #22080000000000000000000000000000 -dqcan003 apply 1 -> #22080000000000000000000000000001 -dqcan004 apply -1 -> #a2080000000000000000000000000001 -dqcan005 apply Infinity -> #78000000000000000000000000000000 -dqcan006 apply -Infinity -> #f8000000000000000000000000000000 -dqcan007 apply -NaN -> #fc000000000000000000000000000000 -dqcan008 apply -sNaN -> #fe000000000000000000000000000000 -dqcan009 apply NaN999999999999999999999999999999999 -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan010 apply sNaN999999999999999999999999999999999 -> #7e000ff3fcff3fcff3fcff3fcff3fcff -decan011 apply 9999999999999999999999999999999999 -> #6e080ff3fcff3fcff3fcff3fcff3fcff -dqcan012 apply 7.50 -> #220780000000000000000000000003d0 -dqcan013 apply 9.99 -> #220780000000000000000000000000ff - --- Base tests for canonical encodings (individual operator --- propagation is tested later) - --- Finites: declets in coefficient -dqcan021 canonical #77ffcff3fcff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan022 canonical #77fffff3fcff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan023 canonical #77ffcffffcff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan024 canonical #77ffcff3ffff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan025 canonical #77ffcff3fcffffcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan026 canonical #77ffcff3fcff3ffff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan027 canonical #77ffcff3fcff3fcffffcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan028 canonical #77ffcff3fcff3fcff3ffff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan029 canonical #77ffcff3fcff3fcff3fcffffcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan030 canonical #77ffcff3fcff3fcff3fcff3ffff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan031 canonical #77ffcff3fcff3fcff3fcff3fcffffcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan032 canonical #77ffcff3fcff3fcff3fcff3fcff3ffff -> #77ffcff3fcff3fcff3fcff3fcff3fcff - --- NaN: declets in payload -dqcan061 canonical #7c000ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan062 canonical #7c000ffffcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan063 canonical #7c000ff3ffff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan064 canonical #7c000ff3fcffffcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan065 canonical #7c000ff3fcff3ffff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan066 canonical #7c000ff3fcff3fcffffcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan067 canonical #7c000ff3fcff3fcff3ffff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan068 canonical #7c000ff3fcff3fcff3fcffffcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan069 canonical #7c000ff3fcff3fcff3fcff3ffff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan070 canonical #7c000ff3fcff3fcff3fcff3fcffffcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan071 canonical #7c000ff3fcff3fcff3fcff3fcff3ffff -> #7c000ff3fcff3fcff3fcff3fcff3fcff --- NaN: exponent continuation bits [excluding sNaN selector] -dqcan081 canonical #7d000ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan082 canonical #7c800ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan083 canonical #7c400ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan084 canonical #7c200ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan085 canonical #7c100ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan086 canonical #7c080ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan087 canonical #7c040ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan088 canonical #7c020ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan089 canonical #7c010ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan090 canonical #7c008ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan091 canonical #7c004ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff - --- sNaN: declets in payload -dqcan101 canonical #7e000ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan102 canonical #7e000ffffcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan103 canonical #7e000ff3ffff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan104 canonical #7e000ff3fcffffcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan105 canonical #7e000ff3fcff3ffff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan106 canonical #7e000ff3fcff3fcffffcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan107 canonical #7e000ff3fcff3fcff3ffff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan108 canonical #7e000ff3fcff3fcff3fcffffcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan109 canonical #7e000ff3fcff3fcff3fcff3ffff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan100 canonical #7e000ff3fcff3fcff3fcff3fcffffcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan111 canonical #7e000ff3fcff3fcff3fcff3fcff3ffff -> #7e000ff3fcff3fcff3fcff3fcff3fcff --- sNaN: exponent continuation bits [excluding sNaN selector] -dqcan121 canonical #7f000ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan122 canonical #7e800ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan123 canonical #7e400ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan124 canonical #7e200ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan125 canonical #7e100ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan126 canonical #7e080ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan127 canonical #7e040ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan128 canonical #7e020ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan129 canonical #7e010ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan130 canonical #7e008ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff -dqcan131 canonical #7e004ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff - --- Inf: exponent continuation bits -dqcan137 canonical #78000000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan138 canonical #79000000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan139 canonical #7a000000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan140 canonical #78800000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan141 canonical #78400000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan142 canonical #78200000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan143 canonical #78100000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan144 canonical #78080000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan145 canonical #78040000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan146 canonical #78020000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan147 canonical #78010000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan148 canonical #78008000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan149 canonical #78004000000000000000000000000000 -> #78000000000000000000000000000000 - --- Inf: coefficient continuation bits (first, last, and a few others) -dqcan150 canonical #78000000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan151 canonical #78020000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan152 canonical #78000000000000000000000000000001 -> #78000000000000000000000000000000 -dqcan153 canonical #78010000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan154 canonical #78002000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan155 canonical #78000800000000000000000000000000 -> #78000000000000000000000000000000 -dqcan156 canonical #78000020000000000000000000000000 -> #78000000000000000000000000000000 -dqcan157 canonical #78000004000000000000000000000000 -> #78000000000000000000000000000000 -dqcan158 canonical #78000000400000000000000000000000 -> #78000000000000000000000000000000 -dqcan159 canonical #78000000080000000000000000000000 -> #78000000000000000000000000000000 -dqcan160 canonical #78000000004000000000000000000000 -> #78000000000000000000000000000000 -dqcan161 canonical #78000000000200000000000000000000 -> #78000000000000000000000000000000 -dqcan162 canonical #78000000000080000000000000000000 -> #78000000000000000000000000000000 -dqcan163 canonical #78000000000002000000000000000000 -> #78000000000000000000000000000000 -dqcan164 canonical #78000000000000400000000000000000 -> #78000000000000000000000000000000 -dqcan165 canonical #78000000000000080000000000000000 -> #78000000000000000000000000000000 -dqcan166 canonical #78000000000000001000000000000000 -> #78000000000000000000000000000000 -dqcan167 canonical #78000000000000000200000000000000 -> #78000000000000000000000000000000 -dqcan168 canonical #78000000000000000080000000000000 -> #78000000000000000000000000000000 -dqcan169 canonical #78000000000000000004000000000000 -> #78000000000000000000000000000000 -dqcan170 canonical #78000000000000000000400000000000 -> #78000000000000000000000000000000 -dqcan171 canonical #78000000000000000000010000000000 -> #78000000000000000000000000000000 -dqcan172 canonical #78000000000000000000002000000000 -> #78000000000000000000000000000000 -dqcan173 canonical #78000000000000000000000400000000 -> #78000000000000000000000000000000 -dqcan174 canonical #78000000000000000000000080000000 -> #78000000000000000000000000000000 -dqcan175 canonical #78000000000000000000000002000000 -> #78000000000000000000000000000000 -dqcan176 canonical #78000000000000000000000000400000 -> #78000000000000000000000000000000 -dqcan177 canonical #78000000000000000000000000020000 -> #78000000000000000000000000000000 -dqcan178 canonical #78000000000000000000000000001000 -> #78000000000000000000000000000000 -dqcan179 canonical #78000000000000000000000000000400 -> #78000000000000000000000000000000 -dqcan180 canonical #78000000000000000000000000000020 -> #78000000000000000000000000000000 -dqcan181 canonical #78000000000000000000000000000008 -> #78000000000000000000000000000000 - - --- Now the operators -- trying to check paths that might fail to --- canonicalize propagated operands - ------ Add: --- Finites: neutral 0 -dqcan202 add 0E+6144 #77ffcff3fcff3fcffffcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff -dqcan203 add #77ffcff3fcff3fcff3fcff3ffff3fcff 0E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff --- tiny zero -dqcan204 add 0E-6176 #77ffcff3ffff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff Rounded -dqcan205 add #77ffcff3fcff3fcff3fcff3fcff3ffff 0E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Rounded --- tiny non zero -dqcan206 add -1E-6176 #77ffcff3fcff3fcff3fcff3fcfffffff -> #77ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded -dqcan207 add #77ffcffffffffffffffffffffff3fcff -1E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded --- NaN: declets in payload -dqcan211 add 0 #7c000ff3fcff3fcff3fcfffffff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan212 add #7c000ff3fcff3fcfffffff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff --- NaN: exponent continuation bits [excluding sNaN selector] -dqcan213 add 0 #7c400ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan214 add #7c020ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff --- sNaN: declets in payload -dqcan215 add 0 #7e000ff3fcffffcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation -dqcan216 add #7e003ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation --- sNaN: exponent continuation bits [excluding sNaN selector] -dqcan217 add 0 #7e500ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation -dqcan218 add #7e0e0ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation --- Inf: exponent continuation bits -dqcan220 add 0 #78010000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan221 add #78680000000000000000000000000000 0 -> #78000000000000000000000000000000 --- Inf: coefficient continuation bits -dqcan222 add 0 #78002000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan223 add #78000000000000000000000000000001 0 -> #78000000000000000000000000000000 -dqcan224 add 0 #78000002000000000000000000000000 -> #78000000000000000000000000000000 -dqcan225 add #780000000000f0000000000000000000 0 -> #78000000000000000000000000000000 -dqcan226 add 0 #78000000000000000005000000000000 -> #78000000000000000000000000000000 -dqcan227 add #780000000000000000000000000a0000 0 -> #78000000000000000000000000000000 - ------ Class: [does not return encoded] - ------ Compare: -dqcan231 compare -Inf 1 -> #a2080000000000000000000000000001 -dqcan232 compare -Inf -Inf -> #22080000000000000000000000000000 -dqcan233 compare 1 -Inf -> #22080000000000000000000000000001 -dqcan234 compare #7c010ff3fcff3fcff3fcff3ffffffcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan235 compare #7e004ff3fcff3fcff3ffffffcff3fcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation - ------ CompareSig: -dqcan241 comparesig -Inf 1 -> #a2080000000000000000000000000001 -dqcan242 comparesig -Inf -Inf -> #22080000000000000000000000000000 -dqcan243 comparesig 1 -Inf -> #22080000000000000000000000000001 -dqcan244 comparesig #7c400ff3ffff3fcff3fcff3fcff3fcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation -dqcan245 comparesig #7e050ff3fcfffffff3fcff3fcff3fcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation - ------ Copy: [does not usually canonicalize] --- finites -dqcan250 copy #6e080ff3fcff3fcfffffff3fcfffffff -> #6e080ff3fcff3fcfffffff3fcfffffff -dqcan251 copy #ee080ff3fcff3ffff3fcff3ffff3fcff -> #ee080ff3fcff3ffff3fcff3ffff3fcff --- NaNs -dqcan252 copy #7c000ff3fcffffffffffffffcff3fcff -> #7c000ff3fcffffffffffffffcff3fcff -dqcan253 copy #7c080ff3fcff3fcff3fcff3fcff3fcff -> #7c080ff3fcff3fcff3fcff3fcff3fcff --- sNaN -dqcan254 copy #7e003ff3fcffffffffffffffcff3fcff -> #7e003ff3fcffffffffffffffcff3fcff -dqcan255 copy #7e100ff3fcff3fcff3fcff3fcff3fcff -> #7e100ff3fcff3fcff3fcff3fcff3fcff --- Inf -dqcan258 copy #78002000000000000000000000000000 -> #78002000000000000000000000000000 -dqcan259 copy #78000000000010000000000000100000 -> #78000000000010000000000000100000 - ------ CopyAbs: [does not usually canonicalize] --- finites -dqcan260 copyabs #6e080ff3fcff3fcfffffff3fcfffffff -> #6e080ff3fcff3fcfffffff3fcfffffff -dqcan261 copyabs #ee080ff3fcff3ffff3fcff3ffff3fcff -> #6e080ff3fcff3ffff3fcff3ffff3fcff --- NaNs -dqcan262 copyabs #fc000ff3fcffffffffffffffcff3fcff -> #7c000ff3fcffffffffffffffcff3fcff -dqcan263 copyabs #fc080ff3fcff3fcff3fcff3fcff3fcff -> #7c080ff3fcff3fcff3fcff3fcff3fcff --- sNaN -dqcan264 copyabs #fe003ff3fcffffffffffffffcff3fcff -> #7e003ff3fcffffffffffffffcff3fcff -dqcan265 copyabs #fe100ff3fcff3fcff3fcff3fcff3fcff -> #7e100ff3fcff3fcff3fcff3fcff3fcff --- Inf -dqcan268 copyabs #f8002000000000000000000000000000 -> #78002000000000000000000000000000 -dqcan269 copyabs #f8000000000000700700700000000000 -> #78000000000000700700700000000000 - ------ CopyNegate: [does not usually canonicalize] --- finites -dqcan270 copynegate #6e080ff3fcff3fcfffffff3fcfffffff -> #ee080ff3fcff3fcfffffff3fcfffffff -dqcan271 copynegate #ee080ff3fcff3ffff3fcff3ffff3fcff -> #6e080ff3fcff3ffff3fcff3ffff3fcff --- NaNs -dqcan272 copynegate #7c000ff3fcffffffffffff3fcff3fcff -> #fc000ff3fcffffffffffff3fcff3fcff -dqcan273 copynegate #7c080ff3fcff3fcff3fcff3fcff3fcff -> #fc080ff3fcff3fcff3fcff3fcff3fcff --- sNaN -dqcan274 copynegate #7e003ff3fcffffffffffffffcff3fcff -> #fe003ff3fcffffffffffffffcff3fcff -dqcan275 copynegate #7e100ff3fcff3fcff3fcff3fcff3fcff -> #fe100ff3fcff3fcff3fcff3fcff3fcff --- Inf -dqcan278 copynegate #78002000000000000000000000000000 -> #f8002000000000000000000000000000 -dqcan279 copynegate #78000000000010000000000000100000 -> #f8000000000010000000000000100000 - ------ CopySign: [does not usually canonicalize] --- finites -dqcan280 copysign #6e080ff3fcff3fcfffffff3fcfffffff -1 -> #ee080ff3fcff3fcfffffff3fcfffffff -dqcan281 copysign #ee080ff3fcff3ffff3fcff3ffff3fcff 1 -> #6e080ff3fcff3ffff3fcff3ffff3fcff --- NaNs -dqcan282 copysign #7c000ff3fcffffffffffffffcff3fcff -1 -> #fc000ff3fcffffffffffffffcff3fcff -dqcan283 copysign #7c080ff3fcff3fcff3fcff3fcff3fcff 1 -> #7c080ff3fcff3fcff3fcff3fcff3fcff --- sNaN -dqcan284 copysign #7e003ff3fcffffffffffffffcff3fcff -1 -> #fe003ff3fcffffffffffffffcff3fcff -dqcan285 copysign #7e100ff3fcff3fcff3fcff3fcff3fcff 1 -> #7e100ff3fcff3fcff3fcff3fcff3fcff --- Inf -dqcan288 copysign #78002000000000000000000000000000 -1 -> #f8002000000000000000000000000000 -dqcan289 copysign #78000000000010000000000000100000 1 -> #78000000000010000000000000100000 - ------ Multiply: --- Finites: neutral 0 -dqcan302 multiply 1 #77ffff3fcff3fcff0000000000000000 -> #77ffff3fcff3fcff0000000000000000 -dqcan303 multiply #77fcffffcff3fcff0000000000000000 1 -> #77fccfffcff3fcff0000000000000000 --- negative -dqcan306 multiply -1 #77ffff3fcff3fcff0000000000000000 -> #f7ffff3fcff3fcff0000000000000000 -dqcan307 multiply #77fcffffcff3fcff0000000000000000 -1 -> #f7fccfffcff3fcff0000000000000000 --- NaN: declets in payload -dqcan311 multiply 1 #7c03ff3fcff3fcff0000000000000000 -> #7c003f3fcff3fcff0000000000000000 -dqcan312 multiply #7c03ff3fcff3fcff0000000000000000 1 -> #7c003f3fcff3fcff0000000000000000 --- NaN: exponent continuation bits [excluding sNaN selector] -dqcan313 multiply 1 #7c40ff3fcff3fcff0000000000000000 -> #7c003f3fcff3fcff0000000000000000 -dqcan314 multiply #7c40ff3fcff3fcff0000000000000000 1 -> #7c003f3fcff3fcff0000000000000000 --- sNaN: declets in payload -dqcan315 multiply 1 #7e00ffffcff3fcff0000000000000000 -> #7c000fffcff3fcff0000000000000000 Invalid_operation -dqcan316 multiply #7e00ffffcff3fcff0000000000000000 1 -> #7c000fffcff3fcff0000000000000000 Invalid_operation --- sNaN: exponent continuation bits [excluding sNaN selector] -dqcan317 multiply 1 #7e80ff3fcff3fcff0000000000000000 -> #7c003f3fcff3fcff0000000000000000 Invalid_operation -dqcan318 multiply #7e80ff3fcff3fcff0000000000000000 1 -> #7c003f3fcff3fcff0000000000000000 Invalid_operation --- Inf: exponent continuation bits -dqcan320 multiply 1 #78800000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan321 multiply #78800000000000000000000000000000 1 -> #78000000000000000000000000000000 --- Inf: coefficient continuation bits -dqcan322 multiply 1 #78020000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan323 multiply #78020000000000000000000000000000 1 -> #78000000000000000000000000000000 -dqcan324 multiply 1 #78000000000000010000000000000000 -> #78000000000000000000000000000000 -dqcan325 multiply #78000000000000010000000000000000 1 -> #78000000000000000000000000000000 -dqcan326 multiply 1 #78000020000000000000000000000000 -> #78000000000000000000000000000000 -dqcan327 multiply #78000020000000000000000000000000 1 -> #78000000000000000000000000000000 - ------ Quantize: -dqcan401 quantize #ee080ff3fcff3fcff3fffffffff3fcff 0 -> #ee080ff3fcff3fcff3fcff3fcff3fcff -dqcan402 quantize #ee080ff3fffffffffffcff3fcff3fcff 0 -> #ee080ff3fcff3fcff3fcff3fcff3fcff -dqcan403 quantize #78800000000000000000000000000000 Inf -> #78000000000000000000000000000000 -dqcan404 quantize #78020000000000000000000000000000 -Inf -> #78000000000000000000000000000000 -dqcan410 quantize #7c080ff3fcff3fcff3fcff3fcff3fcff 1 -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan411 quantize #fc000ff3fcfffffff3fcff3fcff3fcff 1 -> #fc000ff3fcff3fcff3fcff3fcff3fcff -dqcan412 quantize #7e100ff3fcff3fcff3fcff3fcff3fcff 1 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation -dqcan413 quantize #fe000ff3fcff3fcff3ffffffcff3fcff 1 -> #fc000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation - ------ Subtract: --- Finites: neutral 0 -dqcan502 subtract 0E+6144 #77ffcff3fcff3fcffffcff3fcff3fcff -> #f7ffcff3fcff3fcff3fcff3fcff3fcff -dqcan503 subtract #77ffcff3fcff3fcff3fcff3ffff3fcff 0E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff --- tiny zero -dqcan504 subtract 0E-6176 #77ffcff3ffff3fcff3fcff3fcff3fcff -> #f7ffcff3fcff3fcff3fcff3fcff3fcff Rounded -dqcan505 subtract #77ffcff3fcff3fcff3fcff3fcff3ffff 0E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Rounded --- tiny non zero -dqcan506 subtract -1E-6176 #77ffcff3fcff3fcff3fcff3fcfffffff -> #f7ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded -dqcan507 subtract #77ffcffffffffffffffffffffff3fcff -1E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded --- NaN: declets in payload -dqcan511 subtract 0 #7c000ff3fcff3fcff3fcfffffff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan512 subtract #7c000ff3fcff3fcfffffff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff --- NaN: exponent continuation bits [excluding sNaN selector] -dqcan513 subtract 0 #7c400ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan514 subtract #7c020ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff --- sNaN: declets in payload -dqcan515 subtract 0 #7e000ff3fcffffcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation -dqcan516 subtract #7e003ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation --- sNaN: exponent continuation bits [excluding sNaN selector] -dqcan517 subtract 0 #7e500ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation -dqcan518 subtract #7e0e0ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation --- Inf: exponent continuation bits -dqcan520 subtract 0 #78010000000000000000000000000000 -> #f8000000000000000000000000000000 -dqcan521 subtract #78680000000000000000000000000000 0 -> #78000000000000000000000000000000 --- Inf: coefficient continuation bits -dqcan522 subtract 0 #78002000000000000000000000000000 -> #f8000000000000000000000000000000 -dqcan523 subtract #78000000000000000000000000000001 0 -> #78000000000000000000000000000000 -dqcan524 subtract 0 #78000002000000000000000000000000 -> #f8000000000000000000000000000000 -dqcan525 subtract #780000000000f0000000000000000000 0 -> #78000000000000000000000000000000 -dqcan526 subtract 0 #78000000000000000005000000000000 -> #f8000000000000000000000000000000 -dqcan527 subtract #780000000000000000000000000a0000 0 -> #78000000000000000000000000000000 - ------ ToIntegral: -dqcan601 tointegralx #6e080ff3fdff3fcff3fcff3fcff3fcff -> #6e080ff3fcff3fcff3fcff3fcff3fcff -dqcan602 tointegralx #ee080ff3fcff3ffff3fcff3fcff3fcff -> #ee080ff3fcff3fcff3fcff3fcff3fcff -dqcan603 tointegralx #78800000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan604 tointegralx #78020000000000000000000000000000 -> #78000000000000000000000000000000 -dqcan614 tointegralx #7c100ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff -dqcan615 tointegralx #fc000ff3fcff3fcff3fcffffcff3fcff -> #fc000ff3fcff3fcff3fcff3fcff3fcff -dqcan616 tointegralx #7e010ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation -dqcan617 tointegralx #fe000ff3fcff3fcff3fdff3fcff3fcff -> #fc000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation --- uncanonical 3999, 39.99, 3.99, 0.399, and negatives -dqcan618 tointegralx #22080000000000000000000000000fff -> #22080000000000000000000000000cff -dqcan619 tointegralx #22078000000000000000000000000fff -> #22080000000000000000000000000040 Inexact Rounded -dqcan620 tointegralx #22074000000000000000000000000fff -> #22080000000000000000000000000004 Inexact Rounded -dqcan621 tointegralx #22070000000000000000000000000fff -> #22080000000000000000000000000000 Inexact Rounded -dqcan622 tointegralx #a2080000000000000000000000000fff -> #a2080000000000000000000000000cff -dqcan623 tointegralx #a2078000000000000000000000000fff -> #a2080000000000000000000000000040 Inexact Rounded -dqcan624 tointegralx #a2074000000000000000000000000fff -> #a2080000000000000000000000000004 Inexact Rounded -dqcan625 tointegralx #a2070000000000000000000000000fff -> #a2080000000000000000000000000000 Inexact Rounded - - - diff --git a/qdecimal/test/tc_full/dqClass.decTest b/qdecimal/test/tc_full/dqClass.decTest deleted file mode 100644 index 9e47860..0000000 --- a/qdecimal/test/tc_full/dqClass.decTest +++ /dev/null @@ -1,77 +0,0 @@ ------------------------------------------------------------------------- --- dqClass.decTest -- decQuad Class operations -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- [New 2006.11.27] - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqcla001 class 0 -> +Zero -dqcla002 class 0.00 -> +Zero -dqcla003 class 0E+5 -> +Zero -dqcla004 class 1E-6176 -> +Subnormal -dqcla005 class 0.1E-6143 -> +Subnormal -dqcla006 class 0.99999999999999999999999999999999E-6143 -> +Subnormal -dqcla007 class 1.00000000000000000000000000000000E-6143 -> +Normal -dqcla008 class 1E-6143 -> +Normal -dqcla009 class 1E-100 -> +Normal -dqcla010 class 1E-10 -> +Normal -dqcla012 class 1E-1 -> +Normal -dqcla013 class 1 -> +Normal -dqcla014 class 2.50 -> +Normal -dqcla015 class 100.100 -> +Normal -dqcla016 class 1E+30 -> +Normal -dqcla017 class 1E+6144 -> +Normal -dqcla018 class 9.99999999999999999999999999999999E+6144 -> +Normal -dqcla019 class Inf -> +Infinity - -dqcla021 class -0 -> -Zero -dqcla022 class -0.00 -> -Zero -dqcla023 class -0E+5 -> -Zero -dqcla024 class -1E-6176 -> -Subnormal -dqcla025 class -0.1E-6143 -> -Subnormal -dqcla026 class -0.99999999999999999999999999999999E-6143 -> -Subnormal -dqcla027 class -1.00000000000000000000000000000000E-6143 -> -Normal -dqcla028 class -1E-6143 -> -Normal -dqcla029 class -1E-100 -> -Normal -dqcla030 class -1E-10 -> -Normal -dqcla032 class -1E-1 -> -Normal -dqcla033 class -1 -> -Normal -dqcla034 class -2.50 -> -Normal -dqcla035 class -100.100 -> -Normal -dqcla036 class -1E+30 -> -Normal -dqcla037 class -1E+6144 -> -Normal -dqcla0614 class -9.99999999999999999999999999999999E+6144 -> -Normal -dqcla039 class -Inf -> -Infinity - -dqcla041 class NaN -> NaN -dqcla042 class -NaN -> NaN -dqcla043 class +NaN12345 -> NaN -dqcla044 class sNaN -> sNaN -dqcla045 class -sNaN -> sNaN -dqcla046 class +sNaN12345 -> sNaN - - - diff --git a/qdecimal/test/tc_full/dqCompare.decTest b/qdecimal/test/tc_full/dqCompare.decTest deleted file mode 100644 index a82ffc7..0000000 --- a/qdecimal/test/tc_full/dqCompare.decTest +++ /dev/null @@ -1,753 +0,0 @@ ------------------------------------------------------------------------- --- dqCompare.decTest -- decQuad comparison that allows quiet NaNs -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqcom001 compare -2 -2 -> 0 -dqcom002 compare -2 -1 -> -1 -dqcom003 compare -2 0 -> -1 -dqcom004 compare -2 1 -> -1 -dqcom005 compare -2 2 -> -1 -dqcom006 compare -1 -2 -> 1 -dqcom007 compare -1 -1 -> 0 -dqcom008 compare -1 0 -> -1 -dqcom009 compare -1 1 -> -1 -dqcom010 compare -1 2 -> -1 -dqcom011 compare 0 -2 -> 1 -dqcom012 compare 0 -1 -> 1 -dqcom013 compare 0 0 -> 0 -dqcom014 compare 0 1 -> -1 -dqcom015 compare 0 2 -> -1 -dqcom016 compare 1 -2 -> 1 -dqcom017 compare 1 -1 -> 1 -dqcom018 compare 1 0 -> 1 -dqcom019 compare 1 1 -> 0 -dqcom020 compare 1 2 -> -1 -dqcom021 compare 2 -2 -> 1 -dqcom022 compare 2 -1 -> 1 -dqcom023 compare 2 0 -> 1 -dqcom025 compare 2 1 -> 1 -dqcom026 compare 2 2 -> 0 - -dqcom031 compare -20 -20 -> 0 -dqcom032 compare -20 -10 -> -1 -dqcom033 compare -20 00 -> -1 -dqcom034 compare -20 10 -> -1 -dqcom035 compare -20 20 -> -1 -dqcom036 compare -10 -20 -> 1 -dqcom037 compare -10 -10 -> 0 -dqcom038 compare -10 00 -> -1 -dqcom039 compare -10 10 -> -1 -dqcom040 compare -10 20 -> -1 -dqcom041 compare 00 -20 -> 1 -dqcom042 compare 00 -10 -> 1 -dqcom043 compare 00 00 -> 0 -dqcom044 compare 00 10 -> -1 -dqcom045 compare 00 20 -> -1 -dqcom046 compare 10 -20 -> 1 -dqcom047 compare 10 -10 -> 1 -dqcom048 compare 10 00 -> 1 -dqcom049 compare 10 10 -> 0 -dqcom050 compare 10 20 -> -1 -dqcom051 compare 20 -20 -> 1 -dqcom052 compare 20 -10 -> 1 -dqcom053 compare 20 00 -> 1 -dqcom055 compare 20 10 -> 1 -dqcom056 compare 20 20 -> 0 - -dqcom061 compare -2.0 -2.0 -> 0 -dqcom062 compare -2.0 -1.0 -> -1 -dqcom063 compare -2.0 0.0 -> -1 -dqcom064 compare -2.0 1.0 -> -1 -dqcom065 compare -2.0 2.0 -> -1 -dqcom066 compare -1.0 -2.0 -> 1 -dqcom067 compare -1.0 -1.0 -> 0 -dqcom068 compare -1.0 0.0 -> -1 -dqcom069 compare -1.0 1.0 -> -1 -dqcom070 compare -1.0 2.0 -> -1 -dqcom071 compare 0.0 -2.0 -> 1 -dqcom072 compare 0.0 -1.0 -> 1 -dqcom073 compare 0.0 0.0 -> 0 -dqcom074 compare 0.0 1.0 -> -1 -dqcom075 compare 0.0 2.0 -> -1 -dqcom076 compare 1.0 -2.0 -> 1 -dqcom077 compare 1.0 -1.0 -> 1 -dqcom078 compare 1.0 0.0 -> 1 -dqcom079 compare 1.0 1.0 -> 0 -dqcom080 compare 1.0 2.0 -> -1 -dqcom081 compare 2.0 -2.0 -> 1 -dqcom082 compare 2.0 -1.0 -> 1 -dqcom083 compare 2.0 0.0 -> 1 -dqcom085 compare 2.0 1.0 -> 1 -dqcom086 compare 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -dqcom090 compare 9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> 0 -dqcom091 compare -9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> -1 -dqcom092 compare 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 1 -dqcom093 compare -9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0 - --- some differing length/exponent cases -dqcom100 compare 7.0 7.0 -> 0 -dqcom101 compare 7.0 7 -> 0 -dqcom102 compare 7 7.0 -> 0 -dqcom103 compare 7E+0 7.0 -> 0 -dqcom104 compare 70E-1 7.0 -> 0 -dqcom105 compare 0.7E+1 7 -> 0 -dqcom106 compare 70E-1 7 -> 0 -dqcom107 compare 7.0 7E+0 -> 0 -dqcom108 compare 7.0 70E-1 -> 0 -dqcom109 compare 7 0.7E+1 -> 0 -dqcom110 compare 7 70E-1 -> 0 - -dqcom120 compare 8.0 7.0 -> 1 -dqcom121 compare 8.0 7 -> 1 -dqcom122 compare 8 7.0 -> 1 -dqcom123 compare 8E+0 7.0 -> 1 -dqcom124 compare 80E-1 7.0 -> 1 -dqcom125 compare 0.8E+1 7 -> 1 -dqcom126 compare 80E-1 7 -> 1 -dqcom127 compare 8.0 7E+0 -> 1 -dqcom128 compare 8.0 70E-1 -> 1 -dqcom129 compare 8 0.7E+1 -> 1 -dqcom130 compare 8 70E-1 -> 1 - -dqcom140 compare 8.0 9.0 -> -1 -dqcom141 compare 8.0 9 -> -1 -dqcom142 compare 8 9.0 -> -1 -dqcom143 compare 8E+0 9.0 -> -1 -dqcom144 compare 80E-1 9.0 -> -1 -dqcom145 compare 0.8E+1 9 -> -1 -dqcom146 compare 80E-1 9 -> -1 -dqcom147 compare 8.0 9E+0 -> -1 -dqcom148 compare 8.0 90E-1 -> -1 -dqcom149 compare 8 0.9E+1 -> -1 -dqcom150 compare 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -dqcom200 compare -7.0 7.0 -> -1 -dqcom201 compare -7.0 7 -> -1 -dqcom202 compare -7 7.0 -> -1 -dqcom203 compare -7E+0 7.0 -> -1 -dqcom204 compare -70E-1 7.0 -> -1 -dqcom205 compare -0.7E+1 7 -> -1 -dqcom206 compare -70E-1 7 -> -1 -dqcom207 compare -7.0 7E+0 -> -1 -dqcom208 compare -7.0 70E-1 -> -1 -dqcom209 compare -7 0.7E+1 -> -1 -dqcom210 compare -7 70E-1 -> -1 - -dqcom220 compare -8.0 7.0 -> -1 -dqcom221 compare -8.0 7 -> -1 -dqcom222 compare -8 7.0 -> -1 -dqcom223 compare -8E+0 7.0 -> -1 -dqcom224 compare -80E-1 7.0 -> -1 -dqcom225 compare -0.8E+1 7 -> -1 -dqcom226 compare -80E-1 7 -> -1 -dqcom227 compare -8.0 7E+0 -> -1 -dqcom228 compare -8.0 70E-1 -> -1 -dqcom229 compare -8 0.7E+1 -> -1 -dqcom230 compare -8 70E-1 -> -1 - -dqcom240 compare -8.0 9.0 -> -1 -dqcom241 compare -8.0 9 -> -1 -dqcom242 compare -8 9.0 -> -1 -dqcom243 compare -8E+0 9.0 -> -1 -dqcom244 compare -80E-1 9.0 -> -1 -dqcom245 compare -0.8E+1 9 -> -1 -dqcom246 compare -80E-1 9 -> -1 -dqcom247 compare -8.0 9E+0 -> -1 -dqcom248 compare -8.0 90E-1 -> -1 -dqcom249 compare -8 0.9E+1 -> -1 -dqcom250 compare -8 90E-1 -> -1 - --- and again, with sign changes +- .. -dqcom300 compare 7.0 -7.0 -> 1 -dqcom301 compare 7.0 -7 -> 1 -dqcom302 compare 7 -7.0 -> 1 -dqcom303 compare 7E+0 -7.0 -> 1 -dqcom304 compare 70E-1 -7.0 -> 1 -dqcom305 compare .7E+1 -7 -> 1 -dqcom306 compare 70E-1 -7 -> 1 -dqcom307 compare 7.0 -7E+0 -> 1 -dqcom308 compare 7.0 -70E-1 -> 1 -dqcom309 compare 7 -.7E+1 -> 1 -dqcom310 compare 7 -70E-1 -> 1 - -dqcom320 compare 8.0 -7.0 -> 1 -dqcom321 compare 8.0 -7 -> 1 -dqcom322 compare 8 -7.0 -> 1 -dqcom323 compare 8E+0 -7.0 -> 1 -dqcom324 compare 80E-1 -7.0 -> 1 -dqcom325 compare .8E+1 -7 -> 1 -dqcom326 compare 80E-1 -7 -> 1 -dqcom327 compare 8.0 -7E+0 -> 1 -dqcom328 compare 8.0 -70E-1 -> 1 -dqcom329 compare 8 -.7E+1 -> 1 -dqcom330 compare 8 -70E-1 -> 1 - -dqcom340 compare 8.0 -9.0 -> 1 -dqcom341 compare 8.0 -9 -> 1 -dqcom342 compare 8 -9.0 -> 1 -dqcom343 compare 8E+0 -9.0 -> 1 -dqcom344 compare 80E-1 -9.0 -> 1 -dqcom345 compare .8E+1 -9 -> 1 -dqcom346 compare 80E-1 -9 -> 1 -dqcom347 compare 8.0 -9E+0 -> 1 -dqcom348 compare 8.0 -90E-1 -> 1 -dqcom349 compare 8 -.9E+1 -> 1 -dqcom350 compare 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -dqcom400 compare -7.0 -7.0 -> 0 -dqcom401 compare -7.0 -7 -> 0 -dqcom402 compare -7 -7.0 -> 0 -dqcom403 compare -7E+0 -7.0 -> 0 -dqcom404 compare -70E-1 -7.0 -> 0 -dqcom405 compare -.7E+1 -7 -> 0 -dqcom406 compare -70E-1 -7 -> 0 -dqcom407 compare -7.0 -7E+0 -> 0 -dqcom408 compare -7.0 -70E-1 -> 0 -dqcom409 compare -7 -.7E+1 -> 0 -dqcom410 compare -7 -70E-1 -> 0 - -dqcom420 compare -8.0 -7.0 -> -1 -dqcom421 compare -8.0 -7 -> -1 -dqcom422 compare -8 -7.0 -> -1 -dqcom423 compare -8E+0 -7.0 -> -1 -dqcom424 compare -80E-1 -7.0 -> -1 -dqcom425 compare -.8E+1 -7 -> -1 -dqcom426 compare -80E-1 -7 -> -1 -dqcom427 compare -8.0 -7E+0 -> -1 -dqcom428 compare -8.0 -70E-1 -> -1 -dqcom429 compare -8 -.7E+1 -> -1 -dqcom430 compare -8 -70E-1 -> -1 - -dqcom440 compare -8.0 -9.0 -> 1 -dqcom441 compare -8.0 -9 -> 1 -dqcom442 compare -8 -9.0 -> 1 -dqcom443 compare -8E+0 -9.0 -> 1 -dqcom444 compare -80E-1 -9.0 -> 1 -dqcom445 compare -.8E+1 -9 -> 1 -dqcom446 compare -80E-1 -9 -> 1 -dqcom447 compare -8.0 -9E+0 -> 1 -dqcom448 compare -8.0 -90E-1 -> 1 -dqcom449 compare -8 -.9E+1 -> 1 -dqcom450 compare -8 -90E-1 -> 1 - --- misalignment traps for little-endian -dqcom451 compare 1.0 0.1 -> 1 -dqcom452 compare 0.1 1.0 -> -1 -dqcom453 compare 10.0 0.1 -> 1 -dqcom454 compare 0.1 10.0 -> -1 -dqcom455 compare 100 1.0 -> 1 -dqcom456 compare 1.0 100 -> -1 -dqcom457 compare 1000 10.0 -> 1 -dqcom458 compare 10.0 1000 -> -1 -dqcom459 compare 10000 100.0 -> 1 -dqcom460 compare 100.0 10000 -> -1 -dqcom461 compare 100000 1000.0 -> 1 -dqcom462 compare 1000.0 100000 -> -1 -dqcom463 compare 1000000 10000.0 -> 1 -dqcom464 compare 10000.0 1000000 -> -1 - --- testcases that subtract to lots of zeros at boundaries [pgr] -dqcom473 compare 123.9999999999999999994560000000000E-89 123.999999999999999999456E-89 -> 0 -dqcom474 compare 123.999999999999999999456000000000E+89 123.999999999999999999456E+89 -> 0 -dqcom475 compare 123.99999999999999999945600000000E-89 123.999999999999999999456E-89 -> 0 -dqcom476 compare 123.9999999999999999994560000000E+89 123.999999999999999999456E+89 -> 0 -dqcom477 compare 123.999999999999999999456000000E-89 123.999999999999999999456E-89 -> 0 -dqcom478 compare 123.99999999999999999945600000E+89 123.999999999999999999456E+89 -> 0 -dqcom479 compare 123.9999999999999999994560000E-89 123.999999999999999999456E-89 -> 0 -dqcom480 compare 123.999999999999999999456000E+89 123.999999999999999999456E+89 -> 0 -dqcom481 compare 123.99999999999999999945600E-89 123.999999999999999999456E-89 -> 0 -dqcom482 compare 123.9999999999999999994560E+89 123.999999999999999999456E+89 -> 0 -dqcom483 compare 123.999999999999999999456E-89 123.999999999999999999456E-89 -> 0 -dqcom487 compare 123.999999999999999999456E+89 123.9999999999999999994560000000000E+89 -> 0 -dqcom488 compare 123.999999999999999999456E-89 123.999999999999999999456000000000E-89 -> 0 -dqcom489 compare 123.999999999999999999456E+89 123.99999999999999999945600000000E+89 -> 0 -dqcom490 compare 123.999999999999999999456E-89 123.9999999999999999994560000000E-89 -> 0 -dqcom491 compare 123.999999999999999999456E+89 123.999999999999999999456000000E+89 -> 0 -dqcom492 compare 123.999999999999999999456E-89 123.99999999999999999945600000E-89 -> 0 -dqcom493 compare 123.999999999999999999456E+89 123.9999999999999999994560000E+89 -> 0 -dqcom494 compare 123.999999999999999999456E-89 123.999999999999999999456000E-89 -> 0 -dqcom495 compare 123.999999999999999999456E+89 123.99999999999999999945600E+89 -> 0 -dqcom496 compare 123.999999999999999999456E-89 123.9999999999999999994560E-89 -> 0 -dqcom497 compare 123.999999999999999999456E+89 123.999999999999999999456E+89 -> 0 - --- wide-ranging, around precision; signs equal -dqcom500 compare 1 1E-15 -> 1 -dqcom501 compare 1 1E-14 -> 1 -dqcom502 compare 1 1E-13 -> 1 -dqcom503 compare 1 1E-12 -> 1 -dqcom504 compare 1 1E-11 -> 1 -dqcom505 compare 1 1E-10 -> 1 -dqcom506 compare 1 1E-9 -> 1 -dqcom507 compare 1 1E-8 -> 1 -dqcom508 compare 1 1E-7 -> 1 -dqcom509 compare 1 1E-6 -> 1 -dqcom510 compare 1 1E-5 -> 1 -dqcom511 compare 1 1E-4 -> 1 -dqcom512 compare 1 1E-3 -> 1 -dqcom513 compare 1 1E-2 -> 1 -dqcom514 compare 1 1E-1 -> 1 -dqcom515 compare 1 1E-0 -> 0 -dqcom516 compare 1 1E+1 -> -1 -dqcom517 compare 1 1E+2 -> -1 -dqcom518 compare 1 1E+3 -> -1 -dqcom519 compare 1 1E+4 -> -1 -dqcom521 compare 1 1E+5 -> -1 -dqcom522 compare 1 1E+6 -> -1 -dqcom523 compare 1 1E+7 -> -1 -dqcom524 compare 1 1E+8 -> -1 -dqcom525 compare 1 1E+9 -> -1 -dqcom526 compare 1 1E+10 -> -1 -dqcom527 compare 1 1E+11 -> -1 -dqcom528 compare 1 1E+12 -> -1 -dqcom529 compare 1 1E+13 -> -1 -dqcom530 compare 1 1E+14 -> -1 -dqcom531 compare 1 1E+15 -> -1 --- LR swap -dqcom540 compare 1E-15 1 -> -1 -dqcom541 compare 1E-14 1 -> -1 -dqcom542 compare 1E-13 1 -> -1 -dqcom543 compare 1E-12 1 -> -1 -dqcom544 compare 1E-11 1 -> -1 -dqcom545 compare 1E-10 1 -> -1 -dqcom546 compare 1E-9 1 -> -1 -dqcom547 compare 1E-8 1 -> -1 -dqcom548 compare 1E-7 1 -> -1 -dqcom549 compare 1E-6 1 -> -1 -dqcom550 compare 1E-5 1 -> -1 -dqcom551 compare 1E-4 1 -> -1 -dqcom552 compare 1E-3 1 -> -1 -dqcom553 compare 1E-2 1 -> -1 -dqcom554 compare 1E-1 1 -> -1 -dqcom555 compare 1E-0 1 -> 0 -dqcom556 compare 1E+1 1 -> 1 -dqcom557 compare 1E+2 1 -> 1 -dqcom558 compare 1E+3 1 -> 1 -dqcom559 compare 1E+4 1 -> 1 -dqcom561 compare 1E+5 1 -> 1 -dqcom562 compare 1E+6 1 -> 1 -dqcom563 compare 1E+7 1 -> 1 -dqcom564 compare 1E+8 1 -> 1 -dqcom565 compare 1E+9 1 -> 1 -dqcom566 compare 1E+10 1 -> 1 -dqcom567 compare 1E+11 1 -> 1 -dqcom568 compare 1E+12 1 -> 1 -dqcom569 compare 1E+13 1 -> 1 -dqcom570 compare 1E+14 1 -> 1 -dqcom571 compare 1E+15 1 -> 1 --- similar with a useful coefficient, one side only -dqcom580 compare 0.000000987654321 1E-15 -> 1 -dqcom581 compare 0.000000987654321 1E-14 -> 1 -dqcom582 compare 0.000000987654321 1E-13 -> 1 -dqcom583 compare 0.000000987654321 1E-12 -> 1 -dqcom584 compare 0.000000987654321 1E-11 -> 1 -dqcom585 compare 0.000000987654321 1E-10 -> 1 -dqcom586 compare 0.000000987654321 1E-9 -> 1 -dqcom587 compare 0.000000987654321 1E-8 -> 1 -dqcom588 compare 0.000000987654321 1E-7 -> 1 -dqcom589 compare 0.000000987654321 1E-6 -> -1 -dqcom590 compare 0.000000987654321 1E-5 -> -1 -dqcom591 compare 0.000000987654321 1E-4 -> -1 -dqcom592 compare 0.000000987654321 1E-3 -> -1 -dqcom593 compare 0.000000987654321 1E-2 -> -1 -dqcom594 compare 0.000000987654321 1E-1 -> -1 -dqcom595 compare 0.000000987654321 1E-0 -> -1 -dqcom596 compare 0.000000987654321 1E+1 -> -1 -dqcom597 compare 0.000000987654321 1E+2 -> -1 -dqcom598 compare 0.000000987654321 1E+3 -> -1 -dqcom599 compare 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -dqcom600 compare 12 12.2345 -> -1 -dqcom601 compare 12.0 12.2345 -> -1 -dqcom602 compare 12.00 12.2345 -> -1 -dqcom603 compare 12.000 12.2345 -> -1 -dqcom604 compare 12.0000 12.2345 -> -1 -dqcom605 compare 12.00000 12.2345 -> -1 -dqcom606 compare 12.000000 12.2345 -> -1 -dqcom607 compare 12.0000000 12.2345 -> -1 -dqcom608 compare 12.00000000 12.2345 -> -1 -dqcom609 compare 12.000000000 12.2345 -> -1 -dqcom610 compare 12.1234 12 -> 1 -dqcom611 compare 12.1234 12.0 -> 1 -dqcom612 compare 12.1234 12.00 -> 1 -dqcom613 compare 12.1234 12.000 -> 1 -dqcom614 compare 12.1234 12.0000 -> 1 -dqcom615 compare 12.1234 12.00000 -> 1 -dqcom616 compare 12.1234 12.000000 -> 1 -dqcom617 compare 12.1234 12.0000000 -> 1 -dqcom618 compare 12.1234 12.00000000 -> 1 -dqcom619 compare 12.1234 12.000000000 -> 1 -dqcom620 compare -12 -12.2345 -> 1 -dqcom621 compare -12.0 -12.2345 -> 1 -dqcom622 compare -12.00 -12.2345 -> 1 -dqcom623 compare -12.000 -12.2345 -> 1 -dqcom624 compare -12.0000 -12.2345 -> 1 -dqcom625 compare -12.00000 -12.2345 -> 1 -dqcom626 compare -12.000000 -12.2345 -> 1 -dqcom627 compare -12.0000000 -12.2345 -> 1 -dqcom628 compare -12.00000000 -12.2345 -> 1 -dqcom629 compare -12.000000000 -12.2345 -> 1 -dqcom630 compare -12.1234 -12 -> -1 -dqcom631 compare -12.1234 -12.0 -> -1 -dqcom632 compare -12.1234 -12.00 -> -1 -dqcom633 compare -12.1234 -12.000 -> -1 -dqcom634 compare -12.1234 -12.0000 -> -1 -dqcom635 compare -12.1234 -12.00000 -> -1 -dqcom636 compare -12.1234 -12.000000 -> -1 -dqcom637 compare -12.1234 -12.0000000 -> -1 -dqcom638 compare -12.1234 -12.00000000 -> -1 -dqcom639 compare -12.1234 -12.000000000 -> -1 - --- extended zeros -dqcom640 compare 0 0 -> 0 -dqcom641 compare 0 -0 -> 0 -dqcom642 compare 0 -0.0 -> 0 -dqcom643 compare 0 0.0 -> 0 -dqcom644 compare -0 0 -> 0 -dqcom645 compare -0 -0 -> 0 -dqcom646 compare -0 -0.0 -> 0 -dqcom647 compare -0 0.0 -> 0 -dqcom648 compare 0.0 0 -> 0 -dqcom649 compare 0.0 -0 -> 0 -dqcom650 compare 0.0 -0.0 -> 0 -dqcom651 compare 0.0 0.0 -> 0 -dqcom652 compare -0.0 0 -> 0 -dqcom653 compare -0.0 -0 -> 0 -dqcom654 compare -0.0 -0.0 -> 0 -dqcom655 compare -0.0 0.0 -> 0 - -dqcom656 compare -0E1 0.0 -> 0 -dqcom657 compare -0E2 0.0 -> 0 -dqcom658 compare 0E1 0.0 -> 0 -dqcom659 compare 0E2 0.0 -> 0 -dqcom660 compare -0E1 0 -> 0 -dqcom661 compare -0E2 0 -> 0 -dqcom662 compare 0E1 0 -> 0 -dqcom663 compare 0E2 0 -> 0 -dqcom664 compare -0E1 -0E1 -> 0 -dqcom665 compare -0E2 -0E1 -> 0 -dqcom666 compare 0E1 -0E1 -> 0 -dqcom667 compare 0E2 -0E1 -> 0 -dqcom668 compare -0E1 -0E2 -> 0 -dqcom669 compare -0E2 -0E2 -> 0 -dqcom670 compare 0E1 -0E2 -> 0 -dqcom671 compare 0E2 -0E2 -> 0 -dqcom672 compare -0E1 0E1 -> 0 -dqcom673 compare -0E2 0E1 -> 0 -dqcom674 compare 0E1 0E1 -> 0 -dqcom675 compare 0E2 0E1 -> 0 -dqcom676 compare -0E1 0E2 -> 0 -dqcom677 compare -0E2 0E2 -> 0 -dqcom678 compare 0E1 0E2 -> 0 -dqcom679 compare 0E2 0E2 -> 0 - --- trailing zeros; unit-y -dqcom680 compare 12 12 -> 0 -dqcom681 compare 12 12.0 -> 0 -dqcom682 compare 12 12.00 -> 0 -dqcom683 compare 12 12.000 -> 0 -dqcom684 compare 12 12.0000 -> 0 -dqcom685 compare 12 12.00000 -> 0 -dqcom686 compare 12 12.000000 -> 0 -dqcom687 compare 12 12.0000000 -> 0 -dqcom688 compare 12 12.00000000 -> 0 -dqcom689 compare 12 12.000000000 -> 0 -dqcom690 compare 12 12 -> 0 -dqcom691 compare 12.0 12 -> 0 -dqcom692 compare 12.00 12 -> 0 -dqcom693 compare 12.000 12 -> 0 -dqcom694 compare 12.0000 12 -> 0 -dqcom695 compare 12.00000 12 -> 0 -dqcom696 compare 12.000000 12 -> 0 -dqcom697 compare 12.0000000 12 -> 0 -dqcom698 compare 12.00000000 12 -> 0 -dqcom699 compare 12.000000000 12 -> 0 - --- first, second, & last digit -dqcom700 compare 1234567899999999999999999990123456 1234567899999999999999999990123455 -> 1 -dqcom701 compare 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0 -dqcom702 compare 1234567899999999999999999990123456 1234567899999999999999999990123457 -> -1 -dqcom703 compare 1234567899999999999999999990123456 0234567899999999999999999990123456 -> 1 -dqcom704 compare 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0 -dqcom705 compare 1234567899999999999999999990123456 2234567899999999999999999990123456 -> -1 -dqcom706 compare 1134567899999999999999999990123456 1034567899999999999999999990123456 -> 1 -dqcom707 compare 1134567899999999999999999990123456 1134567899999999999999999990123456 -> 0 -dqcom708 compare 1134567899999999999999999990123456 1234567899999999999999999990123456 -> -1 - --- miscellaneous -dqcom721 compare 12345678000 1 -> 1 -dqcom722 compare 1 12345678000 -> -1 -dqcom723 compare 1234567800 1 -> 1 -dqcom724 compare 1 1234567800 -> -1 -dqcom725 compare 1234567890 1 -> 1 -dqcom726 compare 1 1234567890 -> -1 -dqcom727 compare 1234567891 1 -> 1 -dqcom728 compare 1 1234567891 -> -1 -dqcom729 compare 12345678901 1 -> 1 -dqcom730 compare 1 12345678901 -> -1 -dqcom731 compare 1234567896 1 -> 1 -dqcom732 compare 1 1234567896 -> -1 - --- residue cases at lower precision -dqcom740 compare 1 0.9999999 -> 1 -dqcom741 compare 1 0.999999 -> 1 -dqcom742 compare 1 0.99999 -> 1 -dqcom743 compare 1 1.0000 -> 0 -dqcom744 compare 1 1.00001 -> -1 -dqcom745 compare 1 1.000001 -> -1 -dqcom746 compare 1 1.0000001 -> -1 -dqcom750 compare 0.9999999 1 -> -1 -dqcom751 compare 0.999999 1 -> -1 -dqcom752 compare 0.99999 1 -> -1 -dqcom753 compare 1.0000 1 -> 0 -dqcom754 compare 1.00001 1 -> 1 -dqcom755 compare 1.000001 1 -> 1 -dqcom756 compare 1.0000001 1 -> 1 - --- Specials -dqcom780 compare Inf -Inf -> 1 -dqcom781 compare Inf -1000 -> 1 -dqcom782 compare Inf -1 -> 1 -dqcom783 compare Inf -0 -> 1 -dqcom784 compare Inf 0 -> 1 -dqcom785 compare Inf 1 -> 1 -dqcom786 compare Inf 1000 -> 1 -dqcom787 compare Inf Inf -> 0 -dqcom788 compare -1000 Inf -> -1 -dqcom789 compare -Inf Inf -> -1 -dqcom790 compare -1 Inf -> -1 -dqcom791 compare -0 Inf -> -1 -dqcom792 compare 0 Inf -> -1 -dqcom793 compare 1 Inf -> -1 -dqcom794 compare 1000 Inf -> -1 -dqcom795 compare Inf Inf -> 0 - -dqcom800 compare -Inf -Inf -> 0 -dqcom801 compare -Inf -1000 -> -1 -dqcom802 compare -Inf -1 -> -1 -dqcom803 compare -Inf -0 -> -1 -dqcom804 compare -Inf 0 -> -1 -dqcom805 compare -Inf 1 -> -1 -dqcom806 compare -Inf 1000 -> -1 -dqcom807 compare -Inf Inf -> -1 -dqcom808 compare -Inf -Inf -> 0 -dqcom809 compare -1000 -Inf -> 1 -dqcom810 compare -1 -Inf -> 1 -dqcom811 compare -0 -Inf -> 1 -dqcom812 compare 0 -Inf -> 1 -dqcom813 compare 1 -Inf -> 1 -dqcom814 compare 1000 -Inf -> 1 -dqcom815 compare Inf -Inf -> 1 - -dqcom821 compare NaN -Inf -> NaN -dqcom822 compare NaN -1000 -> NaN -dqcom823 compare NaN -1 -> NaN -dqcom824 compare NaN -0 -> NaN -dqcom825 compare NaN 0 -> NaN -dqcom826 compare NaN 1 -> NaN -dqcom827 compare NaN 1000 -> NaN -dqcom828 compare NaN Inf -> NaN -dqcom829 compare NaN NaN -> NaN -dqcom830 compare -Inf NaN -> NaN -dqcom831 compare -1000 NaN -> NaN -dqcom832 compare -1 NaN -> NaN -dqcom833 compare -0 NaN -> NaN -dqcom834 compare 0 NaN -> NaN -dqcom835 compare 1 NaN -> NaN -dqcom836 compare 1000 NaN -> NaN -dqcom837 compare Inf NaN -> NaN -dqcom838 compare -NaN -NaN -> -NaN -dqcom839 compare +NaN -NaN -> NaN -dqcom840 compare -NaN +NaN -> -NaN - -dqcom841 compare sNaN -Inf -> NaN Invalid_operation -dqcom842 compare sNaN -1000 -> NaN Invalid_operation -dqcom843 compare sNaN -1 -> NaN Invalid_operation -dqcom844 compare sNaN -0 -> NaN Invalid_operation -dqcom845 compare sNaN 0 -> NaN Invalid_operation -dqcom846 compare sNaN 1 -> NaN Invalid_operation -dqcom847 compare sNaN 1000 -> NaN Invalid_operation -dqcom848 compare sNaN NaN -> NaN Invalid_operation -dqcom849 compare sNaN sNaN -> NaN Invalid_operation -dqcom850 compare NaN sNaN -> NaN Invalid_operation -dqcom851 compare -Inf sNaN -> NaN Invalid_operation -dqcom852 compare -1000 sNaN -> NaN Invalid_operation -dqcom853 compare -1 sNaN -> NaN Invalid_operation -dqcom854 compare -0 sNaN -> NaN Invalid_operation -dqcom855 compare 0 sNaN -> NaN Invalid_operation -dqcom856 compare 1 sNaN -> NaN Invalid_operation -dqcom857 compare 1000 sNaN -> NaN Invalid_operation -dqcom858 compare Inf sNaN -> NaN Invalid_operation -dqcom859 compare NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqcom860 compare NaN9 -Inf -> NaN9 -dqcom861 compare NaN8 999 -> NaN8 -dqcom862 compare NaN77 Inf -> NaN77 -dqcom863 compare -NaN67 NaN5 -> -NaN67 -dqcom864 compare -Inf -NaN4 -> -NaN4 -dqcom865 compare -999 -NaN33 -> -NaN33 -dqcom866 compare Inf NaN2 -> NaN2 -dqcom867 compare -NaN41 -NaN42 -> -NaN41 -dqcom868 compare +NaN41 -NaN42 -> NaN41 -dqcom869 compare -NaN41 +NaN42 -> -NaN41 -dqcom870 compare +NaN41 +NaN42 -> NaN41 - -dqcom871 compare -sNaN99 -Inf -> -NaN99 Invalid_operation -dqcom872 compare sNaN98 -11 -> NaN98 Invalid_operation -dqcom873 compare sNaN97 NaN -> NaN97 Invalid_operation -dqcom874 compare sNaN16 sNaN94 -> NaN16 Invalid_operation -dqcom875 compare NaN85 sNaN83 -> NaN83 Invalid_operation -dqcom876 compare -Inf sNaN92 -> NaN92 Invalid_operation -dqcom877 compare 088 sNaN81 -> NaN81 Invalid_operation -dqcom878 compare Inf sNaN90 -> NaN90 Invalid_operation -dqcom879 compare NaN -sNaN89 -> -NaN89 Invalid_operation - --- wide range -dqcom880 compare +1.23456789012345E-0 9E+6144 -> -1 -dqcom881 compare 9E+6144 +1.23456789012345E-0 -> 1 -dqcom882 compare +0.100 9E-6143 -> 1 -dqcom883 compare 9E-6143 +0.100 -> -1 -dqcom885 compare -1.23456789012345E-0 9E+6144 -> -1 -dqcom886 compare 9E+6144 -1.23456789012345E-0 -> 1 -dqcom887 compare -0.100 9E-6143 -> -1 -dqcom888 compare 9E-6143 -0.100 -> 1 - --- signs -dqcom901 compare 1e+77 1e+11 -> 1 -dqcom902 compare 1e+77 -1e+11 -> 1 -dqcom903 compare -1e+77 1e+11 -> -1 -dqcom904 compare -1e+77 -1e+11 -> -1 -dqcom905 compare 1e-77 1e-11 -> -1 -dqcom906 compare 1e-77 -1e-11 -> 1 -dqcom907 compare -1e-77 1e-11 -> -1 -dqcom908 compare -1e-77 -1e-11 -> 1 - --- full alignment range, both ways -dqcomp1001 compare 1 1.000000000000000000000000000000000 -> 0 -dqcomp1002 compare 1 1.00000000000000000000000000000000 -> 0 -dqcomp1003 compare 1 1.0000000000000000000000000000000 -> 0 -dqcomp1004 compare 1 1.000000000000000000000000000000 -> 0 -dqcomp1005 compare 1 1.00000000000000000000000000000 -> 0 -dqcomp1006 compare 1 1.0000000000000000000000000000 -> 0 -dqcomp1007 compare 1 1.000000000000000000000000000 -> 0 -dqcomp1008 compare 1 1.00000000000000000000000000 -> 0 -dqcomp1009 compare 1 1.0000000000000000000000000 -> 0 -dqcomp1010 compare 1 1.000000000000000000000000 -> 0 -dqcomp1011 compare 1 1.00000000000000000000000 -> 0 -dqcomp1012 compare 1 1.0000000000000000000000 -> 0 -dqcomp1013 compare 1 1.000000000000000000000 -> 0 -dqcomp1014 compare 1 1.00000000000000000000 -> 0 -dqcomp1015 compare 1 1.0000000000000000000 -> 0 -dqcomp1016 compare 1 1.000000000000000000 -> 0 -dqcomp1017 compare 1 1.00000000000000000 -> 0 -dqcomp1018 compare 1 1.0000000000000000 -> 0 -dqcomp1019 compare 1 1.000000000000000 -> 0 -dqcomp1020 compare 1 1.00000000000000 -> 0 -dqcomp1021 compare 1 1.0000000000000 -> 0 -dqcomp1022 compare 1 1.000000000000 -> 0 -dqcomp1023 compare 1 1.00000000000 -> 0 -dqcomp1024 compare 1 1.0000000000 -> 0 -dqcomp1025 compare 1 1.000000000 -> 0 -dqcomp1026 compare 1 1.00000000 -> 0 -dqcomp1027 compare 1 1.0000000 -> 0 -dqcomp1028 compare 1 1.000000 -> 0 -dqcomp1029 compare 1 1.00000 -> 0 -dqcomp1030 compare 1 1.0000 -> 0 -dqcomp1031 compare 1 1.000 -> 0 -dqcomp1032 compare 1 1.00 -> 0 -dqcomp1033 compare 1 1.0 -> 0 - -dqcomp1041 compare 1.000000000000000000000000000000000 1 -> 0 -dqcomp1042 compare 1.00000000000000000000000000000000 1 -> 0 -dqcomp1043 compare 1.0000000000000000000000000000000 1 -> 0 -dqcomp1044 compare 1.000000000000000000000000000000 1 -> 0 -dqcomp1045 compare 1.00000000000000000000000000000 1 -> 0 -dqcomp1046 compare 1.0000000000000000000000000000 1 -> 0 -dqcomp1047 compare 1.000000000000000000000000000 1 -> 0 -dqcomp1048 compare 1.00000000000000000000000000 1 -> 0 -dqcomp1049 compare 1.0000000000000000000000000 1 -> 0 -dqcomp1050 compare 1.000000000000000000000000 1 -> 0 -dqcomp1051 compare 1.00000000000000000000000 1 -> 0 -dqcomp1052 compare 1.0000000000000000000000 1 -> 0 -dqcomp1053 compare 1.000000000000000000000 1 -> 0 -dqcomp1054 compare 1.00000000000000000000 1 -> 0 -dqcomp1055 compare 1.0000000000000000000 1 -> 0 -dqcomp1056 compare 1.000000000000000000 1 -> 0 -dqcomp1057 compare 1.00000000000000000 1 -> 0 -dqcomp1058 compare 1.0000000000000000 1 -> 0 -dqcomp1059 compare 1.000000000000000 1 -> 0 -dqcomp1060 compare 1.00000000000000 1 -> 0 -dqcomp1061 compare 1.0000000000000 1 -> 0 -dqcomp1062 compare 1.000000000000 1 -> 0 -dqcomp1063 compare 1.00000000000 1 -> 0 -dqcomp1064 compare 1.0000000000 1 -> 0 -dqcomp1065 compare 1.000000000 1 -> 0 -dqcomp1066 compare 1.00000000 1 -> 0 -dqcomp1067 compare 1.0000000 1 -> 0 -dqcomp1068 compare 1.000000 1 -> 0 -dqcomp1069 compare 1.00000 1 -> 0 -dqcomp1070 compare 1.0000 1 -> 0 -dqcomp1071 compare 1.000 1 -> 0 -dqcomp1072 compare 1.00 1 -> 0 -dqcomp1073 compare 1.0 1 -> 0 - --- check MSD always detected non-zero -dqcomp1080 compare 0 0.000000000000000000000000000000000 -> 0 -dqcomp1081 compare 0 1.000000000000000000000000000000000 -> -1 -dqcomp1082 compare 0 2.000000000000000000000000000000000 -> -1 -dqcomp1083 compare 0 3.000000000000000000000000000000000 -> -1 -dqcomp1084 compare 0 4.000000000000000000000000000000000 -> -1 -dqcomp1085 compare 0 5.000000000000000000000000000000000 -> -1 -dqcomp1086 compare 0 6.000000000000000000000000000000000 -> -1 -dqcomp1087 compare 0 7.000000000000000000000000000000000 -> -1 -dqcomp1088 compare 0 8.000000000000000000000000000000000 -> -1 -dqcomp1089 compare 0 9.000000000000000000000000000000000 -> -1 -dqcomp1090 compare 0.000000000000000000000000000000000 0 -> 0 -dqcomp1091 compare 1.000000000000000000000000000000000 0 -> 1 -dqcomp1092 compare 2.000000000000000000000000000000000 0 -> 1 -dqcomp1093 compare 3.000000000000000000000000000000000 0 -> 1 -dqcomp1094 compare 4.000000000000000000000000000000000 0 -> 1 -dqcomp1095 compare 5.000000000000000000000000000000000 0 -> 1 -dqcomp1096 compare 6.000000000000000000000000000000000 0 -> 1 -dqcomp1097 compare 7.000000000000000000000000000000000 0 -> 1 -dqcomp1098 compare 8.000000000000000000000000000000000 0 -> 1 -dqcomp1099 compare 9.000000000000000000000000000000000 0 -> 1 - --- Null tests -dqcom990 compare 10 # -> NaN Invalid_operation -dqcom991 compare # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqCompareSig.decTest b/qdecimal/test/tc_full/dqCompareSig.decTest deleted file mode 100644 index 2444afc..0000000 --- a/qdecimal/test/tc_full/dqCompareSig.decTest +++ /dev/null @@ -1,647 +0,0 @@ ------------------------------------------------------------------------- --- dqCompareSig.decTest -- decQuad comparison; all NaNs signal -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqcms001 comparesig -2 -2 -> 0 -dqcms002 comparesig -2 -1 -> -1 -dqcms003 comparesig -2 0 -> -1 -dqcms004 comparesig -2 1 -> -1 -dqcms005 comparesig -2 2 -> -1 -dqcms006 comparesig -1 -2 -> 1 -dqcms007 comparesig -1 -1 -> 0 -dqcms008 comparesig -1 0 -> -1 -dqcms009 comparesig -1 1 -> -1 -dqcms010 comparesig -1 2 -> -1 -dqcms011 comparesig 0 -2 -> 1 -dqcms012 comparesig 0 -1 -> 1 -dqcms013 comparesig 0 0 -> 0 -dqcms014 comparesig 0 1 -> -1 -dqcms015 comparesig 0 2 -> -1 -dqcms016 comparesig 1 -2 -> 1 -dqcms017 comparesig 1 -1 -> 1 -dqcms018 comparesig 1 0 -> 1 -dqcms019 comparesig 1 1 -> 0 -dqcms020 comparesig 1 2 -> -1 -dqcms021 comparesig 2 -2 -> 1 -dqcms022 comparesig 2 -1 -> 1 -dqcms023 comparesig 2 0 -> 1 -dqcms025 comparesig 2 1 -> 1 -dqcms026 comparesig 2 2 -> 0 - -dqcms031 comparesig -20 -20 -> 0 -dqcms032 comparesig -20 -10 -> -1 -dqcms033 comparesig -20 00 -> -1 -dqcms034 comparesig -20 10 -> -1 -dqcms035 comparesig -20 20 -> -1 -dqcms036 comparesig -10 -20 -> 1 -dqcms037 comparesig -10 -10 -> 0 -dqcms038 comparesig -10 00 -> -1 -dqcms039 comparesig -10 10 -> -1 -dqcms040 comparesig -10 20 -> -1 -dqcms041 comparesig 00 -20 -> 1 -dqcms042 comparesig 00 -10 -> 1 -dqcms043 comparesig 00 00 -> 0 -dqcms044 comparesig 00 10 -> -1 -dqcms045 comparesig 00 20 -> -1 -dqcms046 comparesig 10 -20 -> 1 -dqcms047 comparesig 10 -10 -> 1 -dqcms048 comparesig 10 00 -> 1 -dqcms049 comparesig 10 10 -> 0 -dqcms050 comparesig 10 20 -> -1 -dqcms051 comparesig 20 -20 -> 1 -dqcms052 comparesig 20 -10 -> 1 -dqcms053 comparesig 20 00 -> 1 -dqcms055 comparesig 20 10 -> 1 -dqcms056 comparesig 20 20 -> 0 - -dqcms061 comparesig -2.0 -2.0 -> 0 -dqcms062 comparesig -2.0 -1.0 -> -1 -dqcms063 comparesig -2.0 0.0 -> -1 -dqcms064 comparesig -2.0 1.0 -> -1 -dqcms065 comparesig -2.0 2.0 -> -1 -dqcms066 comparesig -1.0 -2.0 -> 1 -dqcms067 comparesig -1.0 -1.0 -> 0 -dqcms068 comparesig -1.0 0.0 -> -1 -dqcms069 comparesig -1.0 1.0 -> -1 -dqcms070 comparesig -1.0 2.0 -> -1 -dqcms071 comparesig 0.0 -2.0 -> 1 -dqcms072 comparesig 0.0 -1.0 -> 1 -dqcms073 comparesig 0.0 0.0 -> 0 -dqcms074 comparesig 0.0 1.0 -> -1 -dqcms075 comparesig 0.0 2.0 -> -1 -dqcms076 comparesig 1.0 -2.0 -> 1 -dqcms077 comparesig 1.0 -1.0 -> 1 -dqcms078 comparesig 1.0 0.0 -> 1 -dqcms079 comparesig 1.0 1.0 -> 0 -dqcms080 comparesig 1.0 2.0 -> -1 -dqcms081 comparesig 2.0 -2.0 -> 1 -dqcms082 comparesig 2.0 -1.0 -> 1 -dqcms083 comparesig 2.0 0.0 -> 1 -dqcms085 comparesig 2.0 1.0 -> 1 -dqcms086 comparesig 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -dqcms090 comparesig 9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> 0 -dqcms091 comparesig -9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> -1 -dqcms092 comparesig 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 1 -dqcms093 comparesig -9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0 - --- some differing length/exponent cases -dqcms100 comparesig 7.0 7.0 -> 0 -dqcms101 comparesig 7.0 7 -> 0 -dqcms102 comparesig 7 7.0 -> 0 -dqcms103 comparesig 7E+0 7.0 -> 0 -dqcms104 comparesig 70E-1 7.0 -> 0 -dqcms105 comparesig 0.7E+1 7 -> 0 -dqcms106 comparesig 70E-1 7 -> 0 -dqcms107 comparesig 7.0 7E+0 -> 0 -dqcms108 comparesig 7.0 70E-1 -> 0 -dqcms109 comparesig 7 0.7E+1 -> 0 -dqcms110 comparesig 7 70E-1 -> 0 - -dqcms120 comparesig 8.0 7.0 -> 1 -dqcms121 comparesig 8.0 7 -> 1 -dqcms122 comparesig 8 7.0 -> 1 -dqcms123 comparesig 8E+0 7.0 -> 1 -dqcms124 comparesig 80E-1 7.0 -> 1 -dqcms125 comparesig 0.8E+1 7 -> 1 -dqcms126 comparesig 80E-1 7 -> 1 -dqcms127 comparesig 8.0 7E+0 -> 1 -dqcms128 comparesig 8.0 70E-1 -> 1 -dqcms129 comparesig 8 0.7E+1 -> 1 -dqcms130 comparesig 8 70E-1 -> 1 - -dqcms140 comparesig 8.0 9.0 -> -1 -dqcms141 comparesig 8.0 9 -> -1 -dqcms142 comparesig 8 9.0 -> -1 -dqcms143 comparesig 8E+0 9.0 -> -1 -dqcms144 comparesig 80E-1 9.0 -> -1 -dqcms145 comparesig 0.8E+1 9 -> -1 -dqcms146 comparesig 80E-1 9 -> -1 -dqcms147 comparesig 8.0 9E+0 -> -1 -dqcms148 comparesig 8.0 90E-1 -> -1 -dqcms149 comparesig 8 0.9E+1 -> -1 -dqcms150 comparesig 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -dqcms200 comparesig -7.0 7.0 -> -1 -dqcms201 comparesig -7.0 7 -> -1 -dqcms202 comparesig -7 7.0 -> -1 -dqcms203 comparesig -7E+0 7.0 -> -1 -dqcms204 comparesig -70E-1 7.0 -> -1 -dqcms205 comparesig -0.7E+1 7 -> -1 -dqcms206 comparesig -70E-1 7 -> -1 -dqcms207 comparesig -7.0 7E+0 -> -1 -dqcms208 comparesig -7.0 70E-1 -> -1 -dqcms209 comparesig -7 0.7E+1 -> -1 -dqcms210 comparesig -7 70E-1 -> -1 - -dqcms220 comparesig -8.0 7.0 -> -1 -dqcms221 comparesig -8.0 7 -> -1 -dqcms222 comparesig -8 7.0 -> -1 -dqcms223 comparesig -8E+0 7.0 -> -1 -dqcms224 comparesig -80E-1 7.0 -> -1 -dqcms225 comparesig -0.8E+1 7 -> -1 -dqcms226 comparesig -80E-1 7 -> -1 -dqcms227 comparesig -8.0 7E+0 -> -1 -dqcms228 comparesig -8.0 70E-1 -> -1 -dqcms229 comparesig -8 0.7E+1 -> -1 -dqcms230 comparesig -8 70E-1 -> -1 - -dqcms240 comparesig -8.0 9.0 -> -1 -dqcms241 comparesig -8.0 9 -> -1 -dqcms242 comparesig -8 9.0 -> -1 -dqcms243 comparesig -8E+0 9.0 -> -1 -dqcms244 comparesig -80E-1 9.0 -> -1 -dqcms245 comparesig -0.8E+1 9 -> -1 -dqcms246 comparesig -80E-1 9 -> -1 -dqcms247 comparesig -8.0 9E+0 -> -1 -dqcms248 comparesig -8.0 90E-1 -> -1 -dqcms249 comparesig -8 0.9E+1 -> -1 -dqcms250 comparesig -8 90E-1 -> -1 - --- and again, with sign changes +- .. -dqcms300 comparesig 7.0 -7.0 -> 1 -dqcms301 comparesig 7.0 -7 -> 1 -dqcms302 comparesig 7 -7.0 -> 1 -dqcms303 comparesig 7E+0 -7.0 -> 1 -dqcms304 comparesig 70E-1 -7.0 -> 1 -dqcms305 comparesig .7E+1 -7 -> 1 -dqcms306 comparesig 70E-1 -7 -> 1 -dqcms307 comparesig 7.0 -7E+0 -> 1 -dqcms308 comparesig 7.0 -70E-1 -> 1 -dqcms309 comparesig 7 -.7E+1 -> 1 -dqcms310 comparesig 7 -70E-1 -> 1 - -dqcms320 comparesig 8.0 -7.0 -> 1 -dqcms321 comparesig 8.0 -7 -> 1 -dqcms322 comparesig 8 -7.0 -> 1 -dqcms323 comparesig 8E+0 -7.0 -> 1 -dqcms324 comparesig 80E-1 -7.0 -> 1 -dqcms325 comparesig .8E+1 -7 -> 1 -dqcms326 comparesig 80E-1 -7 -> 1 -dqcms327 comparesig 8.0 -7E+0 -> 1 -dqcms328 comparesig 8.0 -70E-1 -> 1 -dqcms329 comparesig 8 -.7E+1 -> 1 -dqcms330 comparesig 8 -70E-1 -> 1 - -dqcms340 comparesig 8.0 -9.0 -> 1 -dqcms341 comparesig 8.0 -9 -> 1 -dqcms342 comparesig 8 -9.0 -> 1 -dqcms343 comparesig 8E+0 -9.0 -> 1 -dqcms344 comparesig 80E-1 -9.0 -> 1 -dqcms345 comparesig .8E+1 -9 -> 1 -dqcms346 comparesig 80E-1 -9 -> 1 -dqcms347 comparesig 8.0 -9E+0 -> 1 -dqcms348 comparesig 8.0 -90E-1 -> 1 -dqcms349 comparesig 8 -.9E+1 -> 1 -dqcms350 comparesig 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -dqcms400 comparesig -7.0 -7.0 -> 0 -dqcms401 comparesig -7.0 -7 -> 0 -dqcms402 comparesig -7 -7.0 -> 0 -dqcms403 comparesig -7E+0 -7.0 -> 0 -dqcms404 comparesig -70E-1 -7.0 -> 0 -dqcms405 comparesig -.7E+1 -7 -> 0 -dqcms406 comparesig -70E-1 -7 -> 0 -dqcms407 comparesig -7.0 -7E+0 -> 0 -dqcms408 comparesig -7.0 -70E-1 -> 0 -dqcms409 comparesig -7 -.7E+1 -> 0 -dqcms410 comparesig -7 -70E-1 -> 0 - -dqcms420 comparesig -8.0 -7.0 -> -1 -dqcms421 comparesig -8.0 -7 -> -1 -dqcms422 comparesig -8 -7.0 -> -1 -dqcms423 comparesig -8E+0 -7.0 -> -1 -dqcms424 comparesig -80E-1 -7.0 -> -1 -dqcms425 comparesig -.8E+1 -7 -> -1 -dqcms426 comparesig -80E-1 -7 -> -1 -dqcms427 comparesig -8.0 -7E+0 -> -1 -dqcms428 comparesig -8.0 -70E-1 -> -1 -dqcms429 comparesig -8 -.7E+1 -> -1 -dqcms430 comparesig -8 -70E-1 -> -1 - -dqcms440 comparesig -8.0 -9.0 -> 1 -dqcms441 comparesig -8.0 -9 -> 1 -dqcms442 comparesig -8 -9.0 -> 1 -dqcms443 comparesig -8E+0 -9.0 -> 1 -dqcms444 comparesig -80E-1 -9.0 -> 1 -dqcms445 comparesig -.8E+1 -9 -> 1 -dqcms446 comparesig -80E-1 -9 -> 1 -dqcms447 comparesig -8.0 -9E+0 -> 1 -dqcms448 comparesig -8.0 -90E-1 -> 1 -dqcms449 comparesig -8 -.9E+1 -> 1 -dqcms450 comparesig -8 -90E-1 -> 1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -dqcms473 comparesig 123.9999999999999999994560000000000E-89 123.999999999999999999456E-89 -> 0 -dqcms474 comparesig 123.999999999999999999456000000000E+89 123.999999999999999999456E+89 -> 0 -dqcms475 comparesig 123.99999999999999999945600000000E-89 123.999999999999999999456E-89 -> 0 -dqcms476 comparesig 123.9999999999999999994560000000E+89 123.999999999999999999456E+89 -> 0 -dqcms477 comparesig 123.999999999999999999456000000E-89 123.999999999999999999456E-89 -> 0 -dqcms478 comparesig 123.99999999999999999945600000E+89 123.999999999999999999456E+89 -> 0 -dqcms479 comparesig 123.9999999999999999994560000E-89 123.999999999999999999456E-89 -> 0 -dqcms480 comparesig 123.999999999999999999456000E+89 123.999999999999999999456E+89 -> 0 -dqcms481 comparesig 123.99999999999999999945600E-89 123.999999999999999999456E-89 -> 0 -dqcms482 comparesig 123.9999999999999999994560E+89 123.999999999999999999456E+89 -> 0 -dqcms483 comparesig 123.999999999999999999456E-89 123.999999999999999999456E-89 -> 0 -dqcms487 comparesig 123.999999999999999999456E+89 123.9999999999999999994560000000000E+89 -> 0 -dqcms488 comparesig 123.999999999999999999456E-89 123.999999999999999999456000000000E-89 -> 0 -dqcms489 comparesig 123.999999999999999999456E+89 123.99999999999999999945600000000E+89 -> 0 -dqcms490 comparesig 123.999999999999999999456E-89 123.9999999999999999994560000000E-89 -> 0 -dqcms491 comparesig 123.999999999999999999456E+89 123.999999999999999999456000000E+89 -> 0 -dqcms492 comparesig 123.999999999999999999456E-89 123.99999999999999999945600000E-89 -> 0 -dqcms493 comparesig 123.999999999999999999456E+89 123.9999999999999999994560000E+89 -> 0 -dqcms494 comparesig 123.999999999999999999456E-89 123.999999999999999999456000E-89 -> 0 -dqcms495 comparesig 123.999999999999999999456E+89 123.99999999999999999945600E+89 -> 0 -dqcms496 comparesig 123.999999999999999999456E-89 123.9999999999999999994560E-89 -> 0 -dqcms497 comparesig 123.999999999999999999456E+89 123.999999999999999999456E+89 -> 0 - --- wide-ranging, around precision; signs equal -dqcms500 comparesig 1 1E-15 -> 1 -dqcms501 comparesig 1 1E-14 -> 1 -dqcms502 comparesig 1 1E-13 -> 1 -dqcms503 comparesig 1 1E-12 -> 1 -dqcms504 comparesig 1 1E-11 -> 1 -dqcms505 comparesig 1 1E-10 -> 1 -dqcms506 comparesig 1 1E-9 -> 1 -dqcms507 comparesig 1 1E-8 -> 1 -dqcms508 comparesig 1 1E-7 -> 1 -dqcms509 comparesig 1 1E-6 -> 1 -dqcms510 comparesig 1 1E-5 -> 1 -dqcms511 comparesig 1 1E-4 -> 1 -dqcms512 comparesig 1 1E-3 -> 1 -dqcms513 comparesig 1 1E-2 -> 1 -dqcms514 comparesig 1 1E-1 -> 1 -dqcms515 comparesig 1 1E-0 -> 0 -dqcms516 comparesig 1 1E+1 -> -1 -dqcms517 comparesig 1 1E+2 -> -1 -dqcms518 comparesig 1 1E+3 -> -1 -dqcms519 comparesig 1 1E+4 -> -1 -dqcms521 comparesig 1 1E+5 -> -1 -dqcms522 comparesig 1 1E+6 -> -1 -dqcms523 comparesig 1 1E+7 -> -1 -dqcms524 comparesig 1 1E+8 -> -1 -dqcms525 comparesig 1 1E+9 -> -1 -dqcms526 comparesig 1 1E+10 -> -1 -dqcms527 comparesig 1 1E+11 -> -1 -dqcms528 comparesig 1 1E+12 -> -1 -dqcms529 comparesig 1 1E+13 -> -1 -dqcms530 comparesig 1 1E+14 -> -1 -dqcms531 comparesig 1 1E+15 -> -1 --- LR swap -dqcms540 comparesig 1E-15 1 -> -1 -dqcms541 comparesig 1E-14 1 -> -1 -dqcms542 comparesig 1E-13 1 -> -1 -dqcms543 comparesig 1E-12 1 -> -1 -dqcms544 comparesig 1E-11 1 -> -1 -dqcms545 comparesig 1E-10 1 -> -1 -dqcms546 comparesig 1E-9 1 -> -1 -dqcms547 comparesig 1E-8 1 -> -1 -dqcms548 comparesig 1E-7 1 -> -1 -dqcms549 comparesig 1E-6 1 -> -1 -dqcms550 comparesig 1E-5 1 -> -1 -dqcms551 comparesig 1E-4 1 -> -1 -dqcms552 comparesig 1E-3 1 -> -1 -dqcms553 comparesig 1E-2 1 -> -1 -dqcms554 comparesig 1E-1 1 -> -1 -dqcms555 comparesig 1E-0 1 -> 0 -dqcms556 comparesig 1E+1 1 -> 1 -dqcms557 comparesig 1E+2 1 -> 1 -dqcms558 comparesig 1E+3 1 -> 1 -dqcms559 comparesig 1E+4 1 -> 1 -dqcms561 comparesig 1E+5 1 -> 1 -dqcms562 comparesig 1E+6 1 -> 1 -dqcms563 comparesig 1E+7 1 -> 1 -dqcms564 comparesig 1E+8 1 -> 1 -dqcms565 comparesig 1E+9 1 -> 1 -dqcms566 comparesig 1E+10 1 -> 1 -dqcms567 comparesig 1E+11 1 -> 1 -dqcms568 comparesig 1E+12 1 -> 1 -dqcms569 comparesig 1E+13 1 -> 1 -dqcms570 comparesig 1E+14 1 -> 1 -dqcms571 comparesig 1E+15 1 -> 1 --- similar with a useful coefficient, one side only -dqcms580 comparesig 0.000000987654321 1E-15 -> 1 -dqcms581 comparesig 0.000000987654321 1E-14 -> 1 -dqcms582 comparesig 0.000000987654321 1E-13 -> 1 -dqcms583 comparesig 0.000000987654321 1E-12 -> 1 -dqcms584 comparesig 0.000000987654321 1E-11 -> 1 -dqcms585 comparesig 0.000000987654321 1E-10 -> 1 -dqcms586 comparesig 0.000000987654321 1E-9 -> 1 -dqcms587 comparesig 0.000000987654321 1E-8 -> 1 -dqcms588 comparesig 0.000000987654321 1E-7 -> 1 -dqcms589 comparesig 0.000000987654321 1E-6 -> -1 -dqcms590 comparesig 0.000000987654321 1E-5 -> -1 -dqcms591 comparesig 0.000000987654321 1E-4 -> -1 -dqcms592 comparesig 0.000000987654321 1E-3 -> -1 -dqcms593 comparesig 0.000000987654321 1E-2 -> -1 -dqcms594 comparesig 0.000000987654321 1E-1 -> -1 -dqcms595 comparesig 0.000000987654321 1E-0 -> -1 -dqcms596 comparesig 0.000000987654321 1E+1 -> -1 -dqcms597 comparesig 0.000000987654321 1E+2 -> -1 -dqcms598 comparesig 0.000000987654321 1E+3 -> -1 -dqcms599 comparesig 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -dqcms600 comparesig 12 12.2345 -> -1 -dqcms601 comparesig 12.0 12.2345 -> -1 -dqcms602 comparesig 12.00 12.2345 -> -1 -dqcms603 comparesig 12.000 12.2345 -> -1 -dqcms604 comparesig 12.0000 12.2345 -> -1 -dqcms605 comparesig 12.00000 12.2345 -> -1 -dqcms606 comparesig 12.000000 12.2345 -> -1 -dqcms607 comparesig 12.0000000 12.2345 -> -1 -dqcms608 comparesig 12.00000000 12.2345 -> -1 -dqcms609 comparesig 12.000000000 12.2345 -> -1 -dqcms610 comparesig 12.1234 12 -> 1 -dqcms611 comparesig 12.1234 12.0 -> 1 -dqcms612 comparesig 12.1234 12.00 -> 1 -dqcms613 comparesig 12.1234 12.000 -> 1 -dqcms614 comparesig 12.1234 12.0000 -> 1 -dqcms615 comparesig 12.1234 12.00000 -> 1 -dqcms616 comparesig 12.1234 12.000000 -> 1 -dqcms617 comparesig 12.1234 12.0000000 -> 1 -dqcms618 comparesig 12.1234 12.00000000 -> 1 -dqcms619 comparesig 12.1234 12.000000000 -> 1 -dqcms620 comparesig -12 -12.2345 -> 1 -dqcms621 comparesig -12.0 -12.2345 -> 1 -dqcms622 comparesig -12.00 -12.2345 -> 1 -dqcms623 comparesig -12.000 -12.2345 -> 1 -dqcms624 comparesig -12.0000 -12.2345 -> 1 -dqcms625 comparesig -12.00000 -12.2345 -> 1 -dqcms626 comparesig -12.000000 -12.2345 -> 1 -dqcms627 comparesig -12.0000000 -12.2345 -> 1 -dqcms628 comparesig -12.00000000 -12.2345 -> 1 -dqcms629 comparesig -12.000000000 -12.2345 -> 1 -dqcms630 comparesig -12.1234 -12 -> -1 -dqcms631 comparesig -12.1234 -12.0 -> -1 -dqcms632 comparesig -12.1234 -12.00 -> -1 -dqcms633 comparesig -12.1234 -12.000 -> -1 -dqcms634 comparesig -12.1234 -12.0000 -> -1 -dqcms635 comparesig -12.1234 -12.00000 -> -1 -dqcms636 comparesig -12.1234 -12.000000 -> -1 -dqcms637 comparesig -12.1234 -12.0000000 -> -1 -dqcms638 comparesig -12.1234 -12.00000000 -> -1 -dqcms639 comparesig -12.1234 -12.000000000 -> -1 - --- extended zeros -dqcms640 comparesig 0 0 -> 0 -dqcms641 comparesig 0 -0 -> 0 -dqcms642 comparesig 0 -0.0 -> 0 -dqcms643 comparesig 0 0.0 -> 0 -dqcms644 comparesig -0 0 -> 0 -dqcms645 comparesig -0 -0 -> 0 -dqcms646 comparesig -0 -0.0 -> 0 -dqcms647 comparesig -0 0.0 -> 0 -dqcms648 comparesig 0.0 0 -> 0 -dqcms649 comparesig 0.0 -0 -> 0 -dqcms650 comparesig 0.0 -0.0 -> 0 -dqcms651 comparesig 0.0 0.0 -> 0 -dqcms652 comparesig -0.0 0 -> 0 -dqcms653 comparesig -0.0 -0 -> 0 -dqcms654 comparesig -0.0 -0.0 -> 0 -dqcms655 comparesig -0.0 0.0 -> 0 - -dqcms656 comparesig -0E1 0.0 -> 0 -dqcms657 comparesig -0E2 0.0 -> 0 -dqcms658 comparesig 0E1 0.0 -> 0 -dqcms659 comparesig 0E2 0.0 -> 0 -dqcms660 comparesig -0E1 0 -> 0 -dqcms661 comparesig -0E2 0 -> 0 -dqcms662 comparesig 0E1 0 -> 0 -dqcms663 comparesig 0E2 0 -> 0 -dqcms664 comparesig -0E1 -0E1 -> 0 -dqcms665 comparesig -0E2 -0E1 -> 0 -dqcms666 comparesig 0E1 -0E1 -> 0 -dqcms667 comparesig 0E2 -0E1 -> 0 -dqcms668 comparesig -0E1 -0E2 -> 0 -dqcms669 comparesig -0E2 -0E2 -> 0 -dqcms670 comparesig 0E1 -0E2 -> 0 -dqcms671 comparesig 0E2 -0E2 -> 0 -dqcms672 comparesig -0E1 0E1 -> 0 -dqcms673 comparesig -0E2 0E1 -> 0 -dqcms674 comparesig 0E1 0E1 -> 0 -dqcms675 comparesig 0E2 0E1 -> 0 -dqcms676 comparesig -0E1 0E2 -> 0 -dqcms677 comparesig -0E2 0E2 -> 0 -dqcms678 comparesig 0E1 0E2 -> 0 -dqcms679 comparesig 0E2 0E2 -> 0 - --- trailing zeros; unit-y -dqcms680 comparesig 12 12 -> 0 -dqcms681 comparesig 12 12.0 -> 0 -dqcms682 comparesig 12 12.00 -> 0 -dqcms683 comparesig 12 12.000 -> 0 -dqcms684 comparesig 12 12.0000 -> 0 -dqcms685 comparesig 12 12.00000 -> 0 -dqcms686 comparesig 12 12.000000 -> 0 -dqcms687 comparesig 12 12.0000000 -> 0 -dqcms688 comparesig 12 12.00000000 -> 0 -dqcms689 comparesig 12 12.000000000 -> 0 -dqcms690 comparesig 12 12 -> 0 -dqcms691 comparesig 12.0 12 -> 0 -dqcms692 comparesig 12.00 12 -> 0 -dqcms693 comparesig 12.000 12 -> 0 -dqcms694 comparesig 12.0000 12 -> 0 -dqcms695 comparesig 12.00000 12 -> 0 -dqcms696 comparesig 12.000000 12 -> 0 -dqcms697 comparesig 12.0000000 12 -> 0 -dqcms698 comparesig 12.00000000 12 -> 0 -dqcms699 comparesig 12.000000000 12 -> 0 - --- first, second, & last digit -dqcms700 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123455 -> 1 -dqcms701 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0 -dqcms702 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123457 -> -1 -dqcms703 comparesig 1234567899999999999999999990123456 0234567899999999999999999990123456 -> 1 -dqcms704 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0 -dqcms705 comparesig 1234567899999999999999999990123456 2234567899999999999999999990123456 -> -1 -dqcms706 comparesig 1134567899999999999999999990123456 1034567899999999999999999990123456 -> 1 -dqcms707 comparesig 1134567899999999999999999990123456 1134567899999999999999999990123456 -> 0 -dqcms708 comparesig 1134567899999999999999999990123456 1234567899999999999999999990123456 -> -1 - --- miscellaneous -dqcms721 comparesig 12345678000 1 -> 1 -dqcms722 comparesig 1 12345678000 -> -1 -dqcms723 comparesig 1234567800 1 -> 1 -dqcms724 comparesig 1 1234567800 -> -1 -dqcms725 comparesig 1234567890 1 -> 1 -dqcms726 comparesig 1 1234567890 -> -1 -dqcms727 comparesig 1234567891 1 -> 1 -dqcms728 comparesig 1 1234567891 -> -1 -dqcms729 comparesig 12345678901 1 -> 1 -dqcms730 comparesig 1 12345678901 -> -1 -dqcms731 comparesig 1234567896 1 -> 1 -dqcms732 comparesig 1 1234567896 -> -1 - --- residue cases at lower precision -dqcms740 comparesig 1 0.9999999 -> 1 -dqcms741 comparesig 1 0.999999 -> 1 -dqcms742 comparesig 1 0.99999 -> 1 -dqcms743 comparesig 1 1.0000 -> 0 -dqcms744 comparesig 1 1.00001 -> -1 -dqcms745 comparesig 1 1.000001 -> -1 -dqcms746 comparesig 1 1.0000001 -> -1 -dqcms750 comparesig 0.9999999 1 -> -1 -dqcms751 comparesig 0.999999 1 -> -1 -dqcms752 comparesig 0.99999 1 -> -1 -dqcms753 comparesig 1.0000 1 -> 0 -dqcms754 comparesig 1.00001 1 -> 1 -dqcms755 comparesig 1.000001 1 -> 1 -dqcms756 comparesig 1.0000001 1 -> 1 - --- Specials -dqcms780 comparesig Inf -Inf -> 1 -dqcms781 comparesig Inf -1000 -> 1 -dqcms782 comparesig Inf -1 -> 1 -dqcms783 comparesig Inf -0 -> 1 -dqcms784 comparesig Inf 0 -> 1 -dqcms785 comparesig Inf 1 -> 1 -dqcms786 comparesig Inf 1000 -> 1 -dqcms787 comparesig Inf Inf -> 0 -dqcms788 comparesig -1000 Inf -> -1 -dqcms789 comparesig -Inf Inf -> -1 -dqcms790 comparesig -1 Inf -> -1 -dqcms791 comparesig -0 Inf -> -1 -dqcms792 comparesig 0 Inf -> -1 -dqcms793 comparesig 1 Inf -> -1 -dqcms794 comparesig 1000 Inf -> -1 -dqcms795 comparesig Inf Inf -> 0 - -dqcms800 comparesig -Inf -Inf -> 0 -dqcms801 comparesig -Inf -1000 -> -1 -dqcms802 comparesig -Inf -1 -> -1 -dqcms803 comparesig -Inf -0 -> -1 -dqcms804 comparesig -Inf 0 -> -1 -dqcms805 comparesig -Inf 1 -> -1 -dqcms806 comparesig -Inf 1000 -> -1 -dqcms807 comparesig -Inf Inf -> -1 -dqcms808 comparesig -Inf -Inf -> 0 -dqcms809 comparesig -1000 -Inf -> 1 -dqcms810 comparesig -1 -Inf -> 1 -dqcms811 comparesig -0 -Inf -> 1 -dqcms812 comparesig 0 -Inf -> 1 -dqcms813 comparesig 1 -Inf -> 1 -dqcms814 comparesig 1000 -Inf -> 1 -dqcms815 comparesig Inf -Inf -> 1 - -dqcms821 comparesig NaN -Inf -> NaN Invalid_operation -dqcms822 comparesig NaN -1000 -> NaN Invalid_operation -dqcms823 comparesig NaN -1 -> NaN Invalid_operation -dqcms824 comparesig NaN -0 -> NaN Invalid_operation -dqcms825 comparesig NaN 0 -> NaN Invalid_operation -dqcms826 comparesig NaN 1 -> NaN Invalid_operation -dqcms827 comparesig NaN 1000 -> NaN Invalid_operation -dqcms828 comparesig NaN Inf -> NaN Invalid_operation -dqcms829 comparesig NaN NaN -> NaN Invalid_operation -dqcms830 comparesig -Inf NaN -> NaN Invalid_operation -dqcms831 comparesig -1000 NaN -> NaN Invalid_operation -dqcms832 comparesig -1 NaN -> NaN Invalid_operation -dqcms833 comparesig -0 NaN -> NaN Invalid_operation -dqcms834 comparesig 0 NaN -> NaN Invalid_operation -dqcms835 comparesig 1 NaN -> NaN Invalid_operation -dqcms836 comparesig 1000 NaN -> NaN Invalid_operation -dqcms837 comparesig Inf NaN -> NaN Invalid_operation -dqcms838 comparesig -NaN -NaN -> -NaN Invalid_operation -dqcms839 comparesig +NaN -NaN -> NaN Invalid_operation -dqcms840 comparesig -NaN +NaN -> -NaN Invalid_operation - -dqcms841 comparesig sNaN -Inf -> NaN Invalid_operation -dqcms842 comparesig sNaN -1000 -> NaN Invalid_operation -dqcms843 comparesig sNaN -1 -> NaN Invalid_operation -dqcms844 comparesig sNaN -0 -> NaN Invalid_operation -dqcms845 comparesig sNaN 0 -> NaN Invalid_operation -dqcms846 comparesig sNaN 1 -> NaN Invalid_operation -dqcms847 comparesig sNaN 1000 -> NaN Invalid_operation -dqcms848 comparesig sNaN NaN -> NaN Invalid_operation -dqcms849 comparesig sNaN sNaN -> NaN Invalid_operation -dqcms850 comparesig NaN sNaN -> NaN Invalid_operation -dqcms851 comparesig -Inf sNaN -> NaN Invalid_operation -dqcms852 comparesig -1000 sNaN -> NaN Invalid_operation -dqcms853 comparesig -1 sNaN -> NaN Invalid_operation -dqcms854 comparesig -0 sNaN -> NaN Invalid_operation -dqcms855 comparesig 0 sNaN -> NaN Invalid_operation -dqcms856 comparesig 1 sNaN -> NaN Invalid_operation -dqcms857 comparesig 1000 sNaN -> NaN Invalid_operation -dqcms858 comparesig Inf sNaN -> NaN Invalid_operation -dqcms859 comparesig NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqcms860 comparesig NaN9 -Inf -> NaN9 Invalid_operation -dqcms861 comparesig NaN8 999 -> NaN8 Invalid_operation -dqcms862 comparesig NaN77 Inf -> NaN77 Invalid_operation -dqcms863 comparesig -NaN67 NaN5 -> -NaN67 Invalid_operation -dqcms864 comparesig -Inf -NaN4 -> -NaN4 Invalid_operation -dqcms865 comparesig -999 -NaN33 -> -NaN33 Invalid_operation -dqcms866 comparesig Inf NaN2 -> NaN2 Invalid_operation -dqcms867 comparesig -NaN41 -NaN42 -> -NaN41 Invalid_operation -dqcms868 comparesig +NaN41 -NaN42 -> NaN41 Invalid_operation -dqcms869 comparesig -NaN41 +NaN42 -> -NaN41 Invalid_operation -dqcms870 comparesig +NaN41 +NaN42 -> NaN41 Invalid_operation - -dqcms871 comparesig -sNaN99 -Inf -> -NaN99 Invalid_operation -dqcms872 comparesig sNaN98 -11 -> NaN98 Invalid_operation -dqcms873 comparesig sNaN97 NaN -> NaN97 Invalid_operation -dqcms874 comparesig sNaN16 sNaN94 -> NaN16 Invalid_operation -dqcms875 comparesig NaN85 sNaN83 -> NaN83 Invalid_operation -dqcms876 comparesig -Inf sNaN92 -> NaN92 Invalid_operation -dqcms877 comparesig 088 sNaN81 -> NaN81 Invalid_operation -dqcms878 comparesig Inf sNaN90 -> NaN90 Invalid_operation -dqcms879 comparesig NaN -sNaN89 -> -NaN89 Invalid_operation - --- wide range -dqcms880 comparesig +1.23456789012345E-0 9E+6144 -> -1 -dqcms881 comparesig 9E+6144 +1.23456789012345E-0 -> 1 -dqcms882 comparesig +0.100 9E-6143 -> 1 -dqcms883 comparesig 9E-6143 +0.100 -> -1 -dqcms885 comparesig -1.23456789012345E-0 9E+6144 -> -1 -dqcms886 comparesig 9E+6144 -1.23456789012345E-0 -> 1 -dqcms887 comparesig -0.100 9E-6143 -> -1 -dqcms888 comparesig 9E-6143 -0.100 -> 1 - --- signs -dqcms901 comparesig 1e+77 1e+11 -> 1 -dqcms902 comparesig 1e+77 -1e+11 -> 1 -dqcms903 comparesig -1e+77 1e+11 -> -1 -dqcms904 comparesig -1e+77 -1e+11 -> -1 -dqcms905 comparesig 1e-77 1e-11 -> -1 -dqcms906 comparesig 1e-77 -1e-11 -> 1 -dqcms907 comparesig -1e-77 1e-11 -> -1 -dqcms908 comparesig -1e-77 -1e-11 -> 1 - --- Null tests -dqcms990 comparesig 10 # -> NaN Invalid_operation -dqcms991 comparesig # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqCompareTotal.decTest b/qdecimal/test/tc_full/dqCompareTotal.decTest deleted file mode 100644 index 175e57c..0000000 --- a/qdecimal/test/tc_full/dqCompareTotal.decTest +++ /dev/null @@ -1,706 +0,0 @@ ------------------------------------------------------------------------- --- dqCompareTotal.decTest -- decQuad comparison using total ordering -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). --- Similarly, comparetotal will have some radically different paths --- than compare. - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqcot001 comparetotal -2 -2 -> 0 -dqcot002 comparetotal -2 -1 -> -1 -dqcot003 comparetotal -2 0 -> -1 -dqcot004 comparetotal -2 1 -> -1 -dqcot005 comparetotal -2 2 -> -1 -dqcot006 comparetotal -1 -2 -> 1 -dqcot007 comparetotal -1 -1 -> 0 -dqcot008 comparetotal -1 0 -> -1 -dqcot009 comparetotal -1 1 -> -1 -dqcot010 comparetotal -1 2 -> -1 -dqcot011 comparetotal 0 -2 -> 1 -dqcot012 comparetotal 0 -1 -> 1 -dqcot013 comparetotal 0 0 -> 0 -dqcot014 comparetotal 0 1 -> -1 -dqcot015 comparetotal 0 2 -> -1 -dqcot016 comparetotal 1 -2 -> 1 -dqcot017 comparetotal 1 -1 -> 1 -dqcot018 comparetotal 1 0 -> 1 -dqcot019 comparetotal 1 1 -> 0 -dqcot020 comparetotal 1 2 -> -1 -dqcot021 comparetotal 2 -2 -> 1 -dqcot022 comparetotal 2 -1 -> 1 -dqcot023 comparetotal 2 0 -> 1 -dqcot025 comparetotal 2 1 -> 1 -dqcot026 comparetotal 2 2 -> 0 - -dqcot031 comparetotal -20 -20 -> 0 -dqcot032 comparetotal -20 -10 -> -1 -dqcot033 comparetotal -20 00 -> -1 -dqcot034 comparetotal -20 10 -> -1 -dqcot035 comparetotal -20 20 -> -1 -dqcot036 comparetotal -10 -20 -> 1 -dqcot037 comparetotal -10 -10 -> 0 -dqcot038 comparetotal -10 00 -> -1 -dqcot039 comparetotal -10 10 -> -1 -dqcot040 comparetotal -10 20 -> -1 -dqcot041 comparetotal 00 -20 -> 1 -dqcot042 comparetotal 00 -10 -> 1 -dqcot043 comparetotal 00 00 -> 0 -dqcot044 comparetotal 00 10 -> -1 -dqcot045 comparetotal 00 20 -> -1 -dqcot046 comparetotal 10 -20 -> 1 -dqcot047 comparetotal 10 -10 -> 1 -dqcot048 comparetotal 10 00 -> 1 -dqcot049 comparetotal 10 10 -> 0 -dqcot050 comparetotal 10 20 -> -1 -dqcot051 comparetotal 20 -20 -> 1 -dqcot052 comparetotal 20 -10 -> 1 -dqcot053 comparetotal 20 00 -> 1 -dqcot055 comparetotal 20 10 -> 1 -dqcot056 comparetotal 20 20 -> 0 - -dqcot061 comparetotal -2.0 -2.0 -> 0 -dqcot062 comparetotal -2.0 -1.0 -> -1 -dqcot063 comparetotal -2.0 0.0 -> -1 -dqcot064 comparetotal -2.0 1.0 -> -1 -dqcot065 comparetotal -2.0 2.0 -> -1 -dqcot066 comparetotal -1.0 -2.0 -> 1 -dqcot067 comparetotal -1.0 -1.0 -> 0 -dqcot068 comparetotal -1.0 0.0 -> -1 -dqcot069 comparetotal -1.0 1.0 -> -1 -dqcot070 comparetotal -1.0 2.0 -> -1 -dqcot071 comparetotal 0.0 -2.0 -> 1 -dqcot072 comparetotal 0.0 -1.0 -> 1 -dqcot073 comparetotal 0.0 0.0 -> 0 -dqcot074 comparetotal 0.0 1.0 -> -1 -dqcot075 comparetotal 0.0 2.0 -> -1 -dqcot076 comparetotal 1.0 -2.0 -> 1 -dqcot077 comparetotal 1.0 -1.0 -> 1 -dqcot078 comparetotal 1.0 0.0 -> 1 -dqcot079 comparetotal 1.0 1.0 -> 0 -dqcot080 comparetotal 1.0 2.0 -> -1 -dqcot081 comparetotal 2.0 -2.0 -> 1 -dqcot082 comparetotal 2.0 -1.0 -> 1 -dqcot083 comparetotal 2.0 0.0 -> 1 -dqcot085 comparetotal 2.0 1.0 -> 1 -dqcot086 comparetotal 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -dqcot090 comparetotal 9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> 0 -dqcot091 comparetotal -9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> -1 -dqcot092 comparetotal 9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 1 -dqcot093 comparetotal -9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 0 - --- some differing length/exponent cases --- in this first group, compare would compare all equal -dqcot100 comparetotal 7.0 7.0 -> 0 -dqcot101 comparetotal 7.0 7 -> -1 -dqcot102 comparetotal 7 7.0 -> 1 -dqcot103 comparetotal 7E+0 7.0 -> 1 -dqcot104 comparetotal 70E-1 7.0 -> 0 -dqcot105 comparetotal 0.7E+1 7 -> 0 -dqcot106 comparetotal 70E-1 7 -> -1 -dqcot107 comparetotal 7.0 7E+0 -> -1 -dqcot108 comparetotal 7.0 70E-1 -> 0 -dqcot109 comparetotal 7 0.7E+1 -> 0 -dqcot110 comparetotal 7 70E-1 -> 1 - -dqcot120 comparetotal 8.0 7.0 -> 1 -dqcot121 comparetotal 8.0 7 -> 1 -dqcot122 comparetotal 8 7.0 -> 1 -dqcot123 comparetotal 8E+0 7.0 -> 1 -dqcot124 comparetotal 80E-1 7.0 -> 1 -dqcot125 comparetotal 0.8E+1 7 -> 1 -dqcot126 comparetotal 80E-1 7 -> 1 -dqcot127 comparetotal 8.0 7E+0 -> 1 -dqcot128 comparetotal 8.0 70E-1 -> 1 -dqcot129 comparetotal 8 0.7E+1 -> 1 -dqcot130 comparetotal 8 70E-1 -> 1 - -dqcot140 comparetotal 8.0 9.0 -> -1 -dqcot141 comparetotal 8.0 9 -> -1 -dqcot142 comparetotal 8 9.0 -> -1 -dqcot143 comparetotal 8E+0 9.0 -> -1 -dqcot144 comparetotal 80E-1 9.0 -> -1 -dqcot145 comparetotal 0.8E+1 9 -> -1 -dqcot146 comparetotal 80E-1 9 -> -1 -dqcot147 comparetotal 8.0 9E+0 -> -1 -dqcot148 comparetotal 8.0 90E-1 -> -1 -dqcot149 comparetotal 8 0.9E+1 -> -1 -dqcot150 comparetotal 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -dqcot200 comparetotal -7.0 7.0 -> -1 -dqcot201 comparetotal -7.0 7 -> -1 -dqcot202 comparetotal -7 7.0 -> -1 -dqcot203 comparetotal -7E+0 7.0 -> -1 -dqcot204 comparetotal -70E-1 7.0 -> -1 -dqcot205 comparetotal -0.7E+1 7 -> -1 -dqcot206 comparetotal -70E-1 7 -> -1 -dqcot207 comparetotal -7.0 7E+0 -> -1 -dqcot208 comparetotal -7.0 70E-1 -> -1 -dqcot209 comparetotal -7 0.7E+1 -> -1 -dqcot210 comparetotal -7 70E-1 -> -1 - -dqcot220 comparetotal -8.0 7.0 -> -1 -dqcot221 comparetotal -8.0 7 -> -1 -dqcot222 comparetotal -8 7.0 -> -1 -dqcot223 comparetotal -8E+0 7.0 -> -1 -dqcot224 comparetotal -80E-1 7.0 -> -1 -dqcot225 comparetotal -0.8E+1 7 -> -1 -dqcot226 comparetotal -80E-1 7 -> -1 -dqcot227 comparetotal -8.0 7E+0 -> -1 -dqcot228 comparetotal -8.0 70E-1 -> -1 -dqcot229 comparetotal -8 0.7E+1 -> -1 -dqcot230 comparetotal -8 70E-1 -> -1 - -dqcot240 comparetotal -8.0 9.0 -> -1 -dqcot241 comparetotal -8.0 9 -> -1 -dqcot242 comparetotal -8 9.0 -> -1 -dqcot243 comparetotal -8E+0 9.0 -> -1 -dqcot244 comparetotal -80E-1 9.0 -> -1 -dqcot245 comparetotal -0.8E+1 9 -> -1 -dqcot246 comparetotal -80E-1 9 -> -1 -dqcot247 comparetotal -8.0 9E+0 -> -1 -dqcot248 comparetotal -8.0 90E-1 -> -1 -dqcot249 comparetotal -8 0.9E+1 -> -1 -dqcot250 comparetotal -8 90E-1 -> -1 - --- and again, with sign changes +- .. -dqcot300 comparetotal 7.0 -7.0 -> 1 -dqcot301 comparetotal 7.0 -7 -> 1 -dqcot302 comparetotal 7 -7.0 -> 1 -dqcot303 comparetotal 7E+0 -7.0 -> 1 -dqcot304 comparetotal 70E-1 -7.0 -> 1 -dqcot305 comparetotal .7E+1 -7 -> 1 -dqcot306 comparetotal 70E-1 -7 -> 1 -dqcot307 comparetotal 7.0 -7E+0 -> 1 -dqcot308 comparetotal 7.0 -70E-1 -> 1 -dqcot309 comparetotal 7 -.7E+1 -> 1 -dqcot310 comparetotal 7 -70E-1 -> 1 - -dqcot320 comparetotal 8.0 -7.0 -> 1 -dqcot321 comparetotal 8.0 -7 -> 1 -dqcot322 comparetotal 8 -7.0 -> 1 -dqcot323 comparetotal 8E+0 -7.0 -> 1 -dqcot324 comparetotal 80E-1 -7.0 -> 1 -dqcot325 comparetotal .8E+1 -7 -> 1 -dqcot326 comparetotal 80E-1 -7 -> 1 -dqcot327 comparetotal 8.0 -7E+0 -> 1 -dqcot328 comparetotal 8.0 -70E-1 -> 1 -dqcot329 comparetotal 8 -.7E+1 -> 1 -dqcot330 comparetotal 8 -70E-1 -> 1 - -dqcot340 comparetotal 8.0 -9.0 -> 1 -dqcot341 comparetotal 8.0 -9 -> 1 -dqcot342 comparetotal 8 -9.0 -> 1 -dqcot343 comparetotal 8E+0 -9.0 -> 1 -dqcot344 comparetotal 80E-1 -9.0 -> 1 -dqcot345 comparetotal .8E+1 -9 -> 1 -dqcot346 comparetotal 80E-1 -9 -> 1 -dqcot347 comparetotal 8.0 -9E+0 -> 1 -dqcot348 comparetotal 8.0 -90E-1 -> 1 -dqcot349 comparetotal 8 -.9E+1 -> 1 -dqcot350 comparetotal 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -dqcot400 comparetotal -7.0 -7.0 -> 0 -dqcot401 comparetotal -7.0 -7 -> 1 -dqcot402 comparetotal -7 -7.0 -> -1 -dqcot403 comparetotal -7E+0 -7.0 -> -1 -dqcot404 comparetotal -70E-1 -7.0 -> 0 -dqcot405 comparetotal -.7E+1 -7 -> 0 -dqcot406 comparetotal -70E-1 -7 -> 1 -dqcot407 comparetotal -7.0 -7E+0 -> 1 -dqcot408 comparetotal -7.0 -70E-1 -> 0 -dqcot409 comparetotal -7 -.7E+1 -> 0 -dqcot410 comparetotal -7 -70E-1 -> -1 - -dqcot420 comparetotal -8.0 -7.0 -> -1 -dqcot421 comparetotal -8.0 -7 -> -1 -dqcot422 comparetotal -8 -7.0 -> -1 -dqcot423 comparetotal -8E+0 -7.0 -> -1 -dqcot424 comparetotal -80E-1 -7.0 -> -1 -dqcot425 comparetotal -.8E+1 -7 -> -1 -dqcot426 comparetotal -80E-1 -7 -> -1 -dqcot427 comparetotal -8.0 -7E+0 -> -1 -dqcot428 comparetotal -8.0 -70E-1 -> -1 -dqcot429 comparetotal -8 -.7E+1 -> -1 -dqcot430 comparetotal -8 -70E-1 -> -1 - -dqcot440 comparetotal -8.0 -9.0 -> 1 -dqcot441 comparetotal -8.0 -9 -> 1 -dqcot442 comparetotal -8 -9.0 -> 1 -dqcot443 comparetotal -8E+0 -9.0 -> 1 -dqcot444 comparetotal -80E-1 -9.0 -> 1 -dqcot445 comparetotal -.8E+1 -9 -> 1 -dqcot446 comparetotal -80E-1 -9 -> 1 -dqcot447 comparetotal -8.0 -9E+0 -> 1 -dqcot448 comparetotal -8.0 -90E-1 -> 1 -dqcot449 comparetotal -8 -.9E+1 -> 1 -dqcot450 comparetotal -8 -90E-1 -> 1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -dqcot473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1 -dqcot474 comparetotal 123.456000000000E+89 123.456E+89 -> -1 -dqcot475 comparetotal 123.45600000000E-89 123.456E-89 -> -1 -dqcot476 comparetotal 123.4560000000E+89 123.456E+89 -> -1 -dqcot477 comparetotal 123.456000000E-89 123.456E-89 -> -1 -dqcot478 comparetotal 123.45600000E+89 123.456E+89 -> -1 -dqcot479 comparetotal 123.4560000E-89 123.456E-89 -> -1 -dqcot480 comparetotal 123.456000E+89 123.456E+89 -> -1 -dqcot481 comparetotal 123.45600E-89 123.456E-89 -> -1 -dqcot482 comparetotal 123.4560E+89 123.456E+89 -> -1 -dqcot483 comparetotal 123.456E-89 123.456E-89 -> 0 -dqcot487 comparetotal 123.456E+89 123.4560000000000E+89 -> 1 -dqcot488 comparetotal 123.456E-89 123.456000000000E-89 -> 1 -dqcot489 comparetotal 123.456E+89 123.45600000000E+89 -> 1 -dqcot490 comparetotal 123.456E-89 123.4560000000E-89 -> 1 -dqcot491 comparetotal 123.456E+89 123.456000000E+89 -> 1 -dqcot492 comparetotal 123.456E-89 123.45600000E-89 -> 1 -dqcot493 comparetotal 123.456E+89 123.4560000E+89 -> 1 -dqcot494 comparetotal 123.456E-89 123.456000E-89 -> 1 -dqcot495 comparetotal 123.456E+89 123.45600E+89 -> 1 -dqcot496 comparetotal 123.456E-89 123.4560E-89 -> 1 -dqcot497 comparetotal 123.456E+89 123.456E+89 -> 0 - --- wide-ranging, around precision; signs equal -dqcot498 comparetotal 1 1E-17 -> 1 -dqcot499 comparetotal 1 1E-16 -> 1 -dqcot500 comparetotal 1 1E-15 -> 1 -dqcot501 comparetotal 1 1E-14 -> 1 -dqcot502 comparetotal 1 1E-13 -> 1 -dqcot503 comparetotal 1 1E-12 -> 1 -dqcot504 comparetotal 1 1E-11 -> 1 -dqcot505 comparetotal 1 1E-10 -> 1 -dqcot506 comparetotal 1 1E-9 -> 1 -dqcot507 comparetotal 1 1E-8 -> 1 -dqcot508 comparetotal 1 1E-7 -> 1 -dqcot509 comparetotal 1 1E-6 -> 1 -dqcot510 comparetotal 1 1E-5 -> 1 -dqcot511 comparetotal 1 1E-4 -> 1 -dqcot512 comparetotal 1 1E-3 -> 1 -dqcot513 comparetotal 1 1E-2 -> 1 -dqcot514 comparetotal 1 1E-1 -> 1 -dqcot515 comparetotal 1 1E-0 -> 0 -dqcot516 comparetotal 1 1E+1 -> -1 -dqcot517 comparetotal 1 1E+2 -> -1 -dqcot518 comparetotal 1 1E+3 -> -1 -dqcot519 comparetotal 1 1E+4 -> -1 -dqcot521 comparetotal 1 1E+5 -> -1 -dqcot522 comparetotal 1 1E+6 -> -1 -dqcot523 comparetotal 1 1E+7 -> -1 -dqcot524 comparetotal 1 1E+8 -> -1 -dqcot525 comparetotal 1 1E+9 -> -1 -dqcot526 comparetotal 1 1E+10 -> -1 -dqcot527 comparetotal 1 1E+11 -> -1 -dqcot528 comparetotal 1 1E+12 -> -1 -dqcot529 comparetotal 1 1E+13 -> -1 -dqcot530 comparetotal 1 1E+14 -> -1 -dqcot531 comparetotal 1 1E+15 -> -1 -dqcot532 comparetotal 1 1E+16 -> -1 -dqcot533 comparetotal 1 1E+17 -> -1 --- LR swap -dqcot538 comparetotal 1E-17 1 -> -1 -dqcot539 comparetotal 1E-16 1 -> -1 -dqcot540 comparetotal 1E-15 1 -> -1 -dqcot541 comparetotal 1E-14 1 -> -1 -dqcot542 comparetotal 1E-13 1 -> -1 -dqcot543 comparetotal 1E-12 1 -> -1 -dqcot544 comparetotal 1E-11 1 -> -1 -dqcot545 comparetotal 1E-10 1 -> -1 -dqcot546 comparetotal 1E-9 1 -> -1 -dqcot547 comparetotal 1E-8 1 -> -1 -dqcot548 comparetotal 1E-7 1 -> -1 -dqcot549 comparetotal 1E-6 1 -> -1 -dqcot550 comparetotal 1E-5 1 -> -1 -dqcot551 comparetotal 1E-4 1 -> -1 -dqcot552 comparetotal 1E-3 1 -> -1 -dqcot553 comparetotal 1E-2 1 -> -1 -dqcot554 comparetotal 1E-1 1 -> -1 -dqcot555 comparetotal 1E-0 1 -> 0 -dqcot556 comparetotal 1E+1 1 -> 1 -dqcot557 comparetotal 1E+2 1 -> 1 -dqcot558 comparetotal 1E+3 1 -> 1 -dqcot559 comparetotal 1E+4 1 -> 1 -dqcot561 comparetotal 1E+5 1 -> 1 -dqcot562 comparetotal 1E+6 1 -> 1 -dqcot563 comparetotal 1E+7 1 -> 1 -dqcot564 comparetotal 1E+8 1 -> 1 -dqcot565 comparetotal 1E+9 1 -> 1 -dqcot566 comparetotal 1E+10 1 -> 1 -dqcot567 comparetotal 1E+11 1 -> 1 -dqcot568 comparetotal 1E+12 1 -> 1 -dqcot569 comparetotal 1E+13 1 -> 1 -dqcot570 comparetotal 1E+14 1 -> 1 -dqcot571 comparetotal 1E+15 1 -> 1 -dqcot572 comparetotal 1E+16 1 -> 1 -dqcot573 comparetotal 1E+17 1 -> 1 --- similar with a useful coefficient, one side only -dqcot578 comparetotal 0.000000987654321 1E-17 -> 1 -dqcot579 comparetotal 0.000000987654321 1E-16 -> 1 -dqcot580 comparetotal 0.000000987654321 1E-15 -> 1 -dqcot581 comparetotal 0.000000987654321 1E-14 -> 1 -dqcot582 comparetotal 0.000000987654321 1E-13 -> 1 -dqcot583 comparetotal 0.000000987654321 1E-12 -> 1 -dqcot584 comparetotal 0.000000987654321 1E-11 -> 1 -dqcot585 comparetotal 0.000000987654321 1E-10 -> 1 -dqcot586 comparetotal 0.000000987654321 1E-9 -> 1 -dqcot587 comparetotal 0.000000987654321 1E-8 -> 1 -dqcot588 comparetotal 0.000000987654321 1E-7 -> 1 -dqcot589 comparetotal 0.000000987654321 1E-6 -> -1 -dqcot590 comparetotal 0.000000987654321 1E-5 -> -1 -dqcot591 comparetotal 0.000000987654321 1E-4 -> -1 -dqcot592 comparetotal 0.000000987654321 1E-3 -> -1 -dqcot593 comparetotal 0.000000987654321 1E-2 -> -1 -dqcot594 comparetotal 0.000000987654321 1E-1 -> -1 -dqcot595 comparetotal 0.000000987654321 1E-0 -> -1 -dqcot596 comparetotal 0.000000987654321 1E+1 -> -1 -dqcot597 comparetotal 0.000000987654321 1E+2 -> -1 -dqcot598 comparetotal 0.000000987654321 1E+3 -> -1 -dqcot599 comparetotal 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -dqcot600 comparetotal 12 12.2345 -> -1 -dqcot601 comparetotal 12.0 12.2345 -> -1 -dqcot602 comparetotal 12.00 12.2345 -> -1 -dqcot603 comparetotal 12.000 12.2345 -> -1 -dqcot604 comparetotal 12.0000 12.2345 -> -1 -dqcot605 comparetotal 12.00000 12.2345 -> -1 -dqcot606 comparetotal 12.000000 12.2345 -> -1 -dqcot607 comparetotal 12.0000000 12.2345 -> -1 -dqcot608 comparetotal 12.00000000 12.2345 -> -1 -dqcot609 comparetotal 12.000000000 12.2345 -> -1 -dqcot610 comparetotal 12.1234 12 -> 1 -dqcot611 comparetotal 12.1234 12.0 -> 1 -dqcot612 comparetotal 12.1234 12.00 -> 1 -dqcot613 comparetotal 12.1234 12.000 -> 1 -dqcot614 comparetotal 12.1234 12.0000 -> 1 -dqcot615 comparetotal 12.1234 12.00000 -> 1 -dqcot616 comparetotal 12.1234 12.000000 -> 1 -dqcot617 comparetotal 12.1234 12.0000000 -> 1 -dqcot618 comparetotal 12.1234 12.00000000 -> 1 -dqcot619 comparetotal 12.1234 12.000000000 -> 1 -dqcot620 comparetotal -12 -12.2345 -> 1 -dqcot621 comparetotal -12.0 -12.2345 -> 1 -dqcot622 comparetotal -12.00 -12.2345 -> 1 -dqcot623 comparetotal -12.000 -12.2345 -> 1 -dqcot624 comparetotal -12.0000 -12.2345 -> 1 -dqcot625 comparetotal -12.00000 -12.2345 -> 1 -dqcot626 comparetotal -12.000000 -12.2345 -> 1 -dqcot627 comparetotal -12.0000000 -12.2345 -> 1 -dqcot628 comparetotal -12.00000000 -12.2345 -> 1 -dqcot629 comparetotal -12.000000000 -12.2345 -> 1 -dqcot630 comparetotal -12.1234 -12 -> -1 -dqcot631 comparetotal -12.1234 -12.0 -> -1 -dqcot632 comparetotal -12.1234 -12.00 -> -1 -dqcot633 comparetotal -12.1234 -12.000 -> -1 -dqcot634 comparetotal -12.1234 -12.0000 -> -1 -dqcot635 comparetotal -12.1234 -12.00000 -> -1 -dqcot636 comparetotal -12.1234 -12.000000 -> -1 -dqcot637 comparetotal -12.1234 -12.0000000 -> -1 -dqcot638 comparetotal -12.1234 -12.00000000 -> -1 -dqcot639 comparetotal -12.1234 -12.000000000 -> -1 - --- extended zeros -dqcot640 comparetotal 0 0 -> 0 -dqcot641 comparetotal 0 -0 -> 1 -dqcot642 comparetotal 0 -0.0 -> 1 -dqcot643 comparetotal 0 0.0 -> 1 -dqcot644 comparetotal -0 0 -> -1 -dqcot645 comparetotal -0 -0 -> 0 -dqcot646 comparetotal -0 -0.0 -> -1 -dqcot647 comparetotal -0 0.0 -> -1 -dqcot648 comparetotal 0.0 0 -> -1 -dqcot649 comparetotal 0.0 -0 -> 1 -dqcot650 comparetotal 0.0 -0.0 -> 1 -dqcot651 comparetotal 0.0 0.0 -> 0 -dqcot652 comparetotal -0.0 0 -> -1 -dqcot653 comparetotal -0.0 -0 -> 1 -dqcot654 comparetotal -0.0 -0.0 -> 0 -dqcot655 comparetotal -0.0 0.0 -> -1 - -dqcot656 comparetotal -0E1 0.0 -> -1 -dqcot657 comparetotal -0E2 0.0 -> -1 -dqcot658 comparetotal 0E1 0.0 -> 1 -dqcot659 comparetotal 0E2 0.0 -> 1 -dqcot660 comparetotal -0E1 0 -> -1 -dqcot661 comparetotal -0E2 0 -> -1 -dqcot662 comparetotal 0E1 0 -> 1 -dqcot663 comparetotal 0E2 0 -> 1 -dqcot664 comparetotal -0E1 -0E1 -> 0 -dqcot665 comparetotal -0E2 -0E1 -> -1 -dqcot666 comparetotal 0E1 -0E1 -> 1 -dqcot667 comparetotal 0E2 -0E1 -> 1 -dqcot668 comparetotal -0E1 -0E2 -> 1 -dqcot669 comparetotal -0E2 -0E2 -> 0 -dqcot670 comparetotal 0E1 -0E2 -> 1 -dqcot671 comparetotal 0E2 -0E2 -> 1 -dqcot672 comparetotal -0E1 0E1 -> -1 -dqcot673 comparetotal -0E2 0E1 -> -1 -dqcot674 comparetotal 0E1 0E1 -> 0 -dqcot675 comparetotal 0E2 0E1 -> 1 -dqcot676 comparetotal -0E1 0E2 -> -1 -dqcot677 comparetotal -0E2 0E2 -> -1 -dqcot678 comparetotal 0E1 0E2 -> -1 -dqcot679 comparetotal 0E2 0E2 -> 0 - --- trailing zeros; unit-y -dqcot680 comparetotal 12 12 -> 0 -dqcot681 comparetotal 12 12.0 -> 1 -dqcot682 comparetotal 12 12.00 -> 1 -dqcot683 comparetotal 12 12.000 -> 1 -dqcot684 comparetotal 12 12.0000 -> 1 -dqcot685 comparetotal 12 12.00000 -> 1 -dqcot686 comparetotal 12 12.000000 -> 1 -dqcot687 comparetotal 12 12.0000000 -> 1 -dqcot688 comparetotal 12 12.00000000 -> 1 -dqcot689 comparetotal 12 12.000000000 -> 1 -dqcot690 comparetotal 12 12 -> 0 -dqcot691 comparetotal 12.0 12 -> -1 -dqcot692 comparetotal 12.00 12 -> -1 -dqcot693 comparetotal 12.000 12 -> -1 -dqcot694 comparetotal 12.0000 12 -> -1 -dqcot695 comparetotal 12.00000 12 -> -1 -dqcot696 comparetotal 12.000000 12 -> -1 -dqcot697 comparetotal 12.0000000 12 -> -1 -dqcot698 comparetotal 12.00000000 12 -> -1 -dqcot699 comparetotal 12.000000000 12 -> -1 - --- old long operand checks -dqcot701 comparetotal 12345678000 1 -> 1 -dqcot702 comparetotal 1 12345678000 -> -1 -dqcot703 comparetotal 1234567800 1 -> 1 -dqcot704 comparetotal 1 1234567800 -> -1 -dqcot705 comparetotal 1234567890 1 -> 1 -dqcot706 comparetotal 1 1234567890 -> -1 -dqcot707 comparetotal 1234567891 1 -> 1 -dqcot708 comparetotal 1 1234567891 -> -1 -dqcot709 comparetotal 12345678901 1 -> 1 -dqcot710 comparetotal 1 12345678901 -> -1 -dqcot711 comparetotal 1234567896 1 -> 1 -dqcot712 comparetotal 1 1234567896 -> -1 -dqcot713 comparetotal -1234567891 1 -> -1 -dqcot714 comparetotal 1 -1234567891 -> 1 -dqcot715 comparetotal -12345678901 1 -> -1 -dqcot716 comparetotal 1 -12345678901 -> 1 -dqcot717 comparetotal -1234567896 1 -> -1 -dqcot718 comparetotal 1 -1234567896 -> 1 - --- old residue cases -dqcot740 comparetotal 1 0.9999999 -> 1 -dqcot741 comparetotal 1 0.999999 -> 1 -dqcot742 comparetotal 1 0.99999 -> 1 -dqcot743 comparetotal 1 1.0000 -> 1 -dqcot744 comparetotal 1 1.00001 -> -1 -dqcot745 comparetotal 1 1.000001 -> -1 -dqcot746 comparetotal 1 1.0000001 -> -1 -dqcot750 comparetotal 0.9999999 1 -> -1 -dqcot751 comparetotal 0.999999 1 -> -1 -dqcot752 comparetotal 0.99999 1 -> -1 -dqcot753 comparetotal 1.0000 1 -> -1 -dqcot754 comparetotal 1.00001 1 -> 1 -dqcot755 comparetotal 1.000001 1 -> 1 -dqcot756 comparetotal 1.0000001 1 -> 1 - --- Specials -dqcot780 comparetotal Inf -Inf -> 1 -dqcot781 comparetotal Inf -1000 -> 1 -dqcot782 comparetotal Inf -1 -> 1 -dqcot783 comparetotal Inf -0 -> 1 -dqcot784 comparetotal Inf 0 -> 1 -dqcot785 comparetotal Inf 1 -> 1 -dqcot786 comparetotal Inf 1000 -> 1 -dqcot787 comparetotal Inf Inf -> 0 -dqcot788 comparetotal -1000 Inf -> -1 -dqcot789 comparetotal -Inf Inf -> -1 -dqcot790 comparetotal -1 Inf -> -1 -dqcot791 comparetotal -0 Inf -> -1 -dqcot792 comparetotal 0 Inf -> -1 -dqcot793 comparetotal 1 Inf -> -1 -dqcot794 comparetotal 1000 Inf -> -1 -dqcot795 comparetotal Inf Inf -> 0 - -dqcot800 comparetotal -Inf -Inf -> 0 -dqcot801 comparetotal -Inf -1000 -> -1 -dqcot802 comparetotal -Inf -1 -> -1 -dqcot803 comparetotal -Inf -0 -> -1 -dqcot804 comparetotal -Inf 0 -> -1 -dqcot805 comparetotal -Inf 1 -> -1 -dqcot806 comparetotal -Inf 1000 -> -1 -dqcot807 comparetotal -Inf Inf -> -1 -dqcot808 comparetotal -Inf -Inf -> 0 -dqcot809 comparetotal -1000 -Inf -> 1 -dqcot810 comparetotal -1 -Inf -> 1 -dqcot811 comparetotal -0 -Inf -> 1 -dqcot812 comparetotal 0 -Inf -> 1 -dqcot813 comparetotal 1 -Inf -> 1 -dqcot814 comparetotal 1000 -Inf -> 1 -dqcot815 comparetotal Inf -Inf -> 1 - -dqcot821 comparetotal NaN -Inf -> 1 -dqcot822 comparetotal NaN -1000 -> 1 -dqcot823 comparetotal NaN -1 -> 1 -dqcot824 comparetotal NaN -0 -> 1 -dqcot825 comparetotal NaN 0 -> 1 -dqcot826 comparetotal NaN 1 -> 1 -dqcot827 comparetotal NaN 1000 -> 1 -dqcot828 comparetotal NaN Inf -> 1 -dqcot829 comparetotal NaN NaN -> 0 -dqcot830 comparetotal -Inf NaN -> -1 -dqcot831 comparetotal -1000 NaN -> -1 -dqcot832 comparetotal -1 NaN -> -1 -dqcot833 comparetotal -0 NaN -> -1 -dqcot834 comparetotal 0 NaN -> -1 -dqcot835 comparetotal 1 NaN -> -1 -dqcot836 comparetotal 1000 NaN -> -1 -dqcot837 comparetotal Inf NaN -> -1 -dqcot838 comparetotal -NaN -NaN -> 0 -dqcot839 comparetotal +NaN -NaN -> 1 -dqcot840 comparetotal -NaN +NaN -> -1 - -dqcot841 comparetotal sNaN -sNaN -> 1 -dqcot842 comparetotal sNaN -NaN -> 1 -dqcot843 comparetotal sNaN -Inf -> 1 -dqcot844 comparetotal sNaN -1000 -> 1 -dqcot845 comparetotal sNaN -1 -> 1 -dqcot846 comparetotal sNaN -0 -> 1 -dqcot847 comparetotal sNaN 0 -> 1 -dqcot848 comparetotal sNaN 1 -> 1 -dqcot849 comparetotal sNaN 1000 -> 1 -dqcot850 comparetotal sNaN NaN -> -1 -dqcot851 comparetotal sNaN sNaN -> 0 - -dqcot852 comparetotal -sNaN sNaN -> -1 -dqcot853 comparetotal -NaN sNaN -> -1 -dqcot854 comparetotal -Inf sNaN -> -1 -dqcot855 comparetotal -1000 sNaN -> -1 -dqcot856 comparetotal -1 sNaN -> -1 -dqcot857 comparetotal -0 sNaN -> -1 -dqcot858 comparetotal 0 sNaN -> -1 -dqcot859 comparetotal 1 sNaN -> -1 -dqcot860 comparetotal 1000 sNaN -> -1 -dqcot861 comparetotal Inf sNaN -> -1 -dqcot862 comparetotal NaN sNaN -> 1 -dqcot863 comparetotal sNaN sNaN -> 0 - -dqcot871 comparetotal -sNaN -sNaN -> 0 -dqcot872 comparetotal -sNaN -NaN -> 1 -dqcot873 comparetotal -sNaN -Inf -> -1 -dqcot874 comparetotal -sNaN -1000 -> -1 -dqcot875 comparetotal -sNaN -1 -> -1 -dqcot876 comparetotal -sNaN -0 -> -1 -dqcot877 comparetotal -sNaN 0 -> -1 -dqcot878 comparetotal -sNaN 1 -> -1 -dqcot879 comparetotal -sNaN 1000 -> -1 -dqcot880 comparetotal -sNaN NaN -> -1 -dqcot881 comparetotal -sNaN sNaN -> -1 - -dqcot882 comparetotal -sNaN -sNaN -> 0 -dqcot883 comparetotal -NaN -sNaN -> -1 -dqcot884 comparetotal -Inf -sNaN -> 1 -dqcot885 comparetotal -1000 -sNaN -> 1 -dqcot886 comparetotal -1 -sNaN -> 1 -dqcot887 comparetotal -0 -sNaN -> 1 -dqcot888 comparetotal 0 -sNaN -> 1 -dqcot889 comparetotal 1 -sNaN -> 1 -dqcot890 comparetotal 1000 -sNaN -> 1 -dqcot891 comparetotal Inf -sNaN -> 1 -dqcot892 comparetotal NaN -sNaN -> 1 -dqcot893 comparetotal sNaN -sNaN -> 1 - --- NaNs with payload -dqcot960 comparetotal NaN9 -Inf -> 1 -dqcot961 comparetotal NaN8 999 -> 1 -dqcot962 comparetotal NaN77 Inf -> 1 -dqcot963 comparetotal -NaN67 NaN5 -> -1 -dqcot964 comparetotal -Inf -NaN4 -> 1 -dqcot965 comparetotal -999 -NaN33 -> 1 -dqcot966 comparetotal Inf NaN2 -> -1 - -dqcot970 comparetotal -NaN41 -NaN42 -> 1 -dqcot971 comparetotal +NaN41 -NaN42 -> 1 -dqcot972 comparetotal -NaN41 +NaN42 -> -1 -dqcot973 comparetotal +NaN41 +NaN42 -> -1 -dqcot974 comparetotal -NaN42 -NaN01 -> -1 -dqcot975 comparetotal +NaN42 -NaN01 -> 1 -dqcot976 comparetotal -NaN42 +NaN01 -> -1 -dqcot977 comparetotal +NaN42 +NaN01 -> 1 - -dqcot980 comparetotal -sNaN771 -sNaN772 -> 1 -dqcot981 comparetotal +sNaN771 -sNaN772 -> 1 -dqcot982 comparetotal -sNaN771 +sNaN772 -> -1 -dqcot983 comparetotal +sNaN771 +sNaN772 -> -1 -dqcot984 comparetotal -sNaN772 -sNaN771 -> -1 -dqcot985 comparetotal +sNaN772 -sNaN771 -> 1 -dqcot986 comparetotal -sNaN772 +sNaN771 -> -1 -dqcot987 comparetotal +sNaN772 +sNaN771 -> 1 - -dqcot991 comparetotal -sNaN99 -Inf -> -1 -dqcot992 comparetotal sNaN98 -11 -> 1 -dqcot993 comparetotal sNaN97 NaN -> -1 -dqcot994 comparetotal sNaN16 sNaN94 -> -1 -dqcot995 comparetotal NaN85 sNaN83 -> 1 -dqcot996 comparetotal -Inf sNaN92 -> -1 -dqcot997 comparetotal 088 sNaN81 -> -1 -dqcot998 comparetotal Inf sNaN90 -> -1 -dqcot999 comparetotal NaN -sNaN89 -> 1 - --- spread zeros -dqcot1110 comparetotal 0E-6143 0 -> -1 -dqcot1111 comparetotal 0E-6143 -0 -> 1 -dqcot1112 comparetotal -0E-6143 0 -> -1 -dqcot1113 comparetotal -0E-6143 -0 -> 1 -dqcot1114 comparetotal 0E-6143 0E+6144 -> -1 -dqcot1115 comparetotal 0E-6143 -0E+6144 -> 1 -dqcot1116 comparetotal -0E-6143 0E+6144 -> -1 -dqcot1117 comparetotal -0E-6143 -0E+6144 -> 1 -dqcot1118 comparetotal 0 0E+6144 -> -1 -dqcot1119 comparetotal 0 -0E+6144 -> 1 -dqcot1120 comparetotal -0 0E+6144 -> -1 -dqcot1121 comparetotal -0 -0E+6144 -> 1 - -dqcot1130 comparetotal 0E+6144 0 -> 1 -dqcot1131 comparetotal 0E+6144 -0 -> 1 -dqcot1132 comparetotal -0E+6144 0 -> -1 -dqcot1133 comparetotal -0E+6144 -0 -> -1 -dqcot1134 comparetotal 0E+6144 0E-6143 -> 1 -dqcot1135 comparetotal 0E+6144 -0E-6143 -> 1 -dqcot1136 comparetotal -0E+6144 0E-6143 -> -1 -dqcot1137 comparetotal -0E+6144 -0E-6143 -> -1 -dqcot1138 comparetotal 0 0E-6143 -> 1 -dqcot1139 comparetotal 0 -0E-6143 -> 1 -dqcot1140 comparetotal -0 0E-6143 -> -1 -dqcot1141 comparetotal -0 -0E-6143 -> -1 - --- Null tests -dqcot9990 comparetotal 10 # -> NaN Invalid_operation -dqcot9991 comparetotal # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqCompareTotalMag.decTest b/qdecimal/test/tc_full/dqCompareTotalMag.decTest deleted file mode 100644 index bf10fce..0000000 --- a/qdecimal/test/tc_full/dqCompareTotalMag.decTest +++ /dev/null @@ -1,706 +0,0 @@ ------------------------------------------------------------------------- --- dqCompareTotalMag.decTest -- decQuad comparison; abs. total order -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). --- Similarly, comparetotal will have some radically different paths --- than compare. - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqctm001 comparetotmag -2 -2 -> 0 -dqctm002 comparetotmag -2 -1 -> 1 -dqctm003 comparetotmag -2 0 -> 1 -dqctm004 comparetotmag -2 1 -> 1 -dqctm005 comparetotmag -2 2 -> 0 -dqctm006 comparetotmag -1 -2 -> -1 -dqctm007 comparetotmag -1 -1 -> 0 -dqctm008 comparetotmag -1 0 -> 1 -dqctm009 comparetotmag -1 1 -> 0 -dqctm010 comparetotmag -1 2 -> -1 -dqctm011 comparetotmag 0 -2 -> -1 -dqctm012 comparetotmag 0 -1 -> -1 -dqctm013 comparetotmag 0 0 -> 0 -dqctm014 comparetotmag 0 1 -> -1 -dqctm015 comparetotmag 0 2 -> -1 -dqctm016 comparetotmag 1 -2 -> -1 -dqctm017 comparetotmag 1 -1 -> 0 -dqctm018 comparetotmag 1 0 -> 1 -dqctm019 comparetotmag 1 1 -> 0 -dqctm020 comparetotmag 1 2 -> -1 -dqctm021 comparetotmag 2 -2 -> 0 -dqctm022 comparetotmag 2 -1 -> 1 -dqctm023 comparetotmag 2 0 -> 1 -dqctm025 comparetotmag 2 1 -> 1 -dqctm026 comparetotmag 2 2 -> 0 - -dqctm031 comparetotmag -20 -20 -> 0 -dqctm032 comparetotmag -20 -10 -> 1 -dqctm033 comparetotmag -20 00 -> 1 -dqctm034 comparetotmag -20 10 -> 1 -dqctm035 comparetotmag -20 20 -> 0 -dqctm036 comparetotmag -10 -20 -> -1 -dqctm037 comparetotmag -10 -10 -> 0 -dqctm038 comparetotmag -10 00 -> 1 -dqctm039 comparetotmag -10 10 -> 0 -dqctm040 comparetotmag -10 20 -> -1 -dqctm041 comparetotmag 00 -20 -> -1 -dqctm042 comparetotmag 00 -10 -> -1 -dqctm043 comparetotmag 00 00 -> 0 -dqctm044 comparetotmag 00 10 -> -1 -dqctm045 comparetotmag 00 20 -> -1 -dqctm046 comparetotmag 10 -20 -> -1 -dqctm047 comparetotmag 10 -10 -> 0 -dqctm048 comparetotmag 10 00 -> 1 -dqctm049 comparetotmag 10 10 -> 0 -dqctm050 comparetotmag 10 20 -> -1 -dqctm051 comparetotmag 20 -20 -> 0 -dqctm052 comparetotmag 20 -10 -> 1 -dqctm053 comparetotmag 20 00 -> 1 -dqctm055 comparetotmag 20 10 -> 1 -dqctm056 comparetotmag 20 20 -> 0 - -dqctm061 comparetotmag -2.0 -2.0 -> 0 -dqctm062 comparetotmag -2.0 -1.0 -> 1 -dqctm063 comparetotmag -2.0 0.0 -> 1 -dqctm064 comparetotmag -2.0 1.0 -> 1 -dqctm065 comparetotmag -2.0 2.0 -> 0 -dqctm066 comparetotmag -1.0 -2.0 -> -1 -dqctm067 comparetotmag -1.0 -1.0 -> 0 -dqctm068 comparetotmag -1.0 0.0 -> 1 -dqctm069 comparetotmag -1.0 1.0 -> 0 -dqctm070 comparetotmag -1.0 2.0 -> -1 -dqctm071 comparetotmag 0.0 -2.0 -> -1 -dqctm072 comparetotmag 0.0 -1.0 -> -1 -dqctm073 comparetotmag 0.0 0.0 -> 0 -dqctm074 comparetotmag 0.0 1.0 -> -1 -dqctm075 comparetotmag 0.0 2.0 -> -1 -dqctm076 comparetotmag 1.0 -2.0 -> -1 -dqctm077 comparetotmag 1.0 -1.0 -> 0 -dqctm078 comparetotmag 1.0 0.0 -> 1 -dqctm079 comparetotmag 1.0 1.0 -> 0 -dqctm080 comparetotmag 1.0 2.0 -> -1 -dqctm081 comparetotmag 2.0 -2.0 -> 0 -dqctm082 comparetotmag 2.0 -1.0 -> 1 -dqctm083 comparetotmag 2.0 0.0 -> 1 -dqctm085 comparetotmag 2.0 1.0 -> 1 -dqctm086 comparetotmag 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -dqctm090 comparetotmag 9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> 0 -dqctm091 comparetotmag -9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> 0 -dqctm092 comparetotmag 9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 0 -dqctm093 comparetotmag -9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 0 - --- some differing length/exponent cases --- in this first group, compare would compare all equal -dqctm100 comparetotmag 7.0 7.0 -> 0 -dqctm101 comparetotmag 7.0 7 -> -1 -dqctm102 comparetotmag 7 7.0 -> 1 -dqctm103 comparetotmag 7E+0 7.0 -> 1 -dqctm104 comparetotmag 70E-1 7.0 -> 0 -dqctm105 comparetotmag 0.7E+1 7 -> 0 -dqctm106 comparetotmag 70E-1 7 -> -1 -dqctm107 comparetotmag 7.0 7E+0 -> -1 -dqctm108 comparetotmag 7.0 70E-1 -> 0 -dqctm109 comparetotmag 7 0.7E+1 -> 0 -dqctm110 comparetotmag 7 70E-1 -> 1 - -dqctm120 comparetotmag 8.0 7.0 -> 1 -dqctm121 comparetotmag 8.0 7 -> 1 -dqctm122 comparetotmag 8 7.0 -> 1 -dqctm123 comparetotmag 8E+0 7.0 -> 1 -dqctm124 comparetotmag 80E-1 7.0 -> 1 -dqctm125 comparetotmag 0.8E+1 7 -> 1 -dqctm126 comparetotmag 80E-1 7 -> 1 -dqctm127 comparetotmag 8.0 7E+0 -> 1 -dqctm128 comparetotmag 8.0 70E-1 -> 1 -dqctm129 comparetotmag 8 0.7E+1 -> 1 -dqctm130 comparetotmag 8 70E-1 -> 1 - -dqctm140 comparetotmag 8.0 9.0 -> -1 -dqctm141 comparetotmag 8.0 9 -> -1 -dqctm142 comparetotmag 8 9.0 -> -1 -dqctm143 comparetotmag 8E+0 9.0 -> -1 -dqctm144 comparetotmag 80E-1 9.0 -> -1 -dqctm145 comparetotmag 0.8E+1 9 -> -1 -dqctm146 comparetotmag 80E-1 9 -> -1 -dqctm147 comparetotmag 8.0 9E+0 -> -1 -dqctm148 comparetotmag 8.0 90E-1 -> -1 -dqctm149 comparetotmag 8 0.9E+1 -> -1 -dqctm150 comparetotmag 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -dqctm200 comparetotmag -7.0 7.0 -> 0 -dqctm201 comparetotmag -7.0 7 -> -1 -dqctm202 comparetotmag -7 7.0 -> 1 -dqctm203 comparetotmag -7E+0 7.0 -> 1 -dqctm204 comparetotmag -70E-1 7.0 -> 0 -dqctm205 comparetotmag -0.7E+1 7 -> 0 -dqctm206 comparetotmag -70E-1 7 -> -1 -dqctm207 comparetotmag -7.0 7E+0 -> -1 -dqctm208 comparetotmag -7.0 70E-1 -> 0 -dqctm209 comparetotmag -7 0.7E+1 -> 0 -dqctm210 comparetotmag -7 70E-1 -> 1 - -dqctm220 comparetotmag -8.0 7.0 -> 1 -dqctm221 comparetotmag -8.0 7 -> 1 -dqctm222 comparetotmag -8 7.0 -> 1 -dqctm223 comparetotmag -8E+0 7.0 -> 1 -dqctm224 comparetotmag -80E-1 7.0 -> 1 -dqctm225 comparetotmag -0.8E+1 7 -> 1 -dqctm226 comparetotmag -80E-1 7 -> 1 -dqctm227 comparetotmag -8.0 7E+0 -> 1 -dqctm228 comparetotmag -8.0 70E-1 -> 1 -dqctm229 comparetotmag -8 0.7E+1 -> 1 -dqctm230 comparetotmag -8 70E-1 -> 1 - -dqctm240 comparetotmag -8.0 9.0 -> -1 -dqctm241 comparetotmag -8.0 9 -> -1 -dqctm242 comparetotmag -8 9.0 -> -1 -dqctm243 comparetotmag -8E+0 9.0 -> -1 -dqctm244 comparetotmag -80E-1 9.0 -> -1 -dqctm245 comparetotmag -0.8E+1 9 -> -1 -dqctm246 comparetotmag -80E-1 9 -> -1 -dqctm247 comparetotmag -8.0 9E+0 -> -1 -dqctm248 comparetotmag -8.0 90E-1 -> -1 -dqctm249 comparetotmag -8 0.9E+1 -> -1 -dqctm250 comparetotmag -8 90E-1 -> -1 - --- and again, with sign changes +- .. -dqctm300 comparetotmag 7.0 -7.0 -> 0 -dqctm301 comparetotmag 7.0 -7 -> -1 -dqctm302 comparetotmag 7 -7.0 -> 1 -dqctm303 comparetotmag 7E+0 -7.0 -> 1 -dqctm304 comparetotmag 70E-1 -7.0 -> 0 -dqctm305 comparetotmag .7E+1 -7 -> 0 -dqctm306 comparetotmag 70E-1 -7 -> -1 -dqctm307 comparetotmag 7.0 -7E+0 -> -1 -dqctm308 comparetotmag 7.0 -70E-1 -> 0 -dqctm309 comparetotmag 7 -.7E+1 -> 0 -dqctm310 comparetotmag 7 -70E-1 -> 1 - -dqctm320 comparetotmag 8.0 -7.0 -> 1 -dqctm321 comparetotmag 8.0 -7 -> 1 -dqctm322 comparetotmag 8 -7.0 -> 1 -dqctm323 comparetotmag 8E+0 -7.0 -> 1 -dqctm324 comparetotmag 80E-1 -7.0 -> 1 -dqctm325 comparetotmag .8E+1 -7 -> 1 -dqctm326 comparetotmag 80E-1 -7 -> 1 -dqctm327 comparetotmag 8.0 -7E+0 -> 1 -dqctm328 comparetotmag 8.0 -70E-1 -> 1 -dqctm329 comparetotmag 8 -.7E+1 -> 1 -dqctm330 comparetotmag 8 -70E-1 -> 1 - -dqctm340 comparetotmag 8.0 -9.0 -> -1 -dqctm341 comparetotmag 8.0 -9 -> -1 -dqctm342 comparetotmag 8 -9.0 -> -1 -dqctm343 comparetotmag 8E+0 -9.0 -> -1 -dqctm344 comparetotmag 80E-1 -9.0 -> -1 -dqctm345 comparetotmag .8E+1 -9 -> -1 -dqctm346 comparetotmag 80E-1 -9 -> -1 -dqctm347 comparetotmag 8.0 -9E+0 -> -1 -dqctm348 comparetotmag 8.0 -90E-1 -> -1 -dqctm349 comparetotmag 8 -.9E+1 -> -1 -dqctm350 comparetotmag 8 -90E-1 -> -1 - --- and again, with sign changes -- .. -dqctm400 comparetotmag -7.0 -7.0 -> 0 -dqctm401 comparetotmag -7.0 -7 -> -1 -dqctm402 comparetotmag -7 -7.0 -> 1 -dqctm403 comparetotmag -7E+0 -7.0 -> 1 -dqctm404 comparetotmag -70E-1 -7.0 -> 0 -dqctm405 comparetotmag -.7E+1 -7 -> 0 -dqctm406 comparetotmag -70E-1 -7 -> -1 -dqctm407 comparetotmag -7.0 -7E+0 -> -1 -dqctm408 comparetotmag -7.0 -70E-1 -> 0 -dqctm409 comparetotmag -7 -.7E+1 -> 0 -dqctm410 comparetotmag -7 -70E-1 -> 1 - -dqctm420 comparetotmag -8.0 -7.0 -> 1 -dqctm421 comparetotmag -8.0 -7 -> 1 -dqctm422 comparetotmag -8 -7.0 -> 1 -dqctm423 comparetotmag -8E+0 -7.0 -> 1 -dqctm424 comparetotmag -80E-1 -7.0 -> 1 -dqctm425 comparetotmag -.8E+1 -7 -> 1 -dqctm426 comparetotmag -80E-1 -7 -> 1 -dqctm427 comparetotmag -8.0 -7E+0 -> 1 -dqctm428 comparetotmag -8.0 -70E-1 -> 1 -dqctm429 comparetotmag -8 -.7E+1 -> 1 -dqctm430 comparetotmag -8 -70E-1 -> 1 - -dqctm440 comparetotmag -8.0 -9.0 -> -1 -dqctm441 comparetotmag -8.0 -9 -> -1 -dqctm442 comparetotmag -8 -9.0 -> -1 -dqctm443 comparetotmag -8E+0 -9.0 -> -1 -dqctm444 comparetotmag -80E-1 -9.0 -> -1 -dqctm445 comparetotmag -.8E+1 -9 -> -1 -dqctm446 comparetotmag -80E-1 -9 -> -1 -dqctm447 comparetotmag -8.0 -9E+0 -> -1 -dqctm448 comparetotmag -8.0 -90E-1 -> -1 -dqctm449 comparetotmag -8 -.9E+1 -> -1 -dqctm450 comparetotmag -8 -90E-1 -> -1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -dqctm473 comparetotmag 123.4560000000000E-89 123.456E-89 -> -1 -dqctm474 comparetotmag 123.456000000000E+89 123.456E+89 -> -1 -dqctm475 comparetotmag 123.45600000000E-89 123.456E-89 -> -1 -dqctm476 comparetotmag 123.4560000000E+89 123.456E+89 -> -1 -dqctm477 comparetotmag 123.456000000E-89 123.456E-89 -> -1 -dqctm478 comparetotmag 123.45600000E+89 123.456E+89 -> -1 -dqctm479 comparetotmag 123.4560000E-89 123.456E-89 -> -1 -dqctm480 comparetotmag 123.456000E+89 123.456E+89 -> -1 -dqctm481 comparetotmag 123.45600E-89 123.456E-89 -> -1 -dqctm482 comparetotmag 123.4560E+89 123.456E+89 -> -1 -dqctm483 comparetotmag 123.456E-89 123.456E-89 -> 0 -dqctm487 comparetotmag 123.456E+89 123.4560000000000E+89 -> 1 -dqctm488 comparetotmag 123.456E-89 123.456000000000E-89 -> 1 -dqctm489 comparetotmag 123.456E+89 123.45600000000E+89 -> 1 -dqctm490 comparetotmag 123.456E-89 123.4560000000E-89 -> 1 -dqctm491 comparetotmag 123.456E+89 123.456000000E+89 -> 1 -dqctm492 comparetotmag 123.456E-89 123.45600000E-89 -> 1 -dqctm493 comparetotmag 123.456E+89 123.4560000E+89 -> 1 -dqctm494 comparetotmag 123.456E-89 123.456000E-89 -> 1 -dqctm495 comparetotmag 123.456E+89 123.45600E+89 -> 1 -dqctm496 comparetotmag 123.456E-89 123.4560E-89 -> 1 -dqctm497 comparetotmag 123.456E+89 123.456E+89 -> 0 - --- wide-ranging, around precision; signs equal -dqctm498 comparetotmag 1 1E-17 -> 1 -dqctm499 comparetotmag 1 1E-16 -> 1 -dqctm500 comparetotmag 1 1E-15 -> 1 -dqctm501 comparetotmag 1 1E-14 -> 1 -dqctm502 comparetotmag 1 1E-13 -> 1 -dqctm503 comparetotmag 1 1E-12 -> 1 -dqctm504 comparetotmag 1 1E-11 -> 1 -dqctm505 comparetotmag 1 1E-10 -> 1 -dqctm506 comparetotmag 1 1E-9 -> 1 -dqctm507 comparetotmag 1 1E-8 -> 1 -dqctm508 comparetotmag 1 1E-7 -> 1 -dqctm509 comparetotmag 1 1E-6 -> 1 -dqctm510 comparetotmag 1 1E-5 -> 1 -dqctm511 comparetotmag 1 1E-4 -> 1 -dqctm512 comparetotmag 1 1E-3 -> 1 -dqctm513 comparetotmag 1 1E-2 -> 1 -dqctm514 comparetotmag 1 1E-1 -> 1 -dqctm515 comparetotmag 1 1E-0 -> 0 -dqctm516 comparetotmag 1 1E+1 -> -1 -dqctm517 comparetotmag 1 1E+2 -> -1 -dqctm518 comparetotmag 1 1E+3 -> -1 -dqctm519 comparetotmag 1 1E+4 -> -1 -dqctm521 comparetotmag 1 1E+5 -> -1 -dqctm522 comparetotmag 1 1E+6 -> -1 -dqctm523 comparetotmag 1 1E+7 -> -1 -dqctm524 comparetotmag 1 1E+8 -> -1 -dqctm525 comparetotmag 1 1E+9 -> -1 -dqctm526 comparetotmag 1 1E+10 -> -1 -dqctm527 comparetotmag 1 1E+11 -> -1 -dqctm528 comparetotmag 1 1E+12 -> -1 -dqctm529 comparetotmag 1 1E+13 -> -1 -dqctm530 comparetotmag 1 1E+14 -> -1 -dqctm531 comparetotmag 1 1E+15 -> -1 -dqctm532 comparetotmag 1 1E+16 -> -1 -dqctm533 comparetotmag 1 1E+17 -> -1 --- LR swap -dqctm538 comparetotmag 1E-17 1 -> -1 -dqctm539 comparetotmag 1E-16 1 -> -1 -dqctm540 comparetotmag 1E-15 1 -> -1 -dqctm541 comparetotmag 1E-14 1 -> -1 -dqctm542 comparetotmag 1E-13 1 -> -1 -dqctm543 comparetotmag 1E-12 1 -> -1 -dqctm544 comparetotmag 1E-11 1 -> -1 -dqctm545 comparetotmag 1E-10 1 -> -1 -dqctm546 comparetotmag 1E-9 1 -> -1 -dqctm547 comparetotmag 1E-8 1 -> -1 -dqctm548 comparetotmag 1E-7 1 -> -1 -dqctm549 comparetotmag 1E-6 1 -> -1 -dqctm550 comparetotmag 1E-5 1 -> -1 -dqctm551 comparetotmag 1E-4 1 -> -1 -dqctm552 comparetotmag 1E-3 1 -> -1 -dqctm553 comparetotmag 1E-2 1 -> -1 -dqctm554 comparetotmag 1E-1 1 -> -1 -dqctm555 comparetotmag 1E-0 1 -> 0 -dqctm556 comparetotmag 1E+1 1 -> 1 -dqctm557 comparetotmag 1E+2 1 -> 1 -dqctm558 comparetotmag 1E+3 1 -> 1 -dqctm559 comparetotmag 1E+4 1 -> 1 -dqctm561 comparetotmag 1E+5 1 -> 1 -dqctm562 comparetotmag 1E+6 1 -> 1 -dqctm563 comparetotmag 1E+7 1 -> 1 -dqctm564 comparetotmag 1E+8 1 -> 1 -dqctm565 comparetotmag 1E+9 1 -> 1 -dqctm566 comparetotmag 1E+10 1 -> 1 -dqctm567 comparetotmag 1E+11 1 -> 1 -dqctm568 comparetotmag 1E+12 1 -> 1 -dqctm569 comparetotmag 1E+13 1 -> 1 -dqctm570 comparetotmag 1E+14 1 -> 1 -dqctm571 comparetotmag 1E+15 1 -> 1 -dqctm572 comparetotmag 1E+16 1 -> 1 -dqctm573 comparetotmag 1E+17 1 -> 1 --- similar with a useful coefficient, one side only -dqctm578 comparetotmag 0.000000987654321 1E-17 -> 1 -dqctm579 comparetotmag 0.000000987654321 1E-16 -> 1 -dqctm580 comparetotmag 0.000000987654321 1E-15 -> 1 -dqctm581 comparetotmag 0.000000987654321 1E-14 -> 1 -dqctm582 comparetotmag 0.000000987654321 1E-13 -> 1 -dqctm583 comparetotmag 0.000000987654321 1E-12 -> 1 -dqctm584 comparetotmag 0.000000987654321 1E-11 -> 1 -dqctm585 comparetotmag 0.000000987654321 1E-10 -> 1 -dqctm586 comparetotmag 0.000000987654321 1E-9 -> 1 -dqctm587 comparetotmag 0.000000987654321 1E-8 -> 1 -dqctm588 comparetotmag 0.000000987654321 1E-7 -> 1 -dqctm589 comparetotmag 0.000000987654321 1E-6 -> -1 -dqctm590 comparetotmag 0.000000987654321 1E-5 -> -1 -dqctm591 comparetotmag 0.000000987654321 1E-4 -> -1 -dqctm592 comparetotmag 0.000000987654321 1E-3 -> -1 -dqctm593 comparetotmag 0.000000987654321 1E-2 -> -1 -dqctm594 comparetotmag 0.000000987654321 1E-1 -> -1 -dqctm595 comparetotmag 0.000000987654321 1E-0 -> -1 -dqctm596 comparetotmag 0.000000987654321 1E+1 -> -1 -dqctm597 comparetotmag 0.000000987654321 1E+2 -> -1 -dqctm598 comparetotmag 0.000000987654321 1E+3 -> -1 -dqctm599 comparetotmag 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -dqctm600 comparetotmag 12 12.2345 -> -1 -dqctm601 comparetotmag 12.0 12.2345 -> -1 -dqctm602 comparetotmag 12.00 12.2345 -> -1 -dqctm603 comparetotmag 12.000 12.2345 -> -1 -dqctm604 comparetotmag 12.0000 12.2345 -> -1 -dqctm605 comparetotmag 12.00000 12.2345 -> -1 -dqctm606 comparetotmag 12.000000 12.2345 -> -1 -dqctm607 comparetotmag 12.0000000 12.2345 -> -1 -dqctm608 comparetotmag 12.00000000 12.2345 -> -1 -dqctm609 comparetotmag 12.000000000 12.2345 -> -1 -dqctm610 comparetotmag 12.1234 12 -> 1 -dqctm611 comparetotmag 12.1234 12.0 -> 1 -dqctm612 comparetotmag 12.1234 12.00 -> 1 -dqctm613 comparetotmag 12.1234 12.000 -> 1 -dqctm614 comparetotmag 12.1234 12.0000 -> 1 -dqctm615 comparetotmag 12.1234 12.00000 -> 1 -dqctm616 comparetotmag 12.1234 12.000000 -> 1 -dqctm617 comparetotmag 12.1234 12.0000000 -> 1 -dqctm618 comparetotmag 12.1234 12.00000000 -> 1 -dqctm619 comparetotmag 12.1234 12.000000000 -> 1 -dqctm620 comparetotmag -12 -12.2345 -> -1 -dqctm621 comparetotmag -12.0 -12.2345 -> -1 -dqctm622 comparetotmag -12.00 -12.2345 -> -1 -dqctm623 comparetotmag -12.000 -12.2345 -> -1 -dqctm624 comparetotmag -12.0000 -12.2345 -> -1 -dqctm625 comparetotmag -12.00000 -12.2345 -> -1 -dqctm626 comparetotmag -12.000000 -12.2345 -> -1 -dqctm627 comparetotmag -12.0000000 -12.2345 -> -1 -dqctm628 comparetotmag -12.00000000 -12.2345 -> -1 -dqctm629 comparetotmag -12.000000000 -12.2345 -> -1 -dqctm630 comparetotmag -12.1234 -12 -> 1 -dqctm631 comparetotmag -12.1234 -12.0 -> 1 -dqctm632 comparetotmag -12.1234 -12.00 -> 1 -dqctm633 comparetotmag -12.1234 -12.000 -> 1 -dqctm634 comparetotmag -12.1234 -12.0000 -> 1 -dqctm635 comparetotmag -12.1234 -12.00000 -> 1 -dqctm636 comparetotmag -12.1234 -12.000000 -> 1 -dqctm637 comparetotmag -12.1234 -12.0000000 -> 1 -dqctm638 comparetotmag -12.1234 -12.00000000 -> 1 -dqctm639 comparetotmag -12.1234 -12.000000000 -> 1 - --- extended zeros -dqctm640 comparetotmag 0 0 -> 0 -dqctm641 comparetotmag 0 -0 -> 0 -dqctm642 comparetotmag 0 -0.0 -> 1 -dqctm643 comparetotmag 0 0.0 -> 1 -dqctm644 comparetotmag -0 0 -> 0 -dqctm645 comparetotmag -0 -0 -> 0 -dqctm646 comparetotmag -0 -0.0 -> 1 -dqctm647 comparetotmag -0 0.0 -> 1 -dqctm648 comparetotmag 0.0 0 -> -1 -dqctm649 comparetotmag 0.0 -0 -> -1 -dqctm650 comparetotmag 0.0 -0.0 -> 0 -dqctm651 comparetotmag 0.0 0.0 -> 0 -dqctm652 comparetotmag -0.0 0 -> -1 -dqctm653 comparetotmag -0.0 -0 -> -1 -dqctm654 comparetotmag -0.0 -0.0 -> 0 -dqctm655 comparetotmag -0.0 0.0 -> 0 - -dqctm656 comparetotmag -0E1 0.0 -> 1 -dqctm657 comparetotmag -0E2 0.0 -> 1 -dqctm658 comparetotmag 0E1 0.0 -> 1 -dqctm659 comparetotmag 0E2 0.0 -> 1 -dqctm660 comparetotmag -0E1 0 -> 1 -dqctm661 comparetotmag -0E2 0 -> 1 -dqctm662 comparetotmag 0E1 0 -> 1 -dqctm663 comparetotmag 0E2 0 -> 1 -dqctm664 comparetotmag -0E1 -0E1 -> 0 -dqctm665 comparetotmag -0E2 -0E1 -> 1 -dqctm666 comparetotmag 0E1 -0E1 -> 0 -dqctm667 comparetotmag 0E2 -0E1 -> 1 -dqctm668 comparetotmag -0E1 -0E2 -> -1 -dqctm669 comparetotmag -0E2 -0E2 -> 0 -dqctm670 comparetotmag 0E1 -0E2 -> -1 -dqctm671 comparetotmag 0E2 -0E2 -> 0 -dqctm672 comparetotmag -0E1 0E1 -> 0 -dqctm673 comparetotmag -0E2 0E1 -> 1 -dqctm674 comparetotmag 0E1 0E1 -> 0 -dqctm675 comparetotmag 0E2 0E1 -> 1 -dqctm676 comparetotmag -0E1 0E2 -> -1 -dqctm677 comparetotmag -0E2 0E2 -> 0 -dqctm678 comparetotmag 0E1 0E2 -> -1 -dqctm679 comparetotmag 0E2 0E2 -> 0 - --- trailing zeros; unit-y -dqctm680 comparetotmag 12 12 -> 0 -dqctm681 comparetotmag 12 12.0 -> 1 -dqctm682 comparetotmag 12 12.00 -> 1 -dqctm683 comparetotmag 12 12.000 -> 1 -dqctm684 comparetotmag 12 12.0000 -> 1 -dqctm685 comparetotmag 12 12.00000 -> 1 -dqctm686 comparetotmag 12 12.000000 -> 1 -dqctm687 comparetotmag 12 12.0000000 -> 1 -dqctm688 comparetotmag 12 12.00000000 -> 1 -dqctm689 comparetotmag 12 12.000000000 -> 1 -dqctm690 comparetotmag 12 12 -> 0 -dqctm691 comparetotmag 12.0 12 -> -1 -dqctm692 comparetotmag 12.00 12 -> -1 -dqctm693 comparetotmag 12.000 12 -> -1 -dqctm694 comparetotmag 12.0000 12 -> -1 -dqctm695 comparetotmag 12.00000 12 -> -1 -dqctm696 comparetotmag 12.000000 12 -> -1 -dqctm697 comparetotmag 12.0000000 12 -> -1 -dqctm698 comparetotmag 12.00000000 12 -> -1 -dqctm699 comparetotmag 12.000000000 12 -> -1 - --- old long operand checks -dqctm701 comparetotmag 12345678000 1 -> 1 -dqctm702 comparetotmag 1 12345678000 -> -1 -dqctm703 comparetotmag 1234567800 1 -> 1 -dqctm704 comparetotmag 1 1234567800 -> -1 -dqctm705 comparetotmag 1234567890 1 -> 1 -dqctm706 comparetotmag 1 1234567890 -> -1 -dqctm707 comparetotmag 1234567891 1 -> 1 -dqctm708 comparetotmag 1 1234567891 -> -1 -dqctm709 comparetotmag 12345678901 1 -> 1 -dqctm710 comparetotmag 1 12345678901 -> -1 -dqctm711 comparetotmag 1234567896 1 -> 1 -dqctm712 comparetotmag 1 1234567896 -> -1 -dqctm713 comparetotmag -1234567891 1 -> 1 -dqctm714 comparetotmag 1 -1234567891 -> -1 -dqctm715 comparetotmag -12345678901 1 -> 1 -dqctm716 comparetotmag 1 -12345678901 -> -1 -dqctm717 comparetotmag -1234567896 1 -> 1 -dqctm718 comparetotmag 1 -1234567896 -> -1 - --- old residue cases -dqctm740 comparetotmag 1 0.9999999 -> 1 -dqctm741 comparetotmag 1 0.999999 -> 1 -dqctm742 comparetotmag 1 0.99999 -> 1 -dqctm743 comparetotmag 1 1.0000 -> 1 -dqctm744 comparetotmag 1 1.00001 -> -1 -dqctm745 comparetotmag 1 1.000001 -> -1 -dqctm746 comparetotmag 1 1.0000001 -> -1 -dqctm750 comparetotmag 0.9999999 1 -> -1 -dqctm751 comparetotmag 0.999999 1 -> -1 -dqctm752 comparetotmag 0.99999 1 -> -1 -dqctm753 comparetotmag 1.0000 1 -> -1 -dqctm754 comparetotmag 1.00001 1 -> 1 -dqctm755 comparetotmag 1.000001 1 -> 1 -dqctm756 comparetotmag 1.0000001 1 -> 1 - --- Specials -dqctm780 comparetotmag Inf -Inf -> 0 -dqctm781 comparetotmag Inf -1000 -> 1 -dqctm782 comparetotmag Inf -1 -> 1 -dqctm783 comparetotmag Inf -0 -> 1 -dqctm784 comparetotmag Inf 0 -> 1 -dqctm785 comparetotmag Inf 1 -> 1 -dqctm786 comparetotmag Inf 1000 -> 1 -dqctm787 comparetotmag Inf Inf -> 0 -dqctm788 comparetotmag -1000 Inf -> -1 -dqctm789 comparetotmag -Inf Inf -> 0 -dqctm790 comparetotmag -1 Inf -> -1 -dqctm791 comparetotmag -0 Inf -> -1 -dqctm792 comparetotmag 0 Inf -> -1 -dqctm793 comparetotmag 1 Inf -> -1 -dqctm794 comparetotmag 1000 Inf -> -1 -dqctm795 comparetotmag Inf Inf -> 0 - -dqctm800 comparetotmag -Inf -Inf -> 0 -dqctm801 comparetotmag -Inf -1000 -> 1 -dqctm802 comparetotmag -Inf -1 -> 1 -dqctm803 comparetotmag -Inf -0 -> 1 -dqctm804 comparetotmag -Inf 0 -> 1 -dqctm805 comparetotmag -Inf 1 -> 1 -dqctm806 comparetotmag -Inf 1000 -> 1 -dqctm807 comparetotmag -Inf Inf -> 0 -dqctm808 comparetotmag -Inf -Inf -> 0 -dqctm809 comparetotmag -1000 -Inf -> -1 -dqctm810 comparetotmag -1 -Inf -> -1 -dqctm811 comparetotmag -0 -Inf -> -1 -dqctm812 comparetotmag 0 -Inf -> -1 -dqctm813 comparetotmag 1 -Inf -> -1 -dqctm814 comparetotmag 1000 -Inf -> -1 -dqctm815 comparetotmag Inf -Inf -> 0 - -dqctm821 comparetotmag NaN -Inf -> 1 -dqctm822 comparetotmag NaN -1000 -> 1 -dqctm823 comparetotmag NaN -1 -> 1 -dqctm824 comparetotmag NaN -0 -> 1 -dqctm825 comparetotmag NaN 0 -> 1 -dqctm826 comparetotmag NaN 1 -> 1 -dqctm827 comparetotmag NaN 1000 -> 1 -dqctm828 comparetotmag NaN Inf -> 1 -dqctm829 comparetotmag NaN NaN -> 0 -dqctm830 comparetotmag -Inf NaN -> -1 -dqctm831 comparetotmag -1000 NaN -> -1 -dqctm832 comparetotmag -1 NaN -> -1 -dqctm833 comparetotmag -0 NaN -> -1 -dqctm834 comparetotmag 0 NaN -> -1 -dqctm835 comparetotmag 1 NaN -> -1 -dqctm836 comparetotmag 1000 NaN -> -1 -dqctm837 comparetotmag Inf NaN -> -1 -dqctm838 comparetotmag -NaN -NaN -> 0 -dqctm839 comparetotmag +NaN -NaN -> 0 -dqctm840 comparetotmag -NaN +NaN -> 0 - -dqctm841 comparetotmag sNaN -sNaN -> 0 -dqctm842 comparetotmag sNaN -NaN -> -1 -dqctm843 comparetotmag sNaN -Inf -> 1 -dqctm844 comparetotmag sNaN -1000 -> 1 -dqctm845 comparetotmag sNaN -1 -> 1 -dqctm846 comparetotmag sNaN -0 -> 1 -dqctm847 comparetotmag sNaN 0 -> 1 -dqctm848 comparetotmag sNaN 1 -> 1 -dqctm849 comparetotmag sNaN 1000 -> 1 -dqctm850 comparetotmag sNaN NaN -> -1 -dqctm851 comparetotmag sNaN sNaN -> 0 - -dqctm852 comparetotmag -sNaN sNaN -> 0 -dqctm853 comparetotmag -NaN sNaN -> 1 -dqctm854 comparetotmag -Inf sNaN -> -1 -dqctm855 comparetotmag -1000 sNaN -> -1 -dqctm856 comparetotmag -1 sNaN -> -1 -dqctm857 comparetotmag -0 sNaN -> -1 -dqctm858 comparetotmag 0 sNaN -> -1 -dqctm859 comparetotmag 1 sNaN -> -1 -dqctm860 comparetotmag 1000 sNaN -> -1 -dqctm861 comparetotmag Inf sNaN -> -1 -dqctm862 comparetotmag NaN sNaN -> 1 -dqctm863 comparetotmag sNaN sNaN -> 0 - -dqctm871 comparetotmag -sNaN -sNaN -> 0 -dqctm872 comparetotmag -sNaN -NaN -> -1 -dqctm873 comparetotmag -sNaN -Inf -> 1 -dqctm874 comparetotmag -sNaN -1000 -> 1 -dqctm875 comparetotmag -sNaN -1 -> 1 -dqctm876 comparetotmag -sNaN -0 -> 1 -dqctm877 comparetotmag -sNaN 0 -> 1 -dqctm878 comparetotmag -sNaN 1 -> 1 -dqctm879 comparetotmag -sNaN 1000 -> 1 -dqctm880 comparetotmag -sNaN NaN -> -1 -dqctm881 comparetotmag -sNaN sNaN -> 0 - -dqctm882 comparetotmag -sNaN -sNaN -> 0 -dqctm883 comparetotmag -NaN -sNaN -> 1 -dqctm884 comparetotmag -Inf -sNaN -> -1 -dqctm885 comparetotmag -1000 -sNaN -> -1 -dqctm886 comparetotmag -1 -sNaN -> -1 -dqctm887 comparetotmag -0 -sNaN -> -1 -dqctm888 comparetotmag 0 -sNaN -> -1 -dqctm889 comparetotmag 1 -sNaN -> -1 -dqctm890 comparetotmag 1000 -sNaN -> -1 -dqctm891 comparetotmag Inf -sNaN -> -1 -dqctm892 comparetotmag NaN -sNaN -> 1 -dqctm893 comparetotmag sNaN -sNaN -> 0 - --- NaNs with payload -dqctm960 comparetotmag NaN9 -Inf -> 1 -dqctm961 comparetotmag NaN8 999 -> 1 -dqctm962 comparetotmag NaN77 Inf -> 1 -dqctm963 comparetotmag -NaN67 NaN5 -> 1 -dqctm964 comparetotmag -Inf -NaN4 -> -1 -dqctm965 comparetotmag -999 -NaN33 -> -1 -dqctm966 comparetotmag Inf NaN2 -> -1 - -dqctm970 comparetotmag -NaN41 -NaN42 -> -1 -dqctm971 comparetotmag +NaN41 -NaN42 -> -1 -dqctm972 comparetotmag -NaN41 +NaN42 -> -1 -dqctm973 comparetotmag +NaN41 +NaN42 -> -1 -dqctm974 comparetotmag -NaN42 -NaN01 -> 1 -dqctm975 comparetotmag +NaN42 -NaN01 -> 1 -dqctm976 comparetotmag -NaN42 +NaN01 -> 1 -dqctm977 comparetotmag +NaN42 +NaN01 -> 1 - -dqctm980 comparetotmag -sNaN771 -sNaN772 -> -1 -dqctm981 comparetotmag +sNaN771 -sNaN772 -> -1 -dqctm982 comparetotmag -sNaN771 +sNaN772 -> -1 -dqctm983 comparetotmag +sNaN771 +sNaN772 -> -1 -dqctm984 comparetotmag -sNaN772 -sNaN771 -> 1 -dqctm985 comparetotmag +sNaN772 -sNaN771 -> 1 -dqctm986 comparetotmag -sNaN772 +sNaN771 -> 1 -dqctm987 comparetotmag +sNaN772 +sNaN771 -> 1 - -dqctm991 comparetotmag -sNaN99 -Inf -> 1 -dqctm992 comparetotmag sNaN98 -11 -> 1 -dqctm993 comparetotmag sNaN97 NaN -> -1 -dqctm994 comparetotmag sNaN16 sNaN94 -> -1 -dqctm995 comparetotmag NaN85 sNaN83 -> 1 -dqctm996 comparetotmag -Inf sNaN92 -> -1 -dqctm997 comparetotmag 088 sNaN81 -> -1 -dqctm998 comparetotmag Inf sNaN90 -> -1 -dqctm999 comparetotmag NaN -sNaN89 -> 1 - --- spread zeros -dqctm1110 comparetotmag 0E-6143 0 -> -1 -dqctm1111 comparetotmag 0E-6143 -0 -> -1 -dqctm1112 comparetotmag -0E-6143 0 -> -1 -dqctm1113 comparetotmag -0E-6143 -0 -> -1 -dqctm1114 comparetotmag 0E-6143 0E+6144 -> -1 -dqctm1115 comparetotmag 0E-6143 -0E+6144 -> -1 -dqctm1116 comparetotmag -0E-6143 0E+6144 -> -1 -dqctm1117 comparetotmag -0E-6143 -0E+6144 -> -1 -dqctm1118 comparetotmag 0 0E+6144 -> -1 -dqctm1119 comparetotmag 0 -0E+6144 -> -1 -dqctm1120 comparetotmag -0 0E+6144 -> -1 -dqctm1121 comparetotmag -0 -0E+6144 -> -1 - -dqctm1130 comparetotmag 0E+6144 0 -> 1 -dqctm1131 comparetotmag 0E+6144 -0 -> 1 -dqctm1132 comparetotmag -0E+6144 0 -> 1 -dqctm1133 comparetotmag -0E+6144 -0 -> 1 -dqctm1134 comparetotmag 0E+6144 0E-6143 -> 1 -dqctm1135 comparetotmag 0E+6144 -0E-6143 -> 1 -dqctm1136 comparetotmag -0E+6144 0E-6143 -> 1 -dqctm1137 comparetotmag -0E+6144 -0E-6143 -> 1 -dqctm1138 comparetotmag 0 0E-6143 -> 1 -dqctm1139 comparetotmag 0 -0E-6143 -> 1 -dqctm1140 comparetotmag -0 0E-6143 -> 1 -dqctm1141 comparetotmag -0 -0E-6143 -> 1 - --- Null tests -dqctm9990 comparetotmag 10 # -> NaN Invalid_operation -dqctm9991 comparetotmag # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqCopy.decTest b/qdecimal/test/tc_full/dqCopy.decTest deleted file mode 100644 index 54c3ba5..0000000 --- a/qdecimal/test/tc_full/dqCopy.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- dqCopy.decTest -- quiet decQuad copy -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqcpy001 copy +7.50 -> 7.50 - --- Infinities -dqcpy011 copy Infinity -> Infinity -dqcpy012 copy -Infinity -> -Infinity - --- NaNs, 0 payload -dqcpy021 copy NaN -> NaN -dqcpy022 copy -NaN -> -NaN -dqcpy023 copy sNaN -> sNaN -dqcpy024 copy -sNaN -> -sNaN - --- NaNs, non-0 payload -dqcpy031 copy NaN10 -> NaN10 -dqcpy032 copy -NaN10 -> -NaN10 -dqcpy033 copy sNaN10 -> sNaN10 -dqcpy034 copy -sNaN10 -> -sNaN10 -dqcpy035 copy NaN7 -> NaN7 -dqcpy036 copy -NaN7 -> -NaN7 -dqcpy037 copy sNaN101 -> sNaN101 -dqcpy038 copy -sNaN101 -> -sNaN101 - --- finites -dqcpy101 copy 7 -> 7 -dqcpy102 copy -7 -> -7 -dqcpy103 copy 75 -> 75 -dqcpy104 copy -75 -> -75 -dqcpy105 copy 7.50 -> 7.50 -dqcpy106 copy -7.50 -> -7.50 -dqcpy107 copy 7.500 -> 7.500 -dqcpy108 copy -7.500 -> -7.500 - --- zeros -dqcpy111 copy 0 -> 0 -dqcpy112 copy -0 -> -0 -dqcpy113 copy 0E+4 -> 0E+4 -dqcpy114 copy -0E+4 -> -0E+4 -dqcpy115 copy 0.0000 -> 0.0000 -dqcpy116 copy -0.0000 -> -0.0000 -dqcpy117 copy 0E-141 -> 0E-141 -dqcpy118 copy -0E-141 -> -0E-141 - --- full coefficients, alternating bits -dqcpy121 copy 2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqcpy122 copy -2682682682682682682682682682682682 -> -2682682682682682682682682682682682 -dqcpy123 copy 1341341341341341341341341341341341 -> 1341341341341341341341341341341341 -dqcpy124 copy -1341341341341341341341341341341341 -> -1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqcpy131 copy 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqcpy132 copy 1E-6143 -> 1E-6143 -dqcpy133 copy 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqcpy134 copy 1E-6176 -> 1E-6176 - -dqcpy135 copy -1E-6176 -> -1E-6176 -dqcpy136 copy -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143 -dqcpy137 copy -1E-6143 -> -1E-6143 -dqcpy138 copy -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 diff --git a/qdecimal/test/tc_full/dqCopyAbs.decTest b/qdecimal/test/tc_full/dqCopyAbs.decTest deleted file mode 100644 index 4610e98..0000000 --- a/qdecimal/test/tc_full/dqCopyAbs.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- dqCopyAbs.decTest -- quiet decQuad copy and set sign to zero -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqcpa001 copyabs +7.50 -> 7.50 - --- Infinities -dqcpa011 copyabs Infinity -> Infinity -dqcpa012 copyabs -Infinity -> Infinity - --- NaNs, 0 payload -dqcpa021 copyabs NaN -> NaN -dqcpa022 copyabs -NaN -> NaN -dqcpa023 copyabs sNaN -> sNaN -dqcpa024 copyabs -sNaN -> sNaN - --- NaNs, non-0 payload -dqcpa031 copyabs NaN10 -> NaN10 -dqcpa032 copyabs -NaN15 -> NaN15 -dqcpa033 copyabs sNaN15 -> sNaN15 -dqcpa034 copyabs -sNaN10 -> sNaN10 -dqcpa035 copyabs NaN7 -> NaN7 -dqcpa036 copyabs -NaN7 -> NaN7 -dqcpa037 copyabs sNaN101 -> sNaN101 -dqcpa038 copyabs -sNaN101 -> sNaN101 - --- finites -dqcpa101 copyabs 7 -> 7 -dqcpa102 copyabs -7 -> 7 -dqcpa103 copyabs 75 -> 75 -dqcpa104 copyabs -75 -> 75 -dqcpa105 copyabs 7.10 -> 7.10 -dqcpa106 copyabs -7.10 -> 7.10 -dqcpa107 copyabs 7.500 -> 7.500 -dqcpa108 copyabs -7.500 -> 7.500 - --- zeros -dqcpa111 copyabs 0 -> 0 -dqcpa112 copyabs -0 -> 0 -dqcpa113 copyabs 0E+6 -> 0E+6 -dqcpa114 copyabs -0E+6 -> 0E+6 -dqcpa115 copyabs 0.0000 -> 0.0000 -dqcpa116 copyabs -0.0000 -> 0.0000 -dqcpa117 copyabs 0E-141 -> 0E-141 -dqcpa118 copyabs -0E-141 -> 0E-141 - --- full coefficients, alternating bits -dqcpa121 copyabs 2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqcpa122 copyabs -2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqcpa123 copyabs 1341341341341341341341341341341341 -> 1341341341341341341341341341341341 -dqcpa124 copyabs -1341341341341341341341341341341341 -> 1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqcpa131 copyabs 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqcpa132 copyabs 1E-6143 -> 1E-6143 -dqcpa133 copyabs 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqcpa134 copyabs 1E-6176 -> 1E-6176 - -dqcpa135 copyabs -1E-6176 -> 1E-6176 -dqcpa136 copyabs -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqcpa137 copyabs -1E-6143 -> 1E-6143 -dqcpa138 copyabs -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 diff --git a/qdecimal/test/tc_full/dqCopyNegate.decTest b/qdecimal/test/tc_full/dqCopyNegate.decTest deleted file mode 100644 index e008268..0000000 --- a/qdecimal/test/tc_full/dqCopyNegate.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- dqCopyNegate.decTest -- quiet decQuad copy and negate -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqcpn001 copynegate +7.50 -> -7.50 - --- Infinities -dqcpn011 copynegate Infinity -> -Infinity -dqcpn012 copynegate -Infinity -> Infinity - --- NaNs, 0 payload -dqcpn021 copynegate NaN -> -NaN -dqcpn022 copynegate -NaN -> NaN -dqcpn023 copynegate sNaN -> -sNaN -dqcpn024 copynegate -sNaN -> sNaN - --- NaNs, non-0 payload -dqcpn031 copynegate NaN13 -> -NaN13 -dqcpn032 copynegate -NaN13 -> NaN13 -dqcpn033 copynegate sNaN13 -> -sNaN13 -dqcpn034 copynegate -sNaN13 -> sNaN13 -dqcpn035 copynegate NaN70 -> -NaN70 -dqcpn036 copynegate -NaN70 -> NaN70 -dqcpn037 copynegate sNaN101 -> -sNaN101 -dqcpn038 copynegate -sNaN101 -> sNaN101 - --- finites -dqcpn101 copynegate 7 -> -7 -dqcpn102 copynegate -7 -> 7 -dqcpn103 copynegate 75 -> -75 -dqcpn104 copynegate -75 -> 75 -dqcpn105 copynegate 7.50 -> -7.50 -dqcpn106 copynegate -7.50 -> 7.50 -dqcpn107 copynegate 7.500 -> -7.500 -dqcpn108 copynegate -7.500 -> 7.500 - --- zeros -dqcpn111 copynegate 0 -> -0 -dqcpn112 copynegate -0 -> 0 -dqcpn113 copynegate 0E+4 -> -0E+4 -dqcpn114 copynegate -0E+4 -> 0E+4 -dqcpn115 copynegate 0.0000 -> -0.0000 -dqcpn116 copynegate -0.0000 -> 0.0000 -dqcpn117 copynegate 0E-141 -> -0E-141 -dqcpn118 copynegate -0E-141 -> 0E-141 - --- full coefficients, alternating bits -dqcpn121 copynegate 2682682682682682682682682682682682 -> -2682682682682682682682682682682682 -dqcpn122 copynegate -2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqcpn123 copynegate 1341341341341341341341341341341341 -> -1341341341341341341341341341341341 -dqcpn124 copynegate -1341341341341341341341341341341341 -> 1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqcpn131 copynegate 9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 -dqcpn132 copynegate 1E-6143 -> -1E-6143 -dqcpn133 copynegate 1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143 -dqcpn134 copynegate 1E-6176 -> -1E-6176 - -dqcpn135 copynegate -1E-6176 -> 1E-6176 -dqcpn136 copynegate -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqcpn137 copynegate -1E-6143 -> 1E-6143 -dqcpn138 copynegate -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 diff --git a/qdecimal/test/tc_full/dqCopySign.decTest b/qdecimal/test/tc_full/dqCopySign.decTest deleted file mode 100644 index df2f7d3..0000000 --- a/qdecimal/test/tc_full/dqCopySign.decTest +++ /dev/null @@ -1,175 +0,0 @@ ------------------------------------------------------------------------- --- dqCopySign.decTest -- quiet decQuad copy with sign from rhs -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqcps001 copysign +7.50 11 -> 7.50 - --- Infinities -dqcps011 copysign Infinity 11 -> Infinity -dqcps012 copysign -Infinity 11 -> Infinity - --- NaNs, 0 payload -dqcps021 copysign NaN 11 -> NaN -dqcps022 copysign -NaN 11 -> NaN -dqcps023 copysign sNaN 11 -> sNaN -dqcps024 copysign -sNaN 11 -> sNaN - --- NaNs, non-0 payload -dqcps031 copysign NaN10 11 -> NaN10 -dqcps032 copysign -NaN10 11 -> NaN10 -dqcps033 copysign sNaN10 11 -> sNaN10 -dqcps034 copysign -sNaN10 11 -> sNaN10 -dqcps035 copysign NaN7 11 -> NaN7 -dqcps036 copysign -NaN7 11 -> NaN7 -dqcps037 copysign sNaN101 11 -> sNaN101 -dqcps038 copysign -sNaN101 11 -> sNaN101 - --- finites -dqcps101 copysign 7 11 -> 7 -dqcps102 copysign -7 11 -> 7 -dqcps103 copysign 75 11 -> 75 -dqcps104 copysign -75 11 -> 75 -dqcps105 copysign 7.50 11 -> 7.50 -dqcps106 copysign -7.50 11 -> 7.50 -dqcps107 copysign 7.500 11 -> 7.500 -dqcps108 copysign -7.500 11 -> 7.500 - --- zeros -dqcps111 copysign 0 11 -> 0 -dqcps112 copysign -0 11 -> 0 -dqcps113 copysign 0E+4 11 -> 0E+4 -dqcps114 copysign -0E+4 11 -> 0E+4 -dqcps115 copysign 0.0000 11 -> 0.0000 -dqcps116 copysign -0.0000 11 -> 0.0000 -dqcps117 copysign 0E-141 11 -> 0E-141 -dqcps118 copysign -0E-141 11 -> 0E-141 - --- full coefficients, alternating bits -dqcps121 copysign 2682682682682682682682682682682682 8 -> 2682682682682682682682682682682682 -dqcps122 copysign -2682682682682682682682682682682682 8 -> 2682682682682682682682682682682682 -dqcps123 copysign 1341341341341341341341341341341341 8 -> 1341341341341341341341341341341341 -dqcps124 copysign -1341341341341341341341341341341341 8 -> 1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqcps131 copysign 9.999999999999999999999999999999999E+6144 8 -> 9.999999999999999999999999999999999E+6144 -dqcps132 copysign 1E-6143 8 -> 1E-6143 -dqcps133 copysign 1.000000000000000000000000000000000E-6143 8 -> 1.000000000000000000000000000000000E-6143 -dqcps134 copysign 1E-6176 8 -> 1E-6176 - -dqcps135 copysign -1E-6176 8 -> 1E-6176 -dqcps136 copysign -1.000000000000000000000000000000000E-6143 8 -> 1.000000000000000000000000000000000E-6143 -dqcps137 copysign -1E-6143 8 -> 1E-6143 -dqcps138 copysign -9.999999999999999999999999999999999E+6144 8 -> 9.999999999999999999999999999999999E+6144 - --- repeat with negative RHS - --- Infinities -dqcps211 copysign Infinity -34 -> -Infinity -dqcps212 copysign -Infinity -34 -> -Infinity - --- NaNs, 0 payload -dqcps221 copysign NaN -34 -> -NaN -dqcps222 copysign -NaN -34 -> -NaN -dqcps223 copysign sNaN -34 -> -sNaN -dqcps224 copysign -sNaN -34 -> -sNaN - --- NaNs, non-0 payload -dqcps231 copysign NaN10 -34 -> -NaN10 -dqcps232 copysign -NaN10 -34 -> -NaN10 -dqcps233 copysign sNaN10 -34 -> -sNaN10 -dqcps234 copysign -sNaN10 -34 -> -sNaN10 -dqcps235 copysign NaN7 -34 -> -NaN7 -dqcps236 copysign -NaN7 -34 -> -NaN7 -dqcps237 copysign sNaN101 -34 -> -sNaN101 -dqcps238 copysign -sNaN101 -34 -> -sNaN101 - --- finites -dqcps301 copysign 7 -34 -> -7 -dqcps302 copysign -7 -34 -> -7 -dqcps303 copysign 75 -34 -> -75 -dqcps304 copysign -75 -34 -> -75 -dqcps305 copysign 7.50 -34 -> -7.50 -dqcps306 copysign -7.50 -34 -> -7.50 -dqcps307 copysign 7.500 -34 -> -7.500 -dqcps308 copysign -7.500 -34 -> -7.500 - --- zeros -dqcps311 copysign 0 -34 -> -0 -dqcps312 copysign -0 -34 -> -0 -dqcps313 copysign 0E+4 -34 -> -0E+4 -dqcps314 copysign -0E+4 -34 -> -0E+4 -dqcps315 copysign 0.0000 -34 -> -0.0000 -dqcps316 copysign -0.0000 -34 -> -0.0000 -dqcps317 copysign 0E-141 -34 -> -0E-141 -dqcps318 copysign -0E-141 -34 -> -0E-141 - --- full coefficients, alternating bits -dqcps321 copysign 2682682682682682682682682682682682 -9 -> -2682682682682682682682682682682682 -dqcps322 copysign -2682682682682682682682682682682682 -9 -> -2682682682682682682682682682682682 -dqcps323 copysign 1341341341341341341341341341341341 -9 -> -1341341341341341341341341341341341 -dqcps324 copysign -1341341341341341341341341341341341 -9 -> -1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqcps331 copysign 9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 -dqcps332 copysign 1E-6143 -1 -> -1E-6143 -dqcps333 copysign 1.000000000000000000000000000000000E-6143 -1 -> -1.000000000000000000000000000000000E-6143 -dqcps334 copysign 1E-6176 -1 -> -1E-6176 - -dqcps335 copysign -1E-6176 -3 -> -1E-6176 -dqcps336 copysign -1.000000000000000000000000000000000E-6143 -3 -> -1.000000000000000000000000000000000E-6143 -dqcps337 copysign -1E-6143 -3 -> -1E-6143 -dqcps338 copysign -9.999999999999999999999999999999999E+6144 -3 -> -9.999999999999999999999999999999999E+6144 - --- Other kinds of RHS -dqcps401 copysign 701 -34 -> -701 -dqcps402 copysign -720 -34 -> -720 -dqcps403 copysign 701 -0 -> -701 -dqcps404 copysign -720 -0 -> -720 -dqcps405 copysign 701 +0 -> 701 -dqcps406 copysign -720 +0 -> 720 -dqcps407 copysign 701 +34 -> 701 -dqcps408 copysign -720 +34 -> 720 - -dqcps413 copysign 701 -Inf -> -701 -dqcps414 copysign -720 -Inf -> -720 -dqcps415 copysign 701 +Inf -> 701 -dqcps416 copysign -720 +Inf -> 720 - -dqcps420 copysign 701 -NaN -> -701 -dqcps421 copysign -720 -NaN -> -720 -dqcps422 copysign 701 +NaN -> 701 -dqcps423 copysign -720 +NaN -> 720 -dqcps425 copysign -720 +NaN8 -> 720 - -dqcps426 copysign 701 -sNaN -> -701 -dqcps427 copysign -720 -sNaN -> -720 -dqcps428 copysign 701 +sNaN -> 701 -dqcps429 copysign -720 +sNaN -> 720 -dqcps430 copysign -720 +sNaN3 -> 720 - diff --git a/qdecimal/test/tc_full/dqDivide.decTest b/qdecimal/test/tc_full/dqDivide.decTest deleted file mode 100644 index 0b38b6d..0000000 --- a/qdecimal/test/tc_full/dqDivide.decTest +++ /dev/null @@ -1,808 +0,0 @@ ------------------------------------------------------------------------- --- dqDivide.decTest -- decQuad division -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqdiv001 divide 1 1 -> 1 -dqdiv002 divide 2 1 -> 2 -dqdiv003 divide 1 2 -> 0.5 -dqdiv004 divide 2 2 -> 1 -dqdiv005 divide 0 1 -> 0 -dqdiv006 divide 0 2 -> 0 -dqdiv007 divide 1 3 -> 0.3333333333333333333333333333333333 Inexact Rounded -dqdiv008 divide 2 3 -> 0.6666666666666666666666666666666667 Inexact Rounded -dqdiv009 divide 3 3 -> 1 - -dqdiv010 divide 2.4 1 -> 2.4 -dqdiv011 divide 2.4 -1 -> -2.4 -dqdiv012 divide -2.4 1 -> -2.4 -dqdiv013 divide -2.4 -1 -> 2.4 -dqdiv014 divide 2.40 1 -> 2.40 -dqdiv015 divide 2.400 1 -> 2.400 -dqdiv016 divide 2.4 2 -> 1.2 -dqdiv017 divide 2.400 2 -> 1.200 -dqdiv018 divide 2. 2 -> 1 -dqdiv019 divide 20 20 -> 1 - -dqdiv020 divide 187 187 -> 1 -dqdiv021 divide 5 2 -> 2.5 -dqdiv022 divide 50 20 -> 2.5 -dqdiv023 divide 500 200 -> 2.5 -dqdiv024 divide 50.0 20.0 -> 2.5 -dqdiv025 divide 5.00 2.00 -> 2.5 -dqdiv026 divide 5 2.0 -> 2.5 -dqdiv027 divide 5 2.000 -> 2.5 -dqdiv028 divide 5 0.20 -> 25 -dqdiv029 divide 5 0.200 -> 25 -dqdiv030 divide 10 1 -> 10 -dqdiv031 divide 100 1 -> 100 -dqdiv032 divide 1000 1 -> 1000 -dqdiv033 divide 1000 100 -> 10 - -dqdiv035 divide 1 2 -> 0.5 -dqdiv036 divide 1 4 -> 0.25 -dqdiv037 divide 1 8 -> 0.125 -dqdiv038 divide 1 16 -> 0.0625 -dqdiv039 divide 1 32 -> 0.03125 -dqdiv040 divide 1 64 -> 0.015625 -dqdiv041 divide 1 -2 -> -0.5 -dqdiv042 divide 1 -4 -> -0.25 -dqdiv043 divide 1 -8 -> -0.125 -dqdiv044 divide 1 -16 -> -0.0625 -dqdiv045 divide 1 -32 -> -0.03125 -dqdiv046 divide 1 -64 -> -0.015625 -dqdiv047 divide -1 2 -> -0.5 -dqdiv048 divide -1 4 -> -0.25 -dqdiv049 divide -1 8 -> -0.125 -dqdiv050 divide -1 16 -> -0.0625 -dqdiv051 divide -1 32 -> -0.03125 -dqdiv052 divide -1 64 -> -0.015625 -dqdiv053 divide -1 -2 -> 0.5 -dqdiv054 divide -1 -4 -> 0.25 -dqdiv055 divide -1 -8 -> 0.125 -dqdiv056 divide -1 -16 -> 0.0625 -dqdiv057 divide -1 -32 -> 0.03125 -dqdiv058 divide -1 -64 -> 0.015625 - --- bcdTime -dqdiv060 divide 1 7 -> 0.1428571428571428571428571428571429 Inexact Rounded -dqdiv061 divide 1.2345678 1.9876543 -> 0.6211179680490717123193907511985359 Inexact Rounded - --- 1234567890123456 -dqdiv067 divide 9999999999999999999999999999999999 1 -> 9999999999999999999999999999999999 -dqdiv068 divide 999999999999999999999999999999999 1 -> 999999999999999999999999999999999 -dqdiv069 divide 99999999999999999999999999999999 1 -> 99999999999999999999999999999999 -dqdiv070 divide 99999999999999999 1 -> 99999999999999999 -dqdiv071 divide 9999999999999999 1 -> 9999999999999999 -dqdiv072 divide 999999999999999 1 -> 999999999999999 -dqdiv073 divide 99999999999999 1 -> 99999999999999 -dqdiv074 divide 9999999999999 1 -> 9999999999999 -dqdiv075 divide 999999999999 1 -> 999999999999 -dqdiv076 divide 99999999999 1 -> 99999999999 -dqdiv077 divide 9999999999 1 -> 9999999999 -dqdiv078 divide 999999999 1 -> 999999999 -dqdiv079 divide 99999999 1 -> 99999999 -dqdiv080 divide 9999999 1 -> 9999999 -dqdiv081 divide 999999 1 -> 999999 -dqdiv082 divide 99999 1 -> 99999 -dqdiv083 divide 9999 1 -> 9999 -dqdiv084 divide 999 1 -> 999 -dqdiv085 divide 99 1 -> 99 -dqdiv086 divide 9 1 -> 9 - -dqdiv090 divide 0. 1 -> 0 -dqdiv091 divide .0 1 -> 0.0 -dqdiv092 divide 0.00 1 -> 0.00 -dqdiv093 divide 0.00E+9 1 -> 0E+7 -dqdiv094 divide 0.0000E-50 1 -> 0E-54 - -dqdiv095 divide 1 1E-8 -> 1E+8 -dqdiv096 divide 1 1E-9 -> 1E+9 -dqdiv097 divide 1 1E-10 -> 1E+10 -dqdiv098 divide 1 1E-11 -> 1E+11 -dqdiv099 divide 1 1E-12 -> 1E+12 - -dqdiv100 divide 1 1 -> 1 -dqdiv101 divide 1 2 -> 0.5 -dqdiv102 divide 1 3 -> 0.3333333333333333333333333333333333 Inexact Rounded -dqdiv103 divide 1 4 -> 0.25 -dqdiv104 divide 1 5 -> 0.2 -dqdiv105 divide 1 6 -> 0.1666666666666666666666666666666667 Inexact Rounded -dqdiv106 divide 1 7 -> 0.1428571428571428571428571428571429 Inexact Rounded -dqdiv107 divide 1 8 -> 0.125 -dqdiv108 divide 1 9 -> 0.1111111111111111111111111111111111 Inexact Rounded -dqdiv109 divide 1 10 -> 0.1 -dqdiv110 divide 1 1 -> 1 -dqdiv111 divide 2 1 -> 2 -dqdiv112 divide 3 1 -> 3 -dqdiv113 divide 4 1 -> 4 -dqdiv114 divide 5 1 -> 5 -dqdiv115 divide 6 1 -> 6 -dqdiv116 divide 7 1 -> 7 -dqdiv117 divide 8 1 -> 8 -dqdiv118 divide 9 1 -> 9 -dqdiv119 divide 10 1 -> 10 - -dqdiv120 divide 3E+1 0.001 -> 3E+4 -dqdiv121 divide 2.200 2 -> 1.100 - -dqdiv130 divide 12345 4.999 -> 2469.493898779755951190238047609522 Inexact Rounded -dqdiv131 divide 12345 4.99 -> 2473.947895791583166332665330661323 Inexact Rounded -dqdiv132 divide 12345 4.9 -> 2519.387755102040816326530612244898 Inexact Rounded -dqdiv133 divide 12345 5 -> 2469 -dqdiv134 divide 12345 5.1 -> 2420.588235294117647058823529411765 Inexact Rounded -dqdiv135 divide 12345 5.01 -> 2464.071856287425149700598802395210 Inexact Rounded -dqdiv136 divide 12345 5.001 -> 2468.506298740251949610077984403119 Inexact Rounded - --- test possibly imprecise results -dqdiv220 divide 391 597 -> 0.6549413735343383584589614740368509 Inexact Rounded -dqdiv221 divide 391 -597 -> -0.6549413735343383584589614740368509 Inexact Rounded -dqdiv222 divide -391 597 -> -0.6549413735343383584589614740368509 Inexact Rounded -dqdiv223 divide -391 -597 -> 0.6549413735343383584589614740368509 Inexact Rounded - --- test some cases that are close to exponent overflow -dqdiv270 divide 1 1e6144 -> 1E-6144 Subnormal -dqdiv271 divide 1 0.9e6144 -> 1.11111111111111111111111111111111E-6144 Rounded Inexact Subnormal Underflow -dqdiv272 divide 1 0.99e6144 -> 1.01010101010101010101010101010101E-6144 Rounded Inexact Subnormal Underflow -dqdiv273 divide 1 0.9999999999999999e6144 -> 1.00000000000000010000000000000001E-6144 Rounded Inexact Subnormal Underflow -dqdiv274 divide 9e6144 1 -> 9.000000000000000000000000000000000E+6144 Clamped -dqdiv275 divide 9.9e6144 1 -> 9.900000000000000000000000000000000E+6144 Clamped -dqdiv276 divide 9.99e6144 1 -> 9.990000000000000000000000000000000E+6144 Clamped -dqdiv277 divide 9.999999999999999e6144 1 -> 9.999999999999999000000000000000000E+6144 Clamped - -dqdiv278 divide 1 0.9999999999999999999999999999999999e6144 -> 1.00000000000000000000000000000000E-6144 Rounded Inexact Subnormal Underflow -dqdiv279 divide 9.999999999999999999999999999999999e6144 1 -> 9.999999999999999999999999999999999E+6144 - --- Divide into 0 tests -dqdiv301 divide 0 7 -> 0 -dqdiv302 divide 0 7E-5 -> 0E+5 -dqdiv303 divide 0 7E-1 -> 0E+1 -dqdiv304 divide 0 7E+1 -> 0.0 -dqdiv305 divide 0 7E+5 -> 0.00000 -dqdiv306 divide 0 7E+6 -> 0.000000 -dqdiv307 divide 0 7E+7 -> 0E-7 -dqdiv308 divide 0 70E-5 -> 0E+5 -dqdiv309 divide 0 70E-1 -> 0E+1 -dqdiv310 divide 0 70E+0 -> 0 -dqdiv311 divide 0 70E+1 -> 0.0 -dqdiv312 divide 0 70E+5 -> 0.00000 -dqdiv313 divide 0 70E+6 -> 0.000000 -dqdiv314 divide 0 70E+7 -> 0E-7 -dqdiv315 divide 0 700E-5 -> 0E+5 -dqdiv316 divide 0 700E-1 -> 0E+1 -dqdiv317 divide 0 700E+0 -> 0 -dqdiv318 divide 0 700E+1 -> 0.0 -dqdiv319 divide 0 700E+5 -> 0.00000 -dqdiv320 divide 0 700E+6 -> 0.000000 -dqdiv321 divide 0 700E+7 -> 0E-7 -dqdiv322 divide 0 700E+77 -> 0E-77 - -dqdiv331 divide 0E-3 7E-5 -> 0E+2 -dqdiv332 divide 0E-3 7E-1 -> 0.00 -dqdiv333 divide 0E-3 7E+1 -> 0.0000 -dqdiv334 divide 0E-3 7E+5 -> 0E-8 -dqdiv335 divide 0E-1 7E-5 -> 0E+4 -dqdiv336 divide 0E-1 7E-1 -> 0 -dqdiv337 divide 0E-1 7E+1 -> 0.00 -dqdiv338 divide 0E-1 7E+5 -> 0.000000 -dqdiv339 divide 0E+1 7E-5 -> 0E+6 -dqdiv340 divide 0E+1 7E-1 -> 0E+2 -dqdiv341 divide 0E+1 7E+1 -> 0 -dqdiv342 divide 0E+1 7E+5 -> 0.0000 -dqdiv343 divide 0E+3 7E-5 -> 0E+8 -dqdiv344 divide 0E+3 7E-1 -> 0E+4 -dqdiv345 divide 0E+3 7E+1 -> 0E+2 -dqdiv346 divide 0E+3 7E+5 -> 0.00 - --- These were 'input rounding' -dqdiv441 divide 12345678000 1 -> 12345678000 -dqdiv442 divide 1 12345678000 -> 8.100000664200054464404466081166219E-11 Inexact Rounded -dqdiv443 divide 1234567800 1 -> 1234567800 -dqdiv444 divide 1 1234567800 -> 8.100000664200054464404466081166219E-10 Inexact Rounded -dqdiv445 divide 1234567890 1 -> 1234567890 -dqdiv446 divide 1 1234567890 -> 8.100000073710000670761006103925156E-10 Inexact Rounded -dqdiv447 divide 1234567891 1 -> 1234567891 -dqdiv448 divide 1 1234567891 -> 8.100000067149000556665214614754629E-10 Inexact Rounded -dqdiv449 divide 12345678901 1 -> 12345678901 -dqdiv450 divide 1 12345678901 -> 8.100000073053900658873130042376760E-11 Inexact Rounded -dqdiv451 divide 1234567896 1 -> 1234567896 -dqdiv452 divide 1 1234567896 -> 8.100000034344000145618560617422697E-10 Inexact Rounded - --- high-lows -dqdiv453 divide 1e+1 1 -> 1E+1 -dqdiv454 divide 1e+1 1.0 -> 1E+1 -dqdiv455 divide 1e+1 1.00 -> 1E+1 -dqdiv456 divide 1e+2 2 -> 5E+1 -dqdiv457 divide 1e+2 2.0 -> 5E+1 -dqdiv458 divide 1e+2 2.00 -> 5E+1 - --- some from IEEE discussions -dqdiv460 divide 3e0 2e0 -> 1.5 -dqdiv461 divide 30e-1 2e0 -> 1.5 -dqdiv462 divide 300e-2 2e0 -> 1.50 -dqdiv464 divide 3000e-3 2e0 -> 1.500 -dqdiv465 divide 3e0 20e-1 -> 1.5 -dqdiv466 divide 30e-1 20e-1 -> 1.5 -dqdiv467 divide 300e-2 20e-1 -> 1.5 -dqdiv468 divide 3000e-3 20e-1 -> 1.50 -dqdiv469 divide 3e0 200e-2 -> 1.5 -dqdiv470 divide 30e-1 200e-2 -> 1.5 -dqdiv471 divide 300e-2 200e-2 -> 1.5 -dqdiv472 divide 3000e-3 200e-2 -> 1.5 -dqdiv473 divide 3e0 2000e-3 -> 1.5 -dqdiv474 divide 30e-1 2000e-3 -> 1.5 -dqdiv475 divide 300e-2 2000e-3 -> 1.5 -dqdiv476 divide 3000e-3 2000e-3 -> 1.5 - --- some reciprocals -dqdiv480 divide 1 1.0E+33 -> 1E-33 -dqdiv481 divide 1 10E+33 -> 1E-34 -dqdiv482 divide 1 1.0E-33 -> 1E+33 -dqdiv483 divide 1 10E-33 -> 1E+32 - --- RMS discussion table -dqdiv484 divide 0e5 1e3 -> 0E+2 -dqdiv485 divide 0e5 2e3 -> 0E+2 -dqdiv486 divide 0e5 10e2 -> 0E+3 -dqdiv487 divide 0e5 20e2 -> 0E+3 -dqdiv488 divide 0e5 100e1 -> 0E+4 -dqdiv489 divide 0e5 200e1 -> 0E+4 - -dqdiv491 divide 1e5 1e3 -> 1E+2 -dqdiv492 divide 1e5 2e3 -> 5E+1 -dqdiv493 divide 1e5 10e2 -> 1E+2 -dqdiv494 divide 1e5 20e2 -> 5E+1 -dqdiv495 divide 1e5 100e1 -> 1E+2 -dqdiv496 divide 1e5 200e1 -> 5E+1 - --- tryzeros cases -rounding: half_up -dqdiv497 divide 0E+6108 1000E-33 -> 0E+6111 Clamped -dqdiv498 divide 0E-6170 1000E+33 -> 0E-6176 Clamped - -rounding: half_up - --- focus on trailing zeros issues -dqdiv500 divide 1 9.9 -> 0.1010101010101010101010101010101010 Inexact Rounded -dqdiv501 divide 1 9.09 -> 0.1100110011001100110011001100110011 Inexact Rounded -dqdiv502 divide 1 9.009 -> 0.1110001110001110001110001110001110 Inexact Rounded - -dqdiv511 divide 1 2 -> 0.5 -dqdiv512 divide 1.0 2 -> 0.5 -dqdiv513 divide 1.00 2 -> 0.50 -dqdiv514 divide 1.000 2 -> 0.500 -dqdiv515 divide 1.0000 2 -> 0.5000 -dqdiv516 divide 1.00000 2 -> 0.50000 -dqdiv517 divide 1.000000 2 -> 0.500000 -dqdiv518 divide 1.0000000 2 -> 0.5000000 -dqdiv519 divide 1.00 2.00 -> 0.5 - -dqdiv521 divide 2 1 -> 2 -dqdiv522 divide 2 1.0 -> 2 -dqdiv523 divide 2 1.00 -> 2 -dqdiv524 divide 2 1.000 -> 2 -dqdiv525 divide 2 1.0000 -> 2 -dqdiv526 divide 2 1.00000 -> 2 -dqdiv527 divide 2 1.000000 -> 2 -dqdiv528 divide 2 1.0000000 -> 2 -dqdiv529 divide 2.00 1.00 -> 2 - -dqdiv530 divide 2.40 2 -> 1.20 -dqdiv531 divide 2.40 4 -> 0.60 -dqdiv532 divide 2.40 10 -> 0.24 -dqdiv533 divide 2.40 2.0 -> 1.2 -dqdiv534 divide 2.40 4.0 -> 0.6 -dqdiv535 divide 2.40 10.0 -> 0.24 -dqdiv536 divide 2.40 2.00 -> 1.2 -dqdiv537 divide 2.40 4.00 -> 0.6 -dqdiv538 divide 2.40 10.00 -> 0.24 -dqdiv539 divide 0.9 0.1 -> 9 -dqdiv540 divide 0.9 0.01 -> 9E+1 -dqdiv541 divide 0.9 0.001 -> 9E+2 -dqdiv542 divide 5 2 -> 2.5 -dqdiv543 divide 5 2.0 -> 2.5 -dqdiv544 divide 5 2.00 -> 2.5 -dqdiv545 divide 5 20 -> 0.25 -dqdiv546 divide 5 20.0 -> 0.25 -dqdiv547 divide 2.400 2 -> 1.200 -dqdiv548 divide 2.400 2.0 -> 1.20 -dqdiv549 divide 2.400 2.400 -> 1 - -dqdiv550 divide 240 1 -> 240 -dqdiv551 divide 240 10 -> 24 -dqdiv552 divide 240 100 -> 2.4 -dqdiv553 divide 240 1000 -> 0.24 -dqdiv554 divide 2400 1 -> 2400 -dqdiv555 divide 2400 10 -> 240 -dqdiv556 divide 2400 100 -> 24 -dqdiv557 divide 2400 1000 -> 2.4 - --- +ve exponent -dqdiv600 divide 2.4E+9 2 -> 1.2E+9 -dqdiv601 divide 2.40E+9 2 -> 1.20E+9 -dqdiv602 divide 2.400E+9 2 -> 1.200E+9 -dqdiv603 divide 2.4000E+9 2 -> 1.2000E+9 -dqdiv604 divide 24E+8 2 -> 1.2E+9 -dqdiv605 divide 240E+7 2 -> 1.20E+9 -dqdiv606 divide 2400E+6 2 -> 1.200E+9 -dqdiv607 divide 24000E+5 2 -> 1.2000E+9 - --- more zeros, etc. -dqdiv731 divide 5.00 1E-3 -> 5.00E+3 -dqdiv732 divide 00.00 0.000 -> NaN Division_undefined -dqdiv733 divide 00.00 0E-3 -> NaN Division_undefined -dqdiv734 divide 0 -0 -> NaN Division_undefined -dqdiv735 divide -0 0 -> NaN Division_undefined -dqdiv736 divide -0 -0 -> NaN Division_undefined - -dqdiv741 divide 0 -1 -> -0 -dqdiv742 divide -0 -1 -> 0 -dqdiv743 divide 0 1 -> 0 -dqdiv744 divide -0 1 -> -0 -dqdiv745 divide -1 0 -> -Infinity Division_by_zero -dqdiv746 divide -1 -0 -> Infinity Division_by_zero -dqdiv747 divide 1 0 -> Infinity Division_by_zero -dqdiv748 divide 1 -0 -> -Infinity Division_by_zero - -dqdiv751 divide 0.0 -1 -> -0.0 -dqdiv752 divide -0.0 -1 -> 0.0 -dqdiv753 divide 0.0 1 -> 0.0 -dqdiv754 divide -0.0 1 -> -0.0 -dqdiv755 divide -1.0 0 -> -Infinity Division_by_zero -dqdiv756 divide -1.0 -0 -> Infinity Division_by_zero -dqdiv757 divide 1.0 0 -> Infinity Division_by_zero -dqdiv758 divide 1.0 -0 -> -Infinity Division_by_zero - -dqdiv761 divide 0 -1.0 -> -0E+1 -dqdiv762 divide -0 -1.0 -> 0E+1 -dqdiv763 divide 0 1.0 -> 0E+1 -dqdiv764 divide -0 1.0 -> -0E+1 -dqdiv765 divide -1 0.0 -> -Infinity Division_by_zero -dqdiv766 divide -1 -0.0 -> Infinity Division_by_zero -dqdiv767 divide 1 0.0 -> Infinity Division_by_zero -dqdiv768 divide 1 -0.0 -> -Infinity Division_by_zero - -dqdiv771 divide 0.0 -1.0 -> -0 -dqdiv772 divide -0.0 -1.0 -> 0 -dqdiv773 divide 0.0 1.0 -> 0 -dqdiv774 divide -0.0 1.0 -> -0 -dqdiv775 divide -1.0 0.0 -> -Infinity Division_by_zero -dqdiv776 divide -1.0 -0.0 -> Infinity Division_by_zero -dqdiv777 divide 1.0 0.0 -> Infinity Division_by_zero -dqdiv778 divide 1.0 -0.0 -> -Infinity Division_by_zero - --- Specials -dqdiv780 divide Inf -Inf -> NaN Invalid_operation -dqdiv781 divide Inf -1000 -> -Infinity -dqdiv782 divide Inf -1 -> -Infinity -dqdiv783 divide Inf -0 -> -Infinity -dqdiv784 divide Inf 0 -> Infinity -dqdiv785 divide Inf 1 -> Infinity -dqdiv786 divide Inf 1000 -> Infinity -dqdiv787 divide Inf Inf -> NaN Invalid_operation -dqdiv788 divide -1000 Inf -> -0E-6176 Clamped -dqdiv789 divide -Inf Inf -> NaN Invalid_operation -dqdiv790 divide -1 Inf -> -0E-6176 Clamped -dqdiv791 divide -0 Inf -> -0E-6176 Clamped -dqdiv792 divide 0 Inf -> 0E-6176 Clamped -dqdiv793 divide 1 Inf -> 0E-6176 Clamped -dqdiv794 divide 1000 Inf -> 0E-6176 Clamped -dqdiv795 divide Inf Inf -> NaN Invalid_operation - -dqdiv800 divide -Inf -Inf -> NaN Invalid_operation -dqdiv801 divide -Inf -1000 -> Infinity -dqdiv802 divide -Inf -1 -> Infinity -dqdiv803 divide -Inf -0 -> Infinity -dqdiv804 divide -Inf 0 -> -Infinity -dqdiv805 divide -Inf 1 -> -Infinity -dqdiv806 divide -Inf 1000 -> -Infinity -dqdiv807 divide -Inf Inf -> NaN Invalid_operation -dqdiv808 divide -1000 Inf -> -0E-6176 Clamped -dqdiv809 divide -Inf -Inf -> NaN Invalid_operation -dqdiv810 divide -1 -Inf -> 0E-6176 Clamped -dqdiv811 divide -0 -Inf -> 0E-6176 Clamped -dqdiv812 divide 0 -Inf -> -0E-6176 Clamped -dqdiv813 divide 1 -Inf -> -0E-6176 Clamped -dqdiv814 divide 1000 -Inf -> -0E-6176 Clamped -dqdiv815 divide Inf -Inf -> NaN Invalid_operation - -dqdiv821 divide NaN -Inf -> NaN -dqdiv822 divide NaN -1000 -> NaN -dqdiv823 divide NaN -1 -> NaN -dqdiv824 divide NaN -0 -> NaN -dqdiv825 divide NaN 0 -> NaN -dqdiv826 divide NaN 1 -> NaN -dqdiv827 divide NaN 1000 -> NaN -dqdiv828 divide NaN Inf -> NaN -dqdiv829 divide NaN NaN -> NaN -dqdiv830 divide -Inf NaN -> NaN -dqdiv831 divide -1000 NaN -> NaN -dqdiv832 divide -1 NaN -> NaN -dqdiv833 divide -0 NaN -> NaN -dqdiv834 divide 0 NaN -> NaN -dqdiv835 divide 1 NaN -> NaN -dqdiv836 divide 1000 NaN -> NaN -dqdiv837 divide Inf NaN -> NaN - -dqdiv841 divide sNaN -Inf -> NaN Invalid_operation -dqdiv842 divide sNaN -1000 -> NaN Invalid_operation -dqdiv843 divide sNaN -1 -> NaN Invalid_operation -dqdiv844 divide sNaN -0 -> NaN Invalid_operation -dqdiv845 divide sNaN 0 -> NaN Invalid_operation -dqdiv846 divide sNaN 1 -> NaN Invalid_operation -dqdiv847 divide sNaN 1000 -> NaN Invalid_operation -dqdiv848 divide sNaN NaN -> NaN Invalid_operation -dqdiv849 divide sNaN sNaN -> NaN Invalid_operation -dqdiv850 divide NaN sNaN -> NaN Invalid_operation -dqdiv851 divide -Inf sNaN -> NaN Invalid_operation -dqdiv852 divide -1000 sNaN -> NaN Invalid_operation -dqdiv853 divide -1 sNaN -> NaN Invalid_operation -dqdiv854 divide -0 sNaN -> NaN Invalid_operation -dqdiv855 divide 0 sNaN -> NaN Invalid_operation -dqdiv856 divide 1 sNaN -> NaN Invalid_operation -dqdiv857 divide 1000 sNaN -> NaN Invalid_operation -dqdiv858 divide Inf sNaN -> NaN Invalid_operation -dqdiv859 divide NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqdiv861 divide NaN9 -Inf -> NaN9 -dqdiv862 divide NaN8 1000 -> NaN8 -dqdiv863 divide NaN7 Inf -> NaN7 -dqdiv864 divide NaN6 NaN5 -> NaN6 -dqdiv865 divide -Inf NaN4 -> NaN4 -dqdiv866 divide -1000 NaN3 -> NaN3 -dqdiv867 divide Inf NaN2 -> NaN2 - -dqdiv871 divide sNaN99 -Inf -> NaN99 Invalid_operation -dqdiv872 divide sNaN98 -1 -> NaN98 Invalid_operation -dqdiv873 divide sNaN97 NaN -> NaN97 Invalid_operation -dqdiv874 divide sNaN96 sNaN94 -> NaN96 Invalid_operation -dqdiv875 divide NaN95 sNaN93 -> NaN93 Invalid_operation -dqdiv876 divide -Inf sNaN92 -> NaN92 Invalid_operation -dqdiv877 divide 0 sNaN91 -> NaN91 Invalid_operation -dqdiv878 divide Inf sNaN90 -> NaN90 Invalid_operation -dqdiv879 divide NaN sNaN89 -> NaN89 Invalid_operation - -dqdiv881 divide -NaN9 -Inf -> -NaN9 -dqdiv882 divide -NaN8 1000 -> -NaN8 -dqdiv883 divide -NaN7 Inf -> -NaN7 -dqdiv884 divide -NaN6 -NaN5 -> -NaN6 -dqdiv885 divide -Inf -NaN4 -> -NaN4 -dqdiv886 divide -1000 -NaN3 -> -NaN3 -dqdiv887 divide Inf -NaN2 -> -NaN2 - -dqdiv891 divide -sNaN99 -Inf -> -NaN99 Invalid_operation -dqdiv892 divide -sNaN98 -1 -> -NaN98 Invalid_operation -dqdiv893 divide -sNaN97 NaN -> -NaN97 Invalid_operation -dqdiv894 divide -sNaN96 -sNaN94 -> -NaN96 Invalid_operation -dqdiv895 divide -NaN95 -sNaN93 -> -NaN93 Invalid_operation -dqdiv896 divide -Inf -sNaN92 -> -NaN92 Invalid_operation -dqdiv897 divide 0 -sNaN91 -> -NaN91 Invalid_operation -dqdiv898 divide Inf -sNaN90 -> -NaN90 Invalid_operation -dqdiv899 divide -NaN -sNaN89 -> -NaN89 Invalid_operation - --- Various flavours of divide by 0 -dqdiv901 divide 0 0 -> NaN Division_undefined -dqdiv902 divide 0.0E5 0 -> NaN Division_undefined -dqdiv903 divide 0.000 0 -> NaN Division_undefined -dqdiv904 divide 0.0001 0 -> Infinity Division_by_zero -dqdiv905 divide 0.01 0 -> Infinity Division_by_zero -dqdiv906 divide 0.1 0 -> Infinity Division_by_zero -dqdiv907 divide 1 0 -> Infinity Division_by_zero -dqdiv908 divide 1 0.0 -> Infinity Division_by_zero -dqdiv909 divide 10 0.0 -> Infinity Division_by_zero -dqdiv910 divide 1E+100 0.0 -> Infinity Division_by_zero -dqdiv911 divide 1E+100 0 -> Infinity Division_by_zero - -dqdiv921 divide -0.0001 0 -> -Infinity Division_by_zero -dqdiv922 divide -0.01 0 -> -Infinity Division_by_zero -dqdiv923 divide -0.1 0 -> -Infinity Division_by_zero -dqdiv924 divide -1 0 -> -Infinity Division_by_zero -dqdiv925 divide -1 0.0 -> -Infinity Division_by_zero -dqdiv926 divide -10 0.0 -> -Infinity Division_by_zero -dqdiv927 divide -1E+100 0.0 -> -Infinity Division_by_zero -dqdiv928 divide -1E+100 0 -> -Infinity Division_by_zero - -dqdiv931 divide 0.0001 -0 -> -Infinity Division_by_zero -dqdiv932 divide 0.01 -0 -> -Infinity Division_by_zero -dqdiv933 divide 0.1 -0 -> -Infinity Division_by_zero -dqdiv934 divide 1 -0 -> -Infinity Division_by_zero -dqdiv935 divide 1 -0.0 -> -Infinity Division_by_zero -dqdiv936 divide 10 -0.0 -> -Infinity Division_by_zero -dqdiv937 divide 1E+100 -0.0 -> -Infinity Division_by_zero -dqdiv938 divide 1E+100 -0 -> -Infinity Division_by_zero - -dqdiv941 divide -0.0001 -0 -> Infinity Division_by_zero -dqdiv942 divide -0.01 -0 -> Infinity Division_by_zero -dqdiv943 divide -0.1 -0 -> Infinity Division_by_zero -dqdiv944 divide -1 -0 -> Infinity Division_by_zero -dqdiv945 divide -1 -0.0 -> Infinity Division_by_zero -dqdiv946 divide -10 -0.0 -> Infinity Division_by_zero -dqdiv947 divide -1E+100 -0.0 -> Infinity Division_by_zero -dqdiv948 divide -1E+100 -0 -> Infinity Division_by_zero - --- Examples from SQL proposal (Krishna Kulkarni) -dqdiv1021 divide 1E0 1E0 -> 1 -dqdiv1022 divide 1E0 2E0 -> 0.5 -dqdiv1023 divide 1E0 3E0 -> 0.3333333333333333333333333333333333 Inexact Rounded -dqdiv1024 divide 100E-2 1000E-3 -> 1 -dqdiv1025 divide 24E-1 2E0 -> 1.2 -dqdiv1026 divide 2400E-3 2E0 -> 1.200 -dqdiv1027 divide 5E0 2E0 -> 2.5 -dqdiv1028 divide 5E0 20E-1 -> 2.5 -dqdiv1029 divide 5E0 2000E-3 -> 2.5 -dqdiv1030 divide 5E0 2E-1 -> 25 -dqdiv1031 divide 5E0 20E-2 -> 25 -dqdiv1032 divide 480E-2 3E0 -> 1.60 -dqdiv1033 divide 47E-1 2E0 -> 2.35 - --- ECMAScript bad examples -rounding: half_down -dqdiv1040 divide 5 9 -> 0.5555555555555555555555555555555556 Inexact Rounded -rounding: half_even -dqdiv1041 divide 6 11 -> 0.5454545454545454545454545454545455 Inexact Rounded - --- Gyuris example -dqdiv1050 divide 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 0.9999999999999999999999999999991254 Inexact Rounded - --- overflow and underflow tests .. note subnormal results --- signs -dqdiv1751 divide 1e+4277 1e-3311 -> Infinity Overflow Inexact Rounded -dqdiv1752 divide 1e+4277 -1e-3311 -> -Infinity Overflow Inexact Rounded -dqdiv1753 divide -1e+4277 1e-3311 -> -Infinity Overflow Inexact Rounded -dqdiv1754 divide -1e+4277 -1e-3311 -> Infinity Overflow Inexact Rounded -dqdiv1755 divide 1e-4277 1e+3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1756 divide 1e-4277 -1e+3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1757 divide -1e-4277 1e+3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1758 divide -1e-4277 -1e+3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -dqdiv1760 divide 1e-6069 1e+101 -> 1E-6170 Subnormal -dqdiv1761 divide 1e-6069 1e+102 -> 1E-6171 Subnormal -dqdiv1762 divide 1e-6069 1e+103 -> 1E-6172 Subnormal -dqdiv1763 divide 1e-6069 1e+104 -> 1E-6173 Subnormal -dqdiv1764 divide 1e-6069 1e+105 -> 1E-6174 Subnormal -dqdiv1765 divide 1e-6069 1e+106 -> 1E-6175 Subnormal -dqdiv1766 divide 1e-6069 1e+107 -> 1E-6176 Subnormal -dqdiv1767 divide 1e-6069 1e+108 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1768 divide 1e-6069 1e+109 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1769 divide 1e-6069 1e+110 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -dqdiv1770 divide 1e+40 1e-6101 -> 1.000000000000000000000000000000E+6141 Clamped -dqdiv1771 divide 1e+40 1e-6102 -> 1.0000000000000000000000000000000E+6142 Clamped -dqdiv1772 divide 1e+40 1e-6103 -> 1.00000000000000000000000000000000E+6143 Clamped -dqdiv1773 divide 1e+40 1e-6104 -> 1.000000000000000000000000000000000E+6144 Clamped -dqdiv1774 divide 1e+40 1e-6105 -> Infinity Overflow Inexact Rounded -dqdiv1775 divide 1e+40 1e-6106 -> Infinity Overflow Inexact Rounded -dqdiv1776 divide 1e+40 1e-6107 -> Infinity Overflow Inexact Rounded -dqdiv1777 divide 1e+40 1e-6108 -> Infinity Overflow Inexact Rounded -dqdiv1778 divide 1e+40 1e-6109 -> Infinity Overflow Inexact Rounded -dqdiv1779 divide 1e+40 1e-6110 -> Infinity Overflow Inexact Rounded - -dqdiv1801 divide 1.0000E-6172 1 -> 1.0000E-6172 Subnormal -dqdiv1802 divide 1.000E-6172 1e+1 -> 1.000E-6173 Subnormal -dqdiv1803 divide 1.00E-6172 1e+2 -> 1.00E-6174 Subnormal -dqdiv1804 divide 1.0E-6172 1e+3 -> 1.0E-6175 Subnormal -dqdiv1805 divide 1.0E-6172 1e+4 -> 1E-6176 Subnormal Rounded -dqdiv1806 divide 1.3E-6172 1e+4 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqdiv1807 divide 1.5E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1808 divide 1.7E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1809 divide 2.3E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1810 divide 2.5E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1811 divide 2.7E-6172 1e+4 -> 3E-6176 Underflow Subnormal Inexact Rounded -dqdiv1812 divide 1.49E-6172 1e+4 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqdiv1813 divide 1.50E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1814 divide 1.51E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1815 divide 2.49E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1816 divide 2.50E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqdiv1817 divide 2.51E-6172 1e+4 -> 3E-6176 Underflow Subnormal Inexact Rounded - -dqdiv1818 divide 1E-6172 1e+4 -> 1E-6176 Subnormal -dqdiv1819 divide 3E-6172 1e+5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1820 divide 5E-6172 1e+5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1821 divide 7E-6172 1e+5 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqdiv1822 divide 9E-6172 1e+5 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqdiv1823 divide 9.9E-6172 1e+5 -> 1E-6176 Underflow Subnormal Inexact Rounded - -dqdiv1824 divide 1E-6172 -1e+4 -> -1E-6176 Subnormal -dqdiv1825 divide 3E-6172 -1e+5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1826 divide -5E-6172 1e+5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1827 divide 7E-6172 -1e+5 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqdiv1828 divide -9E-6172 1e+5 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqdiv1829 divide 9.9E-6172 -1e+5 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqdiv1830 divide 3.0E-6172 -1e+5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped - -dqdiv1831 divide 1.0E-5977 1e+200 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqdiv1832 divide 1.0E-5977 1e+199 -> 1E-6176 Subnormal Rounded -dqdiv1833 divide 1.0E-5977 1e+198 -> 1.0E-6175 Subnormal -dqdiv1834 divide 2.0E-5977 2e+198 -> 1.0E-6175 Subnormal -dqdiv1835 divide 4.0E-5977 4e+198 -> 1.0E-6175 Subnormal -dqdiv1836 divide 10.0E-5977 10e+198 -> 1.0E-6175 Subnormal -dqdiv1837 divide 30.0E-5977 30e+198 -> 1.0E-6175 Subnormal -dqdiv1838 divide 40.0E-5982 40e+166 -> 1.0E-6148 Subnormal -dqdiv1839 divide 40.0E-5982 40e+165 -> 1.0E-6147 Subnormal -dqdiv1840 divide 40.0E-5982 40e+164 -> 1.0E-6146 Subnormal - --- randoms -rounding: half_even -dqdiv2010 divide -5231195652931651968034356117118850 -7243718664422548573203260970.34995 -> 722169.9095831284624736051460550680 Inexact Rounded -dqdiv2011 divide -89584669773927.82711237350022515352 -42077943728529635884.21142627532985 -> 0.000002129017291146471565928125887527266 Inexact Rounded -dqdiv2012 divide -2.828201693360723203806974891946180E-232 812596541221823960386384403089240.9 -> -3.480450075640521320040055759125120E-265 Inexact Rounded -dqdiv2013 divide -6442775372761069267502937539408720 24904085056.69185465145182606089196 -> -258703556388226463687701.4884719589 Inexact Rounded -dqdiv2014 divide 5.535520011272625629610079879714705 -44343664650.57203052003068113531208 -> -1.248322630728089308975940533493562E-10 Inexact Rounded -dqdiv2015 divide 65919273712517865964325.99419625010 -314733354141381737378622515.7789054 -> -0.0002094448295521490616379784758911632 Inexact Rounded -dqdiv2016 divide -7.779172568193197107115275140431129E+759 -140453015639.3988987652895178782143 -> 5.538629792161641534962774244238115E+748 Inexact Rounded -dqdiv2017 divide 644314832597569.0181226067518178797 -115024585257425.1635759521565201075 -> -5.601540150356479257367687450922795 Inexact Rounded -dqdiv2018 divide 6.898640941579611450676592553286870E-47 -11272429881407851485163914999.25943 -> -6.119923578285338689371137648319280E-75 Inexact Rounded -dqdiv2019 divide -3591344544888727133.30819750163254 5329395.423792795661446561090331037 -> -673874662941.1968525589460533725290 Inexact Rounded -dqdiv2020 divide -7.682356781384631313156462724425838E+747 -6.60375855512219057281922141809940E+703 -> 1.163330960279556016678379128875149E+44 Inexact Rounded -dqdiv2021 divide -4511495596596941820863224.274679699 3365395017.263329795449661616090724 -> -1340554548115304.904166888018346299 Inexact Rounded -dqdiv2022 divide 5.211164127840931517263639608151299 164.5566381356276567012533847006453 -> 0.03166790587655228864478260157156510 Inexact Rounded -dqdiv2023 divide -49891.2243893458830384077684620383 -47179.9312961860747554053371171530 -> 1.057467084386767291602189656430268 Inexact Rounded -dqdiv2024 divide 15065477.47214268488077415462413353 4366211.120892953261309529740552596 -> 3.450469309661227984244545513441359 Inexact Rounded -dqdiv2025 divide 1.575670269440761846109602429612644E+370 653199649324740300.006185482643439 -> 2.412233795700359170904588548041481E+352 Inexact Rounded -dqdiv2026 divide -2112422311733448924573432192.620145 -80067206.03590693153848215848613406 -> 26383115089417660175.20102646756574 Inexact Rounded -dqdiv2027 divide -67096536051279809.32218611548721839 -869685412881941081664251990181.1049 -> 7.715035236584805921278566365231168E-14 Inexact Rounded -dqdiv2028 divide -58612908548962047.21866913425488972 -978449597531.3873665583475633831644 -> 59903.86085991703091236507859837023 Inexact Rounded -dqdiv2029 divide -133032412010942.1476864138213319796 -7.882059293498670705446528648201359E-428 -> 1.687787506504433064549515681693715E+441 Inexact Rounded -dqdiv2030 divide 1.83746698338966029492299716360513E+977 -9.897926608979649951672839879128603E+154 -> -1.856416051542212552042390218062458E+822 Inexact Rounded -dqdiv2031 divide -113742475841399236307128962.1507063 8298602.203049834732657567965262989 -> -13706221006665137826.16557393919929 Inexact Rounded -dqdiv2032 divide 196.4787574650754152995941808331862 929.6553388472318094427422117172394 -> 0.2113458066176526651006917922814018 Inexact Rounded -dqdiv2033 divide 71931221465.43867996282803628130350 3838685934206426257090718.402248853 -> 1.873850132527423413607199513324021E-14 Inexact Rounded -dqdiv2034 divide 488.4282502289651653783596246312885 -80.68940956806634280078706577953188 -> -6.053189047280693318844801899473272 Inexact Rounded -dqdiv2035 divide 9.001764344963921754981762913247394E-162 -8.585540973667205753734967645386919E-729 -> -1.048479574271827326396012573232934E+567 Inexact Rounded -dqdiv2036 divide -7.404133959409894743706402857145471E-828 -51.38159929460289711134684843086265 -> 1.441008855516029461032061785219773E-829 Inexact Rounded -dqdiv2037 divide 2.967520235574419794048994436040717E-613 -6252513855.91394894949879262731889 -> -4.746123405656409127572998751885338E-623 Inexact Rounded -dqdiv2038 divide -18826852654824040505.83920366765051 -6336924877942437992590557460147340 -> 2.970976146546494669807886278519194E-15 Inexact Rounded -dqdiv2039 divide -8.101406784809197604949584001735949E+561 4.823300306948942821076681658771635E+361 -> -1.679639721610839204738445747238987E+200 Inexact Rounded -dqdiv2040 divide -6.11981977773094052331062585191723E+295 1.507610253755339328302779005586534E+238 -> -4.059285058911577244044418416044763E+57 Inexact Rounded -dqdiv2041 divide 6.472638850046815880599220534274055E-596 -4.475233712083047516933911786159972 -> -1.446324207062261745520496475778879E-596 Inexact Rounded -dqdiv2042 divide -84438593330.71277839631144509397112 -586684596204401664208947.4054879633 -> 1.439250218550041228759983937772504E-13 Inexact Rounded -dqdiv2043 divide 9.354533233294022616695815656704369E-24 405.500390626135304252144163591746 -> 2.306911028827774549740571229736198E-26 Inexact Rounded -dqdiv2044 divide 985606423350210.7374876650149957881 -36811563697.41925681866694859828794 -> -26774.36990864119445335813354717711 Inexact Rounded -dqdiv2045 divide -8.187280774177715706278002247766311E-123 -38784124393.91212870828430001300068 -> 2.110987653356139147357240727794365E-133 Inexact Rounded -dqdiv2046 divide -4.612203126350070903459245798371657E+912 7.971562182727956290901984736800519E+64 -> -5.785820922708683237098826662769748E+847 Inexact Rounded -dqdiv2047 divide 4.661015909421485298247928967977089E+888 -6.360911253323922338737311563845581E+388 -> -7.327591478321365980156654539638836E+499 Inexact Rounded -dqdiv2048 divide 9156078172903.257500003260710833030 7.189796653262147139071634237964074E-90 -> 1.273482215766000994365201545096026E+102 Inexact Rounded -dqdiv2049 divide -1.710722303327476586373477781276586E-311 -3167561628260156837329323.729380695 -> 5.400754599578613984875752958645655E-336 Inexact Rounded -dqdiv2050 divide -4.647935210881806238321616345413021E-878 209388.5431867744648177308460639582 -> -2.219765771394593733140494297388140E-883 Inexact Rounded -dqdiv2051 divide 5958.694728395760992719084781582700 4.541510156564315632536353171846096E-746 -> 1.312051393253638664947852693005480E+749 Inexact Rounded -dqdiv2052 divide -7.935732544649702175256699886872093E-489 -7.433329073664793138998765647467971E+360 -> 1.067587949626076917672271619664656E-849 Inexact Rounded -dqdiv2053 divide -2746650864601157.863589959939901350 7.016684945507647528907184694359598E+548 -> -3.914456593009309529351254950429932E-534 Inexact Rounded -dqdiv2054 divide 3605149408631197365447953.994569178 -75614025825649082.78264864428237833 -> -47678315.88472693507060063188020532 Inexact Rounded -dqdiv2055 divide 788194320921798404906375214.196349 -6.222718148433247384932573401976337E-418 -> -1.266639918634671803982222244977287E+444 Inexact Rounded -dqdiv2056 divide 5620722730534752.758208943447603211 6.843552841168538319123000917657759E-139 -> 8.213164800485434666629970443739554E+153 Inexact Rounded -dqdiv2057 divide 7304534676713703938102.403949019402 -576169.3685010935108153023803590835 -> -12677756014201995.31969237144394772 Inexact Rounded -dqdiv2058 divide 8067918762.134621639254916786945547 -8.774771480055536009105596163864758E+954 -> -9.194448858836332156766764605125245E-946 Inexact Rounded -dqdiv2059 divide 8.702093454123046507578256899537563E-324 -5.875399733016018404580201176576293E-401 -> -1.481106622452052581470443526957335E+77 Inexact Rounded -dqdiv2060 divide -41426.01662518451861386352415092356 90.00146621684478300510769802013464 -> -460.2815750287318692732067709176200 Inexact Rounded - --- random divide tests with result near 1 -dqdiv4001 divide 2003100352770753969878925664524900 2003100352770753969878925664497824 -> 1.000000000000000000000000000013517 Inexact Rounded -dqdiv4002 divide 4817785793916490652579552318371645 4817785793916490652579552318362097 -> 1.000000000000000000000000000001982 Inexact Rounded -dqdiv4003 divide 8299187410920067325648068439560282 8299187410920067325648068439591159 -> 0.9999999999999999999999999999962795 Inexact Rounded -dqdiv4004 divide 5641088455897407044544461785365899 5641088455897407044544461785389965 -> 0.9999999999999999999999999999957338 Inexact Rounded -dqdiv4005 divide 5752274694706545359326361313490424 5752274694706545359326361313502723 -> 0.9999999999999999999999999999978619 Inexact Rounded -dqdiv4006 divide 6762079477373670594829319346099665 6762079477373670594829319346132579 -> 0.9999999999999999999999999999951326 Inexact Rounded -dqdiv4007 divide 7286425153691890341633023222602916 7286425153691890341633023222606556 -> 0.9999999999999999999999999999995004 Inexact Rounded -dqdiv4008 divide 9481233991901305727648306421946655 9481233991901305727648306421919124 -> 1.000000000000000000000000000002904 Inexact Rounded -dqdiv4009 divide 4282053941893951742029444065614311 4282053941893951742029444065583077 -> 1.000000000000000000000000000007294 Inexact Rounded -dqdiv4010 divide 626888225441250639741781850338695 626888225441250639741781850327299 -> 1.000000000000000000000000000018179 Inexact Rounded -dqdiv4011 divide 3860973649222028009456598604468547 3860973649222028009456598604476849 -> 0.9999999999999999999999999999978498 Inexact Rounded -dqdiv4012 divide 4753157080127468127908060607821839 4753157080127468127908060607788379 -> 1.000000000000000000000000000007040 Inexact Rounded -dqdiv4013 divide 552448546203754062805706277880419 552448546203754062805706277881903 -> 0.9999999999999999999999999999973138 Inexact Rounded -dqdiv4014 divide 8405954527952158455323713728917395 8405954527952158455323713728933866 -> 0.9999999999999999999999999999980406 Inexact Rounded -dqdiv4015 divide 7554096502235321142555802238016116 7554096502235321142555802238026546 -> 0.9999999999999999999999999999986193 Inexact Rounded -dqdiv4016 divide 4053257674127518606871054934746782 4053257674127518606871054934767355 -> 0.9999999999999999999999999999949243 Inexact Rounded -dqdiv4017 divide 7112419420755090454716888844011582 7112419420755090454716888844038105 -> 0.9999999999999999999999999999962709 Inexact Rounded -dqdiv4018 divide 3132302137520072728164549730911846 3132302137520072728164549730908416 -> 1.000000000000000000000000000001095 Inexact Rounded -dqdiv4019 divide 4788374045841416355706715048161013 4788374045841416355706715048190077 -> 0.9999999999999999999999999999939303 Inexact Rounded -dqdiv4020 divide 9466021636047630218238075099510597 9466021636047630218238075099484053 -> 1.000000000000000000000000000002804 Inexact Rounded -dqdiv4021 divide 912742745646765625597399692138650 912742745646765625597399692139042 -> 0.9999999999999999999999999999995705 Inexact Rounded -dqdiv4022 divide 9508402742933643208806264897188504 9508402742933643208806264897195973 -> 0.9999999999999999999999999999992145 Inexact Rounded -dqdiv4023 divide 1186956795727233704962361914360895 1186956795727233704962361914329577 -> 1.000000000000000000000000000026385 Inexact Rounded -dqdiv4024 divide 5972210268839014812696916170967938 5972210268839014812696916170954974 -> 1.000000000000000000000000000002171 Inexact Rounded -dqdiv4025 divide 2303801625521619930894460139793140 2303801625521619930894460139799643 -> 0.9999999999999999999999999999971773 Inexact Rounded -dqdiv4026 divide 6022231560002898264777393473966595 6022231560002898264777393473947198 -> 1.000000000000000000000000000003221 Inexact Rounded -dqdiv4027 divide 8426148335801396199969346032210893 8426148335801396199969346032203179 -> 1.000000000000000000000000000000915 Inexact Rounded -dqdiv4028 divide 8812278947028784637382847098411749 8812278947028784637382847098385317 -> 1.000000000000000000000000000002999 Inexact Rounded -dqdiv4029 divide 8145282002348367383264197170116146 8145282002348367383264197170083988 -> 1.000000000000000000000000000003948 Inexact Rounded -dqdiv4030 divide 6821577571876840153123510107387026 6821577571876840153123510107418008 -> 0.9999999999999999999999999999954582 Inexact Rounded -dqdiv4031 divide 9018555319518966970480565482023720 9018555319518966970480565482013346 -> 1.000000000000000000000000000001150 Inexact Rounded -dqdiv4032 divide 4602155712998228449640717252788864 4602155712998228449640717252818502 -> 0.9999999999999999999999999999935600 Inexact Rounded -dqdiv4033 divide 6675607481522785614506828292264472 6675607481522785614506828292277100 -> 0.9999999999999999999999999999981083 Inexact Rounded -dqdiv4034 divide 4015881516871833897766945836264472 4015881516871833897766945836262645 -> 1.000000000000000000000000000000455 Inexact Rounded -dqdiv4035 divide 1415580205933411837595459716910365 1415580205933411837595459716880139 -> 1.000000000000000000000000000021352 Inexact Rounded -dqdiv4036 divide 9432968297069542816752035276361552 9432968297069542816752035276353054 -> 1.000000000000000000000000000000901 Inexact Rounded -dqdiv4037 divide 4799319591303848500532766682140658 4799319591303848500532766682172655 -> 0.9999999999999999999999999999933330 Inexact Rounded -dqdiv4038 divide 316854270732839529790584284987472 316854270732839529790584285004832 -> 0.9999999999999999999999999999452114 Inexact Rounded -dqdiv4039 divide 3598981300592490427826027975697415 3598981300592490427826027975686712 -> 1.000000000000000000000000000002974 Inexact Rounded -dqdiv4040 divide 1664315435694461371155800682196520 1664315435694461371155800682195617 -> 1.000000000000000000000000000000543 Inexact Rounded -dqdiv4041 divide 1680872316531128890102855316510581 1680872316531128890102855316495545 -> 1.000000000000000000000000000008945 Inexact Rounded -dqdiv4042 divide 9881274879566405475755499281644730 9881274879566405475755499281615743 -> 1.000000000000000000000000000002934 Inexact Rounded -dqdiv4043 divide 4737225957717466960447204232279216 4737225957717466960447204232277452 -> 1.000000000000000000000000000000372 Inexact Rounded -dqdiv4044 divide 2482097379414867061213319346418288 2482097379414867061213319346387936 -> 1.000000000000000000000000000012228 Inexact Rounded -dqdiv4045 divide 7406977595233762723576434122161868 7406977595233762723576434122189042 -> 0.9999999999999999999999999999963313 Inexact Rounded -dqdiv4046 divide 228782057757566047086593281773577 228782057757566047086593281769727 -> 1.000000000000000000000000000016828 Inexact Rounded -dqdiv4047 divide 2956594270240579648823270540367653 2956594270240579648823270540368556 -> 0.9999999999999999999999999999996946 Inexact Rounded -dqdiv4048 divide 6326964098897620620534136767634340 6326964098897620620534136767619339 -> 1.000000000000000000000000000002371 Inexact Rounded -dqdiv4049 divide 414586440456590215247002678327800 414586440456590215247002678316922 -> 1.000000000000000000000000000026238 Inexact Rounded -dqdiv4050 divide 7364552208570039386220505636779125 7364552208570039386220505636803548 -> 0.9999999999999999999999999999966837 Inexact Rounded -dqdiv4051 divide 5626266749902369710022824950590056 5626266749902369710022824950591008 -> 0.9999999999999999999999999999998308 Inexact Rounded -dqdiv4052 divide 4863278293916197454987481343460484 4863278293916197454987481343442522 -> 1.000000000000000000000000000003693 Inexact Rounded -dqdiv4053 divide 1170713582030637359713249796835483 1170713582030637359713249796823345 -> 1.000000000000000000000000000010368 Inexact Rounded -dqdiv4054 divide 9838062494725965667776326556052931 9838062494725965667776326556061002 -> 0.9999999999999999999999999999991796 Inexact Rounded -dqdiv4055 divide 4071388731298861093005687091498922 4071388731298861093005687091498278 -> 1.000000000000000000000000000000158 Inexact Rounded -dqdiv4056 divide 8753155722324706795855038590272526 8753155722324706795855038590276656 -> 0.9999999999999999999999999999995282 Inexact Rounded -dqdiv4057 divide 4399941911533273418844742658240485 4399941911533273418844742658219891 -> 1.000000000000000000000000000004681 Inexact Rounded -dqdiv4058 divide 4127884159949503677776430620050269 4127884159949503677776430620026091 -> 1.000000000000000000000000000005857 Inexact Rounded -dqdiv4059 divide 5536160822360800067042528317438808 5536160822360800067042528317450687 -> 0.9999999999999999999999999999978543 Inexact Rounded -dqdiv4060 divide 3973234998468664936671088237710246 3973234998468664936671088237741886 -> 0.9999999999999999999999999999920367 Inexact Rounded -dqdiv4061 divide 9824855935638263593410444142327358 9824855935638263593410444142328576 -> 0.9999999999999999999999999999998760 Inexact Rounded -dqdiv4062 divide 5917078517340218131867327300814867 5917078517340218131867327300788701 -> 1.000000000000000000000000000004422 Inexact Rounded -dqdiv4063 divide 4354236601830544882286139612521362 4354236601830544882286139612543223 -> 0.9999999999999999999999999999949794 Inexact Rounded -dqdiv4064 divide 8058474772375259017342110013891294 8058474772375259017342110013906792 -> 0.9999999999999999999999999999980768 Inexact Rounded -dqdiv4065 divide 5519604020981748170517093746166328 5519604020981748170517093746181763 -> 0.9999999999999999999999999999972036 Inexact Rounded -dqdiv4066 divide 1502130966879805458831323782443139 1502130966879805458831323782412213 -> 1.000000000000000000000000000020588 Inexact Rounded -dqdiv4067 divide 562795633719481212915159787980270 562795633719481212915159788007066 -> 0.9999999999999999999999999999523877 Inexact Rounded -dqdiv4068 divide 6584743324494664273941281557268878 6584743324494664273941281557258945 -> 1.000000000000000000000000000001508 Inexact Rounded -dqdiv4069 divide 3632000327285743997976431109416500 3632000327285743997976431109408107 -> 1.000000000000000000000000000002311 Inexact Rounded -dqdiv4070 divide 1145827237315430089388953838561450 1145827237315430089388953838527332 -> 1.000000000000000000000000000029776 Inexact Rounded -dqdiv4071 divide 8874431010357691869725372317350380 8874431010357691869725372317316472 -> 1.000000000000000000000000000003821 Inexact Rounded -dqdiv4072 divide 992948718902804648119753141202196 992948718902804648119753141235222 -> 0.9999999999999999999999999999667395 Inexact Rounded -dqdiv4073 divide 2522735183374218505142417265439989 2522735183374218505142417265453779 -> 0.9999999999999999999999999999945337 Inexact Rounded -dqdiv4074 divide 2668419161912936508006872303501052 2668419161912936508006872303471036 -> 1.000000000000000000000000000011249 Inexact Rounded -dqdiv4075 divide 3036169085665186712590941111775092 3036169085665186712590941111808846 -> 0.9999999999999999999999999999888827 Inexact Rounded -dqdiv4076 divide 9441634604917231638508898934006147 9441634604917231638508898934000288 -> 1.000000000000000000000000000000621 Inexact Rounded -dqdiv4077 divide 2677301353164377091111458811839190 2677301353164377091111458811867722 -> 0.9999999999999999999999999999893430 Inexact Rounded -dqdiv4078 divide 6844979203112066166583765857171426 6844979203112066166583765857189682 -> 0.9999999999999999999999999999973329 Inexact Rounded -dqdiv4079 divide 2220337435141796724323783960231661 2220337435141796724323783960208778 -> 1.000000000000000000000000000010306 Inexact Rounded -dqdiv4080 divide 6447424700019783931569996989561380 6447424700019783931569996989572454 -> 0.9999999999999999999999999999982824 Inexact Rounded -dqdiv4081 divide 7512856762696607119847092195587180 7512856762696607119847092195557346 -> 1.000000000000000000000000000003971 Inexact Rounded -dqdiv4082 divide 7395261981193960399087819077237482 7395261981193960399087819077242487 -> 0.9999999999999999999999999999993232 Inexact Rounded -dqdiv4083 divide 2253442467682584035792724884376735 2253442467682584035792724884407178 -> 0.9999999999999999999999999999864904 Inexact Rounded -dqdiv4084 divide 8153138680300213135577336466190997 8153138680300213135577336466220607 -> 0.9999999999999999999999999999963683 Inexact Rounded -dqdiv4085 divide 4668731252254148074041022681801390 4668731252254148074041022681778101 -> 1.000000000000000000000000000004988 Inexact Rounded -dqdiv4086 divide 6078404557993669696040425501815056 6078404557993669696040425501797612 -> 1.000000000000000000000000000002870 Inexact Rounded -dqdiv4087 divide 2306352359874261623223356878316278 2306352359874261623223356878335612 -> 0.9999999999999999999999999999916171 Inexact Rounded -dqdiv4088 divide 3264842186668480362900909564091908 3264842186668480362900909564058658 -> 1.000000000000000000000000000010184 Inexact Rounded -dqdiv4089 divide 6971985047279636878957959608612204 6971985047279636878957959608615088 -> 0.9999999999999999999999999999995863 Inexact Rounded -dqdiv4090 divide 5262810889952721235466445973816257 5262810889952721235466445973783077 -> 1.000000000000000000000000000006305 Inexact Rounded -dqdiv4091 divide 7947944731035267178548357070080288 7947944731035267178548357070061339 -> 1.000000000000000000000000000002384 Inexact Rounded -dqdiv4092 divide 5071808908395375108383035800443229 5071808908395375108383035800412429 -> 1.000000000000000000000000000006073 Inexact Rounded -dqdiv4093 divide 2043146542084503655511507209262969 2043146542084503655511507209249263 -> 1.000000000000000000000000000006708 Inexact Rounded -dqdiv4094 divide 4097632735384534181661959731264802 4097632735384534181661959731234499 -> 1.000000000000000000000000000007395 Inexact Rounded -dqdiv4095 divide 3061477642831387489729464587044430 3061477642831387489729464587059452 -> 0.9999999999999999999999999999950932 Inexact Rounded -dqdiv4096 divide 3429854941039776159498802936252638 3429854941039776159498802936246415 -> 1.000000000000000000000000000001814 Inexact Rounded -dqdiv4097 divide 4874324979578599700024133278284545 4874324979578599700024133278262131 -> 1.000000000000000000000000000004598 Inexact Rounded -dqdiv4098 divide 5701652369691833541455978515820882 5701652369691833541455978515834854 -> 0.9999999999999999999999999999975495 Inexact Rounded -dqdiv4099 divide 2928205728402945266953255632343113 2928205728402945266953255632373794 -> 0.9999999999999999999999999999895223 Inexact Rounded - --- Null tests -dqdiv9998 divide 10 # -> NaN Invalid_operation -dqdiv9999 divide # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqDivideInt.decTest b/qdecimal/test/tc_full/dqDivideInt.decTest deleted file mode 100644 index fa0113f..0000000 --- a/qdecimal/test/tc_full/dqDivideInt.decTest +++ /dev/null @@ -1,453 +0,0 @@ ------------------------------------------------------------------------- --- dqDivideInt.decTest -- decQuad integer division -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - - -dqdvi001 divideint 1 1 -> 1 -dqdvi002 divideint 2 1 -> 2 -dqdvi003 divideint 1 2 -> 0 -dqdvi004 divideint 2 2 -> 1 -dqdvi005 divideint 0 1 -> 0 -dqdvi006 divideint 0 2 -> 0 -dqdvi007 divideint 1 3 -> 0 -dqdvi008 divideint 2 3 -> 0 -dqdvi009 divideint 3 3 -> 1 - -dqdvi010 divideint 2.4 1 -> 2 -dqdvi011 divideint 2.4 -1 -> -2 -dqdvi012 divideint -2.4 1 -> -2 -dqdvi013 divideint -2.4 -1 -> 2 -dqdvi014 divideint 2.40 1 -> 2 -dqdvi015 divideint 2.400 1 -> 2 -dqdvi016 divideint 2.4 2 -> 1 -dqdvi017 divideint 2.400 2 -> 1 -dqdvi018 divideint 2. 2 -> 1 -dqdvi019 divideint 20 20 -> 1 - -dqdvi020 divideint 187 187 -> 1 -dqdvi021 divideint 5 2 -> 2 -dqdvi022 divideint 5 2.0 -> 2 -dqdvi023 divideint 5 2.000 -> 2 -dqdvi024 divideint 5 0.200 -> 25 -dqdvi025 divideint 5 0.200 -> 25 - -dqdvi030 divideint 1 2 -> 0 -dqdvi031 divideint 1 4 -> 0 -dqdvi032 divideint 1 8 -> 0 -dqdvi033 divideint 1 16 -> 0 -dqdvi034 divideint 1 32 -> 0 -dqdvi035 divideint 1 64 -> 0 -dqdvi040 divideint 1 -2 -> -0 -dqdvi041 divideint 1 -4 -> -0 -dqdvi042 divideint 1 -8 -> -0 -dqdvi043 divideint 1 -16 -> -0 -dqdvi044 divideint 1 -32 -> -0 -dqdvi045 divideint 1 -64 -> -0 -dqdvi050 divideint -1 2 -> -0 -dqdvi051 divideint -1 4 -> -0 -dqdvi052 divideint -1 8 -> -0 -dqdvi053 divideint -1 16 -> -0 -dqdvi054 divideint -1 32 -> -0 -dqdvi055 divideint -1 64 -> -0 -dqdvi060 divideint -1 -2 -> 0 -dqdvi061 divideint -1 -4 -> 0 -dqdvi062 divideint -1 -8 -> 0 -dqdvi063 divideint -1 -16 -> 0 -dqdvi064 divideint -1 -32 -> 0 -dqdvi065 divideint -1 -64 -> 0 - --- similar with powers of ten -dqdvi160 divideint 1 1 -> 1 -dqdvi161 divideint 1 10 -> 0 -dqdvi162 divideint 1 100 -> 0 -dqdvi163 divideint 1 1000 -> 0 -dqdvi164 divideint 1 10000 -> 0 -dqdvi165 divideint 1 100000 -> 0 -dqdvi166 divideint 1 1000000 -> 0 -dqdvi167 divideint 1 10000000 -> 0 -dqdvi168 divideint 1 100000000 -> 0 -dqdvi170 divideint 1 -1 -> -1 -dqdvi171 divideint 1 -10 -> -0 -dqdvi172 divideint 1 -100 -> -0 -dqdvi173 divideint 1 -1000 -> -0 -dqdvi174 divideint 1 -10000 -> -0 -dqdvi175 divideint 1 -100000 -> -0 -dqdvi176 divideint 1 -1000000 -> -0 -dqdvi177 divideint 1 -10000000 -> -0 -dqdvi178 divideint 1 -100000000 -> -0 -dqdvi180 divideint -1 1 -> -1 -dqdvi181 divideint -1 10 -> -0 -dqdvi182 divideint -1 100 -> -0 -dqdvi183 divideint -1 1000 -> -0 -dqdvi184 divideint -1 10000 -> -0 -dqdvi185 divideint -1 100000 -> -0 -dqdvi186 divideint -1 1000000 -> -0 -dqdvi187 divideint -1 10000000 -> -0 -dqdvi188 divideint -1 100000000 -> -0 -dqdvi190 divideint -1 -1 -> 1 -dqdvi191 divideint -1 -10 -> 0 -dqdvi192 divideint -1 -100 -> 0 -dqdvi193 divideint -1 -1000 -> 0 -dqdvi194 divideint -1 -10000 -> 0 -dqdvi195 divideint -1 -100000 -> 0 -dqdvi196 divideint -1 -1000000 -> 0 -dqdvi197 divideint -1 -10000000 -> 0 -dqdvi198 divideint -1 -100000000 -> 0 - --- some long operand (at p=9) cases -dqdvi070 divideint 999999999 1 -> 999999999 -dqdvi071 divideint 999999999.4 1 -> 999999999 -dqdvi072 divideint 999999999.5 1 -> 999999999 -dqdvi073 divideint 999999999.9 1 -> 999999999 -dqdvi074 divideint 999999999.999 1 -> 999999999 - -dqdvi090 divideint 0. 1 -> 0 -dqdvi091 divideint .0 1 -> 0 -dqdvi092 divideint 0.00 1 -> 0 -dqdvi093 divideint 0.00E+9 1 -> 0 -dqdvi094 divideint 0.0000E-50 1 -> 0 - -dqdvi100 divideint 1 1 -> 1 -dqdvi101 divideint 1 2 -> 0 -dqdvi102 divideint 1 3 -> 0 -dqdvi103 divideint 1 4 -> 0 -dqdvi104 divideint 1 5 -> 0 -dqdvi105 divideint 1 6 -> 0 -dqdvi106 divideint 1 7 -> 0 -dqdvi107 divideint 1 8 -> 0 -dqdvi108 divideint 1 9 -> 0 -dqdvi109 divideint 1 10 -> 0 -dqdvi110 divideint 1 1 -> 1 -dqdvi111 divideint 2 1 -> 2 -dqdvi112 divideint 3 1 -> 3 -dqdvi113 divideint 4 1 -> 4 -dqdvi114 divideint 5 1 -> 5 -dqdvi115 divideint 6 1 -> 6 -dqdvi116 divideint 7 1 -> 7 -dqdvi117 divideint 8 1 -> 8 -dqdvi118 divideint 9 1 -> 9 -dqdvi119 divideint 10 1 -> 10 - --- from DiagBigDecimal -dqdvi131 divideint 101.3 1 -> 101 -dqdvi132 divideint 101.0 1 -> 101 -dqdvi133 divideint 101.3 3 -> 33 -dqdvi134 divideint 101.0 3 -> 33 -dqdvi135 divideint 2.4 1 -> 2 -dqdvi136 divideint 2.400 1 -> 2 -dqdvi137 divideint 18 18 -> 1 -dqdvi138 divideint 1120 1000 -> 1 -dqdvi139 divideint 2.4 2 -> 1 -dqdvi140 divideint 2.400 2 -> 1 -dqdvi141 divideint 0.5 2.000 -> 0 -dqdvi142 divideint 8.005 7 -> 1 -dqdvi143 divideint 5 2 -> 2 -dqdvi144 divideint 0 2 -> 0 -dqdvi145 divideint 0.00 2 -> 0 - --- Others -dqdvi150 divideint 12345 4.999 -> 2469 -dqdvi151 divideint 12345 4.99 -> 2473 -dqdvi152 divideint 12345 4.9 -> 2519 -dqdvi153 divideint 12345 5 -> 2469 -dqdvi154 divideint 12345 5.1 -> 2420 -dqdvi155 divideint 12345 5.01 -> 2464 -dqdvi156 divideint 12345 5.001 -> 2468 -dqdvi157 divideint 101 7.6 -> 13 - --- Various flavours of divideint by 0 -dqdvi201 divideint 0 0 -> NaN Division_undefined -dqdvi202 divideint 0.0E5 0 -> NaN Division_undefined -dqdvi203 divideint 0.000 0 -> NaN Division_undefined -dqdvi204 divideint 0.0001 0 -> Infinity Division_by_zero -dqdvi205 divideint 0.01 0 -> Infinity Division_by_zero -dqdvi206 divideint 0.1 0 -> Infinity Division_by_zero -dqdvi207 divideint 1 0 -> Infinity Division_by_zero -dqdvi208 divideint 1 0.0 -> Infinity Division_by_zero -dqdvi209 divideint 10 0.0 -> Infinity Division_by_zero -dqdvi210 divideint 1E+100 0.0 -> Infinity Division_by_zero -dqdvi211 divideint 1E+380 0 -> Infinity Division_by_zero -dqdvi214 divideint -0.0001 0 -> -Infinity Division_by_zero -dqdvi215 divideint -0.01 0 -> -Infinity Division_by_zero -dqdvi216 divideint -0.1 0 -> -Infinity Division_by_zero -dqdvi217 divideint -1 0 -> -Infinity Division_by_zero -dqdvi218 divideint -1 0.0 -> -Infinity Division_by_zero -dqdvi219 divideint -10 0.0 -> -Infinity Division_by_zero -dqdvi220 divideint -1E+100 0.0 -> -Infinity Division_by_zero -dqdvi221 divideint -1E+380 0 -> -Infinity Division_by_zero - --- test some cases that are close to exponent overflow -dqdvi270 divideint 1 1e384 -> 0 -dqdvi271 divideint 1 0.9e384 -> 0 -dqdvi272 divideint 1 0.99e384 -> 0 -dqdvi273 divideint 1 0.9999999999999999e384 -> 0 -dqdvi274 divideint 9e384 1 -> NaN Division_impossible -dqdvi275 divideint 9.9e384 1 -> NaN Division_impossible -dqdvi276 divideint 9.99e384 1 -> NaN Division_impossible -dqdvi277 divideint 9.999999999999999e384 1 -> NaN Division_impossible - -dqdvi280 divideint 0.1 9e-383 -> NaN Division_impossible -dqdvi281 divideint 0.1 99e-383 -> NaN Division_impossible -dqdvi282 divideint 0.1 999e-383 -> NaN Division_impossible -dqdvi283 divideint 0.1 9e-382 -> NaN Division_impossible -dqdvi284 divideint 0.1 99e-382 -> NaN Division_impossible - --- GD edge cases: lhs smaller than rhs but more digits -dqdvi301 divideint 0.9 2 -> 0 -dqdvi302 divideint 0.9 2.0 -> 0 -dqdvi303 divideint 0.9 2.1 -> 0 -dqdvi304 divideint 0.9 2.00 -> 0 -dqdvi305 divideint 0.9 2.01 -> 0 -dqdvi306 divideint 0.12 1 -> 0 -dqdvi307 divideint 0.12 1.0 -> 0 -dqdvi308 divideint 0.12 1.00 -> 0 -dqdvi309 divideint 0.12 1.0 -> 0 -dqdvi310 divideint 0.12 1.00 -> 0 -dqdvi311 divideint 0.12 2 -> 0 -dqdvi312 divideint 0.12 2.0 -> 0 -dqdvi313 divideint 0.12 2.1 -> 0 -dqdvi314 divideint 0.12 2.00 -> 0 -dqdvi315 divideint 0.12 2.01 -> 0 - --- edge cases of impossible -dqdvi330 divideint 1234567987654321987654321890123456 10 -> 123456798765432198765432189012345 -dqdvi331 divideint 1234567987654321987654321890123456 1 -> 1234567987654321987654321890123456 -dqdvi332 divideint 1234567987654321987654321890123456 0.1 -> NaN Division_impossible -dqdvi333 divideint 1234567987654321987654321890123456 0.01 -> NaN Division_impossible - --- overflow and underflow tests [from divide] -dqdvi1051 divideint 1e+277 1e-311 -> NaN Division_impossible -dqdvi1052 divideint 1e+277 -1e-311 -> NaN Division_impossible -dqdvi1053 divideint -1e+277 1e-311 -> NaN Division_impossible -dqdvi1054 divideint -1e+277 -1e-311 -> NaN Division_impossible -dqdvi1055 divideint 1e-277 1e+311 -> 0 -dqdvi1056 divideint 1e-277 -1e+311 -> -0 -dqdvi1057 divideint -1e-277 1e+311 -> -0 -dqdvi1058 divideint -1e-277 -1e+311 -> 0 - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -dqdvi1060 divideint 1e-291 1e+101 -> 0 -dqdvi1061 divideint 1e-291 1e+102 -> 0 -dqdvi1062 divideint 1e-291 1e+103 -> 0 -dqdvi1063 divideint 1e-291 1e+104 -> 0 -dqdvi1064 divideint 1e-291 1e+105 -> 0 -dqdvi1065 divideint 1e-291 1e+106 -> 0 -dqdvi1066 divideint 1e-291 1e+107 -> 0 -dqdvi1067 divideint 1e-291 1e+108 -> 0 -dqdvi1068 divideint 1e-291 1e+109 -> 0 -dqdvi1069 divideint 1e-291 1e+110 -> 0 - -dqdvi1101 divideint 1.0000E-394 1 -> 0 -dqdvi1102 divideint 1.000E-394 1e+1 -> 0 -dqdvi1103 divideint 1.00E-394 1e+2 -> 0 - -dqdvi1118 divideint 1E-394 1e+4 -> 0 -dqdvi1119 divideint 3E-394 -1e+5 -> -0 -dqdvi1120 divideint 5E-394 1e+5 -> 0 - -dqdvi1124 divideint 1E-394 -1e+4 -> -0 -dqdvi1130 divideint 3.0E-394 -1e+5 -> -0 - -dqdvi1131 divideint 1.0E-199 1e+200 -> 0 -dqdvi1132 divideint 1.0E-199 1e+199 -> 0 -dqdvi1133 divideint 1.0E-199 1e+198 -> 0 -dqdvi1134 divideint 2.0E-199 2e+198 -> 0 -dqdvi1135 divideint 4.0E-199 4e+198 -> 0 - --- long operand checks -dqdvi401 divideint 12345678000 100 -> 123456780 -dqdvi402 divideint 1 12345678000 -> 0 -dqdvi403 divideint 1234567800 10 -> 123456780 -dqdvi404 divideint 1 1234567800 -> 0 -dqdvi405 divideint 1234567890 10 -> 123456789 -dqdvi406 divideint 1 1234567890 -> 0 -dqdvi407 divideint 1234567891 10 -> 123456789 -dqdvi408 divideint 1 1234567891 -> 0 -dqdvi409 divideint 12345678901 100 -> 123456789 -dqdvi410 divideint 1 12345678901 -> 0 -dqdvi411 divideint 1234567896 10 -> 123456789 -dqdvi412 divideint 1 1234567896 -> 0 -dqdvi413 divideint 12345678948 100 -> 123456789 -dqdvi414 divideint 12345678949 100 -> 123456789 -dqdvi415 divideint 12345678950 100 -> 123456789 -dqdvi416 divideint 12345678951 100 -> 123456789 -dqdvi417 divideint 12345678999 100 -> 123456789 -dqdvi441 divideint 12345678000 1 -> 12345678000 -dqdvi442 divideint 1 12345678000 -> 0 -dqdvi443 divideint 1234567800 1 -> 1234567800 -dqdvi444 divideint 1 1234567800 -> 0 -dqdvi445 divideint 1234567890 1 -> 1234567890 -dqdvi446 divideint 1 1234567890 -> 0 -dqdvi447 divideint 1234567891 1 -> 1234567891 -dqdvi448 divideint 1 1234567891 -> 0 -dqdvi449 divideint 12345678901 1 -> 12345678901 -dqdvi450 divideint 1 12345678901 -> 0 -dqdvi451 divideint 1234567896 1 -> 1234567896 -dqdvi452 divideint 1 1234567896 -> 0 - --- more zeros, etc. -dqdvi531 divideint 5.00 1E-3 -> 5000 -dqdvi532 divideint 00.00 0.000 -> NaN Division_undefined -dqdvi533 divideint 00.00 0E-3 -> NaN Division_undefined -dqdvi534 divideint 0 -0 -> NaN Division_undefined -dqdvi535 divideint -0 0 -> NaN Division_undefined -dqdvi536 divideint -0 -0 -> NaN Division_undefined - -dqdvi541 divideint 0 -1 -> -0 -dqdvi542 divideint -0 -1 -> 0 -dqdvi543 divideint 0 1 -> 0 -dqdvi544 divideint -0 1 -> -0 -dqdvi545 divideint -1 0 -> -Infinity Division_by_zero -dqdvi546 divideint -1 -0 -> Infinity Division_by_zero -dqdvi547 divideint 1 0 -> Infinity Division_by_zero -dqdvi548 divideint 1 -0 -> -Infinity Division_by_zero - -dqdvi551 divideint 0.0 -1 -> -0 -dqdvi552 divideint -0.0 -1 -> 0 -dqdvi553 divideint 0.0 1 -> 0 -dqdvi554 divideint -0.0 1 -> -0 -dqdvi555 divideint -1.0 0 -> -Infinity Division_by_zero -dqdvi556 divideint -1.0 -0 -> Infinity Division_by_zero -dqdvi557 divideint 1.0 0 -> Infinity Division_by_zero -dqdvi558 divideint 1.0 -0 -> -Infinity Division_by_zero - -dqdvi561 divideint 0 -1.0 -> -0 -dqdvi562 divideint -0 -1.0 -> 0 -dqdvi563 divideint 0 1.0 -> 0 -dqdvi564 divideint -0 1.0 -> -0 -dqdvi565 divideint -1 0.0 -> -Infinity Division_by_zero -dqdvi566 divideint -1 -0.0 -> Infinity Division_by_zero -dqdvi567 divideint 1 0.0 -> Infinity Division_by_zero -dqdvi568 divideint 1 -0.0 -> -Infinity Division_by_zero - -dqdvi571 divideint 0.0 -1.0 -> -0 -dqdvi572 divideint -0.0 -1.0 -> 0 -dqdvi573 divideint 0.0 1.0 -> 0 -dqdvi574 divideint -0.0 1.0 -> -0 -dqdvi575 divideint -1.0 0.0 -> -Infinity Division_by_zero -dqdvi576 divideint -1.0 -0.0 -> Infinity Division_by_zero -dqdvi577 divideint 1.0 0.0 -> Infinity Division_by_zero -dqdvi578 divideint 1.0 -0.0 -> -Infinity Division_by_zero - --- Specials -dqdvi580 divideint Inf -Inf -> NaN Invalid_operation -dqdvi581 divideint Inf -1000 -> -Infinity -dqdvi582 divideint Inf -1 -> -Infinity -dqdvi583 divideint Inf -0 -> -Infinity -dqdvi584 divideint Inf 0 -> Infinity -dqdvi585 divideint Inf 1 -> Infinity -dqdvi586 divideint Inf 1000 -> Infinity -dqdvi587 divideint Inf Inf -> NaN Invalid_operation -dqdvi588 divideint -1000 Inf -> -0 -dqdvi589 divideint -Inf Inf -> NaN Invalid_operation -dqdvi590 divideint -1 Inf -> -0 -dqdvi591 divideint -0 Inf -> -0 -dqdvi592 divideint 0 Inf -> 0 -dqdvi593 divideint 1 Inf -> 0 -dqdvi594 divideint 1000 Inf -> 0 -dqdvi595 divideint Inf Inf -> NaN Invalid_operation - -dqdvi600 divideint -Inf -Inf -> NaN Invalid_operation -dqdvi601 divideint -Inf -1000 -> Infinity -dqdvi602 divideint -Inf -1 -> Infinity -dqdvi603 divideint -Inf -0 -> Infinity -dqdvi604 divideint -Inf 0 -> -Infinity -dqdvi605 divideint -Inf 1 -> -Infinity -dqdvi606 divideint -Inf 1000 -> -Infinity -dqdvi607 divideint -Inf Inf -> NaN Invalid_operation -dqdvi608 divideint -1000 Inf -> -0 -dqdvi609 divideint -Inf -Inf -> NaN Invalid_operation -dqdvi610 divideint -1 -Inf -> 0 -dqdvi611 divideint -0 -Inf -> 0 -dqdvi612 divideint 0 -Inf -> -0 -dqdvi613 divideint 1 -Inf -> -0 -dqdvi614 divideint 1000 -Inf -> -0 -dqdvi615 divideint Inf -Inf -> NaN Invalid_operation - -dqdvi621 divideint NaN -Inf -> NaN -dqdvi622 divideint NaN -1000 -> NaN -dqdvi623 divideint NaN -1 -> NaN -dqdvi624 divideint NaN -0 -> NaN -dqdvi625 divideint NaN 0 -> NaN -dqdvi626 divideint NaN 1 -> NaN -dqdvi627 divideint NaN 1000 -> NaN -dqdvi628 divideint NaN Inf -> NaN -dqdvi629 divideint NaN NaN -> NaN -dqdvi630 divideint -Inf NaN -> NaN -dqdvi631 divideint -1000 NaN -> NaN -dqdvi632 divideint -1 NaN -> NaN -dqdvi633 divideint -0 NaN -> NaN -dqdvi634 divideint 0 NaN -> NaN -dqdvi635 divideint 1 NaN -> NaN -dqdvi636 divideint 1000 NaN -> NaN -dqdvi637 divideint Inf NaN -> NaN - -dqdvi641 divideint sNaN -Inf -> NaN Invalid_operation -dqdvi642 divideint sNaN -1000 -> NaN Invalid_operation -dqdvi643 divideint sNaN -1 -> NaN Invalid_operation -dqdvi644 divideint sNaN -0 -> NaN Invalid_operation -dqdvi645 divideint sNaN 0 -> NaN Invalid_operation -dqdvi646 divideint sNaN 1 -> NaN Invalid_operation -dqdvi647 divideint sNaN 1000 -> NaN Invalid_operation -dqdvi648 divideint sNaN NaN -> NaN Invalid_operation -dqdvi649 divideint sNaN sNaN -> NaN Invalid_operation -dqdvi650 divideint NaN sNaN -> NaN Invalid_operation -dqdvi651 divideint -Inf sNaN -> NaN Invalid_operation -dqdvi652 divideint -1000 sNaN -> NaN Invalid_operation -dqdvi653 divideint -1 sNaN -> NaN Invalid_operation -dqdvi654 divideint -0 sNaN -> NaN Invalid_operation -dqdvi655 divideint 0 sNaN -> NaN Invalid_operation -dqdvi656 divideint 1 sNaN -> NaN Invalid_operation -dqdvi657 divideint 1000 sNaN -> NaN Invalid_operation -dqdvi658 divideint Inf sNaN -> NaN Invalid_operation -dqdvi659 divideint NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqdvi661 divideint NaN9 -Inf -> NaN9 -dqdvi662 divideint NaN8 1000 -> NaN8 -dqdvi663 divideint NaN7 Inf -> NaN7 -dqdvi664 divideint -NaN6 NaN5 -> -NaN6 -dqdvi665 divideint -Inf NaN4 -> NaN4 -dqdvi666 divideint -1000 NaN3 -> NaN3 -dqdvi667 divideint Inf -NaN2 -> -NaN2 - -dqdvi671 divideint -sNaN99 -Inf -> -NaN99 Invalid_operation -dqdvi672 divideint sNaN98 -1 -> NaN98 Invalid_operation -dqdvi673 divideint sNaN97 NaN -> NaN97 Invalid_operation -dqdvi674 divideint sNaN96 sNaN94 -> NaN96 Invalid_operation -dqdvi675 divideint NaN95 sNaN93 -> NaN93 Invalid_operation -dqdvi676 divideint -Inf sNaN92 -> NaN92 Invalid_operation -dqdvi677 divideint 0 sNaN91 -> NaN91 Invalid_operation -dqdvi678 divideint Inf -sNaN90 -> -NaN90 Invalid_operation -dqdvi679 divideint NaN sNaN89 -> NaN89 Invalid_operation - --- Gyuris example -dqdvi700 divideint 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 0 - --- Null tests -dqdvi900 divideint 10 # -> NaN Invalid_operation -dqdvi901 divideint # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqEncode.decTest b/qdecimal/test/tc_full/dqEncode.decTest deleted file mode 100644 index 25f9454..0000000 --- a/qdecimal/test/tc_full/dqEncode.decTest +++ /dev/null @@ -1,477 +0,0 @@ ------------------------------------------------------------------------- --- dqEncode.decTest -- decimal sixteen-byte format testcases -- --- Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- --- [Previously called decimal128.decTest] -version: 2.58 - --- This set of tests is for the sixteen-byte concrete representation. --- Its characteristics are: --- --- 1 bit sign --- 5 bits combination field --- 12 bits exponent continuation --- 110 bits coefficient continuation --- --- Total exponent length 14 bits --- Total coefficient length 114 bits (34 digits) --- --- Elimit = 12287 (maximum encoded exponent) --- Emax = 6144 (largest exponent value) --- Emin = -6143 (smallest exponent value) --- bias = 6176 (subtracted from encoded exponent) = -Etiny - --- The testcases here have only exactly representable data on the --- 'left-hand-side'; rounding from strings is tested in 'base' --- testcase groups. - -extended: 1 -clamp: 1 -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 - --- General testcases --- (mostly derived from the Strawman 4 document and examples) -decq001 apply #A20780000000000000000000000003D0 -> -7.50 -decq002 apply -7.50 -> #A20780000000000000000000000003D0 --- derivative canonical plain strings -decq003 apply #A20840000000000000000000000003D0 -> -7.50E+3 -decq004 apply -7.50E+3 -> #A20840000000000000000000000003D0 -decq005 apply #A20800000000000000000000000003D0 -> -750 -decq006 apply -750 -> #A20800000000000000000000000003D0 -decq007 apply #A207c0000000000000000000000003D0 -> -75.0 -decq008 apply -75.0 -> #A207c0000000000000000000000003D0 -decq009 apply #A20740000000000000000000000003D0 -> -0.750 -decq010 apply -0.750 -> #A20740000000000000000000000003D0 -decq011 apply #A20700000000000000000000000003D0 -> -0.0750 -decq012 apply -0.0750 -> #A20700000000000000000000000003D0 -decq013 apply #A20680000000000000000000000003D0 -> -0.000750 -decq014 apply -0.000750 -> #A20680000000000000000000000003D0 -decq015 apply #A20600000000000000000000000003D0 -> -0.00000750 -decq016 apply -0.00000750 -> #A20600000000000000000000000003D0 -decq017 apply #A205c0000000000000000000000003D0 -> -7.50E-7 -decq018 apply -7.50E-7 -> #A205c0000000000000000000000003D0 - --- Normality -decq020 apply 1234567890123456789012345678901234 -> #2608134b9c1e28e56f3c127177823534 -decq021 apply -1234567890123456789012345678901234 -> #a608134b9c1e28e56f3c127177823534 -decq022 apply 1111111111111111111111111111111111 -> #26080912449124491244912449124491 - --- Nmax and similar -decq031 apply 9.999999999999999999999999999999999E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff -decq032 apply #77ffcff3fcff3fcff3fcff3fcff3fcff -> 9.999999999999999999999999999999999E+6144 -decq033 apply 1.234567890123456789012345678901234E+6144 -> #47ffd34b9c1e28e56f3c127177823534 -decq034 apply #47ffd34b9c1e28e56f3c127177823534 -> 1.234567890123456789012345678901234E+6144 --- fold-downs (more below) -decq035 apply 1.23E+6144 -> #47ffd300000000000000000000000000 Clamped -decq036 apply #47ffd300000000000000000000000000 -> 1.230000000000000000000000000000000E+6144 -decq037 apply 1E+6144 -> #47ffc000000000000000000000000000 Clamped -decq038 apply #47ffc000000000000000000000000000 -> 1.000000000000000000000000000000000E+6144 - -decq051 apply 12345 -> #220800000000000000000000000049c5 -decq052 apply #220800000000000000000000000049c5 -> 12345 -decq053 apply 1234 -> #22080000000000000000000000000534 -decq054 apply #22080000000000000000000000000534 -> 1234 -decq055 apply 123 -> #220800000000000000000000000000a3 -decq056 apply #220800000000000000000000000000a3 -> 123 -decq057 apply 12 -> #22080000000000000000000000000012 -decq058 apply #22080000000000000000000000000012 -> 12 -decq059 apply 1 -> #22080000000000000000000000000001 -decq060 apply #22080000000000000000000000000001 -> 1 -decq061 apply 1.23 -> #220780000000000000000000000000a3 -decq062 apply #220780000000000000000000000000a3 -> 1.23 -decq063 apply 123.45 -> #220780000000000000000000000049c5 -decq064 apply #220780000000000000000000000049c5 -> 123.45 - --- Nmin and below -decq071 apply 1E-6143 -> #00084000000000000000000000000001 -decq072 apply #00084000000000000000000000000001 -> 1E-6143 -decq073 apply 1.000000000000000000000000000000000E-6143 -> #04000000000000000000000000000000 -decq074 apply #04000000000000000000000000000000 -> 1.000000000000000000000000000000000E-6143 -decq075 apply 1.000000000000000000000000000000001E-6143 -> #04000000000000000000000000000001 -decq076 apply #04000000000000000000000000000001 -> 1.000000000000000000000000000000001E-6143 - -decq077 apply 0.100000000000000000000000000000000E-6143 -> #00000800000000000000000000000000 Subnormal -decq078 apply #00000800000000000000000000000000 -> 1.00000000000000000000000000000000E-6144 Subnormal -decq079 apply 0.000000000000000000000000000000010E-6143 -> #00000000000000000000000000000010 Subnormal -decq080 apply #00000000000000000000000000000010 -> 1.0E-6175 Subnormal -decq081 apply 0.00000000000000000000000000000001E-6143 -> #00004000000000000000000000000001 Subnormal -decq082 apply #00004000000000000000000000000001 -> 1E-6175 Subnormal -decq083 apply 0.000000000000000000000000000000001E-6143 -> #00000000000000000000000000000001 Subnormal -decq084 apply #00000000000000000000000000000001 -> 1E-6176 Subnormal - --- underflows cannot be tested for simple copies, check edge cases -decq090 apply 1e-6176 -> #00000000000000000000000000000001 Subnormal -decq100 apply 999999999999999999999999999999999e-6176 -> #00000ff3fcff3fcff3fcff3fcff3fcff Subnormal - --- same again, negatives --- Nmax and similar -decq122 apply -9.999999999999999999999999999999999E+6144 -> #f7ffcff3fcff3fcff3fcff3fcff3fcff -decq123 apply #f7ffcff3fcff3fcff3fcff3fcff3fcff -> -9.999999999999999999999999999999999E+6144 -decq124 apply -1.234567890123456789012345678901234E+6144 -> #c7ffd34b9c1e28e56f3c127177823534 -decq125 apply #c7ffd34b9c1e28e56f3c127177823534 -> -1.234567890123456789012345678901234E+6144 --- fold-downs (more below) -decq130 apply -1.23E+6144 -> #c7ffd300000000000000000000000000 Clamped -decq131 apply #c7ffd300000000000000000000000000 -> -1.230000000000000000000000000000000E+6144 -decq132 apply -1E+6144 -> #c7ffc000000000000000000000000000 Clamped -decq133 apply #c7ffc000000000000000000000000000 -> -1.000000000000000000000000000000000E+6144 - -decq151 apply -12345 -> #a20800000000000000000000000049c5 -decq152 apply #a20800000000000000000000000049c5 -> -12345 -decq153 apply -1234 -> #a2080000000000000000000000000534 -decq154 apply #a2080000000000000000000000000534 -> -1234 -decq155 apply -123 -> #a20800000000000000000000000000a3 -decq156 apply #a20800000000000000000000000000a3 -> -123 -decq157 apply -12 -> #a2080000000000000000000000000012 -decq158 apply #a2080000000000000000000000000012 -> -12 -decq159 apply -1 -> #a2080000000000000000000000000001 -decq160 apply #a2080000000000000000000000000001 -> -1 -decq161 apply -1.23 -> #a20780000000000000000000000000a3 -decq162 apply #a20780000000000000000000000000a3 -> -1.23 -decq163 apply -123.45 -> #a20780000000000000000000000049c5 -decq164 apply #a20780000000000000000000000049c5 -> -123.45 - --- Nmin and below -decq171 apply -1E-6143 -> #80084000000000000000000000000001 -decq172 apply #80084000000000000000000000000001 -> -1E-6143 -decq173 apply -1.000000000000000000000000000000000E-6143 -> #84000000000000000000000000000000 -decq174 apply #84000000000000000000000000000000 -> -1.000000000000000000000000000000000E-6143 -decq175 apply -1.000000000000000000000000000000001E-6143 -> #84000000000000000000000000000001 -decq176 apply #84000000000000000000000000000001 -> -1.000000000000000000000000000000001E-6143 - -decq177 apply -0.100000000000000000000000000000000E-6143 -> #80000800000000000000000000000000 Subnormal -decq178 apply #80000800000000000000000000000000 -> -1.00000000000000000000000000000000E-6144 Subnormal -decq179 apply -0.000000000000000000000000000000010E-6143 -> #80000000000000000000000000000010 Subnormal -decq180 apply #80000000000000000000000000000010 -> -1.0E-6175 Subnormal -decq181 apply -0.00000000000000000000000000000001E-6143 -> #80004000000000000000000000000001 Subnormal -decq182 apply #80004000000000000000000000000001 -> -1E-6175 Subnormal -decq183 apply -0.000000000000000000000000000000001E-6143 -> #80000000000000000000000000000001 Subnormal -decq184 apply #80000000000000000000000000000001 -> -1E-6176 Subnormal - --- underflow edge cases -decq190 apply -1e-6176 -> #80000000000000000000000000000001 Subnormal -decq200 apply -999999999999999999999999999999999e-6176 -> #80000ff3fcff3fcff3fcff3fcff3fcff Subnormal - --- zeros -decq400 apply 0E-8000 -> #00000000000000000000000000000000 Clamped -decq401 apply 0E-6177 -> #00000000000000000000000000000000 Clamped -decq402 apply 0E-6176 -> #00000000000000000000000000000000 -decq403 apply #00000000000000000000000000000000 -> 0E-6176 -decq404 apply 0.000000000000000000000000000000000E-6143 -> #00000000000000000000000000000000 -decq405 apply #00000000000000000000000000000000 -> 0E-6176 -decq406 apply 0E-2 -> #22078000000000000000000000000000 -decq407 apply #22078000000000000000000000000000 -> 0.00 -decq408 apply 0 -> #22080000000000000000000000000000 -decq409 apply #22080000000000000000000000000000 -> 0 -decq410 apply 0E+3 -> #2208c000000000000000000000000000 -decq411 apply #2208c000000000000000000000000000 -> 0E+3 -decq412 apply 0E+6111 -> #43ffc000000000000000000000000000 -decq413 apply #43ffc000000000000000000000000000 -> 0E+6111 --- clamped zeros... -decq414 apply 0E+6112 -> #43ffc000000000000000000000000000 Clamped -decq415 apply #43ffc000000000000000000000000000 -> 0E+6111 -decq416 apply 0E+6144 -> #43ffc000000000000000000000000000 Clamped -decq417 apply #43ffc000000000000000000000000000 -> 0E+6111 -decq418 apply 0E+8000 -> #43ffc000000000000000000000000000 Clamped -decq419 apply #43ffc000000000000000000000000000 -> 0E+6111 - --- negative zeros -decq420 apply -0E-8000 -> #80000000000000000000000000000000 Clamped -decq421 apply -0E-6177 -> #80000000000000000000000000000000 Clamped -decq422 apply -0E-6176 -> #80000000000000000000000000000000 -decq423 apply #80000000000000000000000000000000 -> -0E-6176 -decq424 apply -0.000000000000000000000000000000000E-6143 -> #80000000000000000000000000000000 -decq425 apply #80000000000000000000000000000000 -> -0E-6176 -decq426 apply -0E-2 -> #a2078000000000000000000000000000 -decq427 apply #a2078000000000000000000000000000 -> -0.00 -decq428 apply -0 -> #a2080000000000000000000000000000 -decq429 apply #a2080000000000000000000000000000 -> -0 -decq430 apply -0E+3 -> #a208c000000000000000000000000000 -decq431 apply #a208c000000000000000000000000000 -> -0E+3 -decq432 apply -0E+6111 -> #c3ffc000000000000000000000000000 -decq433 apply #c3ffc000000000000000000000000000 -> -0E+6111 --- clamped zeros... -decq434 apply -0E+6112 -> #c3ffc000000000000000000000000000 Clamped -decq435 apply #c3ffc000000000000000000000000000 -> -0E+6111 -decq436 apply -0E+6144 -> #c3ffc000000000000000000000000000 Clamped -decq437 apply #c3ffc000000000000000000000000000 -> -0E+6111 -decq438 apply -0E+8000 -> #c3ffc000000000000000000000000000 Clamped -decq439 apply #c3ffc000000000000000000000000000 -> -0E+6111 - --- exponent lengths -decq440 apply #22080000000000000000000000000007 -> 7 -decq441 apply 7 -> #22080000000000000000000000000007 -decq442 apply #220a4000000000000000000000000007 -> 7E+9 -decq443 apply 7E+9 -> #220a4000000000000000000000000007 -decq444 apply #2220c000000000000000000000000007 -> 7E+99 -decq445 apply 7E+99 -> #2220c000000000000000000000000007 -decq446 apply #2301c000000000000000000000000007 -> 7E+999 -decq447 apply 7E+999 -> #2301c000000000000000000000000007 -decq448 apply #43e3c000000000000000000000000007 -> 7E+5999 -decq449 apply 7E+5999 -> #43e3c000000000000000000000000007 - --- Specials -decq500 apply Infinity -> #78000000000000000000000000000000 -decq501 apply #78787878787878787878787878787878 -> #78000000000000000000000000000000 -decq502 apply #78000000000000000000000000000000 -> Infinity -decq503 apply #79797979797979797979797979797979 -> #78000000000000000000000000000000 -decq504 apply #79000000000000000000000000000000 -> Infinity -decq505 apply #7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a -> #78000000000000000000000000000000 -decq506 apply #7a000000000000000000000000000000 -> Infinity -decq507 apply #7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b -> #78000000000000000000000000000000 -decq508 apply #7b000000000000000000000000000000 -> Infinity - -decq509 apply NaN -> #7c000000000000000000000000000000 -decq510 apply #7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c -> #7c003c7c7c7c7c7c7c7c7c7c7c7c7c7c -decq511 apply #7c000000000000000000000000000000 -> NaN -decq512 apply #7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d -> #7c003d7d7d7d7d7d7d7d7d7d7d7d7d7d -decq513 apply #7d000000000000000000000000000000 -> NaN -decq514 apply #7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e -> #7e003e7e7c7e7e7e7e7c7e7e7e7e7c7e -decq515 apply #7e000000000000000000000000000000 -> sNaN -decq516 apply #7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f -> #7e003f7f7c7f7f7f7f7c7f7f7f7f7c7f -decq517 apply #7f000000000000000000000000000000 -> sNaN -decq518 apply #7fffffffffffffffffffffffffffffff -> sNaN999999999999999999999999999999999 -decq519 apply #7fffffffffffffffffffffffffffffff -> #7e000ff3fcff3fcff3fcff3fcff3fcff - -decq520 apply -Infinity -> #f8000000000000000000000000000000 -decq521 apply #f8787878787878787878787878787878 -> #f8000000000000000000000000000000 -decq522 apply #f8000000000000000000000000000000 -> -Infinity -decq523 apply #f9797979797979797979797979797979 -> #f8000000000000000000000000000000 -decq524 apply #f9000000000000000000000000000000 -> -Infinity -decq525 apply #fa7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a -> #f8000000000000000000000000000000 -decq526 apply #fa000000000000000000000000000000 -> -Infinity -decq527 apply #fb7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b -> #f8000000000000000000000000000000 -decq528 apply #fb000000000000000000000000000000 -> -Infinity - -decq529 apply -NaN -> #fc000000000000000000000000000000 -decq530 apply #fc7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c -> #fc003c7c7c7c7c7c7c7c7c7c7c7c7c7c -decq531 apply #fc000000000000000000000000000000 -> -NaN -decq532 apply #fd7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d -> #fc003d7d7d7d7d7d7d7d7d7d7d7d7d7d -decq533 apply #fd000000000000000000000000000000 -> -NaN -decq534 apply #fe7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e -> #fe003e7e7c7e7e7e7e7c7e7e7e7e7c7e -decq535 apply #fe000000000000000000000000000000 -> -sNaN -decq536 apply #ff7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f -> #fe003f7f7c7f7f7f7f7c7f7f7f7f7c7f -decq537 apply #ff000000000000000000000000000000 -> -sNaN -decq538 apply #ffffffffffffffffffffffffffffffff -> -sNaN999999999999999999999999999999999 -decq539 apply #ffffffffffffffffffffffffffffffff -> #fe000ff3fcff3fcff3fcff3fcff3fcff - -decq540 apply NaN -> #7c000000000000000000000000000000 -decq541 apply NaN0 -> #7c000000000000000000000000000000 -decq542 apply NaN1 -> #7c000000000000000000000000000001 -decq543 apply NaN12 -> #7c000000000000000000000000000012 -decq544 apply NaN79 -> #7c000000000000000000000000000079 -decq545 apply NaN12345 -> #7c0000000000000000000000000049c5 -decq546 apply NaN123456 -> #7c000000000000000000000000028e56 -decq547 apply NaN799799 -> #7c0000000000000000000000000f7fdf -decq548 apply NaN799799799799799799799799799799799 -> #7c003dff7fdff7fdff7fdff7fdff7fdf -decq549 apply NaN999999999999999999999999999999999 -> #7c000ff3fcff3fcff3fcff3fcff3fcff -decq550 apply 9999999999999999999999999999999999 -> #6e080ff3fcff3fcff3fcff3fcff3fcff - --- fold-down full sequence -decq601 apply 1E+6144 -> #47ffc000000000000000000000000000 Clamped -decq602 apply #47ffc000000000000000000000000000 -> 1.000000000000000000000000000000000E+6144 -decq603 apply 1E+6143 -> #43ffc800000000000000000000000000 Clamped -decq604 apply #43ffc800000000000000000000000000 -> 1.00000000000000000000000000000000E+6143 -decq605 apply 1E+6142 -> #43ffc100000000000000000000000000 Clamped -decq606 apply #43ffc100000000000000000000000000 -> 1.0000000000000000000000000000000E+6142 -decq607 apply 1E+6141 -> #43ffc010000000000000000000000000 Clamped -decq608 apply #43ffc010000000000000000000000000 -> 1.000000000000000000000000000000E+6141 -decq609 apply 1E+6140 -> #43ffc002000000000000000000000000 Clamped -decq610 apply #43ffc002000000000000000000000000 -> 1.00000000000000000000000000000E+6140 -decq611 apply 1E+6139 -> #43ffc000400000000000000000000000 Clamped -decq612 apply #43ffc000400000000000000000000000 -> 1.0000000000000000000000000000E+6139 -decq613 apply 1E+6138 -> #43ffc000040000000000000000000000 Clamped -decq614 apply #43ffc000040000000000000000000000 -> 1.000000000000000000000000000E+6138 -decq615 apply 1E+6137 -> #43ffc000008000000000000000000000 Clamped -decq616 apply #43ffc000008000000000000000000000 -> 1.00000000000000000000000000E+6137 -decq617 apply 1E+6136 -> #43ffc000001000000000000000000000 Clamped -decq618 apply #43ffc000001000000000000000000000 -> 1.0000000000000000000000000E+6136 -decq619 apply 1E+6135 -> #43ffc000000100000000000000000000 Clamped -decq620 apply #43ffc000000100000000000000000000 -> 1.000000000000000000000000E+6135 -decq621 apply 1E+6134 -> #43ffc000000020000000000000000000 Clamped -decq622 apply #43ffc000000020000000000000000000 -> 1.00000000000000000000000E+6134 -decq623 apply 1E+6133 -> #43ffc000000004000000000000000000 Clamped -decq624 apply #43ffc000000004000000000000000000 -> 1.0000000000000000000000E+6133 -decq625 apply 1E+6132 -> #43ffc000000000400000000000000000 Clamped -decq626 apply #43ffc000000000400000000000000000 -> 1.000000000000000000000E+6132 -decq627 apply 1E+6131 -> #43ffc000000000080000000000000000 Clamped -decq628 apply #43ffc000000000080000000000000000 -> 1.00000000000000000000E+6131 -decq629 apply 1E+6130 -> #43ffc000000000010000000000000000 Clamped -decq630 apply #43ffc000000000010000000000000000 -> 1.0000000000000000000E+6130 -decq631 apply 1E+6129 -> #43ffc000000000001000000000000000 Clamped -decq632 apply #43ffc000000000001000000000000000 -> 1.000000000000000000E+6129 -decq633 apply 1E+6128 -> #43ffc000000000000200000000000000 Clamped -decq634 apply #43ffc000000000000200000000000000 -> 1.00000000000000000E+6128 -decq635 apply 1E+6127 -> #43ffc000000000000040000000000000 Clamped -decq636 apply #43ffc000000000000040000000000000 -> 1.0000000000000000E+6127 -decq637 apply 1E+6126 -> #43ffc000000000000004000000000000 Clamped -decq638 apply #43ffc000000000000004000000000000 -> 1.000000000000000E+6126 -decq639 apply 1E+6125 -> #43ffc000000000000000800000000000 Clamped -decq640 apply #43ffc000000000000000800000000000 -> 1.00000000000000E+6125 -decq641 apply 1E+6124 -> #43ffc000000000000000100000000000 Clamped -decq642 apply #43ffc000000000000000100000000000 -> 1.0000000000000E+6124 -decq643 apply 1E+6123 -> #43ffc000000000000000010000000000 Clamped -decq644 apply #43ffc000000000000000010000000000 -> 1.000000000000E+6123 -decq645 apply 1E+6122 -> #43ffc000000000000000002000000000 Clamped -decq646 apply #43ffc000000000000000002000000000 -> 1.00000000000E+6122 -decq647 apply 1E+6121 -> #43ffc000000000000000000400000000 Clamped -decq648 apply #43ffc000000000000000000400000000 -> 1.0000000000E+6121 -decq649 apply 1E+6120 -> #43ffc000000000000000000040000000 Clamped -decq650 apply #43ffc000000000000000000040000000 -> 1.000000000E+6120 -decq651 apply 1E+6119 -> #43ffc000000000000000000008000000 Clamped -decq652 apply #43ffc000000000000000000008000000 -> 1.00000000E+6119 -decq653 apply 1E+6118 -> #43ffc000000000000000000001000000 Clamped -decq654 apply #43ffc000000000000000000001000000 -> 1.0000000E+6118 -decq655 apply 1E+6117 -> #43ffc000000000000000000000100000 Clamped -decq656 apply #43ffc000000000000000000000100000 -> 1.000000E+6117 -decq657 apply 1E+6116 -> #43ffc000000000000000000000020000 Clamped -decq658 apply #43ffc000000000000000000000020000 -> 1.00000E+6116 -decq659 apply 1E+6115 -> #43ffc000000000000000000000004000 Clamped -decq660 apply #43ffc000000000000000000000004000 -> 1.0000E+6115 -decq661 apply 1E+6114 -> #43ffc000000000000000000000000400 Clamped -decq662 apply #43ffc000000000000000000000000400 -> 1.000E+6114 -decq663 apply 1E+6113 -> #43ffc000000000000000000000000080 Clamped -decq664 apply #43ffc000000000000000000000000080 -> 1.00E+6113 -decq665 apply 1E+6112 -> #43ffc000000000000000000000000010 Clamped -decq666 apply #43ffc000000000000000000000000010 -> 1.0E+6112 -decq667 apply 1E+6111 -> #43ffc000000000000000000000000001 -decq668 apply #43ffc000000000000000000000000001 -> 1E+6111 -decq669 apply 1E+6110 -> #43ff8000000000000000000000000001 -decq670 apply #43ff8000000000000000000000000001 -> 1E+6110 - --- Selected DPD codes -decq700 apply #22080000000000000000000000000000 -> 0 -decq701 apply #22080000000000000000000000000009 -> 9 -decq702 apply #22080000000000000000000000000010 -> 10 -decq703 apply #22080000000000000000000000000019 -> 19 -decq704 apply #22080000000000000000000000000020 -> 20 -decq705 apply #22080000000000000000000000000029 -> 29 -decq706 apply #22080000000000000000000000000030 -> 30 -decq707 apply #22080000000000000000000000000039 -> 39 -decq708 apply #22080000000000000000000000000040 -> 40 -decq709 apply #22080000000000000000000000000049 -> 49 -decq710 apply #22080000000000000000000000000050 -> 50 -decq711 apply #22080000000000000000000000000059 -> 59 -decq712 apply #22080000000000000000000000000060 -> 60 -decq713 apply #22080000000000000000000000000069 -> 69 -decq714 apply #22080000000000000000000000000070 -> 70 -decq715 apply #22080000000000000000000000000071 -> 71 -decq716 apply #22080000000000000000000000000072 -> 72 -decq717 apply #22080000000000000000000000000073 -> 73 -decq718 apply #22080000000000000000000000000074 -> 74 -decq719 apply #22080000000000000000000000000075 -> 75 -decq720 apply #22080000000000000000000000000076 -> 76 -decq721 apply #22080000000000000000000000000077 -> 77 -decq722 apply #22080000000000000000000000000078 -> 78 -decq723 apply #22080000000000000000000000000079 -> 79 - -decq730 apply #2208000000000000000000000000029e -> 994 -decq731 apply #2208000000000000000000000000029f -> 995 -decq732 apply #220800000000000000000000000002a0 -> 520 -decq733 apply #220800000000000000000000000002a1 -> 521 - --- DPD: one of each of the huffman groups -decq740 apply #220800000000000000000000000003f7 -> 777 -decq741 apply #220800000000000000000000000003f8 -> 778 -decq742 apply #220800000000000000000000000003eb -> 787 -decq743 apply #2208000000000000000000000000037d -> 877 -decq744 apply #2208000000000000000000000000039f -> 997 -decq745 apply #220800000000000000000000000003bf -> 979 -decq746 apply #220800000000000000000000000003df -> 799 -decq747 apply #2208000000000000000000000000006e -> 888 - - --- DPD all-highs cases (includes the 24 redundant codes) -decq750 apply #2208000000000000000000000000006e -> 888 -decq751 apply #2208000000000000000000000000016e -> 888 -decq752 apply #2208000000000000000000000000026e -> 888 -decq753 apply #2208000000000000000000000000036e -> 888 -decq754 apply #2208000000000000000000000000006f -> 889 -decq755 apply #2208000000000000000000000000016f -> 889 -decq756 apply #2208000000000000000000000000026f -> 889 -decq757 apply #2208000000000000000000000000036f -> 889 - -decq760 apply #2208000000000000000000000000007e -> 898 -decq761 apply #2208000000000000000000000000017e -> 898 -decq762 apply #2208000000000000000000000000027e -> 898 -decq763 apply #2208000000000000000000000000037e -> 898 -decq764 apply #2208000000000000000000000000007f -> 899 -decq765 apply #2208000000000000000000000000017f -> 899 -decq766 apply #2208000000000000000000000000027f -> 899 -decq767 apply #2208000000000000000000000000037f -> 899 - -decq770 apply #220800000000000000000000000000ee -> 988 -decq771 apply #220800000000000000000000000001ee -> 988 -decq772 apply #220800000000000000000000000002ee -> 988 -decq773 apply #220800000000000000000000000003ee -> 988 -decq774 apply #220800000000000000000000000000ef -> 989 -decq775 apply #220800000000000000000000000001ef -> 989 -decq776 apply #220800000000000000000000000002ef -> 989 -decq777 apply #220800000000000000000000000003ef -> 989 - -decq780 apply #220800000000000000000000000000fe -> 998 -decq781 apply #220800000000000000000000000001fe -> 998 -decq782 apply #220800000000000000000000000002fe -> 998 -decq783 apply #220800000000000000000000000003fe -> 998 -decq784 apply #220800000000000000000000000000ff -> 999 -decq785 apply #220800000000000000000000000001ff -> 999 -decq786 apply #220800000000000000000000000002ff -> 999 -decq787 apply #220800000000000000000000000003ff -> 999 - --- Miscellaneous (testers' queries, etc.) - -decq790 apply #2208000000000000000000000000c000 -> 30000 -decq791 apply #22080000000000000000000000007800 -> 890000 -decq792 apply 30000 -> #2208000000000000000000000000c000 -decq793 apply 890000 -> #22080000000000000000000000007800 - --- values around [u]int32 edges (zeros done earlier) -decq800 apply -2147483646 -> #a208000000000000000000008c78af46 -decq801 apply -2147483647 -> #a208000000000000000000008c78af47 -decq802 apply -2147483648 -> #a208000000000000000000008c78af48 -decq803 apply -2147483649 -> #a208000000000000000000008c78af49 -decq804 apply 2147483646 -> #2208000000000000000000008c78af46 -decq805 apply 2147483647 -> #2208000000000000000000008c78af47 -decq806 apply 2147483648 -> #2208000000000000000000008c78af48 -decq807 apply 2147483649 -> #2208000000000000000000008c78af49 -decq808 apply 4294967294 -> #22080000000000000000000115afb55a -decq809 apply 4294967295 -> #22080000000000000000000115afb55b -decq810 apply 4294967296 -> #22080000000000000000000115afb57a -decq811 apply 4294967297 -> #22080000000000000000000115afb57b - -decq820 apply #a208000000000000000000008c78af46 -> -2147483646 -decq821 apply #a208000000000000000000008c78af47 -> -2147483647 -decq822 apply #a208000000000000000000008c78af48 -> -2147483648 -decq823 apply #a208000000000000000000008c78af49 -> -2147483649 -decq824 apply #2208000000000000000000008c78af46 -> 2147483646 -decq825 apply #2208000000000000000000008c78af47 -> 2147483647 -decq826 apply #2208000000000000000000008c78af48 -> 2147483648 -decq827 apply #2208000000000000000000008c78af49 -> 2147483649 -decq828 apply #22080000000000000000000115afb55a -> 4294967294 -decq829 apply #22080000000000000000000115afb55b -> 4294967295 -decq830 apply #22080000000000000000000115afb57a -> 4294967296 -decq831 apply #22080000000000000000000115afb57b -> 4294967297 - --- VG testcase -decq840 apply #2080000000000000F294000000172636 -> 8.81125000000001349436E-1548 -decq841 apply #20800000000000008000000000000000 -> 8.000000000000000000E-1550 -decq842 apply #1EF98490000000010F6E4E0000000000 -> 7.049000000000010795488000000000000E-3097 -decq843 multiply #20800000000000008000000000000000 #2080000000000000F294000000172636 -> #1EF98490000000010F6E4E0000000000 Rounded - diff --git a/qdecimal/test/tc_full/dqFMA.decTest b/qdecimal/test/tc_full/dqFMA.decTest deleted file mode 100644 index 429ae4b..0000000 --- a/qdecimal/test/tc_full/dqFMA.decTest +++ /dev/null @@ -1,1786 +0,0 @@ ------------------------------------------------------------------------- --- dqFMA.decTest -- decQuad Fused Multiply Add -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- These tests comprese three parts: --- 1. Sanity checks and other three-operand tests (especially those --- where the fused operation makes a difference) --- 2. Multiply tests (third operand is neutral zero [0E+emax]) --- 3. Addition tests (first operand is 1) --- The multiply and addition tests are extensive because FMA may have --- its own dedicated multiplication or addition routine(s), and they --- also inherently check the left-to-right properties. - --- Sanity checks -dqfma0001 fma 1 1 1 -> 2 -dqfma0002 fma 1 1 2 -> 3 -dqfma0003 fma 2 2 3 -> 7 -dqfma0004 fma 9 9 9 -> 90 -dqfma0005 fma -1 1 1 -> 0 -dqfma0006 fma -1 1 2 -> 1 -dqfma0007 fma -2 2 3 -> -1 -dqfma0008 fma -9 9 9 -> -72 -dqfma0011 fma 1 -1 1 -> 0 -dqfma0012 fma 1 -1 2 -> 1 -dqfma0013 fma 2 -2 3 -> -1 -dqfma0014 fma 9 -9 9 -> -72 -dqfma0015 fma 1 1 -1 -> 0 -dqfma0016 fma 1 1 -2 -> -1 -dqfma0017 fma 2 2 -3 -> 1 -dqfma0018 fma 9 9 -9 -> 72 - --- non-integer exacts -dqfma0100 fma 25.2 63.6 -438 -> 1164.72 -dqfma0101 fma 0.301 0.380 334 -> 334.114380 -dqfma0102 fma 49.2 -4.8 23.3 -> -212.86 -dqfma0103 fma 4.22 0.079 -94.6 -> -94.26662 -dqfma0104 fma 903 0.797 0.887 -> 720.578 -dqfma0105 fma 6.13 -161 65.9 -> -921.03 -dqfma0106 fma 28.2 727 5.45 -> 20506.85 -dqfma0107 fma 4 605 688 -> 3108 -dqfma0108 fma 93.3 0.19 0.226 -> 17.953 -dqfma0109 fma 0.169 -341 5.61 -> -52.019 -dqfma0110 fma -72.2 30 -51.2 -> -2217.2 -dqfma0111 fma -0.409 13 20.4 -> 15.083 -dqfma0112 fma 317 77.0 19.0 -> 24428.0 -dqfma0113 fma 47 6.58 1.62 -> 310.88 -dqfma0114 fma 1.36 0.984 0.493 -> 1.83124 -dqfma0115 fma 72.7 274 1.56 -> 19921.36 -dqfma0116 fma 335 847 83 -> 283828 -dqfma0117 fma 666 0.247 25.4 -> 189.902 -dqfma0118 fma -3.87 3.06 78.0 -> 66.1578 -dqfma0119 fma 0.742 192 35.6 -> 178.064 -dqfma0120 fma -91.6 5.29 0.153 -> -484.411 - --- cases where result is different from separate multiply + add; each --- is preceded by the result of unfused multiply and add --- [this is about 20% of all similar cases in general] --- -> 4.500119002100000209469729375698778E+38 -dqfma0202 fma 68537985861355864457.5694 6565875762972086605.85969 35892634447236753.172812 -> 4.500119002100000209469729375698779E+38 Inexact Rounded --- -> 5.996248469584594346858881620185514E+41 -dqfma0208 fma 89261822344727628571.9 6717595845654131383336.89 5061036497288796076266.11 -> 5.996248469584594346858881620185513E+41 Inexact Rounded --- -> 1.899242968678256924021594770874070E+34 -dqfma0210 fma 320506237232448685.495971 59257597764017967.984448 3205615239077711589912.85 -> 1.899242968678256924021594770874071E+34 Inexact Rounded --- -> 7.078596978842809537929699954860309E+37 -dqfma0215 fma 220247843259112263.17995 321392340287987979002.80 47533279819997167655440 -> 7.078596978842809537929699954860308E+37 Inexact Rounded --- -> 1.224955667581427559754106862350743E+37 -dqfma0226 fma 23880729790368880412.1449 512947333827064719.55407 217117438419590824502.963 -> 1.224955667581427559754106862350744E+37 Inexact Rounded --- -> -2.530094043253148806272276368579144E+42 -dqfma0229 fma 2539892357016099706.4126 -996142232667504817717435 53682082598315949425.937 -> -2.530094043253148806272276368579143E+42 Inexact Rounded --- -> 1.713387085759711954319391412788454E+37 -dqfma0233 fma 4546339491341624464.0804 3768717864169205581 83578980278690395184.620 -> 1.713387085759711954319391412788453E+37 Inexact Rounded --- -> 4.062275663405823716411579117771547E+35 -dqfma0235 fma 409242119433816131.42253 992633815166741501.477249 70179636544416756129546 -> 4.062275663405823716411579117771548E+35 Inexact Rounded --- -> 6.002604327732568490562249875306823E+47 -dqfma0258 fma 817941336593541742159684 733867339769310729266598 78563844650942419311830.8 -> 6.002604327732568490562249875306822E+47 Inexact Rounded --- -> -2.027022514381452197510103395283874E+39 -dqfma0264 fma 387617310169161270.737532 -5229442703414956061216.62 57665666816652967150473.5 -> -2.027022514381452197510103395283873E+39 Inexact Rounded --- -> -7.856525039803554001144089842730361E+37 -dqfma0267 fma -847655845720565274701.210 92685316564117739.83984 22780950041376424429.5686 -> -7.856525039803554001144089842730360E+37 Inexact Rounded --- -> 1.695515562011520746125607502237559E+38 -dqfma0268 fma 21590290365127685.3675 7853139227576541379426.8 -3275859437236180.761544 -> 1.695515562011520746125607502237558E+38 Inexact Rounded --- -> -8.448422935783289219748115038014710E+38 -dqfma0269 fma -974320636272862697.971586 867109103641860247440.756 -9775170775902454762.98 -> -8.448422935783289219748115038014709E+38 Inexact Rounded - --- Cases where multiply would overflow or underflow if separate -dqfma0300 fma 9e+6144 10 0 -> Infinity Overflow Inexact Rounded -dqfma0301 fma 1e+6144 10 0 -> Infinity Overflow Inexact Rounded -dqfma0302 fma 1e+6144 10 -1e+6144 -> 9.000000000000000000000000000000000E+6144 Clamped -dqfma0303 fma 1e+6144 10 -9e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped --- subnormal etc. -dqfma0305 fma 1e-6176 0.1 0 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma0306 fma 1e-6176 0.1 1 -> 1.000000000000000000000000000000000 Inexact Rounded -dqfma0307 fma 1e-6176 0.1 1e-6176 -> 1E-6176 Underflow Subnormal Inexact Rounded - --- Infinite combinations -dqfma0800 fma Inf Inf Inf -> Infinity -dqfma0801 fma Inf Inf -Inf -> NaN Invalid_operation -dqfma0802 fma Inf -Inf Inf -> NaN Invalid_operation -dqfma0803 fma Inf -Inf -Inf -> -Infinity -dqfma0804 fma -Inf Inf Inf -> NaN Invalid_operation -dqfma0805 fma -Inf Inf -Inf -> -Infinity -dqfma0806 fma -Inf -Inf Inf -> Infinity -dqfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation - --- Triple NaN propagation -dqfma0900 fma NaN2 NaN3 NaN5 -> NaN2 -dqfma0901 fma 0 NaN3 NaN5 -> NaN3 -dqfma0902 fma 0 0 NaN5 -> NaN5 --- first sNaN wins (consider qNaN from earlier sNaN being --- overridden by an sNaN in third operand) -dqfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation -dqfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation -dqfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation -dqfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation -dqfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation -dqfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation - --- MULTIPLICATION TESTS ------------------------------------------------ -rounding: half_even - --- sanity checks -dqfma2000 fma 2 2 0e+6144 -> 4 -dqfma2001 fma 2 3 0e+6144 -> 6 -dqfma2002 fma 5 1 0e+6144 -> 5 -dqfma2003 fma 5 2 0e+6144 -> 10 -dqfma2004 fma 1.20 2 0e+6144 -> 2.40 -dqfma2005 fma 1.20 0 0e+6144 -> 0.00 -dqfma2006 fma 1.20 -2 0e+6144 -> -2.40 -dqfma2007 fma -1.20 2 0e+6144 -> -2.40 -dqfma2008 fma -1.20 0 0e+6144 -> 0.00 -dqfma2009 fma -1.20 -2 0e+6144 -> 2.40 -dqfma2010 fma 5.09 7.1 0e+6144 -> 36.139 -dqfma2011 fma 2.5 4 0e+6144 -> 10.0 -dqfma2012 fma 2.50 4 0e+6144 -> 10.00 -dqfma2013 fma 1.23456789 1.0000000000000000000000000000 0e+6144 -> 1.234567890000000000000000000000000 Rounded -dqfma2015 fma 2.50 4 0e+6144 -> 10.00 -dqfma2016 fma 9.99999999999999999 9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded -dqfma2017 fma 9.99999999999999999 -9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded -dqfma2018 fma -9.99999999999999999 9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded -dqfma2019 fma -9.99999999999999999 -9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded - --- zeros, etc. -dqfma2021 fma 0 0 0e+6144 -> 0 -dqfma2022 fma 0 -0 0e+6144 -> 0 -dqfma2023 fma -0 0 0e+6144 -> 0 -dqfma2024 fma -0 -0 0e+6144 -> 0 -dqfma2025 fma -0.0 -0.0 0e+6144 -> 0.00 -dqfma2026 fma -0.0 -0.0 0e+6144 -> 0.00 -dqfma2027 fma -0.0 -0.0 0e+6144 -> 0.00 -dqfma2028 fma -0.0 -0.0 0e+6144 -> 0.00 -dqfma2030 fma 5.00 1E-3 0e+6144 -> 0.00500 -dqfma2031 fma 00.00 0.000 0e+6144 -> 0.00000 -dqfma2032 fma 00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0 -dqfma2033 fma 0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0 -dqfma2034 fma -5.00 1E-3 0e+6144 -> -0.00500 -dqfma2035 fma -00.00 0.000 0e+6144 -> 0.00000 -dqfma2036 fma -00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0 -dqfma2037 fma -0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0 -dqfma2038 fma 5.00 -1E-3 0e+6144 -> -0.00500 -dqfma2039 fma 00.00 -0.000 0e+6144 -> 0.00000 -dqfma2040 fma 00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0 -dqfma2041 fma 0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0 -dqfma2042 fma -5.00 -1E-3 0e+6144 -> 0.00500 -dqfma2043 fma -00.00 -0.000 0e+6144 -> 0.00000 -dqfma2044 fma -00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0 -dqfma2045 fma -0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0 - --- examples from decarith -dqfma2050 fma 1.20 3 0e+6144 -> 3.60 -dqfma2051 fma 7 3 0e+6144 -> 21 -dqfma2052 fma 0.9 0.8 0e+6144 -> 0.72 -dqfma2053 fma 0.9 -0 0e+6144 -> 0.0 -dqfma2054 fma 654321 654321 0e+6144 -> 428135971041 - -dqfma2060 fma 123.45 1e7 0e+6144 -> 1.2345E+9 -dqfma2061 fma 123.45 1e8 0e+6144 -> 1.2345E+10 -dqfma2062 fma 123.45 1e+9 0e+6144 -> 1.2345E+11 -dqfma2063 fma 123.45 1e10 0e+6144 -> 1.2345E+12 -dqfma2064 fma 123.45 1e11 0e+6144 -> 1.2345E+13 -dqfma2065 fma 123.45 1e12 0e+6144 -> 1.2345E+14 -dqfma2066 fma 123.45 1e13 0e+6144 -> 1.2345E+15 - - --- test some intermediate lengths --- 1234567890123456 -dqfma2080 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9 -dqfma2084 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9 -dqfma2090 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9 -dqfma2094 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9 - --- test some more edge cases and carries -dqfma2101 fma 9 9 0e+6144 -> 81 -dqfma2102 fma 9 90 0e+6144 -> 810 -dqfma2103 fma 9 900 0e+6144 -> 8100 -dqfma2104 fma 9 9000 0e+6144 -> 81000 -dqfma2105 fma 9 90000 0e+6144 -> 810000 -dqfma2106 fma 9 900000 0e+6144 -> 8100000 -dqfma2107 fma 9 9000000 0e+6144 -> 81000000 -dqfma2108 fma 9 90000000 0e+6144 -> 810000000 -dqfma2109 fma 9 900000000 0e+6144 -> 8100000000 -dqfma2110 fma 9 9000000000 0e+6144 -> 81000000000 -dqfma2111 fma 9 90000000000 0e+6144 -> 810000000000 -dqfma2112 fma 9 900000000000 0e+6144 -> 8100000000000 -dqfma2113 fma 9 9000000000000 0e+6144 -> 81000000000000 -dqfma2114 fma 9 90000000000000 0e+6144 -> 810000000000000 -dqfma2115 fma 9 900000000000000 0e+6144 -> 8100000000000000 ---dqfma2116 fma 9 9000000000000000 0e+6144 -> 81000000000000000 ---dqfma2117 fma 9 90000000000000000 0e+6144 -> 810000000000000000 ---dqfma2118 fma 9 900000000000000000 0e+6144 -> 8100000000000000000 ---dqfma2119 fma 9 9000000000000000000 0e+6144 -> 81000000000000000000 ---dqfma2120 fma 9 90000000000000000000 0e+6144 -> 810000000000000000000 ---dqfma2121 fma 9 900000000000000000000 0e+6144 -> 8100000000000000000000 ---dqfma2122 fma 9 9000000000000000000000 0e+6144 -> 81000000000000000000000 ---dqfma2123 fma 9 90000000000000000000000 0e+6144 -> 810000000000000000000000 --- test some more edge cases without carries -dqfma2131 fma 3 3 0e+6144 -> 9 -dqfma2132 fma 3 30 0e+6144 -> 90 -dqfma2133 fma 3 300 0e+6144 -> 900 -dqfma2134 fma 3 3000 0e+6144 -> 9000 -dqfma2135 fma 3 30000 0e+6144 -> 90000 -dqfma2136 fma 3 300000 0e+6144 -> 900000 -dqfma2137 fma 3 3000000 0e+6144 -> 9000000 -dqfma2138 fma 3 30000000 0e+6144 -> 90000000 -dqfma2139 fma 3 300000000 0e+6144 -> 900000000 -dqfma2140 fma 3 3000000000 0e+6144 -> 9000000000 -dqfma2141 fma 3 30000000000 0e+6144 -> 90000000000 -dqfma2142 fma 3 300000000000 0e+6144 -> 900000000000 -dqfma2143 fma 3 3000000000000 0e+6144 -> 9000000000000 -dqfma2144 fma 3 30000000000000 0e+6144 -> 90000000000000 -dqfma2145 fma 3 300000000000000 0e+6144 -> 900000000000000 -dqfma2146 fma 3 3000000000000000 0e+6144 -> 9000000000000000 -dqfma2147 fma 3 30000000000000000 0e+6144 -> 90000000000000000 -dqfma2148 fma 3 300000000000000000 0e+6144 -> 900000000000000000 -dqfma2149 fma 3 3000000000000000000 0e+6144 -> 9000000000000000000 -dqfma2150 fma 3 30000000000000000000 0e+6144 -> 90000000000000000000 -dqfma2151 fma 3 300000000000000000000 0e+6144 -> 900000000000000000000 -dqfma2152 fma 3 3000000000000000000000 0e+6144 -> 9000000000000000000000 -dqfma2153 fma 3 30000000000000000000000 0e+6144 -> 90000000000000000000000 - -dqfma2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0e+6144 -> 145433.2908011933696719165119928296 Inexact Rounded - --- test some edge cases with exact rounding -dqfma2301 fma 900000000000000000 9 0e+6144 -> 8100000000000000000 -dqfma2302 fma 900000000000000000 90 0e+6144 -> 81000000000000000000 -dqfma2303 fma 900000000000000000 900 0e+6144 -> 810000000000000000000 -dqfma2304 fma 900000000000000000 9000 0e+6144 -> 8100000000000000000000 -dqfma2305 fma 900000000000000000 90000 0e+6144 -> 81000000000000000000000 -dqfma2306 fma 900000000000000000 900000 0e+6144 -> 810000000000000000000000 -dqfma2307 fma 900000000000000000 9000000 0e+6144 -> 8100000000000000000000000 -dqfma2308 fma 900000000000000000 90000000 0e+6144 -> 81000000000000000000000000 -dqfma2309 fma 900000000000000000 900000000 0e+6144 -> 810000000000000000000000000 -dqfma2310 fma 900000000000000000 9000000000 0e+6144 -> 8100000000000000000000000000 -dqfma2311 fma 900000000000000000 90000000000 0e+6144 -> 81000000000000000000000000000 -dqfma2312 fma 900000000000000000 900000000000 0e+6144 -> 810000000000000000000000000000 -dqfma2313 fma 900000000000000000 9000000000000 0e+6144 -> 8100000000000000000000000000000 -dqfma2314 fma 900000000000000000 90000000000000 0e+6144 -> 81000000000000000000000000000000 -dqfma2315 fma 900000000000000000 900000000000000 0e+6144 -> 810000000000000000000000000000000 -dqfma2316 fma 900000000000000000 9000000000000000 0e+6144 -> 8100000000000000000000000000000000 -dqfma2317 fma 9000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+34 Rounded -dqfma2318 fma 90000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+35 Rounded -dqfma2319 fma 900000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+36 Rounded -dqfma2320 fma 9000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+37 Rounded -dqfma2321 fma 90000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+38 Rounded -dqfma2322 fma 900000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+39 Rounded -dqfma2323 fma 9000000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+40 Rounded - --- tryzeros cases -dqfma2504 fma 0E-4260 1000E-4260 0e+6144 -> 0E-6176 Clamped -dqfma2505 fma 100E+4260 0E+4260 0e+6144 -> 0E+6111 Clamped - --- mixed with zeros -dqfma2541 fma 0 -1 0e+6144 -> 0 -dqfma2542 fma -0 -1 0e+6144 -> 0 -dqfma2543 fma 0 1 0e+6144 -> 0 -dqfma2544 fma -0 1 0e+6144 -> 0 -dqfma2545 fma -1 0 0e+6144 -> 0 -dqfma2546 fma -1 -0 0e+6144 -> 0 -dqfma2547 fma 1 0 0e+6144 -> 0 -dqfma2548 fma 1 -0 0e+6144 -> 0 - -dqfma2551 fma 0.0 -1 0e+6144 -> 0.0 -dqfma2552 fma -0.0 -1 0e+6144 -> 0.0 -dqfma2553 fma 0.0 1 0e+6144 -> 0.0 -dqfma2554 fma -0.0 1 0e+6144 -> 0.0 -dqfma2555 fma -1.0 0 0e+6144 -> 0.0 -dqfma2556 fma -1.0 -0 0e+6144 -> 0.0 -dqfma2557 fma 1.0 0 0e+6144 -> 0.0 -dqfma2558 fma 1.0 -0 0e+6144 -> 0.0 - -dqfma2561 fma 0 -1.0 0e+6144 -> 0.0 -dqfma2562 fma -0 -1.0 0e+6144 -> 0.0 -dqfma2563 fma 0 1.0 0e+6144 -> 0.0 -dqfma2564 fma -0 1.0 0e+6144 -> 0.0 -dqfma2565 fma -1 0.0 0e+6144 -> 0.0 -dqfma2566 fma -1 -0.0 0e+6144 -> 0.0 -dqfma2567 fma 1 0.0 0e+6144 -> 0.0 -dqfma2568 fma 1 -0.0 0e+6144 -> 0.0 - -dqfma2571 fma 0.0 -1.0 0e+6144 -> 0.00 -dqfma2572 fma -0.0 -1.0 0e+6144 -> 0.00 -dqfma2573 fma 0.0 1.0 0e+6144 -> 0.00 -dqfma2574 fma -0.0 1.0 0e+6144 -> 0.00 -dqfma2575 fma -1.0 0.0 0e+6144 -> 0.00 -dqfma2576 fma -1.0 -0.0 0e+6144 -> 0.00 -dqfma2577 fma 1.0 0.0 0e+6144 -> 0.00 -dqfma2578 fma 1.0 -0.0 0e+6144 -> 0.00 -dqfma2579 fma 1.0 0.0 0e+6144 -> 0.00 -dqfma2530 fma -1.0 -0.0 0e+6144 -> 0.00 -dqfma2531 fma -1.0 0.0 0e+6144 -> 0.00 -dqfma2532 fma 1.0 -0.0 -0e+6144 -> -0.00 -dqfma2533 fma 1.0 0.0 -0e+6144 -> 0.00 -dqfma2534 fma -1.0 -0.0 -0e+6144 -> 0.00 -dqfma2535 fma -1.0 0.0 -0e+6144 -> -0.00 - - --- Specials -dqfma2580 fma Inf -Inf 0e+6144 -> -Infinity -dqfma2581 fma Inf -1000 0e+6144 -> -Infinity -dqfma2582 fma Inf -1 0e+6144 -> -Infinity -dqfma2583 fma Inf -0 0e+6144 -> NaN Invalid_operation -dqfma2584 fma Inf 0 0e+6144 -> NaN Invalid_operation -dqfma2585 fma Inf 1 0e+6144 -> Infinity -dqfma2586 fma Inf 1000 0e+6144 -> Infinity -dqfma2587 fma Inf Inf 0e+6144 -> Infinity -dqfma2588 fma -1000 Inf 0e+6144 -> -Infinity -dqfma2589 fma -Inf Inf 0e+6144 -> -Infinity -dqfma2590 fma -1 Inf 0e+6144 -> -Infinity -dqfma2591 fma -0 Inf 0e+6144 -> NaN Invalid_operation -dqfma2592 fma 0 Inf 0e+6144 -> NaN Invalid_operation -dqfma2593 fma 1 Inf 0e+6144 -> Infinity -dqfma2594 fma 1000 Inf 0e+6144 -> Infinity -dqfma2595 fma Inf Inf 0e+6144 -> Infinity - -dqfma2600 fma -Inf -Inf 0e+6144 -> Infinity -dqfma2601 fma -Inf -1000 0e+6144 -> Infinity -dqfma2602 fma -Inf -1 0e+6144 -> Infinity -dqfma2603 fma -Inf -0 0e+6144 -> NaN Invalid_operation -dqfma2604 fma -Inf 0 0e+6144 -> NaN Invalid_operation -dqfma2605 fma -Inf 1 0e+6144 -> -Infinity -dqfma2606 fma -Inf 1000 0e+6144 -> -Infinity -dqfma2607 fma -Inf Inf 0e+6144 -> -Infinity -dqfma2608 fma -1000 Inf 0e+6144 -> -Infinity -dqfma2609 fma -Inf -Inf 0e+6144 -> Infinity -dqfma2610 fma -1 -Inf 0e+6144 -> Infinity -dqfma2611 fma -0 -Inf 0e+6144 -> NaN Invalid_operation -dqfma2612 fma 0 -Inf 0e+6144 -> NaN Invalid_operation -dqfma2613 fma 1 -Inf 0e+6144 -> -Infinity -dqfma2614 fma 1000 -Inf 0e+6144 -> -Infinity -dqfma2615 fma Inf -Inf 0e+6144 -> -Infinity - -dqfma2621 fma NaN -Inf 0e+6144 -> NaN -dqfma2622 fma NaN -1000 0e+6144 -> NaN -dqfma2623 fma NaN -1 0e+6144 -> NaN -dqfma2624 fma NaN -0 0e+6144 -> NaN -dqfma2625 fma NaN 0 0e+6144 -> NaN -dqfma2626 fma NaN 1 0e+6144 -> NaN -dqfma2627 fma NaN 1000 0e+6144 -> NaN -dqfma2628 fma NaN Inf 0e+6144 -> NaN -dqfma2629 fma NaN NaN 0e+6144 -> NaN -dqfma2630 fma -Inf NaN 0e+6144 -> NaN -dqfma2631 fma -1000 NaN 0e+6144 -> NaN -dqfma2632 fma -1 NaN 0e+6144 -> NaN -dqfma2633 fma -0 NaN 0e+6144 -> NaN -dqfma2634 fma 0 NaN 0e+6144 -> NaN -dqfma2635 fma 1 NaN 0e+6144 -> NaN -dqfma2636 fma 1000 NaN 0e+6144 -> NaN -dqfma2637 fma Inf NaN 0e+6144 -> NaN - -dqfma2641 fma sNaN -Inf 0e+6144 -> NaN Invalid_operation -dqfma2642 fma sNaN -1000 0e+6144 -> NaN Invalid_operation -dqfma2643 fma sNaN -1 0e+6144 -> NaN Invalid_operation -dqfma2644 fma sNaN -0 0e+6144 -> NaN Invalid_operation -dqfma2645 fma sNaN 0 0e+6144 -> NaN Invalid_operation -dqfma2646 fma sNaN 1 0e+6144 -> NaN Invalid_operation -dqfma2647 fma sNaN 1000 0e+6144 -> NaN Invalid_operation -dqfma2648 fma sNaN NaN 0e+6144 -> NaN Invalid_operation -dqfma2649 fma sNaN sNaN 0e+6144 -> NaN Invalid_operation -dqfma2650 fma NaN sNaN 0e+6144 -> NaN Invalid_operation -dqfma2651 fma -Inf sNaN 0e+6144 -> NaN Invalid_operation -dqfma2652 fma -1000 sNaN 0e+6144 -> NaN Invalid_operation -dqfma2653 fma -1 sNaN 0e+6144 -> NaN Invalid_operation -dqfma2654 fma -0 sNaN 0e+6144 -> NaN Invalid_operation -dqfma2655 fma 0 sNaN 0e+6144 -> NaN Invalid_operation -dqfma2656 fma 1 sNaN 0e+6144 -> NaN Invalid_operation -dqfma2657 fma 1000 sNaN 0e+6144 -> NaN Invalid_operation -dqfma2658 fma Inf sNaN 0e+6144 -> NaN Invalid_operation -dqfma2659 fma NaN sNaN 0e+6144 -> NaN Invalid_operation - --- propagating NaNs -dqfma2661 fma NaN9 -Inf 0e+6144 -> NaN9 -dqfma2662 fma NaN8 999 0e+6144 -> NaN8 -dqfma2663 fma NaN71 Inf 0e+6144 -> NaN71 -dqfma2664 fma NaN6 NaN5 0e+6144 -> NaN6 -dqfma2665 fma -Inf NaN4 0e+6144 -> NaN4 -dqfma2666 fma -999 NaN33 0e+6144 -> NaN33 -dqfma2667 fma Inf NaN2 0e+6144 -> NaN2 - -dqfma2671 fma sNaN99 -Inf 0e+6144 -> NaN99 Invalid_operation -dqfma2672 fma sNaN98 -11 0e+6144 -> NaN98 Invalid_operation -dqfma2673 fma sNaN97 NaN 0e+6144 -> NaN97 Invalid_operation -dqfma2674 fma sNaN16 sNaN94 0e+6144 -> NaN16 Invalid_operation -dqfma2675 fma NaN95 sNaN93 0e+6144 -> NaN93 Invalid_operation -dqfma2676 fma -Inf sNaN92 0e+6144 -> NaN92 Invalid_operation -dqfma2677 fma 088 sNaN91 0e+6144 -> NaN91 Invalid_operation -dqfma2678 fma Inf sNaN90 0e+6144 -> NaN90 Invalid_operation -dqfma2679 fma NaN sNaN89 0e+6144 -> NaN89 Invalid_operation - -dqfma2681 fma -NaN9 -Inf 0e+6144 -> -NaN9 -dqfma2682 fma -NaN8 999 0e+6144 -> -NaN8 -dqfma2683 fma -NaN71 Inf 0e+6144 -> -NaN71 -dqfma2684 fma -NaN6 -NaN5 0e+6144 -> -NaN6 -dqfma2685 fma -Inf -NaN4 0e+6144 -> -NaN4 -dqfma2686 fma -999 -NaN33 0e+6144 -> -NaN33 -dqfma2687 fma Inf -NaN2 0e+6144 -> -NaN2 - -dqfma2691 fma -sNaN99 -Inf 0e+6144 -> -NaN99 Invalid_operation -dqfma2692 fma -sNaN98 -11 0e+6144 -> -NaN98 Invalid_operation -dqfma2693 fma -sNaN97 NaN 0e+6144 -> -NaN97 Invalid_operation -dqfma2694 fma -sNaN16 -sNaN94 0e+6144 -> -NaN16 Invalid_operation -dqfma2695 fma -NaN95 -sNaN93 0e+6144 -> -NaN93 Invalid_operation -dqfma2696 fma -Inf -sNaN92 0e+6144 -> -NaN92 Invalid_operation -dqfma2697 fma 088 -sNaN91 0e+6144 -> -NaN91 Invalid_operation -dqfma2698 fma Inf -sNaN90 0e+6144 -> -NaN90 Invalid_operation -dqfma2699 fma -NaN -sNaN89 0e+6144 -> -NaN89 Invalid_operation - -dqfma2701 fma -NaN -Inf 0e+6144 -> -NaN -dqfma2702 fma -NaN 999 0e+6144 -> -NaN -dqfma2703 fma -NaN Inf 0e+6144 -> -NaN -dqfma2704 fma -NaN -NaN 0e+6144 -> -NaN -dqfma2705 fma -Inf -NaN0 0e+6144 -> -NaN -dqfma2706 fma -999 -NaN 0e+6144 -> -NaN -dqfma2707 fma Inf -NaN 0e+6144 -> -NaN - -dqfma2711 fma -sNaN -Inf 0e+6144 -> -NaN Invalid_operation -dqfma2712 fma -sNaN -11 0e+6144 -> -NaN Invalid_operation -dqfma2713 fma -sNaN00 NaN 0e+6144 -> -NaN Invalid_operation -dqfma2714 fma -sNaN -sNaN 0e+6144 -> -NaN Invalid_operation -dqfma2715 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation -dqfma2716 fma -Inf -sNaN 0e+6144 -> -NaN Invalid_operation -dqfma2717 fma 088 -sNaN 0e+6144 -> -NaN Invalid_operation -dqfma2718 fma Inf -sNaN 0e+6144 -> -NaN Invalid_operation -dqfma2719 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation - --- overflow and underflow tests .. note subnormal results --- signs -dqfma2751 fma 1e+4277 1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded -dqfma2752 fma 1e+4277 -1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded -dqfma2753 fma -1e+4277 1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded -dqfma2754 fma -1e+4277 -1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded -dqfma2755 fma 1e-4277 1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2756 fma 1e-4277 -1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2757 fma -1e-4277 1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2758 fma -1e-4277 -1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -dqfma2760 fma 1e-6069 1e-101 0e+6144 -> 1E-6170 Subnormal -dqfma2761 fma 1e-6069 1e-102 0e+6144 -> 1E-6171 Subnormal -dqfma2762 fma 1e-6069 1e-103 0e+6144 -> 1E-6172 Subnormal -dqfma2763 fma 1e-6069 1e-104 0e+6144 -> 1E-6173 Subnormal -dqfma2764 fma 1e-6069 1e-105 0e+6144 -> 1E-6174 Subnormal -dqfma2765 fma 1e-6069 1e-106 0e+6144 -> 1E-6175 Subnormal -dqfma2766 fma 1e-6069 1e-107 0e+6144 -> 1E-6176 Subnormal -dqfma2767 fma 1e-6069 1e-108 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2768 fma 1e-6069 1e-109 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2769 fma 1e-6069 1e-110 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -dqfma2770 fma 1e+40 1e+6101 0e+6144 -> 1.000000000000000000000000000000E+6141 Clamped -dqfma2771 fma 1e+40 1e+6102 0e+6144 -> 1.0000000000000000000000000000000E+6142 Clamped -dqfma2772 fma 1e+40 1e+6103 0e+6144 -> 1.00000000000000000000000000000000E+6143 Clamped -dqfma2773 fma 1e+40 1e+6104 0e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped -dqfma2774 fma 1e+40 1e+6105 0e+6144 -> Infinity Overflow Inexact Rounded -dqfma2775 fma 1e+40 1e+6106 0e+6144 -> Infinity Overflow Inexact Rounded -dqfma2776 fma 1e+40 1e+6107 0e+6144 -> Infinity Overflow Inexact Rounded -dqfma2777 fma 1e+40 1e+6108 0e+6144 -> Infinity Overflow Inexact Rounded -dqfma2778 fma 1e+40 1e+6109 0e+6144 -> Infinity Overflow Inexact Rounded -dqfma2779 fma 1e+40 1e+6110 0e+6144 -> Infinity Overflow Inexact Rounded - -dqfma2801 fma 1.0000E-6172 1 0e+6144 -> 1.0000E-6172 Subnormal -dqfma2802 fma 1.000E-6172 1e-1 0e+6144 -> 1.000E-6173 Subnormal -dqfma2803 fma 1.00E-6172 1e-2 0e+6144 -> 1.00E-6174 Subnormal -dqfma2804 fma 1.0E-6172 1e-3 0e+6144 -> 1.0E-6175 Subnormal -dqfma2805 fma 1.0E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal Rounded -dqfma2806 fma 1.3E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqfma2807 fma 1.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2808 fma 1.7E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2809 fma 2.3E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2810 fma 2.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2811 fma 2.7E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded -dqfma2812 fma 1.49E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqfma2813 fma 1.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2814 fma 1.51E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2815 fma 2.49E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2816 fma 2.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqfma2817 fma 2.51E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded - -dqfma2818 fma 1E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal -dqfma2819 fma 3E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2820 fma 5E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2821 fma 7E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqfma2822 fma 9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqfma2823 fma 9.9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded - -dqfma2824 fma 1E-6172 -1e-4 0e+6144 -> -1E-6176 Subnormal -dqfma2825 fma 3E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2826 fma -5E-6172 1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2827 fma 7E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqfma2828 fma -9E-6172 1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqfma2829 fma 9.9E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqfma2830 fma 3.0E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped - -dqfma2831 fma 1.0E-5977 1e-200 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqfma2832 fma 1.0E-5977 1e-199 0e+6144 -> 1E-6176 Subnormal Rounded -dqfma2833 fma 1.0E-5977 1e-198 0e+6144 -> 1.0E-6175 Subnormal -dqfma2834 fma 2.0E-5977 2e-198 0e+6144 -> 4.0E-6175 Subnormal -dqfma2835 fma 4.0E-5977 4e-198 0e+6144 -> 1.60E-6174 Subnormal -dqfma2836 fma 10.0E-5977 10e-198 0e+6144 -> 1.000E-6173 Subnormal -dqfma2837 fma 30.0E-5977 30e-198 0e+6144 -> 9.000E-6173 Subnormal -dqfma2838 fma 40.0E-5982 40e-166 0e+6144 -> 1.6000E-6145 Subnormal -dqfma2839 fma 40.0E-5982 40e-165 0e+6144 -> 1.6000E-6144 Subnormal -dqfma2840 fma 40.0E-5982 40e-164 0e+6144 -> 1.6000E-6143 - --- Long operand overflow may be a different path -dqfma2870 fma 100 9.999E+6143 0e+6144 -> Infinity Inexact Overflow Rounded -dqfma2871 fma 100 -9.999E+6143 0e+6144 -> -Infinity Inexact Overflow Rounded -dqfma2872 fma 9.999E+6143 100 0e+6144 -> Infinity Inexact Overflow Rounded -dqfma2873 fma -9.999E+6143 100 0e+6144 -> -Infinity Inexact Overflow Rounded - --- check for double-rounded subnormals -dqfma2881 fma 1.2347E-6133 1.2347E-40 0e+6144 -> 1.524E-6173 Inexact Rounded Subnormal Underflow -dqfma2882 fma 1.234E-6133 1.234E-40 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow -dqfma2883 fma 1.23E-6133 1.23E-40 0e+6144 -> 1.513E-6173 Inexact Rounded Subnormal Underflow -dqfma2884 fma 1.2E-6133 1.2E-40 0e+6144 -> 1.44E-6173 Subnormal -dqfma2885 fma 1.2E-6133 1.2E-41 0e+6144 -> 1.44E-6174 Subnormal -dqfma2886 fma 1.2E-6133 1.2E-42 0e+6144 -> 1.4E-6175 Subnormal Inexact Rounded Underflow -dqfma2887 fma 1.2E-6133 1.3E-42 0e+6144 -> 1.6E-6175 Subnormal Inexact Rounded Underflow -dqfma2888 fma 1.3E-6133 1.3E-42 0e+6144 -> 1.7E-6175 Subnormal Inexact Rounded Underflow -dqfma2889 fma 1.3E-6133 1.3E-43 0e+6144 -> 2E-6176 Subnormal Inexact Rounded Underflow -dqfma2890 fma 1.3E-6134 1.3E-43 0e+6144 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow - -dqfma2891 fma 1.2345E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow -dqfma2892 fma 1.23456E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow -dqfma2893 fma 1.2345E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow -dqfma2894 fma 1.23456E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow -dqfma2895 fma 1.2345E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow -dqfma2896 fma 1.23456E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow - --- Now explore the case where we get a normal result with Underflow --- prove operands are exact -dqfma2906 fma 9.999999999999999999999999999999999E-6143 1 0e+6144 -> 9.999999999999999999999999999999999E-6143 -dqfma2907 fma 1 0.09999999999999999999999999999999999 0e+6144 -> 0.09999999999999999999999999999999999 --- the next rounds to Nmin -dqfma2908 fma 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 0e+6144 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded - --- hugest -dqfma2909 fma 9999999999999999999999999999999999 9999999999999999999999999999999999 0e+6144 -> 9.999999999999999999999999999999998E+67 Inexact Rounded - --- Examples from SQL proposal (Krishna Kulkarni) -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 -dqfma21001 fma 130E-2 120E-2 0e+6144 -> 1.5600 -dqfma21002 fma 130E-2 12E-1 0e+6144 -> 1.560 -dqfma21003 fma 130E-2 1E0 0e+6144 -> 1.30 -dqfma21004 fma 1E2 1E4 0e+6144 -> 1E+6 - --- Null tests -dqfma2990 fma 10 # 0e+6144 -> NaN Invalid_operation -dqfma2991 fma # 10 0e+6144 -> NaN Invalid_operation - - --- ADDITION TESTS ------------------------------------------------------ -rounding: half_even - --- [first group are 'quick confidence check'] -dqadd3001 fma 1 1 1 -> 2 -dqadd3002 fma 1 2 3 -> 5 -dqadd3003 fma 1 '5.75' '3.3' -> 9.05 -dqadd3004 fma 1 '5' '-3' -> 2 -dqadd3005 fma 1 '-5' '-3' -> -8 -dqadd3006 fma 1 '-7' '2.5' -> -4.5 -dqadd3007 fma 1 '0.7' '0.3' -> 1.0 -dqadd3008 fma 1 '1.25' '1.25' -> 2.50 -dqadd3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' -dqadd3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' - --- 1234567890123456 1234567890123456 -dqadd3011 fma 1 '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded -dqadd3012 fma 1 '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded -dqadd3013 fma 1 '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999' -dqadd3014 fma 1 '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd3015 fma 1 '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd3016 fma 1 '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd3017 fma 1 '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded -dqadd3018 fma 1 '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded -dqadd3019 fma 1 '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded -dqadd3020 fma 1 '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded - -dqadd3021 fma 1 0 1 -> 1 -dqadd3022 fma 1 1 1 -> 2 -dqadd3023 fma 1 2 1 -> 3 -dqadd3024 fma 1 3 1 -> 4 -dqadd3025 fma 1 4 1 -> 5 -dqadd3026 fma 1 5 1 -> 6 -dqadd3027 fma 1 6 1 -> 7 -dqadd3028 fma 1 7 1 -> 8 -dqadd3029 fma 1 8 1 -> 9 -dqadd3030 fma 1 9 1 -> 10 - --- some carrying effects -dqadd3031 fma 1 '0.9998' '0.0000' -> '0.9998' -dqadd3032 fma 1 '0.9998' '0.0001' -> '0.9999' -dqadd3033 fma 1 '0.9998' '0.0002' -> '1.0000' -dqadd3034 fma 1 '0.9998' '0.0003' -> '1.0001' - -dqadd3035 fma 1 '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd3036 fma 1 '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd3037 fma 1 '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd3038 fma 1 '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded -dqadd3039 fma 1 '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded - --- symmetry: -dqadd3040 fma 1 '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd3041 fma 1 '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd3042 fma 1 '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqadd3044 fma 1 '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded -dqadd3045 fma 1 '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded - --- same, without rounding -dqadd3046 fma 1 '10000e+9' '7' -> '10000000000007' -dqadd3047 fma 1 '10000e+9' '70' -> '10000000000070' -dqadd3048 fma 1 '10000e+9' '700' -> '10000000000700' -dqadd3049 fma 1 '10000e+9' '7000' -> '10000000007000' -dqadd3050 fma 1 '10000e+9' '70000' -> '10000000070000' -dqadd3051 fma 1 '10000e+9' '700000' -> '10000000700000' -dqadd3052 fma 1 '10000e+9' '7000000' -> '10000007000000' - --- examples from decarith -dqadd3053 fma 1 '12' '7.00' -> '19.00' -dqadd3054 fma 1 '1.3' '-1.07' -> '0.23' -dqadd3055 fma 1 '1.3' '-1.30' -> '0.00' -dqadd3056 fma 1 '1.3' '-2.07' -> '-0.77' -dqadd3057 fma 1 '1E+2' '1E+4' -> '1.01E+4' - --- leading zero preservation -dqadd3061 fma 1 1 '0.0001' -> '1.0001' -dqadd3062 fma 1 1 '0.00001' -> '1.00001' -dqadd3063 fma 1 1 '0.000001' -> '1.000001' -dqadd3064 fma 1 1 '0.0000001' -> '1.0000001' -dqadd3065 fma 1 1 '0.00000001' -> '1.00000001' - --- some funny zeros [in case of bad signum] -dqadd3070 fma 1 1 0 -> 1 -dqadd3071 fma 1 1 0. -> 1 -dqadd3072 fma 1 1 .0 -> 1.0 -dqadd3073 fma 1 1 0.0 -> 1.0 -dqadd3074 fma 1 1 0.00 -> 1.00 -dqadd3075 fma 1 0 1 -> 1 -dqadd3076 fma 1 0. 1 -> 1 -dqadd3077 fma 1 .0 1 -> 1.0 -dqadd3078 fma 1 0.0 1 -> 1.0 -dqadd3079 fma 1 0.00 1 -> 1.00 - --- some carries -dqadd3080 fma 1 999999998 1 -> 999999999 -dqadd3081 fma 1 999999999 1 -> 1000000000 -dqadd3082 fma 1 99999999 1 -> 100000000 -dqadd3083 fma 1 9999999 1 -> 10000000 -dqadd3084 fma 1 999999 1 -> 1000000 -dqadd3085 fma 1 99999 1 -> 100000 -dqadd3086 fma 1 9999 1 -> 10000 -dqadd3087 fma 1 999 1 -> 1000 -dqadd3088 fma 1 99 1 -> 100 -dqadd3089 fma 1 9 1 -> 10 - - --- more LHS swaps -dqadd3090 fma 1 '-56267E-10' 0 -> '-0.0000056267' -dqadd3091 fma 1 '-56267E-6' 0 -> '-0.056267' -dqadd3092 fma 1 '-56267E-5' 0 -> '-0.56267' -dqadd3093 fma 1 '-56267E-4' 0 -> '-5.6267' -dqadd3094 fma 1 '-56267E-3' 0 -> '-56.267' -dqadd3095 fma 1 '-56267E-2' 0 -> '-562.67' -dqadd3096 fma 1 '-56267E-1' 0 -> '-5626.7' -dqadd3097 fma 1 '-56267E-0' 0 -> '-56267' -dqadd3098 fma 1 '-5E-10' 0 -> '-5E-10' -dqadd3099 fma 1 '-5E-7' 0 -> '-5E-7' -dqadd3100 fma 1 '-5E-6' 0 -> '-0.000005' -dqadd3101 fma 1 '-5E-5' 0 -> '-0.00005' -dqadd3102 fma 1 '-5E-4' 0 -> '-0.0005' -dqadd3103 fma 1 '-5E-1' 0 -> '-0.5' -dqadd3104 fma 1 '-5E0' 0 -> '-5' -dqadd3105 fma 1 '-5E1' 0 -> '-50' -dqadd3106 fma 1 '-5E5' 0 -> '-500000' -dqadd3107 fma 1 '-5E33' 0 -> '-5000000000000000000000000000000000' -dqadd3108 fma 1 '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded -dqadd3109 fma 1 '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded -dqadd3110 fma 1 '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded -dqadd3111 fma 1 '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded - --- more RHS swaps -dqadd3113 fma 1 0 '-56267E-10' -> '-0.0000056267' -dqadd3114 fma 1 0 '-56267E-6' -> '-0.056267' -dqadd3116 fma 1 0 '-56267E-5' -> '-0.56267' -dqadd3117 fma 1 0 '-56267E-4' -> '-5.6267' -dqadd3119 fma 1 0 '-56267E-3' -> '-56.267' -dqadd3120 fma 1 0 '-56267E-2' -> '-562.67' -dqadd3121 fma 1 0 '-56267E-1' -> '-5626.7' -dqadd3122 fma 1 0 '-56267E-0' -> '-56267' -dqadd3123 fma 1 0 '-5E-10' -> '-5E-10' -dqadd3124 fma 1 0 '-5E-7' -> '-5E-7' -dqadd3125 fma 1 0 '-5E-6' -> '-0.000005' -dqadd3126 fma 1 0 '-5E-5' -> '-0.00005' -dqadd3127 fma 1 0 '-5E-4' -> '-0.0005' -dqadd3128 fma 1 0 '-5E-1' -> '-0.5' -dqadd3129 fma 1 0 '-5E0' -> '-5' -dqadd3130 fma 1 0 '-5E1' -> '-50' -dqadd3131 fma 1 0 '-5E5' -> '-500000' -dqadd3132 fma 1 0 '-5E33' -> '-5000000000000000000000000000000000' -dqadd3133 fma 1 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded -dqadd3134 fma 1 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded -dqadd3135 fma 1 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded -dqadd3136 fma 1 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded - --- related -dqadd3137 fma 1 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded -dqadd3138 fma 1 -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded -dqadd3139 fma 1 '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded -dqadd3140 fma 1 '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded -dqadd3141 fma 1 1E+29 0.0000 -> '100000000000000000000000000000.0000' -dqadd3142 fma 1 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded -dqadd3143 fma 1 0.000 1E+30 -> '1000000000000000000000000000000.000' -dqadd3144 fma 1 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded - --- [some of the next group are really constructor tests] -dqadd3146 fma 1 '00.0' 0 -> '0.0' -dqadd3147 fma 1 '0.00' 0 -> '0.00' -dqadd3148 fma 1 0 '0.00' -> '0.00' -dqadd3149 fma 1 0 '00.0' -> '0.0' -dqadd3150 fma 1 '00.0' '0.00' -> '0.00' -dqadd3151 fma 1 '0.00' '00.0' -> '0.00' -dqadd3152 fma 1 '3' '.3' -> '3.3' -dqadd3153 fma 1 '3.' '.3' -> '3.3' -dqadd3154 fma 1 '3.0' '.3' -> '3.3' -dqadd3155 fma 1 '3.00' '.3' -> '3.30' -dqadd3156 fma 1 '3' '3' -> '6' -dqadd3157 fma 1 '3' '+3' -> '6' -dqadd3158 fma 1 '3' '-3' -> '0' -dqadd3159 fma 1 '0.3' '-0.3' -> '0.0' -dqadd3160 fma 1 '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -dqadd3161 fma 1 '1E+12' '-1' -> '999999999999' -dqadd3162 fma 1 '1E+12' '1.11' -> '1000000000001.11' -dqadd3163 fma 1 '1.11' '1E+12' -> '1000000000001.11' -dqadd3164 fma 1 '-1' '1E+12' -> '999999999999' -dqadd3165 fma 1 '7E+12' '-1' -> '6999999999999' -dqadd3166 fma 1 '7E+12' '1.11' -> '7000000000001.11' -dqadd3167 fma 1 '1.11' '7E+12' -> '7000000000001.11' -dqadd3168 fma 1 '-1' '7E+12' -> '6999999999999' - -rounding: half_up -dqadd3170 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded -dqadd3171 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded -dqadd3172 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded -dqadd3173 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded -dqadd3174 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd3175 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd3176 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd3177 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded -dqadd3178 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded -dqadd3179 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd3180 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd3181 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd3182 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded -dqadd3183 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded - --- and some more, including residue effects and different roundings -rounding: half_up -dqadd3200 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' -dqadd3201 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3202 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3203 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3204 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3205 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3206 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3207 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3208 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3209 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3210 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3211 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3212 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3213 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3214 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3215 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3216 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' -dqadd3217 fma 1 '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3218 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3219 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded - -rounding: half_even -dqadd3220 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' -dqadd3221 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3222 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3223 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3224 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3225 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3226 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3227 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3228 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3229 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3230 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3231 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3232 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3233 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3234 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3235 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3236 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' -dqadd3237 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3238 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3239 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded --- critical few with even bottom digit... -dqadd3240 fma 1 '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded -dqadd3241 fma 1 '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded -dqadd3242 fma 1 '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded - -rounding: down -dqadd3250 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' -dqadd3251 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3252 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3253 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3254 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3255 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3256 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3257 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3258 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3259 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3260 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3261 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3262 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3263 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3264 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3265 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded -dqadd3266 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' -dqadd3267 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3268 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded -dqadd3269 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded - --- 1 in last place tests -rounding: half_up -dqadd3301 fma 1 -1 1 -> 0 -dqadd3302 fma 1 0 1 -> 1 -dqadd3303 fma 1 1 1 -> 2 -dqadd3304 fma 1 12 1 -> 13 -dqadd3305 fma 1 98 1 -> 99 -dqadd3306 fma 1 99 1 -> 100 -dqadd3307 fma 1 100 1 -> 101 -dqadd3308 fma 1 101 1 -> 102 -dqadd3309 fma 1 -1 -1 -> -2 -dqadd3310 fma 1 0 -1 -> -1 -dqadd3311 fma 1 1 -1 -> 0 -dqadd3312 fma 1 12 -1 -> 11 -dqadd3313 fma 1 98 -1 -> 97 -dqadd3314 fma 1 99 -1 -> 98 -dqadd3315 fma 1 100 -1 -> 99 -dqadd3316 fma 1 101 -1 -> 100 - -dqadd3321 fma 1 -0.01 0.01 -> 0.00 -dqadd3322 fma 1 0.00 0.01 -> 0.01 -dqadd3323 fma 1 0.01 0.01 -> 0.02 -dqadd3324 fma 1 0.12 0.01 -> 0.13 -dqadd3325 fma 1 0.98 0.01 -> 0.99 -dqadd3326 fma 1 0.99 0.01 -> 1.00 -dqadd3327 fma 1 1.00 0.01 -> 1.01 -dqadd3328 fma 1 1.01 0.01 -> 1.02 -dqadd3329 fma 1 -0.01 -0.01 -> -0.02 -dqadd3330 fma 1 0.00 -0.01 -> -0.01 -dqadd3331 fma 1 0.01 -0.01 -> 0.00 -dqadd3332 fma 1 0.12 -0.01 -> 0.11 -dqadd3333 fma 1 0.98 -0.01 -> 0.97 -dqadd3334 fma 1 0.99 -0.01 -> 0.98 -dqadd3335 fma 1 1.00 -0.01 -> 0.99 -dqadd3336 fma 1 1.01 -0.01 -> 1.00 - --- some more cases where adding 0 affects the coefficient -dqadd3340 fma 1 1E+3 0 -> 1000 -dqadd3341 fma 1 1E+33 0 -> 1000000000000000000000000000000000 -dqadd3342 fma 1 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded -dqadd3343 fma 1 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded --- which simply follow from these cases ... -dqadd3344 fma 1 1E+3 1 -> 1001 -dqadd3345 fma 1 1E+33 1 -> 1000000000000000000000000000000001 -dqadd3346 fma 1 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd3347 fma 1 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded -dqadd3348 fma 1 1E+3 7 -> 1007 -dqadd3349 fma 1 1E+33 7 -> 1000000000000000000000000000000007 -dqadd3350 fma 1 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded -dqadd3351 fma 1 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded - --- tryzeros cases -rounding: half_up -dqadd3360 fma 1 0E+50 10000E+1 -> 1.0000E+5 -dqadd3361 fma 1 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded -dqadd3362 fma 1 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded -dqadd3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact -dqadd3364 fma 1 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111 --- 1 234567890123456789012345678901234 - --- a curiosity from JSR 13 testing -rounding: half_down -dqadd3370 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 -dqadd3371 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact -rounding: half_up -dqadd3372 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 -dqadd3373 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact -rounding: half_even -dqadd3374 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 -dqadd3375 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact - --- ulp replacement tests -dqadd3400 fma 1 1 77e-32 -> 1.00000000000000000000000000000077 -dqadd3401 fma 1 1 77e-33 -> 1.000000000000000000000000000000077 -dqadd3402 fma 1 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded -dqadd3403 fma 1 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded -dqadd3404 fma 1 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd3405 fma 1 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd3406 fma 1 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd3410 fma 1 10 77e-32 -> 10.00000000000000000000000000000077 -dqadd3411 fma 1 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded -dqadd3412 fma 1 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded -dqadd3413 fma 1 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd3414 fma 1 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd3415 fma 1 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd3416 fma 1 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded - -dqadd3420 fma 1 77e-32 1 -> 1.00000000000000000000000000000077 -dqadd3421 fma 1 77e-33 1 -> 1.000000000000000000000000000000077 -dqadd3422 fma 1 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded -dqadd3423 fma 1 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded -dqadd3424 fma 1 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd3425 fma 1 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd3426 fma 1 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd3430 fma 1 77e-32 10 -> 10.00000000000000000000000000000077 -dqadd3431 fma 1 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded -dqadd3432 fma 1 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded -dqadd3433 fma 1 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd3434 fma 1 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd3435 fma 1 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd3436 fma 1 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded - --- negative ulps -dqadd36440 fma 1 1 -77e-32 -> 0.99999999999999999999999999999923 -dqadd36441 fma 1 1 -77e-33 -> 0.999999999999999999999999999999923 -dqadd36442 fma 1 1 -77e-34 -> 0.9999999999999999999999999999999923 -dqadd36443 fma 1 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded -dqadd36444 fma 1 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded -dqadd36445 fma 1 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd36446 fma 1 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd36450 fma 1 10 -77e-32 -> 9.99999999999999999999999999999923 -dqadd36451 fma 1 10 -77e-33 -> 9.999999999999999999999999999999923 -dqadd36452 fma 1 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded -dqadd36453 fma 1 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded -dqadd36454 fma 1 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd36455 fma 1 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd36456 fma 1 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded - -dqadd36460 fma 1 -77e-32 1 -> 0.99999999999999999999999999999923 -dqadd36461 fma 1 -77e-33 1 -> 0.999999999999999999999999999999923 -dqadd36462 fma 1 -77e-34 1 -> 0.9999999999999999999999999999999923 -dqadd36463 fma 1 -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded -dqadd36464 fma 1 -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded -dqadd36465 fma 1 -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded -dqadd36466 fma 1 -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded - -dqadd36470 fma 1 -77e-32 10 -> 9.99999999999999999999999999999923 -dqadd36471 fma 1 -77e-33 10 -> 9.999999999999999999999999999999923 -dqadd36472 fma 1 -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded -dqadd36473 fma 1 -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded -dqadd36474 fma 1 -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd36475 fma 1 -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded -dqadd36476 fma 1 -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded - --- negative ulps -dqadd36480 fma 1 -1 77e-32 -> -0.99999999999999999999999999999923 -dqadd36481 fma 1 -1 77e-33 -> -0.999999999999999999999999999999923 -dqadd36482 fma 1 -1 77e-34 -> -0.9999999999999999999999999999999923 -dqadd36483 fma 1 -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded -dqadd36484 fma 1 -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded -dqadd36485 fma 1 -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded -dqadd36486 fma 1 -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded - -dqadd36490 fma 1 -10 77e-32 -> -9.99999999999999999999999999999923 -dqadd36491 fma 1 -10 77e-33 -> -9.999999999999999999999999999999923 -dqadd36492 fma 1 -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded -dqadd36493 fma 1 -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded -dqadd36494 fma 1 -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd36495 fma 1 -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd36496 fma 1 -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded - -dqadd36500 fma 1 77e-32 -1 -> -0.99999999999999999999999999999923 -dqadd36501 fma 1 77e-33 -1 -> -0.999999999999999999999999999999923 -dqadd36502 fma 1 77e-34 -1 -> -0.9999999999999999999999999999999923 -dqadd36503 fma 1 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded -dqadd36504 fma 1 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded -dqadd36505 fma 1 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded -dqadd36506 fma 1 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded - -dqadd36510 fma 1 77e-32 -10 -> -9.99999999999999999999999999999923 -dqadd36511 fma 1 77e-33 -10 -> -9.999999999999999999999999999999923 -dqadd36512 fma 1 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded -dqadd36513 fma 1 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded -dqadd36514 fma 1 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd36515 fma 1 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded -dqadd36516 fma 1 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded - --- and some more residue effects and different roundings -rounding: half_up -dqadd36540 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' -dqadd36541 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36542 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36543 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36544 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36545 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36546 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36547 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36548 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36549 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36550 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36551 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36552 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36553 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36554 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36555 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36556 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' -dqadd36557 fma 1 '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36558 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36559 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded - -rounding: half_even -dqadd36560 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' -dqadd36561 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36562 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36563 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36564 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36565 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36566 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36567 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd36568 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36569 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36570 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36571 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36572 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36573 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36574 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36575 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36576 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' -dqadd36577 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36578 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd36579 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded - --- critical few with even bottom digit... -dqadd37540 fma 1 '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded -dqadd37541 fma 1 '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded -dqadd37542 fma 1 '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded - -rounding: down -dqadd37550 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' -dqadd37551 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37552 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37553 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37554 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37555 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37556 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37557 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37558 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37559 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37560 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37561 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37562 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37563 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37564 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37565 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded -dqadd37566 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' -dqadd37567 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd37568 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded -dqadd37569 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded - --- more zeros, etc. -rounding: half_even - -dqadd37701 fma 1 5.00 1.00E-3 -> 5.00100 -dqadd37702 fma 1 00.00 0.000 -> 0.000 -dqadd37703 fma 1 00.00 0E-3 -> 0.000 -dqadd37704 fma 1 0E-3 00.00 -> 0.000 - -dqadd37710 fma 1 0E+3 00.00 -> 0.00 -dqadd37711 fma 1 0E+3 00.0 -> 0.0 -dqadd37712 fma 1 0E+3 00. -> 0 -dqadd37713 fma 1 0E+3 00.E+1 -> 0E+1 -dqadd37714 fma 1 0E+3 00.E+2 -> 0E+2 -dqadd37715 fma 1 0E+3 00.E+3 -> 0E+3 -dqadd37716 fma 1 0E+3 00.E+4 -> 0E+3 -dqadd37717 fma 1 0E+3 00.E+5 -> 0E+3 -dqadd37718 fma 1 0E+3 -00.0 -> 0.0 -dqadd37719 fma 1 0E+3 -00. -> 0 -dqadd37731 fma 1 0E+3 -00.E+1 -> 0E+1 - -dqadd37720 fma 1 00.00 0E+3 -> 0.00 -dqadd37721 fma 1 00.0 0E+3 -> 0.0 -dqadd37722 fma 1 00. 0E+3 -> 0 -dqadd37723 fma 1 00.E+1 0E+3 -> 0E+1 -dqadd37724 fma 1 00.E+2 0E+3 -> 0E+2 -dqadd37725 fma 1 00.E+3 0E+3 -> 0E+3 -dqadd37726 fma 1 00.E+4 0E+3 -> 0E+3 -dqadd37727 fma 1 00.E+5 0E+3 -> 0E+3 -dqadd37728 fma 1 -00.00 0E+3 -> 0.00 -dqadd37729 fma 1 -00.0 0E+3 -> 0.0 -dqadd37730 fma 1 -00. 0E+3 -> 0 - -dqadd37732 fma 1 0 0 -> 0 -dqadd37733 fma 1 0 -0 -> 0 -dqadd37734 fma 1 -0 0 -> 0 -dqadd37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case - -dqadd37736 fma 1 1 -1 -> 0 -dqadd37737 fma 1 -1 -1 -> -2 -dqadd37738 fma 1 1 1 -> 2 -dqadd37739 fma 1 -1 1 -> 0 - -dqadd37741 fma 1 0 -1 -> -1 -dqadd37742 fma 1 -0 -1 -> -1 -dqadd37743 fma 1 0 1 -> 1 -dqadd37744 fma 1 -0 1 -> 1 -dqadd37745 fma 1 -1 0 -> -1 -dqadd37746 fma 1 -1 -0 -> -1 -dqadd37747 fma 1 1 0 -> 1 -dqadd37748 fma 1 1 -0 -> 1 - -dqadd37751 fma 1 0.0 -1 -> -1.0 -dqadd37752 fma 1 -0.0 -1 -> -1.0 -dqadd37753 fma 1 0.0 1 -> 1.0 -dqadd37754 fma 1 -0.0 1 -> 1.0 -dqadd37755 fma 1 -1.0 0 -> -1.0 -dqadd37756 fma 1 -1.0 -0 -> -1.0 -dqadd37757 fma 1 1.0 0 -> 1.0 -dqadd37758 fma 1 1.0 -0 -> 1.0 - -dqadd37761 fma 1 0 -1.0 -> -1.0 -dqadd37762 fma 1 -0 -1.0 -> -1.0 -dqadd37763 fma 1 0 1.0 -> 1.0 -dqadd37764 fma 1 -0 1.0 -> 1.0 -dqadd37765 fma 1 -1 0.0 -> -1.0 -dqadd37766 fma 1 -1 -0.0 -> -1.0 -dqadd37767 fma 1 1 0.0 -> 1.0 -dqadd37768 fma 1 1 -0.0 -> 1.0 - -dqadd37771 fma 1 0.0 -1.0 -> -1.0 -dqadd37772 fma 1 -0.0 -1.0 -> -1.0 -dqadd37773 fma 1 0.0 1.0 -> 1.0 -dqadd37774 fma 1 -0.0 1.0 -> 1.0 -dqadd37775 fma 1 -1.0 0.0 -> -1.0 -dqadd37776 fma 1 -1.0 -0.0 -> -1.0 -dqadd37777 fma 1 1.0 0.0 -> 1.0 -dqadd37778 fma 1 1.0 -0.0 -> 1.0 - --- Specials -dqadd37780 fma 1 -Inf -Inf -> -Infinity -dqadd37781 fma 1 -Inf -1000 -> -Infinity -dqadd37782 fma 1 -Inf -1 -> -Infinity -dqadd37783 fma 1 -Inf -0 -> -Infinity -dqadd37784 fma 1 -Inf 0 -> -Infinity -dqadd37785 fma 1 -Inf 1 -> -Infinity -dqadd37786 fma 1 -Inf 1000 -> -Infinity -dqadd37787 fma 1 -1000 -Inf -> -Infinity -dqadd37788 fma 1 -Inf -Inf -> -Infinity -dqadd37789 fma 1 -1 -Inf -> -Infinity -dqadd37790 fma 1 -0 -Inf -> -Infinity -dqadd37791 fma 1 0 -Inf -> -Infinity -dqadd37792 fma 1 1 -Inf -> -Infinity -dqadd37793 fma 1 1000 -Inf -> -Infinity -dqadd37794 fma 1 Inf -Inf -> NaN Invalid_operation - -dqadd37800 fma 1 Inf -Inf -> NaN Invalid_operation -dqadd37801 fma 1 Inf -1000 -> Infinity -dqadd37802 fma 1 Inf -1 -> Infinity -dqadd37803 fma 1 Inf -0 -> Infinity -dqadd37804 fma 1 Inf 0 -> Infinity -dqadd37805 fma 1 Inf 1 -> Infinity -dqadd37806 fma 1 Inf 1000 -> Infinity -dqadd37807 fma 1 Inf Inf -> Infinity -dqadd37808 fma 1 -1000 Inf -> Infinity -dqadd37809 fma 1 -Inf Inf -> NaN Invalid_operation -dqadd37810 fma 1 -1 Inf -> Infinity -dqadd37811 fma 1 -0 Inf -> Infinity -dqadd37812 fma 1 0 Inf -> Infinity -dqadd37813 fma 1 1 Inf -> Infinity -dqadd37814 fma 1 1000 Inf -> Infinity -dqadd37815 fma 1 Inf Inf -> Infinity - -dqadd37821 fma 1 NaN -Inf -> NaN -dqadd37822 fma 1 NaN -1000 -> NaN -dqadd37823 fma 1 NaN -1 -> NaN -dqadd37824 fma 1 NaN -0 -> NaN -dqadd37825 fma 1 NaN 0 -> NaN -dqadd37826 fma 1 NaN 1 -> NaN -dqadd37827 fma 1 NaN 1000 -> NaN -dqadd37828 fma 1 NaN Inf -> NaN -dqadd37829 fma 1 NaN NaN -> NaN -dqadd37830 fma 1 -Inf NaN -> NaN -dqadd37831 fma 1 -1000 NaN -> NaN -dqadd37832 fma 1 -1 NaN -> NaN -dqadd37833 fma 1 -0 NaN -> NaN -dqadd37834 fma 1 0 NaN -> NaN -dqadd37835 fma 1 1 NaN -> NaN -dqadd37836 fma 1 1000 NaN -> NaN -dqadd37837 fma 1 Inf NaN -> NaN - -dqadd37841 fma 1 sNaN -Inf -> NaN Invalid_operation -dqadd37842 fma 1 sNaN -1000 -> NaN Invalid_operation -dqadd37843 fma 1 sNaN -1 -> NaN Invalid_operation -dqadd37844 fma 1 sNaN -0 -> NaN Invalid_operation -dqadd37845 fma 1 sNaN 0 -> NaN Invalid_operation -dqadd37846 fma 1 sNaN 1 -> NaN Invalid_operation -dqadd37847 fma 1 sNaN 1000 -> NaN Invalid_operation -dqadd37848 fma 1 sNaN NaN -> NaN Invalid_operation -dqadd37849 fma 1 sNaN sNaN -> NaN Invalid_operation -dqadd37850 fma 1 NaN sNaN -> NaN Invalid_operation -dqadd37851 fma 1 -Inf sNaN -> NaN Invalid_operation -dqadd37852 fma 1 -1000 sNaN -> NaN Invalid_operation -dqadd37853 fma 1 -1 sNaN -> NaN Invalid_operation -dqadd37854 fma 1 -0 sNaN -> NaN Invalid_operation -dqadd37855 fma 1 0 sNaN -> NaN Invalid_operation -dqadd37856 fma 1 1 sNaN -> NaN Invalid_operation -dqadd37857 fma 1 1000 sNaN -> NaN Invalid_operation -dqadd37858 fma 1 Inf sNaN -> NaN Invalid_operation -dqadd37859 fma 1 NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqadd37861 fma 1 NaN1 -Inf -> NaN1 -dqadd37862 fma 1 +NaN2 -1000 -> NaN2 -dqadd37863 fma 1 NaN3 1000 -> NaN3 -dqadd37864 fma 1 NaN4 Inf -> NaN4 -dqadd37865 fma 1 NaN5 +NaN6 -> NaN5 -dqadd37866 fma 1 -Inf NaN7 -> NaN7 -dqadd37867 fma 1 -1000 NaN8 -> NaN8 -dqadd37868 fma 1 1000 NaN9 -> NaN9 -dqadd37869 fma 1 Inf +NaN10 -> NaN10 -dqadd37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation -dqadd37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation -dqadd37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation -dqadd37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation -dqadd37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation -dqadd37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation -dqadd37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation -dqadd37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation -dqadd37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation -dqadd37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation -dqadd37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation -dqadd37882 fma 1 -NaN26 NaN28 -> -NaN26 -dqadd37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation -dqadd37884 fma 1 1000 -NaN30 -> -NaN30 -dqadd37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation - --- Here we explore near the boundary of rounding a subnormal to Nmin -dqadd37575 fma 1 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal -dqadd37576 fma 1 -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal - --- check overflow edge case --- 1234567890123456 -dqadd37972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqadd37973 fma 1 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37974 fma 1 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37975 fma 1 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded -dqadd37976 fma 1 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded -dqadd37977 fma 1 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded -dqadd37978 fma 1 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded -dqadd37979 fma 1 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded -dqadd37980 fma 1 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded -dqadd37981 fma 1 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37982 fma 1 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37983 fma 1 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37984 fma 1 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded - -dqadd37985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 -dqadd37986 fma 1 -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37987 fma 1 -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37988 fma 1 -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded -dqadd37989 fma 1 -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded -dqadd37990 fma 1 -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded -dqadd37991 fma 1 -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded -dqadd37992 fma 1 -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded -dqadd37993 fma 1 -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded -dqadd37994 fma 1 -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37995 fma 1 -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37996 fma 1 -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded -dqadd37997 fma 1 -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded - --- And for round down full and subnormal results -rounding: down -dqadd371100 fma 1 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact -dqadd371101 fma 1 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact -dqadd371103 fma 1 +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact -dqadd371104 fma 1 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact -dqadd371105 fma 1 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact -dqadd371106 fma 1 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact -dqadd371107 fma 1 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact -dqadd371108 fma 1 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact -dqadd371109 fma 1 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact - -rounding: ceiling -dqadd371110 fma 1 -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact -dqadd371111 fma 1 -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact -dqadd371113 fma 1 -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact -dqadd371114 fma 1 -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact -dqadd371115 fma 1 -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact -dqadd371116 fma 1 -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact -dqadd371117 fma 1 -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact -dqadd371118 fma 1 -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact -dqadd371119 fma 1 -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact - --- tests based on Gunnar Degnbol's edge case -rounding: half_even - -dqadd371300 fma 1 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371310 fma 1 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371311 fma 1 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371312 fma 1 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371313 fma 1 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371314 fma 1 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371315 fma 1 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371316 fma 1 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371317 fma 1 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371318 fma 1 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371319 fma 1 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371320 fma 1 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371321 fma 1 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371322 fma 1 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371323 fma 1 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371324 fma 1 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371325 fma 1 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371326 fma 1 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371327 fma 1 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371328 fma 1 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371329 fma 1 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371330 fma 1 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371331 fma 1 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371332 fma 1 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371333 fma 1 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371334 fma 1 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371335 fma 1 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371336 fma 1 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371337 fma 1 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371338 fma 1 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371339 fma 1 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded - -dqadd371340 fma 1 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded -dqadd371341 fma 1 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded - -dqadd371349 fma 1 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371350 fma 1 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371351 fma 1 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371352 fma 1 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371353 fma 1 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371354 fma 1 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371355 fma 1 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371356 fma 1 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371357 fma 1 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371358 fma 1 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371359 fma 1 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371360 fma 1 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371361 fma 1 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371362 fma 1 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371363 fma 1 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371364 fma 1 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded -dqadd371365 fma 1 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371367 fma 1 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371368 fma 1 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371369 fma 1 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371370 fma 1 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371371 fma 1 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371372 fma 1 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371373 fma 1 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371374 fma 1 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371375 fma 1 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371376 fma 1 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371377 fma 1 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371378 fma 1 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371379 fma 1 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371380 fma 1 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371381 fma 1 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371382 fma 1 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371383 fma 1 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371384 fma 1 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371385 fma 1 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371386 fma 1 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371387 fma 1 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371388 fma 1 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371389 fma 1 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371390 fma 1 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371391 fma 1 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371392 fma 1 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371393 fma 1 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371394 fma 1 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371395 fma 1 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded -dqadd371396 fma 1 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -dqadd371420 fma 1 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345 -dqadd371421 fma 1 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345 -dqadd371422 fma 1 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345 -dqadd371423 fma 1 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345 -dqadd371424 fma 1 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345 -dqadd371425 fma 1 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345 -dqadd371426 fma 1 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345 -dqadd371427 fma 1 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7 -dqadd371428 fma 1 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8 -dqadd371429 fma 1 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9 -dqadd371430 fma 1 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10 -dqadd371431 fma 1 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11 -dqadd371432 fma 1 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12 -dqadd371433 fma 1 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13 -dqadd371434 fma 1 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14 -dqadd371435 fma 1 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15 -dqadd371436 fma 1 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16 -dqadd371437 fma 1 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17 -dqadd371438 fma 1 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18 -dqadd371439 fma 1 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19 -dqadd371440 fma 1 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20 -dqadd371441 fma 1 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21 -dqadd371442 fma 1 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22 -dqadd371443 fma 1 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23 -dqadd371444 fma 1 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24 -dqadd371445 fma 1 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25 -dqadd371446 fma 1 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26 -dqadd371447 fma 1 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27 -dqadd371448 fma 1 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28 -dqadd371449 fma 1 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29 -dqadd371450 fma 1 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30 -dqadd371451 fma 1 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31 -dqadd371452 fma 1 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32 -dqadd371453 fma 1 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33 -dqadd371454 fma 1 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34 -dqadd371455 fma 1 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35 -dqadd371456 fma 1 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36 - --- same, reversed 0 -dqadd371460 fma 1 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345 -dqadd371461 fma 1 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345 -dqadd371462 fma 1 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345 -dqadd371463 fma 1 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345 -dqadd371464 fma 1 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345 -dqadd371465 fma 1 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345 -dqadd371466 fma 1 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345 -dqadd371467 fma 1 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7 -dqadd371468 fma 1 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8 -dqadd371469 fma 1 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9 -dqadd371470 fma 1 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10 -dqadd371471 fma 1 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11 -dqadd371472 fma 1 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12 -dqadd371473 fma 1 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13 -dqadd371474 fma 1 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14 -dqadd371475 fma 1 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15 -dqadd371476 fma 1 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16 -dqadd371477 fma 1 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17 -dqadd371478 fma 1 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18 -dqadd371479 fma 1 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19 -dqadd371480 fma 1 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20 -dqadd371481 fma 1 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21 -dqadd371482 fma 1 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22 -dqadd371483 fma 1 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23 -dqadd371484 fma 1 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24 -dqadd371485 fma 1 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25 -dqadd371486 fma 1 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26 -dqadd371487 fma 1 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27 -dqadd371488 fma 1 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28 -dqadd371489 fma 1 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29 -dqadd371490 fma 1 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30 -dqadd371491 fma 1 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31 -dqadd371492 fma 1 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32 -dqadd371493 fma 1 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33 -dqadd371494 fma 1 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34 -dqadd371495 fma 1 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35 -dqadd371496 fma 1 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36 - --- same, Es on the 0 -dqadd371500 fma 1 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345 -dqadd371501 fma 1 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345 -dqadd371502 fma 1 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345 -dqadd371503 fma 1 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345 -dqadd371504 fma 1 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345 -dqadd371505 fma 1 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345 -dqadd371506 fma 1 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345 -dqadd371507 fma 1 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345 -dqadd371508 fma 1 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345 -dqadd371509 fma 1 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345 -dqadd371510 fma 1 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345 -dqadd371511 fma 1 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345 -dqadd371512 fma 1 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345 -dqadd371513 fma 1 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345 -dqadd371514 fma 1 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345 -dqadd371515 fma 1 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345 -dqadd371516 fma 1 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345 -dqadd371517 fma 1 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345 -dqadd371518 fma 1 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345 -dqadd371519 fma 1 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345 -dqadd371520 fma 1 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345 -dqadd371521 fma 1 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345 -dqadd371522 fma 1 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345 -dqadd371523 fma 1 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345 -dqadd371524 fma 1 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345 -dqadd371525 fma 1 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345 -dqadd371526 fma 1 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345 -dqadd371527 fma 1 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345 -dqadd371528 fma 1 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345 -dqadd371529 fma 1 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345 -dqadd371530 fma 1 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345 -dqadd371531 fma 1 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345 -dqadd371532 fma 1 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345 -dqadd371533 fma 1 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345 --- next four flag Rounded because the 0 extends the result -dqadd371534 fma 1 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded -dqadd371535 fma 1 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded -dqadd371536 fma 1 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded -dqadd371537 fma 1 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -rounding: half_up --- exact zeros from zeros -dqadd371600 fma 1 0 0E-19 -> 0E-19 -dqadd371601 fma 1 -0 0E-19 -> 0E-19 -dqadd371602 fma 1 0 -0E-19 -> 0E-19 -dqadd371603 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371611 fma 1 -11 11 -> 0 -dqadd371612 fma 1 11 -11 -> 0 --- overflow -dqadd371613 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded -dqadd371614 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded - -rounding: half_down --- exact zeros from zeros -dqadd371620 fma 1 0 0E-19 -> 0E-19 -dqadd371621 fma 1 -0 0E-19 -> 0E-19 -dqadd371622 fma 1 0 -0E-19 -> 0E-19 -dqadd371623 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371631 fma 1 -11 11 -> 0 -dqadd371632 fma 1 11 -11 -> 0 --- overflow -dqadd371633 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded -dqadd371634 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded - -rounding: half_even --- exact zeros from zeros -dqadd371640 fma 1 0 0E-19 -> 0E-19 -dqadd371641 fma 1 -0 0E-19 -> 0E-19 -dqadd371642 fma 1 0 -0E-19 -> 0E-19 -dqadd371643 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371651 fma 1 -11 11 -> 0 -dqadd371652 fma 1 11 -11 -> 0 --- overflow -dqadd371653 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded -dqadd371654 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded - -rounding: up --- exact zeros from zeros -dqadd371660 fma 1 0 0E-19 -> 0E-19 -dqadd371661 fma 1 -0 0E-19 -> 0E-19 -dqadd371662 fma 1 0 -0E-19 -> 0E-19 -dqadd371663 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371671 fma 1 -11 11 -> 0 -dqadd371672 fma 1 11 -11 -> 0 --- overflow -dqadd371673 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded -dqadd371674 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded - -rounding: down --- exact zeros from zeros -dqadd371680 fma 1 0 0E-19 -> 0E-19 -dqadd371681 fma 1 -0 0E-19 -> 0E-19 -dqadd371682 fma 1 0 -0E-19 -> 0E-19 -dqadd371683 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371691 fma 1 -11 11 -> 0 -dqadd371692 fma 1 11 -11 -> 0 --- overflow -dqadd371693 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded -dqadd371694 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded - -rounding: ceiling --- exact zeros from zeros -dqadd371700 fma 1 0 0E-19 -> 0E-19 -dqadd371701 fma 1 -0 0E-19 -> 0E-19 -dqadd371702 fma 1 0 -0E-19 -> 0E-19 -dqadd371703 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371711 fma 1 -11 11 -> 0 -dqadd371712 fma 1 11 -11 -> 0 --- overflow -dqadd371713 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded -dqadd371714 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -dqadd371720 fma 1 0 0E-19 -> 0E-19 -dqadd371721 fma 1 -0 0E-19 -> -0E-19 -- * -dqadd371722 fma 1 0 -0E-19 -> -0E-19 -- * -dqadd371723 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371731 fma 1 -11 11 -> -0 -- * -dqadd371732 fma 1 11 -11 -> -0 -- * --- overflow -dqadd371733 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded -dqadd371734 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded - -rounding: 05up --- exact zeros from zeros -dqadd371740 fma 1 0 0E-19 -> 0E-19 -dqadd371741 fma 1 -0 0E-19 -> 0E-19 -dqadd371742 fma 1 0 -0E-19 -> 0E-19 -dqadd371743 fma 1 -0 -0E-19 -> -0E-19 --- exact zeros from non-zeros -dqadd371751 fma 1 -11 11 -> 0 -dqadd371752 fma 1 11 -11 -> 0 --- overflow -dqadd371753 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded -dqadd371754 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded - --- Examples from SQL proposal (Krishna Kulkarni) -dqadd371761 fma 1 130E-2 120E-2 -> 2.50 -dqadd371762 fma 1 130E-2 12E-1 -> 2.50 -dqadd371763 fma 1 130E-2 1E0 -> 2.30 -dqadd371764 fma 1 1E2 1E4 -> 1.01E+4 -dqadd371765 fma 1 130E-2 -120E-2 -> 0.10 -dqadd371766 fma 1 130E-2 -12E-1 -> 0.10 -dqadd371767 fma 1 130E-2 -1E0 -> 0.30 -dqadd371768 fma 1 1E2 -1E4 -> -9.9E+3 - --- Gappy coefficients; check residue handling even with full coefficient gap -rounding: half_even - -dqadd375001 fma 1 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457 -dqadd375002 fma 1 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded -dqadd375003 fma 1 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375004 fma 1 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375005 fma 1 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375006 fma 1 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375007 fma 1 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375008 fma 1 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375009 fma 1 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375010 fma 1 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375011 fma 1 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375012 fma 1 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375013 fma 1 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375014 fma 1 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375015 fma 1 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375016 fma 1 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375017 fma 1 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375018 fma 1 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375019 fma 1 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375020 fma 1 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded -dqadd375021 fma 1 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded - --- widening second argument at gap -dqadd375030 fma 1 12398765432112345678945678 1 -> 12398765432112345678945679 -dqadd375031 fma 1 12398765432112345678945678 0.1 -> 12398765432112345678945678.1 -dqadd375032 fma 1 12398765432112345678945678 0.12 -> 12398765432112345678945678.12 -dqadd375033 fma 1 12398765432112345678945678 0.123 -> 12398765432112345678945678.123 -dqadd375034 fma 1 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234 -dqadd375035 fma 1 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345 -dqadd375036 fma 1 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456 -dqadd375037 fma 1 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567 -dqadd375038 fma 1 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678 -dqadd375039 fma 1 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375040 fma 1 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded -dqadd375041 fma 1 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded -dqadd375042 fma 1 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375043 fma 1 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375044 fma 1 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375045 fma 1 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375046 fma 1 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375047 fma 1 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375048 fma 1 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded -dqadd375049 fma 1 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded --- 90123456 -rounding: half_even -dqadd375050 fma 1 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded -dqadd375051 fma 1 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded -dqadd375052 fma 1 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded -dqadd375053 fma 1 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded -dqadd375054 fma 1 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded -dqadd375055 fma 1 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded -dqadd375056 fma 1 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded -dqadd375057 fma 1 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded -dqadd375060 fma 1 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded -dqadd375061 fma 1 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded -dqadd375062 fma 1 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded -dqadd375063 fma 1 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded -dqadd375064 fma 1 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded -dqadd375065 fma 1 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded -dqadd375066 fma 1 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded -dqadd375067 fma 1 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded --- far-out residues (full coefficient gap is 16+15 digits) -rounding: up -dqadd375070 fma 1 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001 -dqadd375071 fma 1 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375072 fma 1 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375073 fma 1 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375074 fma 1 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375075 fma 1 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375076 fma 1 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375077 fma 1 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375078 fma 1 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375079 fma 1 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375080 fma 1 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375081 fma 1 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375082 fma 1 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375083 fma 1 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375084 fma 1 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375085 fma 1 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375086 fma 1 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375087 fma 1 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375088 fma 1 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded -dqadd375089 fma 1 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded - --- Destructive subtract (from remainder tests) - --- +++ some of these will be off-by-one remainder vs remainderNear - -dqfma4000 fma -1234567890123456789012345678901233 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> -0.234567890123456789012345678901233 -dqfma4001 fma -1234567890123456789012345678901222 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> -0.34567890123456789012345678901222 -dqfma4002 fma -1234567890123456789012345678901111 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.4567890123456789012345678901111 -dqfma4003 fma -308641972530864197253086419725314 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> -1.308641972530864197253086419725314 -dqfma4004 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692 -dqfma4005 fma -246913578024691357802469135780252 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> -1.3086421975308642197530864219748 -dqfma4006 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247 -dqfma4007 fma -246913578024691357802469135780247 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> -0.753086421975308642197530864219753 -dqfma4008 fma -246913578024691357802469135780247 5.000000000000000000000000000000001 1234567890123456789012345678901234 -> -1.246913578024691357802469135780247 -dqfma4009 fma -246913578024691357802469135780246 5.00000000000000000000000000000001 1234567890123456789012345678901234 -> 1.53086421975308642197530864219754 -dqfma4010 fma -246913578024691357802469135780242 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.6913578024691357802469135780242 -dqfma4011 fma -1234567890123456789012345678901232 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> 0.765432109876543210987654321098768 -dqfma4012 fma -1234567890123456789012345678901221 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> 0.65432109876543210987654321098779 -dqfma4013 fma -1234567890123456789012345678901110 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> 0.5432109876543210987654321098890 -dqfma4014 fma -308641972530864197253086419725313 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> 2.691358027469135802746913580274687 -dqfma4015 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692 -dqfma4016 fma -246913578024691357802469135780251 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> 3.6913578024691357802469135780251 -dqfma4017 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247 -dqfma4018 fma -246913578024691357802469135780246 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> 4.246913578024691357802469135780246 -dqfma4019 fma -246913578024691357802469135780241 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> 4.3086421975308642197530864219759 - --- Null tests -dqadd39990 fma 1 10 # -> NaN Invalid_operation -dqadd39991 fma 1 # 10 -> NaN Invalid_operation - - diff --git a/qdecimal/test/tc_full/dqInvert.decTest b/qdecimal/test/tc_full/dqInvert.decTest deleted file mode 100644 index 81610dc..0000000 --- a/qdecimal/test/tc_full/dqInvert.decTest +++ /dev/null @@ -1,245 +0,0 @@ ------------------------------------------------------------------------- --- dqInvert.decTest -- digitwise logical INVERT for decQuads -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check (truth table) -dqinv001 invert 0 -> 1111111111111111111111111111111111 -dqinv002 invert 1 -> 1111111111111111111111111111111110 -dqinv003 invert 10 -> 1111111111111111111111111111111101 -dqinv004 invert 111111111 -> 1111111111111111111111111000000000 -dqinv005 invert 000000000 -> 1111111111111111111111111111111111 --- and at msd and msd-1 -dqinv007 invert 0000000000000000000000000000000000 -> 1111111111111111111111111111111111 -dqinv008 invert 1000000000000000000000000000000000 -> 111111111111111111111111111111111 -dqinv009 invert 0000000000000000000000000000000000 -> 1111111111111111111111111111111111 -dqinv010 invert 0100000000000000000000000000000000 -> 1011111111111111111111111111111111 -dqinv011 invert 0111111111111111111111111111111111 -> 1000000000000000000000000000000000 -dqinv012 invert 1111111111111111111111111111111111 -> 0 -dqinv013 invert 0011111111111111111111111111111111 -> 1100000000000000000000000000000000 -dqinv014 invert 0111111111111111111111111111111111 -> 1000000000000000000000000000000000 - --- Various lengths -dqinv600 invert 0111111111111111111011111111111111 -> 1000000000000000000100000000000000 -dqinv601 invert 0011111111111111110101111111111111 -> 1100000000000000001010000000000000 -dqinv602 invert 0101111111111111101110111111111111 -> 1010000000000000010001000000000000 -dqinv603 invert 0110111111111111011111011111111111 -> 1001000000000000100000100000000000 -dqinv604 invert 0111011111111110111111101111111111 -> 1000100000000001000000010000000000 -dqinv605 invert 0111101111111101111111110111111111 -> 1000010000000010000000001000000000 -dqinv606 invert 0111110111111011111111111011111111 -> 1000001000000100000000000100000000 -dqinv607 invert 0111111011110111111111111101111111 -> 1000000100001000000000000010000000 -dqinv608 invert 0111111101101111111111111110111111 -> 1000000010010000000000000001000000 -dqinv609 invert 0111111110011111111111111111011111 -> 1000000001100000000000000000100000 -dqinv610 invert 0111111110011111111111111111101111 -> 1000000001100000000000000000010000 -dqinv611 invert 0111111101101111111111111111110111 -> 1000000010010000000000000000001000 -dqinv612 invert 0111111011110111111111111111111011 -> 1000000100001000000000000000000100 -dqinv613 invert 0111110111111011111111111111111101 -> 1000001000000100000000000000000010 -dqinv614 invert 0111101111111101111111111111111110 -> 1000010000000010000000000000000001 -dqinv615 invert 0111011111111110111111111111111111 -> 1000100000000001000000000000000000 -dqinv616 invert 0110111111111111011111111111111110 -> 1001000000000000100000000000000001 -dqinv617 invert 0101111111111111101111111111111101 -> 1010000000000000010000000000000010 -dqinv618 invert 0011111111111111110111111111111011 -> 1100000000000000001000000000000100 -dqinv619 invert 0101111111111111111011111111110111 -> 1010000000000000000100000000001000 -dqinv620 invert 0110111111111111111101111111101111 -> 1001000000000000000010000000010000 -dqinv621 invert 0111011111111111111110111111011111 -> 1000100000000000000001000000100000 -dqinv622 invert 0111101111111111111111011110111111 -> 1000010000000000000000100001000000 -dqinv623 invert 0111110111111111111111101101111111 -> 1000001000000000000000010010000000 -dqinv624 invert 0111111011111111111111110011111111 -> 1000000100000000000000001100000000 -dqinv625 invert 0111111101111111111111110011111111 -> 1000000010000000000000001100000000 -dqinv626 invert 0111111110111111111111101101111111 -> 1000000001000000000000010010000000 -dqinv627 invert 0111111111011111111111011110111111 -> 1000000000100000000000100001000000 -dqinv628 invert 0111111111101111111110111111011111 -> 1000000000010000000001000000100000 -dqinv629 invert 0111111111110111111101111111101111 -> 1000000000001000000010000000010000 -dqinv630 invert 0111111111111011111011111111110111 -> 1000000000000100000100000000001000 -dqinv631 invert 0111111111111101110111111111111011 -> 1000000000000010001000000000000100 -dqinv632 invert 0111111111111110101111111111111101 -> 1000000000000001010000000000000010 -dqinv633 invert 0111111111111111011111111111111110 -> 1000000000000000100000000000000001 - -dqinv021 invert 111111111 -> 1111111111111111111111111000000000 -dqinv022 invert 111111111111 -> 1111111111111111111111000000000000 -dqinv023 invert 11111111 -> 1111111111111111111111111100000000 -dqinv025 invert 1111111 -> 1111111111111111111111111110000000 -dqinv026 invert 111111 -> 1111111111111111111111111111000000 -dqinv027 invert 11111 -> 1111111111111111111111111111100000 -dqinv028 invert 1111 -> 1111111111111111111111111111110000 -dqinv029 invert 111 -> 1111111111111111111111111111111000 -dqinv031 invert 11 -> 1111111111111111111111111111111100 -dqinv032 invert 1 -> 1111111111111111111111111111111110 -dqinv033 invert 111111111111 -> 1111111111111111111111000000000000 -dqinv034 invert 11111111111 -> 1111111111111111111111100000000000 -dqinv035 invert 1111111111 -> 1111111111111111111111110000000000 -dqinv036 invert 111111111 -> 1111111111111111111111111000000000 - -dqinv040 invert 011111111 -> 1111111111111111111111111100000000 -dqinv041 invert 101111111 -> 1111111111111111111111111010000000 -dqinv042 invert 110111111 -> 1111111111111111111111111001000000 -dqinv043 invert 111011111 -> 1111111111111111111111111000100000 -dqinv044 invert 111101111 -> 1111111111111111111111111000010000 -dqinv045 invert 111110111 -> 1111111111111111111111111000001000 -dqinv046 invert 111111011 -> 1111111111111111111111111000000100 -dqinv047 invert 111111101 -> 1111111111111111111111111000000010 -dqinv048 invert 111111110 -> 1111111111111111111111111000000001 -dqinv049 invert 011111011 -> 1111111111111111111111111100000100 -dqinv050 invert 101111101 -> 1111111111111111111111111010000010 -dqinv051 invert 110111110 -> 1111111111111111111111111001000001 -dqinv052 invert 111011101 -> 1111111111111111111111111000100010 -dqinv053 invert 111101011 -> 1111111111111111111111111000010100 -dqinv054 invert 111110111 -> 1111111111111111111111111000001000 -dqinv055 invert 111101011 -> 1111111111111111111111111000010100 -dqinv056 invert 111011101 -> 1111111111111111111111111000100010 -dqinv057 invert 110111110 -> 1111111111111111111111111001000001 -dqinv058 invert 101111101 -> 1111111111111111111111111010000010 -dqinv059 invert 011111011 -> 1111111111111111111111111100000100 - -dqinv080 invert 1000000011111111 -> 1111111111111111110111111100000000 -dqinv081 invert 0100000101111111 -> 1111111111111111111011111010000000 -dqinv082 invert 0010000110111111 -> 1111111111111111111101111001000000 -dqinv083 invert 0001000111011111 -> 1111111111111111111110111000100000 -dqinv084 invert 0000100111101111 -> 1111111111111111111111011000010000 -dqinv085 invert 0000010111110111 -> 1111111111111111111111101000001000 -dqinv086 invert 0000001111111011 -> 1111111111111111111111110000000100 -dqinv087 invert 0000010111111101 -> 1111111111111111111111101000000010 -dqinv088 invert 0000100111111110 -> 1111111111111111111111011000000001 -dqinv089 invert 0001000011111011 -> 1111111111111111111110111100000100 -dqinv090 invert 0010000101111101 -> 1111111111111111111101111010000010 -dqinv091 invert 0100000110111110 -> 1111111111111111111011111001000001 -dqinv092 invert 1000000111011101 -> 1111111111111111110111111000100010 -dqinv093 invert 0100000111101011 -> 1111111111111111111011111000010100 -dqinv094 invert 0010000111110111 -> 1111111111111111111101111000001000 -dqinv095 invert 0001000111101011 -> 1111111111111111111110111000010100 -dqinv096 invert 0000100111011101 -> 1111111111111111111111011000100010 -dqinv097 invert 0000010110111110 -> 1111111111111111111111101001000001 -dqinv098 invert 0000001101111101 -> 1111111111111111111111110010000010 -dqinv099 invert 0000010011111011 -> 1111111111111111111111101100000100 - --- and more thorough MSD/LSD tests [8 and 9 mght be encoded differently...] -dqinv151 invert 1111111111111111111111111111111110 -> 1 -dqinv152 invert 1111111111111111110000000000000000 -> 1111111111111111 -dqinv153 invert 1000000000000000001111111111111111 -> 111111111111111110000000000000000 -dqinv154 invert 1111111111111111111000000000000000 -> 111111111111111 -dqinv155 invert 0100000000000000000111111111111111 -> 1011111111111111111000000000000000 -dqinv156 invert 1011111111111111110100000000000000 -> 100000000000000001011111111111111 -dqinv157 invert 1101111111111111110111111111111111 -> 10000000000000001000000000000000 -dqinv158 invert 1110111111111111110011111111111111 -> 1000000000000001100000000000000 - --- non-0/1 should not be accepted, nor should signs -dqinv220 invert 111111112 -> NaN Invalid_operation -dqinv221 invert 333333333 -> NaN Invalid_operation -dqinv222 invert 555555555 -> NaN Invalid_operation -dqinv223 invert 777777777 -> NaN Invalid_operation -dqinv224 invert 999999999 -> NaN Invalid_operation -dqinv225 invert 222222222 -> NaN Invalid_operation -dqinv226 invert 444444444 -> NaN Invalid_operation -dqinv227 invert 666666666 -> NaN Invalid_operation -dqinv228 invert 888888888 -> NaN Invalid_operation -dqinv229 invert 999999999 -> NaN Invalid_operation -dqinv230 invert 999999999 -> NaN Invalid_operation -dqinv231 invert 999999999 -> NaN Invalid_operation -dqinv232 invert 999999999 -> NaN Invalid_operation --- a few randoms -dqinv240 invert 567468689 -> NaN Invalid_operation -dqinv241 invert 567367689 -> NaN Invalid_operation -dqinv242 invert -631917772 -> NaN Invalid_operation -dqinv243 invert -756253257 -> NaN Invalid_operation -dqinv244 invert 835590149 -> NaN Invalid_operation --- test MSD -dqinv250 invert 2000000111000111000111000000000000 -> NaN Invalid_operation -dqinv251 invert 3000000111000111000111000000000000 -> NaN Invalid_operation -dqinv252 invert 4000000111000111000111000000000000 -> NaN Invalid_operation -dqinv253 invert 5000000111000111000111000000000000 -> NaN Invalid_operation -dqinv254 invert 6000000111000111000111000000000000 -> NaN Invalid_operation -dqinv255 invert 7000000111000111000111000000000000 -> NaN Invalid_operation -dqinv256 invert 8000000111000111000111000000000000 -> NaN Invalid_operation -dqinv257 invert 9000000111000111000111000000000000 -> NaN Invalid_operation --- test MSD-1 -dqinv270 invert 0200000111000111000111001000000000 -> NaN Invalid_operation -dqinv271 invert 0300000111000111000111000100000000 -> NaN Invalid_operation -dqinv272 invert 0400000111000111000111000010000000 -> NaN Invalid_operation -dqinv273 invert 0500000111000111000111000001000000 -> NaN Invalid_operation -dqinv274 invert 1600000111000111000111000000100000 -> NaN Invalid_operation -dqinv275 invert 1700000111000111000111000000010000 -> NaN Invalid_operation -dqinv276 invert 1800000111000111000111000000001000 -> NaN Invalid_operation -dqinv277 invert 1900000111000111000111000000000100 -> NaN Invalid_operation --- test LSD -dqinv280 invert 0010000111000111000111000000000002 -> NaN Invalid_operation -dqinv281 invert 0001000111000111000111000000000003 -> NaN Invalid_operation -dqinv282 invert 0000000111000111000111100000000004 -> NaN Invalid_operation -dqinv283 invert 0000000111000111000111010000000005 -> NaN Invalid_operation -dqinv284 invert 1000000111000111000111001000000006 -> NaN Invalid_operation -dqinv285 invert 1000000111000111000111000100000007 -> NaN Invalid_operation -dqinv286 invert 1000000111000111000111000010000008 -> NaN Invalid_operation -dqinv287 invert 1000000111000111000111000001000009 -> NaN Invalid_operation --- test Middie -dqinv288 invert 0010000111000111000111000020000000 -> NaN Invalid_operation -dqinv289 invert 0001000111000111000111000030000001 -> NaN Invalid_operation -dqinv290 invert 0000000111000111000111100040000010 -> NaN Invalid_operation -dqinv291 invert 0000000111000111000111010050000100 -> NaN Invalid_operation -dqinv292 invert 1000000111000111000111001060001000 -> NaN Invalid_operation -dqinv293 invert 1000000111000111000111000170010000 -> NaN Invalid_operation -dqinv294 invert 1000000111000111000111000080100000 -> NaN Invalid_operation -dqinv295 invert 1000000111000111000111000091000000 -> NaN Invalid_operation --- signs -dqinv296 invert -1000000111000111000111000001000000 -> NaN Invalid_operation -dqinv299 invert 1000000111000111000111000001000000 -> 111111000111000111000111110111111 - --- Nmax, Nmin, Ntiny-like -dqinv341 invert 9.99999999E+2998 -> NaN Invalid_operation -dqinv342 invert 1E-2998 -> NaN Invalid_operation -dqinv343 invert 1.00000000E-2998 -> NaN Invalid_operation -dqinv344 invert 1E-2078 -> NaN Invalid_operation -dqinv345 invert -1E-2078 -> NaN Invalid_operation -dqinv346 invert -1.00000000E-2998 -> NaN Invalid_operation -dqinv347 invert -1E-2998 -> NaN Invalid_operation -dqinv348 invert -9.99999999E+2998 -> NaN Invalid_operation - --- A few other non-integers -dqinv361 invert 1.0 -> NaN Invalid_operation -dqinv362 invert 1E+1 -> NaN Invalid_operation -dqinv363 invert 0.0 -> NaN Invalid_operation -dqinv364 invert 0E+1 -> NaN Invalid_operation -dqinv365 invert 9.9 -> NaN Invalid_operation -dqinv366 invert 9E+1 -> NaN Invalid_operation - --- All Specials are in error -dqinv788 invert -Inf -> NaN Invalid_operation -dqinv794 invert Inf -> NaN Invalid_operation -dqinv821 invert NaN -> NaN Invalid_operation -dqinv841 invert sNaN -> NaN Invalid_operation --- propagating NaNs -dqinv861 invert NaN1 -> NaN Invalid_operation -dqinv862 invert +NaN2 -> NaN Invalid_operation -dqinv863 invert NaN3 -> NaN Invalid_operation -dqinv864 invert NaN4 -> NaN Invalid_operation -dqinv865 invert NaN5 -> NaN Invalid_operation -dqinv871 invert sNaN11 -> NaN Invalid_operation -dqinv872 invert sNaN12 -> NaN Invalid_operation -dqinv873 invert sNaN13 -> NaN Invalid_operation -dqinv874 invert sNaN14 -> NaN Invalid_operation -dqinv875 invert sNaN15 -> NaN Invalid_operation -dqinv876 invert NaN16 -> NaN Invalid_operation -dqinv881 invert +NaN25 -> NaN Invalid_operation -dqinv882 invert -NaN26 -> NaN Invalid_operation -dqinv883 invert -sNaN27 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqLogB.decTest b/qdecimal/test/tc_full/dqLogB.decTest deleted file mode 100644 index d4bf7d9..0000000 --- a/qdecimal/test/tc_full/dqLogB.decTest +++ /dev/null @@ -1,160 +0,0 @@ ------------------------------------------------------------------------- --- dqLogB.decTest -- integral 754r adjusted exponent, for decQuads -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- basics -dqlogb000 logb 0 -> -Infinity Division_by_zero -dqlogb001 logb 1E-6176 -> -6176 -dqlogb002 logb 1E-6143 -> -6143 -dqlogb003 logb 0.001 -> -3 -dqlogb004 logb 0.03 -> -2 -dqlogb005 logb 1 -> 0 -dqlogb006 logb 2 -> 0 -dqlogb007 logb 2.5 -> 0 -dqlogb008 logb 2.50 -> 0 -dqlogb009 logb 2.500 -> 0 -dqlogb010 logb 10 -> 1 -dqlogb011 logb 70 -> 1 -dqlogb012 logb 100 -> 2 -dqlogb013 logb 250 -> 2 -dqlogb014 logb 9E+6144 -> 6144 -dqlogb015 logb +Infinity -> Infinity - --- negatives appear to be treated as positives -dqlogb021 logb -0 -> -Infinity Division_by_zero -dqlogb022 logb -1E-6176 -> -6176 -dqlogb023 logb -9E-6143 -> -6143 -dqlogb024 logb -0.001 -> -3 -dqlogb025 logb -1 -> 0 -dqlogb026 logb -2 -> 0 -dqlogb027 logb -10 -> 1 -dqlogb028 logb -70 -> 1 -dqlogb029 logb -100 -> 2 -dqlogb030 logb -9E+6144 -> 6144 -dqlogb031 logb -Infinity -> Infinity - --- zeros -dqlogb111 logb 0 -> -Infinity Division_by_zero -dqlogb112 logb -0 -> -Infinity Division_by_zero -dqlogb113 logb 0E+4 -> -Infinity Division_by_zero -dqlogb114 logb -0E+4 -> -Infinity Division_by_zero -dqlogb115 logb 0.0000 -> -Infinity Division_by_zero -dqlogb116 logb -0.0000 -> -Infinity Division_by_zero -dqlogb117 logb 0E-141 -> -Infinity Division_by_zero -dqlogb118 logb -0E-141 -> -Infinity Division_by_zero - --- full coefficients, alternating bits -dqlogb121 logb 268268268 -> 8 -dqlogb122 logb -268268268 -> 8 -dqlogb123 logb 134134134 -> 8 -dqlogb124 logb -134134134 -> 8 - --- Nmax, Nmin, Ntiny -dqlogb131 logb 9.999999999999999999999999999999999E+6144 -> 6144 -dqlogb132 logb 1E-6143 -> -6143 -dqlogb133 logb 1.000000000000000000000000000000000E-6143 -> -6143 -dqlogb134 logb 1E-6176 -> -6176 - -dqlogb135 logb -1E-6176 -> -6176 -dqlogb136 logb -1.000000000000000000000000000000000E-6143 -> -6143 -dqlogb137 logb -1E-6143 -> -6143 -dqlogb1614 logb -9.999999999999999999999999999999999E+6144 -> 6144 - --- ones -dqlogb0061 logb 1 -> 0 -dqlogb0062 logb 1.0 -> 0 -dqlogb0063 logb 1.000000000000000 -> 0 - --- notable cases -- exact powers of 10 -dqlogb1100 logb 1 -> 0 -dqlogb1101 logb 10 -> 1 -dqlogb1102 logb 100 -> 2 -dqlogb1103 logb 1000 -> 3 -dqlogb1104 logb 10000 -> 4 -dqlogb1105 logb 100000 -> 5 -dqlogb1106 logb 1000000 -> 6 -dqlogb1107 logb 10000000 -> 7 -dqlogb1108 logb 100000000 -> 8 -dqlogb1109 logb 1000000000 -> 9 -dqlogb1110 logb 10000000000 -> 10 -dqlogb1111 logb 100000000000 -> 11 -dqlogb1112 logb 1000000000000 -> 12 -dqlogb1113 logb 0.00000000001 -> -11 -dqlogb1114 logb 0.0000000001 -> -10 -dqlogb1115 logb 0.000000001 -> -9 -dqlogb1116 logb 0.00000001 -> -8 -dqlogb1117 logb 0.0000001 -> -7 -dqlogb1118 logb 0.000001 -> -6 -dqlogb1119 logb 0.00001 -> -5 -dqlogb1120 logb 0.0001 -> -4 -dqlogb1121 logb 0.001 -> -3 -dqlogb1122 logb 0.01 -> -2 -dqlogb1123 logb 0.1 -> -1 -dqlogb1124 logb 1E-99 -> -99 -dqlogb1125 logb 1E-100 -> -100 -dqlogb1127 logb 1E-299 -> -299 -dqlogb1126 logb 1E-6143 -> -6143 - --- suggestions from Ilan Nehama -dqlogb1400 logb 10E-3 -> -2 -dqlogb1401 logb 10E-2 -> -1 -dqlogb1402 logb 100E-2 -> 0 -dqlogb1403 logb 1000E-2 -> 1 -dqlogb1404 logb 10000E-2 -> 2 -dqlogb1405 logb 10E-1 -> 0 -dqlogb1406 logb 100E-1 -> 1 -dqlogb1407 logb 1000E-1 -> 2 -dqlogb1408 logb 10000E-1 -> 3 -dqlogb1409 logb 10E0 -> 1 -dqlogb1410 logb 100E0 -> 2 -dqlogb1411 logb 1000E0 -> 3 -dqlogb1412 logb 10000E0 -> 4 -dqlogb1413 logb 10E1 -> 2 -dqlogb1414 logb 100E1 -> 3 -dqlogb1415 logb 1000E1 -> 4 -dqlogb1416 logb 10000E1 -> 5 -dqlogb1417 logb 10E2 -> 3 -dqlogb1418 logb 100E2 -> 4 -dqlogb1419 logb 1000E2 -> 5 -dqlogb1420 logb 10000E2 -> 6 - --- special values -dqlogb820 logb Infinity -> Infinity -dqlogb821 logb 0 -> -Infinity Division_by_zero -dqlogb822 logb NaN -> NaN -dqlogb823 logb sNaN -> NaN Invalid_operation --- propagating NaNs -dqlogb824 logb sNaN123 -> NaN123 Invalid_operation -dqlogb825 logb -sNaN321 -> -NaN321 Invalid_operation -dqlogb826 logb NaN456 -> NaN456 -dqlogb827 logb -NaN654 -> -NaN654 -dqlogb828 logb NaN1 -> NaN1 - --- Null test -dqlogb900 logb # -> NaN Invalid_operation - - diff --git a/qdecimal/test/tc_full/dqMax.decTest b/qdecimal/test/tc_full/dqMax.decTest deleted file mode 100644 index 19cf4f1..0000000 --- a/qdecimal/test/tc_full/dqMax.decTest +++ /dev/null @@ -1,322 +0,0 @@ ------------------------------------------------------------------------- --- dqMax.decTest -- decQuad maxnum -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqmax001 max -2 -2 -> -2 -dqmax002 max -2 -1 -> -1 -dqmax003 max -2 0 -> 0 -dqmax004 max -2 1 -> 1 -dqmax005 max -2 2 -> 2 -dqmax006 max -1 -2 -> -1 -dqmax007 max -1 -1 -> -1 -dqmax008 max -1 0 -> 0 -dqmax009 max -1 1 -> 1 -dqmax010 max -1 2 -> 2 -dqmax011 max 0 -2 -> 0 -dqmax012 max 0 -1 -> 0 -dqmax013 max 0 0 -> 0 -dqmax014 max 0 1 -> 1 -dqmax015 max 0 2 -> 2 -dqmax016 max 1 -2 -> 1 -dqmax017 max 1 -1 -> 1 -dqmax018 max 1 0 -> 1 -dqmax019 max 1 1 -> 1 -dqmax020 max 1 2 -> 2 -dqmax021 max 2 -2 -> 2 -dqmax022 max 2 -1 -> 2 -dqmax023 max 2 0 -> 2 -dqmax025 max 2 1 -> 2 -dqmax026 max 2 2 -> 2 - --- extended zeros -dqmax030 max 0 0 -> 0 -dqmax031 max 0 -0 -> 0 -dqmax032 max 0 -0.0 -> 0 -dqmax033 max 0 0.0 -> 0 -dqmax034 max -0 0 -> 0 -- note: -0 = 0, but 0 chosen -dqmax035 max -0 -0 -> -0 -dqmax036 max -0 -0.0 -> -0.0 -dqmax037 max -0 0.0 -> 0.0 -dqmax038 max 0.0 0 -> 0 -dqmax039 max 0.0 -0 -> 0.0 -dqmax040 max 0.0 -0.0 -> 0.0 -dqmax041 max 0.0 0.0 -> 0.0 -dqmax042 max -0.0 0 -> 0 -dqmax043 max -0.0 -0 -> -0.0 -dqmax044 max -0.0 -0.0 -> -0.0 -dqmax045 max -0.0 0.0 -> 0.0 - -dqmax050 max -0E1 0E1 -> 0E+1 -dqmax051 max -0E2 0E2 -> 0E+2 -dqmax052 max -0E2 0E1 -> 0E+1 -dqmax053 max -0E1 0E2 -> 0E+2 -dqmax054 max 0E1 -0E1 -> 0E+1 -dqmax055 max 0E2 -0E2 -> 0E+2 -dqmax056 max 0E2 -0E1 -> 0E+2 -dqmax057 max 0E1 -0E2 -> 0E+1 - -dqmax058 max 0E1 0E1 -> 0E+1 -dqmax059 max 0E2 0E2 -> 0E+2 -dqmax060 max 0E2 0E1 -> 0E+2 -dqmax061 max 0E1 0E2 -> 0E+2 -dqmax062 max -0E1 -0E1 -> -0E+1 -dqmax063 max -0E2 -0E2 -> -0E+2 -dqmax064 max -0E2 -0E1 -> -0E+1 -dqmax065 max -0E1 -0E2 -> -0E+1 - --- Specials -dqmax090 max Inf -Inf -> Infinity -dqmax091 max Inf -1000 -> Infinity -dqmax092 max Inf -1 -> Infinity -dqmax093 max Inf -0 -> Infinity -dqmax094 max Inf 0 -> Infinity -dqmax095 max Inf 1 -> Infinity -dqmax096 max Inf 1000 -> Infinity -dqmax097 max Inf Inf -> Infinity -dqmax098 max -1000 Inf -> Infinity -dqmax099 max -Inf Inf -> Infinity -dqmax100 max -1 Inf -> Infinity -dqmax101 max -0 Inf -> Infinity -dqmax102 max 0 Inf -> Infinity -dqmax103 max 1 Inf -> Infinity -dqmax104 max 1000 Inf -> Infinity -dqmax105 max Inf Inf -> Infinity - -dqmax120 max -Inf -Inf -> -Infinity -dqmax121 max -Inf -1000 -> -1000 -dqmax122 max -Inf -1 -> -1 -dqmax123 max -Inf -0 -> -0 -dqmax124 max -Inf 0 -> 0 -dqmax125 max -Inf 1 -> 1 -dqmax126 max -Inf 1000 -> 1000 -dqmax127 max -Inf Inf -> Infinity -dqmax128 max -Inf -Inf -> -Infinity -dqmax129 max -1000 -Inf -> -1000 -dqmax130 max -1 -Inf -> -1 -dqmax131 max -0 -Inf -> -0 -dqmax132 max 0 -Inf -> 0 -dqmax133 max 1 -Inf -> 1 -dqmax134 max 1000 -Inf -> 1000 -dqmax135 max Inf -Inf -> Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -dqmax141 max NaN -Inf -> -Infinity -dqmax142 max NaN -1000 -> -1000 -dqmax143 max NaN -1 -> -1 -dqmax144 max NaN -0 -> -0 -dqmax145 max NaN 0 -> 0 -dqmax146 max NaN 1 -> 1 -dqmax147 max NaN 1000 -> 1000 -dqmax148 max NaN Inf -> Infinity -dqmax149 max NaN NaN -> NaN -dqmax150 max -Inf NaN -> -Infinity -dqmax151 max -1000 NaN -> -1000 -dqmax152 max -1 NaN -> -1 -dqmax153 max -0 NaN -> -0 -dqmax154 max 0 NaN -> 0 -dqmax155 max 1 NaN -> 1 -dqmax156 max 1000 NaN -> 1000 -dqmax157 max Inf NaN -> Infinity - -dqmax161 max sNaN -Inf -> NaN Invalid_operation -dqmax162 max sNaN -1000 -> NaN Invalid_operation -dqmax163 max sNaN -1 -> NaN Invalid_operation -dqmax164 max sNaN -0 -> NaN Invalid_operation -dqmax165 max sNaN 0 -> NaN Invalid_operation -dqmax166 max sNaN 1 -> NaN Invalid_operation -dqmax167 max sNaN 1000 -> NaN Invalid_operation -dqmax168 max sNaN NaN -> NaN Invalid_operation -dqmax169 max sNaN sNaN -> NaN Invalid_operation -dqmax170 max NaN sNaN -> NaN Invalid_operation -dqmax171 max -Inf sNaN -> NaN Invalid_operation -dqmax172 max -1000 sNaN -> NaN Invalid_operation -dqmax173 max -1 sNaN -> NaN Invalid_operation -dqmax174 max -0 sNaN -> NaN Invalid_operation -dqmax175 max 0 sNaN -> NaN Invalid_operation -dqmax176 max 1 sNaN -> NaN Invalid_operation -dqmax177 max 1000 sNaN -> NaN Invalid_operation -dqmax178 max Inf sNaN -> NaN Invalid_operation -dqmax179 max NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqmax181 max NaN9 -Inf -> -Infinity -dqmax182 max NaN8 9 -> 9 -dqmax183 max -NaN7 Inf -> Infinity - -dqmax184 max -NaN1 NaN11 -> -NaN1 -dqmax185 max NaN2 NaN12 -> NaN2 -dqmax186 max -NaN13 -NaN7 -> -NaN13 -dqmax187 max NaN14 -NaN5 -> NaN14 - -dqmax188 max -Inf NaN4 -> -Infinity -dqmax189 max -9 -NaN3 -> -9 -dqmax190 max Inf NaN2 -> Infinity - -dqmax191 max sNaN99 -Inf -> NaN99 Invalid_operation -dqmax192 max sNaN98 -1 -> NaN98 Invalid_operation -dqmax193 max -sNaN97 NaN -> -NaN97 Invalid_operation -dqmax194 max sNaN96 sNaN94 -> NaN96 Invalid_operation -dqmax195 max NaN95 sNaN93 -> NaN93 Invalid_operation -dqmax196 max -Inf sNaN92 -> NaN92 Invalid_operation -dqmax197 max 0 sNaN91 -> NaN91 Invalid_operation -dqmax198 max Inf -sNaN90 -> -NaN90 Invalid_operation -dqmax199 max NaN sNaN89 -> NaN89 Invalid_operation - --- old rounding checks -dqmax221 max 12345678000 1 -> 12345678000 -dqmax222 max 1 12345678000 -> 12345678000 -dqmax223 max 1234567800 1 -> 1234567800 -dqmax224 max 1 1234567800 -> 1234567800 -dqmax225 max 1234567890 1 -> 1234567890 -dqmax226 max 1 1234567890 -> 1234567890 -dqmax227 max 1234567891 1 -> 1234567891 -dqmax228 max 1 1234567891 -> 1234567891 -dqmax229 max 12345678901 1 -> 12345678901 -dqmax230 max 1 12345678901 -> 12345678901 -dqmax231 max 1234567896 1 -> 1234567896 -dqmax232 max 1 1234567896 -> 1234567896 -dqmax233 max -1234567891 1 -> 1 -dqmax234 max 1 -1234567891 -> 1 -dqmax235 max -12345678901 1 -> 1 -dqmax236 max 1 -12345678901 -> 1 -dqmax237 max -1234567896 1 -> 1 -dqmax238 max 1 -1234567896 -> 1 - --- from examples -dqmax280 max '3' '2' -> '3' -dqmax281 max '-10' '3' -> '3' -dqmax282 max '1.0' '1' -> '1' -dqmax283 max '1' '1.0' -> '1' -dqmax284 max '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -dqmax401 max Inf 1.1 -> Infinity -dqmax402 max 1.1 1 -> 1.1 -dqmax403 max 1 1.0 -> 1 -dqmax404 max 1.0 0.1 -> 1.0 -dqmax405 max 0.1 0.10 -> 0.1 -dqmax406 max 0.10 0.100 -> 0.10 -dqmax407 max 0.10 0 -> 0.10 -dqmax408 max 0 0.0 -> 0 -dqmax409 max 0.0 -0 -> 0.0 -dqmax410 max 0.0 -0.0 -> 0.0 -dqmax411 max 0.00 -0.0 -> 0.00 -dqmax412 max 0.0 -0.00 -> 0.0 -dqmax413 max 0 -0.0 -> 0 -dqmax414 max 0 -0 -> 0 -dqmax415 max -0.0 -0 -> -0.0 -dqmax416 max -0 -0.100 -> -0 -dqmax417 max -0.100 -0.10 -> -0.100 -dqmax418 max -0.10 -0.1 -> -0.10 -dqmax419 max -0.1 -1.0 -> -0.1 -dqmax420 max -1.0 -1 -> -1.0 -dqmax421 max -1 -1.1 -> -1 -dqmax423 max -1.1 -Inf -> -1.1 --- same with operands reversed -dqmax431 max 1.1 Inf -> Infinity -dqmax432 max 1 1.1 -> 1.1 -dqmax433 max 1.0 1 -> 1 -dqmax434 max 0.1 1.0 -> 1.0 -dqmax435 max 0.10 0.1 -> 0.1 -dqmax436 max 0.100 0.10 -> 0.10 -dqmax437 max 0 0.10 -> 0.10 -dqmax438 max 0.0 0 -> 0 -dqmax439 max -0 0.0 -> 0.0 -dqmax440 max -0.0 0.0 -> 0.0 -dqmax441 max -0.0 0.00 -> 0.00 -dqmax442 max -0.00 0.0 -> 0.0 -dqmax443 max -0.0 0 -> 0 -dqmax444 max -0 0 -> 0 -dqmax445 max -0 -0.0 -> -0.0 -dqmax446 max -0.100 -0 -> -0 -dqmax447 max -0.10 -0.100 -> -0.100 -dqmax448 max -0.1 -0.10 -> -0.10 -dqmax449 max -1.0 -0.1 -> -0.1 -dqmax450 max -1 -1.0 -> -1.0 -dqmax451 max -1.1 -1 -> -1 -dqmax453 max -Inf -1.1 -> -1.1 --- largies -dqmax460 max 1000 1E+3 -> 1E+3 -dqmax461 max 1E+3 1000 -> 1E+3 -dqmax462 max 1000 -1E+3 -> 1000 -dqmax463 max 1E+3 -1000 -> 1E+3 -dqmax464 max -1000 1E+3 -> 1E+3 -dqmax465 max -1E+3 1000 -> 1000 -dqmax466 max -1000 -1E+3 -> -1000 -dqmax467 max -1E+3 -1000 -> -1000 - --- misalignment traps for little-endian -dqmax471 max 1.0 0.1 -> 1.0 -dqmax472 max 0.1 1.0 -> 1.0 -dqmax473 max 10.0 0.1 -> 10.0 -dqmax474 max 0.1 10.0 -> 10.0 -dqmax475 max 100 1.0 -> 100 -dqmax476 max 1.0 100 -> 100 -dqmax477 max 1000 10.0 -> 1000 -dqmax478 max 10.0 1000 -> 1000 -dqmax479 max 10000 100.0 -> 10000 -dqmax480 max 100.0 10000 -> 10000 -dqmax481 max 100000 1000.0 -> 100000 -dqmax482 max 1000.0 100000 -> 100000 -dqmax483 max 1000000 10000.0 -> 1000000 -dqmax484 max 10000.0 1000000 -> 1000000 - --- subnormals -dqmax510 max 1.00E-6143 0 -> 1.00E-6143 -dqmax511 max 0.1E-6143 0 -> 1E-6144 Subnormal -dqmax512 max 0.10E-6143 0 -> 1.0E-6144 Subnormal -dqmax513 max 0.100E-6143 0 -> 1.00E-6144 Subnormal -dqmax514 max 0.01E-6143 0 -> 1E-6145 Subnormal -dqmax515 max 0.999E-6143 0 -> 9.99E-6144 Subnormal -dqmax516 max 0.099E-6143 0 -> 9.9E-6145 Subnormal -dqmax517 max 0.009E-6143 0 -> 9E-6146 Subnormal -dqmax518 max 0.001E-6143 0 -> 1E-6146 Subnormal -dqmax519 max 0.0009E-6143 0 -> 9E-6147 Subnormal -dqmax520 max 0.0001E-6143 0 -> 1E-6147 Subnormal - -dqmax530 max -1.00E-6143 0 -> 0 -dqmax531 max -0.1E-6143 0 -> 0 -dqmax532 max -0.10E-6143 0 -> 0 -dqmax533 max -0.100E-6143 0 -> 0 -dqmax534 max -0.01E-6143 0 -> 0 -dqmax535 max -0.999E-6143 0 -> 0 -dqmax536 max -0.099E-6143 0 -> 0 -dqmax537 max -0.009E-6143 0 -> 0 -dqmax538 max -0.001E-6143 0 -> 0 -dqmax539 max -0.0009E-6143 0 -> 0 -dqmax540 max -0.0001E-6143 0 -> 0 - --- Null tests -dqmax900 max 10 # -> NaN Invalid_operation -dqmax901 max # 10 -> NaN Invalid_operation - - - diff --git a/qdecimal/test/tc_full/dqMaxMag.decTest b/qdecimal/test/tc_full/dqMaxMag.decTest deleted file mode 100644 index 75ca52f..0000000 --- a/qdecimal/test/tc_full/dqMaxMag.decTest +++ /dev/null @@ -1,304 +0,0 @@ ------------------------------------------------------------------------- --- dqMaxMag.decTest -- decQuad maxnummag -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqmxg001 maxmag -2 -2 -> -2 -dqmxg002 maxmag -2 -1 -> -2 -dqmxg003 maxmag -2 0 -> -2 -dqmxg004 maxmag -2 1 -> -2 -dqmxg005 maxmag -2 2 -> 2 -dqmxg006 maxmag -1 -2 -> -2 -dqmxg007 maxmag -1 -1 -> -1 -dqmxg008 maxmag -1 0 -> -1 -dqmxg009 maxmag -1 1 -> 1 -dqmxg010 maxmag -1 2 -> 2 -dqmxg011 maxmag 0 -2 -> -2 -dqmxg012 maxmag 0 -1 -> -1 -dqmxg013 maxmag 0 0 -> 0 -dqmxg014 maxmag 0 1 -> 1 -dqmxg015 maxmag 0 2 -> 2 -dqmxg016 maxmag 1 -2 -> -2 -dqmxg017 maxmag 1 -1 -> 1 -dqmxg018 maxmag 1 0 -> 1 -dqmxg019 maxmag 1 1 -> 1 -dqmxg020 maxmag 1 2 -> 2 -dqmxg021 maxmag 2 -2 -> 2 -dqmxg022 maxmag 2 -1 -> 2 -dqmxg023 maxmag 2 0 -> 2 -dqmxg025 maxmag 2 1 -> 2 -dqmxg026 maxmag 2 2 -> 2 - --- extended zeros -dqmxg030 maxmag 0 0 -> 0 -dqmxg031 maxmag 0 -0 -> 0 -dqmxg032 maxmag 0 -0.0 -> 0 -dqmxg033 maxmag 0 0.0 -> 0 -dqmxg034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen -dqmxg035 maxmag -0 -0 -> -0 -dqmxg036 maxmag -0 -0.0 -> -0.0 -dqmxg037 maxmag -0 0.0 -> 0.0 -dqmxg038 maxmag 0.0 0 -> 0 -dqmxg039 maxmag 0.0 -0 -> 0.0 -dqmxg040 maxmag 0.0 -0.0 -> 0.0 -dqmxg041 maxmag 0.0 0.0 -> 0.0 -dqmxg042 maxmag -0.0 0 -> 0 -dqmxg043 maxmag -0.0 -0 -> -0.0 -dqmxg044 maxmag -0.0 -0.0 -> -0.0 -dqmxg045 maxmag -0.0 0.0 -> 0.0 - -dqmxg050 maxmag -0E1 0E1 -> 0E+1 -dqmxg051 maxmag -0E2 0E2 -> 0E+2 -dqmxg052 maxmag -0E2 0E1 -> 0E+1 -dqmxg053 maxmag -0E1 0E2 -> 0E+2 -dqmxg054 maxmag 0E1 -0E1 -> 0E+1 -dqmxg055 maxmag 0E2 -0E2 -> 0E+2 -dqmxg056 maxmag 0E2 -0E1 -> 0E+2 -dqmxg057 maxmag 0E1 -0E2 -> 0E+1 - -dqmxg058 maxmag 0E1 0E1 -> 0E+1 -dqmxg059 maxmag 0E2 0E2 -> 0E+2 -dqmxg060 maxmag 0E2 0E1 -> 0E+2 -dqmxg061 maxmag 0E1 0E2 -> 0E+2 -dqmxg062 maxmag -0E1 -0E1 -> -0E+1 -dqmxg063 maxmag -0E2 -0E2 -> -0E+2 -dqmxg064 maxmag -0E2 -0E1 -> -0E+1 -dqmxg065 maxmag -0E1 -0E2 -> -0E+1 - --- Specials -dqmxg090 maxmag Inf -Inf -> Infinity -dqmxg091 maxmag Inf -1000 -> Infinity -dqmxg092 maxmag Inf -1 -> Infinity -dqmxg093 maxmag Inf -0 -> Infinity -dqmxg094 maxmag Inf 0 -> Infinity -dqmxg095 maxmag Inf 1 -> Infinity -dqmxg096 maxmag Inf 1000 -> Infinity -dqmxg097 maxmag Inf Inf -> Infinity -dqmxg098 maxmag -1000 Inf -> Infinity -dqmxg099 maxmag -Inf Inf -> Infinity -dqmxg100 maxmag -1 Inf -> Infinity -dqmxg101 maxmag -0 Inf -> Infinity -dqmxg102 maxmag 0 Inf -> Infinity -dqmxg103 maxmag 1 Inf -> Infinity -dqmxg104 maxmag 1000 Inf -> Infinity -dqmxg105 maxmag Inf Inf -> Infinity - -dqmxg120 maxmag -Inf -Inf -> -Infinity -dqmxg121 maxmag -Inf -1000 -> -Infinity -dqmxg122 maxmag -Inf -1 -> -Infinity -dqmxg123 maxmag -Inf -0 -> -Infinity -dqmxg124 maxmag -Inf 0 -> -Infinity -dqmxg125 maxmag -Inf 1 -> -Infinity -dqmxg126 maxmag -Inf 1000 -> -Infinity -dqmxg127 maxmag -Inf Inf -> Infinity -dqmxg128 maxmag -Inf -Inf -> -Infinity -dqmxg129 maxmag -1000 -Inf -> -Infinity -dqmxg130 maxmag -1 -Inf -> -Infinity -dqmxg131 maxmag -0 -Inf -> -Infinity -dqmxg132 maxmag 0 -Inf -> -Infinity -dqmxg133 maxmag 1 -Inf -> -Infinity -dqmxg134 maxmag 1000 -Inf -> -Infinity -dqmxg135 maxmag Inf -Inf -> Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -dqmxg141 maxmag NaN -Inf -> -Infinity -dqmxg142 maxmag NaN -1000 -> -1000 -dqmxg143 maxmag NaN -1 -> -1 -dqmxg144 maxmag NaN -0 -> -0 -dqmxg145 maxmag NaN 0 -> 0 -dqmxg146 maxmag NaN 1 -> 1 -dqmxg147 maxmag NaN 1000 -> 1000 -dqmxg148 maxmag NaN Inf -> Infinity -dqmxg149 maxmag NaN NaN -> NaN -dqmxg150 maxmag -Inf NaN -> -Infinity -dqmxg151 maxmag -1000 NaN -> -1000 -dqmxg152 maxmag -1 NaN -> -1 -dqmxg153 maxmag -0 NaN -> -0 -dqmxg154 maxmag 0 NaN -> 0 -dqmxg155 maxmag 1 NaN -> 1 -dqmxg156 maxmag 1000 NaN -> 1000 -dqmxg157 maxmag Inf NaN -> Infinity - -dqmxg161 maxmag sNaN -Inf -> NaN Invalid_operation -dqmxg162 maxmag sNaN -1000 -> NaN Invalid_operation -dqmxg163 maxmag sNaN -1 -> NaN Invalid_operation -dqmxg164 maxmag sNaN -0 -> NaN Invalid_operation -dqmxg165 maxmag sNaN 0 -> NaN Invalid_operation -dqmxg166 maxmag sNaN 1 -> NaN Invalid_operation -dqmxg167 maxmag sNaN 1000 -> NaN Invalid_operation -dqmxg168 maxmag sNaN NaN -> NaN Invalid_operation -dqmxg169 maxmag sNaN sNaN -> NaN Invalid_operation -dqmxg170 maxmag NaN sNaN -> NaN Invalid_operation -dqmxg171 maxmag -Inf sNaN -> NaN Invalid_operation -dqmxg172 maxmag -1000 sNaN -> NaN Invalid_operation -dqmxg173 maxmag -1 sNaN -> NaN Invalid_operation -dqmxg174 maxmag -0 sNaN -> NaN Invalid_operation -dqmxg175 maxmag 0 sNaN -> NaN Invalid_operation -dqmxg176 maxmag 1 sNaN -> NaN Invalid_operation -dqmxg177 maxmag 1000 sNaN -> NaN Invalid_operation -dqmxg178 maxmag Inf sNaN -> NaN Invalid_operation -dqmxg179 maxmag NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqmxg181 maxmag NaN9 -Inf -> -Infinity -dqmxg182 maxmag NaN8 9 -> 9 -dqmxg183 maxmag -NaN7 Inf -> Infinity - -dqmxg184 maxmag -NaN1 NaN11 -> -NaN1 -dqmxg185 maxmag NaN2 NaN12 -> NaN2 -dqmxg186 maxmag -NaN13 -NaN7 -> -NaN13 -dqmxg187 maxmag NaN14 -NaN5 -> NaN14 - -dqmxg188 maxmag -Inf NaN4 -> -Infinity -dqmxg189 maxmag -9 -NaN3 -> -9 -dqmxg190 maxmag Inf NaN2 -> Infinity - -dqmxg191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation -dqmxg192 maxmag sNaN98 -1 -> NaN98 Invalid_operation -dqmxg193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation -dqmxg194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation -dqmxg195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation -dqmxg196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation -dqmxg197 maxmag 0 sNaN91 -> NaN91 Invalid_operation -dqmxg198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation -dqmxg199 maxmag NaN sNaN89 -> NaN89 Invalid_operation - --- old rounding checks -dqmxg221 maxmag 12345678000 1 -> 12345678000 -dqmxg222 maxmag 1 12345678000 -> 12345678000 -dqmxg223 maxmag 1234567800 1 -> 1234567800 -dqmxg224 maxmag 1 1234567800 -> 1234567800 -dqmxg225 maxmag 1234567890 1 -> 1234567890 -dqmxg226 maxmag 1 1234567890 -> 1234567890 -dqmxg227 maxmag 1234567891 1 -> 1234567891 -dqmxg228 maxmag 1 1234567891 -> 1234567891 -dqmxg229 maxmag 12345678901 1 -> 12345678901 -dqmxg230 maxmag 1 12345678901 -> 12345678901 -dqmxg231 maxmag 1234567896 1 -> 1234567896 -dqmxg232 maxmag 1 1234567896 -> 1234567896 -dqmxg233 maxmag -1234567891 1 -> -1234567891 -dqmxg234 maxmag 1 -1234567891 -> -1234567891 -dqmxg235 maxmag -12345678901 1 -> -12345678901 -dqmxg236 maxmag 1 -12345678901 -> -12345678901 -dqmxg237 maxmag -1234567896 1 -> -1234567896 -dqmxg238 maxmag 1 -1234567896 -> -1234567896 - --- from examples -dqmxg280 maxmag '3' '2' -> '3' -dqmxg281 maxmag '-10' '3' -> '-10' -dqmxg282 maxmag '1.0' '1' -> '1' -dqmxg283 maxmag '1' '1.0' -> '1' -dqmxg284 maxmag '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -dqmxg401 maxmag Inf 1.1 -> Infinity -dqmxg402 maxmag 1.1 1 -> 1.1 -dqmxg403 maxmag 1 1.0 -> 1 -dqmxg404 maxmag 1.0 0.1 -> 1.0 -dqmxg405 maxmag 0.1 0.10 -> 0.1 -dqmxg406 maxmag 0.10 0.100 -> 0.10 -dqmxg407 maxmag 0.10 0 -> 0.10 -dqmxg408 maxmag 0 0.0 -> 0 -dqmxg409 maxmag 0.0 -0 -> 0.0 -dqmxg410 maxmag 0.0 -0.0 -> 0.0 -dqmxg411 maxmag 0.00 -0.0 -> 0.00 -dqmxg412 maxmag 0.0 -0.00 -> 0.0 -dqmxg413 maxmag 0 -0.0 -> 0 -dqmxg414 maxmag 0 -0 -> 0 -dqmxg415 maxmag -0.0 -0 -> -0.0 -dqmxg416 maxmag -0 -0.100 -> -0.100 -dqmxg417 maxmag -0.100 -0.10 -> -0.100 -dqmxg418 maxmag -0.10 -0.1 -> -0.10 -dqmxg419 maxmag -0.1 -1.0 -> -1.0 -dqmxg420 maxmag -1.0 -1 -> -1.0 -dqmxg421 maxmag -1 -1.1 -> -1.1 -dqmxg423 maxmag -1.1 -Inf -> -Infinity --- same with operands reversed -dqmxg431 maxmag 1.1 Inf -> Infinity -dqmxg432 maxmag 1 1.1 -> 1.1 -dqmxg433 maxmag 1.0 1 -> 1 -dqmxg434 maxmag 0.1 1.0 -> 1.0 -dqmxg435 maxmag 0.10 0.1 -> 0.1 -dqmxg436 maxmag 0.100 0.10 -> 0.10 -dqmxg437 maxmag 0 0.10 -> 0.10 -dqmxg438 maxmag 0.0 0 -> 0 -dqmxg439 maxmag -0 0.0 -> 0.0 -dqmxg440 maxmag -0.0 0.0 -> 0.0 -dqmxg441 maxmag -0.0 0.00 -> 0.00 -dqmxg442 maxmag -0.00 0.0 -> 0.0 -dqmxg443 maxmag -0.0 0 -> 0 -dqmxg444 maxmag -0 0 -> 0 -dqmxg445 maxmag -0 -0.0 -> -0.0 -dqmxg446 maxmag -0.100 -0 -> -0.100 -dqmxg447 maxmag -0.10 -0.100 -> -0.100 -dqmxg448 maxmag -0.1 -0.10 -> -0.10 -dqmxg449 maxmag -1.0 -0.1 -> -1.0 -dqmxg450 maxmag -1 -1.0 -> -1.0 -dqmxg451 maxmag -1.1 -1 -> -1.1 -dqmxg453 maxmag -Inf -1.1 -> -Infinity --- largies -dqmxg460 maxmag 1000 1E+3 -> 1E+3 -dqmxg461 maxmag 1E+3 1000 -> 1E+3 -dqmxg462 maxmag 1000 -1E+3 -> 1000 -dqmxg463 maxmag 1E+3 -1000 -> 1E+3 -dqmxg464 maxmag -1000 1E+3 -> 1E+3 -dqmxg465 maxmag -1E+3 1000 -> 1000 -dqmxg466 maxmag -1000 -1E+3 -> -1000 -dqmxg467 maxmag -1E+3 -1000 -> -1000 - --- subnormals -dqmxg510 maxmag 1.00E-6143 0 -> 1.00E-6143 -dqmxg511 maxmag 0.1E-6143 0 -> 1E-6144 Subnormal -dqmxg512 maxmag 0.10E-6143 0 -> 1.0E-6144 Subnormal -dqmxg513 maxmag 0.100E-6143 0 -> 1.00E-6144 Subnormal -dqmxg514 maxmag 0.01E-6143 0 -> 1E-6145 Subnormal -dqmxg515 maxmag 0.999E-6143 0 -> 9.99E-6144 Subnormal -dqmxg516 maxmag 0.099E-6143 0 -> 9.9E-6145 Subnormal -dqmxg517 maxmag 0.009E-6143 0 -> 9E-6146 Subnormal -dqmxg518 maxmag 0.001E-6143 0 -> 1E-6146 Subnormal -dqmxg519 maxmag 0.0009E-6143 0 -> 9E-6147 Subnormal -dqmxg520 maxmag 0.0001E-6143 0 -> 1E-6147 Subnormal - -dqmxg530 maxmag -1.00E-6143 0 -> -1.00E-6143 -dqmxg531 maxmag -0.1E-6143 0 -> -1E-6144 Subnormal -dqmxg532 maxmag -0.10E-6143 0 -> -1.0E-6144 Subnormal -dqmxg533 maxmag -0.100E-6143 0 -> -1.00E-6144 Subnormal -dqmxg534 maxmag -0.01E-6143 0 -> -1E-6145 Subnormal -dqmxg535 maxmag -0.999E-6143 0 -> -9.99E-6144 Subnormal -dqmxg536 maxmag -0.099E-6143 0 -> -9.9E-6145 Subnormal -dqmxg537 maxmag -0.009E-6143 0 -> -9E-6146 Subnormal -dqmxg538 maxmag -0.001E-6143 0 -> -1E-6146 Subnormal -dqmxg539 maxmag -0.0009E-6143 0 -> -9E-6147 Subnormal -dqmxg540 maxmag -0.0001E-6143 0 -> -1E-6147 Subnormal - --- Null tests -dqmxg900 maxmag 10 # -> NaN Invalid_operation -dqmxg901 maxmag # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqMin.decTest b/qdecimal/test/tc_full/dqMin.decTest deleted file mode 100644 index 315a037..0000000 --- a/qdecimal/test/tc_full/dqMin.decTest +++ /dev/null @@ -1,309 +0,0 @@ ------------------------------------------------------------------------- --- dqMin.decTest -- decQuad minnum -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqmin001 min -2 -2 -> -2 -dqmin002 min -2 -1 -> -2 -dqmin003 min -2 0 -> -2 -dqmin004 min -2 1 -> -2 -dqmin005 min -2 2 -> -2 -dqmin006 min -1 -2 -> -2 -dqmin007 min -1 -1 -> -1 -dqmin008 min -1 0 -> -1 -dqmin009 min -1 1 -> -1 -dqmin010 min -1 2 -> -1 -dqmin011 min 0 -2 -> -2 -dqmin012 min 0 -1 -> -1 -dqmin013 min 0 0 -> 0 -dqmin014 min 0 1 -> 0 -dqmin015 min 0 2 -> 0 -dqmin016 min 1 -2 -> -2 -dqmin017 min 1 -1 -> -1 -dqmin018 min 1 0 -> 0 -dqmin019 min 1 1 -> 1 -dqmin020 min 1 2 -> 1 -dqmin021 min 2 -2 -> -2 -dqmin022 min 2 -1 -> -1 -dqmin023 min 2 0 -> 0 -dqmin025 min 2 1 -> 1 -dqmin026 min 2 2 -> 2 - --- extended zeros -dqmin030 min 0 0 -> 0 -dqmin031 min 0 -0 -> -0 -dqmin032 min 0 -0.0 -> -0.0 -dqmin033 min 0 0.0 -> 0.0 -dqmin034 min -0 0 -> -0 -dqmin035 min -0 -0 -> -0 -dqmin036 min -0 -0.0 -> -0 -dqmin037 min -0 0.0 -> -0 -dqmin038 min 0.0 0 -> 0.0 -dqmin039 min 0.0 -0 -> -0 -dqmin040 min 0.0 -0.0 -> -0.0 -dqmin041 min 0.0 0.0 -> 0.0 -dqmin042 min -0.0 0 -> -0.0 -dqmin043 min -0.0 -0 -> -0 -dqmin044 min -0.0 -0.0 -> -0.0 -dqmin045 min -0.0 0.0 -> -0.0 - -dqmin046 min 0E1 -0E1 -> -0E+1 -dqmin047 min -0E1 0E2 -> -0E+1 -dqmin048 min 0E2 0E1 -> 0E+1 -dqmin049 min 0E1 0E2 -> 0E+1 -dqmin050 min -0E3 -0E2 -> -0E+3 -dqmin051 min -0E2 -0E3 -> -0E+3 - --- Specials -dqmin090 min Inf -Inf -> -Infinity -dqmin091 min Inf -1000 -> -1000 -dqmin092 min Inf -1 -> -1 -dqmin093 min Inf -0 -> -0 -dqmin094 min Inf 0 -> 0 -dqmin095 min Inf 1 -> 1 -dqmin096 min Inf 1000 -> 1000 -dqmin097 min Inf Inf -> Infinity -dqmin098 min -1000 Inf -> -1000 -dqmin099 min -Inf Inf -> -Infinity -dqmin100 min -1 Inf -> -1 -dqmin101 min -0 Inf -> -0 -dqmin102 min 0 Inf -> 0 -dqmin103 min 1 Inf -> 1 -dqmin104 min 1000 Inf -> 1000 -dqmin105 min Inf Inf -> Infinity - -dqmin120 min -Inf -Inf -> -Infinity -dqmin121 min -Inf -1000 -> -Infinity -dqmin122 min -Inf -1 -> -Infinity -dqmin123 min -Inf -0 -> -Infinity -dqmin124 min -Inf 0 -> -Infinity -dqmin125 min -Inf 1 -> -Infinity -dqmin126 min -Inf 1000 -> -Infinity -dqmin127 min -Inf Inf -> -Infinity -dqmin128 min -Inf -Inf -> -Infinity -dqmin129 min -1000 -Inf -> -Infinity -dqmin130 min -1 -Inf -> -Infinity -dqmin131 min -0 -Inf -> -Infinity -dqmin132 min 0 -Inf -> -Infinity -dqmin133 min 1 -Inf -> -Infinity -dqmin134 min 1000 -Inf -> -Infinity -dqmin135 min Inf -Inf -> -Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -dqmin141 min NaN -Inf -> -Infinity -dqmin142 min NaN -1000 -> -1000 -dqmin143 min NaN -1 -> -1 -dqmin144 min NaN -0 -> -0 -dqmin145 min NaN 0 -> 0 -dqmin146 min NaN 1 -> 1 -dqmin147 min NaN 1000 -> 1000 -dqmin148 min NaN Inf -> Infinity -dqmin149 min NaN NaN -> NaN -dqmin150 min -Inf NaN -> -Infinity -dqmin151 min -1000 NaN -> -1000 -dqmin152 min -1 -NaN -> -1 -dqmin153 min -0 NaN -> -0 -dqmin154 min 0 -NaN -> 0 -dqmin155 min 1 NaN -> 1 -dqmin156 min 1000 NaN -> 1000 -dqmin157 min Inf NaN -> Infinity - -dqmin161 min sNaN -Inf -> NaN Invalid_operation -dqmin162 min sNaN -1000 -> NaN Invalid_operation -dqmin163 min sNaN -1 -> NaN Invalid_operation -dqmin164 min sNaN -0 -> NaN Invalid_operation -dqmin165 min -sNaN 0 -> -NaN Invalid_operation -dqmin166 min -sNaN 1 -> -NaN Invalid_operation -dqmin167 min sNaN 1000 -> NaN Invalid_operation -dqmin168 min sNaN NaN -> NaN Invalid_operation -dqmin169 min sNaN sNaN -> NaN Invalid_operation -dqmin170 min NaN sNaN -> NaN Invalid_operation -dqmin171 min -Inf sNaN -> NaN Invalid_operation -dqmin172 min -1000 sNaN -> NaN Invalid_operation -dqmin173 min -1 sNaN -> NaN Invalid_operation -dqmin174 min -0 sNaN -> NaN Invalid_operation -dqmin175 min 0 sNaN -> NaN Invalid_operation -dqmin176 min 1 sNaN -> NaN Invalid_operation -dqmin177 min 1000 sNaN -> NaN Invalid_operation -dqmin178 min Inf sNaN -> NaN Invalid_operation -dqmin179 min NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqmin181 min NaN9 -Inf -> -Infinity -dqmin182 min -NaN8 9990 -> 9990 -dqmin183 min NaN71 Inf -> Infinity - -dqmin184 min NaN1 NaN54 -> NaN1 -dqmin185 min NaN22 -NaN53 -> NaN22 -dqmin186 min -NaN3 NaN6 -> -NaN3 -dqmin187 min -NaN44 NaN7 -> -NaN44 - -dqmin188 min -Inf NaN41 -> -Infinity -dqmin189 min -9999 -NaN33 -> -9999 -dqmin190 min Inf NaN2 -> Infinity - -dqmin191 min sNaN99 -Inf -> NaN99 Invalid_operation -dqmin192 min sNaN98 -11 -> NaN98 Invalid_operation -dqmin193 min -sNaN97 NaN8 -> -NaN97 Invalid_operation -dqmin194 min sNaN69 sNaN94 -> NaN69 Invalid_operation -dqmin195 min NaN95 sNaN93 -> NaN93 Invalid_operation -dqmin196 min -Inf sNaN92 -> NaN92 Invalid_operation -dqmin197 min 088 sNaN91 -> NaN91 Invalid_operation -dqmin198 min Inf -sNaN90 -> -NaN90 Invalid_operation -dqmin199 min NaN sNaN86 -> NaN86 Invalid_operation - --- old rounding checks -dqmin221 min -12345678000 1 -> -12345678000 -dqmin222 min 1 -12345678000 -> -12345678000 -dqmin223 min -1234567800 1 -> -1234567800 -dqmin224 min 1 -1234567800 -> -1234567800 -dqmin225 min -1234567890 1 -> -1234567890 -dqmin226 min 1 -1234567890 -> -1234567890 -dqmin227 min -1234567891 1 -> -1234567891 -dqmin228 min 1 -1234567891 -> -1234567891 -dqmin229 min -12345678901 1 -> -12345678901 -dqmin230 min 1 -12345678901 -> -12345678901 -dqmin231 min -1234567896 1 -> -1234567896 -dqmin232 min 1 -1234567896 -> -1234567896 -dqmin233 min 1234567891 1 -> 1 -dqmin234 min 1 1234567891 -> 1 -dqmin235 min 12345678901 1 -> 1 -dqmin236 min 1 12345678901 -> 1 -dqmin237 min 1234567896 1 -> 1 -dqmin238 min 1 1234567896 -> 1 - --- from examples -dqmin280 min '3' '2' -> '2' -dqmin281 min '-10' '3' -> '-10' -dqmin282 min '1.0' '1' -> '1.0' -dqmin283 min '1' '1.0' -> '1.0' -dqmin284 min '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -dqmin401 min Inf 1.1 -> 1.1 -dqmin402 min 1.1 1 -> 1 -dqmin403 min 1 1.0 -> 1.0 -dqmin404 min 1.0 0.1 -> 0.1 -dqmin405 min 0.1 0.10 -> 0.10 -dqmin406 min 0.10 0.100 -> 0.100 -dqmin407 min 0.10 0 -> 0 -dqmin408 min 0 0.0 -> 0.0 -dqmin409 min 0.0 -0 -> -0 -dqmin410 min 0.0 -0.0 -> -0.0 -dqmin411 min 0.00 -0.0 -> -0.0 -dqmin412 min 0.0 -0.00 -> -0.00 -dqmin413 min 0 -0.0 -> -0.0 -dqmin414 min 0 -0 -> -0 -dqmin415 min -0.0 -0 -> -0 -dqmin416 min -0 -0.100 -> -0.100 -dqmin417 min -0.100 -0.10 -> -0.10 -dqmin418 min -0.10 -0.1 -> -0.1 -dqmin419 min -0.1 -1.0 -> -1.0 -dqmin420 min -1.0 -1 -> -1 -dqmin421 min -1 -1.1 -> -1.1 -dqmin423 min -1.1 -Inf -> -Infinity --- same with operands reversed -dqmin431 min 1.1 Inf -> 1.1 -dqmin432 min 1 1.1 -> 1 -dqmin433 min 1.0 1 -> 1.0 -dqmin434 min 0.1 1.0 -> 0.1 -dqmin435 min 0.10 0.1 -> 0.10 -dqmin436 min 0.100 0.10 -> 0.100 -dqmin437 min 0 0.10 -> 0 -dqmin438 min 0.0 0 -> 0.0 -dqmin439 min -0 0.0 -> -0 -dqmin440 min -0.0 0.0 -> -0.0 -dqmin441 min -0.0 0.00 -> -0.0 -dqmin442 min -0.00 0.0 -> -0.00 -dqmin443 min -0.0 0 -> -0.0 -dqmin444 min -0 0 -> -0 -dqmin445 min -0 -0.0 -> -0 -dqmin446 min -0.100 -0 -> -0.100 -dqmin447 min -0.10 -0.100 -> -0.10 -dqmin448 min -0.1 -0.10 -> -0.1 -dqmin449 min -1.0 -0.1 -> -1.0 -dqmin450 min -1 -1.0 -> -1 -dqmin451 min -1.1 -1 -> -1.1 -dqmin453 min -Inf -1.1 -> -Infinity --- largies -dqmin460 min 1000 1E+3 -> 1000 -dqmin461 min 1E+3 1000 -> 1000 -dqmin462 min 1000 -1E+3 -> -1E+3 -dqmin463 min 1E+3 -384 -> -384 -dqmin464 min -384 1E+3 -> -384 -dqmin465 min -1E+3 1000 -> -1E+3 -dqmin466 min -384 -1E+3 -> -1E+3 -dqmin467 min -1E+3 -384 -> -1E+3 - --- misalignment traps for little-endian -dqmin471 min 1.0 0.1 -> 0.1 -dqmin472 min 0.1 1.0 -> 0.1 -dqmin473 min 10.0 0.1 -> 0.1 -dqmin474 min 0.1 10.0 -> 0.1 -dqmin475 min 100 1.0 -> 1.0 -dqmin476 min 1.0 100 -> 1.0 -dqmin477 min 1000 10.0 -> 10.0 -dqmin478 min 10.0 1000 -> 10.0 -dqmin479 min 10000 100.0 -> 100.0 -dqmin480 min 100.0 10000 -> 100.0 -dqmin481 min 100000 1000.0 -> 1000.0 -dqmin482 min 1000.0 100000 -> 1000.0 -dqmin483 min 1000000 10000.0 -> 10000.0 -dqmin484 min 10000.0 1000000 -> 10000.0 - --- subnormals -dqmin510 min 1.00E-6143 0 -> 0 -dqmin511 min 0.1E-6143 0 -> 0 -dqmin512 min 0.10E-6143 0 -> 0 -dqmin513 min 0.100E-6143 0 -> 0 -dqmin514 min 0.01E-6143 0 -> 0 -dqmin515 min 0.999E-6143 0 -> 0 -dqmin516 min 0.099E-6143 0 -> 0 -dqmin517 min 0.009E-6143 0 -> 0 -dqmin518 min 0.001E-6143 0 -> 0 -dqmin519 min 0.0009E-6143 0 -> 0 -dqmin520 min 0.0001E-6143 0 -> 0 - -dqmin530 min -1.00E-6143 0 -> -1.00E-6143 -dqmin531 min -0.1E-6143 0 -> -1E-6144 Subnormal -dqmin532 min -0.10E-6143 0 -> -1.0E-6144 Subnormal -dqmin533 min -0.100E-6143 0 -> -1.00E-6144 Subnormal -dqmin534 min -0.01E-6143 0 -> -1E-6145 Subnormal -dqmin535 min -0.999E-6143 0 -> -9.99E-6144 Subnormal -dqmin536 min -0.099E-6143 0 -> -9.9E-6145 Subnormal -dqmin537 min -0.009E-6143 0 -> -9E-6146 Subnormal -dqmin538 min -0.001E-6143 0 -> -1E-6146 Subnormal -dqmin539 min -0.0009E-6143 0 -> -9E-6147 Subnormal -dqmin540 min -0.0001E-6143 0 -> -1E-6147 Subnormal - - --- Null tests -dqmin900 min 10 # -> NaN Invalid_operation -dqmin901 min # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqMinMag.decTest b/qdecimal/test/tc_full/dqMinMag.decTest deleted file mode 100644 index ef96cb4..0000000 --- a/qdecimal/test/tc_full/dqMinMag.decTest +++ /dev/null @@ -1,293 +0,0 @@ ------------------------------------------------------------------------- --- dqMinMag.decTest -- decQuad minnummag -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqmng001 minmag -2 -2 -> -2 -dqmng002 minmag -2 -1 -> -1 -dqmng003 minmag -2 0 -> 0 -dqmng004 minmag -2 1 -> 1 -dqmng005 minmag -2 2 -> -2 -dqmng006 minmag -1 -2 -> -1 -dqmng007 minmag -1 -1 -> -1 -dqmng008 minmag -1 0 -> 0 -dqmng009 minmag -1 1 -> -1 -dqmng010 minmag -1 2 -> -1 -dqmng011 minmag 0 -2 -> 0 -dqmng012 minmag 0 -1 -> 0 -dqmng013 minmag 0 0 -> 0 -dqmng014 minmag 0 1 -> 0 -dqmng015 minmag 0 2 -> 0 -dqmng016 minmag 1 -2 -> 1 -dqmng017 minmag 1 -1 -> -1 -dqmng018 minmag 1 0 -> 0 -dqmng019 minmag 1 1 -> 1 -dqmng020 minmag 1 2 -> 1 -dqmng021 minmag 2 -2 -> -2 -dqmng022 minmag 2 -1 -> -1 -dqmng023 minmag 2 0 -> 0 -dqmng025 minmag 2 1 -> 1 -dqmng026 minmag 2 2 -> 2 - --- extended zeros -dqmng030 minmag 0 0 -> 0 -dqmng031 minmag 0 -0 -> -0 -dqmng032 minmag 0 -0.0 -> -0.0 -dqmng033 minmag 0 0.0 -> 0.0 -dqmng034 minmag -0 0 -> -0 -dqmng035 minmag -0 -0 -> -0 -dqmng036 minmag -0 -0.0 -> -0 -dqmng037 minmag -0 0.0 -> -0 -dqmng038 minmag 0.0 0 -> 0.0 -dqmng039 minmag 0.0 -0 -> -0 -dqmng040 minmag 0.0 -0.0 -> -0.0 -dqmng041 minmag 0.0 0.0 -> 0.0 -dqmng042 minmag -0.0 0 -> -0.0 -dqmng043 minmag -0.0 -0 -> -0 -dqmng044 minmag -0.0 -0.0 -> -0.0 -dqmng045 minmag -0.0 0.0 -> -0.0 - -dqmng046 minmag 0E1 -0E1 -> -0E+1 -dqmng047 minmag -0E1 0E2 -> -0E+1 -dqmng048 minmag 0E2 0E1 -> 0E+1 -dqmng049 minmag 0E1 0E2 -> 0E+1 -dqmng050 minmag -0E3 -0E2 -> -0E+3 -dqmng051 minmag -0E2 -0E3 -> -0E+3 - --- Specials -dqmng090 minmag Inf -Inf -> -Infinity -dqmng091 minmag Inf -1000 -> -1000 -dqmng092 minmag Inf -1 -> -1 -dqmng093 minmag Inf -0 -> -0 -dqmng094 minmag Inf 0 -> 0 -dqmng095 minmag Inf 1 -> 1 -dqmng096 minmag Inf 1000 -> 1000 -dqmng097 minmag Inf Inf -> Infinity -dqmng098 minmag -1000 Inf -> -1000 -dqmng099 minmag -Inf Inf -> -Infinity -dqmng100 minmag -1 Inf -> -1 -dqmng101 minmag -0 Inf -> -0 -dqmng102 minmag 0 Inf -> 0 -dqmng103 minmag 1 Inf -> 1 -dqmng104 minmag 1000 Inf -> 1000 -dqmng105 minmag Inf Inf -> Infinity - -dqmng120 minmag -Inf -Inf -> -Infinity -dqmng121 minmag -Inf -1000 -> -1000 -dqmng122 minmag -Inf -1 -> -1 -dqmng123 minmag -Inf -0 -> -0 -dqmng124 minmag -Inf 0 -> 0 -dqmng125 minmag -Inf 1 -> 1 -dqmng126 minmag -Inf 1000 -> 1000 -dqmng127 minmag -Inf Inf -> -Infinity -dqmng128 minmag -Inf -Inf -> -Infinity -dqmng129 minmag -1000 -Inf -> -1000 -dqmng130 minmag -1 -Inf -> -1 -dqmng131 minmag -0 -Inf -> -0 -dqmng132 minmag 0 -Inf -> 0 -dqmng133 minmag 1 -Inf -> 1 -dqmng134 minmag 1000 -Inf -> 1000 -dqmng135 minmag Inf -Inf -> -Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -dqmng141 minmag NaN -Inf -> -Infinity -dqmng142 minmag NaN -1000 -> -1000 -dqmng143 minmag NaN -1 -> -1 -dqmng144 minmag NaN -0 -> -0 -dqmng145 minmag NaN 0 -> 0 -dqmng146 minmag NaN 1 -> 1 -dqmng147 minmag NaN 1000 -> 1000 -dqmng148 minmag NaN Inf -> Infinity -dqmng149 minmag NaN NaN -> NaN -dqmng150 minmag -Inf NaN -> -Infinity -dqmng151 minmag -1000 NaN -> -1000 -dqmng152 minmag -1 -NaN -> -1 -dqmng153 minmag -0 NaN -> -0 -dqmng154 minmag 0 -NaN -> 0 -dqmng155 minmag 1 NaN -> 1 -dqmng156 minmag 1000 NaN -> 1000 -dqmng157 minmag Inf NaN -> Infinity - -dqmng161 minmag sNaN -Inf -> NaN Invalid_operation -dqmng162 minmag sNaN -1000 -> NaN Invalid_operation -dqmng163 minmag sNaN -1 -> NaN Invalid_operation -dqmng164 minmag sNaN -0 -> NaN Invalid_operation -dqmng165 minmag -sNaN 0 -> -NaN Invalid_operation -dqmng166 minmag -sNaN 1 -> -NaN Invalid_operation -dqmng167 minmag sNaN 1000 -> NaN Invalid_operation -dqmng168 minmag sNaN NaN -> NaN Invalid_operation -dqmng169 minmag sNaN sNaN -> NaN Invalid_operation -dqmng170 minmag NaN sNaN -> NaN Invalid_operation -dqmng171 minmag -Inf sNaN -> NaN Invalid_operation -dqmng172 minmag -1000 sNaN -> NaN Invalid_operation -dqmng173 minmag -1 sNaN -> NaN Invalid_operation -dqmng174 minmag -0 sNaN -> NaN Invalid_operation -dqmng175 minmag 0 sNaN -> NaN Invalid_operation -dqmng176 minmag 1 sNaN -> NaN Invalid_operation -dqmng177 minmag 1000 sNaN -> NaN Invalid_operation -dqmng178 minmag Inf sNaN -> NaN Invalid_operation -dqmng179 minmag NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqmng181 minmag NaN9 -Inf -> -Infinity -dqmng182 minmag -NaN8 9990 -> 9990 -dqmng183 minmag NaN71 Inf -> Infinity - -dqmng184 minmag NaN1 NaN54 -> NaN1 -dqmng185 minmag NaN22 -NaN53 -> NaN22 -dqmng186 minmag -NaN3 NaN6 -> -NaN3 -dqmng187 minmag -NaN44 NaN7 -> -NaN44 - -dqmng188 minmag -Inf NaN41 -> -Infinity -dqmng189 minmag -9999 -NaN33 -> -9999 -dqmng190 minmag Inf NaN2 -> Infinity - -dqmng191 minmag sNaN99 -Inf -> NaN99 Invalid_operation -dqmng192 minmag sNaN98 -11 -> NaN98 Invalid_operation -dqmng193 minmag -sNaN97 NaN8 -> -NaN97 Invalid_operation -dqmng194 minmag sNaN69 sNaN94 -> NaN69 Invalid_operation -dqmng195 minmag NaN95 sNaN93 -> NaN93 Invalid_operation -dqmng196 minmag -Inf sNaN92 -> NaN92 Invalid_operation -dqmng197 minmag 088 sNaN91 -> NaN91 Invalid_operation -dqmng198 minmag Inf -sNaN90 -> -NaN90 Invalid_operation -dqmng199 minmag NaN sNaN86 -> NaN86 Invalid_operation - --- old rounding checks -dqmng221 minmag -12345678000 1 -> 1 -dqmng222 minmag 1 -12345678000 -> 1 -dqmng223 minmag -1234567800 1 -> 1 -dqmng224 minmag 1 -1234567800 -> 1 -dqmng225 minmag -1234567890 1 -> 1 -dqmng226 minmag 1 -1234567890 -> 1 -dqmng227 minmag -1234567891 1 -> 1 -dqmng228 minmag 1 -1234567891 -> 1 -dqmng229 minmag -12345678901 1 -> 1 -dqmng230 minmag 1 -12345678901 -> 1 -dqmng231 minmag -1234567896 1 -> 1 -dqmng232 minmag 1 -1234567896 -> 1 -dqmng233 minmag 1234567891 1 -> 1 -dqmng234 minmag 1 1234567891 -> 1 -dqmng235 minmag 12345678901 1 -> 1 -dqmng236 minmag 1 12345678901 -> 1 -dqmng237 minmag 1234567896 1 -> 1 -dqmng238 minmag 1 1234567896 -> 1 - --- from examples -dqmng280 minmag '3' '2' -> '2' -dqmng281 minmag '-10' '3' -> '3' -dqmng282 minmag '1.0' '1' -> '1.0' -dqmng283 minmag '1' '1.0' -> '1.0' -dqmng284 minmag '7' 'NaN' -> '7' - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -dqmng401 minmag Inf 1.1 -> 1.1 -dqmng402 minmag 1.1 1 -> 1 -dqmng403 minmag 1 1.0 -> 1.0 -dqmng404 minmag 1.0 0.1 -> 0.1 -dqmng405 minmag 0.1 0.10 -> 0.10 -dqmng406 minmag 0.10 0.100 -> 0.100 -dqmng407 minmag 0.10 0 -> 0 -dqmng408 minmag 0 0.0 -> 0.0 -dqmng409 minmag 0.0 -0 -> -0 -dqmng410 minmag 0.0 -0.0 -> -0.0 -dqmng411 minmag 0.00 -0.0 -> -0.0 -dqmng412 minmag 0.0 -0.00 -> -0.00 -dqmng413 minmag 0 -0.0 -> -0.0 -dqmng414 minmag 0 -0 -> -0 -dqmng415 minmag -0.0 -0 -> -0 -dqmng416 minmag -0 -0.100 -> -0 -dqmng417 minmag -0.100 -0.10 -> -0.10 -dqmng418 minmag -0.10 -0.1 -> -0.1 -dqmng419 minmag -0.1 -1.0 -> -0.1 -dqmng420 minmag -1.0 -1 -> -1 -dqmng421 minmag -1 -1.1 -> -1 -dqmng423 minmag -1.1 -Inf -> -1.1 --- same with operands reversed -dqmng431 minmag 1.1 Inf -> 1.1 -dqmng432 minmag 1 1.1 -> 1 -dqmng433 minmag 1.0 1 -> 1.0 -dqmng434 minmag 0.1 1.0 -> 0.1 -dqmng435 minmag 0.10 0.1 -> 0.10 -dqmng436 minmag 0.100 0.10 -> 0.100 -dqmng437 minmag 0 0.10 -> 0 -dqmng438 minmag 0.0 0 -> 0.0 -dqmng439 minmag -0 0.0 -> -0 -dqmng440 minmag -0.0 0.0 -> -0.0 -dqmng441 minmag -0.0 0.00 -> -0.0 -dqmng442 minmag -0.00 0.0 -> -0.00 -dqmng443 minmag -0.0 0 -> -0.0 -dqmng444 minmag -0 0 -> -0 -dqmng445 minmag -0 -0.0 -> -0 -dqmng446 minmag -0.100 -0 -> -0 -dqmng447 minmag -0.10 -0.100 -> -0.10 -dqmng448 minmag -0.1 -0.10 -> -0.1 -dqmng449 minmag -1.0 -0.1 -> -0.1 -dqmng450 minmag -1 -1.0 -> -1 -dqmng451 minmag -1.1 -1 -> -1 -dqmng453 minmag -Inf -1.1 -> -1.1 --- largies -dqmng460 minmag 1000 1E+3 -> 1000 -dqmng461 minmag 1E+3 1000 -> 1000 -dqmng462 minmag 1000 -1E+3 -> -1E+3 -dqmng463 minmag 1E+3 -384 -> -384 -dqmng464 minmag -384 1E+3 -> -384 -dqmng465 minmag -1E+3 1000 -> -1E+3 -dqmng466 minmag -384 -1E+3 -> -384 -dqmng467 minmag -1E+3 -384 -> -384 - --- subnormals -dqmng510 minmag 1.00E-6143 0 -> 0 -dqmng511 minmag 0.1E-6143 0 -> 0 -dqmng512 minmag 0.10E-6143 0 -> 0 -dqmng513 minmag 0.100E-6143 0 -> 0 -dqmng514 minmag 0.01E-6143 0 -> 0 -dqmng515 minmag 0.999E-6143 0 -> 0 -dqmng516 minmag 0.099E-6143 0 -> 0 -dqmng517 minmag 0.009E-6143 0 -> 0 -dqmng518 minmag 0.001E-6143 0 -> 0 -dqmng519 minmag 0.0009E-6143 0 -> 0 -dqmng520 minmag 0.0001E-6143 0 -> 0 - -dqmng530 minmag -1.00E-6143 0 -> 0 -dqmng531 minmag -0.1E-6143 0 -> 0 -dqmng532 minmag -0.10E-6143 0 -> 0 -dqmng533 minmag -0.100E-6143 0 -> 0 -dqmng534 minmag -0.01E-6143 0 -> 0 -dqmng535 minmag -0.999E-6143 0 -> 0 -dqmng536 minmag -0.099E-6143 0 -> 0 -dqmng537 minmag -0.009E-6143 0 -> 0 -dqmng538 minmag -0.001E-6143 0 -> 0 -dqmng539 minmag -0.0009E-6143 0 -> 0 -dqmng540 minmag -0.0001E-6143 0 -> 0 - - --- Null tests -dqmng900 minmag 10 # -> NaN Invalid_operation -dqmng901 minmag # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqMinus.decTest b/qdecimal/test/tc_full/dqMinus.decTest deleted file mode 100644 index 8b4de5d..0000000 --- a/qdecimal/test/tc_full/dqMinus.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- dqMinus.decTest -- decQuad 0-x -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqmns001 minus +7.50 -> -7.50 - --- Infinities -dqmns011 minus Infinity -> -Infinity -dqmns012 minus -Infinity -> Infinity - --- NaNs, 0 payload -dqmns021 minus NaN -> NaN -dqmns022 minus -NaN -> -NaN -dqmns023 minus sNaN -> NaN Invalid_operation -dqmns024 minus -sNaN -> -NaN Invalid_operation - --- NaNs, non-0 payload -dqmns031 minus NaN13 -> NaN13 -dqmns032 minus -NaN13 -> -NaN13 -dqmns033 minus sNaN13 -> NaN13 Invalid_operation -dqmns034 minus -sNaN13 -> -NaN13 Invalid_operation -dqmns035 minus NaN70 -> NaN70 -dqmns036 minus -NaN70 -> -NaN70 -dqmns037 minus sNaN101 -> NaN101 Invalid_operation -dqmns038 minus -sNaN101 -> -NaN101 Invalid_operation - --- finites -dqmns101 minus 7 -> -7 -dqmns102 minus -7 -> 7 -dqmns103 minus 75 -> -75 -dqmns104 minus -75 -> 75 -dqmns105 minus 7.50 -> -7.50 -dqmns106 minus -7.50 -> 7.50 -dqmns107 minus 7.500 -> -7.500 -dqmns108 minus -7.500 -> 7.500 - --- zeros -dqmns111 minus 0 -> 0 -dqmns112 minus -0 -> 0 -dqmns113 minus 0E+4 -> 0E+4 -dqmns114 minus -0E+4 -> 0E+4 -dqmns115 minus 0.0000 -> 0.0000 -dqmns116 minus -0.0000 -> 0.0000 -dqmns117 minus 0E-141 -> 0E-141 -dqmns118 minus -0E-141 -> 0E-141 - --- full coefficients, alternating bits -dqmns121 minus 2682682682682682682682682682682682 -> -2682682682682682682682682682682682 -dqmns122 minus -2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqmns123 minus 1341341341341341341341341341341341 -> -1341341341341341341341341341341341 -dqmns124 minus -1341341341341341341341341341341341 -> 1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqmns131 minus 9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 -dqmns132 minus 1E-6143 -> -1E-6143 -dqmns133 minus 1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143 -dqmns134 minus 1E-6176 -> -1E-6176 Subnormal - -dqmns135 minus -1E-6176 -> 1E-6176 Subnormal -dqmns136 minus -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqmns137 minus -1E-6143 -> 1E-6143 -dqmns138 minus -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 diff --git a/qdecimal/test/tc_full/dqMultiply.decTest b/qdecimal/test/tc_full/dqMultiply.decTest deleted file mode 100644 index bd5bcac..0000000 --- a/qdecimal/test/tc_full/dqMultiply.decTest +++ /dev/null @@ -1,589 +0,0 @@ ------------------------------------------------------------------------- --- dqMultiply.decTest -- decQuad multiplication -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests are for decQuads only; all arguments are --- representable in a decQuad -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqmul000 multiply 2 2 -> 4 -dqmul001 multiply 2 3 -> 6 -dqmul002 multiply 5 1 -> 5 -dqmul003 multiply 5 2 -> 10 -dqmul004 multiply 1.20 2 -> 2.40 -dqmul005 multiply 1.20 0 -> 0.00 -dqmul006 multiply 1.20 -2 -> -2.40 -dqmul007 multiply -1.20 2 -> -2.40 -dqmul008 multiply -1.20 0 -> -0.00 -dqmul009 multiply -1.20 -2 -> 2.40 -dqmul010 multiply 5.09 7.1 -> 36.139 -dqmul011 multiply 2.5 4 -> 10.0 -dqmul012 multiply 2.50 4 -> 10.00 -dqmul013 multiply 1.23456789 1.0000000000000000000000000000 -> 1.234567890000000000000000000000000 Rounded -dqmul015 multiply 2.50 4 -> 10.00 -dqmul016 multiply 9.99999999999999999 9.99999999999999999 -> 99.99999999999999980000000000000000 Inexact Rounded -dqmul017 multiply 9.99999999999999999 -9.99999999999999999 -> -99.99999999999999980000000000000000 Inexact Rounded -dqmul018 multiply -9.99999999999999999 9.99999999999999999 -> -99.99999999999999980000000000000000 Inexact Rounded -dqmul019 multiply -9.99999999999999999 -9.99999999999999999 -> 99.99999999999999980000000000000000 Inexact Rounded - --- zeros, etc. -dqmul021 multiply 0 0 -> 0 -dqmul022 multiply 0 -0 -> -0 -dqmul023 multiply -0 0 -> -0 -dqmul024 multiply -0 -0 -> 0 -dqmul025 multiply -0.0 -0.0 -> 0.00 -dqmul026 multiply -0.0 -0.0 -> 0.00 -dqmul027 multiply -0.0 -0.0 -> 0.00 -dqmul028 multiply -0.0 -0.0 -> 0.00 -dqmul030 multiply 5.00 1E-3 -> 0.00500 -dqmul031 multiply 00.00 0.000 -> 0.00000 -dqmul032 multiply 00.00 0E-3 -> 0.00000 -- rhs is 0 -dqmul033 multiply 0E-3 00.00 -> 0.00000 -- lhs is 0 -dqmul034 multiply -5.00 1E-3 -> -0.00500 -dqmul035 multiply -00.00 0.000 -> -0.00000 -dqmul036 multiply -00.00 0E-3 -> -0.00000 -- rhs is 0 -dqmul037 multiply -0E-3 00.00 -> -0.00000 -- lhs is 0 -dqmul038 multiply 5.00 -1E-3 -> -0.00500 -dqmul039 multiply 00.00 -0.000 -> -0.00000 -dqmul040 multiply 00.00 -0E-3 -> -0.00000 -- rhs is 0 -dqmul041 multiply 0E-3 -00.00 -> -0.00000 -- lhs is 0 -dqmul042 multiply -5.00 -1E-3 -> 0.00500 -dqmul043 multiply -00.00 -0.000 -> 0.00000 -dqmul044 multiply -00.00 -0E-3 -> 0.00000 -- rhs is 0 -dqmul045 multiply -0E-3 -00.00 -> 0.00000 -- lhs is 0 - --- examples from decarith -dqmul050 multiply 1.20 3 -> 3.60 -dqmul051 multiply 7 3 -> 21 -dqmul052 multiply 0.9 0.8 -> 0.72 -dqmul053 multiply 0.9 -0 -> -0.0 -dqmul054 multiply 654321 654321 -> 428135971041 - -dqmul060 multiply 123.45 1e7 -> 1.2345E+9 -dqmul061 multiply 123.45 1e8 -> 1.2345E+10 -dqmul062 multiply 123.45 1e+9 -> 1.2345E+11 -dqmul063 multiply 123.45 1e10 -> 1.2345E+12 -dqmul064 multiply 123.45 1e11 -> 1.2345E+13 -dqmul065 multiply 123.45 1e12 -> 1.2345E+14 -dqmul066 multiply 123.45 1e13 -> 1.2345E+15 - - --- test some intermediate lengths --- 1234567890123456 -dqmul080 multiply 0.1 1230123456456789 -> 123012345645678.9 -dqmul084 multiply 0.1 1230123456456789 -> 123012345645678.9 -dqmul090 multiply 1230123456456789 0.1 -> 123012345645678.9 -dqmul094 multiply 1230123456456789 0.1 -> 123012345645678.9 - --- test some more edge cases and carries -dqmul101 multiply 9 9 -> 81 -dqmul102 multiply 9 90 -> 810 -dqmul103 multiply 9 900 -> 8100 -dqmul104 multiply 9 9000 -> 81000 -dqmul105 multiply 9 90000 -> 810000 -dqmul106 multiply 9 900000 -> 8100000 -dqmul107 multiply 9 9000000 -> 81000000 -dqmul108 multiply 9 90000000 -> 810000000 -dqmul109 multiply 9 900000000 -> 8100000000 -dqmul110 multiply 9 9000000000 -> 81000000000 -dqmul111 multiply 9 90000000000 -> 810000000000 -dqmul112 multiply 9 900000000000 -> 8100000000000 -dqmul113 multiply 9 9000000000000 -> 81000000000000 -dqmul114 multiply 9 90000000000000 -> 810000000000000 -dqmul115 multiply 9 900000000000000 -> 8100000000000000 ---dqmul116 multiply 9 9000000000000000 -> 81000000000000000 ---dqmul117 multiply 9 90000000000000000 -> 810000000000000000 ---dqmul118 multiply 9 900000000000000000 -> 8100000000000000000 ---dqmul119 multiply 9 9000000000000000000 -> 81000000000000000000 ---dqmul120 multiply 9 90000000000000000000 -> 810000000000000000000 ---dqmul121 multiply 9 900000000000000000000 -> 8100000000000000000000 ---dqmul122 multiply 9 9000000000000000000000 -> 81000000000000000000000 ---dqmul123 multiply 9 90000000000000000000000 -> 810000000000000000000000 --- test some more edge cases without carries -dqmul131 multiply 3 3 -> 9 -dqmul132 multiply 3 30 -> 90 -dqmul133 multiply 3 300 -> 900 -dqmul134 multiply 3 3000 -> 9000 -dqmul135 multiply 3 30000 -> 90000 -dqmul136 multiply 3 300000 -> 900000 -dqmul137 multiply 3 3000000 -> 9000000 -dqmul138 multiply 3 30000000 -> 90000000 -dqmul139 multiply 3 300000000 -> 900000000 -dqmul140 multiply 3 3000000000 -> 9000000000 -dqmul141 multiply 3 30000000000 -> 90000000000 -dqmul142 multiply 3 300000000000 -> 900000000000 -dqmul143 multiply 3 3000000000000 -> 9000000000000 -dqmul144 multiply 3 30000000000000 -> 90000000000000 -dqmul145 multiply 3 300000000000000 -> 900000000000000 -dqmul146 multiply 3 3000000000000000 -> 9000000000000000 -dqmul147 multiply 3 30000000000000000 -> 90000000000000000 -dqmul148 multiply 3 300000000000000000 -> 900000000000000000 -dqmul149 multiply 3 3000000000000000000 -> 9000000000000000000 -dqmul150 multiply 3 30000000000000000000 -> 90000000000000000000 -dqmul151 multiply 3 300000000000000000000 -> 900000000000000000000 -dqmul152 multiply 3 3000000000000000000000 -> 9000000000000000000000 -dqmul153 multiply 3 30000000000000000000000 -> 90000000000000000000000 - -dqmul263 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165119928296 Inexact Rounded - --- test some edge cases with exact rounding -dqmul301 multiply 900000000000000000 9 -> 8100000000000000000 -dqmul302 multiply 900000000000000000 90 -> 81000000000000000000 -dqmul303 multiply 900000000000000000 900 -> 810000000000000000000 -dqmul304 multiply 900000000000000000 9000 -> 8100000000000000000000 -dqmul305 multiply 900000000000000000 90000 -> 81000000000000000000000 -dqmul306 multiply 900000000000000000 900000 -> 810000000000000000000000 -dqmul307 multiply 900000000000000000 9000000 -> 8100000000000000000000000 -dqmul308 multiply 900000000000000000 90000000 -> 81000000000000000000000000 -dqmul309 multiply 900000000000000000 900000000 -> 810000000000000000000000000 -dqmul310 multiply 900000000000000000 9000000000 -> 8100000000000000000000000000 -dqmul311 multiply 900000000000000000 90000000000 -> 81000000000000000000000000000 -dqmul312 multiply 900000000000000000 900000000000 -> 810000000000000000000000000000 -dqmul313 multiply 900000000000000000 9000000000000 -> 8100000000000000000000000000000 -dqmul314 multiply 900000000000000000 90000000000000 -> 81000000000000000000000000000000 -dqmul315 multiply 900000000000000000 900000000000000 -> 810000000000000000000000000000000 -dqmul316 multiply 900000000000000000 9000000000000000 -> 8100000000000000000000000000000000 -dqmul317 multiply 9000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+34 Rounded -dqmul318 multiply 90000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+35 Rounded -dqmul319 multiply 900000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+36 Rounded -dqmul320 multiply 9000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+37 Rounded -dqmul321 multiply 90000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+38 Rounded -dqmul322 multiply 900000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+39 Rounded -dqmul323 multiply 9000000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+40 Rounded - --- tryzeros cases -dqmul504 multiply 0E-4260 1000E-4260 -> 0E-6176 Clamped -dqmul505 multiply 100E+4260 0E+4260 -> 0E+6111 Clamped - --- mixed with zeros -dqmul541 multiply 0 -1 -> -0 -dqmul542 multiply -0 -1 -> 0 -dqmul543 multiply 0 1 -> 0 -dqmul544 multiply -0 1 -> -0 -dqmul545 multiply -1 0 -> -0 -dqmul546 multiply -1 -0 -> 0 -dqmul547 multiply 1 0 -> 0 -dqmul548 multiply 1 -0 -> -0 - -dqmul551 multiply 0.0 -1 -> -0.0 -dqmul552 multiply -0.0 -1 -> 0.0 -dqmul553 multiply 0.0 1 -> 0.0 -dqmul554 multiply -0.0 1 -> -0.0 -dqmul555 multiply -1.0 0 -> -0.0 -dqmul556 multiply -1.0 -0 -> 0.0 -dqmul557 multiply 1.0 0 -> 0.0 -dqmul558 multiply 1.0 -0 -> -0.0 - -dqmul561 multiply 0 -1.0 -> -0.0 -dqmul562 multiply -0 -1.0 -> 0.0 -dqmul563 multiply 0 1.0 -> 0.0 -dqmul564 multiply -0 1.0 -> -0.0 -dqmul565 multiply -1 0.0 -> -0.0 -dqmul566 multiply -1 -0.0 -> 0.0 -dqmul567 multiply 1 0.0 -> 0.0 -dqmul568 multiply 1 -0.0 -> -0.0 - -dqmul571 multiply 0.0 -1.0 -> -0.00 -dqmul572 multiply -0.0 -1.0 -> 0.00 -dqmul573 multiply 0.0 1.0 -> 0.00 -dqmul574 multiply -0.0 1.0 -> -0.00 -dqmul575 multiply -1.0 0.0 -> -0.00 -dqmul576 multiply -1.0 -0.0 -> 0.00 -dqmul577 multiply 1.0 0.0 -> 0.00 -dqmul578 multiply 1.0 -0.0 -> -0.00 - - --- Specials -dqmul580 multiply Inf -Inf -> -Infinity -dqmul581 multiply Inf -1000 -> -Infinity -dqmul582 multiply Inf -1 -> -Infinity -dqmul583 multiply Inf -0 -> NaN Invalid_operation -dqmul584 multiply Inf 0 -> NaN Invalid_operation -dqmul585 multiply Inf 1 -> Infinity -dqmul586 multiply Inf 1000 -> Infinity -dqmul587 multiply Inf Inf -> Infinity -dqmul588 multiply -1000 Inf -> -Infinity -dqmul589 multiply -Inf Inf -> -Infinity -dqmul590 multiply -1 Inf -> -Infinity -dqmul591 multiply -0 Inf -> NaN Invalid_operation -dqmul592 multiply 0 Inf -> NaN Invalid_operation -dqmul593 multiply 1 Inf -> Infinity -dqmul594 multiply 1000 Inf -> Infinity -dqmul595 multiply Inf Inf -> Infinity - -dqmul600 multiply -Inf -Inf -> Infinity -dqmul601 multiply -Inf -1000 -> Infinity -dqmul602 multiply -Inf -1 -> Infinity -dqmul603 multiply -Inf -0 -> NaN Invalid_operation -dqmul604 multiply -Inf 0 -> NaN Invalid_operation -dqmul605 multiply -Inf 1 -> -Infinity -dqmul606 multiply -Inf 1000 -> -Infinity -dqmul607 multiply -Inf Inf -> -Infinity -dqmul608 multiply -1000 Inf -> -Infinity -dqmul609 multiply -Inf -Inf -> Infinity -dqmul610 multiply -1 -Inf -> Infinity -dqmul611 multiply -0 -Inf -> NaN Invalid_operation -dqmul612 multiply 0 -Inf -> NaN Invalid_operation -dqmul613 multiply 1 -Inf -> -Infinity -dqmul614 multiply 1000 -Inf -> -Infinity -dqmul615 multiply Inf -Inf -> -Infinity - -dqmul621 multiply NaN -Inf -> NaN -dqmul622 multiply NaN -1000 -> NaN -dqmul623 multiply NaN -1 -> NaN -dqmul624 multiply NaN -0 -> NaN -dqmul625 multiply NaN 0 -> NaN -dqmul626 multiply NaN 1 -> NaN -dqmul627 multiply NaN 1000 -> NaN -dqmul628 multiply NaN Inf -> NaN -dqmul629 multiply NaN NaN -> NaN -dqmul630 multiply -Inf NaN -> NaN -dqmul631 multiply -1000 NaN -> NaN -dqmul632 multiply -1 NaN -> NaN -dqmul633 multiply -0 NaN -> NaN -dqmul634 multiply 0 NaN -> NaN -dqmul635 multiply 1 NaN -> NaN -dqmul636 multiply 1000 NaN -> NaN -dqmul637 multiply Inf NaN -> NaN - -dqmul641 multiply sNaN -Inf -> NaN Invalid_operation -dqmul642 multiply sNaN -1000 -> NaN Invalid_operation -dqmul643 multiply sNaN -1 -> NaN Invalid_operation -dqmul644 multiply sNaN -0 -> NaN Invalid_operation -dqmul645 multiply sNaN 0 -> NaN Invalid_operation -dqmul646 multiply sNaN 1 -> NaN Invalid_operation -dqmul647 multiply sNaN 1000 -> NaN Invalid_operation -dqmul648 multiply sNaN NaN -> NaN Invalid_operation -dqmul649 multiply sNaN sNaN -> NaN Invalid_operation -dqmul650 multiply NaN sNaN -> NaN Invalid_operation -dqmul651 multiply -Inf sNaN -> NaN Invalid_operation -dqmul652 multiply -1000 sNaN -> NaN Invalid_operation -dqmul653 multiply -1 sNaN -> NaN Invalid_operation -dqmul654 multiply -0 sNaN -> NaN Invalid_operation -dqmul655 multiply 0 sNaN -> NaN Invalid_operation -dqmul656 multiply 1 sNaN -> NaN Invalid_operation -dqmul657 multiply 1000 sNaN -> NaN Invalid_operation -dqmul658 multiply Inf sNaN -> NaN Invalid_operation -dqmul659 multiply NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqmul661 multiply NaN9 -Inf -> NaN9 -dqmul662 multiply NaN8 999 -> NaN8 -dqmul663 multiply NaN71 Inf -> NaN71 -dqmul664 multiply NaN6 NaN5 -> NaN6 -dqmul665 multiply -Inf NaN4 -> NaN4 -dqmul666 multiply -999 NaN33 -> NaN33 -dqmul667 multiply Inf NaN2 -> NaN2 - -dqmul671 multiply sNaN99 -Inf -> NaN99 Invalid_operation -dqmul672 multiply sNaN98 -11 -> NaN98 Invalid_operation -dqmul673 multiply sNaN97 NaN -> NaN97 Invalid_operation -dqmul674 multiply sNaN16 sNaN94 -> NaN16 Invalid_operation -dqmul675 multiply NaN95 sNaN93 -> NaN93 Invalid_operation -dqmul676 multiply -Inf sNaN92 -> NaN92 Invalid_operation -dqmul677 multiply 088 sNaN91 -> NaN91 Invalid_operation -dqmul678 multiply Inf sNaN90 -> NaN90 Invalid_operation -dqmul679 multiply NaN sNaN89 -> NaN89 Invalid_operation - -dqmul681 multiply -NaN9 -Inf -> -NaN9 -dqmul682 multiply -NaN8 999 -> -NaN8 -dqmul683 multiply -NaN71 Inf -> -NaN71 -dqmul684 multiply -NaN6 -NaN5 -> -NaN6 -dqmul685 multiply -Inf -NaN4 -> -NaN4 -dqmul686 multiply -999 -NaN33 -> -NaN33 -dqmul687 multiply Inf -NaN2 -> -NaN2 - -dqmul691 multiply -sNaN99 -Inf -> -NaN99 Invalid_operation -dqmul692 multiply -sNaN98 -11 -> -NaN98 Invalid_operation -dqmul693 multiply -sNaN97 NaN -> -NaN97 Invalid_operation -dqmul694 multiply -sNaN16 -sNaN94 -> -NaN16 Invalid_operation -dqmul695 multiply -NaN95 -sNaN93 -> -NaN93 Invalid_operation -dqmul696 multiply -Inf -sNaN92 -> -NaN92 Invalid_operation -dqmul697 multiply 088 -sNaN91 -> -NaN91 Invalid_operation -dqmul698 multiply Inf -sNaN90 -> -NaN90 Invalid_operation -dqmul699 multiply -NaN -sNaN89 -> -NaN89 Invalid_operation - -dqmul701 multiply -NaN -Inf -> -NaN -dqmul702 multiply -NaN 999 -> -NaN -dqmul703 multiply -NaN Inf -> -NaN -dqmul704 multiply -NaN -NaN -> -NaN -dqmul705 multiply -Inf -NaN0 -> -NaN -dqmul706 multiply -999 -NaN -> -NaN -dqmul707 multiply Inf -NaN -> -NaN - -dqmul711 multiply -sNaN -Inf -> -NaN Invalid_operation -dqmul712 multiply -sNaN -11 -> -NaN Invalid_operation -dqmul713 multiply -sNaN00 NaN -> -NaN Invalid_operation -dqmul714 multiply -sNaN -sNaN -> -NaN Invalid_operation -dqmul715 multiply -NaN -sNaN -> -NaN Invalid_operation -dqmul716 multiply -Inf -sNaN -> -NaN Invalid_operation -dqmul717 multiply 088 -sNaN -> -NaN Invalid_operation -dqmul718 multiply Inf -sNaN -> -NaN Invalid_operation -dqmul719 multiply -NaN -sNaN -> -NaN Invalid_operation - --- overflow and underflow tests .. note subnormal results --- signs -dqmul751 multiply 1e+4277 1e+3311 -> Infinity Overflow Inexact Rounded -dqmul752 multiply 1e+4277 -1e+3311 -> -Infinity Overflow Inexact Rounded -dqmul753 multiply -1e+4277 1e+3311 -> -Infinity Overflow Inexact Rounded -dqmul754 multiply -1e+4277 -1e+3311 -> Infinity Overflow Inexact Rounded -dqmul755 multiply 1e-4277 1e-3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul756 multiply 1e-4277 -1e-3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul757 multiply -1e-4277 1e-3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul758 multiply -1e-4277 -1e-3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -dqmul760 multiply 1e-6069 1e-101 -> 1E-6170 Subnormal -dqmul761 multiply 1e-6069 1e-102 -> 1E-6171 Subnormal -dqmul762 multiply 1e-6069 1e-103 -> 1E-6172 Subnormal -dqmul763 multiply 1e-6069 1e-104 -> 1E-6173 Subnormal -dqmul764 multiply 1e-6069 1e-105 -> 1E-6174 Subnormal -dqmul765 multiply 1e-6069 1e-106 -> 1E-6175 Subnormal -dqmul766 multiply 1e-6069 1e-107 -> 1E-6176 Subnormal -dqmul767 multiply 1e-6069 1e-108 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul768 multiply 1e-6069 1e-109 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul769 multiply 1e-6069 1e-110 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -dqmul770 multiply 1e+40 1e+6101 -> 1.000000000000000000000000000000E+6141 Clamped -dqmul771 multiply 1e+40 1e+6102 -> 1.0000000000000000000000000000000E+6142 Clamped -dqmul772 multiply 1e+40 1e+6103 -> 1.00000000000000000000000000000000E+6143 Clamped -dqmul773 multiply 1e+40 1e+6104 -> 1.000000000000000000000000000000000E+6144 Clamped -dqmul774 multiply 1e+40 1e+6105 -> Infinity Overflow Inexact Rounded -dqmul775 multiply 1e+40 1e+6106 -> Infinity Overflow Inexact Rounded -dqmul776 multiply 1e+40 1e+6107 -> Infinity Overflow Inexact Rounded -dqmul777 multiply 1e+40 1e+6108 -> Infinity Overflow Inexact Rounded -dqmul778 multiply 1e+40 1e+6109 -> Infinity Overflow Inexact Rounded -dqmul779 multiply 1e+40 1e+6110 -> Infinity Overflow Inexact Rounded - -dqmul801 multiply 1.0000E-6172 1 -> 1.0000E-6172 Subnormal -dqmul802 multiply 1.000E-6172 1e-1 -> 1.000E-6173 Subnormal -dqmul803 multiply 1.00E-6172 1e-2 -> 1.00E-6174 Subnormal -dqmul804 multiply 1.0E-6172 1e-3 -> 1.0E-6175 Subnormal -dqmul805 multiply 1.0E-6172 1e-4 -> 1E-6176 Subnormal Rounded -dqmul806 multiply 1.3E-6172 1e-4 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqmul807 multiply 1.5E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul808 multiply 1.7E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul809 multiply 2.3E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul810 multiply 2.5E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul811 multiply 2.7E-6172 1e-4 -> 3E-6176 Underflow Subnormal Inexact Rounded -dqmul812 multiply 1.49E-6172 1e-4 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqmul813 multiply 1.50E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul814 multiply 1.51E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul815 multiply 2.49E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul816 multiply 2.50E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded -dqmul817 multiply 2.51E-6172 1e-4 -> 3E-6176 Underflow Subnormal Inexact Rounded - -dqmul818 multiply 1E-6172 1e-4 -> 1E-6176 Subnormal -dqmul819 multiply 3E-6172 1e-5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul820 multiply 5E-6172 1e-5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul821 multiply 7E-6172 1e-5 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqmul822 multiply 9E-6172 1e-5 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqmul823 multiply 9.9E-6172 1e-5 -> 1E-6176 Underflow Subnormal Inexact Rounded - -dqmul824 multiply 1E-6172 -1e-4 -> -1E-6176 Subnormal -dqmul825 multiply 3E-6172 -1e-5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul826 multiply -5E-6172 1e-5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul827 multiply 7E-6172 -1e-5 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqmul828 multiply -9E-6172 1e-5 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqmul829 multiply 9.9E-6172 -1e-5 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqmul830 multiply 3.0E-6172 -1e-5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped - -dqmul831 multiply 1.0E-5977 1e-200 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqmul832 multiply 1.0E-5977 1e-199 -> 1E-6176 Subnormal Rounded -dqmul833 multiply 1.0E-5977 1e-198 -> 1.0E-6175 Subnormal -dqmul834 multiply 2.0E-5977 2e-198 -> 4.0E-6175 Subnormal -dqmul835 multiply 4.0E-5977 4e-198 -> 1.60E-6174 Subnormal -dqmul836 multiply 10.0E-5977 10e-198 -> 1.000E-6173 Subnormal -dqmul837 multiply 30.0E-5977 30e-198 -> 9.000E-6173 Subnormal -dqmul838 multiply 40.0E-5982 40e-166 -> 1.6000E-6145 Subnormal -dqmul839 multiply 40.0E-5982 40e-165 -> 1.6000E-6144 Subnormal -dqmul840 multiply 40.0E-5982 40e-164 -> 1.6000E-6143 - --- Long operand overflow may be a different path -dqmul870 multiply 100 9.999E+6143 -> Infinity Inexact Overflow Rounded -dqmul871 multiply 100 -9.999E+6143 -> -Infinity Inexact Overflow Rounded -dqmul872 multiply 9.999E+6143 100 -> Infinity Inexact Overflow Rounded -dqmul873 multiply -9.999E+6143 100 -> -Infinity Inexact Overflow Rounded - --- check for double-rounded subnormals -dqmul881 multiply 1.2347E-6133 1.2347E-40 -> 1.524E-6173 Inexact Rounded Subnormal Underflow -dqmul882 multiply 1.234E-6133 1.234E-40 -> 1.523E-6173 Inexact Rounded Subnormal Underflow -dqmul883 multiply 1.23E-6133 1.23E-40 -> 1.513E-6173 Inexact Rounded Subnormal Underflow -dqmul884 multiply 1.2E-6133 1.2E-40 -> 1.44E-6173 Subnormal -dqmul885 multiply 1.2E-6133 1.2E-41 -> 1.44E-6174 Subnormal -dqmul886 multiply 1.2E-6133 1.2E-42 -> 1.4E-6175 Subnormal Inexact Rounded Underflow -dqmul887 multiply 1.2E-6133 1.3E-42 -> 1.6E-6175 Subnormal Inexact Rounded Underflow -dqmul888 multiply 1.3E-6133 1.3E-42 -> 1.7E-6175 Subnormal Inexact Rounded Underflow -dqmul889 multiply 1.3E-6133 1.3E-43 -> 2E-6176 Subnormal Inexact Rounded Underflow -dqmul890 multiply 1.3E-6134 1.3E-43 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow - -dqmul891 multiply 1.2345E-39 1.234E-6133 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow -dqmul892 multiply 1.23456E-39 1.234E-6133 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow -dqmul893 multiply 1.2345E-40 1.234E-6133 -> 1.523E-6173 Inexact Rounded Subnormal Underflow -dqmul894 multiply 1.23456E-40 1.234E-6133 -> 1.523E-6173 Inexact Rounded Subnormal Underflow -dqmul895 multiply 1.2345E-41 1.234E-6133 -> 1.52E-6174 Inexact Rounded Subnormal Underflow -dqmul896 multiply 1.23456E-41 1.234E-6133 -> 1.52E-6174 Inexact Rounded Subnormal Underflow - --- Now explore the case where we get a normal result with Underflow --- prove operands are exact -dqmul906 multiply 9.999999999999999999999999999999999E-6143 1 -> 9.999999999999999999999999999999999E-6143 -dqmul907 multiply 1 0.09999999999999999999999999999999999 -> 0.09999999999999999999999999999999999 --- the next rounds to Nmin -dqmul908 multiply 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded - --- hugest -dqmul909 multiply 9999999999999999999999999999999999 9999999999999999999999999999999999 -> 9.999999999999999999999999999999998E+67 Inexact Rounded --- VG case -dqmul910 multiply 8.81125000000001349436E-1548 8.000000000000000000E-1550 -> 7.049000000000010795488000000000000E-3097 Rounded - --- Examples from SQL proposal (Krishna Kulkarni) -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 -dqmul911 multiply 130E-2 120E-2 -> 1.5600 -dqmul912 multiply 130E-2 12E-1 -> 1.560 -dqmul913 multiply 130E-2 1E0 -> 1.30 -dqmul914 multiply 1E2 1E4 -> 1E+6 - --- power-of-ten edge cases -dqmul1001 multiply 1 10 -> 10 -dqmul1002 multiply 1 100 -> 100 -dqmul1003 multiply 1 1000 -> 1000 -dqmul1004 multiply 1 10000 -> 10000 -dqmul1005 multiply 1 100000 -> 100000 -dqmul1006 multiply 1 1000000 -> 1000000 -dqmul1007 multiply 1 10000000 -> 10000000 -dqmul1008 multiply 1 100000000 -> 100000000 -dqmul1009 multiply 1 1000000000 -> 1000000000 -dqmul1010 multiply 1 10000000000 -> 10000000000 -dqmul1011 multiply 1 100000000000 -> 100000000000 -dqmul1012 multiply 1 1000000000000 -> 1000000000000 -dqmul1013 multiply 1 10000000000000 -> 10000000000000 -dqmul1014 multiply 1 100000000000000 -> 100000000000000 -dqmul1015 multiply 1 1000000000000000 -> 1000000000000000 - -dqmul1016 multiply 1 1000000000000000000 -> 1000000000000000000 -dqmul1017 multiply 1 100000000000000000000000000 -> 100000000000000000000000000 -dqmul1018 multiply 1 1000000000000000000000000000 -> 1000000000000000000000000000 -dqmul1019 multiply 1 10000000000000000000000000000 -> 10000000000000000000000000000 -dqmul1020 multiply 1 1000000000000000000000000000000000 -> 1000000000000000000000000000000000 - -dqmul1021 multiply 10 1 -> 10 -dqmul1022 multiply 10 10 -> 100 -dqmul1023 multiply 10 100 -> 1000 -dqmul1024 multiply 10 1000 -> 10000 -dqmul1025 multiply 10 10000 -> 100000 -dqmul1026 multiply 10 100000 -> 1000000 -dqmul1027 multiply 10 1000000 -> 10000000 -dqmul1028 multiply 10 10000000 -> 100000000 -dqmul1029 multiply 10 100000000 -> 1000000000 -dqmul1030 multiply 10 1000000000 -> 10000000000 -dqmul1031 multiply 10 10000000000 -> 100000000000 -dqmul1032 multiply 10 100000000000 -> 1000000000000 -dqmul1033 multiply 10 1000000000000 -> 10000000000000 -dqmul1034 multiply 10 10000000000000 -> 100000000000000 -dqmul1035 multiply 10 100000000000000 -> 1000000000000000 - -dqmul1036 multiply 10 100000000000000000 -> 1000000000000000000 -dqmul1037 multiply 10 10000000000000000000000000 -> 100000000000000000000000000 -dqmul1038 multiply 10 100000000000000000000000000 -> 1000000000000000000000000000 -dqmul1039 multiply 10 1000000000000000000000000000 -> 10000000000000000000000000000 -dqmul1040 multiply 10 100000000000000000000000000000000 -> 1000000000000000000000000000000000 - -dqmul1041 multiply 100 0.1 -> 10.0 -dqmul1042 multiply 100 1 -> 100 -dqmul1043 multiply 100 10 -> 1000 -dqmul1044 multiply 100 100 -> 10000 -dqmul1045 multiply 100 1000 -> 100000 -dqmul1046 multiply 100 10000 -> 1000000 -dqmul1047 multiply 100 100000 -> 10000000 -dqmul1048 multiply 100 1000000 -> 100000000 -dqmul1049 multiply 100 10000000 -> 1000000000 -dqmul1050 multiply 100 100000000 -> 10000000000 -dqmul1051 multiply 100 1000000000 -> 100000000000 -dqmul1052 multiply 100 10000000000 -> 1000000000000 -dqmul1053 multiply 100 100000000000 -> 10000000000000 -dqmul1054 multiply 100 1000000000000 -> 100000000000000 -dqmul1055 multiply 100 10000000000000 -> 1000000000000000 - -dqmul1056 multiply 100 10000000000000000 -> 1000000000000000000 -dqmul1057 multiply 100 1000000000000000000000000 -> 100000000000000000000000000 -dqmul1058 multiply 100 10000000000000000000000000 -> 1000000000000000000000000000 -dqmul1059 multiply 100 100000000000000000000000000 -> 10000000000000000000000000000 -dqmul1060 multiply 100 10000000000000000000000000000000 -> 1000000000000000000000000000000000 - -dqmul1061 multiply 1000 0.01 -> 10.00 -dqmul1062 multiply 1000 0.1 -> 100.0 -dqmul1063 multiply 1000 1 -> 1000 -dqmul1064 multiply 1000 10 -> 10000 -dqmul1065 multiply 1000 100 -> 100000 -dqmul1066 multiply 1000 1000 -> 1000000 -dqmul1067 multiply 1000 10000 -> 10000000 -dqmul1068 multiply 1000 100000 -> 100000000 -dqmul1069 multiply 1000 1000000 -> 1000000000 -dqmul1070 multiply 1000 10000000 -> 10000000000 -dqmul1071 multiply 1000 100000000 -> 100000000000 -dqmul1072 multiply 1000 1000000000 -> 1000000000000 -dqmul1073 multiply 1000 10000000000 -> 10000000000000 -dqmul1074 multiply 1000 100000000000 -> 100000000000000 -dqmul1075 multiply 1000 1000000000000 -> 1000000000000000 - -dqmul1076 multiply 1000 1000000000000000 -> 1000000000000000000 -dqmul1077 multiply 1000 100000000000000000000000 -> 100000000000000000000000000 -dqmul1078 multiply 1000 1000000000000000000000000 -> 1000000000000000000000000000 -dqmul1079 multiply 1000 10000000000000000000000000 -> 10000000000000000000000000000 -dqmul1080 multiply 1000 1000000000000000000000000000000 -> 1000000000000000000000000000000000 - -dqmul1081 multiply 10000 0.001 -> 10.000 -dqmul1082 multiply 10000 0.01 -> 100.00 -dqmul1083 multiply 10000 0.1 -> 1000.0 -dqmul1084 multiply 10000 1 -> 10000 -dqmul1085 multiply 10000 10 -> 100000 -dqmul1086 multiply 10000 100 -> 1000000 -dqmul1087 multiply 10000 1000 -> 10000000 -dqmul1088 multiply 10000 10000 -> 100000000 -dqmul1089 multiply 10000 100000 -> 1000000000 -dqmul1090 multiply 10000 1000000 -> 10000000000 -dqmul1091 multiply 10000 10000000 -> 100000000000 -dqmul1092 multiply 10000 100000000 -> 1000000000000 -dqmul1093 multiply 10000 1000000000 -> 10000000000000 -dqmul1094 multiply 10000 10000000000 -> 100000000000000 -dqmul1095 multiply 10000 100000000000 -> 1000000000000000 - -dqmul1096 multiply 10000 100000000000000 -> 1000000000000000000 -dqmul1097 multiply 10000 10000000000000000000000 -> 100000000000000000000000000 -dqmul1098 multiply 10000 100000000000000000000000 -> 1000000000000000000000000000 -dqmul1099 multiply 10000 1000000000000000000000000 -> 10000000000000000000000000000 -dqmul1100 multiply 10000 100000000000000000000000000000 -> 1000000000000000000000000000000000 - -dqmul1107 multiply 10000 99999999999 -> 999999999990000 -dqmul1108 multiply 10000 99999999999 -> 999999999990000 - --- Null tests -dqmul9990 multiply 10 # -> NaN Invalid_operation -dqmul9991 multiply # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqNextMinus.decTest b/qdecimal/test/tc_full/dqNextMinus.decTest deleted file mode 100644 index 79be9fb..0000000 --- a/qdecimal/test/tc_full/dqNextMinus.decTest +++ /dev/null @@ -1,126 +0,0 @@ ------------------------------------------------------------------------- --- dqNextMinus.decTest -- decQuad next that is less [754r nextdown] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqnextm001 nextminus 0.9999999999999999999999999999999995 -> 0.9999999999999999999999999999999994 -dqnextm002 nextminus 0.9999999999999999999999999999999996 -> 0.9999999999999999999999999999999995 -dqnextm003 nextminus 0.9999999999999999999999999999999997 -> 0.9999999999999999999999999999999996 -dqnextm004 nextminus 0.9999999999999999999999999999999998 -> 0.9999999999999999999999999999999997 -dqnextm005 nextminus 0.9999999999999999999999999999999999 -> 0.9999999999999999999999999999999998 -dqnextm006 nextminus 1.000000000000000000000000000000000 -> 0.9999999999999999999999999999999999 -dqnextm007 nextminus 1.0 -> 0.9999999999999999999999999999999999 -dqnextm008 nextminus 1 -> 0.9999999999999999999999999999999999 -dqnextm009 nextminus 1.000000000000000000000000000000001 -> 1.000000000000000000000000000000000 -dqnextm010 nextminus 1.000000000000000000000000000000002 -> 1.000000000000000000000000000000001 -dqnextm011 nextminus 1.000000000000000000000000000000003 -> 1.000000000000000000000000000000002 -dqnextm012 nextminus 1.000000000000000000000000000000004 -> 1.000000000000000000000000000000003 -dqnextm013 nextminus 1.000000000000000000000000000000005 -> 1.000000000000000000000000000000004 -dqnextm014 nextminus 1.000000000000000000000000000000006 -> 1.000000000000000000000000000000005 -dqnextm015 nextminus 1.000000000000000000000000000000007 -> 1.000000000000000000000000000000006 -dqnextm016 nextminus 1.000000000000000000000000000000008 -> 1.000000000000000000000000000000007 -dqnextm017 nextminus 1.000000000000000000000000000000009 -> 1.000000000000000000000000000000008 -dqnextm018 nextminus 1.000000000000000000000000000000010 -> 1.000000000000000000000000000000009 -dqnextm019 nextminus 1.000000000000000000000000000000011 -> 1.000000000000000000000000000000010 -dqnextm020 nextminus 1.000000000000000000000000000000012 -> 1.000000000000000000000000000000011 - -dqnextm021 nextminus -0.9999999999999999999999999999999995 -> -0.9999999999999999999999999999999996 -dqnextm022 nextminus -0.9999999999999999999999999999999996 -> -0.9999999999999999999999999999999997 -dqnextm023 nextminus -0.9999999999999999999999999999999997 -> -0.9999999999999999999999999999999998 -dqnextm024 nextminus -0.9999999999999999999999999999999998 -> -0.9999999999999999999999999999999999 -dqnextm025 nextminus -0.9999999999999999999999999999999999 -> -1.000000000000000000000000000000000 -dqnextm026 nextminus -1.000000000000000000000000000000000 -> -1.000000000000000000000000000000001 -dqnextm027 nextminus -1.0 -> -1.000000000000000000000000000000001 -dqnextm028 nextminus -1 -> -1.000000000000000000000000000000001 -dqnextm029 nextminus -1.000000000000000000000000000000001 -> -1.000000000000000000000000000000002 -dqnextm030 nextminus -1.000000000000000000000000000000002 -> -1.000000000000000000000000000000003 -dqnextm031 nextminus -1.000000000000000000000000000000003 -> -1.000000000000000000000000000000004 -dqnextm032 nextminus -1.000000000000000000000000000000004 -> -1.000000000000000000000000000000005 -dqnextm033 nextminus -1.000000000000000000000000000000005 -> -1.000000000000000000000000000000006 -dqnextm034 nextminus -1.000000000000000000000000000000006 -> -1.000000000000000000000000000000007 -dqnextm035 nextminus -1.000000000000000000000000000000007 -> -1.000000000000000000000000000000008 -dqnextm036 nextminus -1.000000000000000000000000000000008 -> -1.000000000000000000000000000000009 -dqnextm037 nextminus -1.000000000000000000000000000000009 -> -1.000000000000000000000000000000010 -dqnextm038 nextminus -1.000000000000000000000000000000010 -> -1.000000000000000000000000000000011 -dqnextm039 nextminus -1.000000000000000000000000000000011 -> -1.000000000000000000000000000000012 - --- ultra-tiny inputs -dqnextm062 nextminus 1E-6176 -> 0E-6176 -dqnextm065 nextminus -1E-6176 -> -2E-6176 - --- Zeros -dqnextm100 nextminus -0 -> -1E-6176 -dqnextm101 nextminus 0 -> -1E-6176 -dqnextm102 nextminus 0.00 -> -1E-6176 -dqnextm103 nextminus -0.00 -> -1E-6176 -dqnextm104 nextminus 0E-300 -> -1E-6176 -dqnextm105 nextminus 0E+300 -> -1E-6176 -dqnextm106 nextminus 0E+30000 -> -1E-6176 -dqnextm107 nextminus -0E+30000 -> -1E-6176 - --- specials -dqnextm150 nextminus Inf -> 9.999999999999999999999999999999999E+6144 -dqnextm151 nextminus -Inf -> -Infinity -dqnextm152 nextminus NaN -> NaN -dqnextm153 nextminus sNaN -> NaN Invalid_operation -dqnextm154 nextminus NaN77 -> NaN77 -dqnextm155 nextminus sNaN88 -> NaN88 Invalid_operation -dqnextm156 nextminus -NaN -> -NaN -dqnextm157 nextminus -sNaN -> -NaN Invalid_operation -dqnextm158 nextminus -NaN77 -> -NaN77 -dqnextm159 nextminus -sNaN88 -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -dqnextm170 nextminus 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999998E+6144 -dqnextm171 nextminus 9.999999999999999999999999999999998E+6144 -> 9.999999999999999999999999999999997E+6144 -dqnextm172 nextminus 1E-6143 -> 9.99999999999999999999999999999999E-6144 -dqnextm173 nextminus 1.000000000000000000000000000000000E-6143 -> 9.99999999999999999999999999999999E-6144 -dqnextm174 nextminus 9E-6176 -> 8E-6176 -dqnextm175 nextminus 9.9E-6175 -> 9.8E-6175 -dqnextm176 nextminus 9.99999999999999999999999999999E-6147 -> 9.99999999999999999999999999998E-6147 -dqnextm177 nextminus 9.99999999999999999999999999999999E-6144 -> 9.99999999999999999999999999999998E-6144 -dqnextm178 nextminus 9.99999999999999999999999999999998E-6144 -> 9.99999999999999999999999999999997E-6144 -dqnextm179 nextminus 9.99999999999999999999999999999997E-6144 -> 9.99999999999999999999999999999996E-6144 -dqnextm180 nextminus 0E-6176 -> -1E-6176 -dqnextm181 nextminus 1E-6176 -> 0E-6176 -dqnextm182 nextminus 2E-6176 -> 1E-6176 - -dqnextm183 nextminus -0E-6176 -> -1E-6176 -dqnextm184 nextminus -1E-6176 -> -2E-6176 -dqnextm185 nextminus -2E-6176 -> -3E-6176 -dqnextm186 nextminus -10E-6176 -> -1.1E-6175 -dqnextm187 nextminus -100E-6176 -> -1.01E-6174 -dqnextm188 nextminus -100000E-6176 -> -1.00001E-6171 -dqnextm189 nextminus -1.00000000000000000000000000000E-6143 -> -1.000000000000000000000000000000001E-6143 -dqnextm190 nextminus -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000001E-6143 -dqnextm191 nextminus -1E-6143 -> -1.000000000000000000000000000000001E-6143 -dqnextm192 nextminus -9.999999999999999999999999999999998E+6144 -> -9.999999999999999999999999999999999E+6144 -dqnextm193 nextminus -9.999999999999999999999999999999999E+6144 -> -Infinity - --- Null tests -dqnextm900 nextminus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqNextPlus.decTest b/qdecimal/test/tc_full/dqNextPlus.decTest deleted file mode 100644 index 547f8c3..0000000 --- a/qdecimal/test/tc_full/dqNextPlus.decTest +++ /dev/null @@ -1,124 +0,0 @@ ------------------------------------------------------------------------- --- dqNextPlus.decTest -- decQuad next that is greater [754r nextup] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqnextp001 nextplus 0.9999999999999999999999999999999995 -> 0.9999999999999999999999999999999996 -dqnextp002 nextplus 0.9999999999999999999999999999999996 -> 0.9999999999999999999999999999999997 -dqnextp003 nextplus 0.9999999999999999999999999999999997 -> 0.9999999999999999999999999999999998 -dqnextp004 nextplus 0.9999999999999999999999999999999998 -> 0.9999999999999999999999999999999999 -dqnextp005 nextplus 0.9999999999999999999999999999999999 -> 1.000000000000000000000000000000000 -dqnextp006 nextplus 1.000000000000000000000000000000000 -> 1.000000000000000000000000000000001 -dqnextp007 nextplus 1.0 -> 1.000000000000000000000000000000001 -dqnextp008 nextplus 1 -> 1.000000000000000000000000000000001 -dqnextp009 nextplus 1.000000000000000000000000000000001 -> 1.000000000000000000000000000000002 -dqnextp010 nextplus 1.000000000000000000000000000000002 -> 1.000000000000000000000000000000003 -dqnextp011 nextplus 1.000000000000000000000000000000003 -> 1.000000000000000000000000000000004 -dqnextp012 nextplus 1.000000000000000000000000000000004 -> 1.000000000000000000000000000000005 -dqnextp013 nextplus 1.000000000000000000000000000000005 -> 1.000000000000000000000000000000006 -dqnextp014 nextplus 1.000000000000000000000000000000006 -> 1.000000000000000000000000000000007 -dqnextp015 nextplus 1.000000000000000000000000000000007 -> 1.000000000000000000000000000000008 -dqnextp016 nextplus 1.000000000000000000000000000000008 -> 1.000000000000000000000000000000009 -dqnextp017 nextplus 1.000000000000000000000000000000009 -> 1.000000000000000000000000000000010 -dqnextp018 nextplus 1.000000000000000000000000000000010 -> 1.000000000000000000000000000000011 -dqnextp019 nextplus 1.000000000000000000000000000000011 -> 1.000000000000000000000000000000012 - -dqnextp021 nextplus -0.9999999999999999999999999999999995 -> -0.9999999999999999999999999999999994 -dqnextp022 nextplus -0.9999999999999999999999999999999996 -> -0.9999999999999999999999999999999995 -dqnextp023 nextplus -0.9999999999999999999999999999999997 -> -0.9999999999999999999999999999999996 -dqnextp024 nextplus -0.9999999999999999999999999999999998 -> -0.9999999999999999999999999999999997 -dqnextp025 nextplus -0.9999999999999999999999999999999999 -> -0.9999999999999999999999999999999998 -dqnextp026 nextplus -1.000000000000000000000000000000000 -> -0.9999999999999999999999999999999999 -dqnextp027 nextplus -1.0 -> -0.9999999999999999999999999999999999 -dqnextp028 nextplus -1 -> -0.9999999999999999999999999999999999 -dqnextp029 nextplus -1.000000000000000000000000000000001 -> -1.000000000000000000000000000000000 -dqnextp030 nextplus -1.000000000000000000000000000000002 -> -1.000000000000000000000000000000001 -dqnextp031 nextplus -1.000000000000000000000000000000003 -> -1.000000000000000000000000000000002 -dqnextp032 nextplus -1.000000000000000000000000000000004 -> -1.000000000000000000000000000000003 -dqnextp033 nextplus -1.000000000000000000000000000000005 -> -1.000000000000000000000000000000004 -dqnextp034 nextplus -1.000000000000000000000000000000006 -> -1.000000000000000000000000000000005 -dqnextp035 nextplus -1.000000000000000000000000000000007 -> -1.000000000000000000000000000000006 -dqnextp036 nextplus -1.000000000000000000000000000000008 -> -1.000000000000000000000000000000007 -dqnextp037 nextplus -1.000000000000000000000000000000009 -> -1.000000000000000000000000000000008 -dqnextp038 nextplus -1.000000000000000000000000000000010 -> -1.000000000000000000000000000000009 -dqnextp039 nextplus -1.000000000000000000000000000000011 -> -1.000000000000000000000000000000010 -dqnextp040 nextplus -1.000000000000000000000000000000012 -> -1.000000000000000000000000000000011 - --- Zeros -dqnextp100 nextplus 0 -> 1E-6176 -dqnextp101 nextplus 0.00 -> 1E-6176 -dqnextp102 nextplus 0E-300 -> 1E-6176 -dqnextp103 nextplus 0E+300 -> 1E-6176 -dqnextp104 nextplus 0E+30000 -> 1E-6176 -dqnextp105 nextplus -0 -> 1E-6176 -dqnextp106 nextplus -0.00 -> 1E-6176 -dqnextp107 nextplus -0E-300 -> 1E-6176 -dqnextp108 nextplus -0E+300 -> 1E-6176 -dqnextp109 nextplus -0E+30000 -> 1E-6176 - --- specials -dqnextp150 nextplus Inf -> Infinity -dqnextp151 nextplus -Inf -> -9.999999999999999999999999999999999E+6144 -dqnextp152 nextplus NaN -> NaN -dqnextp153 nextplus sNaN -> NaN Invalid_operation -dqnextp154 nextplus NaN77 -> NaN77 -dqnextp155 nextplus sNaN88 -> NaN88 Invalid_operation -dqnextp156 nextplus -NaN -> -NaN -dqnextp157 nextplus -sNaN -> -NaN Invalid_operation -dqnextp158 nextplus -NaN77 -> -NaN77 -dqnextp159 nextplus -sNaN88 -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -dqnextp170 nextplus -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999998E+6144 -dqnextp171 nextplus -9.999999999999999999999999999999998E+6144 -> -9.999999999999999999999999999999997E+6144 -dqnextp172 nextplus -1E-6143 -> -9.99999999999999999999999999999999E-6144 -dqnextp173 nextplus -1.000000000000000E-6143 -> -9.99999999999999999999999999999999E-6144 -dqnextp174 nextplus -9E-6176 -> -8E-6176 -dqnextp175 nextplus -9.9E-6175 -> -9.8E-6175 -dqnextp176 nextplus -9.99999999999999999999999999999E-6147 -> -9.99999999999999999999999999998E-6147 -dqnextp177 nextplus -9.99999999999999999999999999999999E-6144 -> -9.99999999999999999999999999999998E-6144 -dqnextp178 nextplus -9.99999999999999999999999999999998E-6144 -> -9.99999999999999999999999999999997E-6144 -dqnextp179 nextplus -9.99999999999999999999999999999997E-6144 -> -9.99999999999999999999999999999996E-6144 -dqnextp180 nextplus -0E-6176 -> 1E-6176 -dqnextp181 nextplus -1E-6176 -> -0E-6176 -dqnextp182 nextplus -2E-6176 -> -1E-6176 - -dqnextp183 nextplus 0E-6176 -> 1E-6176 -dqnextp184 nextplus 1E-6176 -> 2E-6176 -dqnextp185 nextplus 2E-6176 -> 3E-6176 -dqnextp186 nextplus 10E-6176 -> 1.1E-6175 -dqnextp187 nextplus 100E-6176 -> 1.01E-6174 -dqnextp188 nextplus 100000E-6176 -> 1.00001E-6171 -dqnextp189 nextplus 1.00000000000000000000000000000E-6143 -> 1.000000000000000000000000000000001E-6143 -dqnextp190 nextplus 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000001E-6143 -dqnextp191 nextplus 1E-6143 -> 1.000000000000000000000000000000001E-6143 -dqnextp192 nextplus 9.999999999999999999999999999999998E+6144 -> 9.999999999999999999999999999999999E+6144 -dqnextp193 nextplus 9.999999999999999999999999999999999E+6144 -> Infinity - --- Null tests -dqnextp900 nextplus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqNextToward.decTest b/qdecimal/test/tc_full/dqNextToward.decTest deleted file mode 100644 index 213e8cd..0000000 --- a/qdecimal/test/tc_full/dqNextToward.decTest +++ /dev/null @@ -1,375 +0,0 @@ ------------------------------------------------------------------------- --- dqNextToward.decTest -- decQuad next toward rhs [754r nextafter] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - - --- Sanity check with a scattering of numerics -dqnextt001 nexttoward 10 10 -> 10 -dqnextt002 nexttoward -10 -10 -> -10 -dqnextt003 nexttoward 1 10 -> 1.000000000000000000000000000000001 -dqnextt004 nexttoward 1 -10 -> 0.9999999999999999999999999999999999 -dqnextt005 nexttoward -1 10 -> -0.9999999999999999999999999999999999 -dqnextt006 nexttoward -1 -10 -> -1.000000000000000000000000000000001 -dqnextt007 nexttoward 0 10 -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt008 nexttoward 0 -10 -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt009 nexttoward 9.999999999999999999999999999999999E+6144 +Infinity -> Infinity Overflow Inexact Rounded -dqnextt010 nexttoward -9.999999999999999999999999999999999E+6144 -Infinity -> -Infinity Overflow Inexact Rounded -dqnextt011 nexttoward 9.999999999999999999999999999999999 10 -> 10.00000000000000000000000000000000 -dqnextt012 nexttoward 10 9.999999999999999999999999999999999 -> 9.999999999999999999999999999999999 -dqnextt013 nexttoward -9.999999999999999999999999999999999 -10 -> -10.00000000000000000000000000000000 -dqnextt014 nexttoward -10 -9.999999999999999999999999999999999 -> -9.999999999999999999999999999999999 -dqnextt015 nexttoward 9.999999999999999999999999999999998 10 -> 9.999999999999999999999999999999999 -dqnextt016 nexttoward 10 9.999999999999999999999999999999998 -> 9.999999999999999999999999999999999 -dqnextt017 nexttoward -9.999999999999999999999999999999998 -10 -> -9.999999999999999999999999999999999 -dqnextt018 nexttoward -10 -9.999999999999999999999999999999998 -> -9.999999999999999999999999999999999 - -------- lhs=rhs --- finites -dqnextt101 nexttoward 7 7 -> 7 -dqnextt102 nexttoward -7 -7 -> -7 -dqnextt103 nexttoward 75 75 -> 75 -dqnextt104 nexttoward -75 -75 -> -75 -dqnextt105 nexttoward 7.50 7.5 -> 7.50 -dqnextt106 nexttoward -7.50 -7.50 -> -7.50 -dqnextt107 nexttoward 7.500 7.5000 -> 7.500 -dqnextt108 nexttoward -7.500 -7.5 -> -7.500 - --- zeros -dqnextt111 nexttoward 0 0 -> 0 -dqnextt112 nexttoward -0 -0 -> -0 -dqnextt113 nexttoward 0E+4 0 -> 0E+4 -dqnextt114 nexttoward -0E+4 -0 -> -0E+4 -dqnextt115 nexttoward 0.00000000000 0.000000000000 -> 0E-11 -dqnextt116 nexttoward -0.00000000000 -0.00 -> -0E-11 -dqnextt117 nexttoward 0E-141 0 -> 0E-141 -dqnextt118 nexttoward -0E-141 -000 -> -0E-141 - --- full coefficients, alternating bits -dqnextt121 nexttoward 268268268 268268268 -> 268268268 -dqnextt122 nexttoward -268268268 -268268268 -> -268268268 -dqnextt123 nexttoward 134134134 134134134 -> 134134134 -dqnextt124 nexttoward -134134134 -134134134 -> -134134134 - --- Nmax, Nmin, Ntiny -dqnextt131 nexttoward 9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqnextt132 nexttoward 1E-6143 1E-6143 -> 1E-6143 -dqnextt133 nexttoward 1.000000000000000000000000000000000E-6143 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqnextt134 nexttoward 1E-6176 1E-6176 -> 1E-6176 - -dqnextt135 nexttoward -1E-6176 -1E-6176 -> -1E-6176 -dqnextt136 nexttoward -1.000000000000000000000000000000000E-6143 -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143 -dqnextt137 nexttoward -1E-6143 -1E-6143 -> -1E-6143 -dqnextt138 nexttoward -9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 - -------- lhs 0.9999999999999999999999999999999996 -dqnextt202 nexttoward 0.9999999999999999999999999999999996 Infinity -> 0.9999999999999999999999999999999997 -dqnextt203 nexttoward 0.9999999999999999999999999999999997 Infinity -> 0.9999999999999999999999999999999998 -dqnextt204 nexttoward 0.9999999999999999999999999999999998 Infinity -> 0.9999999999999999999999999999999999 -dqnextt205 nexttoward 0.9999999999999999999999999999999999 Infinity -> 1.000000000000000000000000000000000 -dqnextt206 nexttoward 1.000000000000000000000000000000000 Infinity -> 1.000000000000000000000000000000001 -dqnextt207 nexttoward 1.0 Infinity -> 1.000000000000000000000000000000001 -dqnextt208 nexttoward 1 Infinity -> 1.000000000000000000000000000000001 -dqnextt209 nexttoward 1.000000000000000000000000000000001 Infinity -> 1.000000000000000000000000000000002 -dqnextt210 nexttoward 1.000000000000000000000000000000002 Infinity -> 1.000000000000000000000000000000003 -dqnextt211 nexttoward 1.000000000000000000000000000000003 Infinity -> 1.000000000000000000000000000000004 -dqnextt212 nexttoward 1.000000000000000000000000000000004 Infinity -> 1.000000000000000000000000000000005 -dqnextt213 nexttoward 1.000000000000000000000000000000005 Infinity -> 1.000000000000000000000000000000006 -dqnextt214 nexttoward 1.000000000000000000000000000000006 Infinity -> 1.000000000000000000000000000000007 -dqnextt215 nexttoward 1.000000000000000000000000000000007 Infinity -> 1.000000000000000000000000000000008 -dqnextt216 nexttoward 1.000000000000000000000000000000008 Infinity -> 1.000000000000000000000000000000009 -dqnextt217 nexttoward 1.000000000000000000000000000000009 Infinity -> 1.000000000000000000000000000000010 -dqnextt218 nexttoward 1.000000000000000000000000000000010 Infinity -> 1.000000000000000000000000000000011 -dqnextt219 nexttoward 1.000000000000000000000000000000011 Infinity -> 1.000000000000000000000000000000012 - -dqnextt221 nexttoward -0.9999999999999999999999999999999995 Infinity -> -0.9999999999999999999999999999999994 -dqnextt222 nexttoward -0.9999999999999999999999999999999996 Infinity -> -0.9999999999999999999999999999999995 -dqnextt223 nexttoward -0.9999999999999999999999999999999997 Infinity -> -0.9999999999999999999999999999999996 -dqnextt224 nexttoward -0.9999999999999999999999999999999998 Infinity -> -0.9999999999999999999999999999999997 -dqnextt225 nexttoward -0.9999999999999999999999999999999999 Infinity -> -0.9999999999999999999999999999999998 -dqnextt226 nexttoward -1.000000000000000000000000000000000 Infinity -> -0.9999999999999999999999999999999999 -dqnextt227 nexttoward -1.0 Infinity -> -0.9999999999999999999999999999999999 -dqnextt228 nexttoward -1 Infinity -> -0.9999999999999999999999999999999999 -dqnextt229 nexttoward -1.000000000000000000000000000000001 Infinity -> -1.000000000000000000000000000000000 -dqnextt230 nexttoward -1.000000000000000000000000000000002 Infinity -> -1.000000000000000000000000000000001 -dqnextt231 nexttoward -1.000000000000000000000000000000003 Infinity -> -1.000000000000000000000000000000002 -dqnextt232 nexttoward -1.000000000000000000000000000000004 Infinity -> -1.000000000000000000000000000000003 -dqnextt233 nexttoward -1.000000000000000000000000000000005 Infinity -> -1.000000000000000000000000000000004 -dqnextt234 nexttoward -1.000000000000000000000000000000006 Infinity -> -1.000000000000000000000000000000005 -dqnextt235 nexttoward -1.000000000000000000000000000000007 Infinity -> -1.000000000000000000000000000000006 -dqnextt236 nexttoward -1.000000000000000000000000000000008 Infinity -> -1.000000000000000000000000000000007 -dqnextt237 nexttoward -1.000000000000000000000000000000009 Infinity -> -1.000000000000000000000000000000008 -dqnextt238 nexttoward -1.000000000000000000000000000000010 Infinity -> -1.000000000000000000000000000000009 -dqnextt239 nexttoward -1.000000000000000000000000000000011 Infinity -> -1.000000000000000000000000000000010 -dqnextt240 nexttoward -1.000000000000000000000000000000012 Infinity -> -1.000000000000000000000000000000011 - --- Zeros -dqnextt300 nexttoward 0 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt301 nexttoward 0.00 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt302 nexttoward 0E-300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt303 nexttoward 0E+300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt304 nexttoward 0E+30000 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt305 nexttoward -0 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt306 nexttoward -0.00 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt307 nexttoward -0E-300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt308 nexttoward -0E+300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt309 nexttoward -0E+30000 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded - --- specials -dqnextt350 nexttoward Inf Infinity -> Infinity -dqnextt351 nexttoward -Inf Infinity -> -9.999999999999999999999999999999999E+6144 -dqnextt352 nexttoward NaN Infinity -> NaN -dqnextt353 nexttoward sNaN Infinity -> NaN Invalid_operation -dqnextt354 nexttoward NaN77 Infinity -> NaN77 -dqnextt355 nexttoward sNaN88 Infinity -> NaN88 Invalid_operation -dqnextt356 nexttoward -NaN Infinity -> -NaN -dqnextt357 nexttoward -sNaN Infinity -> -NaN Invalid_operation -dqnextt358 nexttoward -NaN77 Infinity -> -NaN77 -dqnextt359 nexttoward -sNaN88 Infinity -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -dqnextt370 nexttoward -9.999999999999999999999999999999999E+6144 Infinity -> -9.999999999999999999999999999999998E+6144 -dqnextt371 nexttoward -9.999999999999999999999999999999998E+6144 Infinity -> -9.999999999999999999999999999999997E+6144 -dqnextt372 nexttoward -1E-6143 Infinity -> -9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded -dqnextt373 nexttoward -1.000000000000000E-6143 Infinity -> -9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded -dqnextt374 nexttoward -9E-6176 Infinity -> -8E-6176 Underflow Subnormal Inexact Rounded -dqnextt375 nexttoward -9.9E-6175 Infinity -> -9.8E-6175 Underflow Subnormal Inexact Rounded -dqnextt376 nexttoward -9.99999999999999999999999999999E-6147 Infinity -> -9.99999999999999999999999999998E-6147 Underflow Subnormal Inexact Rounded -dqnextt377 nexttoward -9.99999999999999999999999999999999E-6144 Infinity -> -9.99999999999999999999999999999998E-6144 Underflow Subnormal Inexact Rounded -dqnextt378 nexttoward -9.99999999999999999999999999999998E-6144 Infinity -> -9.99999999999999999999999999999997E-6144 Underflow Subnormal Inexact Rounded -dqnextt379 nexttoward -9.99999999999999999999999999999997E-6144 Infinity -> -9.99999999999999999999999999999996E-6144 Underflow Subnormal Inexact Rounded -dqnextt380 nexttoward -0E-6176 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt381 nexttoward -1E-6176 Infinity -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqnextt382 nexttoward -2E-6176 Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded - -dqnextt383 nexttoward 0E-6176 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt384 nexttoward 1E-6176 Infinity -> 2E-6176 Underflow Subnormal Inexact Rounded -dqnextt385 nexttoward 2E-6176 Infinity -> 3E-6176 Underflow Subnormal Inexact Rounded -dqnextt386 nexttoward 10E-6176 Infinity -> 1.1E-6175 Underflow Subnormal Inexact Rounded -dqnextt387 nexttoward 100E-6176 Infinity -> 1.01E-6174 Underflow Subnormal Inexact Rounded -dqnextt388 nexttoward 100000E-6176 Infinity -> 1.00001E-6171 Underflow Subnormal Inexact Rounded -dqnextt389 nexttoward 1.00000000000000000000000000000E-6143 Infinity -> 1.000000000000000000000000000000001E-6143 -dqnextt390 nexttoward 1.000000000000000000000000000000000E-6143 Infinity -> 1.000000000000000000000000000000001E-6143 -dqnextt391 nexttoward 1E-6143 Infinity -> 1.000000000000000000000000000000001E-6143 -dqnextt392 nexttoward 9.999999999999999999999999999999997E+6144 Infinity -> 9.999999999999999999999999999999998E+6144 -dqnextt393 nexttoward 9.999999999999999999999999999999998E+6144 Infinity -> 9.999999999999999999999999999999999E+6144 -dqnextt394 nexttoward 9.999999999999999999999999999999999E+6144 Infinity -> Infinity Overflow Inexact Rounded - -------- lhs>rhs -dqnextt401 nexttoward 0.9999999999999999999999999999999995 -Infinity -> 0.9999999999999999999999999999999994 -dqnextt402 nexttoward 0.9999999999999999999999999999999996 -Infinity -> 0.9999999999999999999999999999999995 -dqnextt403 nexttoward 0.9999999999999999999999999999999997 -Infinity -> 0.9999999999999999999999999999999996 -dqnextt404 nexttoward 0.9999999999999999999999999999999998 -Infinity -> 0.9999999999999999999999999999999997 -dqnextt405 nexttoward 0.9999999999999999999999999999999999 -Infinity -> 0.9999999999999999999999999999999998 -dqnextt406 nexttoward 1.000000000000000000000000000000000 -Infinity -> 0.9999999999999999999999999999999999 -dqnextt407 nexttoward 1.0 -Infinity -> 0.9999999999999999999999999999999999 -dqnextt408 nexttoward 1 -Infinity -> 0.9999999999999999999999999999999999 -dqnextt409 nexttoward 1.000000000000000000000000000000001 -Infinity -> 1.000000000000000000000000000000000 -dqnextt410 nexttoward 1.000000000000000000000000000000002 -Infinity -> 1.000000000000000000000000000000001 -dqnextt411 nexttoward 1.000000000000000000000000000000003 -Infinity -> 1.000000000000000000000000000000002 -dqnextt412 nexttoward 1.000000000000000000000000000000004 -Infinity -> 1.000000000000000000000000000000003 -dqnextt413 nexttoward 1.000000000000000000000000000000005 -Infinity -> 1.000000000000000000000000000000004 -dqnextt414 nexttoward 1.000000000000000000000000000000006 -Infinity -> 1.000000000000000000000000000000005 -dqnextt415 nexttoward 1.000000000000000000000000000000007 -Infinity -> 1.000000000000000000000000000000006 -dqnextt416 nexttoward 1.000000000000000000000000000000008 -Infinity -> 1.000000000000000000000000000000007 -dqnextt417 nexttoward 1.000000000000000000000000000000009 -Infinity -> 1.000000000000000000000000000000008 -dqnextt418 nexttoward 1.000000000000000000000000000000010 -Infinity -> 1.000000000000000000000000000000009 -dqnextt419 nexttoward 1.000000000000000000000000000000011 -Infinity -> 1.000000000000000000000000000000010 -dqnextt420 nexttoward 1.000000000000000000000000000000012 -Infinity -> 1.000000000000000000000000000000011 - -dqnextt421 nexttoward -0.9999999999999999999999999999999995 -Infinity -> -0.9999999999999999999999999999999996 -dqnextt422 nexttoward -0.9999999999999999999999999999999996 -Infinity -> -0.9999999999999999999999999999999997 -dqnextt423 nexttoward -0.9999999999999999999999999999999997 -Infinity -> -0.9999999999999999999999999999999998 -dqnextt424 nexttoward -0.9999999999999999999999999999999998 -Infinity -> -0.9999999999999999999999999999999999 -dqnextt425 nexttoward -0.9999999999999999999999999999999999 -Infinity -> -1.000000000000000000000000000000000 -dqnextt426 nexttoward -1.000000000000000000000000000000000 -Infinity -> -1.000000000000000000000000000000001 -dqnextt427 nexttoward -1.0 -Infinity -> -1.000000000000000000000000000000001 -dqnextt428 nexttoward -1 -Infinity -> -1.000000000000000000000000000000001 -dqnextt429 nexttoward -1.000000000000000000000000000000001 -Infinity -> -1.000000000000000000000000000000002 -dqnextt430 nexttoward -1.000000000000000000000000000000002 -Infinity -> -1.000000000000000000000000000000003 -dqnextt431 nexttoward -1.000000000000000000000000000000003 -Infinity -> -1.000000000000000000000000000000004 -dqnextt432 nexttoward -1.000000000000000000000000000000004 -Infinity -> -1.000000000000000000000000000000005 -dqnextt433 nexttoward -1.000000000000000000000000000000005 -Infinity -> -1.000000000000000000000000000000006 -dqnextt434 nexttoward -1.000000000000000000000000000000006 -Infinity -> -1.000000000000000000000000000000007 -dqnextt435 nexttoward -1.000000000000000000000000000000007 -Infinity -> -1.000000000000000000000000000000008 -dqnextt436 nexttoward -1.000000000000000000000000000000008 -Infinity -> -1.000000000000000000000000000000009 -dqnextt437 nexttoward -1.000000000000000000000000000000009 -Infinity -> -1.000000000000000000000000000000010 -dqnextt438 nexttoward -1.000000000000000000000000000000010 -Infinity -> -1.000000000000000000000000000000011 -dqnextt439 nexttoward -1.000000000000000000000000000000011 -Infinity -> -1.000000000000000000000000000000012 - --- Zeros -dqnextt500 nexttoward -0 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt501 nexttoward 0 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt502 nexttoward 0.00 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt503 nexttoward -0.00 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt504 nexttoward 0E-300 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt505 nexttoward 0E+300 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt506 nexttoward 0E+30000 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt507 nexttoward -0E+30000 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded - --- specials -dqnextt550 nexttoward Inf -Infinity -> 9.999999999999999999999999999999999E+6144 -dqnextt551 nexttoward -Inf -Infinity -> -Infinity -dqnextt552 nexttoward NaN -Infinity -> NaN -dqnextt553 nexttoward sNaN -Infinity -> NaN Invalid_operation -dqnextt554 nexttoward NaN77 -Infinity -> NaN77 -dqnextt555 nexttoward sNaN88 -Infinity -> NaN88 Invalid_operation -dqnextt556 nexttoward -NaN -Infinity -> -NaN -dqnextt557 nexttoward -sNaN -Infinity -> -NaN Invalid_operation -dqnextt558 nexttoward -NaN77 -Infinity -> -NaN77 -dqnextt559 nexttoward -sNaN88 -Infinity -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -dqnextt670 nexttoward 9.999999999999999999999999999999999E+6144 -Infinity -> 9.999999999999999999999999999999998E+6144 -dqnextt671 nexttoward 9.999999999999999999999999999999998E+6144 -Infinity -> 9.999999999999999999999999999999997E+6144 -dqnextt672 nexttoward 1E-6143 -Infinity -> 9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded -dqnextt673 nexttoward 1.000000000000000000000000000000000E-6143 -Infinity -> 9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded -dqnextt674 nexttoward 9E-6176 -Infinity -> 8E-6176 Underflow Subnormal Inexact Rounded -dqnextt675 nexttoward 9.9E-6175 -Infinity -> 9.8E-6175 Underflow Subnormal Inexact Rounded -dqnextt676 nexttoward 9.99999999999999999999999999999E-6147 -Infinity -> 9.99999999999999999999999999998E-6147 Underflow Subnormal Inexact Rounded -dqnextt677 nexttoward 9.99999999999999999999999999999999E-6144 -Infinity -> 9.99999999999999999999999999999998E-6144 Underflow Subnormal Inexact Rounded -dqnextt678 nexttoward 9.99999999999999999999999999999998E-6144 -Infinity -> 9.99999999999999999999999999999997E-6144 Underflow Subnormal Inexact Rounded -dqnextt679 nexttoward 9.99999999999999999999999999999997E-6144 -Infinity -> 9.99999999999999999999999999999996E-6144 Underflow Subnormal Inexact Rounded -dqnextt680 nexttoward 0E-6176 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt681 nexttoward 1E-6176 -Infinity -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqnextt682 nexttoward 2E-6176 -Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded - -dqnextt683 nexttoward -0E-6176 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt684 nexttoward -1E-6176 -Infinity -> -2E-6176 Underflow Subnormal Inexact Rounded -dqnextt685 nexttoward -2E-6176 -Infinity -> -3E-6176 Underflow Subnormal Inexact Rounded -dqnextt686 nexttoward -10E-6176 -Infinity -> -1.1E-6175 Underflow Subnormal Inexact Rounded -dqnextt687 nexttoward -100E-6176 -Infinity -> -1.01E-6174 Underflow Subnormal Inexact Rounded -dqnextt688 nexttoward -100000E-6176 -Infinity -> -1.00001E-6171 Underflow Subnormal Inexact Rounded -dqnextt689 nexttoward -1.00000000000000000000000000000E-6143 -Infinity -> -1.000000000000000000000000000000001E-6143 -dqnextt690 nexttoward -1.000000000000000000000000000000000E-6143 -Infinity -> -1.000000000000000000000000000000001E-6143 -dqnextt691 nexttoward -1E-6143 -Infinity -> -1.000000000000000000000000000000001E-6143 -dqnextt692 nexttoward -9.999999999999999999999999999999998E+6144 -Infinity -> -9.999999999999999999999999999999999E+6144 -dqnextt693 nexttoward -9.999999999999999999999999999999999E+6144 -Infinity -> -Infinity Overflow Inexact Rounded - -------- Specials -dqnextt780 nexttoward -Inf -Inf -> -Infinity -dqnextt781 nexttoward -Inf -1000 -> -9.999999999999999999999999999999999E+6144 -dqnextt782 nexttoward -Inf -1 -> -9.999999999999999999999999999999999E+6144 -dqnextt783 nexttoward -Inf -0 -> -9.999999999999999999999999999999999E+6144 -dqnextt784 nexttoward -Inf 0 -> -9.999999999999999999999999999999999E+6144 -dqnextt785 nexttoward -Inf 1 -> -9.999999999999999999999999999999999E+6144 -dqnextt786 nexttoward -Inf 1000 -> -9.999999999999999999999999999999999E+6144 -dqnextt787 nexttoward -1000 -Inf -> -1000.000000000000000000000000000001 -dqnextt788 nexttoward -Inf -Inf -> -Infinity -dqnextt789 nexttoward -1 -Inf -> -1.000000000000000000000000000000001 -dqnextt790 nexttoward -0 -Inf -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt791 nexttoward 0 -Inf -> -1E-6176 Underflow Subnormal Inexact Rounded -dqnextt792 nexttoward 1 -Inf -> 0.9999999999999999999999999999999999 -dqnextt793 nexttoward 1000 -Inf -> 999.9999999999999999999999999999999 -dqnextt794 nexttoward Inf -Inf -> 9.999999999999999999999999999999999E+6144 - -dqnextt800 nexttoward Inf -Inf -> 9.999999999999999999999999999999999E+6144 -dqnextt801 nexttoward Inf -1000 -> 9.999999999999999999999999999999999E+6144 -dqnextt802 nexttoward Inf -1 -> 9.999999999999999999999999999999999E+6144 -dqnextt803 nexttoward Inf -0 -> 9.999999999999999999999999999999999E+6144 -dqnextt804 nexttoward Inf 0 -> 9.999999999999999999999999999999999E+6144 -dqnextt805 nexttoward Inf 1 -> 9.999999999999999999999999999999999E+6144 -dqnextt806 nexttoward Inf 1000 -> 9.999999999999999999999999999999999E+6144 -dqnextt807 nexttoward Inf Inf -> Infinity -dqnextt808 nexttoward -1000 Inf -> -999.9999999999999999999999999999999 -dqnextt809 nexttoward -Inf Inf -> -9.999999999999999999999999999999999E+6144 -dqnextt810 nexttoward -1 Inf -> -0.9999999999999999999999999999999999 -dqnextt811 nexttoward -0 Inf -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt812 nexttoward 0 Inf -> 1E-6176 Underflow Subnormal Inexact Rounded -dqnextt813 nexttoward 1 Inf -> 1.000000000000000000000000000000001 -dqnextt814 nexttoward 1000 Inf -> 1000.000000000000000000000000000001 -dqnextt815 nexttoward Inf Inf -> Infinity - -dqnextt821 nexttoward NaN -Inf -> NaN -dqnextt822 nexttoward NaN -1000 -> NaN -dqnextt823 nexttoward NaN -1 -> NaN -dqnextt824 nexttoward NaN -0 -> NaN -dqnextt825 nexttoward NaN 0 -> NaN -dqnextt826 nexttoward NaN 1 -> NaN -dqnextt827 nexttoward NaN 1000 -> NaN -dqnextt828 nexttoward NaN Inf -> NaN -dqnextt829 nexttoward NaN NaN -> NaN -dqnextt830 nexttoward -Inf NaN -> NaN -dqnextt831 nexttoward -1000 NaN -> NaN -dqnextt832 nexttoward -1 NaN -> NaN -dqnextt833 nexttoward -0 NaN -> NaN -dqnextt834 nexttoward 0 NaN -> NaN -dqnextt835 nexttoward 1 NaN -> NaN -dqnextt836 nexttoward 1000 NaN -> NaN -dqnextt837 nexttoward Inf NaN -> NaN - -dqnextt841 nexttoward sNaN -Inf -> NaN Invalid_operation -dqnextt842 nexttoward sNaN -1000 -> NaN Invalid_operation -dqnextt843 nexttoward sNaN -1 -> NaN Invalid_operation -dqnextt844 nexttoward sNaN -0 -> NaN Invalid_operation -dqnextt845 nexttoward sNaN 0 -> NaN Invalid_operation -dqnextt846 nexttoward sNaN 1 -> NaN Invalid_operation -dqnextt847 nexttoward sNaN 1000 -> NaN Invalid_operation -dqnextt848 nexttoward sNaN NaN -> NaN Invalid_operation -dqnextt849 nexttoward sNaN sNaN -> NaN Invalid_operation -dqnextt850 nexttoward NaN sNaN -> NaN Invalid_operation -dqnextt851 nexttoward -Inf sNaN -> NaN Invalid_operation -dqnextt852 nexttoward -1000 sNaN -> NaN Invalid_operation -dqnextt853 nexttoward -1 sNaN -> NaN Invalid_operation -dqnextt854 nexttoward -0 sNaN -> NaN Invalid_operation -dqnextt855 nexttoward 0 sNaN -> NaN Invalid_operation -dqnextt856 nexttoward 1 sNaN -> NaN Invalid_operation -dqnextt857 nexttoward 1000 sNaN -> NaN Invalid_operation -dqnextt858 nexttoward Inf sNaN -> NaN Invalid_operation -dqnextt859 nexttoward NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqnextt861 nexttoward NaN1 -Inf -> NaN1 -dqnextt862 nexttoward +NaN2 -1000 -> NaN2 -dqnextt863 nexttoward NaN3 1000 -> NaN3 -dqnextt864 nexttoward NaN4 Inf -> NaN4 -dqnextt865 nexttoward NaN5 +NaN6 -> NaN5 -dqnextt866 nexttoward -Inf NaN7 -> NaN7 -dqnextt867 nexttoward -1000 NaN8 -> NaN8 -dqnextt868 nexttoward 1000 NaN9 -> NaN9 -dqnextt869 nexttoward Inf +NaN10 -> NaN10 -dqnextt871 nexttoward sNaN11 -Inf -> NaN11 Invalid_operation -dqnextt872 nexttoward sNaN12 -1000 -> NaN12 Invalid_operation -dqnextt873 nexttoward sNaN13 1000 -> NaN13 Invalid_operation -dqnextt874 nexttoward sNaN14 NaN17 -> NaN14 Invalid_operation -dqnextt875 nexttoward sNaN15 sNaN18 -> NaN15 Invalid_operation -dqnextt876 nexttoward NaN16 sNaN19 -> NaN19 Invalid_operation -dqnextt877 nexttoward -Inf +sNaN20 -> NaN20 Invalid_operation -dqnextt878 nexttoward -1000 sNaN21 -> NaN21 Invalid_operation -dqnextt879 nexttoward 1000 sNaN22 -> NaN22 Invalid_operation -dqnextt880 nexttoward Inf sNaN23 -> NaN23 Invalid_operation -dqnextt881 nexttoward +NaN25 +sNaN24 -> NaN24 Invalid_operation -dqnextt882 nexttoward -NaN26 NaN28 -> -NaN26 -dqnextt883 nexttoward -sNaN27 sNaN29 -> -NaN27 Invalid_operation -dqnextt884 nexttoward 1000 -NaN30 -> -NaN30 -dqnextt885 nexttoward 1000 -sNaN31 -> -NaN31 Invalid_operation - --- Null tests -dqnextt900 nexttoward 1 # -> NaN Invalid_operation -dqnextt901 nexttoward # 1 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqOr.decTest b/qdecimal/test/tc_full/dqOr.decTest deleted file mode 100644 index b80ce6f..0000000 --- a/qdecimal/test/tc_full/dqOr.decTest +++ /dev/null @@ -1,401 +0,0 @@ ------------------------------------------------------------------------- --- dqOr.decTest -- digitwise logical OR for decQuads -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check (truth table) -dqor001 or 0 0 -> 0 -dqor002 or 0 1 -> 1 -dqor003 or 1 0 -> 1 -dqor004 or 1 1 -> 1 -dqor005 or 1100 1010 -> 1110 --- and at msd and msd-1 -dqor006 or 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqor007 or 0000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000 -dqor008 or 1000000000000000000000000000000000 0000000000000000000000000000000000 -> 1000000000000000000000000000000000 -dqor009 or 1000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000 -dqor010 or 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqor011 or 0000000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000 -dqor012 or 0100000000000000000000000000000000 0000000000000000000000000000000000 -> 100000000000000000000000000000000 -dqor013 or 0100000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000 - --- Various lengths -dqor601 or 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111111 -dqor602 or 1011111111111111111111111111111111 1111111111111111111111111111111101 -> 1111111111111111111111111111111111 -dqor603 or 1101111111111111111111111111111111 1111111111111111111111111111111011 -> 1111111111111111111111111111111111 -dqor604 or 1110111111111111111111111111111111 1111111111111111111111111111110111 -> 1111111111111111111111111111111111 -dqor605 or 1111011111111111111111111111111111 1111111111111111111111111111101111 -> 1111111111111111111111111111111111 -dqor606 or 1111101111111111111111111111111111 1111111111111111111111111111011111 -> 1111111111111111111111111111111111 -dqor607 or 1111110111111111111111111111111111 1111111111111111111111111110111111 -> 1111111111111111111111111111111111 -dqor608 or 1111111011111111111111111111111111 1111111111111111111111111101111111 -> 1111111111111111111111111111111111 -dqor609 or 1111111101111111111111111111111111 1111111111111111111111111011111111 -> 1111111111111111111111111111111111 -dqor610 or 1111111110111111111111111111111111 1111111111111111111111110111111111 -> 1111111111111111111111111111111111 -dqor611 or 1111111111011111111111111111111111 1111111111111111111111101111111111 -> 1111111111111111111111111111111111 -dqor612 or 1111111111101111111111111111111111 1111111111111111111111011111111111 -> 1111111111111111111111111111111111 -dqor613 or 1111111111110111111111111111111111 1111111111111111111110111111111111 -> 1111111111111111111111111111111111 -dqor614 or 1111111111111011111111111111111111 1111111111111111111101111111111111 -> 1111111111111111111111111111111111 -dqor615 or 1111111111111101111111111111111111 1111111111111111111011111111111111 -> 1111111111111111111111111111111111 -dqor616 or 1111111111111110111111111111111111 1111111111111111110111111111111111 -> 1111111111111111111111111111111111 -dqor617 or 1111111111111111011111111111111111 1111111111111111101111111111111111 -> 1111111111111111111111111111111111 -dqor618 or 1111111111111111101111111111111111 1111111111111111011111111111111111 -> 1111111111111111111111111111111111 -dqor619 or 1111111111111111110111111111111111 1111111111111110111111111111111111 -> 1111111111111111111111111111111111 -dqor620 or 1111111111111111111011111111111111 1111111111111101111111111111111111 -> 1111111111111111111111111111111111 -dqor621 or 1111111111111111111101111111111111 1111111111111011111111111111111111 -> 1111111111111111111111111111111111 -dqor622 or 1111111111111111111110111111111111 1111111111110111111111111111111111 -> 1111111111111111111111111111111111 -dqor623 or 1111111111111111111111011111111111 1111111111101111111111111111111111 -> 1111111111111111111111111111111111 -dqor624 or 1111111111111111111111101111111111 1111111111011111111111111111111111 -> 1111111111111111111111111111111111 -dqor625 or 1111111111111111111111110111111111 1111111110111111111111111111111111 -> 1111111111111111111111111111111111 -dqor626 or 1111111111111111111111111011111111 1111111101111111111111111111111111 -> 1111111111111111111111111111111111 -dqor627 or 1111111111111111111111111101111111 1111111011111111111111111111111111 -> 1111111111111111111111111111111111 -dqor628 or 1111111111111111111111111110111111 1111110111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor629 or 1111111111111111111111111111011111 1111101111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor630 or 1111111111111111111111111111101111 1111011111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor631 or 1111111111111111111111111111110111 1110111111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor632 or 1111111111111111111111111111111011 1101111111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor633 or 1111111111111111111111111111111101 1011111111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor634 or 1111111111111111111111111111111110 0111111111111111111111111111111111 -> 1111111111111111111111111111111111 - -dqor641 or 1111111111111111111111111111111110 0111111111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor642 or 1111111111111111111111111111111101 1011111111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor643 or 1111111111111111111111111111111011 1101111111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor644 or 1111111111111111111111111111110111 1110111111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor645 or 1111111111111111111111111111101111 1111011111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor646 or 1111111111111111111111111111011111 1111101111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor647 or 1111111111111111111111111110111111 1111110111111111111111111111111111 -> 1111111111111111111111111111111111 -dqor648 or 1111111111111111111111111101111111 1111111011111111111111111111111111 -> 1111111111111111111111111111111111 -dqor649 or 1111111111111111111111111011111111 1111111101111111111111111111111111 -> 1111111111111111111111111111111111 -dqor650 or 1111111111111111111111110111111111 1111111110111111111111111111111111 -> 1111111111111111111111111111111111 -dqor651 or 1111111111111111111111101111111111 1111111111011111111111111111111111 -> 1111111111111111111111111111111111 -dqor652 or 1111111111111111111111011111111111 1111111111101111111111111111111111 -> 1111111111111111111111111111111111 -dqor653 or 1111111111111111111110111111111111 1111111111110111111111111111111111 -> 1111111111111111111111111111111111 -dqor654 or 1111111111111111111101111111111111 1111111111111011111111111111111111 -> 1111111111111111111111111111111111 -dqor655 or 1111111111111111111011111111111111 1111111111111101111111111111111111 -> 1111111111111111111111111111111111 -dqor656 or 1111111111111111110111111111111111 1111111111111110111111111111111111 -> 1111111111111111111111111111111111 -dqor657 or 1010101010101010101010101010101010 1010101010101010001010101010101010 -> 1010101010101010101010101010101010 -dqor658 or 1111111111111111011111111111111111 1111111111111111101111111111111111 -> 1111111111111111111111111111111111 -dqor659 or 1111111111111110111111111111111111 1111111111111111110111111111111111 -> 1111111111111111111111111111111111 -dqor660 or 1111111111111101111111111111111111 1111111111111111111011111111111111 -> 1111111111111111111111111111111111 -dqor661 or 1111111111111011111111111111111111 1111111111111111111101111111111111 -> 1111111111111111111111111111111111 -dqor662 or 1111111111110111111111111111111111 1111111111111111111110111111111111 -> 1111111111111111111111111111111111 -dqor663 or 1111111111101111111111111111111111 1111111111111111111111011111111111 -> 1111111111111111111111111111111111 -dqor664 or 1111111111011111111111111111111111 1111111111111111111111101111111111 -> 1111111111111111111111111111111111 -dqor665 or 1111111110111111111111111111111111 1111111111111111111111110111111111 -> 1111111111111111111111111111111111 -dqor666 or 0101010101010101010101010101010101 0101010101010101010101010001010101 -> 101010101010101010101010101010101 -dqor667 or 1111111011111111111111111111111111 1111111111111111111111111101111111 -> 1111111111111111111111111111111111 -dqor668 or 1111110111111111111111111111111111 1111111111111111111111111110111111 -> 1111111111111111111111111111111111 -dqor669 or 1111101111111111111111111111111111 1111111111111111111111111111011111 -> 1111111111111111111111111111111111 -dqor670 or 1111011111111111111111111111111111 1111111111111111111111111111101111 -> 1111111111111111111111111111111111 -dqor671 or 1110111111111111111111111111111111 1111111111111111111111111111110111 -> 1111111111111111111111111111111111 -dqor672 or 1101111111111111111111111111111111 1111111111111111111111111111111011 -> 1111111111111111111111111111111111 -dqor673 or 1011111111111111111111111111111111 1111111111111111111111111111111101 -> 1111111111111111111111111111111111 -dqor674 or 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111111 -dqor675 or 0111111111111111111111111111111110 1111111111111111111111111111111110 -> 1111111111111111111111111111111110 -dqor676 or 1111111111111111111111111111111110 1111111111111111111111111111111110 -> 1111111111111111111111111111111110 - -dqor681 or 0111111111111111111111111111111111 0111111111011111111111111111111110 -> 111111111111111111111111111111111 -dqor682 or 1011111111111111111111111111111111 1011111110101111111111111111111101 -> 1011111111111111111111111111111111 -dqor683 or 1101111111111111111111111111111111 1101111101110111111111111111111011 -> 1101111111111111111111111111111111 -dqor684 or 1110111111111111111111111111111111 1110111011111011111111111111110111 -> 1110111111111111111111111111111111 -dqor685 or 1111011111111111111111111111111111 1111010111111101111111111111101111 -> 1111011111111111111111111111111111 -dqor686 or 1111101111111111111111111111111111 1111101111111110111111111111011111 -> 1111101111111111111111111111111111 -dqor687 or 1111110111111111111111111111111111 1111010111111111011111111110111111 -> 1111110111111111111111111111111111 -dqor688 or 1111111011111111111111111111111111 1110111011111111101111111101111111 -> 1111111011111111111111111111111111 -dqor689 or 1111111101111111111111111111111111 1101111101111111110111111011111111 -> 1111111101111111111111111111111111 -dqor690 or 1111111110111111111111111111111111 1011111110111111111011110111111110 -> 1111111110111111111111111111111111 -dqor691 or 1111111111011111111111111111111111 0111111111011111111101101111111101 -> 1111111111011111111111111111111111 -dqor692 or 1111111111101111111111111111111111 1111111111101111111110011111111011 -> 1111111111101111111111111111111111 -dqor693 or 1111111111110111111111111111111111 1111111111110111111110011111110111 -> 1111111111110111111111111111111111 -dqor694 or 1111111111111011111111111111111111 1111111111111011111101101111101111 -> 1111111111111011111111111111111111 -dqor695 or 1111111111111101111111111111111111 1111111111111101111011110111011111 -> 1111111111111101111111111111111111 -dqor696 or 1111111111111110111111111111111111 1111111111111110110111111010111111 -> 1111111111111110111111111111111111 -dqor697 or 1111111111111111011111111111111111 1111111111111111001111111101111111 -> 1111111111111111011111111111111111 -dqor698 or 1111111111111111101111111111111111 1111111111111111001111111010111111 -> 1111111111111111101111111111111111 -dqor699 or 1111111111111111110111111111111111 1111111111111110110111110111011111 -> 1111111111111111110111111111111111 -dqor700 or 1111111111111111111011111111111111 1111111111111101111011101111101111 -> 1111111111111111111011111111111111 -dqor701 or 1111111111111111111101111111111111 1111111111111011111101011111110111 -> 1111111111111111111101111111111111 -dqor702 or 1111111111111111111110111111111111 1111111111110111111110111111111011 -> 1111111111111111111110111111111111 -dqor703 or 1111111111111111111111011111111111 1111111111101111111101011111111101 -> 1111111111111111111111011111111111 -dqor704 or 1111111111111111111111101111111111 1111111111011111111011101111111110 -> 1111111111111111111111101111111111 -dqor705 or 1111111111111111111111110111111111 0111111110111111110111110111111111 -> 1111111111111111111111110111111111 -dqor706 or 1111111111111111111111111011111111 1011111101111111101111111011111111 -> 1111111111111111111111111011111111 -dqor707 or 1111111111111111111111111101111111 1101111011111111011111111101111111 -> 1111111111111111111111111101111111 -dqor708 or 1111111111111111111111111110111111 1110110111111110111111111110111111 -> 1111111111111111111111111110111111 -dqor709 or 1111111111111111111111111111011111 1111001111111101111111111111011111 -> 1111111111111111111111111111011111 -dqor710 or 1111111111111111111111111111101111 1111001111111011111111111111101111 -> 1111111111111111111111111111101111 -dqor711 or 1111111111111111111111111111110111 1110110111110111111111111111110111 -> 1111111111111111111111111111110111 -dqor712 or 1111111111111111111111111111111011 1101111011101111111111111111111011 -> 1111111111111111111111111111111011 -dqor713 or 1111111111111111111111111111111101 1011111101011111111111111111111101 -> 1111111111111111111111111111111101 -dqor714 or 1111111111111111111111111111111110 0111111110111111111111111111111110 -> 1111111111111111111111111111111110 - - - --- 1234567890123456 1234567890123456 1234567890123456 -dqor020 or 1111111111111111 1111111111111111 -> 1111111111111111 -dqor021 or 111111111111111 111111111111111 -> 111111111111111 -dqor022 or 11111111111111 11111111111111 -> 11111111111111 -dqor023 or 1111111111111 1111111111111 -> 1111111111111 -dqor024 or 111111111111 111111111111 -> 111111111111 -dqor025 or 11111111111 11111111111 -> 11111111111 -dqor026 or 1111111111 1111111111 -> 1111111111 -dqor027 or 111111111 111111111 -> 111111111 -dqor028 or 11111111 11111111 -> 11111111 -dqor029 or 1111111 1111111 -> 1111111 -dqor030 or 111111 111111 -> 111111 -dqor031 or 11111 11111 -> 11111 -dqor032 or 1111 1111 -> 1111 -dqor033 or 111 111 -> 111 -dqor034 or 11 11 -> 11 -dqor035 or 1 1 -> 1 -dqor036 or 0 0 -> 0 - -dqor042 or 111111110000000 1111111110000000 -> 1111111110000000 -dqor043 or 11111110000000 1000000100000000 -> 1011111110000000 -dqor044 or 1111110000000 1000001000000000 -> 1001111110000000 -dqor045 or 111110000000 1000010000000000 -> 1000111110000000 -dqor046 or 11110000000 1000100000000000 -> 1000111110000000 -dqor047 or 1110000000 1001000000000000 -> 1001001110000000 -dqor048 or 110000000 1010000000000000 -> 1010000110000000 -dqor049 or 10000000 1100000000000000 -> 1100000010000000 - -dqor090 or 011111111 111101111 -> 111111111 -dqor091 or 101111111 111101111 -> 111111111 -dqor092 or 110111111 111101111 -> 111111111 -dqor093 or 111011111 111101111 -> 111111111 -dqor094 or 111101111 111101111 -> 111101111 -dqor095 or 111110111 111101111 -> 111111111 -dqor096 or 111111011 111101111 -> 111111111 -dqor097 or 111111101 111101111 -> 111111111 -dqor098 or 111111110 111101111 -> 111111111 - -dqor100 or 111101111 011111111 -> 111111111 -dqor101 or 111101111 101111111 -> 111111111 -dqor102 or 111101111 110111111 -> 111111111 -dqor103 or 111101111 111011111 -> 111111111 -dqor104 or 111101111 111101111 -> 111101111 -dqor105 or 111101111 111110111 -> 111111111 -dqor106 or 111101111 111111011 -> 111111111 -dqor107 or 111101111 111111101 -> 111111111 -dqor108 or 111101111 111111110 -> 111111111 - --- non-0/1 should not be accepted, nor should signs -dqor220 or 111111112 111111111 -> NaN Invalid_operation -dqor221 or 333333333 333333333 -> NaN Invalid_operation -dqor222 or 555555555 555555555 -> NaN Invalid_operation -dqor223 or 777777777 777777777 -> NaN Invalid_operation -dqor224 or 999999999 999999999 -> NaN Invalid_operation -dqor225 or 222222222 999999999 -> NaN Invalid_operation -dqor226 or 444444444 999999999 -> NaN Invalid_operation -dqor227 or 666666666 999999999 -> NaN Invalid_operation -dqor228 or 888888888 999999999 -> NaN Invalid_operation -dqor229 or 999999999 222222222 -> NaN Invalid_operation -dqor230 or 999999999 444444444 -> NaN Invalid_operation -dqor231 or 999999999 666666666 -> NaN Invalid_operation -dqor232 or 999999999 888888888 -> NaN Invalid_operation --- a few randoms -dqor240 or 567468689 -934981942 -> NaN Invalid_operation -dqor241 or 567367689 934981942 -> NaN Invalid_operation -dqor242 or -631917772 -706014634 -> NaN Invalid_operation -dqor243 or -756253257 138579234 -> NaN Invalid_operation -dqor244 or 835590149 567435400 -> NaN Invalid_operation --- test MSD -dqor250 or 2000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqor251 or 7000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqor252 or 8000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqor253 or 9000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqor254 or 2000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqor255 or 7000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqor256 or 8000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqor257 or 9000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqor258 or 1000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation -dqor259 or 1000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation -dqor260 or 1000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation -dqor261 or 1000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation -dqor262 or 0000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation -dqor263 or 0000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation -dqor264 or 0000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation -dqor265 or 0000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation --- test MSD-1 -dqor270 or 0200000111000111000111001000000000 1000000111000111000111100000000010 -> NaN Invalid_operation -dqor271 or 0700000111000111000111000100000000 1000000111000111000111010000000100 -> NaN Invalid_operation -dqor272 or 0800000111000111000111000010000000 1000000111000111000111001000001000 -> NaN Invalid_operation -dqor273 or 0900000111000111000111000001000000 1000000111000111000111000100010000 -> NaN Invalid_operation -dqor274 or 1000000111000111000111000000100000 0200000111000111000111000010100000 -> NaN Invalid_operation -dqor275 or 1000000111000111000111000000010000 0700000111000111000111000001000000 -> NaN Invalid_operation -dqor276 or 1000000111000111000111000000001000 0800000111000111000111000010100000 -> NaN Invalid_operation -dqor277 or 1000000111000111000111000000000100 0900000111000111000111000000010000 -> NaN Invalid_operation --- test LSD -dqor280 or 0010000111000111000111000000000002 1000000111000111000111000100000001 -> NaN Invalid_operation -dqor281 or 0001000111000111000111000000000007 1000000111000111000111001000000011 -> NaN Invalid_operation -dqor282 or 0000000111000111000111100000000008 1000000111000111000111010000000001 -> NaN Invalid_operation -dqor283 or 0000000111000111000111010000000009 1000000111000111000111100000000001 -> NaN Invalid_operation -dqor284 or 1000000111000111000111001000000000 0001000111000111000111000000000002 -> NaN Invalid_operation -dqor285 or 1000000111000111000111000100000000 0010000111000111000111000000000007 -> NaN Invalid_operation -dqor286 or 1000000111000111000111000010000000 0100000111000111000111000000000008 -> NaN Invalid_operation -dqor287 or 1000000111000111000111000001000000 1000000111000111000111000000000009 -> NaN Invalid_operation --- test Middie -dqor288 or 0010000111000111000111000020000000 1000000111000111000111001000000000 -> NaN Invalid_operation -dqor289 or 0001000111000111000111000070000001 1000000111000111000111000100000000 -> NaN Invalid_operation -dqor290 or 0000000111000111000111100080000010 1000000111000111000111000010000000 -> NaN Invalid_operation -dqor291 or 0000000111000111000111010090000100 1000000111000111000111000001000000 -> NaN Invalid_operation -dqor292 or 1000000111000111000111001000001000 0000000111000111000111000020100000 -> NaN Invalid_operation -dqor293 or 1000000111000111000111000100010000 0000000111000111000111000070010000 -> NaN Invalid_operation -dqor294 or 1000000111000111000111000010100000 0000000111000111000111000080001000 -> NaN Invalid_operation -dqor295 or 1000000111000111000111000001000000 0000000111000111000111000090000100 -> NaN Invalid_operation --- signs -dqor296 or -1000000111000111000111000001000000 -0000001110001110001110010000000100 -> NaN Invalid_operation -dqor297 or -1000000111000111000111000001000000 0000001110001110001110000010000100 -> NaN Invalid_operation -dqor298 or 1000000111000111000111000001000000 -0000001110001110001110001000000100 -> NaN Invalid_operation -dqor299 or 1000000111000111000111000001000000 0000001110001110001110000011000100 -> 1000001111001111001111000011000100 - --- Nmax, Nmin, Ntiny-like -dqor331 or 2 9.99999999E+1999 -> NaN Invalid_operation -dqor332 or 3 1E-1999 -> NaN Invalid_operation -dqor333 or 4 1.00000000E-1999 -> NaN Invalid_operation -dqor334 or 5 1E-1009 -> NaN Invalid_operation -dqor335 or 6 -1E-1009 -> NaN Invalid_operation -dqor336 or 7 -1.00000000E-1999 -> NaN Invalid_operation -dqor337 or 8 -1E-1999 -> NaN Invalid_operation -dqor338 or 9 -9.99999999E+1999 -> NaN Invalid_operation -dqor341 or 9.99999999E+2999 -18 -> NaN Invalid_operation -dqor342 or 1E-2999 01 -> NaN Invalid_operation -dqor343 or 1.00000000E-2999 -18 -> NaN Invalid_operation -dqor344 or 1E-1009 18 -> NaN Invalid_operation -dqor345 or -1E-1009 -10 -> NaN Invalid_operation -dqor346 or -1.00000000E-2999 18 -> NaN Invalid_operation -dqor347 or -1E-2999 10 -> NaN Invalid_operation -dqor348 or -9.99999999E+2999 -18 -> NaN Invalid_operation - --- A few other non-integers -dqor361 or 1.0 1 -> NaN Invalid_operation -dqor362 or 1E+1 1 -> NaN Invalid_operation -dqor363 or 0.0 1 -> NaN Invalid_operation -dqor364 or 0E+1 1 -> NaN Invalid_operation -dqor365 or 9.9 1 -> NaN Invalid_operation -dqor366 or 9E+1 1 -> NaN Invalid_operation -dqor371 or 0 1.0 -> NaN Invalid_operation -dqor372 or 0 1E+1 -> NaN Invalid_operation -dqor373 or 0 0.0 -> NaN Invalid_operation -dqor374 or 0 0E+1 -> NaN Invalid_operation -dqor375 or 0 9.9 -> NaN Invalid_operation -dqor376 or 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -dqor780 or -Inf -Inf -> NaN Invalid_operation -dqor781 or -Inf -1000 -> NaN Invalid_operation -dqor782 or -Inf -1 -> NaN Invalid_operation -dqor783 or -Inf -0 -> NaN Invalid_operation -dqor784 or -Inf 0 -> NaN Invalid_operation -dqor785 or -Inf 1 -> NaN Invalid_operation -dqor786 or -Inf 1000 -> NaN Invalid_operation -dqor787 or -1000 -Inf -> NaN Invalid_operation -dqor788 or -Inf -Inf -> NaN Invalid_operation -dqor789 or -1 -Inf -> NaN Invalid_operation -dqor790 or -0 -Inf -> NaN Invalid_operation -dqor791 or 0 -Inf -> NaN Invalid_operation -dqor792 or 1 -Inf -> NaN Invalid_operation -dqor793 or 1000 -Inf -> NaN Invalid_operation -dqor794 or Inf -Inf -> NaN Invalid_operation - -dqor800 or Inf -Inf -> NaN Invalid_operation -dqor801 or Inf -1000 -> NaN Invalid_operation -dqor802 or Inf -1 -> NaN Invalid_operation -dqor803 or Inf -0 -> NaN Invalid_operation -dqor804 or Inf 0 -> NaN Invalid_operation -dqor805 or Inf 1 -> NaN Invalid_operation -dqor806 or Inf 1000 -> NaN Invalid_operation -dqor807 or Inf Inf -> NaN Invalid_operation -dqor808 or -1000 Inf -> NaN Invalid_operation -dqor809 or -Inf Inf -> NaN Invalid_operation -dqor810 or -1 Inf -> NaN Invalid_operation -dqor811 or -0 Inf -> NaN Invalid_operation -dqor812 or 0 Inf -> NaN Invalid_operation -dqor813 or 1 Inf -> NaN Invalid_operation -dqor814 or 1000 Inf -> NaN Invalid_operation -dqor815 or Inf Inf -> NaN Invalid_operation - -dqor821 or NaN -Inf -> NaN Invalid_operation -dqor822 or NaN -1000 -> NaN Invalid_operation -dqor823 or NaN -1 -> NaN Invalid_operation -dqor824 or NaN -0 -> NaN Invalid_operation -dqor825 or NaN 0 -> NaN Invalid_operation -dqor826 or NaN 1 -> NaN Invalid_operation -dqor827 or NaN 1000 -> NaN Invalid_operation -dqor828 or NaN Inf -> NaN Invalid_operation -dqor829 or NaN NaN -> NaN Invalid_operation -dqor830 or -Inf NaN -> NaN Invalid_operation -dqor831 or -1000 NaN -> NaN Invalid_operation -dqor832 or -1 NaN -> NaN Invalid_operation -dqor833 or -0 NaN -> NaN Invalid_operation -dqor834 or 0 NaN -> NaN Invalid_operation -dqor835 or 1 NaN -> NaN Invalid_operation -dqor836 or 1000 NaN -> NaN Invalid_operation -dqor837 or Inf NaN -> NaN Invalid_operation - -dqor841 or sNaN -Inf -> NaN Invalid_operation -dqor842 or sNaN -1000 -> NaN Invalid_operation -dqor843 or sNaN -1 -> NaN Invalid_operation -dqor844 or sNaN -0 -> NaN Invalid_operation -dqor845 or sNaN 0 -> NaN Invalid_operation -dqor846 or sNaN 1 -> NaN Invalid_operation -dqor847 or sNaN 1000 -> NaN Invalid_operation -dqor848 or sNaN NaN -> NaN Invalid_operation -dqor849 or sNaN sNaN -> NaN Invalid_operation -dqor850 or NaN sNaN -> NaN Invalid_operation -dqor851 or -Inf sNaN -> NaN Invalid_operation -dqor852 or -1000 sNaN -> NaN Invalid_operation -dqor853 or -1 sNaN -> NaN Invalid_operation -dqor854 or -0 sNaN -> NaN Invalid_operation -dqor855 or 0 sNaN -> NaN Invalid_operation -dqor856 or 1 sNaN -> NaN Invalid_operation -dqor857 or 1000 sNaN -> NaN Invalid_operation -dqor858 or Inf sNaN -> NaN Invalid_operation -dqor859 or NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqor861 or NaN1 -Inf -> NaN Invalid_operation -dqor862 or +NaN2 -1000 -> NaN Invalid_operation -dqor863 or NaN3 1000 -> NaN Invalid_operation -dqor864 or NaN4 Inf -> NaN Invalid_operation -dqor865 or NaN5 +NaN6 -> NaN Invalid_operation -dqor866 or -Inf NaN7 -> NaN Invalid_operation -dqor867 or -1000 NaN8 -> NaN Invalid_operation -dqor868 or 1000 NaN9 -> NaN Invalid_operation -dqor869 or Inf +NaN10 -> NaN Invalid_operation -dqor871 or sNaN11 -Inf -> NaN Invalid_operation -dqor872 or sNaN12 -1000 -> NaN Invalid_operation -dqor873 or sNaN13 1000 -> NaN Invalid_operation -dqor874 or sNaN14 NaN17 -> NaN Invalid_operation -dqor875 or sNaN15 sNaN18 -> NaN Invalid_operation -dqor876 or NaN16 sNaN19 -> NaN Invalid_operation -dqor877 or -Inf +sNaN20 -> NaN Invalid_operation -dqor878 or -1000 sNaN21 -> NaN Invalid_operation -dqor879 or 1000 sNaN22 -> NaN Invalid_operation -dqor880 or Inf sNaN23 -> NaN Invalid_operation -dqor881 or +NaN25 +sNaN24 -> NaN Invalid_operation -dqor882 or -NaN26 NaN28 -> NaN Invalid_operation -dqor883 or -sNaN27 sNaN29 -> NaN Invalid_operation -dqor884 or 1000 -NaN30 -> NaN Invalid_operation -dqor885 or 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqPlus.decTest b/qdecimal/test/tc_full/dqPlus.decTest deleted file mode 100644 index 15856e3..0000000 --- a/qdecimal/test/tc_full/dqPlus.decTest +++ /dev/null @@ -1,88 +0,0 @@ ------------------------------------------------------------------------- --- dqPlus.decTest -- decQuad 0+x -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqpls001 plus +7.50 -> 7.50 - --- Infinities -dqpls011 plus Infinity -> Infinity -dqpls012 plus -Infinity -> -Infinity - --- NaNs, 0 payload -ddqls021 plus NaN -> NaN -ddqls022 plus -NaN -> -NaN -ddqls023 plus sNaN -> NaN Invalid_operation -ddqls024 plus -sNaN -> -NaN Invalid_operation - --- NaNs, non-0 payload -ddqls031 plus NaN13 -> NaN13 -ddqls032 plus -NaN13 -> -NaN13 -ddqls033 plus sNaN13 -> NaN13 Invalid_operation -ddqls034 plus -sNaN13 -> -NaN13 Invalid_operation -ddqls035 plus NaN70 -> NaN70 -ddqls036 plus -NaN70 -> -NaN70 -ddqls037 plus sNaN101 -> NaN101 Invalid_operation -ddqls038 plus -sNaN101 -> -NaN101 Invalid_operation - --- finites -dqpls101 plus 7 -> 7 -dqpls102 plus -7 -> -7 -dqpls103 plus 75 -> 75 -dqpls104 plus -75 -> -75 -dqpls105 plus 7.50 -> 7.50 -dqpls106 plus -7.50 -> -7.50 -dqpls107 plus 7.500 -> 7.500 -dqpls108 plus -7.500 -> -7.500 - --- zeros -dqpls111 plus 0 -> 0 -dqpls112 plus -0 -> 0 -dqpls113 plus 0E+4 -> 0E+4 -dqpls114 plus -0E+4 -> 0E+4 -dqpls115 plus 0.0000 -> 0.0000 -dqpls116 plus -0.0000 -> 0.0000 -dqpls117 plus 0E-141 -> 0E-141 -dqpls118 plus -0E-141 -> 0E-141 - --- full coefficients, alternating bits -dqpls121 plus 2682682682682682682682682682682682 -> 2682682682682682682682682682682682 -dqpls122 plus -2682682682682682682682682682682682 -> -2682682682682682682682682682682682 -dqpls123 plus 1341341341341341341341341341341341 -> 1341341341341341341341341341341341 -dqpls124 plus -1341341341341341341341341341341341 -> -1341341341341341341341341341341341 - --- Nmax, Nmin, Ntiny -dqpls131 plus 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqpls132 plus 1E-6143 -> 1E-6143 -dqpls133 plus 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 -dqpls134 plus 1E-6176 -> 1E-6176 Subnormal - -dqpls135 plus -1E-6176 -> -1E-6176 Subnormal -dqpls136 plus -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143 -dqpls137 plus -1E-6143 -> -1E-6143 -dqpls138 plus -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 diff --git a/qdecimal/test/tc_full/dqQuantize.decTest b/qdecimal/test/tc_full/dqQuantize.decTest deleted file mode 100644 index 5bef756..0000000 --- a/qdecimal/test/tc_full/dqQuantize.decTest +++ /dev/null @@ -1,838 +0,0 @@ ------------------------------------------------------------------------- --- dqQuantize.decTest -- decQuad quantize operation -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Most of the tests here assume a "regular pattern", where the --- sign and coefficient are +1. --- 2004.03.15 Underflow for quantize is suppressed --- 2005.06.08 More extensive tests for 'does not fit' --- [Forked from quantize.decTest 2006.11.25] - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks -dqqua001 quantize 0 1e0 -> 0 -dqqua002 quantize 1 1e0 -> 1 -dqqua003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded -dqqua005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded -dqqua006 quantize 0.1 1e0 -> 0 Inexact Rounded -dqqua007 quantize 0.1 1e-1 -> 0.1 -dqqua008 quantize 0.1 1e-2 -> 0.10 -dqqua009 quantize 0.1 1e-3 -> 0.100 -dqqua010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded -dqqua011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded -dqqua012 quantize 0.9 1e+0 -> 1 Inexact Rounded -dqqua013 quantize 0.9 1e-1 -> 0.9 -dqqua014 quantize 0.9 1e-2 -> 0.90 -dqqua015 quantize 0.9 1e-3 -> 0.900 --- negatives -dqqua021 quantize -0 1e0 -> -0 -dqqua022 quantize -1 1e0 -> -1 -dqqua023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded -dqqua025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded -dqqua026 quantize -0.1 1e0 -> -0 Inexact Rounded -dqqua027 quantize -0.1 1e-1 -> -0.1 -dqqua028 quantize -0.1 1e-2 -> -0.10 -dqqua029 quantize -0.1 1e-3 -> -0.100 -dqqua030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded -dqqua031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded -dqqua032 quantize -0.9 1e+0 -> -1 Inexact Rounded -dqqua033 quantize -0.9 1e-1 -> -0.9 -dqqua034 quantize -0.9 1e-2 -> -0.90 -dqqua035 quantize -0.9 1e-3 -> -0.900 -dqqua036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded -dqqua037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded -dqqua038 quantize -0.5 1e+0 -> -0 Inexact Rounded -dqqua039 quantize -0.5 1e-1 -> -0.5 -dqqua040 quantize -0.5 1e-2 -> -0.50 -dqqua041 quantize -0.5 1e-3 -> -0.500 -dqqua042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded -dqqua043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded -dqqua044 quantize -0.9 1e+0 -> -1 Inexact Rounded -dqqua045 quantize -0.9 1e-1 -> -0.9 -dqqua046 quantize -0.9 1e-2 -> -0.90 -dqqua047 quantize -0.9 1e-3 -> -0.900 - --- examples from Specification -dqqua060 quantize 2.17 0.001 -> 2.170 -dqqua061 quantize 2.17 0.01 -> 2.17 -dqqua062 quantize 2.17 0.1 -> 2.2 Inexact Rounded -dqqua063 quantize 2.17 1e+0 -> 2 Inexact Rounded -dqqua064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded -dqqua065 quantize -Inf Inf -> -Infinity -dqqua066 quantize 2 Inf -> NaN Invalid_operation -dqqua067 quantize -0.1 1 -> -0 Inexact Rounded -dqqua068 quantize -0 1e+5 -> -0E+5 -dqqua069 quantize +123451234567899876543216789012345.6 1e-2 -> NaN Invalid_operation -dqqua070 quantize -987651234567899876543214335236450.6 1e-2 -> NaN Invalid_operation -dqqua071 quantize 217 1e-1 -> 217.0 -dqqua072 quantize 217 1e+0 -> 217 -dqqua073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded -dqqua074 quantize 217 1e+2 -> 2E+2 Inexact Rounded - --- general tests .. -dqqua089 quantize 12 1e+4 -> 0E+4 Inexact Rounded -dqqua090 quantize 12 1e+3 -> 0E+3 Inexact Rounded -dqqua091 quantize 12 1e+2 -> 0E+2 Inexact Rounded -dqqua092 quantize 12 1e+1 -> 1E+1 Inexact Rounded -dqqua093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded -dqqua094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded -dqqua095 quantize 1.2345 1e-6 -> 1.234500 -dqqua096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded -dqqua097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded -dqqua098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded -dqqua099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded -dqqua100 quantize 92 1e+2 -> 1E+2 Inexact Rounded - -dqqua101 quantize -1 1e0 -> -1 -dqqua102 quantize -1 1e-1 -> -1.0 -dqqua103 quantize -1 1e-2 -> -1.00 -dqqua104 quantize 0 1e0 -> 0 -dqqua105 quantize 0 1e-1 -> 0.0 -dqqua106 quantize 0 1e-2 -> 0.00 -dqqua107 quantize 0.00 1e0 -> 0 -dqqua108 quantize 0 1e+1 -> 0E+1 -dqqua109 quantize 0 1e+2 -> 0E+2 -dqqua110 quantize +1 1e0 -> 1 -dqqua111 quantize +1 1e-1 -> 1.0 -dqqua112 quantize +1 1e-2 -> 1.00 - -dqqua120 quantize 1.04 1e-3 -> 1.040 -dqqua121 quantize 1.04 1e-2 -> 1.04 -dqqua122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded -dqqua123 quantize 1.04 1e0 -> 1 Inexact Rounded -dqqua124 quantize 1.05 1e-3 -> 1.050 -dqqua125 quantize 1.05 1e-2 -> 1.05 -dqqua126 quantize 1.05 1e-1 -> 1.0 Inexact Rounded -dqqua131 quantize 1.05 1e0 -> 1 Inexact Rounded -dqqua132 quantize 1.06 1e-3 -> 1.060 -dqqua133 quantize 1.06 1e-2 -> 1.06 -dqqua134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded -dqqua135 quantize 1.06 1e0 -> 1 Inexact Rounded - -dqqua140 quantize -10 1e-2 -> -10.00 -dqqua141 quantize +1 1e-2 -> 1.00 -dqqua142 quantize +10 1e-2 -> 10.00 -dqqua143 quantize 1E+37 1e-2 -> NaN Invalid_operation -dqqua144 quantize 1E-37 1e-2 -> 0.00 Inexact Rounded -dqqua145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded -dqqua146 quantize 1E-2 1e-2 -> 0.01 -dqqua147 quantize 1E-1 1e-2 -> 0.10 -dqqua148 quantize 0E-37 1e-2 -> 0.00 - -dqqua150 quantize 1.0600 1e-5 -> 1.06000 -dqqua151 quantize 1.0600 1e-4 -> 1.0600 -dqqua152 quantize 1.0600 1e-3 -> 1.060 Rounded -dqqua153 quantize 1.0600 1e-2 -> 1.06 Rounded -dqqua154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded -dqqua155 quantize 1.0600 1e0 -> 1 Inexact Rounded - --- a couple where rounding was different in base tests -rounding: half_up -dqqua157 quantize -0.5 1e+0 -> -1 Inexact Rounded -dqqua158 quantize 1.05 1e-1 -> 1.1 Inexact Rounded -dqqua159 quantize 1.06 1e0 -> 1 Inexact Rounded -rounding: half_even - --- base tests with non-1 coefficients -dqqua161 quantize 0 -9e0 -> 0 -dqqua162 quantize 1 -7e0 -> 1 -dqqua163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded -dqqua165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded -dqqua166 quantize 0.1 2e0 -> 0 Inexact Rounded -dqqua167 quantize 0.1 3e-1 -> 0.1 -dqqua168 quantize 0.1 44e-2 -> 0.10 -dqqua169 quantize 0.1 555e-3 -> 0.100 -dqqua170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded -dqqua171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded -dqqua172 quantize 0.9 -88e+0 -> 1 Inexact Rounded -dqqua173 quantize 0.9 -9e-1 -> 0.9 -dqqua174 quantize 0.9 0e-2 -> 0.90 -dqqua175 quantize 0.9 1.1e-3 -> 0.9000 --- negatives -dqqua181 quantize -0 1.1e0 -> -0.0 -dqqua182 quantize -1 -1e0 -> -1 -dqqua183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded -dqqua185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded -dqqua186 quantize -0.1 71e0 -> -0 Inexact Rounded -dqqua187 quantize -0.1 -91e-1 -> -0.1 -dqqua188 quantize -0.1 -.1e-2 -> -0.100 -dqqua189 quantize -0.1 -1e-3 -> -0.100 -dqqua190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded -dqqua191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded -dqqua192 quantize -0.9 -10e+0 -> -1 Inexact Rounded -dqqua193 quantize -0.9 100e-1 -> -0.9 -dqqua194 quantize -0.9 999e-2 -> -0.90 - --- +ve exponents .. -dqqua201 quantize -1 1e+0 -> -1 -dqqua202 quantize -1 1e+1 -> -0E+1 Inexact Rounded -dqqua203 quantize -1 1e+2 -> -0E+2 Inexact Rounded -dqqua204 quantize 0 1e+0 -> 0 -dqqua205 quantize 0 1e+1 -> 0E+1 -dqqua206 quantize 0 1e+2 -> 0E+2 -dqqua207 quantize +1 1e+0 -> 1 -dqqua208 quantize +1 1e+1 -> 0E+1 Inexact Rounded -dqqua209 quantize +1 1e+2 -> 0E+2 Inexact Rounded - -dqqua220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded -dqqua221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded -dqqua222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded -dqqua223 quantize 1.04 1e+0 -> 1 Inexact Rounded -dqqua224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -dqqua225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -dqqua226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -dqqua227 quantize 1.05 1e+0 -> 1 Inexact Rounded -dqqua228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -dqqua229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -dqqua230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -dqqua231 quantize 1.05 1e+0 -> 1 Inexact Rounded -dqqua232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded -dqqua233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded -dqqua234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded -dqqua235 quantize 1.06 1e+0 -> 1 Inexact Rounded - -dqqua240 quantize -10 1e+1 -> -1E+1 Rounded -dqqua241 quantize +1 1e+1 -> 0E+1 Inexact Rounded -dqqua242 quantize +10 1e+1 -> 1E+1 Rounded -dqqua243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1 -dqqua244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1 -dqqua245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1 -dqqua246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1 -dqqua247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1 -dqqua248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1 -dqqua249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1 -dqqua250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1 -dqqua251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1 --- next one tries to add 9 zeros -dqqua252 quantize 1E+37 1e+1 -> NaN Invalid_operation -dqqua253 quantize 1E-37 1e+1 -> 0E+1 Inexact Rounded -dqqua254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded -dqqua255 quantize 0E-37 1e+1 -> 0E+1 -dqqua256 quantize -0E-37 1e+1 -> -0E+1 -dqqua257 quantize -0E-1 1e+1 -> -0E+1 -dqqua258 quantize -0 1e+1 -> -0E+1 -dqqua259 quantize -0E+1 1e+1 -> -0E+1 - -dqqua260 quantize -10 1e+2 -> -0E+2 Inexact Rounded -dqqua261 quantize +1 1e+2 -> 0E+2 Inexact Rounded -dqqua262 quantize +10 1e+2 -> 0E+2 Inexact Rounded -dqqua263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded -dqqua264 quantize 1E+2 1e+2 -> 1E+2 -dqqua265 quantize 1E+3 1e+2 -> 1.0E+3 -dqqua266 quantize 1E+4 1e+2 -> 1.00E+4 -dqqua267 quantize 1E+5 1e+2 -> 1.000E+5 -dqqua268 quantize 1E+6 1e+2 -> 1.0000E+6 -dqqua269 quantize 1E+7 1e+2 -> 1.00000E+7 -dqqua270 quantize 1E+8 1e+2 -> 1.000000E+8 -dqqua271 quantize 1E+9 1e+2 -> 1.0000000E+9 -dqqua272 quantize 1E+10 1e+2 -> 1.00000000E+10 -dqqua273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded -dqqua274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded -dqqua275 quantize 0E-10 1e+2 -> 0E+2 - -dqqua280 quantize -10 1e+3 -> -0E+3 Inexact Rounded -dqqua281 quantize +1 1e+3 -> 0E+3 Inexact Rounded -dqqua282 quantize +10 1e+3 -> 0E+3 Inexact Rounded -dqqua283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded -dqqua284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded -dqqua285 quantize 1E+3 1e+3 -> 1E+3 -dqqua286 quantize 1E+4 1e+3 -> 1.0E+4 -dqqua287 quantize 1E+5 1e+3 -> 1.00E+5 -dqqua288 quantize 1E+6 1e+3 -> 1.000E+6 -dqqua289 quantize 1E+7 1e+3 -> 1.0000E+7 -dqqua290 quantize 1E+8 1e+3 -> 1.00000E+8 -dqqua291 quantize 1E+9 1e+3 -> 1.000000E+9 -dqqua292 quantize 1E+10 1e+3 -> 1.0000000E+10 -dqqua293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded -dqqua294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded -dqqua295 quantize 0E-10 1e+3 -> 0E+3 - --- round up from below [sign wrong in JIT compiler once] -dqqua300 quantize 0.0078 1e-5 -> 0.00780 -dqqua301 quantize 0.0078 1e-4 -> 0.0078 -dqqua302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded -dqqua303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded -dqqua304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded -dqqua305 quantize 0.0078 1e0 -> 0 Inexact Rounded -dqqua306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded -dqqua307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded - -dqqua310 quantize -0.0078 1e-5 -> -0.00780 -dqqua311 quantize -0.0078 1e-4 -> -0.0078 -dqqua312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded -dqqua313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded -dqqua314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded -dqqua315 quantize -0.0078 1e0 -> -0 Inexact Rounded -dqqua316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded -dqqua317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded - -dqqua320 quantize 0.078 1e-5 -> 0.07800 -dqqua321 quantize 0.078 1e-4 -> 0.0780 -dqqua322 quantize 0.078 1e-3 -> 0.078 -dqqua323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded -dqqua324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded -dqqua325 quantize 0.078 1e0 -> 0 Inexact Rounded -dqqua326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded -dqqua327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded - -dqqua330 quantize -0.078 1e-5 -> -0.07800 -dqqua331 quantize -0.078 1e-4 -> -0.0780 -dqqua332 quantize -0.078 1e-3 -> -0.078 -dqqua333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded -dqqua334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded -dqqua335 quantize -0.078 1e0 -> -0 Inexact Rounded -dqqua336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded -dqqua337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded - -dqqua340 quantize 0.78 1e-5 -> 0.78000 -dqqua341 quantize 0.78 1e-4 -> 0.7800 -dqqua342 quantize 0.78 1e-3 -> 0.780 -dqqua343 quantize 0.78 1e-2 -> 0.78 -dqqua344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded -dqqua345 quantize 0.78 1e0 -> 1 Inexact Rounded -dqqua346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded -dqqua347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded - -dqqua350 quantize -0.78 1e-5 -> -0.78000 -dqqua351 quantize -0.78 1e-4 -> -0.7800 -dqqua352 quantize -0.78 1e-3 -> -0.780 -dqqua353 quantize -0.78 1e-2 -> -0.78 -dqqua354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded -dqqua355 quantize -0.78 1e0 -> -1 Inexact Rounded -dqqua356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded -dqqua357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded - -dqqua360 quantize 7.8 1e-5 -> 7.80000 -dqqua361 quantize 7.8 1e-4 -> 7.8000 -dqqua362 quantize 7.8 1e-3 -> 7.800 -dqqua363 quantize 7.8 1e-2 -> 7.80 -dqqua364 quantize 7.8 1e-1 -> 7.8 -dqqua365 quantize 7.8 1e0 -> 8 Inexact Rounded -dqqua366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded -dqqua367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded -dqqua368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded - -dqqua370 quantize -7.8 1e-5 -> -7.80000 -dqqua371 quantize -7.8 1e-4 -> -7.8000 -dqqua372 quantize -7.8 1e-3 -> -7.800 -dqqua373 quantize -7.8 1e-2 -> -7.80 -dqqua374 quantize -7.8 1e-1 -> -7.8 -dqqua375 quantize -7.8 1e0 -> -8 Inexact Rounded -dqqua376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded -dqqua377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded -dqqua378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded - --- some individuals -dqqua380 quantize 1122334455667788991234567352364.506 1e-2 -> 1122334455667788991234567352364.51 Inexact Rounded -dqqua381 quantize 11223344556677889912345673523645.06 1e-2 -> 11223344556677889912345673523645.06 -dqqua382 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation -dqqua383 quantize 1122334455667788991234567352364506 1e-2 -> NaN Invalid_operation -dqqua384 quantize -1122334455667788991234567352364.506 1e-2 -> -1122334455667788991234567352364.51 Inexact Rounded -dqqua385 quantize -11223344556677889912345673523645.06 1e-2 -> -11223344556677889912345673523645.06 -dqqua386 quantize -112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation -dqqua387 quantize -1122334455667788991234567352364506 1e-2 -> NaN Invalid_operation - -rounding: down -dqqua389 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation --- ? should that one instead have been: --- dqqua389 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation -rounding: half_up - --- and a few more from e-mail discussions -dqqua391 quantize 11223344556677889912345678912.34567 1e-3 -> 11223344556677889912345678912.346 Inexact Rounded -dqqua392 quantize 112233445566778899123456789123.4567 1e-3 -> 112233445566778899123456789123.457 Inexact Rounded -dqqua393 quantize 1122334455667788991234567891234567. 1e-3 -> NaN Invalid_operation - --- some 9999 round-up cases -dqqua400 quantize 9.999 1e-5 -> 9.99900 -dqqua401 quantize 9.999 1e-4 -> 9.9990 -dqqua402 quantize 9.999 1e-3 -> 9.999 -dqqua403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded -dqqua404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded -dqqua405 quantize 9.999 1e0 -> 10 Inexact Rounded -dqqua406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded -dqqua407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded - -dqqua410 quantize 0.999 1e-5 -> 0.99900 -dqqua411 quantize 0.999 1e-4 -> 0.9990 -dqqua412 quantize 0.999 1e-3 -> 0.999 -dqqua413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded -dqqua414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded -dqqua415 quantize 0.999 1e0 -> 1 Inexact Rounded -dqqua416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded - -dqqua420 quantize 0.0999 1e-5 -> 0.09990 -dqqua421 quantize 0.0999 1e-4 -> 0.0999 -dqqua422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded -dqqua423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded -dqqua424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded -dqqua425 quantize 0.0999 1e0 -> 0 Inexact Rounded -dqqua426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded - -dqqua430 quantize 0.00999 1e-5 -> 0.00999 -dqqua431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded -dqqua432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded -dqqua433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded -dqqua434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded -dqqua435 quantize 0.00999 1e0 -> 0 Inexact Rounded -dqqua436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded - -dqqua440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded -dqqua441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded -dqqua442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded -dqqua443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded -dqqua444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded -dqqua445 quantize 0.000999 1e0 -> 0 Inexact Rounded -dqqua446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded - -dqqua1001 quantize 0.000 0.001 -> 0.000 -dqqua1002 quantize 0.001 0.001 -> 0.001 -dqqua1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded -dqqua1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded -dqqua1005 quantize 0.501 0.001 -> 0.501 -dqqua1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded -dqqua1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded -dqqua1008 quantize 0.999 0.001 -> 0.999 - -dqqua481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -dqqua482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -dqqua483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -dqqua484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded -dqqua485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded -dqqua486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded --- a potential double-round -dqqua487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded -dqqua488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded - -dqqua491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -dqqua492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -dqqua493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -dqqua494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded -dqqua495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded -dqqua496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded -dqqua497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded -dqqua498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded - --- Zeros -dqqua500 quantize 0 1e1 -> 0E+1 -dqqua501 quantize 0 1e0 -> 0 -dqqua502 quantize 0 1e-1 -> 0.0 -dqqua503 quantize 0.0 1e-1 -> 0.0 -dqqua504 quantize 0.0 1e0 -> 0 -dqqua505 quantize 0.0 1e+1 -> 0E+1 -dqqua506 quantize 0E+1 1e-1 -> 0.0 -dqqua507 quantize 0E+1 1e0 -> 0 -dqqua508 quantize 0E+1 1e+1 -> 0E+1 -dqqua509 quantize -0 1e1 -> -0E+1 -dqqua510 quantize -0 1e0 -> -0 -dqqua511 quantize -0 1e-1 -> -0.0 -dqqua512 quantize -0.0 1e-1 -> -0.0 -dqqua513 quantize -0.0 1e0 -> -0 -dqqua514 quantize -0.0 1e+1 -> -0E+1 -dqqua515 quantize -0E+1 1e-1 -> -0.0 -dqqua516 quantize -0E+1 1e0 -> -0 -dqqua517 quantize -0E+1 1e+1 -> -0E+1 --- #519 here once a problem -dqqua518 quantize 0 0E-3 -> 0.000 -dqqua519 quantize 0 0E-33 -> 0E-33 -dqqua520 quantize 0.00000000000000000000000000000000 0E-33 -> 0E-33 -dqqua521 quantize 0.000000000000000000000000000000000 0E-33 -> 0E-33 - --- Some non-zeros with lots of padding on the right -dqqua523 quantize 1 0E-33 -> 1.000000000000000000000000000000000 -dqqua524 quantize 12 0E-32 -> 12.00000000000000000000000000000000 -dqqua525 quantize 123 0E-31 -> 123.0000000000000000000000000000000 -dqqua526 quantize 123 0E-32 -> NaN Invalid_operation -dqqua527 quantize 123.4 0E-31 -> 123.4000000000000000000000000000000 -dqqua528 quantize 123.4 0E-32 -> NaN Invalid_operation - --- Suspicious RHS values -dqqua530 quantize 1.234 1e359 -> 0E+359 Inexact Rounded -dqqua531 quantize 123.456 1e359 -> 0E+359 Inexact Rounded -dqqua532 quantize 1.234 1e359 -> 0E+359 Inexact Rounded -dqqua533 quantize 123.456 1e359 -> 0E+359 Inexact Rounded --- next four are "won't fit" overflows -dqqua536 quantize 1.234 1e-299 -> NaN Invalid_operation -dqqua537 quantize 123.456 1e-299 -> NaN Invalid_operation -dqqua538 quantize 1.234 1e-299 -> NaN Invalid_operation -dqqua539 quantize 123.456 1e-299 -> NaN Invalid_operation - -dqqua542 quantize 1.234E+299 1e299 -> 1E+299 Inexact Rounded -dqqua543 quantize 1.234E+298 1e299 -> 0E+299 Inexact Rounded -dqqua544 quantize 1.234 1e299 -> 0E+299 Inexact Rounded -dqqua547 quantize 0 1e-299 -> 0E-299 --- next two are "won't fit" overflows -dqqua548 quantize 1.234 1e-299 -> NaN Invalid_operation -dqqua549 quantize 1.234 1e-300 -> NaN Invalid_operation --- [more below] - --- Specials -dqqua580 quantize Inf -Inf -> Infinity -dqqua581 quantize Inf 1e-299 -> NaN Invalid_operation -dqqua582 quantize Inf 1e-1 -> NaN Invalid_operation -dqqua583 quantize Inf 1e0 -> NaN Invalid_operation -dqqua584 quantize Inf 1e1 -> NaN Invalid_operation -dqqua585 quantize Inf 1e299 -> NaN Invalid_operation -dqqua586 quantize Inf Inf -> Infinity -dqqua587 quantize -1000 Inf -> NaN Invalid_operation -dqqua588 quantize -Inf Inf -> -Infinity -dqqua589 quantize -1 Inf -> NaN Invalid_operation -dqqua590 quantize 0 Inf -> NaN Invalid_operation -dqqua591 quantize 1 Inf -> NaN Invalid_operation -dqqua592 quantize 1000 Inf -> NaN Invalid_operation -dqqua593 quantize Inf Inf -> Infinity -dqqua594 quantize Inf 1e-0 -> NaN Invalid_operation -dqqua595 quantize -0 Inf -> NaN Invalid_operation - -dqqua600 quantize -Inf -Inf -> -Infinity -dqqua601 quantize -Inf 1e-299 -> NaN Invalid_operation -dqqua602 quantize -Inf 1e-1 -> NaN Invalid_operation -dqqua603 quantize -Inf 1e0 -> NaN Invalid_operation -dqqua604 quantize -Inf 1e1 -> NaN Invalid_operation -dqqua605 quantize -Inf 1e299 -> NaN Invalid_operation -dqqua606 quantize -Inf Inf -> -Infinity -dqqua607 quantize -1000 Inf -> NaN Invalid_operation -dqqua608 quantize -Inf -Inf -> -Infinity -dqqua609 quantize -1 -Inf -> NaN Invalid_operation -dqqua610 quantize 0 -Inf -> NaN Invalid_operation -dqqua611 quantize 1 -Inf -> NaN Invalid_operation -dqqua612 quantize 1000 -Inf -> NaN Invalid_operation -dqqua613 quantize Inf -Inf -> Infinity -dqqua614 quantize -Inf 1e-0 -> NaN Invalid_operation -dqqua615 quantize -0 -Inf -> NaN Invalid_operation - -dqqua621 quantize NaN -Inf -> NaN -dqqua622 quantize NaN 1e-299 -> NaN -dqqua623 quantize NaN 1e-1 -> NaN -dqqua624 quantize NaN 1e0 -> NaN -dqqua625 quantize NaN 1e1 -> NaN -dqqua626 quantize NaN 1e299 -> NaN -dqqua627 quantize NaN Inf -> NaN -dqqua628 quantize NaN NaN -> NaN -dqqua629 quantize -Inf NaN -> NaN -dqqua630 quantize -1000 NaN -> NaN -dqqua631 quantize -1 NaN -> NaN -dqqua632 quantize 0 NaN -> NaN -dqqua633 quantize 1 NaN -> NaN -dqqua634 quantize 1000 NaN -> NaN -dqqua635 quantize Inf NaN -> NaN -dqqua636 quantize NaN 1e-0 -> NaN -dqqua637 quantize -0 NaN -> NaN - -dqqua641 quantize sNaN -Inf -> NaN Invalid_operation -dqqua642 quantize sNaN 1e-299 -> NaN Invalid_operation -dqqua643 quantize sNaN 1e-1 -> NaN Invalid_operation -dqqua644 quantize sNaN 1e0 -> NaN Invalid_operation -dqqua645 quantize sNaN 1e1 -> NaN Invalid_operation -dqqua646 quantize sNaN 1e299 -> NaN Invalid_operation -dqqua647 quantize sNaN NaN -> NaN Invalid_operation -dqqua648 quantize sNaN sNaN -> NaN Invalid_operation -dqqua649 quantize NaN sNaN -> NaN Invalid_operation -dqqua650 quantize -Inf sNaN -> NaN Invalid_operation -dqqua651 quantize -1000 sNaN -> NaN Invalid_operation -dqqua652 quantize -1 sNaN -> NaN Invalid_operation -dqqua653 quantize 0 sNaN -> NaN Invalid_operation -dqqua654 quantize 1 sNaN -> NaN Invalid_operation -dqqua655 quantize 1000 sNaN -> NaN Invalid_operation -dqqua656 quantize Inf sNaN -> NaN Invalid_operation -dqqua657 quantize NaN sNaN -> NaN Invalid_operation -dqqua658 quantize sNaN 1e-0 -> NaN Invalid_operation -dqqua659 quantize -0 sNaN -> NaN Invalid_operation - --- propagating NaNs -dqqua661 quantize NaN9 -Inf -> NaN9 -dqqua662 quantize NaN8 919 -> NaN8 -dqqua663 quantize NaN71 Inf -> NaN71 -dqqua664 quantize NaN6 NaN5 -> NaN6 -dqqua665 quantize -Inf NaN4 -> NaN4 -dqqua666 quantize -919 NaN31 -> NaN31 -dqqua667 quantize Inf NaN2 -> NaN2 - -dqqua671 quantize sNaN99 -Inf -> NaN99 Invalid_operation -dqqua672 quantize sNaN98 -11 -> NaN98 Invalid_operation -dqqua673 quantize sNaN97 NaN -> NaN97 Invalid_operation -dqqua674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation -dqqua675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation -dqqua676 quantize -Inf sNaN92 -> NaN92 Invalid_operation -dqqua677 quantize 088 sNaN91 -> NaN91 Invalid_operation -dqqua678 quantize Inf sNaN90 -> NaN90 Invalid_operation -dqqua679 quantize NaN sNaN88 -> NaN88 Invalid_operation - -dqqua681 quantize -NaN9 -Inf -> -NaN9 -dqqua682 quantize -NaN8 919 -> -NaN8 -dqqua683 quantize -NaN71 Inf -> -NaN71 -dqqua684 quantize -NaN6 -NaN5 -> -NaN6 -dqqua685 quantize -Inf -NaN4 -> -NaN4 -dqqua686 quantize -919 -NaN31 -> -NaN31 -dqqua687 quantize Inf -NaN2 -> -NaN2 - -dqqua691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation -dqqua692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation -dqqua693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation -dqqua694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation -dqqua695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation -dqqua696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation -dqqua697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation -dqqua698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation -dqqua699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation - --- subnormals and underflow -dqqua710 quantize 1.00E-6143 1e-6143 -> 1E-6143 Rounded -dqqua711 quantize 0.1E-6143 2e-6144 -> 1E-6144 Subnormal -dqqua712 quantize 0.10E-6143 3e-6144 -> 1E-6144 Subnormal Rounded -dqqua713 quantize 0.100E-6143 4e-6144 -> 1E-6144 Subnormal Rounded -dqqua714 quantize 0.01E-6143 5e-6145 -> 1E-6145 Subnormal --- next is rounded to Emin -dqqua715 quantize 0.999E-6143 1e-6143 -> 1E-6143 Inexact Rounded -dqqua716 quantize 0.099E-6143 10e-6144 -> 1E-6144 Inexact Rounded Subnormal - -dqqua717 quantize 0.009E-6143 1e-6145 -> 1E-6145 Inexact Rounded Subnormal -dqqua718 quantize 0.001E-6143 1e-6145 -> 0E-6145 Inexact Rounded -dqqua719 quantize 0.0009E-6143 1e-6145 -> 0E-6145 Inexact Rounded -dqqua720 quantize 0.0001E-6143 1e-6145 -> 0E-6145 Inexact Rounded - -dqqua730 quantize -1.00E-6143 1e-6143 -> -1E-6143 Rounded -dqqua731 quantize -0.1E-6143 1e-6143 -> -0E-6143 Rounded Inexact -dqqua732 quantize -0.10E-6143 1e-6143 -> -0E-6143 Rounded Inexact -dqqua733 quantize -0.100E-6143 1e-6143 -> -0E-6143 Rounded Inexact -dqqua734 quantize -0.01E-6143 1e-6143 -> -0E-6143 Inexact Rounded --- next is rounded to Emin -dqqua735 quantize -0.999E-6143 90e-6143 -> -1E-6143 Inexact Rounded -dqqua736 quantize -0.099E-6143 -1e-6143 -> -0E-6143 Inexact Rounded -dqqua737 quantize -0.009E-6143 -1e-6143 -> -0E-6143 Inexact Rounded -dqqua738 quantize -0.001E-6143 -0e-6143 -> -0E-6143 Inexact Rounded -dqqua739 quantize -0.0001E-6143 0e-6143 -> -0E-6143 Inexact Rounded - -dqqua740 quantize -1.00E-6143 1e-6144 -> -1.0E-6143 Rounded -dqqua741 quantize -0.1E-6143 1e-6144 -> -1E-6144 Subnormal -dqqua742 quantize -0.10E-6143 1e-6144 -> -1E-6144 Subnormal Rounded -dqqua743 quantize -0.100E-6143 1e-6144 -> -1E-6144 Subnormal Rounded -dqqua744 quantize -0.01E-6143 1e-6144 -> -0E-6144 Inexact Rounded --- next is rounded to Emin -dqqua745 quantize -0.999E-6143 1e-6144 -> -1.0E-6143 Inexact Rounded -dqqua746 quantize -0.099E-6143 1e-6144 -> -1E-6144 Inexact Rounded Subnormal -dqqua747 quantize -0.009E-6143 1e-6144 -> -0E-6144 Inexact Rounded -dqqua748 quantize -0.001E-6143 1e-6144 -> -0E-6144 Inexact Rounded -dqqua749 quantize -0.0001E-6143 1e-6144 -> -0E-6144 Inexact Rounded - -dqqua750 quantize -1.00E-6143 1e-6145 -> -1.00E-6143 -dqqua751 quantize -0.1E-6143 1e-6145 -> -1.0E-6144 Subnormal -dqqua752 quantize -0.10E-6143 1e-6145 -> -1.0E-6144 Subnormal -dqqua753 quantize -0.100E-6143 1e-6145 -> -1.0E-6144 Subnormal Rounded -dqqua754 quantize -0.01E-6143 1e-6145 -> -1E-6145 Subnormal --- next is rounded to Emin -dqqua755 quantize -0.999E-6143 1e-6145 -> -1.00E-6143 Inexact Rounded -dqqua756 quantize -0.099E-6143 1e-6145 -> -1.0E-6144 Inexact Rounded Subnormal -dqqua757 quantize -0.009E-6143 1e-6145 -> -1E-6145 Inexact Rounded Subnormal -dqqua758 quantize -0.001E-6143 1e-6145 -> -0E-6145 Inexact Rounded -dqqua759 quantize -0.0001E-6143 1e-6145 -> -0E-6145 Inexact Rounded - -dqqua760 quantize -1.00E-6143 1e-6146 -> -1.000E-6143 -dqqua761 quantize -0.1E-6143 1e-6146 -> -1.00E-6144 Subnormal -dqqua762 quantize -0.10E-6143 1e-6146 -> -1.00E-6144 Subnormal -dqqua763 quantize -0.100E-6143 1e-6146 -> -1.00E-6144 Subnormal -dqqua764 quantize -0.01E-6143 1e-6146 -> -1.0E-6145 Subnormal -dqqua765 quantize -0.999E-6143 1e-6146 -> -9.99E-6144 Subnormal -dqqua766 quantize -0.099E-6143 1e-6146 -> -9.9E-6145 Subnormal -dqqua767 quantize -0.009E-6143 1e-6146 -> -9E-6146 Subnormal -dqqua768 quantize -0.001E-6143 1e-6146 -> -1E-6146 Subnormal -dqqua769 quantize -0.0001E-6143 1e-6146 -> -0E-6146 Inexact Rounded - --- More from Fung Lee --- the next four would appear to be in error, but they are misleading (the --- operands will be clamped to a lower exponent) and so are omitted --- dqqua1021 quantize 8.666666666666000E+6144 1.000000000000000E+6144 -> 8.666666666666000000000000000000000E+6144 Clamped --- dqqua1022 quantize -8.666666666666000E+6144 1.000000000000000E+6144 -> -8.666666666666000000000000000000000E+6144 Clamped --- dqqua1027 quantize 8.666666666666000E+323 1E+31 -> NaN Invalid_operation --- dqqua1030 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded - --- Int and uInt32 edge values for testing conversions -dqqua1040 quantize -2147483646 0 -> -2147483646 -dqqua1041 quantize -2147483647 0 -> -2147483647 -dqqua1042 quantize -2147483648 0 -> -2147483648 -dqqua1043 quantize -2147483649 0 -> -2147483649 -dqqua1044 quantize 2147483646 0 -> 2147483646 -dqqua1045 quantize 2147483647 0 -> 2147483647 -dqqua1046 quantize 2147483648 0 -> 2147483648 -dqqua1047 quantize 2147483649 0 -> 2147483649 -dqqua1048 quantize 4294967294 0 -> 4294967294 -dqqua1049 quantize 4294967295 0 -> 4294967295 -dqqua1050 quantize 4294967296 0 -> 4294967296 -dqqua1051 quantize 4294967297 0 -> 4294967297 - --- Rounding swathe -rounding: half_even -dqqua1100 quantize 1.2300 1.00 -> 1.23 Rounded -dqqua1101 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -dqqua1102 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -dqqua1103 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -dqqua1104 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -dqqua1105 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -dqqua1106 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -dqqua1107 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -dqqua1108 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -dqqua1109 quantize 1.2399 1.00 -> 1.24 Inexact Rounded - -rounding: half_up -dqqua1200 quantize 1.2300 1.00 -> 1.23 Rounded -dqqua1201 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -dqqua1202 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -dqqua1203 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -dqqua1204 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -dqqua1205 quantize 1.2450 1.00 -> 1.25 Inexact Rounded -dqqua1206 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -dqqua1207 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -dqqua1208 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -dqqua1209 quantize 1.2399 1.00 -> 1.24 Inexact Rounded - -rounding: half_down -dqqua1300 quantize 1.2300 1.00 -> 1.23 Rounded -dqqua1301 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -dqqua1302 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -dqqua1303 quantize 1.2350 1.00 -> 1.23 Inexact Rounded -dqqua1304 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -dqqua1305 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -dqqua1306 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -dqqua1307 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -dqqua1308 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -dqqua1309 quantize 1.2399 1.00 -> 1.24 Inexact Rounded - -rounding: up -dqqua1400 quantize 1.2300 1.00 -> 1.23 Rounded -dqqua1401 quantize 1.2301 1.00 -> 1.24 Inexact Rounded -dqqua1402 quantize 1.2310 1.00 -> 1.24 Inexact Rounded -dqqua1403 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -dqqua1404 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -dqqua1405 quantize 1.2450 1.00 -> 1.25 Inexact Rounded -dqqua1406 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -dqqua1407 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -dqqua1408 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -dqqua1409 quantize 1.2399 1.00 -> 1.24 Inexact Rounded -dqqua1411 quantize -1.2399 1.00 -> -1.24 Inexact Rounded - -rounding: down -dqqua1500 quantize 1.2300 1.00 -> 1.23 Rounded -dqqua1501 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -dqqua1502 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -dqqua1503 quantize 1.2350 1.00 -> 1.23 Inexact Rounded -dqqua1504 quantize 1.2351 1.00 -> 1.23 Inexact Rounded -dqqua1505 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -dqqua1506 quantize 1.2451 1.00 -> 1.24 Inexact Rounded -dqqua1507 quantize 1.2360 1.00 -> 1.23 Inexact Rounded -dqqua1508 quantize 1.2370 1.00 -> 1.23 Inexact Rounded -dqqua1509 quantize 1.2399 1.00 -> 1.23 Inexact Rounded -dqqua1511 quantize -1.2399 1.00 -> -1.23 Inexact Rounded - -rounding: ceiling -dqqua1600 quantize 1.2300 1.00 -> 1.23 Rounded -dqqua1601 quantize 1.2301 1.00 -> 1.24 Inexact Rounded -dqqua1602 quantize 1.2310 1.00 -> 1.24 Inexact Rounded -dqqua1603 quantize 1.2350 1.00 -> 1.24 Inexact Rounded -dqqua1604 quantize 1.2351 1.00 -> 1.24 Inexact Rounded -dqqua1605 quantize 1.2450 1.00 -> 1.25 Inexact Rounded -dqqua1606 quantize 1.2451 1.00 -> 1.25 Inexact Rounded -dqqua1607 quantize 1.2360 1.00 -> 1.24 Inexact Rounded -dqqua1608 quantize 1.2370 1.00 -> 1.24 Inexact Rounded -dqqua1609 quantize 1.2399 1.00 -> 1.24 Inexact Rounded -dqqua1611 quantize -1.2399 1.00 -> -1.23 Inexact Rounded - -rounding: floor -dqqua1700 quantize 1.2300 1.00 -> 1.23 Rounded -dqqua1701 quantize 1.2301 1.00 -> 1.23 Inexact Rounded -dqqua1702 quantize 1.2310 1.00 -> 1.23 Inexact Rounded -dqqua1703 quantize 1.2350 1.00 -> 1.23 Inexact Rounded -dqqua1704 quantize 1.2351 1.00 -> 1.23 Inexact Rounded -dqqua1705 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -dqqua1706 quantize 1.2451 1.00 -> 1.24 Inexact Rounded -dqqua1707 quantize 1.2360 1.00 -> 1.23 Inexact Rounded -dqqua1708 quantize 1.2370 1.00 -> 1.23 Inexact Rounded -dqqua1709 quantize 1.2399 1.00 -> 1.23 Inexact Rounded -dqqua1711 quantize -1.2399 1.00 -> -1.24 Inexact Rounded - -rounding: 05up -dqqua1800 quantize 1.2000 1.00 -> 1.20 Rounded -dqqua1801 quantize 1.2001 1.00 -> 1.21 Inexact Rounded -dqqua1802 quantize 1.2010 1.00 -> 1.21 Inexact Rounded -dqqua1803 quantize 1.2050 1.00 -> 1.21 Inexact Rounded -dqqua1804 quantize 1.2051 1.00 -> 1.21 Inexact Rounded -dqqua1807 quantize 1.2060 1.00 -> 1.21 Inexact Rounded -dqqua1808 quantize 1.2070 1.00 -> 1.21 Inexact Rounded -dqqua1809 quantize 1.2099 1.00 -> 1.21 Inexact Rounded -dqqua1811 quantize -1.2099 1.00 -> -1.21 Inexact Rounded - -dqqua1900 quantize 1.2100 1.00 -> 1.21 Rounded -dqqua1901 quantize 1.2101 1.00 -> 1.21 Inexact Rounded -dqqua1902 quantize 1.2110 1.00 -> 1.21 Inexact Rounded -dqqua1903 quantize 1.2150 1.00 -> 1.21 Inexact Rounded -dqqua1904 quantize 1.2151 1.00 -> 1.21 Inexact Rounded -dqqua1907 quantize 1.2160 1.00 -> 1.21 Inexact Rounded -dqqua1908 quantize 1.2170 1.00 -> 1.21 Inexact Rounded -dqqua1909 quantize 1.2199 1.00 -> 1.21 Inexact Rounded -dqqua1911 quantize -1.2199 1.00 -> -1.21 Inexact Rounded - -dqqua2000 quantize 1.2400 1.00 -> 1.24 Rounded -dqqua2001 quantize 1.2401 1.00 -> 1.24 Inexact Rounded -dqqua2002 quantize 1.2410 1.00 -> 1.24 Inexact Rounded -dqqua2003 quantize 1.2450 1.00 -> 1.24 Inexact Rounded -dqqua2004 quantize 1.2451 1.00 -> 1.24 Inexact Rounded -dqqua2007 quantize 1.2460 1.00 -> 1.24 Inexact Rounded -dqqua2008 quantize 1.2470 1.00 -> 1.24 Inexact Rounded -dqqua2009 quantize 1.2499 1.00 -> 1.24 Inexact Rounded -dqqua2011 quantize -1.2499 1.00 -> -1.24 Inexact Rounded - -dqqua2100 quantize 1.2500 1.00 -> 1.25 Rounded -dqqua2101 quantize 1.2501 1.00 -> 1.26 Inexact Rounded -dqqua2102 quantize 1.2510 1.00 -> 1.26 Inexact Rounded -dqqua2103 quantize 1.2550 1.00 -> 1.26 Inexact Rounded -dqqua2104 quantize 1.2551 1.00 -> 1.26 Inexact Rounded -dqqua2107 quantize 1.2560 1.00 -> 1.26 Inexact Rounded -dqqua2108 quantize 1.2570 1.00 -> 1.26 Inexact Rounded -dqqua2109 quantize 1.2599 1.00 -> 1.26 Inexact Rounded -dqqua2111 quantize -1.2599 1.00 -> -1.26 Inexact Rounded - -dqqua2200 quantize 1.2600 1.00 -> 1.26 Rounded -dqqua2201 quantize 1.2601 1.00 -> 1.26 Inexact Rounded -dqqua2202 quantize 1.2610 1.00 -> 1.26 Inexact Rounded -dqqua2203 quantize 1.2650 1.00 -> 1.26 Inexact Rounded -dqqua2204 quantize 1.2651 1.00 -> 1.26 Inexact Rounded -dqqua2207 quantize 1.2660 1.00 -> 1.26 Inexact Rounded -dqqua2208 quantize 1.2670 1.00 -> 1.26 Inexact Rounded -dqqua2209 quantize 1.2699 1.00 -> 1.26 Inexact Rounded -dqqua2211 quantize -1.2699 1.00 -> -1.26 Inexact Rounded - -dqqua2300 quantize 1.2900 1.00 -> 1.29 Rounded -dqqua2301 quantize 1.2901 1.00 -> 1.29 Inexact Rounded -dqqua2302 quantize 1.2910 1.00 -> 1.29 Inexact Rounded -dqqua2303 quantize 1.2950 1.00 -> 1.29 Inexact Rounded -dqqua2304 quantize 1.2951 1.00 -> 1.29 Inexact Rounded -dqqua2307 quantize 1.2960 1.00 -> 1.29 Inexact Rounded -dqqua2308 quantize 1.2970 1.00 -> 1.29 Inexact Rounded -dqqua2309 quantize 1.2999 1.00 -> 1.29 Inexact Rounded -dqqua2311 quantize -1.2999 1.00 -> -1.29 Inexact Rounded - --- Null tests -dqqua998 quantize 10 # -> NaN Invalid_operation -dqqua999 quantize # 1e10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqReduce.decTest b/qdecimal/test/tc_full/dqReduce.decTest deleted file mode 100644 index ca0b91e..0000000 --- a/qdecimal/test/tc_full/dqReduce.decTest +++ /dev/null @@ -1,183 +0,0 @@ ------------------------------------------------------------------------- --- dqReduce.decTest -- remove trailing zeros from a decQuad -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- - -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqred001 reduce '1' -> '1' -dqred002 reduce '-1' -> '-1' -dqred003 reduce '1.00' -> '1' -dqred004 reduce '-1.00' -> '-1' -dqred005 reduce '0' -> '0' -dqred006 reduce '0.00' -> '0' -dqred007 reduce '00.0' -> '0' -dqred008 reduce '00.00' -> '0' -dqred009 reduce '00' -> '0' -dqred010 reduce '0E+1' -> '0' -dqred011 reduce '0E+5' -> '0' - -dqred012 reduce '-2' -> '-2' -dqred013 reduce '2' -> '2' -dqred014 reduce '-2.00' -> '-2' -dqred015 reduce '2.00' -> '2' -dqred016 reduce '-0' -> '-0' -dqred017 reduce '-0.00' -> '-0' -dqred018 reduce '-00.0' -> '-0' -dqred019 reduce '-00.00' -> '-0' -dqred020 reduce '-00' -> '-0' -dqred021 reduce '-0E+5' -> '-0' -dqred022 reduce '-0E+1' -> '-0' - -dqred030 reduce '+0.1' -> '0.1' -dqred031 reduce '-0.1' -> '-0.1' -dqred032 reduce '+0.01' -> '0.01' -dqred033 reduce '-0.01' -> '-0.01' -dqred034 reduce '+0.001' -> '0.001' -dqred035 reduce '-0.001' -> '-0.001' -dqred036 reduce '+0.000001' -> '0.000001' -dqred037 reduce '-0.000001' -> '-0.000001' -dqred038 reduce '+0.000000000001' -> '1E-12' -dqred039 reduce '-0.000000000001' -> '-1E-12' - -dqred041 reduce 1.1 -> 1.1 -dqred042 reduce 1.10 -> 1.1 -dqred043 reduce 1.100 -> 1.1 -dqred044 reduce 1.110 -> 1.11 -dqred045 reduce -1.1 -> -1.1 -dqred046 reduce -1.10 -> -1.1 -dqred047 reduce -1.100 -> -1.1 -dqred048 reduce -1.110 -> -1.11 -dqred049 reduce 9.9 -> 9.9 -dqred050 reduce 9.90 -> 9.9 -dqred051 reduce 9.900 -> 9.9 -dqred052 reduce 9.990 -> 9.99 -dqred053 reduce -9.9 -> -9.9 -dqred054 reduce -9.90 -> -9.9 -dqred055 reduce -9.900 -> -9.9 -dqred056 reduce -9.990 -> -9.99 - --- some trailing fractional zeros with zeros in units -dqred060 reduce 10.0 -> 1E+1 -dqred061 reduce 10.00 -> 1E+1 -dqred062 reduce 100.0 -> 1E+2 -dqred063 reduce 100.00 -> 1E+2 -dqred064 reduce 1.1000E+3 -> 1.1E+3 -dqred065 reduce 1.10000E+3 -> 1.1E+3 -dqred066 reduce -10.0 -> -1E+1 -dqred067 reduce -10.00 -> -1E+1 -dqred068 reduce -100.0 -> -1E+2 -dqred069 reduce -100.00 -> -1E+2 -dqred070 reduce -1.1000E+3 -> -1.1E+3 -dqred071 reduce -1.10000E+3 -> -1.1E+3 - --- some insignificant trailing zeros with positive exponent -dqred080 reduce 10E+1 -> 1E+2 -dqred081 reduce 100E+1 -> 1E+3 -dqred082 reduce 1.0E+2 -> 1E+2 -dqred083 reduce 1.0E+3 -> 1E+3 -dqred084 reduce 1.1E+3 -> 1.1E+3 -dqred085 reduce 1.00E+3 -> 1E+3 -dqred086 reduce 1.10E+3 -> 1.1E+3 -dqred087 reduce -10E+1 -> -1E+2 -dqred088 reduce -100E+1 -> -1E+3 -dqred089 reduce -1.0E+2 -> -1E+2 -dqred090 reduce -1.0E+3 -> -1E+3 -dqred091 reduce -1.1E+3 -> -1.1E+3 -dqred092 reduce -1.00E+3 -> -1E+3 -dqred093 reduce -1.10E+3 -> -1.1E+3 - --- some significant trailing zeros, were we to be trimming -dqred100 reduce 11 -> 11 -dqred101 reduce 10 -> 1E+1 -dqred102 reduce 10. -> 1E+1 -dqred103 reduce 1.1E+1 -> 11 -dqred104 reduce 1.0E+1 -> 1E+1 -dqred105 reduce 1.10E+2 -> 1.1E+2 -dqred106 reduce 1.00E+2 -> 1E+2 -dqred107 reduce 1.100E+3 -> 1.1E+3 -dqred108 reduce 1.000E+3 -> 1E+3 -dqred109 reduce 1.000000E+6 -> 1E+6 -dqred110 reduce -11 -> -11 -dqred111 reduce -10 -> -1E+1 -dqred112 reduce -10. -> -1E+1 -dqred113 reduce -1.1E+1 -> -11 -dqred114 reduce -1.0E+1 -> -1E+1 -dqred115 reduce -1.10E+2 -> -1.1E+2 -dqred116 reduce -1.00E+2 -> -1E+2 -dqred117 reduce -1.100E+3 -> -1.1E+3 -dqred118 reduce -1.000E+3 -> -1E+3 -dqred119 reduce -1.00000E+5 -> -1E+5 -dqred120 reduce -1.000000E+6 -> -1E+6 -dqred121 reduce -10.00000E+6 -> -1E+7 -dqred122 reduce -100.0000E+6 -> -1E+8 -dqred123 reduce -1000.000E+6 -> -1E+9 -dqred124 reduce -10000.00E+6 -> -1E+10 -dqred125 reduce -100000.0E+6 -> -1E+11 -dqred126 reduce -1000000.E+6 -> -1E+12 - --- examples from decArith -dqred140 reduce '2.1' -> '2.1' -dqred141 reduce '-2.0' -> '-2' -dqred142 reduce '1.200' -> '1.2' -dqred143 reduce '-120' -> '-1.2E+2' -dqred144 reduce '120.00' -> '1.2E+2' -dqred145 reduce '0.00' -> '0' - --- Nmax, Nmin, Ntiny --- note origami effect on some of these -dqred151 reduce 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 -dqred152 reduce 9.999999999999999999999999000000000E+6140 -> 9.99999999999999999999999900000E+6140 -dqred153 reduce 9.999999999999999999999999999990000E+6144 -> 9.999999999999999999999999999990000E+6144 -dqred154 reduce 1E-6143 -> 1E-6143 -dqred155 reduce 1.000000000000000000000000000000000E-6143 -> 1E-6143 -dqred156 reduce 2.000E-6173 -> 2E-6173 Subnormal -dqred157 reduce 1E-6176 -> 1E-6176 Subnormal - -dqred161 reduce -1E-6176 -> -1E-6176 Subnormal -dqred162 reduce -2.000E-6173 -> -2E-6173 Subnormal -dqred163 reduce -1.000000000000000000000000000000000E-6143 -> -1E-6143 -dqred164 reduce -1E-6143 -> -1E-6143 -dqred165 reduce -9.999999999999999999999999000000000E+6140 -> -9.99999999999999999999999900000E+6140 -dqred166 reduce -9.999999999999999999999999999990000E+6144 -> -9.999999999999999999999999999990000E+6144 -dqred167 reduce -9.999999999999999999999999999999990E+6144 -> -9.999999999999999999999999999999990E+6144 -dqred168 reduce -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 -dqred169 reduce -9.999999999999999999999999999999990E+6144 -> -9.999999999999999999999999999999990E+6144 - - --- specials (reduce does not affect payload) -dqred820 reduce 'Inf' -> 'Infinity' -dqred821 reduce '-Inf' -> '-Infinity' -dqred822 reduce NaN -> NaN -dqred823 reduce sNaN -> NaN Invalid_operation -dqred824 reduce NaN101 -> NaN101 -dqred825 reduce sNaN010 -> NaN10 Invalid_operation -dqred827 reduce -NaN -> -NaN -dqred828 reduce -sNaN -> -NaN Invalid_operation -dqred829 reduce -NaN101 -> -NaN101 -dqred830 reduce -sNaN010 -> -NaN10 Invalid_operation - --- Null test -dqred900 reduce # -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqRemainder.decTest b/qdecimal/test/tc_full/dqRemainder.decTest deleted file mode 100644 index 50dae4c..0000000 --- a/qdecimal/test/tc_full/dqRemainder.decTest +++ /dev/null @@ -1,597 +0,0 @@ ------------------------------------------------------------------------- --- dqRemainder.decTest -- decQuad remainder -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks (as base, above) -dqrem001 remainder 1 1 -> 0 -dqrem002 remainder 2 1 -> 0 -dqrem003 remainder 1 2 -> 1 -dqrem004 remainder 2 2 -> 0 -dqrem005 remainder 0 1 -> 0 -dqrem006 remainder 0 2 -> 0 -dqrem007 remainder 1 3 -> 1 -dqrem008 remainder 2 3 -> 2 -dqrem009 remainder 3 3 -> 0 - -dqrem010 remainder 2.4 1 -> 0.4 -dqrem011 remainder 2.4 -1 -> 0.4 -dqrem012 remainder -2.4 1 -> -0.4 -dqrem013 remainder -2.4 -1 -> -0.4 -dqrem014 remainder 2.40 1 -> 0.40 -dqrem015 remainder 2.400 1 -> 0.400 -dqrem016 remainder 2.4 2 -> 0.4 -dqrem017 remainder 2.400 2 -> 0.400 -dqrem018 remainder 2. 2 -> 0 -dqrem019 remainder 20 20 -> 0 - -dqrem020 remainder 187 187 -> 0 -dqrem021 remainder 5 2 -> 1 -dqrem022 remainder 5 2.0 -> 1.0 -dqrem023 remainder 5 2.000 -> 1.000 -dqrem024 remainder 5 0.200 -> 0.000 -dqrem025 remainder 5 0.200 -> 0.000 - -dqrem030 remainder 1 2 -> 1 -dqrem031 remainder 1 4 -> 1 -dqrem032 remainder 1 8 -> 1 - -dqrem033 remainder 1 16 -> 1 -dqrem034 remainder 1 32 -> 1 -dqrem035 remainder 1 64 -> 1 -dqrem040 remainder 1 -2 -> 1 -dqrem041 remainder 1 -4 -> 1 -dqrem042 remainder 1 -8 -> 1 -dqrem043 remainder 1 -16 -> 1 -dqrem044 remainder 1 -32 -> 1 -dqrem045 remainder 1 -64 -> 1 -dqrem050 remainder -1 2 -> -1 -dqrem051 remainder -1 4 -> -1 -dqrem052 remainder -1 8 -> -1 -dqrem053 remainder -1 16 -> -1 -dqrem054 remainder -1 32 -> -1 -dqrem055 remainder -1 64 -> -1 -dqrem060 remainder -1 -2 -> -1 -dqrem061 remainder -1 -4 -> -1 -dqrem062 remainder -1 -8 -> -1 -dqrem063 remainder -1 -16 -> -1 -dqrem064 remainder -1 -32 -> -1 -dqrem065 remainder -1 -64 -> -1 - -dqrem066 remainder 999999999 1 -> 0 -dqrem067 remainder 999999999.4 1 -> 0.4 -dqrem068 remainder 999999999.5 1 -> 0.5 -dqrem069 remainder 999999999.9 1 -> 0.9 -dqrem070 remainder 999999999.999 1 -> 0.999 -dqrem071 remainder 999999.999999 1 -> 0.999999 -dqrem072 remainder 9 1 -> 0 - -dqrem080 remainder 0. 1 -> 0 -dqrem081 remainder .0 1 -> 0.0 -dqrem082 remainder 0.00 1 -> 0.00 -dqrem083 remainder 0.00E+9 1 -> 0 -dqrem084 remainder 0.00E+3 1 -> 0 -dqrem085 remainder 0.00E+2 1 -> 0 -dqrem086 remainder 0.00E+1 1 -> 0.0 -dqrem087 remainder 0.00E+0 1 -> 0.00 -dqrem088 remainder 0.00E-0 1 -> 0.00 -dqrem089 remainder 0.00E-1 1 -> 0.000 -dqrem090 remainder 0.00E-2 1 -> 0.0000 -dqrem091 remainder 0.00E-3 1 -> 0.00000 -dqrem092 remainder 0.00E-4 1 -> 0.000000 -dqrem093 remainder 0.00E-5 1 -> 0E-7 -dqrem094 remainder 0.00E-6 1 -> 0E-8 -dqrem095 remainder 0.0000E-50 1 -> 0E-54 - --- Various flavours of remainder by 0 -dqrem101 remainder 0 0 -> NaN Division_undefined -dqrem102 remainder 0 -0 -> NaN Division_undefined -dqrem103 remainder -0 0 -> NaN Division_undefined -dqrem104 remainder -0 -0 -> NaN Division_undefined -dqrem105 remainder 0.0E5 0 -> NaN Division_undefined -dqrem106 remainder 0.000 0 -> NaN Division_undefined --- [Some think this next group should be Division_by_zero exception, but --- IEEE 854 is explicit that it is Invalid operation .. for --- remainder-near, anyway] -dqrem107 remainder 0.0001 0 -> NaN Invalid_operation -dqrem108 remainder 0.01 0 -> NaN Invalid_operation -dqrem109 remainder 0.1 0 -> NaN Invalid_operation -dqrem110 remainder 1 0 -> NaN Invalid_operation -dqrem111 remainder 1 0.0 -> NaN Invalid_operation -dqrem112 remainder 10 0.0 -> NaN Invalid_operation -dqrem113 remainder 1E+100 0.0 -> NaN Invalid_operation -dqrem114 remainder 1E+380 0 -> NaN Invalid_operation -dqrem115 remainder 0.0001 -0 -> NaN Invalid_operation -dqrem116 remainder 0.01 -0 -> NaN Invalid_operation -dqrem119 remainder 0.1 -0 -> NaN Invalid_operation -dqrem120 remainder 1 -0 -> NaN Invalid_operation -dqrem121 remainder 1 -0.0 -> NaN Invalid_operation -dqrem122 remainder 10 -0.0 -> NaN Invalid_operation -dqrem123 remainder 1E+100 -0.0 -> NaN Invalid_operation -dqrem124 remainder 1E+384 -0 -> NaN Invalid_operation --- and zeros on left -dqrem130 remainder 0 1 -> 0 -dqrem131 remainder 0 -1 -> 0 -dqrem132 remainder 0.0 1 -> 0.0 -dqrem133 remainder 0.0 -1 -> 0.0 -dqrem134 remainder -0 1 -> -0 -dqrem135 remainder -0 -1 -> -0 -dqrem136 remainder -0.0 1 -> -0.0 -dqrem137 remainder -0.0 -1 -> -0.0 - --- 0.5ers -dqrem143 remainder 0.5 2 -> 0.5 -dqrem144 remainder 0.5 2.1 -> 0.5 -dqrem145 remainder 0.5 2.01 -> 0.50 -dqrem146 remainder 0.5 2.001 -> 0.500 -dqrem147 remainder 0.50 2 -> 0.50 -dqrem148 remainder 0.50 2.01 -> 0.50 -dqrem149 remainder 0.50 2.001 -> 0.500 - --- steadies -dqrem150 remainder 1 1 -> 0 -dqrem151 remainder 1 2 -> 1 -dqrem152 remainder 1 3 -> 1 -dqrem153 remainder 1 4 -> 1 -dqrem154 remainder 1 5 -> 1 -dqrem155 remainder 1 6 -> 1 -dqrem156 remainder 1 7 -> 1 -dqrem157 remainder 1 8 -> 1 -dqrem158 remainder 1 9 -> 1 -dqrem159 remainder 1 10 -> 1 -dqrem160 remainder 1 1 -> 0 -dqrem161 remainder 2 1 -> 0 -dqrem162 remainder 3 1 -> 0 -dqrem163 remainder 4 1 -> 0 -dqrem164 remainder 5 1 -> 0 -dqrem165 remainder 6 1 -> 0 -dqrem166 remainder 7 1 -> 0 -dqrem167 remainder 8 1 -> 0 -dqrem168 remainder 9 1 -> 0 -dqrem169 remainder 10 1 -> 0 - --- some differences from remainderNear -dqrem171 remainder 0.4 1.020 -> 0.400 -dqrem172 remainder 0.50 1.020 -> 0.500 -dqrem173 remainder 0.51 1.020 -> 0.510 -dqrem174 remainder 0.52 1.020 -> 0.520 -dqrem175 remainder 0.6 1.020 -> 0.600 - --- More flavours of remainder by 0 -dqrem201 remainder 0 0 -> NaN Division_undefined -dqrem202 remainder 0.0E5 0 -> NaN Division_undefined -dqrem203 remainder 0.000 0 -> NaN Division_undefined -dqrem204 remainder 0.0001 0 -> NaN Invalid_operation -dqrem205 remainder 0.01 0 -> NaN Invalid_operation -dqrem206 remainder 0.1 0 -> NaN Invalid_operation -dqrem207 remainder 1 0 -> NaN Invalid_operation -dqrem208 remainder 1 0.0 -> NaN Invalid_operation -dqrem209 remainder 10 0.0 -> NaN Invalid_operation -dqrem210 remainder 1E+100 0.0 -> NaN Invalid_operation -dqrem211 remainder 1E+380 0 -> NaN Invalid_operation - --- some differences from remainderNear -dqrem231 remainder -0.4 1.020 -> -0.400 -dqrem232 remainder -0.50 1.020 -> -0.500 -dqrem233 remainder -0.51 1.020 -> -0.510 -dqrem234 remainder -0.52 1.020 -> -0.520 -dqrem235 remainder -0.6 1.020 -> -0.600 - --- high Xs -dqrem240 remainder 1E+2 1.00 -> 0.00 - --- dqrem3xx are from DiagBigDecimal -dqrem301 remainder 1 3 -> 1 -dqrem302 remainder 5 5 -> 0 -dqrem303 remainder 13 10 -> 3 -dqrem304 remainder 13 50 -> 13 -dqrem305 remainder 13 100 -> 13 -dqrem306 remainder 13 1000 -> 13 -dqrem307 remainder .13 1 -> 0.13 -dqrem308 remainder 0.133 1 -> 0.133 -dqrem309 remainder 0.1033 1 -> 0.1033 -dqrem310 remainder 1.033 1 -> 0.033 -dqrem311 remainder 10.33 1 -> 0.33 -dqrem312 remainder 10.33 10 -> 0.33 -dqrem313 remainder 103.3 1 -> 0.3 -dqrem314 remainder 133 10 -> 3 -dqrem315 remainder 1033 10 -> 3 -dqrem316 remainder 1033 50 -> 33 -dqrem317 remainder 101.0 3 -> 2.0 -dqrem318 remainder 102.0 3 -> 0.0 -dqrem319 remainder 103.0 3 -> 1.0 -dqrem320 remainder 2.40 1 -> 0.40 -dqrem321 remainder 2.400 1 -> 0.400 -dqrem322 remainder 2.4 1 -> 0.4 -dqrem323 remainder 2.4 2 -> 0.4 -dqrem324 remainder 2.400 2 -> 0.400 -dqrem325 remainder 1 0.3 -> 0.1 -dqrem326 remainder 1 0.30 -> 0.10 -dqrem327 remainder 1 0.300 -> 0.100 -dqrem328 remainder 1 0.3000 -> 0.1000 -dqrem329 remainder 1.0 0.3 -> 0.1 -dqrem330 remainder 1.00 0.3 -> 0.10 -dqrem331 remainder 1.000 0.3 -> 0.100 -dqrem332 remainder 1.0000 0.3 -> 0.1000 -dqrem333 remainder 0.5 2 -> 0.5 -dqrem334 remainder 0.5 2.1 -> 0.5 -dqrem335 remainder 0.5 2.01 -> 0.50 -dqrem336 remainder 0.5 2.001 -> 0.500 -dqrem337 remainder 0.50 2 -> 0.50 -dqrem338 remainder 0.50 2.01 -> 0.50 -dqrem339 remainder 0.50 2.001 -> 0.500 - -dqrem340 remainder 0.5 0.5000001 -> 0.5000000 -dqrem341 remainder 0.5 0.50000001 -> 0.50000000 -dqrem342 remainder 0.5 0.500000001 -> 0.500000000 -dqrem343 remainder 0.5 0.5000000001 -> 0.5000000000 -dqrem344 remainder 0.5 0.50000000001 -> 0.50000000000 -dqrem345 remainder 0.5 0.4999999 -> 1E-7 -dqrem346 remainder 0.5 0.49999999 -> 1E-8 -dqrem347 remainder 0.5 0.499999999 -> 1E-9 -dqrem348 remainder 0.5 0.4999999999 -> 1E-10 -dqrem349 remainder 0.5 0.49999999999 -> 1E-11 -dqrem350 remainder 0.5 0.499999999999 -> 1E-12 - -dqrem351 remainder 0.03 7 -> 0.03 -dqrem352 remainder 5 2 -> 1 -dqrem353 remainder 4.1 2 -> 0.1 -dqrem354 remainder 4.01 2 -> 0.01 -dqrem355 remainder 4.001 2 -> 0.001 -dqrem356 remainder 4.0001 2 -> 0.0001 -dqrem357 remainder 4.00001 2 -> 0.00001 -dqrem358 remainder 4.000001 2 -> 0.000001 -dqrem359 remainder 4.0000001 2 -> 1E-7 - -dqrem360 remainder 1.2 0.7345 -> 0.4655 -dqrem361 remainder 0.8 12 -> 0.8 -dqrem362 remainder 0.8 0.2 -> 0.0 -dqrem363 remainder 0.8 0.3 -> 0.2 -dqrem364 remainder 0.800 12 -> 0.800 -dqrem365 remainder 0.800 1.7 -> 0.800 -dqrem366 remainder 2.400 2 -> 0.400 - -dqrem371 remainder 2.400 2 -> 0.400 - -dqrem381 remainder 12345 1 -> 0 -dqrem382 remainder 12345 1.0001 -> 0.7657 -dqrem383 remainder 12345 1.001 -> 0.668 -dqrem384 remainder 12345 1.01 -> 0.78 -dqrem385 remainder 12345 1.1 -> 0.8 -dqrem386 remainder 12355 4 -> 3 -dqrem387 remainder 12345 4 -> 1 -dqrem388 remainder 12355 4.0001 -> 2.6912 -dqrem389 remainder 12345 4.0001 -> 0.6914 -dqrem390 remainder 12345 4.9 -> 1.9 -dqrem391 remainder 12345 4.99 -> 4.73 -dqrem392 remainder 12345 4.999 -> 2.469 -dqrem393 remainder 12345 4.9999 -> 0.2469 -dqrem394 remainder 12345 5 -> 0 -dqrem395 remainder 12345 5.0001 -> 4.7532 -dqrem396 remainder 12345 5.001 -> 2.532 -dqrem397 remainder 12345 5.01 -> 0.36 -dqrem398 remainder 12345 5.1 -> 3.0 - --- the nasty division-by-1 cases -dqrem401 remainder 0.5 1 -> 0.5 -dqrem402 remainder 0.55 1 -> 0.55 -dqrem403 remainder 0.555 1 -> 0.555 -dqrem404 remainder 0.5555 1 -> 0.5555 -dqrem405 remainder 0.55555 1 -> 0.55555 -dqrem406 remainder 0.555555 1 -> 0.555555 -dqrem407 remainder 0.5555555 1 -> 0.5555555 -dqrem408 remainder 0.55555555 1 -> 0.55555555 -dqrem409 remainder 0.555555555 1 -> 0.555555555 - --- folddowns -dqrem421 remainder 1E+6144 1 -> NaN Division_impossible -dqrem422 remainder 1E+6144 1E+6143 -> 0E+6111 Clamped -dqrem423 remainder 1E+6144 2E+6143 -> 0E+6111 Clamped -dqrem424 remainder 1E+6144 3E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped -dqrem425 remainder 1E+6144 4E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped -dqrem426 remainder 1E+6144 5E+6143 -> 0E+6111 Clamped -dqrem427 remainder 1E+6144 6E+6143 -> 4.00000000000000000000000000000000E+6143 Clamped -dqrem428 remainder 1E+6144 7E+6143 -> 3.00000000000000000000000000000000E+6143 Clamped -dqrem429 remainder 1E+6144 8E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped -dqrem430 remainder 1E+6144 9E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped --- tinies -dqrem431 remainder 1E-6175 1E-6176 -> 0E-6176 -dqrem432 remainder 1E-6175 2E-6176 -> 0E-6176 -dqrem433 remainder 1E-6175 3E-6176 -> 1E-6176 Subnormal -dqrem434 remainder 1E-6175 4E-6176 -> 2E-6176 Subnormal -dqrem435 remainder 1E-6175 5E-6176 -> 0E-6176 -dqrem436 remainder 1E-6175 6E-6176 -> 4E-6176 Subnormal -dqrem437 remainder 1E-6175 7E-6176 -> 3E-6176 Subnormal -dqrem438 remainder 1E-6175 8E-6176 -> 2E-6176 Subnormal -dqrem439 remainder 1E-6175 9E-6176 -> 1E-6176 Subnormal -dqrem440 remainder 1E-6175 10E-6176 -> 0E-6176 -dqrem441 remainder 1E-6175 11E-6176 -> 1.0E-6175 Subnormal -dqrem442 remainder 100E-6175 11E-6176 -> 1.0E-6175 Subnormal -dqrem443 remainder 100E-6175 20E-6176 -> 0E-6176 -dqrem444 remainder 100E-6175 21E-6176 -> 1.3E-6175 Subnormal -dqrem445 remainder 100E-6175 30E-6176 -> 1.0E-6175 Subnormal - --- zero signs -dqrem650 remainder 1 1 -> 0 -dqrem651 remainder -1 1 -> -0 -dqrem652 remainder 1 -1 -> 0 -dqrem653 remainder -1 -1 -> -0 -dqrem654 remainder 0 1 -> 0 -dqrem655 remainder -0 1 -> -0 -dqrem656 remainder 0 -1 -> 0 -dqrem657 remainder -0 -1 -> -0 -dqrem658 remainder 0.00 1 -> 0.00 -dqrem659 remainder -0.00 1 -> -0.00 - --- Specials -dqrem680 remainder Inf -Inf -> NaN Invalid_operation -dqrem681 remainder Inf -1000 -> NaN Invalid_operation -dqrem682 remainder Inf -1 -> NaN Invalid_operation -dqrem683 remainder Inf 0 -> NaN Invalid_operation -dqrem684 remainder Inf -0 -> NaN Invalid_operation -dqrem685 remainder Inf 1 -> NaN Invalid_operation -dqrem686 remainder Inf 1000 -> NaN Invalid_operation -dqrem687 remainder Inf Inf -> NaN Invalid_operation -dqrem688 remainder -1000 Inf -> -1000 -dqrem689 remainder -Inf Inf -> NaN Invalid_operation -dqrem691 remainder -1 Inf -> -1 -dqrem692 remainder 0 Inf -> 0 -dqrem693 remainder -0 Inf -> -0 -dqrem694 remainder 1 Inf -> 1 -dqrem695 remainder 1000 Inf -> 1000 -dqrem696 remainder Inf Inf -> NaN Invalid_operation - -dqrem700 remainder -Inf -Inf -> NaN Invalid_operation -dqrem701 remainder -Inf -1000 -> NaN Invalid_operation -dqrem702 remainder -Inf -1 -> NaN Invalid_operation -dqrem703 remainder -Inf -0 -> NaN Invalid_operation -dqrem704 remainder -Inf 0 -> NaN Invalid_operation -dqrem705 remainder -Inf 1 -> NaN Invalid_operation -dqrem706 remainder -Inf 1000 -> NaN Invalid_operation -dqrem707 remainder -Inf Inf -> NaN Invalid_operation -dqrem708 remainder -Inf -Inf -> NaN Invalid_operation -dqrem709 remainder -1000 Inf -> -1000 -dqrem710 remainder -1 -Inf -> -1 -dqrem711 remainder -0 -Inf -> -0 -dqrem712 remainder 0 -Inf -> 0 -dqrem713 remainder 1 -Inf -> 1 -dqrem714 remainder 1000 -Inf -> 1000 -dqrem715 remainder Inf -Inf -> NaN Invalid_operation - -dqrem721 remainder NaN -Inf -> NaN -dqrem722 remainder NaN -1000 -> NaN -dqrem723 remainder NaN -1 -> NaN -dqrem724 remainder NaN -0 -> NaN -dqrem725 remainder -NaN 0 -> -NaN -dqrem726 remainder NaN 1 -> NaN -dqrem727 remainder NaN 1000 -> NaN -dqrem728 remainder NaN Inf -> NaN -dqrem729 remainder NaN -NaN -> NaN -dqrem730 remainder -Inf NaN -> NaN -dqrem731 remainder -1000 NaN -> NaN -dqrem732 remainder -1 NaN -> NaN -dqrem733 remainder -0 -NaN -> -NaN -dqrem734 remainder 0 NaN -> NaN -dqrem735 remainder 1 -NaN -> -NaN -dqrem736 remainder 1000 NaN -> NaN -dqrem737 remainder Inf NaN -> NaN - -dqrem741 remainder sNaN -Inf -> NaN Invalid_operation -dqrem742 remainder sNaN -1000 -> NaN Invalid_operation -dqrem743 remainder -sNaN -1 -> -NaN Invalid_operation -dqrem744 remainder sNaN -0 -> NaN Invalid_operation -dqrem745 remainder sNaN 0 -> NaN Invalid_operation -dqrem746 remainder sNaN 1 -> NaN Invalid_operation -dqrem747 remainder sNaN 1000 -> NaN Invalid_operation -dqrem749 remainder sNaN NaN -> NaN Invalid_operation -dqrem750 remainder sNaN sNaN -> NaN Invalid_operation -dqrem751 remainder NaN sNaN -> NaN Invalid_operation -dqrem752 remainder -Inf sNaN -> NaN Invalid_operation -dqrem753 remainder -1000 sNaN -> NaN Invalid_operation -dqrem754 remainder -1 sNaN -> NaN Invalid_operation -dqrem755 remainder -0 sNaN -> NaN Invalid_operation -dqrem756 remainder 0 sNaN -> NaN Invalid_operation -dqrem757 remainder 1 sNaN -> NaN Invalid_operation -dqrem758 remainder 1000 sNaN -> NaN Invalid_operation -dqrem759 remainder Inf -sNaN -> -NaN Invalid_operation - --- propaging NaNs -dqrem760 remainder NaN1 NaN7 -> NaN1 -dqrem761 remainder sNaN2 NaN8 -> NaN2 Invalid_operation -dqrem762 remainder NaN3 sNaN9 -> NaN9 Invalid_operation -dqrem763 remainder sNaN4 sNaN10 -> NaN4 Invalid_operation -dqrem764 remainder 15 NaN11 -> NaN11 -dqrem765 remainder NaN6 NaN12 -> NaN6 -dqrem766 remainder Inf NaN13 -> NaN13 -dqrem767 remainder NaN14 -Inf -> NaN14 -dqrem768 remainder 0 NaN15 -> NaN15 -dqrem769 remainder NaN16 -0 -> NaN16 - --- edge cases of impossible -dqrem770 remainder 1234568888888887777777777890123456 10 -> 6 -dqrem771 remainder 1234568888888887777777777890123456 1 -> 0 -dqrem772 remainder 1234568888888887777777777890123456 0.1 -> NaN Division_impossible -dqrem773 remainder 1234568888888887777777777890123456 0.01 -> NaN Division_impossible - --- long operand checks -dqrem801 remainder 12345678000 100 -> 0 -dqrem802 remainder 1 12345678000 -> 1 -dqrem803 remainder 1234567800 10 -> 0 -dqrem804 remainder 1 1234567800 -> 1 -dqrem805 remainder 1234567890 10 -> 0 -dqrem806 remainder 1 1234567890 -> 1 -dqrem807 remainder 1234567891 10 -> 1 -dqrem808 remainder 1 1234567891 -> 1 -dqrem809 remainder 12345678901 100 -> 1 -dqrem810 remainder 1 12345678901 -> 1 -dqrem811 remainder 1234567896 10 -> 6 -dqrem812 remainder 1 1234567896 -> 1 - -dqrem821 remainder 12345678000 100 -> 0 -dqrem822 remainder 1 12345678000 -> 1 -dqrem823 remainder 1234567800 10 -> 0 -dqrem824 remainder 1 1234567800 -> 1 -dqrem825 remainder 1234567890 10 -> 0 -dqrem826 remainder 1 1234567890 -> 1 -dqrem827 remainder 1234567891 10 -> 1 -dqrem828 remainder 1 1234567891 -> 1 -dqrem829 remainder 12345678901 100 -> 1 -dqrem830 remainder 1 12345678901 -> 1 -dqrem831 remainder 1234567896 10 -> 6 -dqrem832 remainder 1 1234567896 -> 1 - --- from divideint -dqrem840 remainder 100000000.0 1 -> 0.0 -dqrem841 remainder 100000000.4 1 -> 0.4 -dqrem842 remainder 100000000.5 1 -> 0.5 -dqrem843 remainder 100000000.9 1 -> 0.9 -dqrem844 remainder 100000000.999 1 -> 0.999 -dqrem850 remainder 100000003 5 -> 3 -dqrem851 remainder 10000003 5 -> 3 -dqrem852 remainder 1000003 5 -> 3 -dqrem853 remainder 100003 5 -> 3 -dqrem854 remainder 10003 5 -> 3 -dqrem855 remainder 1003 5 -> 3 -dqrem856 remainder 103 5 -> 3 -dqrem857 remainder 13 5 -> 3 -dqrem858 remainder 1 5 -> 1 - --- Vladimir's cases 1234567890123456 -dqrem860 remainder 123.0e1 1000000000000000 -> 1230 -dqrem861 remainder 1230 1000000000000000 -> 1230 -dqrem862 remainder 12.3e2 1000000000000000 -> 1230 -dqrem863 remainder 1.23e3 1000000000000000 -> 1230 -dqrem864 remainder 123e1 1000000000000000 -> 1230 -dqrem870 remainder 123e1 1000000000000000 -> 1230 -dqrem871 remainder 123e1 100000000000000 -> 1230 -dqrem872 remainder 123e1 10000000000000 -> 1230 -dqrem873 remainder 123e1 1000000000000 -> 1230 -dqrem874 remainder 123e1 100000000000 -> 1230 -dqrem875 remainder 123e1 10000000000 -> 1230 -dqrem876 remainder 123e1 1000000000 -> 1230 -dqrem877 remainder 123e1 100000000 -> 1230 -dqrem878 remainder 1230 100000000 -> 1230 -dqrem879 remainder 123e1 10000000 -> 1230 -dqrem880 remainder 123e1 1000000 -> 1230 -dqrem881 remainder 123e1 100000 -> 1230 -dqrem882 remainder 123e1 10000 -> 1230 -dqrem883 remainder 123e1 1000 -> 230 -dqrem884 remainder 123e1 100 -> 30 -dqrem885 remainder 123e1 10 -> 0 -dqrem886 remainder 123e1 1 -> 0 - -dqrem890 remainder 123e1 2000000000000000 -> 1230 -dqrem891 remainder 123e1 200000000000000 -> 1230 -dqrem892 remainder 123e1 20000000000000 -> 1230 -dqrem893 remainder 123e1 2000000000000 -> 1230 -dqrem894 remainder 123e1 200000000000 -> 1230 -dqrem895 remainder 123e1 20000000000 -> 1230 -dqrem896 remainder 123e1 2000000000 -> 1230 -dqrem897 remainder 123e1 200000000 -> 1230 -dqrem899 remainder 123e1 20000000 -> 1230 -dqrem900 remainder 123e1 2000000 -> 1230 -dqrem901 remainder 123e1 200000 -> 1230 -dqrem902 remainder 123e1 20000 -> 1230 -dqrem903 remainder 123e1 2000 -> 1230 -dqrem904 remainder 123e1 200 -> 30 -dqrem905 remainder 123e1 20 -> 10 -dqrem906 remainder 123e1 2 -> 0 - -dqrem910 remainder 123e1 5000000000000000 -> 1230 -dqrem911 remainder 123e1 500000000000000 -> 1230 -dqrem912 remainder 123e1 50000000000000 -> 1230 -dqrem913 remainder 123e1 5000000000000 -> 1230 -dqrem914 remainder 123e1 500000000000 -> 1230 -dqrem915 remainder 123e1 50000000000 -> 1230 -dqrem916 remainder 123e1 5000000000 -> 1230 -dqrem917 remainder 123e1 500000000 -> 1230 -dqrem919 remainder 123e1 50000000 -> 1230 -dqrem920 remainder 123e1 5000000 -> 1230 -dqrem921 remainder 123e1 500000 -> 1230 -dqrem922 remainder 123e1 50000 -> 1230 -dqrem923 remainder 123e1 5000 -> 1230 -dqrem924 remainder 123e1 500 -> 230 -dqrem925 remainder 123e1 50 -> 30 -dqrem926 remainder 123e1 5 -> 0 - -dqrem930 remainder 123e1 9000000000000000 -> 1230 -dqrem931 remainder 123e1 900000000000000 -> 1230 -dqrem932 remainder 123e1 90000000000000 -> 1230 -dqrem933 remainder 123e1 9000000000000 -> 1230 -dqrem934 remainder 123e1 900000000000 -> 1230 -dqrem935 remainder 123e1 90000000000 -> 1230 -dqrem936 remainder 123e1 9000000000 -> 1230 -dqrem937 remainder 123e1 900000000 -> 1230 -dqrem939 remainder 123e1 90000000 -> 1230 -dqrem940 remainder 123e1 9000000 -> 1230 -dqrem941 remainder 123e1 900000 -> 1230 -dqrem942 remainder 123e1 90000 -> 1230 -dqrem943 remainder 123e1 9000 -> 1230 -dqrem944 remainder 123e1 900 -> 330 -dqrem945 remainder 123e1 90 -> 60 -dqrem946 remainder 123e1 9 -> 6 - -dqrem950 remainder 123e1 1000000000000000 -> 1230 -dqrem961 remainder 123e1 2999999999999999 -> 1230 -dqrem962 remainder 123e1 3999999999999999 -> 1230 -dqrem963 remainder 123e1 4999999999999999 -> 1230 -dqrem964 remainder 123e1 5999999999999999 -> 1230 -dqrem965 remainder 123e1 6999999999999999 -> 1230 -dqrem966 remainder 123e1 7999999999999999 -> 1230 -dqrem967 remainder 123e1 8999999999999999 -> 1230 -dqrem968 remainder 123e1 9999999999999999 -> 1230 -dqrem969 remainder 123e1 9876543210987654 -> 1230 - -dqrem980 remainder 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally - --- overflow and underflow tests [from divide] -dqrem1051 remainder 1e+277 1e-311 -> NaN Division_impossible -dqrem1052 remainder 1e+277 -1e-311 -> NaN Division_impossible -dqrem1053 remainder -1e+277 1e-311 -> NaN Division_impossible -dqrem1054 remainder -1e+277 -1e-311 -> NaN Division_impossible -dqrem1055 remainder 1e-277 1e+311 -> 1E-277 -dqrem1056 remainder 1e-277 -1e+311 -> 1E-277 -dqrem1057 remainder -1e-277 1e+311 -> -1E-277 -dqrem1058 remainder -1e-277 -1e+311 -> -1E-277 - --- Gyuris example -dqrem1070 remainder 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 8.336804418094040989630006819881709E-6143 - --- destructive subtract -dqrem1120 remainder 1234567890123456789012345678901234 1.000000000000000000000000000000001 -> 0.765432109876543210987654321098768 -dqrem1121 remainder 1234567890123456789012345678901234 1.00000000000000000000000000000001 -> 0.65432109876543210987654321098779 -dqrem1122 remainder 1234567890123456789012345678901234 1.0000000000000000000000000000001 -> 0.5432109876543210987654321098890 -dqrem1123 remainder 1234567890123456789012345678901255 4.000000000000000000000000000000001 -> 2.691358027469135802746913580274687 -dqrem1124 remainder 1234567890123456789012345678901234 4.000000000000000000000000000000001 -> 1.691358027469135802746913580274692 -dqrem1125 remainder 1234567890123456789012345678901234 4.9999999999999999999999999999999 -> 3.6913578024691357802469135780251 -dqrem1126 remainder 1234567890123456789012345678901234 4.99999999999999999999999999999999 -> 1.46913578024691357802469135780247 -dqrem1127 remainder 1234567890123456789012345678901234 4.999999999999999999999999999999999 -> 4.246913578024691357802469135780246 -dqrem1128 remainder 1234567890123456789012345678901234 5.0000000000000000000000000000001 -> 4.3086421975308642197530864219759 - --- Null tests -dqrem1000 remainder 10 # -> NaN Invalid_operation -dqrem1001 remainder # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqRemainderNear.decTest b/qdecimal/test/tc_full/dqRemainderNear.decTest deleted file mode 100644 index f27daf0..0000000 --- a/qdecimal/test/tc_full/dqRemainderNear.decTest +++ /dev/null @@ -1,631 +0,0 @@ ------------------------------------------------------------------------- --- dqRemainderNear.decTest -- decQuad remainder-near -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- sanity checks (as base, above) -dqrmn001 remaindernear 1 1 -> 0 -dqrmn002 remaindernear 2 1 -> 0 -dqrmn003 remaindernear 1 2 -> 1 -dqrmn004 remaindernear 2 2 -> 0 -dqrmn005 remaindernear 0 1 -> 0 -dqrmn006 remaindernear 0 2 -> 0 -dqrmn007 remaindernear 1 3 -> 1 -dqrmn008 remaindernear 2 3 -> -1 -dqrmn009 remaindernear 3 3 -> 0 - -dqrmn010 remaindernear 2.4 1 -> 0.4 -dqrmn011 remaindernear 2.4 -1 -> 0.4 -dqrmn012 remaindernear -2.4 1 -> -0.4 -dqrmn013 remaindernear -2.4 -1 -> -0.4 -dqrmn014 remaindernear 2.40 1 -> 0.40 -dqrmn015 remaindernear 2.400 1 -> 0.400 -dqrmn016 remaindernear 2.4 2 -> 0.4 -dqrmn017 remaindernear 2.400 2 -> 0.400 -dqrmn018 remaindernear 2. 2 -> 0 -dqrmn019 remaindernear 20 20 -> 0 - -dqrmn020 remaindernear 187 187 -> 0 -dqrmn021 remaindernear 5 2 -> 1 -dqrmn022 remaindernear 5 2.0 -> 1.0 -dqrmn023 remaindernear 5 2.000 -> 1.000 -dqrmn024 remaindernear 5 0.200 -> 0.000 -dqrmn025 remaindernear 5 0.200 -> 0.000 - -dqrmn030 remaindernear 1 2 -> 1 -dqrmn031 remaindernear 1 4 -> 1 -dqrmn032 remaindernear 1 8 -> 1 - -dqrmn033 remaindernear 1 16 -> 1 -dqrmn034 remaindernear 1 32 -> 1 -dqrmn035 remaindernear 1 64 -> 1 -dqrmn040 remaindernear 1 -2 -> 1 -dqrmn041 remaindernear 1 -4 -> 1 -dqrmn042 remaindernear 1 -8 -> 1 -dqrmn043 remaindernear 1 -16 -> 1 -dqrmn044 remaindernear 1 -32 -> 1 -dqrmn045 remaindernear 1 -64 -> 1 -dqrmn050 remaindernear -1 2 -> -1 -dqrmn051 remaindernear -1 4 -> -1 -dqrmn052 remaindernear -1 8 -> -1 -dqrmn053 remaindernear -1 16 -> -1 -dqrmn054 remaindernear -1 32 -> -1 -dqrmn055 remaindernear -1 64 -> -1 -dqrmn060 remaindernear -1 -2 -> -1 -dqrmn061 remaindernear -1 -4 -> -1 -dqrmn062 remaindernear -1 -8 -> -1 -dqrmn063 remaindernear -1 -16 -> -1 -dqrmn064 remaindernear -1 -32 -> -1 -dqrmn065 remaindernear -1 -64 -> -1 - -dqrmn066 remaindernear 9.9 1 -> -0.1 -dqrmn067 remaindernear 99.7 1 -> -0.3 -dqrmn068 remaindernear 999999999 1 -> 0 -dqrmn069 remaindernear 999999999.4 1 -> 0.4 -dqrmn070 remaindernear 999999999.5 1 -> -0.5 -dqrmn071 remaindernear 999999999.9 1 -> -0.1 -dqrmn072 remaindernear 999999999.999 1 -> -0.001 -dqrmn073 remaindernear 999999.999999 1 -> -0.000001 -dqrmn074 remaindernear 9 1 -> 0 -dqrmn075 remaindernear 9999999999999999 1 -> 0 -dqrmn076 remaindernear 9999999999999999 2 -> -1 -dqrmn077 remaindernear 9999999999999999 3 -> 0 -dqrmn078 remaindernear 9999999999999999 4 -> -1 - -dqrmn080 remaindernear 0. 1 -> 0 -dqrmn081 remaindernear .0 1 -> 0.0 -dqrmn082 remaindernear 0.00 1 -> 0.00 -dqrmn083 remaindernear 0.00E+9 1 -> 0 -dqrmn084 remaindernear 0.00E+3 1 -> 0 -dqrmn085 remaindernear 0.00E+2 1 -> 0 -dqrmn086 remaindernear 0.00E+1 1 -> 0.0 -dqrmn087 remaindernear 0.00E+0 1 -> 0.00 -dqrmn088 remaindernear 0.00E-0 1 -> 0.00 -dqrmn089 remaindernear 0.00E-1 1 -> 0.000 -dqrmn090 remaindernear 0.00E-2 1 -> 0.0000 -dqrmn091 remaindernear 0.00E-3 1 -> 0.00000 -dqrmn092 remaindernear 0.00E-4 1 -> 0.000000 -dqrmn093 remaindernear 0.00E-5 1 -> 0E-7 -dqrmn094 remaindernear 0.00E-6 1 -> 0E-8 -dqrmn095 remaindernear 0.0000E-50 1 -> 0E-54 - --- Various flavours of remaindernear by 0 -dqrmn101 remaindernear 0 0 -> NaN Division_undefined -dqrmn102 remaindernear 0 -0 -> NaN Division_undefined -dqrmn103 remaindernear -0 0 -> NaN Division_undefined -dqrmn104 remaindernear -0 -0 -> NaN Division_undefined -dqrmn105 remaindernear 0.0E5 0 -> NaN Division_undefined -dqrmn106 remaindernear 0.000 0 -> NaN Division_undefined --- [Some think this next group should be Division_by_zero exception, but --- IEEE 854 is explicit that it is Invalid operation .. for --- remainder-near, anyway] -dqrmn107 remaindernear 0.0001 0 -> NaN Invalid_operation -dqrmn108 remaindernear 0.01 0 -> NaN Invalid_operation -dqrmn109 remaindernear 0.1 0 -> NaN Invalid_operation -dqrmn110 remaindernear 1 0 -> NaN Invalid_operation -dqrmn111 remaindernear 1 0.0 -> NaN Invalid_operation -dqrmn112 remaindernear 10 0.0 -> NaN Invalid_operation -dqrmn113 remaindernear 1E+100 0.0 -> NaN Invalid_operation -dqrmn114 remaindernear 1E+380 0 -> NaN Invalid_operation -dqrmn115 remaindernear 0.0001 -0 -> NaN Invalid_operation -dqrmn116 remaindernear 0.01 -0 -> NaN Invalid_operation -dqrmn119 remaindernear 0.1 -0 -> NaN Invalid_operation -dqrmn120 remaindernear 1 -0 -> NaN Invalid_operation -dqrmn121 remaindernear 1 -0.0 -> NaN Invalid_operation -dqrmn122 remaindernear 10 -0.0 -> NaN Invalid_operation -dqrmn123 remaindernear 1E+100 -0.0 -> NaN Invalid_operation -dqrmn124 remaindernear 1E+384 -0 -> NaN Invalid_operation --- and zeros on left -dqrmn130 remaindernear 0 1 -> 0 -dqrmn131 remaindernear 0 -1 -> 0 -dqrmn132 remaindernear 0.0 1 -> 0.0 -dqrmn133 remaindernear 0.0 -1 -> 0.0 -dqrmn134 remaindernear -0 1 -> -0 -dqrmn135 remaindernear -0 -1 -> -0 -dqrmn136 remaindernear -0.0 1 -> -0.0 -dqrmn137 remaindernear -0.0 -1 -> -0.0 - --- 0.5ers -dqrmn143 remaindernear 0.5 2 -> 0.5 -dqrmn144 remaindernear 0.5 2.1 -> 0.5 -dqrmn145 remaindernear 0.5 2.01 -> 0.50 -dqrmn146 remaindernear 0.5 2.001 -> 0.500 -dqrmn147 remaindernear 0.50 2 -> 0.50 -dqrmn148 remaindernear 0.50 2.01 -> 0.50 -dqrmn149 remaindernear 0.50 2.001 -> 0.500 - --- steadies -dqrmn150 remaindernear 1 1 -> 0 -dqrmn151 remaindernear 1 2 -> 1 -dqrmn152 remaindernear 1 3 -> 1 -dqrmn153 remaindernear 1 4 -> 1 -dqrmn154 remaindernear 1 5 -> 1 -dqrmn155 remaindernear 1 6 -> 1 -dqrmn156 remaindernear 1 7 -> 1 -dqrmn157 remaindernear 1 8 -> 1 -dqrmn158 remaindernear 1 9 -> 1 -dqrmn159 remaindernear 1 10 -> 1 -dqrmn160 remaindernear 1 1 -> 0 -dqrmn161 remaindernear 2 1 -> 0 -dqrmn162 remaindernear 3 1 -> 0 -dqrmn163 remaindernear 4 1 -> 0 -dqrmn164 remaindernear 5 1 -> 0 -dqrmn165 remaindernear 6 1 -> 0 -dqrmn166 remaindernear 7 1 -> 0 -dqrmn167 remaindernear 8 1 -> 0 -dqrmn168 remaindernear 9 1 -> 0 -dqrmn169 remaindernear 10 1 -> 0 - --- some differences from remainder -dqrmn171 remaindernear 0.4 1.020 -> 0.400 -dqrmn172 remaindernear 0.50 1.020 -> 0.500 -dqrmn173 remaindernear 0.51 1.020 -> 0.510 -dqrmn174 remaindernear 0.52 1.020 -> -0.500 -dqrmn175 remaindernear 0.6 1.020 -> -0.420 - --- More flavours of remaindernear by 0 -dqrmn201 remaindernear 0 0 -> NaN Division_undefined -dqrmn202 remaindernear 0.0E5 0 -> NaN Division_undefined -dqrmn203 remaindernear 0.000 0 -> NaN Division_undefined -dqrmn204 remaindernear 0.0001 0 -> NaN Invalid_operation -dqrmn205 remaindernear 0.01 0 -> NaN Invalid_operation -dqrmn206 remaindernear 0.1 0 -> NaN Invalid_operation -dqrmn207 remaindernear 1 0 -> NaN Invalid_operation -dqrmn208 remaindernear 1 0.0 -> NaN Invalid_operation -dqrmn209 remaindernear 10 0.0 -> NaN Invalid_operation -dqrmn210 remaindernear 1E+100 0.0 -> NaN Invalid_operation -dqrmn211 remaindernear 1E+380 0 -> NaN Invalid_operation - --- tests from the extended specification -dqrmn221 remaindernear 2.1 3 -> -0.9 -dqrmn222 remaindernear 10 6 -> -2 -dqrmn223 remaindernear 10 3 -> 1 -dqrmn224 remaindernear -10 3 -> -1 -dqrmn225 remaindernear 10.2 1 -> 0.2 -dqrmn226 remaindernear 10 0.3 -> 0.1 -dqrmn227 remaindernear 3.6 1.3 -> -0.3 - --- some differences from remainder -dqrmn231 remaindernear -0.4 1.020 -> -0.400 -dqrmn232 remaindernear -0.50 1.020 -> -0.500 -dqrmn233 remaindernear -0.51 1.020 -> -0.510 -dqrmn234 remaindernear -0.52 1.020 -> 0.500 -dqrmn235 remaindernear -0.6 1.020 -> 0.420 - --- high Xs -dqrmn240 remaindernear 1E+2 1.00 -> 0.00 - --- dqrmn3xx are from DiagBigDecimal -dqrmn301 remaindernear 1 3 -> 1 -dqrmn302 remaindernear 5 5 -> 0 -dqrmn303 remaindernear 13 10 -> 3 -dqrmn304 remaindernear 13 50 -> 13 -dqrmn305 remaindernear 13 100 -> 13 -dqrmn306 remaindernear 13 1000 -> 13 -dqrmn307 remaindernear .13 1 -> 0.13 -dqrmn308 remaindernear 0.133 1 -> 0.133 -dqrmn309 remaindernear 0.1033 1 -> 0.1033 -dqrmn310 remaindernear 1.033 1 -> 0.033 -dqrmn311 remaindernear 10.33 1 -> 0.33 -dqrmn312 remaindernear 10.33 10 -> 0.33 -dqrmn313 remaindernear 103.3 1 -> 0.3 -dqrmn314 remaindernear 133 10 -> 3 -dqrmn315 remaindernear 1033 10 -> 3 -dqrmn316 remaindernear 1033 50 -> -17 -dqrmn317 remaindernear 101.0 3 -> -1.0 -dqrmn318 remaindernear 102.0 3 -> 0.0 -dqrmn319 remaindernear 103.0 3 -> 1.0 -dqrmn320 remaindernear 2.40 1 -> 0.40 -dqrmn321 remaindernear 2.400 1 -> 0.400 -dqrmn322 remaindernear 2.4 1 -> 0.4 -dqrmn323 remaindernear 2.4 2 -> 0.4 -dqrmn324 remaindernear 2.400 2 -> 0.400 -dqrmn325 remaindernear 1 0.3 -> 0.1 -dqrmn326 remaindernear 1 0.30 -> 0.10 -dqrmn327 remaindernear 1 0.300 -> 0.100 -dqrmn328 remaindernear 1 0.3000 -> 0.1000 -dqrmn329 remaindernear 1.0 0.3 -> 0.1 -dqrmn330 remaindernear 1.00 0.3 -> 0.10 -dqrmn331 remaindernear 1.000 0.3 -> 0.100 -dqrmn332 remaindernear 1.0000 0.3 -> 0.1000 -dqrmn333 remaindernear 0.5 2 -> 0.5 -dqrmn334 remaindernear 0.5 2.1 -> 0.5 -dqrmn335 remaindernear 0.5 2.01 -> 0.50 -dqrmn336 remaindernear 0.5 2.001 -> 0.500 -dqrmn337 remaindernear 0.50 2 -> 0.50 -dqrmn338 remaindernear 0.50 2.01 -> 0.50 -dqrmn339 remaindernear 0.50 2.001 -> 0.500 - -dqrmn340 remaindernear 0.5 0.5000001 -> -1E-7 -dqrmn341 remaindernear 0.5 0.50000001 -> -1E-8 -dqrmn342 remaindernear 0.5 0.500000001 -> -1E-9 -dqrmn343 remaindernear 0.5 0.5000000001 -> -1E-10 -dqrmn344 remaindernear 0.5 0.50000000001 -> -1E-11 -dqrmn345 remaindernear 0.5 0.4999999 -> 1E-7 -dqrmn346 remaindernear 0.5 0.49999999 -> 1E-8 -dqrmn347 remaindernear 0.5 0.499999999 -> 1E-9 -dqrmn348 remaindernear 0.5 0.4999999999 -> 1E-10 -dqrmn349 remaindernear 0.5 0.49999999999 -> 1E-11 -dqrmn350 remaindernear 0.5 0.499999999999 -> 1E-12 - -dqrmn351 remaindernear 0.03 7 -> 0.03 -dqrmn352 remaindernear 5 2 -> 1 -dqrmn353 remaindernear 4.1 2 -> 0.1 -dqrmn354 remaindernear 4.01 2 -> 0.01 -dqrmn355 remaindernear 4.001 2 -> 0.001 -dqrmn356 remaindernear 4.0001 2 -> 0.0001 -dqrmn357 remaindernear 4.00001 2 -> 0.00001 -dqrmn358 remaindernear 4.000001 2 -> 0.000001 -dqrmn359 remaindernear 4.0000001 2 -> 1E-7 - -dqrmn360 remaindernear 1.2 0.7345 -> -0.2690 -dqrmn361 remaindernear 0.8 12 -> 0.8 -dqrmn362 remaindernear 0.8 0.2 -> 0.0 -dqrmn363 remaindernear 0.8 0.3 -> -0.1 -dqrmn364 remaindernear 0.800 12 -> 0.800 -dqrmn365 remaindernear 0.800 1.7 -> 0.800 -dqrmn366 remaindernear 2.400 2 -> 0.400 - --- round to even -dqrmn371 remaindernear 121 2 -> 1 -dqrmn372 remaindernear 122 2 -> 0 -dqrmn373 remaindernear 123 2 -> -1 -dqrmn374 remaindernear 124 2 -> 0 -dqrmn375 remaindernear 125 2 -> 1 -dqrmn376 remaindernear 126 2 -> 0 -dqrmn377 remaindernear 127 2 -> -1 - -dqrmn381 remaindernear 12345 1 -> 0 -dqrmn382 remaindernear 12345 1.0001 -> -0.2344 -dqrmn383 remaindernear 12345 1.001 -> -0.333 -dqrmn384 remaindernear 12345 1.01 -> -0.23 -dqrmn385 remaindernear 12345 1.1 -> -0.3 -dqrmn386 remaindernear 12355 4 -> -1 -dqrmn387 remaindernear 12345 4 -> 1 -dqrmn388 remaindernear 12355 4.0001 -> -1.3089 -dqrmn389 remaindernear 12345 4.0001 -> 0.6914 -dqrmn390 remaindernear 12345 4.9 -> 1.9 -dqrmn391 remaindernear 12345 4.99 -> -0.26 -dqrmn392 remaindernear 12345 4.999 -> 2.469 -dqrmn393 remaindernear 12345 4.9999 -> 0.2469 -dqrmn394 remaindernear 12345 5 -> 0 -dqrmn395 remaindernear 12345 5.0001 -> -0.2469 -dqrmn396 remaindernear 12345 5.001 -> -2.469 -dqrmn397 remaindernear 12345 5.01 -> 0.36 -dqrmn398 remaindernear 12345 5.1 -> -2.1 - --- the nasty division-by-1 cases -dqrmn401 remaindernear 0.4 1 -> 0.4 -dqrmn402 remaindernear 0.45 1 -> 0.45 -dqrmn403 remaindernear 0.455 1 -> 0.455 -dqrmn404 remaindernear 0.4555 1 -> 0.4555 -dqrmn405 remaindernear 0.45555 1 -> 0.45555 -dqrmn406 remaindernear 0.455555 1 -> 0.455555 -dqrmn407 remaindernear 0.4555555 1 -> 0.4555555 -dqrmn408 remaindernear 0.45555555 1 -> 0.45555555 -dqrmn409 remaindernear 0.455555555 1 -> 0.455555555 --- with spill... [412 exercises sticktab loop] -dqrmn411 remaindernear 0.5 1 -> 0.5 -dqrmn412 remaindernear 0.55 1 -> -0.45 -dqrmn413 remaindernear 0.555 1 -> -0.445 -dqrmn414 remaindernear 0.5555 1 -> -0.4445 -dqrmn415 remaindernear 0.55555 1 -> -0.44445 -dqrmn416 remaindernear 0.555555 1 -> -0.444445 -dqrmn417 remaindernear 0.5555555 1 -> -0.4444445 -dqrmn418 remaindernear 0.55555555 1 -> -0.44444445 -dqrmn419 remaindernear 0.555555555 1 -> -0.444444445 - --- folddowns -dqrmn421 remaindernear 1E+6144 1 -> NaN Division_impossible -dqrmn422 remaindernear 1E+6144 1E+6143 -> 0E+6111 Clamped -dqrmn423 remaindernear 1E+6144 2E+6143 -> 0E+6111 Clamped -dqrmn424 remaindernear 1E+6144 3E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped -dqrmn425 remaindernear 1E+6144 4E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped -dqrmn426 remaindernear 1E+6144 5E+6143 -> 0E+6111 Clamped -dqrmn427 remaindernear 1E+6144 6E+6143 -> -2.00000000000000000000000000000000E+6143 Clamped -dqrmn428 remaindernear 1E+6144 7E+6143 -> 3.00000000000000000000000000000000E+6143 Clamped -dqrmn429 remaindernear 1E+6144 8E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped -dqrmn430 remaindernear 1E+6144 9E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped --- tinies -dqrmn431 remaindernear 1E-6175 1E-6176 -> 0E-6176 -dqrmn432 remaindernear 1E-6175 2E-6176 -> 0E-6176 -dqrmn433 remaindernear 1E-6175 3E-6176 -> 1E-6176 Subnormal -dqrmn434 remaindernear 1E-6175 4E-6176 -> 2E-6176 Subnormal -dqrmn435 remaindernear 1E-6175 5E-6176 -> 0E-6176 -dqrmn436 remaindernear 1E-6175 6E-6176 -> -2E-6176 Subnormal -dqrmn437 remaindernear 1E-6175 7E-6176 -> 3E-6176 Subnormal -dqrmn438 remaindernear 1E-6175 8E-6176 -> 2E-6176 Subnormal -dqrmn439 remaindernear 1E-6175 9E-6176 -> 1E-6176 Subnormal -dqrmn440 remaindernear 1E-6175 10E-6176 -> 0E-6176 -dqrmn441 remaindernear 1E-6175 11E-6176 -> -1E-6176 Subnormal -dqrmn442 remaindernear 100E-6175 11E-6176 -> -1E-6176 Subnormal -dqrmn443 remaindernear 100E-6175 20E-6176 -> 0E-6176 -dqrmn444 remaindernear 100E-6175 21E-6176 -> -8E-6176 Subnormal -dqrmn445 remaindernear 100E-6175 30E-6176 -> 1.0E-6175 Subnormal - --- zero signs -dqrmn650 remaindernear 1 1 -> 0 -dqrmn651 remaindernear -1 1 -> -0 -dqrmn652 remaindernear 1 -1 -> 0 -dqrmn653 remaindernear -1 -1 -> -0 -dqrmn654 remaindernear 0 1 -> 0 -dqrmn655 remaindernear -0 1 -> -0 -dqrmn656 remaindernear 0 -1 -> 0 -dqrmn657 remaindernear -0 -1 -> -0 -dqrmn658 remaindernear 0.00 1 -> 0.00 -dqrmn659 remaindernear -0.00 1 -> -0.00 - --- Specials -dqrmn680 remaindernear Inf -Inf -> NaN Invalid_operation -dqrmn681 remaindernear Inf -1000 -> NaN Invalid_operation -dqrmn682 remaindernear Inf -1 -> NaN Invalid_operation -dqrmn683 remaindernear Inf 0 -> NaN Invalid_operation -dqrmn684 remaindernear Inf -0 -> NaN Invalid_operation -dqrmn685 remaindernear Inf 1 -> NaN Invalid_operation -dqrmn686 remaindernear Inf 1000 -> NaN Invalid_operation -dqrmn687 remaindernear Inf Inf -> NaN Invalid_operation -dqrmn688 remaindernear -1000 Inf -> -1000 -dqrmn689 remaindernear -Inf Inf -> NaN Invalid_operation -dqrmn691 remaindernear -1 Inf -> -1 -dqrmn692 remaindernear 0 Inf -> 0 -dqrmn693 remaindernear -0 Inf -> -0 -dqrmn694 remaindernear 1 Inf -> 1 -dqrmn695 remaindernear 1000 Inf -> 1000 -dqrmn696 remaindernear Inf Inf -> NaN Invalid_operation - -dqrmn700 remaindernear -Inf -Inf -> NaN Invalid_operation -dqrmn701 remaindernear -Inf -1000 -> NaN Invalid_operation -dqrmn702 remaindernear -Inf -1 -> NaN Invalid_operation -dqrmn703 remaindernear -Inf -0 -> NaN Invalid_operation -dqrmn704 remaindernear -Inf 0 -> NaN Invalid_operation -dqrmn705 remaindernear -Inf 1 -> NaN Invalid_operation -dqrmn706 remaindernear -Inf 1000 -> NaN Invalid_operation -dqrmn707 remaindernear -Inf Inf -> NaN Invalid_operation -dqrmn708 remaindernear -Inf -Inf -> NaN Invalid_operation -dqrmn709 remaindernear -1000 Inf -> -1000 -dqrmn710 remaindernear -1 -Inf -> -1 -dqrmn711 remaindernear -0 -Inf -> -0 -dqrmn712 remaindernear 0 -Inf -> 0 -dqrmn713 remaindernear 1 -Inf -> 1 -dqrmn714 remaindernear 1000 -Inf -> 1000 -dqrmn715 remaindernear Inf -Inf -> NaN Invalid_operation - -dqrmn721 remaindernear NaN -Inf -> NaN -dqrmn722 remaindernear NaN -1000 -> NaN -dqrmn723 remaindernear NaN -1 -> NaN -dqrmn724 remaindernear NaN -0 -> NaN -dqrmn725 remaindernear -NaN 0 -> -NaN -dqrmn726 remaindernear NaN 1 -> NaN -dqrmn727 remaindernear NaN 1000 -> NaN -dqrmn728 remaindernear NaN Inf -> NaN -dqrmn729 remaindernear NaN -NaN -> NaN -dqrmn730 remaindernear -Inf NaN -> NaN -dqrmn731 remaindernear -1000 NaN -> NaN -dqrmn732 remaindernear -1 NaN -> NaN -dqrmn733 remaindernear -0 -NaN -> -NaN -dqrmn734 remaindernear 0 NaN -> NaN -dqrmn735 remaindernear 1 -NaN -> -NaN -dqrmn736 remaindernear 1000 NaN -> NaN -dqrmn737 remaindernear Inf NaN -> NaN - -dqrmn741 remaindernear sNaN -Inf -> NaN Invalid_operation -dqrmn742 remaindernear sNaN -1000 -> NaN Invalid_operation -dqrmn743 remaindernear -sNaN -1 -> -NaN Invalid_operation -dqrmn744 remaindernear sNaN -0 -> NaN Invalid_operation -dqrmn745 remaindernear sNaN 0 -> NaN Invalid_operation -dqrmn746 remaindernear sNaN 1 -> NaN Invalid_operation -dqrmn747 remaindernear sNaN 1000 -> NaN Invalid_operation -dqrmn749 remaindernear sNaN NaN -> NaN Invalid_operation -dqrmn750 remaindernear sNaN sNaN -> NaN Invalid_operation -dqrmn751 remaindernear NaN sNaN -> NaN Invalid_operation -dqrmn752 remaindernear -Inf sNaN -> NaN Invalid_operation -dqrmn753 remaindernear -1000 sNaN -> NaN Invalid_operation -dqrmn754 remaindernear -1 sNaN -> NaN Invalid_operation -dqrmn755 remaindernear -0 sNaN -> NaN Invalid_operation -dqrmn756 remaindernear 0 sNaN -> NaN Invalid_operation -dqrmn757 remaindernear 1 sNaN -> NaN Invalid_operation -dqrmn758 remaindernear 1000 sNaN -> NaN Invalid_operation -dqrmn759 remaindernear Inf -sNaN -> -NaN Invalid_operation - --- propaging NaNs -dqrmn760 remaindernear NaN1 NaN7 -> NaN1 -dqrmn761 remaindernear sNaN2 NaN8 -> NaN2 Invalid_operation -dqrmn762 remaindernear NaN3 sNaN9 -> NaN9 Invalid_operation -dqrmn763 remaindernear sNaN4 sNaN10 -> NaN4 Invalid_operation -dqrmn764 remaindernear 15 NaN11 -> NaN11 -dqrmn765 remaindernear NaN6 NaN12 -> NaN6 -dqrmn766 remaindernear Inf NaN13 -> NaN13 -dqrmn767 remaindernear NaN14 -Inf -> NaN14 -dqrmn768 remaindernear 0 NaN15 -> NaN15 -dqrmn769 remaindernear NaN16 -0 -> NaN16 - --- edge cases of impossible -dqrmn770 remaindernear 1234500000000000000000067890123456 10 -> -4 -dqrmn771 remaindernear 1234500000000000000000067890123456 1 -> 0 -dqrmn772 remaindernear 1234500000000000000000067890123456 0.1 -> NaN Division_impossible -dqrmn773 remaindernear 1234500000000000000000067890123456 0.01 -> NaN Division_impossible - --- long operand checks -dqrmn801 remaindernear 12345678000 100 -> 0 -dqrmn802 remaindernear 1 12345678000 -> 1 -dqrmn803 remaindernear 1234567800 10 -> 0 -dqrmn804 remaindernear 1 1234567800 -> 1 -dqrmn805 remaindernear 1234567890 10 -> 0 -dqrmn806 remaindernear 1 1234567890 -> 1 -dqrmn807 remaindernear 1234567891 10 -> 1 -dqrmn808 remaindernear 1 1234567891 -> 1 -dqrmn809 remaindernear 12345678901 100 -> 1 -dqrmn810 remaindernear 1 12345678901 -> 1 -dqrmn811 remaindernear 1234567896 10 -> -4 -dqrmn812 remaindernear 1 1234567896 -> 1 - -dqrmn821 remaindernear 12345678000 100 -> 0 -dqrmn822 remaindernear 1 12345678000 -> 1 -dqrmn823 remaindernear 1234567800 10 -> 0 -dqrmn824 remaindernear 1 1234567800 -> 1 -dqrmn825 remaindernear 1234567890 10 -> 0 -dqrmn826 remaindernear 1 1234567890 -> 1 -dqrmn827 remaindernear 1234567891 10 -> 1 -dqrmn828 remaindernear 1 1234567891 -> 1 -dqrmn829 remaindernear 12345678901 100 -> 1 -dqrmn830 remaindernear 1 12345678901 -> 1 -dqrmn831 remaindernear 1234567896 10 -> -4 -dqrmn832 remaindernear 1 1234567896 -> 1 - --- from divideint -dqrmn840 remaindernear 100000000.0 1 -> 0.0 -dqrmn841 remaindernear 100000000.4 1 -> 0.4 -dqrmn842 remaindernear 100000000.5 1 -> 0.5 -dqrmn843 remaindernear 100000000.9 1 -> -0.1 -dqrmn844 remaindernear 100000000.999 1 -> -0.001 -dqrmn850 remaindernear 100000003 5 -> -2 -dqrmn851 remaindernear 10000003 5 -> -2 -dqrmn852 remaindernear 1000003 5 -> -2 -dqrmn853 remaindernear 100003 5 -> -2 -dqrmn854 remaindernear 10003 5 -> -2 -dqrmn855 remaindernear 1003 5 -> -2 -dqrmn856 remaindernear 103 5 -> -2 -dqrmn857 remaindernear 13 5 -> -2 -dqrmn858 remaindernear 1 5 -> 1 - --- Vladimir's cases 1234567890123456 -dqrmn860 remaindernear 123.0e1 1000000000000000 -> 1230 -dqrmn861 remaindernear 1230 1000000000000000 -> 1230 -dqrmn862 remaindernear 12.3e2 1000000000000000 -> 1230 -dqrmn863 remaindernear 1.23e3 1000000000000000 -> 1230 -dqrmn864 remaindernear 123e1 1000000000000000 -> 1230 -dqrmn870 remaindernear 123e1 1000000000000000 -> 1230 -dqrmn871 remaindernear 123e1 100000000000000 -> 1230 -dqrmn872 remaindernear 123e1 10000000000000 -> 1230 -dqrmn873 remaindernear 123e1 1000000000000 -> 1230 -dqrmn874 remaindernear 123e1 100000000000 -> 1230 -dqrmn875 remaindernear 123e1 10000000000 -> 1230 -dqrmn876 remaindernear 123e1 1000000000 -> 1230 -dqrmn877 remaindernear 123e1 100000000 -> 1230 -dqrmn878 remaindernear 1230 100000000 -> 1230 -dqrmn879 remaindernear 123e1 10000000 -> 1230 -dqrmn880 remaindernear 123e1 1000000 -> 1230 -dqrmn881 remaindernear 123e1 100000 -> 1230 -dqrmn882 remaindernear 123e1 10000 -> 1230 -dqrmn883 remaindernear 123e1 1000 -> 230 -dqrmn884 remaindernear 123e1 100 -> 30 -dqrmn885 remaindernear 123e1 10 -> 0 -dqrmn886 remaindernear 123e1 1 -> 0 - -dqrmn890 remaindernear 123e1 2000000000000000 -> 1230 -dqrmn891 remaindernear 123e1 200000000000000 -> 1230 -dqrmn892 remaindernear 123e1 20000000000000 -> 1230 -dqrmn893 remaindernear 123e1 2000000000000 -> 1230 -dqrmn894 remaindernear 123e1 200000000000 -> 1230 -dqrmn895 remaindernear 123e1 20000000000 -> 1230 -dqrmn896 remaindernear 123e1 2000000000 -> 1230 -dqrmn897 remaindernear 123e1 200000000 -> 1230 -dqrmn899 remaindernear 123e1 20000000 -> 1230 -dqrmn900 remaindernear 123e1 2000000 -> 1230 -dqrmn901 remaindernear 123e1 200000 -> 1230 -dqrmn902 remaindernear 123e1 20000 -> 1230 -dqrmn903 remaindernear 123e1 2000 -> -770 -dqrmn904 remaindernear 123e1 200 -> 30 -dqrmn905 remaindernear 123e1 20 -> -10 -dqrmn906 remaindernear 123e1 2 -> 0 - -dqrmn910 remaindernear 123e1 5000000000000000 -> 1230 -dqrmn911 remaindernear 123e1 500000000000000 -> 1230 -dqrmn912 remaindernear 123e1 50000000000000 -> 1230 -dqrmn913 remaindernear 123e1 5000000000000 -> 1230 -dqrmn914 remaindernear 123e1 500000000000 -> 1230 -dqrmn915 remaindernear 123e1 50000000000 -> 1230 -dqrmn916 remaindernear 123e1 5000000000 -> 1230 -dqrmn917 remaindernear 123e1 500000000 -> 1230 -dqrmn919 remaindernear 123e1 50000000 -> 1230 -dqrmn920 remaindernear 123e1 5000000 -> 1230 -dqrmn921 remaindernear 123e1 500000 -> 1230 -dqrmn922 remaindernear 123e1 50000 -> 1230 -dqrmn923 remaindernear 123e1 5000 -> 1230 -dqrmn924 remaindernear 123e1 500 -> 230 -dqrmn925 remaindernear 123e1 50 -> -20 -dqrmn926 remaindernear 123e1 5 -> 0 - -dqrmn930 remaindernear 123e1 9000000000000000 -> 1230 -dqrmn931 remaindernear 123e1 900000000000000 -> 1230 -dqrmn932 remaindernear 123e1 90000000000000 -> 1230 -dqrmn933 remaindernear 123e1 9000000000000 -> 1230 -dqrmn934 remaindernear 123e1 900000000000 -> 1230 -dqrmn935 remaindernear 123e1 90000000000 -> 1230 -dqrmn936 remaindernear 123e1 9000000000 -> 1230 -dqrmn937 remaindernear 123e1 900000000 -> 1230 -dqrmn939 remaindernear 123e1 90000000 -> 1230 -dqrmn940 remaindernear 123e1 9000000 -> 1230 -dqrmn941 remaindernear 123e1 900000 -> 1230 -dqrmn942 remaindernear 123e1 90000 -> 1230 -dqrmn943 remaindernear 123e1 9000 -> 1230 -dqrmn944 remaindernear 123e1 900 -> 330 -dqrmn945 remaindernear 123e1 90 -> -30 -dqrmn946 remaindernear 123e1 9 -> -3 - -dqrmn950 remaindernear 123e1 1000000000000000 -> 1230 -dqrmn961 remaindernear 123e1 2999999999999999 -> 1230 -dqrmn962 remaindernear 123e1 3999999999999999 -> 1230 -dqrmn963 remaindernear 123e1 4999999999999999 -> 1230 -dqrmn964 remaindernear 123e1 5999999999999999 -> 1230 -dqrmn965 remaindernear 123e1 6999999999999999 -> 1230 -dqrmn966 remaindernear 123e1 7999999999999999 -> 1230 -dqrmn967 remaindernear 123e1 8999999999999999 -> 1230 -dqrmn968 remaindernear 123e1 9999999999999999 -> 1230 -dqrmn969 remaindernear 123e1 9876543210987654 -> 1230 - -dqrmn980 remaindernear 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally - --- overflow and underflow tests [from divide] -dqrmn1051 remaindernear 1e+277 1e-311 -> NaN Division_impossible -dqrmn1052 remaindernear 1e+277 -1e-311 -> NaN Division_impossible -dqrmn1053 remaindernear -1e+277 1e-311 -> NaN Division_impossible -dqrmn1054 remaindernear -1e+277 -1e-311 -> NaN Division_impossible -dqrmn1055 remaindernear 1e-277 1e+311 -> 1E-277 -dqrmn1056 remaindernear 1e-277 -1e+311 -> 1E-277 -dqrmn1057 remaindernear -1e-277 1e+311 -> -1E-277 -dqrmn1058 remaindernear -1e-277 -1e+311 -> -1E-277 - --- Gyuris example -dqrmn1070 remainder 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 8.336804418094040989630006819881709E-6143 - --- destructive subtract -dqrmn1101 remaindernear 1234567890123456789012345678901234 1.000000000000000000000000000000001 -> -0.234567890123456789012345678901233 -dqrmn1102 remaindernear 1234567890123456789012345678901234 1.00000000000000000000000000000001 -> -0.34567890123456789012345678901222 -dqrmn1103 remaindernear 1234567890123456789012345678901234 1.0000000000000000000000000000001 -> -0.4567890123456789012345678901111 -dqrmn1104 remaindernear 1234567890123456789012345678901255 4.000000000000000000000000000000001 -> -1.308641972530864197253086419725314 -dqrmn1105 remaindernear 1234567890123456789012345678901234 4.000000000000000000000000000000001 -> 1.691358027469135802746913580274692 -dqrmn1106 remaindernear 1234567890123456789012345678901234 4.9999999999999999999999999999999 -> -1.3086421975308642197530864219748 -dqrmn1107 remaindernear 1234567890123456789012345678901234 4.99999999999999999999999999999999 -> 1.46913578024691357802469135780247 -dqrmn1108 remaindernear 1234567890123456789012345678901234 4.999999999999999999999999999999999 -> -0.753086421975308642197530864219753 -dqrmn1109 remaindernear 1234567890123456789012345678901234 5.000000000000000000000000000000001 -> -1.246913578024691357802469135780247 -dqrmn1110 remaindernear 1234567890123456789012345678901234 5.00000000000000000000000000000001 -> 1.53086421975308642197530864219754 -dqrmn1111 remaindernear 1234567890123456789012345678901234 5.0000000000000000000000000000001 -> -0.6913578024691357802469135780242 - --- Null tests -dqrmn1000 remaindernear 10 # -> NaN Invalid_operation -dqrmn1001 remaindernear # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/dqRotate.decTest b/qdecimal/test/tc_full/dqRotate.decTest deleted file mode 100644 index 972a94f..0000000 --- a/qdecimal/test/tc_full/dqRotate.decTest +++ /dev/null @@ -1,298 +0,0 @@ ------------------------------------------------------------------------- --- dqRotate.decTest -- rotate decQuad coefficient left or right -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqrot001 rotate 0 0 -> 0 -dqrot002 rotate 0 2 -> 0 -dqrot003 rotate 1 2 -> 100 -dqrot004 rotate 1 33 -> 1000000000000000000000000000000000 -dqrot005 rotate 1 34 -> 1 -dqrot006 rotate 1 -1 -> 1000000000000000000000000000000000 -dqrot007 rotate 0 -2 -> 0 -dqrot008 rotate 1234567890123456789012345678901234 -1 -> 4123456789012345678901234567890123 -dqrot009 rotate 1234567890123456789012345678901234 -33 -> 2345678901234567890123456789012341 -dqrot010 rotate 1234567890123456789012345678901234 -34 -> 1234567890123456789012345678901234 -dqrot011 rotate 9934567890123456789012345678901234 -33 -> 9345678901234567890123456789012349 -dqrot012 rotate 9934567890123456789012345678901234 -34 -> 9934567890123456789012345678901234 - --- rhs must be an integer -dqrot015 rotate 1 1.5 -> NaN Invalid_operation -dqrot016 rotate 1 1.0 -> NaN Invalid_operation -dqrot017 rotate 1 0.1 -> NaN Invalid_operation -dqrot018 rotate 1 0.0 -> NaN Invalid_operation -dqrot019 rotate 1 1E+1 -> NaN Invalid_operation -dqrot020 rotate 1 1E+99 -> NaN Invalid_operation -dqrot021 rotate 1 Inf -> NaN Invalid_operation -dqrot022 rotate 1 -Inf -> NaN Invalid_operation --- and |rhs| <= precision -dqrot025 rotate 1 -1000 -> NaN Invalid_operation -dqrot026 rotate 1 -35 -> NaN Invalid_operation -dqrot027 rotate 1 35 -> NaN Invalid_operation -dqrot028 rotate 1 1000 -> NaN Invalid_operation - --- full pattern -dqrot030 rotate 1234567890123456789012345678901234 -34 -> 1234567890123456789012345678901234 -dqrot031 rotate 1234567890123456789012345678901234 -33 -> 2345678901234567890123456789012341 -dqrot032 rotate 1234567890123456789012345678901234 -32 -> 3456789012345678901234567890123412 -dqrot033 rotate 1234567890123456789012345678901234 -31 -> 4567890123456789012345678901234123 -dqrot034 rotate 1234567890123456789012345678901234 -30 -> 5678901234567890123456789012341234 -dqrot035 rotate 1234567890123456789012345678901234 -29 -> 6789012345678901234567890123412345 -dqrot036 rotate 1234567890123456789012345678901234 -28 -> 7890123456789012345678901234123456 -dqrot037 rotate 1234567890123456789012345678901234 -27 -> 8901234567890123456789012341234567 -dqrot038 rotate 1234567890123456789012345678901234 -26 -> 9012345678901234567890123412345678 -dqrot039 rotate 1234567890123456789012345678901234 -25 -> 123456789012345678901234123456789 -dqrot040 rotate 1234567890123456789012345678901234 -24 -> 1234567890123456789012341234567890 -dqrot041 rotate 1234567890123456789012345678901234 -23 -> 2345678901234567890123412345678901 -dqrot042 rotate 1234567890123456789012345678901234 -22 -> 3456789012345678901234123456789012 -dqrot043 rotate 1234567890123456789012345678901234 -21 -> 4567890123456789012341234567890123 -dqrot044 rotate 1234567890123456789012345678901234 -20 -> 5678901234567890123412345678901234 -dqrot045 rotate 1234567890123456789012345678901234 -19 -> 6789012345678901234123456789012345 -dqrot047 rotate 1234567890123456789012345678901234 -18 -> 7890123456789012341234567890123456 -dqrot048 rotate 1234567890123456789012345678901234 -17 -> 8901234567890123412345678901234567 -dqrot049 rotate 1234567890123456789012345678901234 -16 -> 9012345678901234123456789012345678 -dqrot050 rotate 1234567890123456789012345678901234 -15 -> 123456789012341234567890123456789 -dqrot051 rotate 1234567890123456789012345678901234 -14 -> 1234567890123412345678901234567890 -dqrot052 rotate 1234567890123456789012345678901234 -13 -> 2345678901234123456789012345678901 -dqrot053 rotate 1234567890123456789012345678901234 -12 -> 3456789012341234567890123456789012 -dqrot054 rotate 1234567890123456789012345678901234 -11 -> 4567890123412345678901234567890123 -dqrot055 rotate 1234567890123456789012345678901234 -10 -> 5678901234123456789012345678901234 -dqrot056 rotate 1234567890123456789012345678901234 -9 -> 6789012341234567890123456789012345 -dqrot057 rotate 1234567890123456789012345678901234 -8 -> 7890123412345678901234567890123456 -dqrot058 rotate 1234567890123456789012345678901234 -7 -> 8901234123456789012345678901234567 -dqrot059 rotate 1234567890123456789012345678901234 -6 -> 9012341234567890123456789012345678 -dqrot060 rotate 1234567890123456789012345678901234 -5 -> 123412345678901234567890123456789 -dqrot061 rotate 1234567890123456789012345678901234 -4 -> 1234123456789012345678901234567890 -dqrot062 rotate 1234567890123456789012345678901234 -3 -> 2341234567890123456789012345678901 -dqrot063 rotate 1234567890123456789012345678901234 -2 -> 3412345678901234567890123456789012 -dqrot064 rotate 1234567890123456789012345678901234 -1 -> 4123456789012345678901234567890123 -dqrot065 rotate 1234567890123456789012345678901234 -0 -> 1234567890123456789012345678901234 - -dqrot066 rotate 1234567890123456789012345678901234 +0 -> 1234567890123456789012345678901234 -dqrot067 rotate 1234567890123456789012345678901234 +1 -> 2345678901234567890123456789012341 -dqrot068 rotate 1234567890123456789012345678901234 +2 -> 3456789012345678901234567890123412 -dqrot069 rotate 1234567890123456789012345678901234 +3 -> 4567890123456789012345678901234123 -dqrot070 rotate 1234567890123456789012345678901234 +4 -> 5678901234567890123456789012341234 -dqrot071 rotate 1234567890123456789012345678901234 +5 -> 6789012345678901234567890123412345 -dqrot072 rotate 1234567890123456789012345678901234 +6 -> 7890123456789012345678901234123456 -dqrot073 rotate 1234567890123456789012345678901234 +7 -> 8901234567890123456789012341234567 -dqrot074 rotate 1234567890123456789012345678901234 +8 -> 9012345678901234567890123412345678 -dqrot075 rotate 1234567890123456789012345678901234 +9 -> 123456789012345678901234123456789 -dqrot076 rotate 1234567890123456789012345678901234 +10 -> 1234567890123456789012341234567890 -dqrot077 rotate 1234567890123456789012345678901234 +11 -> 2345678901234567890123412345678901 -dqrot078 rotate 1234567890123456789012345678901234 +12 -> 3456789012345678901234123456789012 -dqrot079 rotate 1234567890123456789012345678901234 +13 -> 4567890123456789012341234567890123 -dqrot080 rotate 1234567890123456789012345678901234 +14 -> 5678901234567890123412345678901234 -dqrot081 rotate 1234567890123456789012345678901234 +15 -> 6789012345678901234123456789012345 -dqrot082 rotate 1234567890123456789012345678901234 +16 -> 7890123456789012341234567890123456 -dqrot083 rotate 1234567890123456789012345678901234 +17 -> 8901234567890123412345678901234567 -dqrot084 rotate 1234567890123456789012345678901234 +18 -> 9012345678901234123456789012345678 -dqrot085 rotate 1234567890123456789012345678901234 +19 -> 123456789012341234567890123456789 -dqrot086 rotate 1234567890123456789012345678901234 +20 -> 1234567890123412345678901234567890 -dqrot087 rotate 1234567890123456789012345678901234 +21 -> 2345678901234123456789012345678901 -dqrot088 rotate 1234567890123456789012345678901234 +22 -> 3456789012341234567890123456789012 -dqrot089 rotate 1234567890123456789012345678901234 +23 -> 4567890123412345678901234567890123 -dqrot090 rotate 1234567890123456789012345678901234 +24 -> 5678901234123456789012345678901234 -dqrot091 rotate 1234567890123456789012345678901234 +25 -> 6789012341234567890123456789012345 -dqrot092 rotate 1234567890123456789012345678901234 +26 -> 7890123412345678901234567890123456 -dqrot093 rotate 1234567890123456789012345678901234 +27 -> 8901234123456789012345678901234567 -dqrot094 rotate 1234567890123456789012345678901234 +28 -> 9012341234567890123456789012345678 -dqrot095 rotate 1234567890123456789012345678901234 +29 -> 123412345678901234567890123456789 -dqrot096 rotate 1234567890123456789012345678901234 +30 -> 1234123456789012345678901234567890 -dqrot097 rotate 1234567890123456789012345678901234 +31 -> 2341234567890123456789012345678901 -dqrot098 rotate 1234567890123456789012345678901234 +32 -> 3412345678901234567890123456789012 -dqrot099 rotate 1234567890123456789012345678901234 +33 -> 4123456789012345678901234567890123 -dqrot100 rotate 1234567890123456789012345678901234 +34 -> 1234567890123456789012345678901234 - --- zeros -dqrot270 rotate 0E-10 +29 -> 0E-10 -dqrot271 rotate 0E-10 -29 -> 0E-10 -dqrot272 rotate 0.000 +29 -> 0.000 -dqrot273 rotate 0.000 -29 -> 0.000 -dqrot274 rotate 0E+10 +29 -> 0E+10 -dqrot275 rotate 0E+10 -29 -> 0E+10 -dqrot276 rotate -0E-10 +29 -> -0E-10 -dqrot277 rotate -0E-10 -29 -> -0E-10 -dqrot278 rotate -0.000 +29 -> -0.000 -dqrot279 rotate -0.000 -29 -> -0.000 -dqrot280 rotate -0E+10 +29 -> -0E+10 -dqrot281 rotate -0E+10 -29 -> -0E+10 - --- Nmax, Nmin, Ntiny -dqrot141 rotate 9.999999999999999999999999999999999E+6144 -1 -> 9.999999999999999999999999999999999E+6144 -dqrot142 rotate 9.999999999999999999999999999999999E+6144 -33 -> 9.999999999999999999999999999999999E+6144 -dqrot143 rotate 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 -dqrot144 rotate 9.999999999999999999999999999999999E+6144 33 -> 9.999999999999999999999999999999999E+6144 -dqrot145 rotate 1E-6143 -1 -> 1.000000000000000000000000000000000E-6110 -dqrot146 rotate 1E-6143 -33 -> 1.0E-6142 -dqrot147 rotate 1E-6143 1 -> 1.0E-6142 -dqrot148 rotate 1E-6143 33 -> 1.000000000000000000000000000000000E-6110 -dqrot151 rotate 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144 -dqrot152 rotate 1.000000000000000000000000000000000E-6143 -33 -> 1E-6176 -dqrot153 rotate 1.000000000000000000000000000000000E-6143 1 -> 1E-6176 -dqrot154 rotate 1.000000000000000000000000000000000E-6143 33 -> 1.00000000000000000000000000000000E-6144 -dqrot155 rotate 9.000000000000000000000000000000000E-6143 -1 -> 9.00000000000000000000000000000000E-6144 -dqrot156 rotate 9.000000000000000000000000000000000E-6143 -33 -> 9E-6176 -dqrot157 rotate 9.000000000000000000000000000000000E-6143 1 -> 9E-6176 -dqrot158 rotate 9.000000000000000000000000000000000E-6143 33 -> 9.00000000000000000000000000000000E-6144 -dqrot160 rotate 1E-6176 -1 -> 1.000000000000000000000000000000000E-6143 -dqrot161 rotate 1E-6176 -33 -> 1.0E-6175 -dqrot162 rotate 1E-6176 1 -> 1.0E-6175 -dqrot163 rotate 1E-6176 33 -> 1.000000000000000000000000000000000E-6143 --- negatives -dqrot171 rotate -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 -dqrot172 rotate -9.999999999999999999999999999999999E+6144 -33 -> -9.999999999999999999999999999999999E+6144 -dqrot173 rotate -9.999999999999999999999999999999999E+6144 1 -> -9.999999999999999999999999999999999E+6144 -dqrot174 rotate -9.999999999999999999999999999999999E+6144 33 -> -9.999999999999999999999999999999999E+6144 -dqrot175 rotate -1E-6143 -1 -> -1.000000000000000000000000000000000E-6110 -dqrot176 rotate -1E-6143 -33 -> -1.0E-6142 -dqrot177 rotate -1E-6143 1 -> -1.0E-6142 -dqrot178 rotate -1E-6143 33 -> -1.000000000000000000000000000000000E-6110 -dqrot181 rotate -1.000000000000000000000000000000000E-6143 -1 -> -1.00000000000000000000000000000000E-6144 -dqrot182 rotate -1.000000000000000000000000000000000E-6143 -33 -> -1E-6176 -dqrot183 rotate -1.000000000000000000000000000000000E-6143 1 -> -1E-6176 -dqrot184 rotate -1.000000000000000000000000000000000E-6143 33 -> -1.00000000000000000000000000000000E-6144 -dqrot185 rotate -9.000000000000000000000000000000000E-6143 -1 -> -9.00000000000000000000000000000000E-6144 -dqrot186 rotate -9.000000000000000000000000000000000E-6143 -33 -> -9E-6176 -dqrot187 rotate -9.000000000000000000000000000000000E-6143 1 -> -9E-6176 -dqrot188 rotate -9.000000000000000000000000000000000E-6143 33 -> -9.00000000000000000000000000000000E-6144 -dqrot190 rotate -1E-6176 -1 -> -1.000000000000000000000000000000000E-6143 -dqrot191 rotate -1E-6176 -33 -> -1.0E-6175 -dqrot192 rotate -1E-6176 1 -> -1.0E-6175 -dqrot193 rotate -1E-6176 33 -> -1.000000000000000000000000000000000E-6143 - --- more negatives (of sanities) -dqrot201 rotate -0 0 -> -0 -dqrot202 rotate -0 2 -> -0 -dqrot203 rotate -1 2 -> -100 -dqrot204 rotate -1 33 -> -1000000000000000000000000000000000 -dqrot205 rotate -1 34 -> -1 -dqrot206 rotate -1 -1 -> -1000000000000000000000000000000000 -dqrot207 rotate -0 -2 -> -0 -dqrot208 rotate -1234567890123456789012345678901234 -1 -> -4123456789012345678901234567890123 -dqrot209 rotate -1234567890123456789012345678901234 -33 -> -2345678901234567890123456789012341 -dqrot210 rotate -1234567890123456789012345678901234 -34 -> -1234567890123456789012345678901234 -dqrot211 rotate -9934567890123456789012345678901234 -33 -> -9345678901234567890123456789012349 -dqrot212 rotate -9934567890123456789012345678901234 -34 -> -9934567890123456789012345678901234 - - --- Specials; NaNs are handled as usual -dqrot781 rotate -Inf -8 -> -Infinity -dqrot782 rotate -Inf -1 -> -Infinity -dqrot783 rotate -Inf -0 -> -Infinity -dqrot784 rotate -Inf 0 -> -Infinity -dqrot785 rotate -Inf 1 -> -Infinity -dqrot786 rotate -Inf 8 -> -Infinity -dqrot787 rotate -1000 -Inf -> NaN Invalid_operation -dqrot788 rotate -Inf -Inf -> NaN Invalid_operation -dqrot789 rotate -1 -Inf -> NaN Invalid_operation -dqrot790 rotate -0 -Inf -> NaN Invalid_operation -dqrot791 rotate 0 -Inf -> NaN Invalid_operation -dqrot792 rotate 1 -Inf -> NaN Invalid_operation -dqrot793 rotate 1000 -Inf -> NaN Invalid_operation -dqrot794 rotate Inf -Inf -> NaN Invalid_operation - -dqrot800 rotate Inf -Inf -> NaN Invalid_operation -dqrot801 rotate Inf -8 -> Infinity -dqrot802 rotate Inf -1 -> Infinity -dqrot803 rotate Inf -0 -> Infinity -dqrot804 rotate Inf 0 -> Infinity -dqrot805 rotate Inf 1 -> Infinity -dqrot806 rotate Inf 8 -> Infinity -dqrot807 rotate Inf Inf -> NaN Invalid_operation -dqrot808 rotate -1000 Inf -> NaN Invalid_operation -dqrot809 rotate -Inf Inf -> NaN Invalid_operation -dqrot810 rotate -1 Inf -> NaN Invalid_operation -dqrot811 rotate -0 Inf -> NaN Invalid_operation -dqrot812 rotate 0 Inf -> NaN Invalid_operation -dqrot813 rotate 1 Inf -> NaN Invalid_operation -dqrot814 rotate 1000 Inf -> NaN Invalid_operation -dqrot815 rotate Inf Inf -> NaN Invalid_operation - -dqrot821 rotate NaN -Inf -> NaN -dqrot822 rotate NaN -1000 -> NaN -dqrot823 rotate NaN -1 -> NaN -dqrot824 rotate NaN -0 -> NaN -dqrot825 rotate NaN 0 -> NaN -dqrot826 rotate NaN 1 -> NaN -dqrot827 rotate NaN 1000 -> NaN -dqrot828 rotate NaN Inf -> NaN -dqrot829 rotate NaN NaN -> NaN -dqrot830 rotate -Inf NaN -> NaN -dqrot831 rotate -1000 NaN -> NaN -dqrot832 rotate -1 NaN -> NaN -dqrot833 rotate -0 NaN -> NaN -dqrot834 rotate 0 NaN -> NaN -dqrot835 rotate 1 NaN -> NaN -dqrot836 rotate 1000 NaN -> NaN -dqrot837 rotate Inf NaN -> NaN - -dqrot841 rotate sNaN -Inf -> NaN Invalid_operation -dqrot842 rotate sNaN -1000 -> NaN Invalid_operation -dqrot843 rotate sNaN -1 -> NaN Invalid_operation -dqrot844 rotate sNaN -0 -> NaN Invalid_operation -dqrot845 rotate sNaN 0 -> NaN Invalid_operation -dqrot846 rotate sNaN 1 -> NaN Invalid_operation -dqrot847 rotate sNaN 1000 -> NaN Invalid_operation -dqrot848 rotate sNaN NaN -> NaN Invalid_operation -dqrot849 rotate sNaN sNaN -> NaN Invalid_operation -dqrot850 rotate NaN sNaN -> NaN Invalid_operation -dqrot851 rotate -Inf sNaN -> NaN Invalid_operation -dqrot852 rotate -1000 sNaN -> NaN Invalid_operation -dqrot853 rotate -1 sNaN -> NaN Invalid_operation -dqrot854 rotate -0 sNaN -> NaN Invalid_operation -dqrot855 rotate 0 sNaN -> NaN Invalid_operation -dqrot856 rotate 1 sNaN -> NaN Invalid_operation -dqrot857 rotate 1000 sNaN -> NaN Invalid_operation -dqrot858 rotate Inf sNaN -> NaN Invalid_operation -dqrot859 rotate NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqrot861 rotate NaN1 -Inf -> NaN1 -dqrot862 rotate +NaN2 -1000 -> NaN2 -dqrot863 rotate NaN3 1000 -> NaN3 -dqrot864 rotate NaN4 Inf -> NaN4 -dqrot865 rotate NaN5 +NaN6 -> NaN5 -dqrot866 rotate -Inf NaN7 -> NaN7 -dqrot867 rotate -1000 NaN8 -> NaN8 -dqrot868 rotate 1000 NaN9 -> NaN9 -dqrot869 rotate Inf +NaN10 -> NaN10 -dqrot871 rotate sNaN11 -Inf -> NaN11 Invalid_operation -dqrot872 rotate sNaN12 -1000 -> NaN12 Invalid_operation -dqrot873 rotate sNaN13 1000 -> NaN13 Invalid_operation -dqrot874 rotate sNaN14 NaN17 -> NaN14 Invalid_operation -dqrot875 rotate sNaN15 sNaN18 -> NaN15 Invalid_operation -dqrot876 rotate NaN16 sNaN19 -> NaN19 Invalid_operation -dqrot877 rotate -Inf +sNaN20 -> NaN20 Invalid_operation -dqrot878 rotate -1000 sNaN21 -> NaN21 Invalid_operation -dqrot879 rotate 1000 sNaN22 -> NaN22 Invalid_operation -dqrot880 rotate Inf sNaN23 -> NaN23 Invalid_operation -dqrot881 rotate +NaN25 +sNaN24 -> NaN24 Invalid_operation -dqrot882 rotate -NaN26 NaN28 -> -NaN26 -dqrot883 rotate -sNaN27 sNaN29 -> -NaN27 Invalid_operation -dqrot884 rotate 1000 -NaN30 -> -NaN30 -dqrot885 rotate 1000 -sNaN31 -> -NaN31 Invalid_operation diff --git a/qdecimal/test/tc_full/dqSameQuantum.decTest b/qdecimal/test/tc_full/dqSameQuantum.decTest deleted file mode 100644 index 92ad7fa..0000000 --- a/qdecimal/test/tc_full/dqSameQuantum.decTest +++ /dev/null @@ -1,389 +0,0 @@ ------------------------------------------------------------------------- --- dqSameQuantum.decTest -- check decQuad quantums match -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- All operands and results are decQuads. -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqsamq001 samequantum 0 0 -> 1 -dqsamq002 samequantum 0 1 -> 1 -dqsamq003 samequantum 1 0 -> 1 -dqsamq004 samequantum 1 1 -> 1 - -dqsamq011 samequantum 10 1E+1 -> 0 -dqsamq012 samequantum 10E+1 10E+1 -> 1 -dqsamq013 samequantum 100 10E+1 -> 0 -dqsamq014 samequantum 100 1E+2 -> 0 -dqsamq015 samequantum 0.1 1E-2 -> 0 -dqsamq016 samequantum 0.1 1E-1 -> 1 -dqsamq017 samequantum 0.1 1E-0 -> 0 -dqsamq018 samequantum 999 999 -> 1 -dqsamq019 samequantum 999E-1 99.9 -> 1 -dqsamq020 samequantum 111E-1 22.2 -> 1 -dqsamq021 samequantum 111E-1 1234.2 -> 1 - --- zeros -dqsamq030 samequantum 0.0 1.1 -> 1 -dqsamq031 samequantum 0.0 1.11 -> 0 -dqsamq032 samequantum 0.0 0 -> 0 -dqsamq033 samequantum 0.0 0.0 -> 1 -dqsamq034 samequantum 0.0 0.00 -> 0 -dqsamq035 samequantum 0E+1 0E+0 -> 0 -dqsamq036 samequantum 0E+1 0E+1 -> 1 -dqsamq037 samequantum 0E+1 0E+2 -> 0 -dqsamq038 samequantum 0E-17 0E-16 -> 0 -dqsamq039 samequantum 0E-17 0E-17 -> 1 -dqsamq040 samequantum 0E-17 0E-18 -> 0 -dqsamq041 samequantum 0E-17 0.0E-15 -> 0 -dqsamq042 samequantum 0E-17 0.0E-16 -> 1 -dqsamq043 samequantum 0E-17 0.0E-17 -> 0 -dqsamq044 samequantum -0E-17 0.0E-16 -> 1 -dqsamq045 samequantum 0E-17 -0.0E-17 -> 0 -dqsamq046 samequantum 0E-17 -0.0E-16 -> 1 -dqsamq047 samequantum -0E-17 0.0E-17 -> 0 -dqsamq048 samequantum -0E-17 -0.0E-16 -> 1 -dqsamq049 samequantum -0E-17 -0.0E-17 -> 0 - --- Nmax, Nmin, Ntiny -dqsamq051 samequantum 9.99999999999999999999999999999999E+6144 9.99999999999999999999999999999999E+6144 -> 1 -dqsamq052 samequantum 1E-6143 1E-6143 -> 1 -dqsamq053 samequantum 1.00000000000000000000000000000000E-6143 1.00000000000000000000000000000000E-6143 -> 1 -dqsamq054 samequantum 1E-6176 1E-6176 -> 1 -dqsamq055 samequantum 9.99999999999999999999999999999999E+6144 9.99999999999999999999999999999999E+6144 -> 1 -dqsamq056 samequantum 1E-6143 1E-6143 -> 1 -dqsamq057 samequantum 1.00000000000000000000000000000000E-6143 1.00000000000000000000000000000000E-6143 -> 1 -dqsamq058 samequantum 1E-6176 1E-6176 -> 1 - -dqsamq061 samequantum -1E-6176 -1E-6176 -> 1 -dqsamq062 samequantum -1.00000000000000000000000000000000E-6143 -1.00000000000000000000000000000000E-6143 -> 1 -dqsamq063 samequantum -1E-6143 -1E-6143 -> 1 -dqsamq064 samequantum -9.99999999999999999999999999999999E+6144 -9.99999999999999999999999999999999E+6144 -> 1 -dqsamq065 samequantum -1E-6176 -1E-6176 -> 1 -dqsamq066 samequantum -1.00000000000000000000000000000000E-6143 -1.00000000000000000000000000000000E-6143 -> 1 -dqsamq067 samequantum -1E-6143 -1E-6143 -> 1 -dqsamq068 samequantum -9.99999999999999999999999999999999E+6144 -9.99999999999999999999999999999999E+6144 -> 1 - -dqsamq071 samequantum -4E-6176 -1E-6176 -> 1 -dqsamq072 samequantum -4.00000000000000000000000000000000E-6143 -1.00000000000000000000000000004000E-6143 -> 1 -dqsamq073 samequantum -4E-6143 -1E-6143 -> 1 -dqsamq074 samequantum -4.99999999999999999999999999999999E+6144 -9.99949999999999999999999999999999E+6144 -> 1 -dqsamq075 samequantum -4E-6176 -1E-6176 -> 1 -dqsamq076 samequantum -4.00000000000000000000000000000000E-6143 -1.00400000000000000000000000000000E-6143 -> 1 -dqsamq077 samequantum -4E-6143 -1E-6143 -> 1 -dqsamq078 samequantum -4.99999999999999999999999999999999E+6144 -9.94999999999999999999999999999999E+6144 -> 1 - -dqsamq081 samequantum -4E-1006 -1E-6176 -> 0 -dqsamq082 samequantum -4.00000000000000000000000000000000E-6143 -1.00004000000000000000000000000000E-6136 -> 0 -dqsamq083 samequantum -4E-6140 -1E-6143 -> 0 -dqsamq084 samequantum -4.99999999999999999999999999999999E+6144 -9.99949999999999999999999999999999E+6136 -> 0 -dqsamq085 samequantum -4E-1006 -1E-6176 -> 0 -dqsamq086 samequantum -4.00000000000000000000000000000000E-6143 -1.00400000000000000000000000000000E-6136 -> 0 -dqsamq087 samequantum -4E-6133 -1E-6143 -> 0 -dqsamq088 samequantum -4.99999999999999999999999999999999E+6144 -9.94999999999999999999999999999999E+6136 -> 0 - --- specials & combinations -dqsamq0110 samequantum -Inf -Inf -> 1 -dqsamq0111 samequantum -Inf Inf -> 1 -dqsamq0112 samequantum -Inf NaN -> 0 -dqsamq0113 samequantum -Inf -7E+3 -> 0 -dqsamq0114 samequantum -Inf -7 -> 0 -dqsamq0115 samequantum -Inf -7E-3 -> 0 -dqsamq0116 samequantum -Inf -0E-3 -> 0 -dqsamq0117 samequantum -Inf -0 -> 0 -dqsamq0118 samequantum -Inf -0E+3 -> 0 -dqsamq0119 samequantum -Inf 0E-3 -> 0 -dqsamq0120 samequantum -Inf 0 -> 0 -dqsamq0121 samequantum -Inf 0E+3 -> 0 -dqsamq0122 samequantum -Inf 7E-3 -> 0 -dqsamq0123 samequantum -Inf 7 -> 0 -dqsamq0124 samequantum -Inf 7E+3 -> 0 -dqsamq0125 samequantum -Inf sNaN -> 0 - -dqsamq0210 samequantum Inf -Inf -> 1 -dqsamq0211 samequantum Inf Inf -> 1 -dqsamq0212 samequantum Inf NaN -> 0 -dqsamq0213 samequantum Inf -7E+3 -> 0 -dqsamq0214 samequantum Inf -7 -> 0 -dqsamq0215 samequantum Inf -7E-3 -> 0 -dqsamq0216 samequantum Inf -0E-3 -> 0 -dqsamq0217 samequantum Inf -0 -> 0 -dqsamq0218 samequantum Inf -0E+3 -> 0 -dqsamq0219 samequantum Inf 0E-3 -> 0 -dqsamq0220 samequantum Inf 0 -> 0 -dqsamq0221 samequantum Inf 0E+3 -> 0 -dqsamq0222 samequantum Inf 7E-3 -> 0 -dqsamq0223 samequantum Inf 7 -> 0 -dqsamq0224 samequantum Inf 7E+3 -> 0 -dqsamq0225 samequantum Inf sNaN -> 0 - -dqsamq0310 samequantum NaN -Inf -> 0 -dqsamq0311 samequantum NaN Inf -> 0 -dqsamq0312 samequantum NaN NaN -> 1 -dqsamq0313 samequantum NaN -7E+3 -> 0 -dqsamq0314 samequantum NaN -7 -> 0 -dqsamq0315 samequantum NaN -7E-3 -> 0 -dqsamq0316 samequantum NaN -0E-3 -> 0 -dqsamq0317 samequantum NaN -0 -> 0 -dqsamq0318 samequantum NaN -0E+3 -> 0 -dqsamq0319 samequantum NaN 0E-3 -> 0 -dqsamq0320 samequantum NaN 0 -> 0 -dqsamq0321 samequantum NaN 0E+3 -> 0 -dqsamq0322 samequantum NaN 7E-3 -> 0 -dqsamq0323 samequantum NaN 7 -> 0 -dqsamq0324 samequantum NaN 7E+3 -> 0 -dqsamq0325 samequantum NaN sNaN -> 1 - -dqsamq0410 samequantum -7E+3 -Inf -> 0 -dqsamq0411 samequantum -7E+3 Inf -> 0 -dqsamq0412 samequantum -7E+3 NaN -> 0 -dqsamq0413 samequantum -7E+3 -7E+3 -> 1 -dqsamq0414 samequantum -7E+3 -7 -> 0 -dqsamq0415 samequantum -7E+3 -7E-3 -> 0 -dqsamq0416 samequantum -7E+3 -0E-3 -> 0 -dqsamq0417 samequantum -7E+3 -0 -> 0 -dqsamq0418 samequantum -7E+3 -0E+3 -> 1 -dqsamq0419 samequantum -7E+3 0E-3 -> 0 -dqsamq0420 samequantum -7E+3 0 -> 0 -dqsamq0421 samequantum -7E+3 0E+3 -> 1 -dqsamq0422 samequantum -7E+3 7E-3 -> 0 -dqsamq0423 samequantum -7E+3 7 -> 0 -dqsamq0424 samequantum -7E+3 7E+3 -> 1 -dqsamq0425 samequantum -7E+3 sNaN -> 0 - -dqsamq0510 samequantum -7 -Inf -> 0 -dqsamq0511 samequantum -7 Inf -> 0 -dqsamq0512 samequantum -7 NaN -> 0 -dqsamq0513 samequantum -7 -7E+3 -> 0 -dqsamq0514 samequantum -7 -7 -> 1 -dqsamq0515 samequantum -7 -7E-3 -> 0 -dqsamq0516 samequantum -7 -0E-3 -> 0 -dqsamq0517 samequantum -7 -0 -> 1 -dqsamq0518 samequantum -7 -0E+3 -> 0 -dqsamq0519 samequantum -7 0E-3 -> 0 -dqsamq0520 samequantum -7 0 -> 1 -dqsamq0521 samequantum -7 0E+3 -> 0 -dqsamq0522 samequantum -7 7E-3 -> 0 -dqsamq0523 samequantum -7 7 -> 1 -dqsamq0524 samequantum -7 7E+3 -> 0 -dqsamq0525 samequantum -7 sNaN -> 0 - -dqsamq0610 samequantum -7E-3 -Inf -> 0 -dqsamq0611 samequantum -7E-3 Inf -> 0 -dqsamq0612 samequantum -7E-3 NaN -> 0 -dqsamq0613 samequantum -7E-3 -7E+3 -> 0 -dqsamq0614 samequantum -7E-3 -7 -> 0 -dqsamq0615 samequantum -7E-3 -7E-3 -> 1 -dqsamq0616 samequantum -7E-3 -0E-3 -> 1 -dqsamq0617 samequantum -7E-3 -0 -> 0 -dqsamq0618 samequantum -7E-3 -0E+3 -> 0 -dqsamq0619 samequantum -7E-3 0E-3 -> 1 -dqsamq0620 samequantum -7E-3 0 -> 0 -dqsamq0621 samequantum -7E-3 0E+3 -> 0 -dqsamq0622 samequantum -7E-3 7E-3 -> 1 -dqsamq0623 samequantum -7E-3 7 -> 0 -dqsamq0624 samequantum -7E-3 7E+3 -> 0 -dqsamq0625 samequantum -7E-3 sNaN -> 0 - -dqsamq0710 samequantum -0E-3 -Inf -> 0 -dqsamq0711 samequantum -0E-3 Inf -> 0 -dqsamq0712 samequantum -0E-3 NaN -> 0 -dqsamq0713 samequantum -0E-3 -7E+3 -> 0 -dqsamq0714 samequantum -0E-3 -7 -> 0 -dqsamq0715 samequantum -0E-3 -7E-3 -> 1 -dqsamq0716 samequantum -0E-3 -0E-3 -> 1 -dqsamq0717 samequantum -0E-3 -0 -> 0 -dqsamq0718 samequantum -0E-3 -0E+3 -> 0 -dqsamq0719 samequantum -0E-3 0E-3 -> 1 -dqsamq0720 samequantum -0E-3 0 -> 0 -dqsamq0721 samequantum -0E-3 0E+3 -> 0 -dqsamq0722 samequantum -0E-3 7E-3 -> 1 -dqsamq0723 samequantum -0E-3 7 -> 0 -dqsamq0724 samequantum -0E-3 7E+3 -> 0 -dqsamq0725 samequantum -0E-3 sNaN -> 0 - -dqsamq0810 samequantum -0 -Inf -> 0 -dqsamq0811 samequantum -0 Inf -> 0 -dqsamq0812 samequantum -0 NaN -> 0 -dqsamq0813 samequantum -0 -7E+3 -> 0 -dqsamq0814 samequantum -0 -7 -> 1 -dqsamq0815 samequantum -0 -7E-3 -> 0 -dqsamq0816 samequantum -0 -0E-3 -> 0 -dqsamq0817 samequantum -0 -0 -> 1 -dqsamq0818 samequantum -0 -0E+3 -> 0 -dqsamq0819 samequantum -0 0E-3 -> 0 -dqsamq0820 samequantum -0 0 -> 1 -dqsamq0821 samequantum -0 0E+3 -> 0 -dqsamq0822 samequantum -0 7E-3 -> 0 -dqsamq0823 samequantum -0 7 -> 1 -dqsamq0824 samequantum -0 7E+3 -> 0 -dqsamq0825 samequantum -0 sNaN -> 0 - -dqsamq0910 samequantum -0E+3 -Inf -> 0 -dqsamq0911 samequantum -0E+3 Inf -> 0 -dqsamq0912 samequantum -0E+3 NaN -> 0 -dqsamq0913 samequantum -0E+3 -7E+3 -> 1 -dqsamq0914 samequantum -0E+3 -7 -> 0 -dqsamq0915 samequantum -0E+3 -7E-3 -> 0 -dqsamq0916 samequantum -0E+3 -0E-3 -> 0 -dqsamq0917 samequantum -0E+3 -0 -> 0 -dqsamq0918 samequantum -0E+3 -0E+3 -> 1 -dqsamq0919 samequantum -0E+3 0E-3 -> 0 -dqsamq0920 samequantum -0E+3 0 -> 0 -dqsamq0921 samequantum -0E+3 0E+3 -> 1 -dqsamq0922 samequantum -0E+3 7E-3 -> 0 -dqsamq0923 samequantum -0E+3 7 -> 0 -dqsamq0924 samequantum -0E+3 7E+3 -> 1 -dqsamq0925 samequantum -0E+3 sNaN -> 0 - -dqsamq1110 samequantum 0E-3 -Inf -> 0 -dqsamq1111 samequantum 0E-3 Inf -> 0 -dqsamq1112 samequantum 0E-3 NaN -> 0 -dqsamq1113 samequantum 0E-3 -7E+3 -> 0 -dqsamq1114 samequantum 0E-3 -7 -> 0 -dqsamq1115 samequantum 0E-3 -7E-3 -> 1 -dqsamq1116 samequantum 0E-3 -0E-3 -> 1 -dqsamq1117 samequantum 0E-3 -0 -> 0 -dqsamq1118 samequantum 0E-3 -0E+3 -> 0 -dqsamq1119 samequantum 0E-3 0E-3 -> 1 -dqsamq1120 samequantum 0E-3 0 -> 0 -dqsamq1121 samequantum 0E-3 0E+3 -> 0 -dqsamq1122 samequantum 0E-3 7E-3 -> 1 -dqsamq1123 samequantum 0E-3 7 -> 0 -dqsamq1124 samequantum 0E-3 7E+3 -> 0 -dqsamq1125 samequantum 0E-3 sNaN -> 0 - -dqsamq1210 samequantum 0 -Inf -> 0 -dqsamq1211 samequantum 0 Inf -> 0 -dqsamq1212 samequantum 0 NaN -> 0 -dqsamq1213 samequantum 0 -7E+3 -> 0 -dqsamq1214 samequantum 0 -7 -> 1 -dqsamq1215 samequantum 0 -7E-3 -> 0 -dqsamq1216 samequantum 0 -0E-3 -> 0 -dqsamq1217 samequantum 0 -0 -> 1 -dqsamq1218 samequantum 0 -0E+3 -> 0 -dqsamq1219 samequantum 0 0E-3 -> 0 -dqsamq1220 samequantum 0 0 -> 1 -dqsamq1221 samequantum 0 0E+3 -> 0 -dqsamq1222 samequantum 0 7E-3 -> 0 -dqsamq1223 samequantum 0 7 -> 1 -dqsamq1224 samequantum 0 7E+3 -> 0 -dqsamq1225 samequantum 0 sNaN -> 0 - -dqsamq1310 samequantum 0E+3 -Inf -> 0 -dqsamq1311 samequantum 0E+3 Inf -> 0 -dqsamq1312 samequantum 0E+3 NaN -> 0 -dqsamq1313 samequantum 0E+3 -7E+3 -> 1 -dqsamq1314 samequantum 0E+3 -7 -> 0 -dqsamq1315 samequantum 0E+3 -7E-3 -> 0 -dqsamq1316 samequantum 0E+3 -0E-3 -> 0 -dqsamq1317 samequantum 0E+3 -0 -> 0 -dqsamq1318 samequantum 0E+3 -0E+3 -> 1 -dqsamq1319 samequantum 0E+3 0E-3 -> 0 -dqsamq1320 samequantum 0E+3 0 -> 0 -dqsamq1321 samequantum 0E+3 0E+3 -> 1 -dqsamq1322 samequantum 0E+3 7E-3 -> 0 -dqsamq1323 samequantum 0E+3 7 -> 0 -dqsamq1324 samequantum 0E+3 7E+3 -> 1 -dqsamq1325 samequantum 0E+3 sNaN -> 0 - -dqsamq1410 samequantum 7E-3 -Inf -> 0 -dqsamq1411 samequantum 7E-3 Inf -> 0 -dqsamq1412 samequantum 7E-3 NaN -> 0 -dqsamq1413 samequantum 7E-3 -7E+3 -> 0 -dqsamq1414 samequantum 7E-3 -7 -> 0 -dqsamq1415 samequantum 7E-3 -7E-3 -> 1 -dqsamq1416 samequantum 7E-3 -0E-3 -> 1 -dqsamq1417 samequantum 7E-3 -0 -> 0 -dqsamq1418 samequantum 7E-3 -0E+3 -> 0 -dqsamq1419 samequantum 7E-3 0E-3 -> 1 -dqsamq1420 samequantum 7E-3 0 -> 0 -dqsamq1421 samequantum 7E-3 0E+3 -> 0 -dqsamq1422 samequantum 7E-3 7E-3 -> 1 -dqsamq1423 samequantum 7E-3 7 -> 0 -dqsamq1424 samequantum 7E-3 7E+3 -> 0 -dqsamq1425 samequantum 7E-3 sNaN -> 0 - -dqsamq1510 samequantum 7 -Inf -> 0 -dqsamq1511 samequantum 7 Inf -> 0 -dqsamq1512 samequantum 7 NaN -> 0 -dqsamq1513 samequantum 7 -7E+3 -> 0 -dqsamq1514 samequantum 7 -7 -> 1 -dqsamq1515 samequantum 7 -7E-3 -> 0 -dqsamq1516 samequantum 7 -0E-3 -> 0 -dqsamq1517 samequantum 7 -0 -> 1 -dqsamq1518 samequantum 7 -0E+3 -> 0 -dqsamq1519 samequantum 7 0E-3 -> 0 -dqsamq1520 samequantum 7 0 -> 1 -dqsamq1521 samequantum 7 0E+3 -> 0 -dqsamq1522 samequantum 7 7E-3 -> 0 -dqsamq1523 samequantum 7 7 -> 1 -dqsamq1524 samequantum 7 7E+3 -> 0 -dqsamq1525 samequantum 7 sNaN -> 0 - -dqsamq1610 samequantum 7E+3 -Inf -> 0 -dqsamq1611 samequantum 7E+3 Inf -> 0 -dqsamq1612 samequantum 7E+3 NaN -> 0 -dqsamq1613 samequantum 7E+3 -7E+3 -> 1 -dqsamq1614 samequantum 7E+3 -7 -> 0 -dqsamq1615 samequantum 7E+3 -7E-3 -> 0 -dqsamq1616 samequantum 7E+3 -0E-3 -> 0 -dqsamq1617 samequantum 7E+3 -0 -> 0 -dqsamq1618 samequantum 7E+3 -0E+3 -> 1 -dqsamq1619 samequantum 7E+3 0E-3 -> 0 -dqsamq1620 samequantum 7E+3 0 -> 0 -dqsamq1621 samequantum 7E+3 0E+3 -> 1 -dqsamq1622 samequantum 7E+3 7E-3 -> 0 -dqsamq1623 samequantum 7E+3 7 -> 0 -dqsamq1624 samequantum 7E+3 7E+3 -> 1 -dqsamq1625 samequantum 7E+3 sNaN -> 0 - -dqsamq1710 samequantum sNaN -Inf -> 0 -dqsamq1711 samequantum sNaN Inf -> 0 -dqsamq1712 samequantum sNaN NaN -> 1 -dqsamq1713 samequantum sNaN -7E+3 -> 0 -dqsamq1714 samequantum sNaN -7 -> 0 -dqsamq1715 samequantum sNaN -7E-3 -> 0 -dqsamq1716 samequantum sNaN -0E-3 -> 0 -dqsamq1717 samequantum sNaN -0 -> 0 -dqsamq1718 samequantum sNaN -0E+3 -> 0 -dqsamq1719 samequantum sNaN 0E-3 -> 0 -dqsamq1720 samequantum sNaN 0 -> 0 -dqsamq1721 samequantum sNaN 0E+3 -> 0 -dqsamq1722 samequantum sNaN 7E-3 -> 0 -dqsamq1723 samequantum sNaN 7 -> 0 -dqsamq1724 samequantum sNaN 7E+3 -> 0 -dqsamq1725 samequantum sNaN sNaN -> 1 --- noisy NaNs -dqsamq1730 samequantum sNaN3 sNaN3 -> 1 -dqsamq1731 samequantum sNaN3 sNaN4 -> 1 -dqsamq1732 samequantum NaN3 NaN3 -> 1 -dqsamq1733 samequantum NaN3 NaN4 -> 1 -dqsamq1734 samequantum sNaN3 3 -> 0 -dqsamq1735 samequantum NaN3 3 -> 0 -dqsamq1736 samequantum 4 sNaN4 -> 0 -dqsamq1737 samequantum 3 NaN3 -> 0 -dqsamq1738 samequantum Inf sNaN4 -> 0 -dqsamq1739 samequantum -Inf NaN3 -> 0 - diff --git a/qdecimal/test/tc_full/dqScaleB.decTest b/qdecimal/test/tc_full/dqScaleB.decTest deleted file mode 100644 index affc1af..0000000 --- a/qdecimal/test/tc_full/dqScaleB.decTest +++ /dev/null @@ -1,260 +0,0 @@ ------------------------------------------------------------------------- --- dqScalebB.decTest -- scale a decQuad by powers of 10 -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Max |rhs| is 2*(6144+34) = 12356 - --- Sanity checks -dqscb001 scaleb 7.50 10 -> 7.50E+10 -dqscb002 scaleb 7.50 3 -> 7.50E+3 -dqscb003 scaleb 7.50 2 -> 750 -dqscb004 scaleb 7.50 1 -> 75.0 -dqscb005 scaleb 7.50 0 -> 7.50 -dqscb006 scaleb 7.50 -1 -> 0.750 -dqscb007 scaleb 7.50 -2 -> 0.0750 -dqscb008 scaleb 7.50 -10 -> 7.50E-10 -dqscb009 scaleb -7.50 3 -> -7.50E+3 -dqscb010 scaleb -7.50 2 -> -750 -dqscb011 scaleb -7.50 1 -> -75.0 -dqscb012 scaleb -7.50 0 -> -7.50 -dqscb013 scaleb -7.50 -1 -> -0.750 - --- Infinities -dqscb014 scaleb Infinity 1 -> Infinity -dqscb015 scaleb -Infinity 2 -> -Infinity -dqscb016 scaleb Infinity -1 -> Infinity -dqscb017 scaleb -Infinity -2 -> -Infinity - --- Next two are somewhat undefined in 754r; treat as non-integer -dqscb018 scaleb 10 Infinity -> NaN Invalid_operation -dqscb019 scaleb 10 -Infinity -> NaN Invalid_operation - --- NaNs are undefined in 754r; assume usual processing --- NaNs, 0 payload -dqscb021 scaleb NaN 1 -> NaN -dqscb022 scaleb -NaN -1 -> -NaN -dqscb023 scaleb sNaN 1 -> NaN Invalid_operation -dqscb024 scaleb -sNaN 1 -> -NaN Invalid_operation -dqscb025 scaleb 4 NaN -> NaN -dqscb026 scaleb -Inf -NaN -> -NaN -dqscb027 scaleb 4 sNaN -> NaN Invalid_operation -dqscb028 scaleb Inf -sNaN -> -NaN Invalid_operation - --- non-integer RHS -dqscb030 scaleb 1.23 1 -> 12.3 -dqscb031 scaleb 1.23 1.00 -> NaN Invalid_operation -dqscb032 scaleb 1.23 1.1 -> NaN Invalid_operation -dqscb033 scaleb 1.23 1.01 -> NaN Invalid_operation -dqscb034 scaleb 1.23 0.01 -> NaN Invalid_operation -dqscb035 scaleb 1.23 0.11 -> NaN Invalid_operation -dqscb036 scaleb 1.23 0.999999999 -> NaN Invalid_operation -dqscb037 scaleb 1.23 -1 -> 0.123 -dqscb0614 scaleb 1.23 -1.00 -> NaN Invalid_operation -dqscb039 scaleb 1.23 -1.1 -> NaN Invalid_operation -dqscb040 scaleb 1.23 -1.01 -> NaN Invalid_operation -dqscb041 scaleb 1.23 -0.01 -> NaN Invalid_operation -dqscb042 scaleb 1.23 -0.11 -> NaN Invalid_operation -dqscb043 scaleb 1.23 -0.999999999 -> NaN Invalid_operation -dqscb044 scaleb 1.23 0.1 -> NaN Invalid_operation -dqscb045 scaleb 1.23 1E+1 -> NaN Invalid_operation -dqscb046 scaleb 1.23 1.1234E+6 -> NaN Invalid_operation -dqscb047 scaleb 1.23 1.123E+4 -> NaN Invalid_operation - --- out-of range RHS -dqscb120 scaleb 1.23 12355 -> Infinity Overflow Inexact Rounded -dqscb121 scaleb 1.23 12356 -> Infinity Overflow Inexact Rounded -dqscb122 scaleb 1.23 12357 -> NaN Invalid_operation -dqscb123 scaleb 1.23 12358 -> NaN Invalid_operation -dqscb124 scaleb 1.23 -12355 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqscb125 scaleb 1.23 -12356 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqscb126 scaleb 1.23 -12357 -> NaN Invalid_operation -dqscb127 scaleb 1.23 -12358 -> NaN Invalid_operation - --- NaNs, non-0 payload --- propagating NaNs -dqscb861 scaleb NaN01 -Inf -> NaN1 -dqscb862 scaleb -NaN02 -1000 -> -NaN2 -dqscb863 scaleb NaN03 1000 -> NaN3 -dqscb864 scaleb NaN04 Inf -> NaN4 -dqscb865 scaleb NaN05 NaN61 -> NaN5 -dqscb866 scaleb -Inf -NaN71 -> -NaN71 -dqscb867 scaleb -1000 NaN81 -> NaN81 -dqscb868 scaleb 1000 NaN91 -> NaN91 -dqscb869 scaleb Inf NaN101 -> NaN101 -dqscb871 scaleb sNaN011 -Inf -> NaN11 Invalid_operation -dqscb872 scaleb sNaN012 -1000 -> NaN12 Invalid_operation -dqscb873 scaleb -sNaN013 1000 -> -NaN13 Invalid_operation -dqscb874 scaleb sNaN014 NaN171 -> NaN14 Invalid_operation -dqscb875 scaleb sNaN015 sNaN181 -> NaN15 Invalid_operation -dqscb876 scaleb NaN016 sNaN191 -> NaN191 Invalid_operation -dqscb877 scaleb -Inf sNaN201 -> NaN201 Invalid_operation -dqscb878 scaleb -1000 sNaN211 -> NaN211 Invalid_operation -dqscb879 scaleb 1000 -sNaN221 -> -NaN221 Invalid_operation -dqscb880 scaleb Inf sNaN231 -> NaN231 Invalid_operation -dqscb881 scaleb NaN025 sNaN241 -> NaN241 Invalid_operation - --- finites -dqscb051 scaleb 7 -2 -> 0.07 -dqscb052 scaleb -7 -2 -> -0.07 -dqscb053 scaleb 75 -2 -> 0.75 -dqscb054 scaleb -75 -2 -> -0.75 -dqscb055 scaleb 7.50 -2 -> 0.0750 -dqscb056 scaleb -7.50 -2 -> -0.0750 -dqscb057 scaleb 7.500 -2 -> 0.07500 -dqscb058 scaleb -7.500 -2 -> -0.07500 -dqscb061 scaleb 7 -1 -> 0.7 -dqscb062 scaleb -7 -1 -> -0.7 -dqscb063 scaleb 75 -1 -> 7.5 -dqscb064 scaleb -75 -1 -> -7.5 -dqscb065 scaleb 7.50 -1 -> 0.750 -dqscb066 scaleb -7.50 -1 -> -0.750 -dqscb067 scaleb 7.500 -1 -> 0.7500 -dqscb068 scaleb -7.500 -1 -> -0.7500 -dqscb071 scaleb 7 0 -> 7 -dqscb072 scaleb -7 0 -> -7 -dqscb073 scaleb 75 0 -> 75 -dqscb074 scaleb -75 0 -> -75 -dqscb075 scaleb 7.50 0 -> 7.50 -dqscb076 scaleb -7.50 0 -> -7.50 -dqscb077 scaleb 7.500 0 -> 7.500 -dqscb078 scaleb -7.500 0 -> -7.500 -dqscb081 scaleb 7 1 -> 7E+1 -dqscb082 scaleb -7 1 -> -7E+1 -dqscb083 scaleb 75 1 -> 7.5E+2 -dqscb084 scaleb -75 1 -> -7.5E+2 -dqscb085 scaleb 7.50 1 -> 75.0 -dqscb086 scaleb -7.50 1 -> -75.0 -dqscb087 scaleb 7.500 1 -> 75.00 -dqscb088 scaleb -7.500 1 -> -75.00 -dqscb091 scaleb 7 2 -> 7E+2 -dqscb092 scaleb -7 2 -> -7E+2 -dqscb093 scaleb 75 2 -> 7.5E+3 -dqscb094 scaleb -75 2 -> -7.5E+3 -dqscb095 scaleb 7.50 2 -> 750 -dqscb096 scaleb -7.50 2 -> -750 -dqscb097 scaleb 7.500 2 -> 750.0 -dqscb098 scaleb -7.500 2 -> -750.0 - --- zeros -dqscb111 scaleb 0 1 -> 0E+1 -dqscb112 scaleb -0 2 -> -0E+2 -dqscb113 scaleb 0E+4 3 -> 0E+7 -dqscb114 scaleb -0E+4 4 -> -0E+8 -dqscb115 scaleb 0.0000 5 -> 0E+1 -dqscb116 scaleb -0.0000 6 -> -0E+2 -dqscb117 scaleb 0E-141 7 -> 0E-134 -dqscb118 scaleb -0E-141 8 -> -0E-133 - --- Nmax, Nmin, Ntiny -dqscb132 scaleb 9.999999999999999999999999999999999E+6144 +6144 -> Infinity Overflow Inexact Rounded -dqscb133 scaleb 9.999999999999999999999999999999999E+6144 +10 -> Infinity Overflow Inexact Rounded -dqscb134 scaleb 9.999999999999999999999999999999999E+6144 +1 -> Infinity Overflow Inexact Rounded -dqscb135 scaleb 9.999999999999999999999999999999999E+6144 0 -> 9.999999999999999999999999999999999E+6144 -dqscb136 scaleb 9.999999999999999999999999999999999E+6144 -1 -> 9.999999999999999999999999999999999E+6143 -dqscb137 scaleb 1E-6143 +1 -> 1E-6142 -dqscb1614 scaleb 1E-6143 -0 -> 1E-6143 -dqscb139 scaleb 1E-6143 -1 -> 1E-6144 Subnormal -dqscb140 scaleb 1.000000000000000000000000000000000E-6143 +1 -> 1.000000000000000000000000000000000E-6142 -dqscb141 scaleb 1.000000000000000000000000000000000E-6143 0 -> 1.000000000000000000000000000000000E-6143 -dqscb142 scaleb 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144 Subnormal Rounded -dqscb143 scaleb 1E-6176 +1 -> 1E-6175 Subnormal -dqscb144 scaleb 1E-6176 -0 -> 1E-6176 Subnormal -dqscb145 scaleb 1E-6176 -1 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped - -dqscb150 scaleb -1E-6176 +1 -> -1E-6175 Subnormal -dqscb151 scaleb -1E-6176 -0 -> -1E-6176 Subnormal -dqscb152 scaleb -1E-6176 -1 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqscb153 scaleb -1.000000000000000000000000000000000E-6143 +1 -> -1.000000000000000000000000000000000E-6142 -dqscb154 scaleb -1.000000000000000000000000000000000E-6143 +0 -> -1.000000000000000000000000000000000E-6143 -dqscb155 scaleb -1.000000000000000000000000000000000E-6143 -1 -> -1.00000000000000000000000000000000E-6144 Subnormal Rounded -dqscb156 scaleb -1E-6143 +1 -> -1E-6142 -dqscb157 scaleb -1E-6143 -0 -> -1E-6143 -dqscb158 scaleb -1E-6143 -1 -> -1E-6144 Subnormal -dqscb159 scaleb -9.999999999999999999999999999999999E+6144 +1 -> -Infinity Overflow Inexact Rounded -dqscb160 scaleb -9.999999999999999999999999999999999E+6144 +0 -> -9.999999999999999999999999999999999E+6144 -dqscb161 scaleb -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6143 -dqscb162 scaleb -9E+6144 +1 -> -Infinity Overflow Inexact Rounded -dqscb163 scaleb -1E+6144 +1 -> -Infinity Overflow Inexact Rounded - --- some Origami --- (these check that overflow is being done correctly) -dqscb171 scaleb 1000E+6109 +1 -> 1.000E+6113 -dqscb172 scaleb 1000E+6110 +1 -> 1.000E+6114 -dqscb173 scaleb 1000E+6111 +1 -> 1.0000E+6115 Clamped -dqscb174 scaleb 1000E+6112 +1 -> 1.00000E+6116 Clamped -dqscb175 scaleb 1000E+6113 +1 -> 1.000000E+6117 Clamped -dqscb176 scaleb 1000E+6114 +1 -> 1.0000000E+6118 Clamped -dqscb177 scaleb 1000E+6131 +1 -> 1.000000000000000000000000E+6135 Clamped -dqscb178 scaleb 1000E+6132 +1 -> 1.0000000000000000000000000E+6136 Clamped -dqscb179 scaleb 1000E+6133 +1 -> 1.00000000000000000000000000E+6137 Clamped -dqscb180 scaleb 1000E+6134 +1 -> 1.000000000000000000000000000E+6138 Clamped -dqscb181 scaleb 1000E+6135 +1 -> 1.0000000000000000000000000000E+6139 Clamped -dqscb182 scaleb 1000E+6136 +1 -> 1.00000000000000000000000000000E+6140 Clamped -dqscb183 scaleb 1000E+6137 +1 -> 1.000000000000000000000000000000E+6141 Clamped -dqscb184 scaleb 1000E+6138 +1 -> 1.0000000000000000000000000000000E+6142 Clamped -dqscb185 scaleb 1000E+6139 +1 -> 1.00000000000000000000000000000000E+6143 Clamped -dqscb186 scaleb 1000E+6140 +1 -> 1.000000000000000000000000000000000E+6144 Clamped -dqscb187 scaleb 1000E+6141 +1 -> Infinity Overflow Inexact Rounded - --- and a few more subnormal truncations --- (these check that underflow is being done correctly) -dqscb221 scaleb 1.000000000000000000000000000000000E-6143 0 -> 1.000000000000000000000000000000000E-6143 -dqscb222 scaleb 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144 Subnormal Rounded -dqscb223 scaleb 1.000000000000000000000000000000000E-6143 -2 -> 1.0000000000000000000000000000000E-6145 Subnormal Rounded -dqscb224 scaleb 1.000000000000000000000000000000000E-6143 -3 -> 1.000000000000000000000000000000E-6146 Subnormal Rounded -dqscb225 scaleb 1.000000000000000000000000000000000E-6143 -4 -> 1.00000000000000000000000000000E-6147 Subnormal Rounded -dqscb226 scaleb 1.000000000000000000000000000000000E-6143 -5 -> 1.0000000000000000000000000000E-6148 Subnormal Rounded -dqscb227 scaleb 1.000000000000000000000000000000000E-6143 -6 -> 1.000000000000000000000000000E-6149 Subnormal Rounded -dqscb228 scaleb 1.000000000000000000000000000000000E-6143 -7 -> 1.00000000000000000000000000E-6150 Subnormal Rounded -dqscb229 scaleb 1.000000000000000000000000000000000E-6143 -8 -> 1.0000000000000000000000000E-6151 Subnormal Rounded -dqscb230 scaleb 1.000000000000000000000000000000000E-6143 -9 -> 1.000000000000000000000000E-6152 Subnormal Rounded -dqscb231 scaleb 1.000000000000000000000000000000000E-6143 -10 -> 1.00000000000000000000000E-6153 Subnormal Rounded -dqscb232 scaleb 1.000000000000000000000000000000000E-6143 -11 -> 1.0000000000000000000000E-6154 Subnormal Rounded -dqscb233 scaleb 1.000000000000000000000000000000000E-6143 -12 -> 1.000000000000000000000E-6155 Subnormal Rounded -dqscb234 scaleb 1.000000000000000000000000000000000E-6143 -13 -> 1.00000000000000000000E-6156 Subnormal Rounded -dqscb235 scaleb 1.000000000000000000000000000000000E-6143 -14 -> 1.0000000000000000000E-6157 Subnormal Rounded -dqscb236 scaleb 1.000000000000000000000000000000000E-6143 -15 -> 1.000000000000000000E-6158 Subnormal Rounded -dqscb237 scaleb 1.000000000000000000000000000000000E-6143 -16 -> 1.00000000000000000E-6159 Subnormal Rounded -dqscb238 scaleb 1.000000000000000000000000000000000E-6143 -17 -> 1.0000000000000000E-6160 Subnormal Rounded -dqscb239 scaleb 1.000000000000000000000000000000000E-6143 -18 -> 1.000000000000000E-6161 Subnormal Rounded -dqscb202 scaleb 1.000000000000000000000000000000000E-6143 -19 -> 1.00000000000000E-6162 Subnormal Rounded -dqscb203 scaleb 1.000000000000000000000000000000000E-6143 -20 -> 1.0000000000000E-6163 Subnormal Rounded -dqscb204 scaleb 1.000000000000000000000000000000000E-6143 -21 -> 1.000000000000E-6164 Subnormal Rounded -dqscb205 scaleb 1.000000000000000000000000000000000E-6143 -22 -> 1.00000000000E-6165 Subnormal Rounded -dqscb206 scaleb 1.000000000000000000000000000000000E-6143 -23 -> 1.0000000000E-6166 Subnormal Rounded -dqscb207 scaleb 1.000000000000000000000000000000000E-6143 -24 -> 1.000000000E-6167 Subnormal Rounded -dqscb208 scaleb 1.000000000000000000000000000000000E-6143 -25 -> 1.00000000E-6168 Subnormal Rounded -dqscb209 scaleb 1.000000000000000000000000000000000E-6143 -26 -> 1.0000000E-6169 Subnormal Rounded -dqscb210 scaleb 1.000000000000000000000000000000000E-6143 -27 -> 1.000000E-6170 Subnormal Rounded -dqscb211 scaleb 1.000000000000000000000000000000000E-6143 -28 -> 1.00000E-6171 Subnormal Rounded -dqscb212 scaleb 1.000000000000000000000000000000000E-6143 -29 -> 1.0000E-6172 Subnormal Rounded -dqscb213 scaleb 1.000000000000000000000000000000000E-6143 -30 -> 1.000E-6173 Subnormal Rounded -dqscb214 scaleb 1.000000000000000000000000000000000E-6143 -31 -> 1.00E-6174 Subnormal Rounded -dqscb215 scaleb 1.000000000000000000000000000000000E-6143 -32 -> 1.0E-6175 Subnormal Rounded -dqscb216 scaleb 1.000000000000000000000000000000000E-6143 -33 -> 1E-6176 Subnormal Rounded -dqscb217 scaleb 1.000000000000000000000000000000000E-6143 -34 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped -dqscb218 scaleb 1.000000000000000000000000000000000E-6143 -35 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped diff --git a/qdecimal/test/tc_full/dqShift.decTest b/qdecimal/test/tc_full/dqShift.decTest deleted file mode 100644 index 8740ebb..0000000 --- a/qdecimal/test/tc_full/dqShift.decTest +++ /dev/null @@ -1,298 +0,0 @@ ------------------------------------------------------------------------- --- dqShift.decTest -- shift decQuad coefficient left or right -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check -dqshi001 shift 0 0 -> 0 -dqshi002 shift 0 2 -> 0 -dqshi003 shift 1 2 -> 100 -dqshi004 shift 1 33 -> 1000000000000000000000000000000000 -dqshi005 shift 1 34 -> 0 -dqshi006 shift 1 -1 -> 0 -dqshi007 shift 0 -2 -> 0 -dqshi008 shift 1234567890123456789012345678901234 -1 -> 123456789012345678901234567890123 -dqshi009 shift 1234567890123456789012345678901234 -33 -> 1 -dqshi010 shift 1234567890123456789012345678901234 -34 -> 0 -dqshi011 shift 9934567890123456789012345678901234 -33 -> 9 -dqshi012 shift 9934567890123456789012345678901234 -34 -> 0 - --- rhs must be an integer -dqshi015 shift 1 1.5 -> NaN Invalid_operation -dqshi016 shift 1 1.0 -> NaN Invalid_operation -dqshi017 shift 1 0.1 -> NaN Invalid_operation -dqshi018 shift 1 0.0 -> NaN Invalid_operation -dqshi019 shift 1 1E+1 -> NaN Invalid_operation -dqshi020 shift 1 1E+99 -> NaN Invalid_operation -dqshi021 shift 1 Inf -> NaN Invalid_operation -dqshi022 shift 1 -Inf -> NaN Invalid_operation --- and |rhs| <= precision -dqshi025 shift 1 -1000 -> NaN Invalid_operation -dqshi026 shift 1 -35 -> NaN Invalid_operation -dqshi027 shift 1 35 -> NaN Invalid_operation -dqshi028 shift 1 1000 -> NaN Invalid_operation - --- full shifting pattern -dqshi030 shift 1234567890123456789012345678901234 -34 -> 0 -dqshi031 shift 1234567890123456789012345678901234 -33 -> 1 -dqshi032 shift 1234567890123456789012345678901234 -32 -> 12 -dqshi033 shift 1234567890123456789012345678901234 -31 -> 123 -dqshi034 shift 1234567890123456789012345678901234 -30 -> 1234 -dqshi035 shift 1234567890123456789012345678901234 -29 -> 12345 -dqshi036 shift 1234567890123456789012345678901234 -28 -> 123456 -dqshi037 shift 1234567890123456789012345678901234 -27 -> 1234567 -dqshi038 shift 1234567890123456789012345678901234 -26 -> 12345678 -dqshi039 shift 1234567890123456789012345678901234 -25 -> 123456789 -dqshi040 shift 1234567890123456789012345678901234 -24 -> 1234567890 -dqshi041 shift 1234567890123456789012345678901234 -23 -> 12345678901 -dqshi042 shift 1234567890123456789012345678901234 -22 -> 123456789012 -dqshi043 shift 1234567890123456789012345678901234 -21 -> 1234567890123 -dqshi044 shift 1234567890123456789012345678901234 -20 -> 12345678901234 -dqshi045 shift 1234567890123456789012345678901234 -19 -> 123456789012345 -dqshi047 shift 1234567890123456789012345678901234 -18 -> 1234567890123456 -dqshi048 shift 1234567890123456789012345678901234 -17 -> 12345678901234567 -dqshi049 shift 1234567890123456789012345678901234 -16 -> 123456789012345678 -dqshi050 shift 1234567890123456789012345678901234 -15 -> 1234567890123456789 -dqshi051 shift 1234567890123456789012345678901234 -14 -> 12345678901234567890 -dqshi052 shift 1234567890123456789012345678901234 -13 -> 123456789012345678901 -dqshi053 shift 1234567890123456789012345678901234 -12 -> 1234567890123456789012 -dqshi054 shift 1234567890123456789012345678901234 -11 -> 12345678901234567890123 -dqshi055 shift 1234567890123456789012345678901234 -10 -> 123456789012345678901234 -dqshi056 shift 1234567890123456789012345678901234 -9 -> 1234567890123456789012345 -dqshi057 shift 1234567890123456789012345678901234 -8 -> 12345678901234567890123456 -dqshi058 shift 1234567890123456789012345678901234 -7 -> 123456789012345678901234567 -dqshi059 shift 1234567890123456789012345678901234 -6 -> 1234567890123456789012345678 -dqshi060 shift 1234567890123456789012345678901234 -5 -> 12345678901234567890123456789 -dqshi061 shift 1234567890123456789012345678901234 -4 -> 123456789012345678901234567890 -dqshi062 shift 1234567890123456789012345678901234 -3 -> 1234567890123456789012345678901 -dqshi063 shift 1234567890123456789012345678901234 -2 -> 12345678901234567890123456789012 -dqshi064 shift 1234567890123456789012345678901234 -1 -> 123456789012345678901234567890123 -dqshi065 shift 1234567890123456789012345678901234 -0 -> 1234567890123456789012345678901234 - -dqshi066 shift 1234567890123456789012345678901234 +0 -> 1234567890123456789012345678901234 -dqshi067 shift 1234567890123456789012345678901234 +1 -> 2345678901234567890123456789012340 -dqshi068 shift 1234567890123456789012345678901234 +2 -> 3456789012345678901234567890123400 -dqshi069 shift 1234567890123456789012345678901234 +3 -> 4567890123456789012345678901234000 -dqshi070 shift 1234567890123456789012345678901234 +4 -> 5678901234567890123456789012340000 -dqshi071 shift 1234567890123456789012345678901234 +5 -> 6789012345678901234567890123400000 -dqshi072 shift 1234567890123456789012345678901234 +6 -> 7890123456789012345678901234000000 -dqshi073 shift 1234567890123456789012345678901234 +7 -> 8901234567890123456789012340000000 -dqshi074 shift 1234567890123456789012345678901234 +8 -> 9012345678901234567890123400000000 -dqshi075 shift 1234567890123456789012345678901234 +9 -> 123456789012345678901234000000000 -dqshi076 shift 1234567890123456789012345678901234 +10 -> 1234567890123456789012340000000000 -dqshi077 shift 1234567890123456789012345678901234 +11 -> 2345678901234567890123400000000000 -dqshi078 shift 1234567890123456789012345678901234 +12 -> 3456789012345678901234000000000000 -dqshi079 shift 1234567890123456789012345678901234 +13 -> 4567890123456789012340000000000000 -dqshi080 shift 1234567890123456789012345678901234 +14 -> 5678901234567890123400000000000000 -dqshi081 shift 1234567890123456789012345678901234 +15 -> 6789012345678901234000000000000000 -dqshi082 shift 1234567890123456789012345678901234 +16 -> 7890123456789012340000000000000000 -dqshi083 shift 1234567890123456789012345678901234 +17 -> 8901234567890123400000000000000000 -dqshi084 shift 1234567890123456789012345678901234 +18 -> 9012345678901234000000000000000000 -dqshi085 shift 1234567890123456789012345678901234 +19 -> 123456789012340000000000000000000 -dqshi086 shift 1234567890123456789012345678901234 +20 -> 1234567890123400000000000000000000 -dqshi087 shift 1234567890123456789012345678901234 +21 -> 2345678901234000000000000000000000 -dqshi088 shift 1234567890123456789012345678901234 +22 -> 3456789012340000000000000000000000 -dqshi089 shift 1234567890123456789012345678901234 +23 -> 4567890123400000000000000000000000 -dqshi090 shift 1234567890123456789012345678901234 +24 -> 5678901234000000000000000000000000 -dqshi091 shift 1234567890123456789012345678901234 +25 -> 6789012340000000000000000000000000 -dqshi092 shift 1234567890123456789012345678901234 +26 -> 7890123400000000000000000000000000 -dqshi093 shift 1234567890123456789012345678901234 +27 -> 8901234000000000000000000000000000 -dqshi094 shift 1234567890123456789012345678901234 +28 -> 9012340000000000000000000000000000 -dqshi095 shift 1234567890123456789012345678901234 +29 -> 123400000000000000000000000000000 -dqshi096 shift 1234567890123456789012345678901234 +30 -> 1234000000000000000000000000000000 -dqshi097 shift 1234567890123456789012345678901234 +31 -> 2340000000000000000000000000000000 -dqshi098 shift 1234567890123456789012345678901234 +32 -> 3400000000000000000000000000000000 -dqshi099 shift 1234567890123456789012345678901234 +33 -> 4000000000000000000000000000000000 -dqshi100 shift 1234567890123456789012345678901234 +34 -> 0 - --- zeros -dqshi270 shift 0E-10 +29 -> 0E-10 -dqshi271 shift 0E-10 -29 -> 0E-10 -dqshi272 shift 0.000 +29 -> 0.000 -dqshi273 shift 0.000 -29 -> 0.000 -dqshi274 shift 0E+10 +29 -> 0E+10 -dqshi275 shift 0E+10 -29 -> 0E+10 -dqshi276 shift -0E-10 +29 -> -0E-10 -dqshi277 shift -0E-10 -29 -> -0E-10 -dqshi278 shift -0.000 +29 -> -0.000 -dqshi279 shift -0.000 -29 -> -0.000 -dqshi280 shift -0E+10 +29 -> -0E+10 -dqshi281 shift -0E+10 -29 -> -0E+10 - --- Nmax, Nmin, Ntiny -dqshi141 shift 9.999999999999999999999999999999999E+6144 -1 -> 9.99999999999999999999999999999999E+6143 -dqshi142 shift 9.999999999999999999999999999999999E+6144 -33 -> 9E+6111 -dqshi143 shift 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999990E+6144 -dqshi144 shift 9.999999999999999999999999999999999E+6144 33 -> 9.000000000000000000000000000000000E+6144 -dqshi145 shift 1E-6143 -1 -> 0E-6143 -dqshi146 shift 1E-6143 -33 -> 0E-6143 -dqshi147 shift 1E-6143 1 -> 1.0E-6142 -dqshi148 shift 1E-6143 33 -> 1.000000000000000000000000000000000E-6110 -dqshi151 shift 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144 -dqshi152 shift 1.000000000000000000000000000000000E-6143 -33 -> 1E-6176 -dqshi153 shift 1.000000000000000000000000000000000E-6143 1 -> 0E-6176 -dqshi154 shift 1.000000000000000000000000000000000E-6143 33 -> 0E-6176 -dqshi155 shift 9.000000000000000000000000000000000E-6143 -1 -> 9.00000000000000000000000000000000E-6144 -dqshi156 shift 9.000000000000000000000000000000000E-6143 -33 -> 9E-6176 -dqshi157 shift 9.000000000000000000000000000000000E-6143 1 -> 0E-6176 -dqshi158 shift 9.000000000000000000000000000000000E-6143 33 -> 0E-6176 -dqshi160 shift 1E-6176 -1 -> 0E-6176 -dqshi161 shift 1E-6176 -33 -> 0E-6176 -dqshi162 shift 1E-6176 1 -> 1.0E-6175 -dqshi163 shift 1E-6176 33 -> 1.000000000000000000000000000000000E-6143 --- negatives -dqshi171 shift -9.999999999999999999999999999999999E+6144 -1 -> -9.99999999999999999999999999999999E+6143 -dqshi172 shift -9.999999999999999999999999999999999E+6144 -33 -> -9E+6111 -dqshi173 shift -9.999999999999999999999999999999999E+6144 1 -> -9.999999999999999999999999999999990E+6144 -dqshi174 shift -9.999999999999999999999999999999999E+6144 33 -> -9.000000000000000000000000000000000E+6144 -dqshi175 shift -1E-6143 -1 -> -0E-6143 -dqshi176 shift -1E-6143 -33 -> -0E-6143 -dqshi177 shift -1E-6143 1 -> -1.0E-6142 -dqshi178 shift -1E-6143 33 -> -1.000000000000000000000000000000000E-6110 -dqshi181 shift -1.000000000000000000000000000000000E-6143 -1 -> -1.00000000000000000000000000000000E-6144 -dqshi182 shift -1.000000000000000000000000000000000E-6143 -33 -> -1E-6176 -dqshi183 shift -1.000000000000000000000000000000000E-6143 1 -> -0E-6176 -dqshi184 shift -1.000000000000000000000000000000000E-6143 33 -> -0E-6176 -dqshi185 shift -9.000000000000000000000000000000000E-6143 -1 -> -9.00000000000000000000000000000000E-6144 -dqshi186 shift -9.000000000000000000000000000000000E-6143 -33 -> -9E-6176 -dqshi187 shift -9.000000000000000000000000000000000E-6143 1 -> -0E-6176 -dqshi188 shift -9.000000000000000000000000000000000E-6143 33 -> -0E-6176 -dqshi190 shift -1E-6176 -1 -> -0E-6176 -dqshi191 shift -1E-6176 -33 -> -0E-6176 -dqshi192 shift -1E-6176 1 -> -1.0E-6175 -dqshi193 shift -1E-6176 33 -> -1.000000000000000000000000000000000E-6143 - --- more negatives (of sanities) -dqshi201 shift -0 0 -> -0 -dqshi202 shift -0 2 -> -0 -dqshi203 shift -1 2 -> -100 -dqshi204 shift -1 33 -> -1000000000000000000000000000000000 -dqshi205 shift -1 34 -> -0 -dqshi206 shift -1 -1 -> -0 -dqshi207 shift -0 -2 -> -0 -dqshi208 shift -1234567890123456789012345678901234 -1 -> -123456789012345678901234567890123 -dqshi209 shift -1234567890123456789012345678901234 -33 -> -1 -dqshi210 shift -1234567890123456789012345678901234 -34 -> -0 -dqshi211 shift -9934567890123456789012345678901234 -33 -> -9 -dqshi212 shift -9934567890123456789012345678901234 -34 -> -0 - - --- Specials; NaNs are handled as usual -dqshi781 shift -Inf -8 -> -Infinity -dqshi782 shift -Inf -1 -> -Infinity -dqshi783 shift -Inf -0 -> -Infinity -dqshi784 shift -Inf 0 -> -Infinity -dqshi785 shift -Inf 1 -> -Infinity -dqshi786 shift -Inf 8 -> -Infinity -dqshi787 shift -1000 -Inf -> NaN Invalid_operation -dqshi788 shift -Inf -Inf -> NaN Invalid_operation -dqshi789 shift -1 -Inf -> NaN Invalid_operation -dqshi790 shift -0 -Inf -> NaN Invalid_operation -dqshi791 shift 0 -Inf -> NaN Invalid_operation -dqshi792 shift 1 -Inf -> NaN Invalid_operation -dqshi793 shift 1000 -Inf -> NaN Invalid_operation -dqshi794 shift Inf -Inf -> NaN Invalid_operation - -dqshi800 shift Inf -Inf -> NaN Invalid_operation -dqshi801 shift Inf -8 -> Infinity -dqshi802 shift Inf -1 -> Infinity -dqshi803 shift Inf -0 -> Infinity -dqshi804 shift Inf 0 -> Infinity -dqshi805 shift Inf 1 -> Infinity -dqshi806 shift Inf 8 -> Infinity -dqshi807 shift Inf Inf -> NaN Invalid_operation -dqshi808 shift -1000 Inf -> NaN Invalid_operation -dqshi809 shift -Inf Inf -> NaN Invalid_operation -dqshi810 shift -1 Inf -> NaN Invalid_operation -dqshi811 shift -0 Inf -> NaN Invalid_operation -dqshi812 shift 0 Inf -> NaN Invalid_operation -dqshi813 shift 1 Inf -> NaN Invalid_operation -dqshi814 shift 1000 Inf -> NaN Invalid_operation -dqshi815 shift Inf Inf -> NaN Invalid_operation - -dqshi821 shift NaN -Inf -> NaN -dqshi822 shift NaN -1000 -> NaN -dqshi823 shift NaN -1 -> NaN -dqshi824 shift NaN -0 -> NaN -dqshi825 shift NaN 0 -> NaN -dqshi826 shift NaN 1 -> NaN -dqshi827 shift NaN 1000 -> NaN -dqshi828 shift NaN Inf -> NaN -dqshi829 shift NaN NaN -> NaN -dqshi830 shift -Inf NaN -> NaN -dqshi831 shift -1000 NaN -> NaN -dqshi832 shift -1 NaN -> NaN -dqshi833 shift -0 NaN -> NaN -dqshi834 shift 0 NaN -> NaN -dqshi835 shift 1 NaN -> NaN -dqshi836 shift 1000 NaN -> NaN -dqshi837 shift Inf NaN -> NaN - -dqshi841 shift sNaN -Inf -> NaN Invalid_operation -dqshi842 shift sNaN -1000 -> NaN Invalid_operation -dqshi843 shift sNaN -1 -> NaN Invalid_operation -dqshi844 shift sNaN -0 -> NaN Invalid_operation -dqshi845 shift sNaN 0 -> NaN Invalid_operation -dqshi846 shift sNaN 1 -> NaN Invalid_operation -dqshi847 shift sNaN 1000 -> NaN Invalid_operation -dqshi848 shift sNaN NaN -> NaN Invalid_operation -dqshi849 shift sNaN sNaN -> NaN Invalid_operation -dqshi850 shift NaN sNaN -> NaN Invalid_operation -dqshi851 shift -Inf sNaN -> NaN Invalid_operation -dqshi852 shift -1000 sNaN -> NaN Invalid_operation -dqshi853 shift -1 sNaN -> NaN Invalid_operation -dqshi854 shift -0 sNaN -> NaN Invalid_operation -dqshi855 shift 0 sNaN -> NaN Invalid_operation -dqshi856 shift 1 sNaN -> NaN Invalid_operation -dqshi857 shift 1000 sNaN -> NaN Invalid_operation -dqshi858 shift Inf sNaN -> NaN Invalid_operation -dqshi859 shift NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqshi861 shift NaN1 -Inf -> NaN1 -dqshi862 shift +NaN2 -1000 -> NaN2 -dqshi863 shift NaN3 1000 -> NaN3 -dqshi864 shift NaN4 Inf -> NaN4 -dqshi865 shift NaN5 +NaN6 -> NaN5 -dqshi866 shift -Inf NaN7 -> NaN7 -dqshi867 shift -1000 NaN8 -> NaN8 -dqshi868 shift 1000 NaN9 -> NaN9 -dqshi869 shift Inf +NaN10 -> NaN10 -dqshi871 shift sNaN11 -Inf -> NaN11 Invalid_operation -dqshi872 shift sNaN12 -1000 -> NaN12 Invalid_operation -dqshi873 shift sNaN13 1000 -> NaN13 Invalid_operation -dqshi874 shift sNaN14 NaN17 -> NaN14 Invalid_operation -dqshi875 shift sNaN15 sNaN18 -> NaN15 Invalid_operation -dqshi876 shift NaN16 sNaN19 -> NaN19 Invalid_operation -dqshi877 shift -Inf +sNaN20 -> NaN20 Invalid_operation -dqshi878 shift -1000 sNaN21 -> NaN21 Invalid_operation -dqshi879 shift 1000 sNaN22 -> NaN22 Invalid_operation -dqshi880 shift Inf sNaN23 -> NaN23 Invalid_operation -dqshi881 shift +NaN25 +sNaN24 -> NaN24 Invalid_operation -dqshi882 shift -NaN26 NaN28 -> -NaN26 -dqshi883 shift -sNaN27 sNaN29 -> -NaN27 Invalid_operation -dqshi884 shift 1000 -NaN30 -> -NaN30 -dqshi885 shift 1000 -sNaN31 -> -NaN31 Invalid_operation diff --git a/qdecimal/test/tc_full/dqSubtract.decTest b/qdecimal/test/tc_full/dqSubtract.decTest deleted file mode 100644 index 69307bb..0000000 --- a/qdecimal/test/tc_full/dqSubtract.decTest +++ /dev/null @@ -1,635 +0,0 @@ ------------------------------------------------------------------------- --- dqSubtract.decTest -- decQuad subtraction -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests are for decQuads only; all arguments are --- representable in a decQuad -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- [first group are 'quick confidence check'] -dqsub001 subtract 0 0 -> '0' -dqsub002 subtract 1 1 -> '0' -dqsub003 subtract 1 2 -> '-1' -dqsub004 subtract 2 1 -> '1' -dqsub005 subtract 2 2 -> '0' -dqsub006 subtract 3 2 -> '1' -dqsub007 subtract 2 3 -> '-1' - -dqsub011 subtract -0 0 -> '-0' -dqsub012 subtract -1 1 -> '-2' -dqsub013 subtract -1 2 -> '-3' -dqsub014 subtract -2 1 -> '-3' -dqsub015 subtract -2 2 -> '-4' -dqsub016 subtract -3 2 -> '-5' -dqsub017 subtract -2 3 -> '-5' - -dqsub021 subtract 0 -0 -> '0' -dqsub022 subtract 1 -1 -> '2' -dqsub023 subtract 1 -2 -> '3' -dqsub024 subtract 2 -1 -> '3' -dqsub025 subtract 2 -2 -> '4' -dqsub026 subtract 3 -2 -> '5' -dqsub027 subtract 2 -3 -> '5' - -dqsub030 subtract 11 1 -> 10 -dqsub031 subtract 10 1 -> 9 -dqsub032 subtract 9 1 -> 8 -dqsub033 subtract 1 1 -> 0 -dqsub034 subtract 0 1 -> -1 -dqsub035 subtract -1 1 -> -2 -dqsub036 subtract -9 1 -> -10 -dqsub037 subtract -10 1 -> -11 -dqsub038 subtract -11 1 -> -12 - -dqsub040 subtract '5.75' '3.3' -> '2.45' -dqsub041 subtract '5' '-3' -> '8' -dqsub042 subtract '-5' '-3' -> '-2' -dqsub043 subtract '-7' '2.5' -> '-9.5' -dqsub044 subtract '0.7' '0.3' -> '0.4' -dqsub045 subtract '1.3' '0.3' -> '1.0' -dqsub046 subtract '1.25' '1.25' -> '0.00' - -dqsub050 subtract '1.23456789' '1.00000000' -> '0.23456789' -dqsub051 subtract '1.23456789' '1.00000089' -> '0.23456700' - -dqsub060 subtract '70' '10000e+34' -> '-1.000000000000000000000000000000000E+38' Inexact Rounded -dqsub061 subtract '700' '10000e+34' -> '-1.000000000000000000000000000000000E+38' Inexact Rounded -dqsub062 subtract '7000' '10000e+34' -> '-9.999999999999999999999999999999999E+37' Inexact Rounded -dqsub063 subtract '70000' '10000e+34' -> '-9.999999999999999999999999999999993E+37' Rounded -dqsub064 subtract '700000' '10000e+34' -> '-9.999999999999999999999999999999930E+37' Rounded - -- symmetry: -dqsub065 subtract '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqsub066 subtract '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded -dqsub067 subtract '10000e+34' '7000' -> '9.999999999999999999999999999999999E+37' Inexact Rounded -dqsub068 subtract '10000e+34' '70000' -> '9.999999999999999999999999999999993E+37' Rounded -dqsub069 subtract '10000e+34' '700000' -> '9.999999999999999999999999999999930E+37' Rounded - - -- some of the next group are really constructor tests -dqsub090 subtract '00.0' '0.0' -> '0.0' -dqsub091 subtract '00.0' '0.00' -> '0.00' -dqsub092 subtract '0.00' '00.0' -> '0.00' -dqsub093 subtract '00.0' '0.00' -> '0.00' -dqsub094 subtract '0.00' '00.0' -> '0.00' -dqsub095 subtract '3' '.3' -> '2.7' -dqsub096 subtract '3.' '.3' -> '2.7' -dqsub097 subtract '3.0' '.3' -> '2.7' -dqsub098 subtract '3.00' '.3' -> '2.70' -dqsub099 subtract '3' '3' -> '0' -dqsub100 subtract '3' '+3' -> '0' -dqsub101 subtract '3' '-3' -> '6' -dqsub102 subtract '3' '0.3' -> '2.7' -dqsub103 subtract '3.' '0.3' -> '2.7' -dqsub104 subtract '3.0' '0.3' -> '2.7' -dqsub105 subtract '3.00' '0.3' -> '2.70' -dqsub106 subtract '3' '3.0' -> '0.0' -dqsub107 subtract '3' '+3.0' -> '0.0' -dqsub108 subtract '3' '-3.0' -> '6.0' - --- the above all from add; massaged and extended. Now some new ones... --- [particularly important for comparisons] --- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7 --- with input rounding. -dqsub120 subtract '10.23456784' '10.23456789' -> '-5E-8' -dqsub121 subtract '10.23456785' '10.23456789' -> '-4E-8' -dqsub122 subtract '10.23456786' '10.23456789' -> '-3E-8' -dqsub123 subtract '10.23456787' '10.23456789' -> '-2E-8' -dqsub124 subtract '10.23456788' '10.23456789' -> '-1E-8' -dqsub125 subtract '10.23456789' '10.23456789' -> '0E-8' -dqsub126 subtract '10.23456790' '10.23456789' -> '1E-8' -dqsub127 subtract '10.23456791' '10.23456789' -> '2E-8' -dqsub128 subtract '10.23456792' '10.23456789' -> '3E-8' -dqsub129 subtract '10.23456793' '10.23456789' -> '4E-8' -dqsub130 subtract '10.23456794' '10.23456789' -> '5E-8' -dqsub131 subtract '10.23456781' '10.23456786' -> '-5E-8' -dqsub132 subtract '10.23456782' '10.23456786' -> '-4E-8' -dqsub133 subtract '10.23456783' '10.23456786' -> '-3E-8' -dqsub134 subtract '10.23456784' '10.23456786' -> '-2E-8' -dqsub135 subtract '10.23456785' '10.23456786' -> '-1E-8' -dqsub136 subtract '10.23456786' '10.23456786' -> '0E-8' -dqsub137 subtract '10.23456787' '10.23456786' -> '1E-8' -dqsub138 subtract '10.23456788' '10.23456786' -> '2E-8' -dqsub139 subtract '10.23456789' '10.23456786' -> '3E-8' -dqsub140 subtract '10.23456790' '10.23456786' -> '4E-8' -dqsub141 subtract '10.23456791' '10.23456786' -> '5E-8' -dqsub142 subtract '1' '0.999999999' -> '1E-9' -dqsub143 subtract '0.999999999' '1' -> '-1E-9' -dqsub144 subtract '-10.23456780' '-10.23456786' -> '6E-8' -dqsub145 subtract '-10.23456790' '-10.23456786' -> '-4E-8' -dqsub146 subtract '-10.23456791' '-10.23456786' -> '-5E-8' - --- additional scaled arithmetic tests [0.97 problem] -dqsub160 subtract '0' '.1' -> '-0.1' -dqsub161 subtract '00' '.97983' -> '-0.97983' -dqsub162 subtract '0' '.9' -> '-0.9' -dqsub163 subtract '0' '0.102' -> '-0.102' -dqsub164 subtract '0' '.4' -> '-0.4' -dqsub165 subtract '0' '.307' -> '-0.307' -dqsub166 subtract '0' '.43822' -> '-0.43822' -dqsub167 subtract '0' '.911' -> '-0.911' -dqsub168 subtract '.0' '.02' -> '-0.02' -dqsub169 subtract '00' '.392' -> '-0.392' -dqsub170 subtract '0' '.26' -> '-0.26' -dqsub171 subtract '0' '0.51' -> '-0.51' -dqsub172 subtract '0' '.2234' -> '-0.2234' -dqsub173 subtract '0' '.2' -> '-0.2' -dqsub174 subtract '.0' '.0008' -> '-0.0008' --- 0. on left -dqsub180 subtract '0.0' '-.1' -> '0.1' -dqsub181 subtract '0.00' '-.97983' -> '0.97983' -dqsub182 subtract '0.0' '-.9' -> '0.9' -dqsub183 subtract '0.0' '-0.102' -> '0.102' -dqsub184 subtract '0.0' '-.4' -> '0.4' -dqsub185 subtract '0.0' '-.307' -> '0.307' -dqsub186 subtract '0.0' '-.43822' -> '0.43822' -dqsub187 subtract '0.0' '-.911' -> '0.911' -dqsub188 subtract '0.0' '-.02' -> '0.02' -dqsub189 subtract '0.00' '-.392' -> '0.392' -dqsub190 subtract '0.0' '-.26' -> '0.26' -dqsub191 subtract '0.0' '-0.51' -> '0.51' -dqsub192 subtract '0.0' '-.2234' -> '0.2234' -dqsub193 subtract '0.0' '-.2' -> '0.2' -dqsub194 subtract '0.0' '-.0008' -> '0.0008' --- negatives of same -dqsub200 subtract '0' '-.1' -> '0.1' -dqsub201 subtract '00' '-.97983' -> '0.97983' -dqsub202 subtract '0' '-.9' -> '0.9' -dqsub203 subtract '0' '-0.102' -> '0.102' -dqsub204 subtract '0' '-.4' -> '0.4' -dqsub205 subtract '0' '-.307' -> '0.307' -dqsub206 subtract '0' '-.43822' -> '0.43822' -dqsub207 subtract '0' '-.911' -> '0.911' -dqsub208 subtract '.0' '-.02' -> '0.02' -dqsub209 subtract '00' '-.392' -> '0.392' -dqsub210 subtract '0' '-.26' -> '0.26' -dqsub211 subtract '0' '-0.51' -> '0.51' -dqsub212 subtract '0' '-.2234' -> '0.2234' -dqsub213 subtract '0' '-.2' -> '0.2' -dqsub214 subtract '.0' '-.0008' -> '0.0008' - --- more fixed, LHS swaps [really the same as testcases under add] -dqsub220 subtract '-56267E-12' 0 -> '-5.6267E-8' -dqsub221 subtract '-56267E-11' 0 -> '-5.6267E-7' -dqsub222 subtract '-56267E-10' 0 -> '-0.0000056267' -dqsub223 subtract '-56267E-9' 0 -> '-0.000056267' -dqsub224 subtract '-56267E-8' 0 -> '-0.00056267' -dqsub225 subtract '-56267E-7' 0 -> '-0.0056267' -dqsub226 subtract '-56267E-6' 0 -> '-0.056267' -dqsub227 subtract '-56267E-5' 0 -> '-0.56267' -dqsub228 subtract '-56267E-2' 0 -> '-562.67' -dqsub229 subtract '-56267E-1' 0 -> '-5626.7' -dqsub230 subtract '-56267E-0' 0 -> '-56267' --- symmetry ... -dqsub240 subtract 0 '-56267E-12' -> '5.6267E-8' -dqsub241 subtract 0 '-56267E-11' -> '5.6267E-7' -dqsub242 subtract 0 '-56267E-10' -> '0.0000056267' -dqsub243 subtract 0 '-56267E-9' -> '0.000056267' -dqsub244 subtract 0 '-56267E-8' -> '0.00056267' -dqsub245 subtract 0 '-56267E-7' -> '0.0056267' -dqsub246 subtract 0 '-56267E-6' -> '0.056267' -dqsub247 subtract 0 '-56267E-5' -> '0.56267' -dqsub248 subtract 0 '-56267E-2' -> '562.67' -dqsub249 subtract 0 '-56267E-1' -> '5626.7' -dqsub250 subtract 0 '-56267E-0' -> '56267' - --- now some more from the 'new' add -dqsub301 subtract '1.23456789' '1.00000000' -> '0.23456789' -dqsub302 subtract '1.23456789' '1.00000011' -> '0.23456778' - --- some carrying effects -dqsub321 subtract '0.9998' '0.0000' -> '0.9998' -dqsub322 subtract '0.9998' '0.0001' -> '0.9997' -dqsub323 subtract '0.9998' '0.0002' -> '0.9996' -dqsub324 subtract '0.9998' '0.0003' -> '0.9995' -dqsub325 subtract '0.9998' '-0.0000' -> '0.9998' -dqsub326 subtract '0.9998' '-0.0001' -> '0.9999' -dqsub327 subtract '0.9998' '-0.0002' -> '1.0000' -dqsub328 subtract '0.9998' '-0.0003' -> '1.0001' - --- internal boundaries -dqsub346 subtract '10000e+9' '7' -> '9999999999993' -dqsub347 subtract '10000e+9' '70' -> '9999999999930' -dqsub348 subtract '10000e+9' '700' -> '9999999999300' -dqsub349 subtract '10000e+9' '7000' -> '9999999993000' -dqsub350 subtract '10000e+9' '70000' -> '9999999930000' -dqsub351 subtract '10000e+9' '700000' -> '9999999300000' -dqsub352 subtract '7' '10000e+9' -> '-9999999999993' -dqsub353 subtract '70' '10000e+9' -> '-9999999999930' -dqsub354 subtract '700' '10000e+9' -> '-9999999999300' -dqsub355 subtract '7000' '10000e+9' -> '-9999999993000' -dqsub356 subtract '70000' '10000e+9' -> '-9999999930000' -dqsub357 subtract '700000' '10000e+9' -> '-9999999300000' - --- zero preservation -dqsub361 subtract 1 '0.0001' -> '0.9999' -dqsub362 subtract 1 '0.00001' -> '0.99999' -dqsub363 subtract 1 '0.000001' -> '0.999999' -dqsub364 subtract 1 '0.0000000000000000000000000000000001' -> '0.9999999999999999999999999999999999' -dqsub365 subtract 1 '0.00000000000000000000000000000000001' -> '1.000000000000000000000000000000000' Inexact Rounded -dqsub366 subtract 1 '0.000000000000000000000000000000000001' -> '1.000000000000000000000000000000000' Inexact Rounded - --- some funny zeros [in case of bad signum] -dqsub370 subtract 1 0 -> 1 -dqsub371 subtract 1 0. -> 1 -dqsub372 subtract 1 .0 -> 1.0 -dqsub373 subtract 1 0.0 -> 1.0 -dqsub374 subtract 0 1 -> -1 -dqsub375 subtract 0. 1 -> -1 -dqsub376 subtract .0 1 -> -1.0 -dqsub377 subtract 0.0 1 -> -1.0 - --- leading 0 digit before round -dqsub910 subtract -103519362 -51897955.3 -> -51621406.7 -dqsub911 subtract 159579.444 89827.5229 -> 69751.9211 - -dqsub920 subtract 333.0000000000000000000000000123456 33.00000000000000000000000001234566 -> 299.9999999999999999999999999999999 Inexact Rounded -dqsub921 subtract 333.0000000000000000000000000123456 33.00000000000000000000000001234565 -> 300.0000000000000000000000000000000 Inexact Rounded -dqsub922 subtract 133.0000000000000000000000000123456 33.00000000000000000000000001234565 -> 99.99999999999999999999999999999995 -dqsub923 subtract 133.0000000000000000000000000123456 33.00000000000000000000000001234564 -> 99.99999999999999999999999999999996 -dqsub924 subtract 133.0000000000000000000000000123456 33.00000000000000000000000001234540 -> 100.0000000000000000000000000000002 Rounded -dqsub925 subtract 133.0000000000000000000000000123456 43.00000000000000000000000001234560 -> 90.00000000000000000000000000000000 -dqsub926 subtract 133.0000000000000000000000000123456 43.00000000000000000000000001234561 -> 89.99999999999999999999999999999999 -dqsub927 subtract 133.0000000000000000000000000123456 43.00000000000000000000000001234566 -> 89.99999999999999999999999999999994 -dqsub928 subtract 101.0000000000000000000000000123456 91.00000000000000000000000001234566 -> 9.99999999999999999999999999999994 -dqsub929 subtract 101.0000000000000000000000000123456 99.00000000000000000000000001234566 -> 1.99999999999999999999999999999994 - --- more LHS swaps [were fixed] -dqsub390 subtract '-56267E-10' 0 -> '-0.0000056267' -dqsub391 subtract '-56267E-6' 0 -> '-0.056267' -dqsub392 subtract '-56267E-5' 0 -> '-0.56267' -dqsub393 subtract '-56267E-4' 0 -> '-5.6267' -dqsub394 subtract '-56267E-3' 0 -> '-56.267' -dqsub395 subtract '-56267E-2' 0 -> '-562.67' -dqsub396 subtract '-56267E-1' 0 -> '-5626.7' -dqsub397 subtract '-56267E-0' 0 -> '-56267' -dqsub398 subtract '-5E-10' 0 -> '-5E-10' -dqsub399 subtract '-5E-7' 0 -> '-5E-7' -dqsub400 subtract '-5E-6' 0 -> '-0.000005' -dqsub401 subtract '-5E-5' 0 -> '-0.00005' -dqsub402 subtract '-5E-4' 0 -> '-0.0005' -dqsub403 subtract '-5E-1' 0 -> '-0.5' -dqsub404 subtract '-5E0' 0 -> '-5' -dqsub405 subtract '-5E1' 0 -> '-50' -dqsub406 subtract '-5E5' 0 -> '-500000' -dqsub407 subtract '-5E33' 0 -> '-5000000000000000000000000000000000' -dqsub408 subtract '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded -dqsub409 subtract '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded -dqsub410 subtract '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded -dqsub411 subtract '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded - --- more RHS swaps [were fixed] -dqsub420 subtract 0 '-56267E-10' -> '0.0000056267' -dqsub421 subtract 0 '-56267E-6' -> '0.056267' -dqsub422 subtract 0 '-56267E-5' -> '0.56267' -dqsub423 subtract 0 '-56267E-4' -> '5.6267' -dqsub424 subtract 0 '-56267E-3' -> '56.267' -dqsub425 subtract 0 '-56267E-2' -> '562.67' -dqsub426 subtract 0 '-56267E-1' -> '5626.7' -dqsub427 subtract 0 '-56267E-0' -> '56267' -dqsub428 subtract 0 '-5E-10' -> '5E-10' -dqsub429 subtract 0 '-5E-7' -> '5E-7' -dqsub430 subtract 0 '-5E-6' -> '0.000005' -dqsub431 subtract 0 '-5E-5' -> '0.00005' -dqsub432 subtract 0 '-5E-4' -> '0.0005' -dqsub433 subtract 0 '-5E-1' -> '0.5' -dqsub434 subtract 0 '-5E0' -> '5' -dqsub435 subtract 0 '-5E1' -> '50' -dqsub436 subtract 0 '-5E5' -> '500000' -dqsub437 subtract 0 '-5E33' -> '5000000000000000000000000000000000' -dqsub438 subtract 0 '-5E34' -> '5.000000000000000000000000000000000E+34' Rounded -dqsub439 subtract 0 '-5E35' -> '5.000000000000000000000000000000000E+35' Rounded -dqsub440 subtract 0 '-5E36' -> '5.000000000000000000000000000000000E+36' Rounded -dqsub441 subtract 0 '-5E100' -> '5.000000000000000000000000000000000E+100' Rounded - - --- try borderline precision, with carries, etc. -dqsub461 subtract '1E+16' '1' -> '9999999999999999' -dqsub462 subtract '1E+12' '-1.111' -> '1000000000001.111' -dqsub463 subtract '1.111' '-1E+12' -> '1000000000001.111' -dqsub464 subtract '-1' '-1E+16' -> '9999999999999999' -dqsub465 subtract '7E+15' '1' -> '6999999999999999' -dqsub466 subtract '7E+12' '-1.111' -> '7000000000001.111' -dqsub467 subtract '1.111' '-7E+12' -> '7000000000001.111' -dqsub468 subtract '-1' '-7E+15' -> '6999999999999999' - --- 1234567890123456 1234567890123456 1 23456789012345 -dqsub470 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555563' -> '1.000000000000000000000000000000001' Inexact Rounded -dqsub471 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555562' -> '1.000000000000000000000000000000001' Inexact Rounded -dqsub472 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555561' -> '1.000000000000000000000000000000000' Inexact Rounded -dqsub473 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555560' -> '1.000000000000000000000000000000000' Inexact Rounded -dqsub474 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555559' -> '1.000000000000000000000000000000000' Inexact Rounded -dqsub475 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555558' -> '1.000000000000000000000000000000000' Inexact Rounded -dqsub476 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555557' -> '1.000000000000000000000000000000000' Inexact Rounded -dqsub477 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555556' -> '1.000000000000000000000000000000000' Rounded -dqsub478 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999' -dqsub479 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555554' -> '0.9999999999999999999999999999999998' -dqsub480 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555553' -> '0.9999999999999999999999999999999997' -dqsub481 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555552' -> '0.9999999999999999999999999999999996' -dqsub482 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555551' -> '0.9999999999999999999999999999999995' -dqsub483 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555550' -> '0.9999999999999999999999999999999994' - --- and some more, including residue effects and different roundings -rounding: half_up -dqsub500 subtract '1231234555555555555555555567456789' 0 -> '1231234555555555555555555567456789' -dqsub501 subtract '1231234555555555555555555567456789' 0.000000001 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub502 subtract '1231234555555555555555555567456789' 0.000001 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub503 subtract '1231234555555555555555555567456789' 0.1 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub504 subtract '1231234555555555555555555567456789' 0.4 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub505 subtract '1231234555555555555555555567456789' 0.49 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub506 subtract '1231234555555555555555555567456789' 0.499999 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub507 subtract '1231234555555555555555555567456789' 0.499999999 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub508 subtract '1231234555555555555555555567456789' 0.5 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub509 subtract '1231234555555555555555555567456789' 0.500000001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub510 subtract '1231234555555555555555555567456789' 0.500001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub511 subtract '1231234555555555555555555567456789' 0.51 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub512 subtract '1231234555555555555555555567456789' 0.6 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub513 subtract '1231234555555555555555555567456789' 0.9 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub514 subtract '1231234555555555555555555567456789' 0.99999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub515 subtract '1231234555555555555555555567456789' 0.999999999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub516 subtract '1231234555555555555555555567456789' 1 -> '1231234555555555555555555567456788' -dqsub517 subtract '1231234555555555555555555567456789' 1.000000001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub518 subtract '1231234555555555555555555567456789' 1.00001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub519 subtract '1231234555555555555555555567456789' 1.1 -> '1231234555555555555555555567456788' Inexact Rounded - -rounding: half_even -dqsub520 subtract '1231234555555555555555555567456789' 0 -> '1231234555555555555555555567456789' -dqsub521 subtract '1231234555555555555555555567456789' 0.000000001 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub522 subtract '1231234555555555555555555567456789' 0.000001 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub523 subtract '1231234555555555555555555567456789' 0.1 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub524 subtract '1231234555555555555555555567456789' 0.4 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub525 subtract '1231234555555555555555555567456789' 0.49 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub526 subtract '1231234555555555555555555567456789' 0.499999 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub527 subtract '1231234555555555555555555567456789' 0.499999999 -> '1231234555555555555555555567456789' Inexact Rounded -dqsub528 subtract '1231234555555555555555555567456789' 0.5 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub529 subtract '1231234555555555555555555567456789' 0.500000001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub530 subtract '1231234555555555555555555567456789' 0.500001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub531 subtract '1231234555555555555555555567456789' 0.51 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub532 subtract '1231234555555555555555555567456789' 0.6 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub533 subtract '1231234555555555555555555567456789' 0.9 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub534 subtract '1231234555555555555555555567456789' 0.99999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub535 subtract '1231234555555555555555555567456789' 0.999999999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub536 subtract '1231234555555555555555555567456789' 1 -> '1231234555555555555555555567456788' -dqsub537 subtract '1231234555555555555555555567456789' 1.00000001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub538 subtract '1231234555555555555555555567456789' 1.00001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub539 subtract '1231234555555555555555555567456789' 1.1 -> '1231234555555555555555555567456788' Inexact Rounded --- critical few with even bottom digit... -dqsub540 subtract '1231234555555555555555555567456788' 0.499999999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub541 subtract '1231234555555555555555555567456788' 0.5 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub542 subtract '1231234555555555555555555567456788' 0.500000001 -> '1231234555555555555555555567456787' Inexact Rounded - -rounding: down -dqsub550 subtract '1231234555555555555555555567456789' 0 -> '1231234555555555555555555567456789' -dqsub551 subtract '1231234555555555555555555567456789' 0.000000001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub552 subtract '1231234555555555555555555567456789' 0.000001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub553 subtract '1231234555555555555555555567456789' 0.1 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub554 subtract '1231234555555555555555555567456789' 0.4 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub555 subtract '1231234555555555555555555567456789' 0.49 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub556 subtract '1231234555555555555555555567456789' 0.499999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub557 subtract '1231234555555555555555555567456789' 0.499999999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub558 subtract '1231234555555555555555555567456789' 0.5 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub559 subtract '1231234555555555555555555567456789' 0.500000001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub560 subtract '1231234555555555555555555567456789' 0.500001 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub561 subtract '1231234555555555555555555567456789' 0.51 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub562 subtract '1231234555555555555555555567456789' 0.6 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub563 subtract '1231234555555555555555555567456789' 0.9 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub564 subtract '1231234555555555555555555567456789' 0.99999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub565 subtract '1231234555555555555555555567456789' 0.999999999 -> '1231234555555555555555555567456788' Inexact Rounded -dqsub566 subtract '1231234555555555555555555567456789' 1 -> '1231234555555555555555555567456788' -dqsub567 subtract '1231234555555555555555555567456789' 1.00000001 -> '1231234555555555555555555567456787' Inexact Rounded -dqsub568 subtract '1231234555555555555555555567456789' 1.00001 -> '1231234555555555555555555567456787' Inexact Rounded -dqsub569 subtract '1231234555555555555555555567456789' 1.1 -> '1231234555555555555555555567456787' Inexact Rounded - --- symmetry... -rounding: half_up -dqsub600 subtract 0 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' -dqsub601 subtract 0.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub602 subtract 0.000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub603 subtract 0.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub604 subtract 0.4 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub605 subtract 0.49 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub606 subtract 0.499999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub607 subtract 0.499999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub608 subtract 0.5 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub609 subtract 0.500000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub610 subtract 0.500001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub611 subtract 0.51 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub612 subtract 0.6 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub613 subtract 0.9 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub614 subtract 0.99999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub615 subtract 0.999999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub616 subtract 1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' -dqsub617 subtract 1.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub618 subtract 1.00001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub619 subtract 1.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded - -rounding: half_even -dqsub620 subtract 0 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' -dqsub621 subtract 0.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub622 subtract 0.000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub623 subtract 0.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub624 subtract 0.4 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub625 subtract 0.49 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub626 subtract 0.499999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub627 subtract 0.499999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded -dqsub628 subtract 0.5 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub629 subtract 0.500000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub630 subtract 0.500001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub631 subtract 0.51 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub632 subtract 0.6 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub633 subtract 0.9 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub634 subtract 0.99999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub635 subtract 0.999999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub636 subtract 1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' -dqsub637 subtract 1.00000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub638 subtract 1.00001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub639 subtract 1.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded --- critical few with even bottom digit... -dqsub640 subtract 0.499999999 '1231234555555555555555555567456788' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub641 subtract 0.5 '1231234555555555555555555567456788' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub642 subtract 0.500000001 '1231234555555555555555555567456788' -> '-1231234555555555555555555567456787' Inexact Rounded - -rounding: down -dqsub650 subtract 0 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' -dqsub651 subtract 0.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub652 subtract 0.000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub653 subtract 0.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub654 subtract 0.4 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub655 subtract 0.49 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub656 subtract 0.499999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub657 subtract 0.499999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub658 subtract 0.5 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub659 subtract 0.500000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub660 subtract 0.500001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub661 subtract 0.51 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub662 subtract 0.6 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub663 subtract 0.9 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub664 subtract 0.99999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub665 subtract 0.999999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded -dqsub666 subtract 1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' -dqsub667 subtract 1.00000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456787' Inexact Rounded -dqsub668 subtract 1.00001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456787' Inexact Rounded -dqsub669 subtract 1.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456787' Inexact Rounded - - --- lots of leading zeros in intermediate result, and showing effects of --- input rounding would have affected the following -rounding: half_up -dqsub670 subtract '1234567456789' '1234567456788.1' -> 0.9 -dqsub671 subtract '1234567456789' '1234567456788.9' -> 0.1 -dqsub672 subtract '1234567456789' '1234567456789.1' -> -0.1 -dqsub673 subtract '1234567456789' '1234567456789.5' -> -0.5 -dqsub674 subtract '1234567456789' '1234567456789.9' -> -0.9 - -rounding: half_even -dqsub680 subtract '1234567456789' '1234567456788.1' -> 0.9 -dqsub681 subtract '1234567456789' '1234567456788.9' -> 0.1 -dqsub682 subtract '1234567456789' '1234567456789.1' -> -0.1 -dqsub683 subtract '1234567456789' '1234567456789.5' -> -0.5 -dqsub684 subtract '1234567456789' '1234567456789.9' -> -0.9 - -dqsub685 subtract '1234567456788' '1234567456787.1' -> 0.9 -dqsub686 subtract '1234567456788' '1234567456787.9' -> 0.1 -dqsub687 subtract '1234567456788' '1234567456788.1' -> -0.1 -dqsub688 subtract '1234567456788' '1234567456788.5' -> -0.5 -dqsub689 subtract '1234567456788' '1234567456788.9' -> -0.9 - -rounding: down -dqsub690 subtract '1234567456789' '1234567456788.1' -> 0.9 -dqsub691 subtract '1234567456789' '1234567456788.9' -> 0.1 -dqsub692 subtract '1234567456789' '1234567456789.1' -> -0.1 -dqsub693 subtract '1234567456789' '1234567456789.5' -> -0.5 -dqsub694 subtract '1234567456789' '1234567456789.9' -> -0.9 - --- Specials -dqsub780 subtract -Inf Inf -> -Infinity -dqsub781 subtract -Inf 1000 -> -Infinity -dqsub782 subtract -Inf 1 -> -Infinity -dqsub783 subtract -Inf -0 -> -Infinity -dqsub784 subtract -Inf -1 -> -Infinity -dqsub785 subtract -Inf -1000 -> -Infinity -dqsub787 subtract -1000 Inf -> -Infinity -dqsub788 subtract -Inf Inf -> -Infinity -dqsub789 subtract -1 Inf -> -Infinity -dqsub790 subtract 0 Inf -> -Infinity -dqsub791 subtract 1 Inf -> -Infinity -dqsub792 subtract 1000 Inf -> -Infinity - -dqsub800 subtract Inf Inf -> NaN Invalid_operation -dqsub801 subtract Inf 1000 -> Infinity -dqsub802 subtract Inf 1 -> Infinity -dqsub803 subtract Inf 0 -> Infinity -dqsub804 subtract Inf -0 -> Infinity -dqsub805 subtract Inf -1 -> Infinity -dqsub806 subtract Inf -1000 -> Infinity -dqsub807 subtract Inf -Inf -> Infinity -dqsub808 subtract -1000 -Inf -> Infinity -dqsub809 subtract -Inf -Inf -> NaN Invalid_operation -dqsub810 subtract -1 -Inf -> Infinity -dqsub811 subtract -0 -Inf -> Infinity -dqsub812 subtract 0 -Inf -> Infinity -dqsub813 subtract 1 -Inf -> Infinity -dqsub814 subtract 1000 -Inf -> Infinity -dqsub815 subtract Inf -Inf -> Infinity - -dqsub821 subtract NaN Inf -> NaN -dqsub822 subtract -NaN 1000 -> -NaN -dqsub823 subtract NaN 1 -> NaN -dqsub824 subtract NaN 0 -> NaN -dqsub825 subtract NaN -0 -> NaN -dqsub826 subtract NaN -1 -> NaN -dqsub827 subtract NaN -1000 -> NaN -dqsub828 subtract NaN -Inf -> NaN -dqsub829 subtract -NaN NaN -> -NaN -dqsub830 subtract -Inf NaN -> NaN -dqsub831 subtract -1000 NaN -> NaN -dqsub832 subtract -1 NaN -> NaN -dqsub833 subtract -0 NaN -> NaN -dqsub834 subtract 0 NaN -> NaN -dqsub835 subtract 1 NaN -> NaN -dqsub836 subtract 1000 -NaN -> -NaN -dqsub837 subtract Inf NaN -> NaN - -dqsub841 subtract sNaN Inf -> NaN Invalid_operation -dqsub842 subtract -sNaN 1000 -> -NaN Invalid_operation -dqsub843 subtract sNaN 1 -> NaN Invalid_operation -dqsub844 subtract sNaN 0 -> NaN Invalid_operation -dqsub845 subtract sNaN -0 -> NaN Invalid_operation -dqsub846 subtract sNaN -1 -> NaN Invalid_operation -dqsub847 subtract sNaN -1000 -> NaN Invalid_operation -dqsub848 subtract sNaN NaN -> NaN Invalid_operation -dqsub849 subtract sNaN sNaN -> NaN Invalid_operation -dqsub850 subtract NaN sNaN -> NaN Invalid_operation -dqsub851 subtract -Inf -sNaN -> -NaN Invalid_operation -dqsub852 subtract -1000 sNaN -> NaN Invalid_operation -dqsub853 subtract -1 sNaN -> NaN Invalid_operation -dqsub854 subtract -0 sNaN -> NaN Invalid_operation -dqsub855 subtract 0 sNaN -> NaN Invalid_operation -dqsub856 subtract 1 sNaN -> NaN Invalid_operation -dqsub857 subtract 1000 sNaN -> NaN Invalid_operation -dqsub858 subtract Inf sNaN -> NaN Invalid_operation -dqsub859 subtract NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqsub861 subtract NaN01 -Inf -> NaN1 -dqsub862 subtract -NaN02 -1000 -> -NaN2 -dqsub863 subtract NaN03 1000 -> NaN3 -dqsub864 subtract NaN04 Inf -> NaN4 -dqsub865 subtract NaN05 NaN61 -> NaN5 -dqsub866 subtract -Inf -NaN71 -> -NaN71 -dqsub867 subtract -1000 NaN81 -> NaN81 -dqsub868 subtract 1000 NaN91 -> NaN91 -dqsub869 subtract Inf NaN101 -> NaN101 -dqsub871 subtract sNaN011 -Inf -> NaN11 Invalid_operation -dqsub872 subtract sNaN012 -1000 -> NaN12 Invalid_operation -dqsub873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation -dqsub874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation -dqsub875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation -dqsub876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation -dqsub877 subtract -Inf sNaN201 -> NaN201 Invalid_operation -dqsub878 subtract -1000 sNaN211 -> NaN211 Invalid_operation -dqsub879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation -dqsub880 subtract Inf sNaN231 -> NaN231 Invalid_operation -dqsub881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation - --- edge case spills -dqsub901 subtract 2.E-3 1.002 -> -1.000 -dqsub902 subtract 2.0E-3 1.002 -> -1.0000 -dqsub903 subtract 2.00E-3 1.0020 -> -1.00000 -dqsub904 subtract 2.000E-3 1.00200 -> -1.000000 -dqsub905 subtract 2.0000E-3 1.002000 -> -1.0000000 -dqsub906 subtract 2.00000E-3 1.0020000 -> -1.00000000 -dqsub907 subtract 2.000000E-3 1.00200000 -> -1.000000000 -dqsub908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000 - --- subnormals and overflows covered under Add - --- Examples from SQL proposal (Krishna Kulkarni) -dqsub1125 subtract 130E-2 120E-2 -> 0.10 -dqsub1126 subtract 130E-2 12E-1 -> 0.10 -dqsub1127 subtract 130E-2 1E0 -> 0.30 -dqsub1128 subtract 1E2 1E4 -> -9.9E+3 - --- Null tests -dqsub9990 subtract 10 # -> NaN Invalid_operation -dqsub9991 subtract # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dqToIntegral.decTest b/qdecimal/test/tc_full/dqToIntegral.decTest deleted file mode 100644 index d2d2bf1..0000000 --- a/qdecimal/test/tc_full/dqToIntegral.decTest +++ /dev/null @@ -1,257 +0,0 @@ ------------------------------------------------------------------------- --- dqToIntegral.decTest -- round Quad to integral value -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests tests the extended specification 'round-to-integral --- value-exact' operations (from IEEE 854, later modified in 754r). --- All non-zero results are defined as being those from either copy or --- quantize, so those are assumed to have been tested extensively --- elsewhere; the tests here are for integrity, rounding mode, etc. --- Also, it is assumed the test harness will use these tests for both --- ToIntegralExact (which does set Inexact) and the fixed-name --- functions (which do not set Inexact). - --- Note that decNumber implements an earlier definition of toIntegral --- which never sets Inexact; the decTest operator for that is called --- 'tointegral' instead of 'tointegralx'. - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - -dqintx001 tointegralx 0 -> 0 -dqintx002 tointegralx 0.0 -> 0 -dqintx003 tointegralx 0.1 -> 0 Inexact Rounded -dqintx004 tointegralx 0.2 -> 0 Inexact Rounded -dqintx005 tointegralx 0.3 -> 0 Inexact Rounded -dqintx006 tointegralx 0.4 -> 0 Inexact Rounded -dqintx007 tointegralx 0.5 -> 0 Inexact Rounded -dqintx008 tointegralx 0.6 -> 1 Inexact Rounded -dqintx009 tointegralx 0.7 -> 1 Inexact Rounded -dqintx010 tointegralx 0.8 -> 1 Inexact Rounded -dqintx011 tointegralx 0.9 -> 1 Inexact Rounded -dqintx012 tointegralx 1 -> 1 -dqintx013 tointegralx 1.0 -> 1 Rounded -dqintx014 tointegralx 1.1 -> 1 Inexact Rounded -dqintx015 tointegralx 1.2 -> 1 Inexact Rounded -dqintx016 tointegralx 1.3 -> 1 Inexact Rounded -dqintx017 tointegralx 1.4 -> 1 Inexact Rounded -dqintx018 tointegralx 1.5 -> 2 Inexact Rounded -dqintx019 tointegralx 1.6 -> 2 Inexact Rounded -dqintx020 tointegralx 1.7 -> 2 Inexact Rounded -dqintx021 tointegralx 1.8 -> 2 Inexact Rounded -dqintx022 tointegralx 1.9 -> 2 Inexact Rounded --- negatives -dqintx031 tointegralx -0 -> -0 -dqintx032 tointegralx -0.0 -> -0 -dqintx033 tointegralx -0.1 -> -0 Inexact Rounded -dqintx034 tointegralx -0.2 -> -0 Inexact Rounded -dqintx035 tointegralx -0.3 -> -0 Inexact Rounded -dqintx036 tointegralx -0.4 -> -0 Inexact Rounded -dqintx037 tointegralx -0.5 -> -0 Inexact Rounded -dqintx038 tointegralx -0.6 -> -1 Inexact Rounded -dqintx039 tointegralx -0.7 -> -1 Inexact Rounded -dqintx040 tointegralx -0.8 -> -1 Inexact Rounded -dqintx041 tointegralx -0.9 -> -1 Inexact Rounded -dqintx042 tointegralx -1 -> -1 -dqintx043 tointegralx -1.0 -> -1 Rounded -dqintx044 tointegralx -1.1 -> -1 Inexact Rounded -dqintx045 tointegralx -1.2 -> -1 Inexact Rounded -dqintx046 tointegralx -1.3 -> -1 Inexact Rounded -dqintx047 tointegralx -1.4 -> -1 Inexact Rounded -dqintx048 tointegralx -1.5 -> -2 Inexact Rounded -dqintx049 tointegralx -1.6 -> -2 Inexact Rounded -dqintx050 tointegralx -1.7 -> -2 Inexact Rounded -dqintx051 tointegralx -1.8 -> -2 Inexact Rounded -dqintx052 tointegralx -1.9 -> -2 Inexact Rounded --- next two would be NaN using quantize(x, 0) -dqintx053 tointegralx 10E+60 -> 1.0E+61 -dqintx054 tointegralx -10E+60 -> -1.0E+61 - --- numbers around precision -dqintx060 tointegralx '56267E-17' -> '0' Inexact Rounded -dqintx061 tointegralx '56267E-5' -> '1' Inexact Rounded -dqintx062 tointegralx '56267E-2' -> '563' Inexact Rounded -dqintx063 tointegralx '56267E-1' -> '5627' Inexact Rounded -dqintx065 tointegralx '56267E-0' -> '56267' -dqintx066 tointegralx '56267E+0' -> '56267' -dqintx067 tointegralx '56267E+1' -> '5.6267E+5' -dqintx068 tointegralx '56267E+9' -> '5.6267E+13' -dqintx069 tointegralx '56267E+10' -> '5.6267E+14' -dqintx070 tointegralx '56267E+11' -> '5.6267E+15' -dqintx071 tointegralx '56267E+12' -> '5.6267E+16' -dqintx072 tointegralx '56267E+13' -> '5.6267E+17' -dqintx073 tointegralx '1.23E+96' -> '1.23E+96' -dqintx074 tointegralx '1.23E+6144' -> #47ffd300000000000000000000000000 Clamped - -dqintx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded -dqintx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded -dqintx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded -dqintx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded -dqintx085 tointegralx '-56267E-0' -> '-56267' -dqintx086 tointegralx '-56267E+0' -> '-56267' -dqintx087 tointegralx '-56267E+1' -> '-5.6267E+5' -dqintx088 tointegralx '-56267E+9' -> '-5.6267E+13' -dqintx089 tointegralx '-56267E+10' -> '-5.6267E+14' -dqintx090 tointegralx '-56267E+11' -> '-5.6267E+15' -dqintx091 tointegralx '-56267E+12' -> '-5.6267E+16' -dqintx092 tointegralx '-56267E+13' -> '-5.6267E+17' -dqintx093 tointegralx '-1.23E+96' -> '-1.23E+96' -dqintx094 tointegralx '-1.23E+6144' -> #c7ffd300000000000000000000000000 Clamped - --- subnormal inputs -dqintx100 tointegralx 1E-299 -> 0 Inexact Rounded -dqintx101 tointegralx 0.1E-299 -> 0 Inexact Rounded -dqintx102 tointegralx 0.01E-299 -> 0 Inexact Rounded -dqintx103 tointegralx 0E-299 -> 0 - --- specials and zeros -dqintx120 tointegralx 'Inf' -> Infinity -dqintx121 tointegralx '-Inf' -> -Infinity -dqintx122 tointegralx NaN -> NaN -dqintx123 tointegralx sNaN -> NaN Invalid_operation -dqintx124 tointegralx 0 -> 0 -dqintx125 tointegralx -0 -> -0 -dqintx126 tointegralx 0.000 -> 0 -dqintx127 tointegralx 0.00 -> 0 -dqintx128 tointegralx 0.0 -> 0 -dqintx129 tointegralx 0 -> 0 -dqintx130 tointegralx 0E-3 -> 0 -dqintx131 tointegralx 0E-2 -> 0 -dqintx132 tointegralx 0E-1 -> 0 -dqintx133 tointegralx 0E-0 -> 0 -dqintx134 tointegralx 0E+1 -> 0E+1 -dqintx135 tointegralx 0E+2 -> 0E+2 -dqintx136 tointegralx 0E+3 -> 0E+3 -dqintx137 tointegralx 0E+4 -> 0E+4 -dqintx138 tointegralx 0E+5 -> 0E+5 -dqintx139 tointegralx -0.000 -> -0 -dqintx140 tointegralx -0.00 -> -0 -dqintx141 tointegralx -0.0 -> -0 -dqintx142 tointegralx -0 -> -0 -dqintx143 tointegralx -0E-3 -> -0 -dqintx144 tointegralx -0E-2 -> -0 -dqintx145 tointegralx -0E-1 -> -0 -dqintx146 tointegralx -0E-0 -> -0 -dqintx147 tointegralx -0E+1 -> -0E+1 -dqintx148 tointegralx -0E+2 -> -0E+2 -dqintx149 tointegralx -0E+3 -> -0E+3 -dqintx150 tointegralx -0E+4 -> -0E+4 -dqintx151 tointegralx -0E+5 -> -0E+5 --- propagating NaNs -dqintx152 tointegralx NaN808 -> NaN808 -dqintx153 tointegralx sNaN080 -> NaN80 Invalid_operation -dqintx154 tointegralx -NaN808 -> -NaN808 -dqintx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation -dqintx156 tointegralx -NaN -> -NaN -dqintx157 tointegralx -sNaN -> -NaN Invalid_operation - --- examples -rounding: half_up -dqintx200 tointegralx 2.1 -> 2 Inexact Rounded -dqintx201 tointegralx 100 -> 100 -dqintx202 tointegralx 100.0 -> 100 Rounded -dqintx203 tointegralx 101.5 -> 102 Inexact Rounded -dqintx204 tointegralx -101.5 -> -102 Inexact Rounded -dqintx205 tointegralx 10E+5 -> 1.0E+6 -dqintx206 tointegralx 7.89E+77 -> 7.89E+77 -dqintx207 tointegralx -Inf -> -Infinity - - --- all rounding modes -rounding: half_even -dqintx210 tointegralx 55.5 -> 56 Inexact Rounded -dqintx211 tointegralx 56.5 -> 56 Inexact Rounded -dqintx212 tointegralx 57.5 -> 58 Inexact Rounded -dqintx213 tointegralx -55.5 -> -56 Inexact Rounded -dqintx214 tointegralx -56.5 -> -56 Inexact Rounded -dqintx215 tointegralx -57.5 -> -58 Inexact Rounded - -rounding: half_up - -dqintx220 tointegralx 55.5 -> 56 Inexact Rounded -dqintx221 tointegralx 56.5 -> 57 Inexact Rounded -dqintx222 tointegralx 57.5 -> 58 Inexact Rounded -dqintx223 tointegralx -55.5 -> -56 Inexact Rounded -dqintx224 tointegralx -56.5 -> -57 Inexact Rounded -dqintx225 tointegralx -57.5 -> -58 Inexact Rounded - -rounding: half_down - -dqintx230 tointegralx 55.5 -> 55 Inexact Rounded -dqintx231 tointegralx 56.5 -> 56 Inexact Rounded -dqintx232 tointegralx 57.5 -> 57 Inexact Rounded -dqintx233 tointegralx -55.5 -> -55 Inexact Rounded -dqintx234 tointegralx -56.5 -> -56 Inexact Rounded -dqintx235 tointegralx -57.5 -> -57 Inexact Rounded - -rounding: up - -dqintx240 tointegralx 55.3 -> 56 Inexact Rounded -dqintx241 tointegralx 56.3 -> 57 Inexact Rounded -dqintx242 tointegralx 57.3 -> 58 Inexact Rounded -dqintx243 tointegralx -55.3 -> -56 Inexact Rounded -dqintx244 tointegralx -56.3 -> -57 Inexact Rounded -dqintx245 tointegralx -57.3 -> -58 Inexact Rounded - -rounding: down - -dqintx250 tointegralx 55.7 -> 55 Inexact Rounded -dqintx251 tointegralx 56.7 -> 56 Inexact Rounded -dqintx252 tointegralx 57.7 -> 57 Inexact Rounded -dqintx253 tointegralx -55.7 -> -55 Inexact Rounded -dqintx254 tointegralx -56.7 -> -56 Inexact Rounded -dqintx255 tointegralx -57.7 -> -57 Inexact Rounded - -rounding: ceiling - -dqintx260 tointegralx 55.3 -> 56 Inexact Rounded -dqintx261 tointegralx 56.3 -> 57 Inexact Rounded -dqintx262 tointegralx 57.3 -> 58 Inexact Rounded -dqintx263 tointegralx -55.3 -> -55 Inexact Rounded -dqintx264 tointegralx -56.3 -> -56 Inexact Rounded -dqintx265 tointegralx -57.3 -> -57 Inexact Rounded - -rounding: floor - -dqintx270 tointegralx 55.7 -> 55 Inexact Rounded -dqintx271 tointegralx 56.7 -> 56 Inexact Rounded -dqintx272 tointegralx 57.7 -> 57 Inexact Rounded -dqintx273 tointegralx -55.7 -> -56 Inexact Rounded -dqintx274 tointegralx -56.7 -> -57 Inexact Rounded -dqintx275 tointegralx -57.7 -> -58 Inexact Rounded - --- Int and uInt32 edge values for testing conversions -dqintx300 tointegralx -2147483646 -> -2147483646 -dqintx301 tointegralx -2147483647 -> -2147483647 -dqintx302 tointegralx -2147483648 -> -2147483648 -dqintx303 tointegralx -2147483649 -> -2147483649 -dqintx304 tointegralx 2147483646 -> 2147483646 -dqintx305 tointegralx 2147483647 -> 2147483647 -dqintx306 tointegralx 2147483648 -> 2147483648 -dqintx307 tointegralx 2147483649 -> 2147483649 -dqintx308 tointegralx 4294967294 -> 4294967294 -dqintx309 tointegralx 4294967295 -> 4294967295 -dqintx310 tointegralx 4294967296 -> 4294967296 -dqintx311 tointegralx 4294967297 -> 4294967297 - diff --git a/qdecimal/test/tc_full/dqXor.decTest b/qdecimal/test/tc_full/dqXor.decTest deleted file mode 100644 index 889bb3e..0000000 --- a/qdecimal/test/tc_full/dqXor.decTest +++ /dev/null @@ -1,410 +0,0 @@ ------------------------------------------------------------------------- --- dqXor.decTest -- digitwise logical XOR for decQuads -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -clamp: 1 -precision: 34 -maxExponent: 6144 -minExponent: -6143 -rounding: half_even - --- Sanity check (truth table) -dqxor001 xor 0 0 -> 0 -dqxor002 xor 0 1 -> 1 -dqxor003 xor 1 0 -> 1 -dqxor004 xor 1 1 -> 0 -dqxor005 xor 1100 1010 -> 110 --- and at msd and msd-1 -dqxor006 xor 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqxor007 xor 0000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000 -dqxor008 xor 1000000000000000000000000000000000 0000000000000000000000000000000000 -> 1000000000000000000000000000000000 -dqxor009 xor 1000000000000000000000000000000000 1000000000000000000000000000000000 -> 0 -dqxor010 xor 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0 -dqxor011 xor 0000000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000 -dqxor012 xor 0100000000000000000000000000000000 0000000000000000000000000000000000 -> 100000000000000000000000000000000 -dqxor013 xor 0100000000000000000000000000000000 0100000000000000000000000000000000 -> 0 - --- Various lengths --- 1234567890123456789012345678901234 -dqxor601 xor 0111111111111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000000000000 -dqxor602 xor 1011111111111111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000000000000 -dqxor603 xor 1101111111111111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000000000000 -dqxor604 xor 1110111111111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000000000 -dqxor605 xor 1111011111111111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000000000 -dqxor606 xor 1111101111111111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000000000 -dqxor607 xor 1111110111111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000000 -dqxor608 xor 1111111011111111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000000 -dqxor609 xor 1111111101111111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000000 -dqxor610 xor 1111111110111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000 -dqxor611 xor 1111111111011111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000 -dqxor612 xor 1111111111101111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000 -dqxor613 xor 1111111111110111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000 -dqxor614 xor 1111111111111011111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000 -dqxor615 xor 1111111111111101111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000 -dqxor616 xor 1111111111111110111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000 -dqxor617 xor 1111111111111111011111111111111111 1111111111111111111111111111111111 -> 100000000000000000 -dqxor618 xor 1111111111111111101111111111111111 1111111111111111111111111111111111 -> 10000000000000000 -dqxor619 xor 1111111111111111110111111111111111 1111111111111111111111111111111111 -> 1000000000000000 -dqxor620 xor 1111111111111111111011111111111111 1111111111111111111111111111111111 -> 100000000000000 -dqxor621 xor 1111111111111111111101111111111111 1111111111111111111111111111111111 -> 10000000000000 -dqxor622 xor 1111111111111111111110111111111111 1111111111111111111111111111111111 -> 1000000000000 -dqxor623 xor 1111111111111111111111011111111111 1111111111111111111111111111111111 -> 100000000000 -dqxor624 xor 1111111111111111111111101111111111 1111111111111111111111111111111111 -> 10000000000 -dqxor625 xor 1111111111111111111111110111111111 1111111111111111111111111111111111 -> 1000000000 -dqxor626 xor 1111111111111111111111111011111111 1111111111111111111111111111111111 -> 100000000 -dqxor627 xor 1111111111111111111111111101111111 1111111111111111111111111111111111 -> 10000000 -dqxor628 xor 1111111111111111111111111110111111 1111111111111111111111111111111111 -> 1000000 -dqxor629 xor 1111111111111111111111111111011111 1111111111111111111111111111111111 -> 100000 -dqxor630 xor 1111111111111111111111111111101111 1111111111111111111111111111111111 -> 10000 -dqxor631 xor 1111111111111111111111111111110111 1111111111111111111111111111111111 -> 1000 -dqxor632 xor 1111111111111111111111111111111011 1111111111111111111111111111111111 -> 100 -dqxor633 xor 1111111111111111111111111111111101 1111111111111111111111111111111111 -> 10 -dqxor634 xor 1111111111111111111111111111111110 1111111111111111111111111111111111 -> 1 - -dqxor641 xor 1111111111111111111111111111111111 0111111111111111111111111111111111 -> 1000000000000000000000000000000000 -dqxor642 xor 1111111111111111111111111111111111 1011111111111111111111111111111111 -> 100000000000000000000000000000000 -dqxor643 xor 1111111111111111111111111111111111 1101111111111111111111111111111111 -> 10000000000000000000000000000000 -dqxor644 xor 1111111111111111111111111111111111 1110111111111111111111111111111111 -> 1000000000000000000000000000000 -dqxor645 xor 1111111111111111111111111111111111 1111011111111111111111111111111111 -> 100000000000000000000000000000 -dqxor646 xor 1111111111111111111111111111111111 1111101111111111111111111111111111 -> 10000000000000000000000000000 -dqxor647 xor 1111111111111111111111111111111111 1111110111111111111111111111111111 -> 1000000000000000000000000000 -dqxor648 xor 1111111111111111111111111111111111 1111111011111111111111111111111111 -> 100000000000000000000000000 -dqxor649 xor 1111111111111111111111111111111111 1111111101111111111111111111111111 -> 10000000000000000000000000 -dqxor650 xor 1111111111111111111111111111111111 1111111110111111111111111111111111 -> 1000000000000000000000000 -dqxor651 xor 1111111111111111111111111111111111 1111111111011111111111111111111111 -> 100000000000000000000000 -dqxor652 xor 1111111111111111111111111111111111 1111111111101111111111111111111111 -> 10000000000000000000000 -dqxor653 xor 1111111111111111111111111111111111 1111111111110111111111111111111111 -> 1000000000000000000000 -dqxor654 xor 1111111111111111111111111111111111 1111111111111011111111111111111111 -> 100000000000000000000 -dqxor655 xor 1111111111111111111111111111111111 1111111111111101111111111111111111 -> 10000000000000000000 -dqxor656 xor 1111111111111111111111111111111111 1111111111111110111111111111111111 -> 1000000000000000000 -dqxor657 xor 1111111111111111111111111111111111 1111111111111111011111111111111111 -> 100000000000000000 -dqxor658 xor 1111111111111111111111111111111111 1111111111111111101111111111111111 -> 10000000000000000 -dqxor659 xor 1111111111111111111111111111111111 1111111111111111110111111111111111 -> 1000000000000000 -dqxor660 xor 1111111111111111111111111111111111 1111111111111111111011111111111111 -> 100000000000000 -dqxor661 xor 1111111111111111111111111111111111 1111111111111111111101111111111111 -> 10000000000000 -dqxor662 xor 1111111111111111111111111111111111 1111111111111111111110111111111111 -> 1000000000000 -dqxor663 xor 1111111111111111111111111111111111 1111111111111111111111011111111111 -> 100000000000 -dqxor664 xor 1111111111111111111111111111111111 1111111111111111111111101111111111 -> 10000000000 -dqxor665 xor 1111111111111111111111111111111111 1111111111111111111111110111111111 -> 1000000000 -dqxor666 xor 1111111111111111111111111111111111 1111111111111111111111111011111111 -> 100000000 -dqxor667 xor 1111111111111111111111111111111111 1111111111111111111111111101111111 -> 10000000 -dqxor668 xor 1111111111111111111111111111111111 1111111111111111111111111110111111 -> 1000000 -dqxor669 xor 1111111111111111111111111111111111 1111111111111111111111111111011111 -> 100000 -dqxor670 xor 1111111111111111111111111111111111 1111111111111111111111111111101111 -> 10000 -dqxor671 xor 1111111111111111111111111111111111 1111111111111111111111111111110111 -> 1000 -dqxor672 xor 1111111111111111111111111111111111 1111111111111111111111111111111011 -> 100 -dqxor673 xor 1111111111111111111111111111111111 1111111111111111111111111111111101 -> 10 -dqxor674 xor 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1 -dqxor675 xor 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 1000000000000000000000000000000001 -dqxor676 xor 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1 - - -dqxor021 xor 1111111110000000 1111111110000000 -> 0 -dqxor022 xor 111111110000000 111111110000000 -> 0 -dqxor023 xor 11111110000000 11111110000000 -> 0 -dqxor024 xor 1111110000000 1111110000000 -> 0 -dqxor025 xor 111110000000 111110000000 -> 0 -dqxor026 xor 11110000000 11110000000 -> 0 -dqxor027 xor 1110000000 1110000000 -> 0 -dqxor028 xor 110000000 110000000 -> 0 -dqxor029 xor 10000000 10000000 -> 0 -dqxor030 xor 1000000 1000000 -> 0 -dqxor031 xor 100000 100000 -> 0 -dqxor032 xor 10000 10000 -> 0 -dqxor033 xor 1000 1000 -> 0 -dqxor034 xor 100 100 -> 0 -dqxor035 xor 10 10 -> 0 -dqxor036 xor 1 1 -> 0 - -dqxor040 xor 111111111 111111111111 -> 111000000000 -dqxor041 xor 11111111 111111111111 -> 111100000000 -dqxor042 xor 11111111 111111111 -> 100000000 -dqxor043 xor 1111111 100000010 -> 101111101 -dqxor044 xor 111111 100000100 -> 100111011 -dqxor045 xor 11111 100001000 -> 100010111 -dqxor046 xor 1111 100010000 -> 100011111 -dqxor047 xor 111 100100000 -> 100100111 -dqxor048 xor 11 101000000 -> 101000011 -dqxor049 xor 1 110000000 -> 110000001 - -dqxor050 xor 1111111111 1 -> 1111111110 -dqxor051 xor 111111111 1 -> 111111110 -dqxor052 xor 11111111 1 -> 11111110 -dqxor053 xor 1111111 1 -> 1111110 -dqxor054 xor 111111 1 -> 111110 -dqxor055 xor 11111 1 -> 11110 -dqxor056 xor 1111 1 -> 1110 -dqxor057 xor 111 1 -> 110 -dqxor058 xor 11 1 -> 10 -dqxor059 xor 1 1 -> 0 - -dqxor060 xor 1111111111 0 -> 1111111111 -dqxor061 xor 111111111 0 -> 111111111 -dqxor062 xor 11111111 0 -> 11111111 -dqxor063 xor 1111111 0 -> 1111111 -dqxor064 xor 111111 0 -> 111111 -dqxor065 xor 11111 0 -> 11111 -dqxor066 xor 1111 0 -> 1111 -dqxor067 xor 111 0 -> 111 -dqxor068 xor 11 0 -> 11 -dqxor069 xor 1 0 -> 1 - -dqxor070 xor 1 1111111111 -> 1111111110 -dqxor071 xor 1 111111111 -> 111111110 -dqxor072 xor 1 11111111 -> 11111110 -dqxor073 xor 1 1111111 -> 1111110 -dqxor074 xor 1 111111 -> 111110 -dqxor075 xor 1 11111 -> 11110 -dqxor076 xor 1 1111 -> 1110 -dqxor077 xor 1 111 -> 110 -dqxor078 xor 1 11 -> 10 -dqxor079 xor 1 1 -> 0 - -dqxor080 xor 0 1111111111 -> 1111111111 -dqxor081 xor 0 111111111 -> 111111111 -dqxor082 xor 0 11111111 -> 11111111 -dqxor083 xor 0 1111111 -> 1111111 -dqxor084 xor 0 111111 -> 111111 -dqxor085 xor 0 11111 -> 11111 -dqxor086 xor 0 1111 -> 1111 -dqxor087 xor 0 111 -> 111 -dqxor088 xor 0 11 -> 11 -dqxor089 xor 0 1 -> 1 - -dqxor090 xor 011111111 111101111 -> 100010000 -dqxor091 xor 101111111 111101111 -> 10010000 -dqxor092 xor 110111111 111101111 -> 1010000 -dqxor093 xor 111011111 111101111 -> 110000 -dqxor094 xor 111101111 111101111 -> 0 -dqxor095 xor 111110111 111101111 -> 11000 -dqxor096 xor 111111011 111101111 -> 10100 -dqxor097 xor 111111101 111101111 -> 10010 -dqxor098 xor 111111110 111101111 -> 10001 - -dqxor100 xor 111101111 011111111 -> 100010000 -dqxor101 xor 111101111 101111111 -> 10010000 -dqxor102 xor 111101111 110111111 -> 1010000 -dqxor103 xor 111101111 111011111 -> 110000 -dqxor104 xor 111101111 111101111 -> 0 -dqxor105 xor 111101111 111110111 -> 11000 -dqxor106 xor 111101111 111111011 -> 10100 -dqxor107 xor 111101111 111111101 -> 10010 -dqxor108 xor 111101111 111111110 -> 10001 - --- non-0/1 should not be accepted, nor should signs -dqxor220 xor 111111112 111111111 -> NaN Invalid_operation -dqxor221 xor 333333333 333333333 -> NaN Invalid_operation -dqxor222 xor 555555555 555555555 -> NaN Invalid_operation -dqxor223 xor 777777777 777777777 -> NaN Invalid_operation -dqxor224 xor 999999999 999999999 -> NaN Invalid_operation -dqxor225 xor 222222222 999999999 -> NaN Invalid_operation -dqxor226 xor 444444444 999999999 -> NaN Invalid_operation -dqxor227 xor 666666666 999999999 -> NaN Invalid_operation -dqxor228 xor 888888888 999999999 -> NaN Invalid_operation -dqxor229 xor 999999999 222222222 -> NaN Invalid_operation -dqxor230 xor 999999999 444444444 -> NaN Invalid_operation -dqxor231 xor 999999999 666666666 -> NaN Invalid_operation -dqxor232 xor 999999999 888888888 -> NaN Invalid_operation --- a few randoms -dqxor240 xor 567468689 -934981942 -> NaN Invalid_operation -dqxor241 xor 567367689 934981942 -> NaN Invalid_operation -dqxor242 xor -631917772 -706014634 -> NaN Invalid_operation -dqxor243 xor -756253257 138579234 -> NaN Invalid_operation -dqxor244 xor 835590149 567435400 -> NaN Invalid_operation --- test MSD -dqxor250 xor 2000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqxor251 xor 7000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqxor252 xor 8000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqxor253 xor 9000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation -dqxor254 xor 2000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqxor255 xor 7000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqxor256 xor 8000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqxor257 xor 9000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation -dqxor258 xor 1000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation -dqxor259 xor 1000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation -dqxor260 xor 1000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation -dqxor261 xor 1000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation -dqxor262 xor 0000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation -dqxor263 xor 0000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation -dqxor264 xor 0000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation -dqxor265 xor 0000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation --- test MSD-1 -dqxor270 xor 0200000111000111000111001000000000 1000000111000111000111100000000010 -> NaN Invalid_operation -dqxor271 xor 0700000111000111000111000100000000 1000000111000111000111010000000100 -> NaN Invalid_operation -dqxor272 xor 0800000111000111000111000010000000 1000000111000111000111001000001000 -> NaN Invalid_operation -dqxor273 xor 0900000111000111000111000001000000 1000000111000111000111000100010000 -> NaN Invalid_operation -dqxor274 xor 1000000111000111000111000000100000 0200000111000111000111000010100000 -> NaN Invalid_operation -dqxor275 xor 1000000111000111000111000000010000 0700000111000111000111000001000000 -> NaN Invalid_operation -dqxor276 xor 1000000111000111000111000000001000 0800000111000111000111000010100000 -> NaN Invalid_operation -dqxor277 xor 1000000111000111000111000000000100 0900000111000111000111000000010000 -> NaN Invalid_operation --- test LSD -dqxor280 xor 0010000111000111000111000000000002 1000000111000111000111000100000001 -> NaN Invalid_operation -dqxor281 xor 0001000111000111000111000000000007 1000000111000111000111001000000011 -> NaN Invalid_operation -dqxor282 xor 0000000111000111000111100000000008 1000000111000111000111010000000001 -> NaN Invalid_operation -dqxor283 xor 0000000111000111000111010000000009 1000000111000111000111100000000001 -> NaN Invalid_operation -dqxor284 xor 1000000111000111000111001000000000 0001000111000111000111000000000002 -> NaN Invalid_operation -dqxor285 xor 1000000111000111000111000100000000 0010000111000111000111000000000007 -> NaN Invalid_operation -dqxor286 xor 1000000111000111000111000010000000 0100000111000111000111000000000008 -> NaN Invalid_operation -dqxor287 xor 1000000111000111000111000001000000 1000000111000111000111000000000009 -> NaN Invalid_operation --- test Middie -dqxor288 xor 0010000111000111000111000020000000 1000000111000111000111001000000000 -> NaN Invalid_operation -dqxor289 xor 0001000111000111000111000070000001 1000000111000111000111000100000000 -> NaN Invalid_operation -dqxor290 xor 0000000111000111000111100080000010 1000000111000111000111000010000000 -> NaN Invalid_operation -dqxor291 xor 0000000111000111000111010090000100 1000000111000111000111000001000000 -> NaN Invalid_operation -dqxor292 xor 1000000111000111000111001000001000 0000000111000111000111000020100000 -> NaN Invalid_operation -dqxor293 xor 1000000111000111000111000100010000 0000000111000111000111000070010000 -> NaN Invalid_operation -dqxor294 xor 1000000111000111000111000010100000 0000000111000111000111000080001000 -> NaN Invalid_operation -dqxor295 xor 1000000111000111000111000001000000 0000000111000111000111000090000100 -> NaN Invalid_operation --- signs -dqxor296 xor -1000000111000111000111000001000000 -0000001110001110001110010000000100 -> NaN Invalid_operation -dqxor297 xor -1000000111000111000111000001000000 0000001110001110001110000010000100 -> NaN Invalid_operation -dqxor298 xor 1000000111000111000111000001000000 -0000001110001110001110001000000100 -> NaN Invalid_operation -dqxor299 xor 1000000111000111000111000001000000 0000001110001110001110000011000100 -> 1000001001001001001001000010000100 - --- Nmax, Nmin, Ntiny-like -dqxor331 xor 2 9.99999999E+999 -> NaN Invalid_operation -dqxor332 xor 3 1E-999 -> NaN Invalid_operation -dqxor333 xor 4 1.00000000E-2821 -> NaN Invalid_operation -dqxor334 xor 5 1E-900 -> NaN Invalid_operation -dqxor335 xor 6 -1E-900 -> NaN Invalid_operation -dqxor336 xor 7 -1.00000000E-999 -> NaN Invalid_operation -dqxor337 xor 8 -1E-999 -> NaN Invalid_operation -dqxor338 xor 9 -9.99999999E+999 -> NaN Invalid_operation -dqxor341 xor 9.99999999E+999 -18 -> NaN Invalid_operation -dqxor342 xor 1E-999 01 -> NaN Invalid_operation -dqxor343 xor 1.00000000E-999 -18 -> NaN Invalid_operation -dqxor344 xor 1E-908 18 -> NaN Invalid_operation -dqxor345 xor -1E-907 -10 -> NaN Invalid_operation -dqxor346 xor -1.00000000E-999 18 -> NaN Invalid_operation -dqxor347 xor -1E-999 10 -> NaN Invalid_operation -dqxor348 xor -9.99999999E+2991 -18 -> NaN Invalid_operation - --- A few other non-integers -dqxor361 xor 1.0 1 -> NaN Invalid_operation -dqxor362 xor 1E+1 1 -> NaN Invalid_operation -dqxor363 xor 0.0 1 -> NaN Invalid_operation -dqxor364 xor 0E+1 1 -> NaN Invalid_operation -dqxor365 xor 9.9 1 -> NaN Invalid_operation -dqxor366 xor 9E+1 1 -> NaN Invalid_operation -dqxor371 xor 0 1.0 -> NaN Invalid_operation -dqxor372 xor 0 1E+1 -> NaN Invalid_operation -dqxor373 xor 0 0.0 -> NaN Invalid_operation -dqxor374 xor 0 0E+1 -> NaN Invalid_operation -dqxor375 xor 0 9.9 -> NaN Invalid_operation -dqxor376 xor 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -dqxor780 xor -Inf -Inf -> NaN Invalid_operation -dqxor781 xor -Inf -1000 -> NaN Invalid_operation -dqxor782 xor -Inf -1 -> NaN Invalid_operation -dqxor783 xor -Inf -0 -> NaN Invalid_operation -dqxor784 xor -Inf 0 -> NaN Invalid_operation -dqxor785 xor -Inf 1 -> NaN Invalid_operation -dqxor786 xor -Inf 1000 -> NaN Invalid_operation -dqxor787 xor -1000 -Inf -> NaN Invalid_operation -dqxor788 xor -Inf -Inf -> NaN Invalid_operation -dqxor789 xor -1 -Inf -> NaN Invalid_operation -dqxor790 xor -0 -Inf -> NaN Invalid_operation -dqxor791 xor 0 -Inf -> NaN Invalid_operation -dqxor792 xor 1 -Inf -> NaN Invalid_operation -dqxor793 xor 1000 -Inf -> NaN Invalid_operation -dqxor794 xor Inf -Inf -> NaN Invalid_operation - -dqxor800 xor Inf -Inf -> NaN Invalid_operation -dqxor801 xor Inf -1000 -> NaN Invalid_operation -dqxor802 xor Inf -1 -> NaN Invalid_operation -dqxor803 xor Inf -0 -> NaN Invalid_operation -dqxor804 xor Inf 0 -> NaN Invalid_operation -dqxor805 xor Inf 1 -> NaN Invalid_operation -dqxor806 xor Inf 1000 -> NaN Invalid_operation -dqxor807 xor Inf Inf -> NaN Invalid_operation -dqxor808 xor -1000 Inf -> NaN Invalid_operation -dqxor809 xor -Inf Inf -> NaN Invalid_operation -dqxor810 xor -1 Inf -> NaN Invalid_operation -dqxor811 xor -0 Inf -> NaN Invalid_operation -dqxor812 xor 0 Inf -> NaN Invalid_operation -dqxor813 xor 1 Inf -> NaN Invalid_operation -dqxor814 xor 1000 Inf -> NaN Invalid_operation -dqxor815 xor Inf Inf -> NaN Invalid_operation - -dqxor821 xor NaN -Inf -> NaN Invalid_operation -dqxor822 xor NaN -1000 -> NaN Invalid_operation -dqxor823 xor NaN -1 -> NaN Invalid_operation -dqxor824 xor NaN -0 -> NaN Invalid_operation -dqxor825 xor NaN 0 -> NaN Invalid_operation -dqxor826 xor NaN 1 -> NaN Invalid_operation -dqxor827 xor NaN 1000 -> NaN Invalid_operation -dqxor828 xor NaN Inf -> NaN Invalid_operation -dqxor829 xor NaN NaN -> NaN Invalid_operation -dqxor830 xor -Inf NaN -> NaN Invalid_operation -dqxor831 xor -1000 NaN -> NaN Invalid_operation -dqxor832 xor -1 NaN -> NaN Invalid_operation -dqxor833 xor -0 NaN -> NaN Invalid_operation -dqxor834 xor 0 NaN -> NaN Invalid_operation -dqxor835 xor 1 NaN -> NaN Invalid_operation -dqxor836 xor 1000 NaN -> NaN Invalid_operation -dqxor837 xor Inf NaN -> NaN Invalid_operation - -dqxor841 xor sNaN -Inf -> NaN Invalid_operation -dqxor842 xor sNaN -1000 -> NaN Invalid_operation -dqxor843 xor sNaN -1 -> NaN Invalid_operation -dqxor844 xor sNaN -0 -> NaN Invalid_operation -dqxor845 xor sNaN 0 -> NaN Invalid_operation -dqxor846 xor sNaN 1 -> NaN Invalid_operation -dqxor847 xor sNaN 1000 -> NaN Invalid_operation -dqxor848 xor sNaN NaN -> NaN Invalid_operation -dqxor849 xor sNaN sNaN -> NaN Invalid_operation -dqxor850 xor NaN sNaN -> NaN Invalid_operation -dqxor851 xor -Inf sNaN -> NaN Invalid_operation -dqxor852 xor -1000 sNaN -> NaN Invalid_operation -dqxor853 xor -1 sNaN -> NaN Invalid_operation -dqxor854 xor -0 sNaN -> NaN Invalid_operation -dqxor855 xor 0 sNaN -> NaN Invalid_operation -dqxor856 xor 1 sNaN -> NaN Invalid_operation -dqxor857 xor 1000 sNaN -> NaN Invalid_operation -dqxor858 xor Inf sNaN -> NaN Invalid_operation -dqxor859 xor NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -dqxor861 xor NaN1 -Inf -> NaN Invalid_operation -dqxor862 xor +NaN2 -1000 -> NaN Invalid_operation -dqxor863 xor NaN3 1000 -> NaN Invalid_operation -dqxor864 xor NaN4 Inf -> NaN Invalid_operation -dqxor865 xor NaN5 +NaN6 -> NaN Invalid_operation -dqxor866 xor -Inf NaN7 -> NaN Invalid_operation -dqxor867 xor -1000 NaN8 -> NaN Invalid_operation -dqxor868 xor 1000 NaN9 -> NaN Invalid_operation -dqxor869 xor Inf +NaN10 -> NaN Invalid_operation -dqxor871 xor sNaN11 -Inf -> NaN Invalid_operation -dqxor872 xor sNaN12 -1000 -> NaN Invalid_operation -dqxor873 xor sNaN13 1000 -> NaN Invalid_operation -dqxor874 xor sNaN14 NaN17 -> NaN Invalid_operation -dqxor875 xor sNaN15 sNaN18 -> NaN Invalid_operation -dqxor876 xor NaN16 sNaN19 -> NaN Invalid_operation -dqxor877 xor -Inf +sNaN20 -> NaN Invalid_operation -dqxor878 xor -1000 sNaN21 -> NaN Invalid_operation -dqxor879 xor 1000 sNaN22 -> NaN Invalid_operation -dqxor880 xor Inf sNaN23 -> NaN Invalid_operation -dqxor881 xor +NaN25 +sNaN24 -> NaN Invalid_operation -dqxor882 xor -NaN26 NaN28 -> NaN Invalid_operation -dqxor883 xor -sNaN27 sNaN29 -> NaN Invalid_operation -dqxor884 xor 1000 -NaN30 -> NaN Invalid_operation -dqxor885 xor 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/dsBase.decTest b/qdecimal/test/tc_full/dsBase.decTest deleted file mode 100644 index 09ccd3f..0000000 --- a/qdecimal/test/tc_full/dsBase.decTest +++ /dev/null @@ -1,1062 +0,0 @@ ------------------------------------------------------------------------- --- dsBase.decTest -- base decSingle <--> string conversions -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This file tests base conversions from string to a decimal number --- and back to a string (in Scientific form) - --- Note that unlike other operations the operand is subject to rounding --- to conform to emax and precision settings (that is, numbers will --- conform to rules and exponent will be in permitted range). The --- 'left hand side', therefore, may have numbers that cannot be --- represented in a decSingle. Some testcases go to the limit of the --- next-wider format, and hence these testcases may also be used to --- test narrowing and widening operations. - -extended: 1 -clamp: 1 -precision: 7 -maxExponent: 96 -minExponent: -95 -rounding: half_even - -dsbas001 toSci 0 -> 0 -dsbas002 toSci 1 -> 1 -dsbas003 toSci 1.0 -> 1.0 -dsbas004 toSci 1.00 -> 1.00 -dsbas005 toSci 10 -> 10 -dsbas006 toSci 1000 -> 1000 -dsbas007 toSci 10.0 -> 10.0 -dsbas008 toSci 10.1 -> 10.1 -dsbas009 toSci 10.4 -> 10.4 -dsbas010 toSci 10.5 -> 10.5 -dsbas011 toSci 10.6 -> 10.6 -dsbas012 toSci 10.9 -> 10.9 -dsbas013 toSci 11.0 -> 11.0 -dsbas014 toSci 1.234 -> 1.234 -dsbas015 toSci 0.123 -> 0.123 -dsbas016 toSci 0.012 -> 0.012 -dsbas017 toSci -0 -> -0 -dsbas018 toSci -0.0 -> -0.0 -dsbas019 toSci -00.00 -> -0.00 - -dsbas021 toSci -1 -> -1 -dsbas022 toSci -1.0 -> -1.0 -dsbas023 toSci -0.1 -> -0.1 -dsbas024 toSci -9.1 -> -9.1 -dsbas025 toSci -9.11 -> -9.11 -dsbas026 toSci -9.119 -> -9.119 -dsbas027 toSci -9.999 -> -9.999 - -dsbas030 toSci '1234.567' -> '1234.567' -dsbas031 toSci '1234.000' -> '1234.000' -dsbas032 toSci '1234912' -> '1234912' -dsbas033 toSci '0.00001234567' -> '0.00001234567' -dsbas034 toSci '0.000001234567' -> '0.000001234567' -dsbas035 toSci '0.0000001234567' -> '1.234567E-7' -dsbas036 toSci '0.00000001234567' -> '1.234567E-8' - -dsbas037 toSci '0.1234564' -> '0.1234564' -dsbas038 toSci '0.1234565' -> '0.1234565' - --- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax) -dsbsn001 toSci -9.999999E+96 -> -9.999999E+96 -dsbsn002 toSci -1E-95 -> -1E-95 -dsbsn003 toSci -1E-101 -> -1E-101 Subnormal -dsbsn004 toSci -0 -> -0 -dsbsn005 toSci +0 -> 0 -dsbsn006 toSci +1E-101 -> 1E-101 Subnormal -dsbsn007 toSci +1E-95 -> 1E-95 -dsbsn008 toSci +9.999999E+96 -> 9.999999E+96 - --- String [many more examples are implicitly tested elsewhere] --- strings without E cannot generate E in result -dsbas040 toSci "12" -> '12' -dsbas041 toSci "-76" -> '-76' -dsbas042 toSci "12.76" -> '12.76' -dsbas043 toSci "+12.76" -> '12.76' -dsbas044 toSci "012.76" -> '12.76' -dsbas045 toSci "+0.003" -> '0.003' -dsbas046 toSci "17." -> '17' -dsbas047 toSci ".5" -> '0.5' -dsbas048 toSci "044" -> '44' -dsbas049 toSci "0044" -> '44' -dsbas050 toSci "0.0005" -> '0.0005' -dsbas051 toSci "00.00005" -> '0.00005' -dsbas052 toSci "0.000005" -> '0.000005' -dsbas053 toSci "0.0000050" -> '0.0000050' -dsbas054 toSci "0.0000005" -> '5E-7' -dsbas055 toSci "0.00000005" -> '5E-8' -dsbas056 toSci "12678.54" -> '12678.54' -dsbas057 toSci "2678.543" -> '2678.543' -dsbas058 toSci "345678.5" -> '345678.5' -dsbas059 toSci "0678.5432" -> '678.5432' -dsbas060 toSci "678.5432" -> '678.5432' -dsbas061 toSci "+678.5432" -> '678.5432' -dsbas062 toSci "+0678.5432" -> '678.5432' -dsbas063 toSci "+00678.5432" -> '678.5432' -dsbas064 toSci "-678.5432" -> '-678.5432' -dsbas065 toSci "-0678.5432" -> '-678.5432' -dsbas066 toSci "-00678.5432" -> '-678.5432' --- examples -dsbas067 toSci "5E-6" -> '0.000005' -dsbas068 toSci "50E-7" -> '0.0000050' -dsbas069 toSci "5E-7" -> '5E-7' - --- [No exotics as no Unicode] - --- rounded with dots in all (including edge) places -dsbas071 toSci .1234567890123456 -> 0.1234568 Inexact Rounded -dsbas072 toSci 1.234567890123456 -> 1.234568 Inexact Rounded -dsbas073 toSci 12.34567890123456 -> 12.34568 Inexact Rounded -dsbas074 toSci 123.4567890123456 -> 123.4568 Inexact Rounded -dsbas075 toSci 1234.567890123456 -> 1234.568 Inexact Rounded -dsbas076 toSci 12345.67890123456 -> 12345.68 Inexact Rounded -dsbas077 toSci 123456.7890123456 -> 123456.8 Inexact Rounded -dsbas078 toSci 1234567.890123456 -> 1234568 Inexact Rounded -dsbas079 toSci 12345678.90123456 -> 1.234568E+7 Inexact Rounded -dsbas080 toSci 123456789.0123456 -> 1.234568E+8 Inexact Rounded -dsbas081 toSci 1234567890.123456 -> 1.234568E+9 Inexact Rounded -dsbas082 toSci 12345678901.23456 -> 1.234568E+10 Inexact Rounded -dsbas083 toSci 123456789012.3456 -> 1.234568E+11 Inexact Rounded -dsbas084 toSci 1234567890123.456 -> 1.234568E+12 Inexact Rounded -dsbas085 toSci 12345678901234.56 -> 1.234568E+13 Inexact Rounded -dsbas086 toSci 123456789012345.6 -> 1.234568E+14 Inexact Rounded -dsbas087 toSci 1234567890123456. -> 1.234568E+15 Inexact Rounded -dsbas088 toSci 1234567890123456 -> 1.234568E+15 Inexact Rounded - --- Numbers with E -dsbas130 toSci "0.000E-1" -> '0.0000' -dsbas131 toSci "0.000E-2" -> '0.00000' -dsbas132 toSci "0.000E-3" -> '0.000000' -dsbas133 toSci "0.000E-4" -> '0E-7' -dsbas134 toSci "0.00E-2" -> '0.0000' -dsbas135 toSci "0.00E-3" -> '0.00000' -dsbas136 toSci "0.00E-4" -> '0.000000' -dsbas137 toSci "0.00E-5" -> '0E-7' -dsbas138 toSci "+0E+9" -> '0E+9' -dsbas139 toSci "-0E+9" -> '-0E+9' -dsbas140 toSci "1E+9" -> '1E+9' -dsbas141 toSci "1e+09" -> '1E+9' -dsbas142 toSci "1E+90" -> '1E+90' -dsbas143 toSci "+1E+009" -> '1E+9' -dsbas144 toSci "0E+9" -> '0E+9' -dsbas145 toSci "1E+9" -> '1E+9' -dsbas146 toSci "1E+09" -> '1E+9' -dsbas147 toSci "1e+90" -> '1E+90' -dsbas148 toSci "1E+009" -> '1E+9' -dsbas149 toSci "000E+9" -> '0E+9' -dsbas150 toSci "1E9" -> '1E+9' -dsbas151 toSci "1e09" -> '1E+9' -dsbas152 toSci "1E90" -> '1E+90' -dsbas153 toSci "1E009" -> '1E+9' -dsbas154 toSci "0E9" -> '0E+9' -dsbas155 toSci "0.000e+0" -> '0.000' -dsbas156 toSci "0.000E-1" -> '0.0000' -dsbas157 toSci "4E+9" -> '4E+9' -dsbas158 toSci "44E+9" -> '4.4E+10' -dsbas159 toSci "0.73e-7" -> '7.3E-8' -dsbas160 toSci "00E+9" -> '0E+9' -dsbas161 toSci "00E-9" -> '0E-9' -dsbas162 toSci "10E+9" -> '1.0E+10' -dsbas163 toSci "10E+09" -> '1.0E+10' -dsbas164 toSci "10e+90" -> '1.0E+91' -dsbas165 toSci "10E+009" -> '1.0E+10' -dsbas166 toSci "100e+9" -> '1.00E+11' -dsbas167 toSci "100e+09" -> '1.00E+11' -dsbas168 toSci "100E+90" -> '1.00E+92' -dsbas169 toSci "100e+009" -> '1.00E+11' - -dsbas170 toSci "1.265" -> '1.265' -dsbas171 toSci "1.265E-20" -> '1.265E-20' -dsbas172 toSci "1.265E-8" -> '1.265E-8' -dsbas173 toSci "1.265E-4" -> '0.0001265' -dsbas174 toSci "1.265E-3" -> '0.001265' -dsbas175 toSci "1.265E-2" -> '0.01265' -dsbas176 toSci "1.265E-1" -> '0.1265' -dsbas177 toSci "1.265E-0" -> '1.265' -dsbas178 toSci "1.265E+1" -> '12.65' -dsbas179 toSci "1.265E+2" -> '126.5' -dsbas180 toSci "1.265E+3" -> '1265' -dsbas181 toSci "1.265E+4" -> '1.265E+4' -dsbas182 toSci "1.265E+8" -> '1.265E+8' -dsbas183 toSci "1.265E+20" -> '1.265E+20' - -dsbas190 toSci "12.65" -> '12.65' -dsbas191 toSci "12.65E-20" -> '1.265E-19' -dsbas192 toSci "12.65E-8" -> '1.265E-7' -dsbas193 toSci "12.65E-4" -> '0.001265' -dsbas194 toSci "12.65E-3" -> '0.01265' -dsbas195 toSci "12.65E-2" -> '0.1265' -dsbas196 toSci "12.65E-1" -> '1.265' -dsbas197 toSci "12.65E-0" -> '12.65' -dsbas198 toSci "12.65E+1" -> '126.5' -dsbas199 toSci "12.65E+2" -> '1265' -dsbas200 toSci "12.65E+3" -> '1.265E+4' -dsbas201 toSci "12.65E+4" -> '1.265E+5' -dsbas202 toSci "12.65E+8" -> '1.265E+9' -dsbas203 toSci "12.65E+20" -> '1.265E+21' - -dsbas210 toSci "126.5" -> '126.5' -dsbas211 toSci "126.5E-20" -> '1.265E-18' -dsbas212 toSci "126.5E-8" -> '0.000001265' -dsbas213 toSci "126.5E-4" -> '0.01265' -dsbas214 toSci "126.5E-3" -> '0.1265' -dsbas215 toSci "126.5E-2" -> '1.265' -dsbas216 toSci "126.5E-1" -> '12.65' -dsbas217 toSci "126.5E-0" -> '126.5' -dsbas218 toSci "126.5E+1" -> '1265' -dsbas219 toSci "126.5E+2" -> '1.265E+4' -dsbas220 toSci "126.5E+3" -> '1.265E+5' -dsbas221 toSci "126.5E+4" -> '1.265E+6' -dsbas222 toSci "126.5E+8" -> '1.265E+10' -dsbas223 toSci "126.5E+20" -> '1.265E+22' - -dsbas230 toSci "1265" -> '1265' -dsbas231 toSci "1265E-20" -> '1.265E-17' -dsbas232 toSci "1265E-8" -> '0.00001265' -dsbas233 toSci "1265E-4" -> '0.1265' -dsbas234 toSci "1265E-3" -> '1.265' -dsbas235 toSci "1265E-2" -> '12.65' -dsbas236 toSci "1265E-1" -> '126.5' -dsbas237 toSci "1265E-0" -> '1265' -dsbas238 toSci "1265E+1" -> '1.265E+4' -dsbas239 toSci "1265E+2" -> '1.265E+5' -dsbas240 toSci "1265E+3" -> '1.265E+6' -dsbas241 toSci "1265E+4" -> '1.265E+7' -dsbas242 toSci "1265E+8" -> '1.265E+11' -dsbas243 toSci "1265E+20" -> '1.265E+23' - -dsbas250 toSci "0.1265" -> '0.1265' -dsbas251 toSci "0.1265E-20" -> '1.265E-21' -dsbas252 toSci "0.1265E-8" -> '1.265E-9' -dsbas253 toSci "0.1265E-4" -> '0.00001265' -dsbas254 toSci "0.1265E-3" -> '0.0001265' -dsbas255 toSci "0.1265E-2" -> '0.001265' -dsbas256 toSci "0.1265E-1" -> '0.01265' -dsbas257 toSci "0.1265E-0" -> '0.1265' -dsbas258 toSci "0.1265E+1" -> '1.265' -dsbas259 toSci "0.1265E+2" -> '12.65' -dsbas260 toSci "0.1265E+3" -> '126.5' -dsbas261 toSci "0.1265E+4" -> '1265' -dsbas262 toSci "0.1265E+8" -> '1.265E+7' -dsbas263 toSci "0.1265E+20" -> '1.265E+19' - --- some more negative zeros [systematic tests below] -dsbas290 toSci "-0.000E-1" -> '-0.0000' -dsbas291 toSci "-0.000E-2" -> '-0.00000' -dsbas292 toSci "-0.000E-3" -> '-0.000000' -dsbas293 toSci "-0.000E-4" -> '-0E-7' -dsbas294 toSci "-0.00E-2" -> '-0.0000' -dsbas295 toSci "-0.00E-3" -> '-0.00000' -dsbas296 toSci "-0.0E-2" -> '-0.000' -dsbas297 toSci "-0.0E-3" -> '-0.0000' -dsbas298 toSci "-0E-2" -> '-0.00' -dsbas299 toSci "-0E-3" -> '-0.000' - --- Engineering notation tests -dsbas301 toSci 10e12 -> 1.0E+13 -dsbas302 toEng 10e12 -> 10E+12 -dsbas303 toSci 10e11 -> 1.0E+12 -dsbas304 toEng 10e11 -> 1.0E+12 -dsbas305 toSci 10e10 -> 1.0E+11 -dsbas306 toEng 10e10 -> 100E+9 -dsbas307 toSci 10e9 -> 1.0E+10 -dsbas308 toEng 10e9 -> 10E+9 -dsbas309 toSci 10e8 -> 1.0E+9 -dsbas310 toEng 10e8 -> 1.0E+9 -dsbas311 toSci 10e7 -> 1.0E+8 -dsbas312 toEng 10e7 -> 100E+6 -dsbas313 toSci 10e6 -> 1.0E+7 -dsbas314 toEng 10e6 -> 10E+6 -dsbas315 toSci 10e5 -> 1.0E+6 -dsbas316 toEng 10e5 -> 1.0E+6 -dsbas317 toSci 10e4 -> 1.0E+5 -dsbas318 toEng 10e4 -> 100E+3 -dsbas319 toSci 10e3 -> 1.0E+4 -dsbas320 toEng 10e3 -> 10E+3 -dsbas321 toSci 10e2 -> 1.0E+3 -dsbas322 toEng 10e2 -> 1.0E+3 -dsbas323 toSci 10e1 -> 1.0E+2 -dsbas324 toEng 10e1 -> 100 -dsbas325 toSci 10e0 -> 10 -dsbas326 toEng 10e0 -> 10 -dsbas327 toSci 10e-1 -> 1.0 -dsbas328 toEng 10e-1 -> 1.0 -dsbas329 toSci 10e-2 -> 0.10 -dsbas330 toEng 10e-2 -> 0.10 -dsbas331 toSci 10e-3 -> 0.010 -dsbas332 toEng 10e-3 -> 0.010 -dsbas333 toSci 10e-4 -> 0.0010 -dsbas334 toEng 10e-4 -> 0.0010 -dsbas335 toSci 10e-5 -> 0.00010 -dsbas336 toEng 10e-5 -> 0.00010 -dsbas337 toSci 10e-6 -> 0.000010 -dsbas338 toEng 10e-6 -> 0.000010 -dsbas339 toSci 10e-7 -> 0.0000010 -dsbas340 toEng 10e-7 -> 0.0000010 -dsbas341 toSci 10e-8 -> 1.0E-7 -dsbas342 toEng 10e-8 -> 100E-9 -dsbas343 toSci 10e-9 -> 1.0E-8 -dsbas344 toEng 10e-9 -> 10E-9 -dsbas345 toSci 10e-10 -> 1.0E-9 -dsbas346 toEng 10e-10 -> 1.0E-9 -dsbas347 toSci 10e-11 -> 1.0E-10 -dsbas348 toEng 10e-11 -> 100E-12 -dsbas349 toSci 10e-12 -> 1.0E-11 -dsbas350 toEng 10e-12 -> 10E-12 -dsbas351 toSci 10e-13 -> 1.0E-12 -dsbas352 toEng 10e-13 -> 1.0E-12 - -dsbas361 toSci 7E12 -> 7E+12 -dsbas362 toEng 7E12 -> 7E+12 -dsbas363 toSci 7E11 -> 7E+11 -dsbas364 toEng 7E11 -> 700E+9 -dsbas365 toSci 7E10 -> 7E+10 -dsbas366 toEng 7E10 -> 70E+9 -dsbas367 toSci 7E9 -> 7E+9 -dsbas368 toEng 7E9 -> 7E+9 -dsbas369 toSci 7E8 -> 7E+8 -dsbas370 toEng 7E8 -> 700E+6 -dsbas371 toSci 7E7 -> 7E+7 -dsbas372 toEng 7E7 -> 70E+6 -dsbas373 toSci 7E6 -> 7E+6 -dsbas374 toEng 7E6 -> 7E+6 -dsbas375 toSci 7E5 -> 7E+5 -dsbas376 toEng 7E5 -> 700E+3 -dsbas377 toSci 7E4 -> 7E+4 -dsbas378 toEng 7E4 -> 70E+3 -dsbas379 toSci 7E3 -> 7E+3 -dsbas380 toEng 7E3 -> 7E+3 -dsbas381 toSci 7E2 -> 7E+2 -dsbas382 toEng 7E2 -> 700 -dsbas383 toSci 7E1 -> 7E+1 -dsbas384 toEng 7E1 -> 70 -dsbas385 toSci 7E0 -> 7 -dsbas386 toEng 7E0 -> 7 -dsbas387 toSci 7E-1 -> 0.7 -dsbas388 toEng 7E-1 -> 0.7 -dsbas389 toSci 7E-2 -> 0.07 -dsbas390 toEng 7E-2 -> 0.07 -dsbas391 toSci 7E-3 -> 0.007 -dsbas392 toEng 7E-3 -> 0.007 -dsbas393 toSci 7E-4 -> 0.0007 -dsbas394 toEng 7E-4 -> 0.0007 -dsbas395 toSci 7E-5 -> 0.00007 -dsbas396 toEng 7E-5 -> 0.00007 -dsbas397 toSci 7E-6 -> 0.000007 -dsbas398 toEng 7E-6 -> 0.000007 -dsbas399 toSci 7E-7 -> 7E-7 -dsbas400 toEng 7E-7 -> 700E-9 -dsbas401 toSci 7E-8 -> 7E-8 -dsbas402 toEng 7E-8 -> 70E-9 -dsbas403 toSci 7E-9 -> 7E-9 -dsbas404 toEng 7E-9 -> 7E-9 -dsbas405 toSci 7E-10 -> 7E-10 -dsbas406 toEng 7E-10 -> 700E-12 -dsbas407 toSci 7E-11 -> 7E-11 -dsbas408 toEng 7E-11 -> 70E-12 -dsbas409 toSci 7E-12 -> 7E-12 -dsbas410 toEng 7E-12 -> 7E-12 -dsbas411 toSci 7E-13 -> 7E-13 -dsbas412 toEng 7E-13 -> 700E-15 - --- Exacts remain exact up to precision .. -dsbas420 toSci 100 -> 100 -dsbas422 toSci 1000 -> 1000 -dsbas424 toSci 999.9 -> 999.9 -dsbas426 toSci 1000.0 -> 1000.0 -dsbas428 toSci 1000.1 -> 1000.1 -dsbas430 toSci 10000 -> 10000 -dsbas432 toSci 1000 -> 1000 -dsbas434 toSci 10000 -> 10000 -dsbas436 toSci 100000 -> 100000 -dsbas438 toSci 1000000 -> 1000000 -dsbas440 toSci 10000000 -> 1.000000E+7 Rounded -dsbas442 toSci 10000000 -> 1.000000E+7 Rounded -dsbas444 toSci 10000003 -> 1.000000E+7 Rounded Inexact -dsbas446 toSci 10000005 -> 1.000000E+7 Rounded Inexact -dsbas448 toSci 100000050 -> 1.000000E+8 Rounded Inexact -dsbas450 toSci 10000009 -> 1.000001E+7 Rounded Inexact -dsbas452 toSci 100000000 -> 1.000000E+8 Rounded -dsbas454 toSci 100000003 -> 1.000000E+8 Rounded Inexact -dsbas456 toSci 100000005 -> 1.000000E+8 Rounded Inexact -dsbas458 toSci 100000009 -> 1.000000E+8 Rounded Inexact -dsbas460 toSci 1000000000 -> 1.000000E+9 Rounded -dsbas462 toSci 1000000300 -> 1.000000E+9 Rounded Inexact -dsbas464 toSci 1000000500 -> 1.000000E+9 Rounded Inexact -dsbas466 toSci 1000000900 -> 1.000001E+9 Rounded Inexact -dsbas468 toSci 10000000000 -> 1.000000E+10 Rounded -dsbas470 toSci 10000003000 -> 1.000000E+10 Rounded Inexact -dsbas472 toSci 10000005000 -> 1.000000E+10 Rounded Inexact -dsbas474 toSci 10000009000 -> 1.000001E+10 Rounded Inexact - --- check rounding modes heeded -rounding: ceiling -dsbsr401 toSci 1.1123450 -> 1.112345 Rounded -dsbsr402 toSci 1.11234549 -> 1.112346 Rounded Inexact -dsbsr403 toSci 1.11234550 -> 1.112346 Rounded Inexact -dsbsr404 toSci 1.11234551 -> 1.112346 Rounded Inexact -rounding: up -dsbsr405 toSci 1.1123450 -> 1.112345 Rounded -dsbsr406 toSci 1.11234549 -> 1.112346 Rounded Inexact -dsbsr407 toSci 1.11234550 -> 1.112346 Rounded Inexact -dsbsr408 toSci 1.11234551 -> 1.112346 Rounded Inexact -rounding: floor -dsbsr410 toSci 1.1123450 -> 1.112345 Rounded -dsbsr411 toSci 1.11234549 -> 1.112345 Rounded Inexact -dsbsr412 toSci 1.11234550 -> 1.112345 Rounded Inexact -dsbsr413 toSci 1.11234551 -> 1.112345 Rounded Inexact -rounding: half_down -dsbsr415 toSci 1.1123450 -> 1.112345 Rounded -dsbsr416 toSci 1.11234549 -> 1.112345 Rounded Inexact -dsbsr417 toSci 1.11234550 -> 1.112345 Rounded Inexact -dsbsr418 toSci 1.11234650 -> 1.112346 Rounded Inexact -dsbsr419 toSci 1.11234551 -> 1.112346 Rounded Inexact -rounding: half_even -dsbsr421 toSci 1.1123450 -> 1.112345 Rounded -dsbsr422 toSci 1.11234549 -> 1.112345 Rounded Inexact -dsbsr423 toSci 1.11234550 -> 1.112346 Rounded Inexact -dsbsr424 toSci 1.11234650 -> 1.112346 Rounded Inexact -dsbsr425 toSci 1.11234551 -> 1.112346 Rounded Inexact -rounding: down -dsbsr426 toSci 1.1123450 -> 1.112345 Rounded -dsbsr427 toSci 1.11234549 -> 1.112345 Rounded Inexact -dsbsr428 toSci 1.11234550 -> 1.112345 Rounded Inexact -dsbsr429 toSci 1.11234551 -> 1.112345 Rounded Inexact -rounding: half_up -dsbsr431 toSci 1.1123450 -> 1.112345 Rounded -dsbsr432 toSci 1.11234549 -> 1.112345 Rounded Inexact -dsbsr433 toSci 1.11234550 -> 1.112346 Rounded Inexact -dsbsr434 toSci 1.11234650 -> 1.112347 Rounded Inexact -dsbsr435 toSci 1.11234551 -> 1.112346 Rounded Inexact --- negatives -rounding: ceiling -dsbsr501 toSci -1.1123450 -> -1.112345 Rounded -dsbsr502 toSci -1.11234549 -> -1.112345 Rounded Inexact -dsbsr503 toSci -1.11234550 -> -1.112345 Rounded Inexact -dsbsr504 toSci -1.11234551 -> -1.112345 Rounded Inexact -rounding: up -dsbsr505 toSci -1.1123450 -> -1.112345 Rounded -dsbsr506 toSci -1.11234549 -> -1.112346 Rounded Inexact -dsbsr507 toSci -1.11234550 -> -1.112346 Rounded Inexact -dsbsr508 toSci -1.11234551 -> -1.112346 Rounded Inexact -rounding: floor -dsbsr510 toSci -1.1123450 -> -1.112345 Rounded -dsbsr511 toSci -1.11234549 -> -1.112346 Rounded Inexact -dsbsr512 toSci -1.11234550 -> -1.112346 Rounded Inexact -dsbsr513 toSci -1.11234551 -> -1.112346 Rounded Inexact -rounding: half_down -dsbsr515 toSci -1.1123450 -> -1.112345 Rounded -dsbsr516 toSci -1.11234549 -> -1.112345 Rounded Inexact -dsbsr517 toSci -1.11234550 -> -1.112345 Rounded Inexact -dsbsr518 toSci -1.11234650 -> -1.112346 Rounded Inexact -dsbsr519 toSci -1.11234551 -> -1.112346 Rounded Inexact -rounding: half_even -dsbsr521 toSci -1.1123450 -> -1.112345 Rounded -dsbsr522 toSci -1.11234549 -> -1.112345 Rounded Inexact -dsbsr523 toSci -1.11234550 -> -1.112346 Rounded Inexact -dsbsr524 toSci -1.11234650 -> -1.112346 Rounded Inexact -dsbsr525 toSci -1.11234551 -> -1.112346 Rounded Inexact -rounding: down -dsbsr526 toSci -1.1123450 -> -1.112345 Rounded -dsbsr527 toSci -1.11234549 -> -1.112345 Rounded Inexact -dsbsr528 toSci -1.11234550 -> -1.112345 Rounded Inexact -dsbsr529 toSci -1.11234551 -> -1.112345 Rounded Inexact -rounding: half_up -dsbsr531 toSci -1.1123450 -> -1.112345 Rounded -dsbsr532 toSci -1.11234549 -> -1.112345 Rounded Inexact -dsbsr533 toSci -1.11234550 -> -1.112346 Rounded Inexact -dsbsr534 toSci -1.11234650 -> -1.112347 Rounded Inexact -dsbsr535 toSci -1.11234551 -> -1.112346 Rounded Inexact - -rounding: half_even - --- The 'baddies' tests from DiagBigDecimal, plus some new ones -dsbas500 toSci '1..2' -> NaN Conversion_syntax -dsbas501 toSci '.' -> NaN Conversion_syntax -dsbas502 toSci '..' -> NaN Conversion_syntax -dsbas503 toSci '++1' -> NaN Conversion_syntax -dsbas504 toSci '--1' -> NaN Conversion_syntax -dsbas505 toSci '-+1' -> NaN Conversion_syntax -dsbas506 toSci '+-1' -> NaN Conversion_syntax -dsbas507 toSci '12e' -> NaN Conversion_syntax -dsbas508 toSci '12e++' -> NaN Conversion_syntax -dsbas509 toSci '12f4' -> NaN Conversion_syntax -dsbas510 toSci ' +1' -> NaN Conversion_syntax -dsbas511 toSci '+ 1' -> NaN Conversion_syntax -dsbas512 toSci '12 ' -> NaN Conversion_syntax -dsbas513 toSci ' + 1' -> NaN Conversion_syntax -dsbas514 toSci ' - 1 ' -> NaN Conversion_syntax -dsbas515 toSci 'x' -> NaN Conversion_syntax -dsbas516 toSci '-1-' -> NaN Conversion_syntax -dsbas517 toSci '12-' -> NaN Conversion_syntax -dsbas518 toSci '3+' -> NaN Conversion_syntax -dsbas519 toSci '' -> NaN Conversion_syntax -dsbas520 toSci '1e-' -> NaN Conversion_syntax -dsbas521 toSci '7e99999a' -> NaN Conversion_syntax -dsbas522 toSci '7e123567890x' -> NaN Conversion_syntax -dsbas523 toSci '7e12356789012x' -> NaN Conversion_syntax -dsbas524 toSci '' -> NaN Conversion_syntax -dsbas525 toSci 'e100' -> NaN Conversion_syntax -dsbas526 toSci '\u0e5a' -> NaN Conversion_syntax -dsbas527 toSci '\u0b65' -> NaN Conversion_syntax -dsbas528 toSci '123,65' -> NaN Conversion_syntax -dsbas529 toSci '1.34.5' -> NaN Conversion_syntax -dsbas530 toSci '.123.5' -> NaN Conversion_syntax -dsbas531 toSci '01.35.' -> NaN Conversion_syntax -dsbas532 toSci '01.35-' -> NaN Conversion_syntax -dsbas533 toSci '0000..' -> NaN Conversion_syntax -dsbas534 toSci '.0000.' -> NaN Conversion_syntax -dsbas535 toSci '00..00' -> NaN Conversion_syntax -dsbas536 toSci '111e*123' -> NaN Conversion_syntax -dsbas537 toSci '111e123-' -> NaN Conversion_syntax -dsbas538 toSci '111e+12+' -> NaN Conversion_syntax -dsbas539 toSci '111e1-3-' -> NaN Conversion_syntax -dsbas540 toSci '111e1*23' -> NaN Conversion_syntax -dsbas541 toSci '111e1e+3' -> NaN Conversion_syntax -dsbas542 toSci '1e1.0' -> NaN Conversion_syntax -dsbas543 toSci '1e123e' -> NaN Conversion_syntax -dsbas544 toSci 'ten' -> NaN Conversion_syntax -dsbas545 toSci 'ONE' -> NaN Conversion_syntax -dsbas546 toSci '1e.1' -> NaN Conversion_syntax -dsbas547 toSci '1e1.' -> NaN Conversion_syntax -dsbas548 toSci '1ee' -> NaN Conversion_syntax -dsbas549 toSci 'e+1' -> NaN Conversion_syntax -dsbas550 toSci '1.23.4' -> NaN Conversion_syntax -dsbas551 toSci '1.2.1' -> NaN Conversion_syntax -dsbas552 toSci '1E+1.2' -> NaN Conversion_syntax -dsbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax -dsbas554 toSci '1E++1' -> NaN Conversion_syntax -dsbas555 toSci '1E--1' -> NaN Conversion_syntax -dsbas556 toSci '1E+-1' -> NaN Conversion_syntax -dsbas557 toSci '1E-+1' -> NaN Conversion_syntax -dsbas558 toSci '1E''1' -> NaN Conversion_syntax -dsbas559 toSci "1E""1" -> NaN Conversion_syntax -dsbas560 toSci "1E""""" -> NaN Conversion_syntax --- Near-specials -dsbas561 toSci "qNaN" -> NaN Conversion_syntax -dsbas562 toSci "NaNq" -> NaN Conversion_syntax -dsbas563 toSci "NaNs" -> NaN Conversion_syntax -dsbas564 toSci "Infi" -> NaN Conversion_syntax -dsbas565 toSci "Infin" -> NaN Conversion_syntax -dsbas566 toSci "Infini" -> NaN Conversion_syntax -dsbas567 toSci "Infinit" -> NaN Conversion_syntax -dsbas568 toSci "-Infinit" -> NaN Conversion_syntax -dsbas569 toSci "0Inf" -> NaN Conversion_syntax -dsbas570 toSci "9Inf" -> NaN Conversion_syntax -dsbas571 toSci "-0Inf" -> NaN Conversion_syntax -dsbas572 toSci "-9Inf" -> NaN Conversion_syntax -dsbas573 toSci "-sNa" -> NaN Conversion_syntax -dsbas574 toSci "xNaN" -> NaN Conversion_syntax -dsbas575 toSci "0sNaN" -> NaN Conversion_syntax - --- some baddies with dots and Es and dots and specials -dsbas576 toSci 'e+1' -> NaN Conversion_syntax -dsbas577 toSci '.e+1' -> NaN Conversion_syntax -dsbas578 toSci '+.e+1' -> NaN Conversion_syntax -dsbas579 toSci '-.e+' -> NaN Conversion_syntax -dsbas580 toSci '-.e' -> NaN Conversion_syntax -dsbas581 toSci 'E+1' -> NaN Conversion_syntax -dsbas582 toSci '.E+1' -> NaN Conversion_syntax -dsbas583 toSci '+.E+1' -> NaN Conversion_syntax -dsbas584 toSci '-.E+' -> NaN Conversion_syntax -dsbas585 toSci '-.E' -> NaN Conversion_syntax - -dsbas586 toSci '.NaN' -> NaN Conversion_syntax -dsbas587 toSci '-.NaN' -> NaN Conversion_syntax -dsbas588 toSci '+.sNaN' -> NaN Conversion_syntax -dsbas589 toSci '+.Inf' -> NaN Conversion_syntax -dsbas590 toSci '.Infinity' -> NaN Conversion_syntax - --- Zeros -dsbas601 toSci 0.000000000 -> 0E-9 -dsbas602 toSci 0.00000000 -> 0E-8 -dsbas603 toSci 0.0000000 -> 0E-7 -dsbas604 toSci 0.000000 -> 0.000000 -dsbas605 toSci 0.00000 -> 0.00000 -dsbas606 toSci 0.0000 -> 0.0000 -dsbas607 toSci 0.000 -> 0.000 -dsbas608 toSci 0.00 -> 0.00 -dsbas609 toSci 0.0 -> 0.0 -dsbas610 toSci .0 -> 0.0 -dsbas611 toSci 0. -> 0 -dsbas612 toSci -.0 -> -0.0 -dsbas613 toSci -0. -> -0 -dsbas614 toSci -0.0 -> -0.0 -dsbas615 toSci -0.00 -> -0.00 -dsbas616 toSci -0.000 -> -0.000 -dsbas617 toSci -0.0000 -> -0.0000 -dsbas618 toSci -0.00000 -> -0.00000 -dsbas619 toSci -0.000000 -> -0.000000 -dsbas620 toSci -0.0000000 -> -0E-7 -dsbas621 toSci -0.00000000 -> -0E-8 -dsbas622 toSci -0.000000000 -> -0E-9 - -dsbas630 toSci 0.00E+0 -> 0.00 -dsbas631 toSci 0.00E+1 -> 0.0 -dsbas632 toSci 0.00E+2 -> 0 -dsbas633 toSci 0.00E+3 -> 0E+1 -dsbas634 toSci 0.00E+4 -> 0E+2 -dsbas635 toSci 0.00E+5 -> 0E+3 -dsbas636 toSci 0.00E+6 -> 0E+4 -dsbas637 toSci 0.00E+7 -> 0E+5 -dsbas638 toSci 0.00E+8 -> 0E+6 -dsbas639 toSci 0.00E+9 -> 0E+7 - -dsbas640 toSci 0.0E+0 -> 0.0 -dsbas641 toSci 0.0E+1 -> 0 -dsbas642 toSci 0.0E+2 -> 0E+1 -dsbas643 toSci 0.0E+3 -> 0E+2 -dsbas644 toSci 0.0E+4 -> 0E+3 -dsbas645 toSci 0.0E+5 -> 0E+4 -dsbas646 toSci 0.0E+6 -> 0E+5 -dsbas647 toSci 0.0E+7 -> 0E+6 -dsbas648 toSci 0.0E+8 -> 0E+7 -dsbas649 toSci 0.0E+9 -> 0E+8 - -dsbas650 toSci 0E+0 -> 0 -dsbas651 toSci 0E+1 -> 0E+1 -dsbas652 toSci 0E+2 -> 0E+2 -dsbas653 toSci 0E+3 -> 0E+3 -dsbas654 toSci 0E+4 -> 0E+4 -dsbas655 toSci 0E+5 -> 0E+5 -dsbas656 toSci 0E+6 -> 0E+6 -dsbas657 toSci 0E+7 -> 0E+7 -dsbas658 toSci 0E+8 -> 0E+8 -dsbas659 toSci 0E+9 -> 0E+9 - -dsbas660 toSci 0.0E-0 -> 0.0 -dsbas661 toSci 0.0E-1 -> 0.00 -dsbas662 toSci 0.0E-2 -> 0.000 -dsbas663 toSci 0.0E-3 -> 0.0000 -dsbas664 toSci 0.0E-4 -> 0.00000 -dsbas665 toSci 0.0E-5 -> 0.000000 -dsbas666 toSci 0.0E-6 -> 0E-7 -dsbas667 toSci 0.0E-7 -> 0E-8 -dsbas668 toSci 0.0E-8 -> 0E-9 -dsbas669 toSci 0.0E-9 -> 0E-10 - -dsbas670 toSci 0.00E-0 -> 0.00 -dsbas671 toSci 0.00E-1 -> 0.000 -dsbas672 toSci 0.00E-2 -> 0.0000 -dsbas673 toSci 0.00E-3 -> 0.00000 -dsbas674 toSci 0.00E-4 -> 0.000000 -dsbas675 toSci 0.00E-5 -> 0E-7 -dsbas676 toSci 0.00E-6 -> 0E-8 -dsbas677 toSci 0.00E-7 -> 0E-9 -dsbas678 toSci 0.00E-8 -> 0E-10 -dsbas679 toSci 0.00E-9 -> 0E-11 - -dsbas680 toSci 000000. -> 0 -dsbas681 toSci 00000. -> 0 -dsbas682 toSci 0000. -> 0 -dsbas683 toSci 000. -> 0 -dsbas684 toSci 00. -> 0 -dsbas685 toSci 0. -> 0 -dsbas686 toSci +00000. -> 0 -dsbas687 toSci -00000. -> -0 -dsbas688 toSci +0. -> 0 -dsbas689 toSci -0. -> -0 - --- Specials -dsbas700 toSci "NaN" -> NaN -dsbas701 toSci "nan" -> NaN -dsbas702 toSci "nAn" -> NaN -dsbas703 toSci "NAN" -> NaN -dsbas704 toSci "+NaN" -> NaN -dsbas705 toSci "+nan" -> NaN -dsbas706 toSci "+nAn" -> NaN -dsbas707 toSci "+NAN" -> NaN -dsbas708 toSci "-NaN" -> -NaN -dsbas709 toSci "-nan" -> -NaN -dsbas710 toSci "-nAn" -> -NaN -dsbas711 toSci "-NAN" -> -NaN -dsbas712 toSci 'NaN0' -> NaN -dsbas713 toSci 'NaN1' -> NaN1 -dsbas714 toSci 'NaN12' -> NaN12 -dsbas715 toSci 'NaN123' -> NaN123 -dsbas716 toSci 'NaN1234' -> NaN1234 -dsbas717 toSci 'NaN01' -> NaN1 -dsbas718 toSci 'NaN012' -> NaN12 -dsbas719 toSci 'NaN0123' -> NaN123 -dsbas720 toSci 'NaN01234' -> NaN1234 -dsbas721 toSci 'NaN001' -> NaN1 -dsbas722 toSci 'NaN0012' -> NaN12 -dsbas723 toSci 'NaN00123' -> NaN123 -dsbas724 toSci 'NaN001234' -> NaN1234 -dsbas725 toSci 'NaN1234567890123456' -> NaN Conversion_syntax -dsbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax -dsbas727 toSci 'NaN12.45' -> NaN Conversion_syntax -dsbas728 toSci 'NaN-12' -> NaN Conversion_syntax -dsbas729 toSci 'NaN+12' -> NaN Conversion_syntax - -dsbas730 toSci "sNaN" -> sNaN -dsbas731 toSci "snan" -> sNaN -dsbas732 toSci "SnAn" -> sNaN -dsbas733 toSci "SNAN" -> sNaN -dsbas734 toSci "+sNaN" -> sNaN -dsbas735 toSci "+snan" -> sNaN -dsbas736 toSci "+SnAn" -> sNaN -dsbas737 toSci "+SNAN" -> sNaN -dsbas738 toSci "-sNaN" -> -sNaN -dsbas739 toSci "-snan" -> -sNaN -dsbas740 toSci "-SnAn" -> -sNaN -dsbas741 toSci "-SNAN" -> -sNaN -dsbas742 toSci 'sNaN0000' -> sNaN -dsbas743 toSci 'sNaN7' -> sNaN7 -dsbas744 toSci 'sNaN007234' -> sNaN7234 -dsbas745 toSci 'sNaN7234561234567890' -> NaN Conversion_syntax -dsbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax -dsbas747 toSci 'sNaN-72' -> NaN Conversion_syntax - -dsbas748 toSci "Inf" -> Infinity -dsbas749 toSci "inf" -> Infinity -dsbas750 toSci "iNf" -> Infinity -dsbas751 toSci "INF" -> Infinity -dsbas752 toSci "+Inf" -> Infinity -dsbas753 toSci "+inf" -> Infinity -dsbas754 toSci "+iNf" -> Infinity -dsbas755 toSci "+INF" -> Infinity -dsbas756 toSci "-Inf" -> -Infinity -dsbas757 toSci "-inf" -> -Infinity -dsbas758 toSci "-iNf" -> -Infinity -dsbas759 toSci "-INF" -> -Infinity - -dsbas760 toSci "Infinity" -> Infinity -dsbas761 toSci "infinity" -> Infinity -dsbas762 toSci "iNfInItY" -> Infinity -dsbas763 toSci "INFINITY" -> Infinity -dsbas764 toSci "+Infinity" -> Infinity -dsbas765 toSci "+infinity" -> Infinity -dsbas766 toSci "+iNfInItY" -> Infinity -dsbas767 toSci "+INFINITY" -> Infinity -dsbas768 toSci "-Infinity" -> -Infinity -dsbas769 toSci "-infinity" -> -Infinity -dsbas770 toSci "-iNfInItY" -> -Infinity -dsbas771 toSci "-INFINITY" -> -Infinity - --- Specials and zeros for toEng -dsbast772 toEng "NaN" -> NaN -dsbast773 toEng "-Infinity" -> -Infinity -dsbast774 toEng "-sNaN" -> -sNaN -dsbast775 toEng "-NaN" -> -NaN -dsbast776 toEng "+Infinity" -> Infinity -dsbast778 toEng "+sNaN" -> sNaN -dsbast779 toEng "+NaN" -> NaN -dsbast780 toEng "INFINITY" -> Infinity -dsbast781 toEng "SNAN" -> sNaN -dsbast782 toEng "NAN" -> NaN -dsbast783 toEng "infinity" -> Infinity -dsbast784 toEng "snan" -> sNaN -dsbast785 toEng "nan" -> NaN -dsbast786 toEng "InFINITY" -> Infinity -dsbast787 toEng "SnAN" -> sNaN -dsbast788 toEng "nAN" -> NaN -dsbast789 toEng "iNfinity" -> Infinity -dsbast790 toEng "sNan" -> sNaN -dsbast791 toEng "Nan" -> NaN -dsbast792 toEng "Infinity" -> Infinity -dsbast793 toEng "sNaN" -> sNaN - --- Zero toEng, etc. -dsbast800 toEng 0e+1 -> "0.00E+3" -- doc example - -dsbast801 toEng 0.000000000 -> 0E-9 -dsbast802 toEng 0.00000000 -> 0.00E-6 -dsbast803 toEng 0.0000000 -> 0.0E-6 -dsbast804 toEng 0.000000 -> 0.000000 -dsbast805 toEng 0.00000 -> 0.00000 -dsbast806 toEng 0.0000 -> 0.0000 -dsbast807 toEng 0.000 -> 0.000 -dsbast808 toEng 0.00 -> 0.00 -dsbast809 toEng 0.0 -> 0.0 -dsbast810 toEng .0 -> 0.0 -dsbast811 toEng 0. -> 0 -dsbast812 toEng -.0 -> -0.0 -dsbast813 toEng -0. -> -0 -dsbast814 toEng -0.0 -> -0.0 -dsbast815 toEng -0.00 -> -0.00 -dsbast816 toEng -0.000 -> -0.000 -dsbast817 toEng -0.0000 -> -0.0000 -dsbast818 toEng -0.00000 -> -0.00000 -dsbast819 toEng -0.000000 -> -0.000000 -dsbast820 toEng -0.0000000 -> -0.0E-6 -dsbast821 toEng -0.00000000 -> -0.00E-6 -dsbast822 toEng -0.000000000 -> -0E-9 - -dsbast830 toEng 0.00E+0 -> 0.00 -dsbast831 toEng 0.00E+1 -> 0.0 -dsbast832 toEng 0.00E+2 -> 0 -dsbast833 toEng 0.00E+3 -> 0.00E+3 -dsbast834 toEng 0.00E+4 -> 0.0E+3 -dsbast835 toEng 0.00E+5 -> 0E+3 -dsbast836 toEng 0.00E+6 -> 0.00E+6 -dsbast837 toEng 0.00E+7 -> 0.0E+6 -dsbast838 toEng 0.00E+8 -> 0E+6 -dsbast839 toEng 0.00E+9 -> 0.00E+9 - -dsbast840 toEng 0.0E+0 -> 0.0 -dsbast841 toEng 0.0E+1 -> 0 -dsbast842 toEng 0.0E+2 -> 0.00E+3 -dsbast843 toEng 0.0E+3 -> 0.0E+3 -dsbast844 toEng 0.0E+4 -> 0E+3 -dsbast845 toEng 0.0E+5 -> 0.00E+6 -dsbast846 toEng 0.0E+6 -> 0.0E+6 -dsbast847 toEng 0.0E+7 -> 0E+6 -dsbast848 toEng 0.0E+8 -> 0.00E+9 -dsbast849 toEng 0.0E+9 -> 0.0E+9 - -dsbast850 toEng 0E+0 -> 0 -dsbast851 toEng 0E+1 -> 0.00E+3 -dsbast852 toEng 0E+2 -> 0.0E+3 -dsbast853 toEng 0E+3 -> 0E+3 -dsbast854 toEng 0E+4 -> 0.00E+6 -dsbast855 toEng 0E+5 -> 0.0E+6 -dsbast856 toEng 0E+6 -> 0E+6 -dsbast857 toEng 0E+7 -> 0.00E+9 -dsbast858 toEng 0E+8 -> 0.0E+9 -dsbast859 toEng 0E+9 -> 0E+9 - -dsbast860 toEng 0.0E-0 -> 0.0 -dsbast861 toEng 0.0E-1 -> 0.00 -dsbast862 toEng 0.0E-2 -> 0.000 -dsbast863 toEng 0.0E-3 -> 0.0000 -dsbast864 toEng 0.0E-4 -> 0.00000 -dsbast865 toEng 0.0E-5 -> 0.000000 -dsbast866 toEng 0.0E-6 -> 0.0E-6 -dsbast867 toEng 0.0E-7 -> 0.00E-6 -dsbast868 toEng 0.0E-8 -> 0E-9 -dsbast869 toEng 0.0E-9 -> 0.0E-9 - -dsbast870 toEng 0.00E-0 -> 0.00 -dsbast871 toEng 0.00E-1 -> 0.000 -dsbast872 toEng 0.00E-2 -> 0.0000 -dsbast873 toEng 0.00E-3 -> 0.00000 -dsbast874 toEng 0.00E-4 -> 0.000000 -dsbast875 toEng 0.00E-5 -> 0.0E-6 -dsbast876 toEng 0.00E-6 -> 0.00E-6 -dsbast877 toEng 0.00E-7 -> 0E-9 -dsbast878 toEng 0.00E-8 -> 0.0E-9 -dsbast879 toEng 0.00E-9 -> 0.00E-9 - --- long input strings -dsbas801 tosci '01234567' -> 1234567 -dsbas802 tosci '001234567' -> 1234567 -dsbas803 tosci '0001234567' -> 1234567 -dsbas804 tosci '00001234567' -> 1234567 -dsbas805 tosci '000001234567' -> 1234567 -dsbas806 tosci '0000001234567' -> 1234567 -dsbas807 tosci '00000001234567' -> 1234567 -dsbas808 tosci '000000001234567' -> 1234567 -dsbas809 tosci '0000000001234567' -> 1234567 -dsbas810 tosci '00000000001234567' -> 1234567 - -dsbas811 tosci '0.1234567' -> 0.1234567 -dsbas812 tosci '0.01234567' -> 0.01234567 -dsbas813 tosci '0.001234567' -> 0.001234567 -dsbas814 tosci '0.0001234567' -> 0.0001234567 -dsbas815 tosci '0.00001234567' -> 0.00001234567 -dsbas816 tosci '0.000001234567' -> 0.000001234567 -dsbas817 tosci '0.0000001234567' -> 1.234567E-7 -dsbas818 tosci '0.00000001234567' -> 1.234567E-8 -dsbas819 tosci '0.000000001234567' -> 1.234567E-9 -dsbas820 tosci '0.0000000001234567' -> 1.234567E-10 - -dsbas821 tosci '123456790' -> 1.234568E+8 Inexact Rounded -dsbas822 tosci '1234567901' -> 1.234568E+9 Inexact Rounded -dsbas823 tosci '12345679012' -> 1.234568E+10 Inexact Rounded -dsbas824 tosci '123456790123' -> 1.234568E+11 Inexact Rounded -dsbas825 tosci '1234567901234' -> 1.234568E+12 Inexact Rounded -dsbas826 tosci '12345679012345' -> 1.234568E+13 Inexact Rounded -dsbas827 tosci '123456790123456' -> 1.234568E+14 Inexact Rounded -dsbas828 tosci '1234567901234567' -> 1.234568E+15 Inexact Rounded -dsbas829 tosci '1234567890123456' -> 1.234568E+15 Inexact Rounded - --- subnormals and overflows -dsbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded -dsbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded -dsbas908 toSci '0.9e-999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas909 toSci '0.09e-999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded -dsbas911 toSci '10e-1000000000' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded -dsbas913 toSci '99e-9999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded -dsbas915 toSci '1111e-9999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas916 toSci '1111e-99999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded --- negatives the same -dsbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded -dsbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded -dsbas920 toSci '-0.9e-999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas921 toSci '-0.09e-999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded -dsbas923 toSci '-10e-1000000000' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded -dsbas925 toSci '-99e-9999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded -dsbas927 toSci '-1111e-9999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas928 toSci '-1111e-99999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded - --- overflow results at different rounding modes -rounding: ceiling -dsbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dsbas931 toSci '-7e10000' -> -9.999999E+96 Overflow Inexact Rounded -rounding: up -dsbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dsbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: down -dsbas934 toSci '7e10000' -> 9.999999E+96 Overflow Inexact Rounded -dsbas935 toSci '-7e10000' -> -9.999999E+96 Overflow Inexact Rounded -rounding: floor -dsbas936 toSci '7e10000' -> 9.999999E+96 Overflow Inexact Rounded -dsbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded - -rounding: half_up -dsbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dsbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: half_even -dsbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dsbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded -rounding: half_down -dsbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded -dsbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded - -rounding: half_even - --- Now check 854/754r some subnormals and underflow to 0 -dsbem400 toSci 1.0000E-86 -> 1.0000E-86 -dsbem401 toSci 0.1E-97 -> 1E-98 Subnormal -dsbem402 toSci 0.1000E-97 -> 1.000E-98 Subnormal -dsbem403 toSci 0.0100E-97 -> 1.00E-99 Subnormal -dsbem404 toSci 0.0010E-97 -> 1.0E-100 Subnormal -dsbem405 toSci 0.0001E-97 -> 1E-101 Subnormal -dsbem406 toSci 0.00010E-97 -> 1E-101 Subnormal Rounded -dsbem407 toSci 0.00013E-97 -> 1E-101 Underflow Subnormal Inexact Rounded -dsbem408 toSci 0.00015E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem409 toSci 0.00017E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem410 toSci 0.00023E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem411 toSci 0.00025E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem412 toSci 0.00027E-97 -> 3E-101 Underflow Subnormal Inexact Rounded -dsbem413 toSci 0.000149E-97 -> 1E-101 Underflow Subnormal Inexact Rounded -dsbem414 toSci 0.000150E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem415 toSci 0.000151E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem416 toSci 0.000249E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem417 toSci 0.000250E-97 -> 2E-101 Underflow Subnormal Inexact Rounded -dsbem418 toSci 0.000251E-97 -> 3E-101 Underflow Subnormal Inexact Rounded -dsbem419 toSci 0.00009E-97 -> 1E-101 Underflow Subnormal Inexact Rounded -dsbem420 toSci 0.00005E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbem421 toSci 0.00003E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbem422 toSci 0.000009E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbem423 toSci 0.000005E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbem424 toSci 0.000003E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped - -dsbem425 toSci 0.001049E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded -dsbem426 toSci 0.001050E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded -dsbem427 toSci 0.001051E-97 -> 1.1E-100 Underflow Subnormal Inexact Rounded -dsbem428 toSci 0.001149E-97 -> 1.1E-100 Underflow Subnormal Inexact Rounded -dsbem429 toSci 0.001150E-97 -> 1.2E-100 Underflow Subnormal Inexact Rounded -dsbem430 toSci 0.001151E-97 -> 1.2E-100 Underflow Subnormal Inexact Rounded - -dsbem432 toSci 0.010049E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded -dsbem433 toSci 0.010050E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded -dsbem434 toSci 0.010051E-97 -> 1.01E-99 Underflow Subnormal Inexact Rounded -dsbem435 toSci 0.010149E-97 -> 1.01E-99 Underflow Subnormal Inexact Rounded -dsbem436 toSci 0.010150E-97 -> 1.02E-99 Underflow Subnormal Inexact Rounded -dsbem437 toSci 0.010151E-97 -> 1.02E-99 Underflow Subnormal Inexact Rounded - -dsbem440 toSci 0.10103E-97 -> 1.010E-98 Underflow Subnormal Inexact Rounded -dsbem441 toSci 0.10105E-97 -> 1.010E-98 Underflow Subnormal Inexact Rounded -dsbem442 toSci 0.10107E-97 -> 1.011E-98 Underflow Subnormal Inexact Rounded -dsbem443 toSci 0.10113E-97 -> 1.011E-98 Underflow Subnormal Inexact Rounded -dsbem444 toSci 0.10115E-97 -> 1.012E-98 Underflow Subnormal Inexact Rounded -dsbem445 toSci 0.10117E-97 -> 1.012E-98 Underflow Subnormal Inexact Rounded - -dsbem450 toSci 1.10730E-98 -> 1.107E-98 Underflow Subnormal Inexact Rounded -dsbem451 toSci 1.10750E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded -dsbem452 toSci 1.10770E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded -dsbem453 toSci 1.10830E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded -dsbem454 toSci 1.10850E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded -dsbem455 toSci 1.10870E-98 -> 1.109E-98 Underflow Subnormal Inexact Rounded - --- make sure sign OK -dsbem456 toSci -0.10103E-97 -> -1.010E-98 Underflow Subnormal Inexact Rounded -dsbem457 toSci -0.10105E-97 -> -1.010E-98 Underflow Subnormal Inexact Rounded -dsbem458 toSci -0.10107E-97 -> -1.011E-98 Underflow Subnormal Inexact Rounded -dsbem459 toSci -0.10113E-97 -> -1.011E-98 Underflow Subnormal Inexact Rounded -dsbem460 toSci -0.10115E-97 -> -1.012E-98 Underflow Subnormal Inexact Rounded -dsbem461 toSci -0.10117E-97 -> -1.012E-98 Underflow Subnormal Inexact Rounded - --- '999s' cases -dsbem464 toSci 999999E-98 -> 9.99999E-93 -dsbem465 toSci 99999.0E-97 -> 9.99990E-93 -dsbem466 toSci 99999.E-97 -> 9.9999E-93 -dsbem467 toSci 9999.9E-97 -> 9.9999E-94 -dsbem468 toSci 999.99E-97 -> 9.9999E-95 -dsbem469 toSci 99.999E-97 -> 9.9999E-96 Subnormal -dsbem470 toSci 9.9999E-97 -> 9.9999E-97 Subnormal -dsbem471 toSci 0.99999E-97 -> 1.0000E-97 Underflow Subnormal Inexact Rounded -dsbem472 toSci 0.099999E-97 -> 1.000E-98 Underflow Subnormal Inexact Rounded -dsbem473 toSci 0.0099999E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded -dsbem474 toSci 0.00099999E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded -dsbem475 toSci 0.000099999E-97 -> 1E-101 Underflow Subnormal Inexact Rounded -dsbem476 toSci 0.0000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbem477 toSci 0.00000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbem478 toSci 0.000000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped - --- Exponents with insignificant leading zeros -dsbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded -dsbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded -dsbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded -dsbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded -dsbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded -dsbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded -dsbas1007 toSci 1e-999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas1008 toSci 1e-0999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas1009 toSci 1e-00999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas1010 toSci 1e-000999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas1011 toSci 1e-000000000000999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -dsbas1012 toSci 1e-000000000001000000007 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped - --- check for double-rounded subnormals -dsbas1041 toSci 1.1152444E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow -dsbas1042 toSci 1.1152445E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow -dsbas1043 toSci 1.1152446E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow - --- clamped zeros [see also clamp.decTest] -dsbas1075 toSci 0e+10000 -> 0E+90 Clamped -dsbas1076 toSci 0e-10000 -> 0E-101 Clamped -dsbas1077 toSci -0e+10000 -> -0E+90 Clamped -dsbas1078 toSci -0e-10000 -> -0E-101 Clamped - --- extreme values from next-wider -dsbas1101 toSci -9.999999999999999E+384 -> -Infinity Overflow Inexact Rounded -dsbas1102 toSci -1E-383 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped -dsbas1103 toSci -1E-398 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped -dsbas1104 toSci -0 -> -0 -dsbas1105 toSci +0 -> 0 -dsbas1106 toSci +1E-398 -> 0E-101 Inexact Rounded Subnormal Underflow Clamped -dsbas1107 toSci +1E-383 -> 0E-101 Inexact Rounded Subnormal Underflow Clamped -dsbas1108 toSci +9.999999999999999E+384 -> Infinity Overflow Inexact Rounded - --- narrowing case -dsbas1110 toSci 2.000000000000000E-99 -> 2.00E-99 Rounded Subnormal diff --git a/qdecimal/test/tc_full/dsEncode.decTest b/qdecimal/test/tc_full/dsEncode.decTest deleted file mode 100644 index 707cd1f..0000000 --- a/qdecimal/test/tc_full/dsEncode.decTest +++ /dev/null @@ -1,372 +0,0 @@ ------------------------------------------------------------------------- --- dsEncode.decTest -- decimal four-byte format testcases -- --- Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- --- [Previously called decimal32.decTest] -version: 2.58 - --- This set of tests is for the four-byte concrete representation. --- Its characteristics are: --- --- 1 bit sign --- 5 bits combination field --- 6 bits exponent continuation --- 20 bits coefficient continuation --- --- Total exponent length 8 bits --- Total coefficient length 24 bits (7 digits) --- --- Elimit = 191 (maximum encoded exponent) --- Emax = 96 (largest exponent value) --- Emin = -95 (smallest exponent value) --- bias = 101 (subtracted from encoded exponent) = -Etiny - --- The testcases here have only exactly representable data on the --- 'left-hand-side'; rounding from strings is tested in 'base' --- testcase groups. - -extended: 1 -clamp: 1 -precision: 7 -rounding: half_up -maxExponent: 96 -minExponent: -95 - --- General testcases --- (mostly derived from the Strawman 4 document and examples) -decs001 apply #A23003D0 -> -7.50 -decs002 apply -7.50 -> #A23003D0 --- derivative canonical plain strings -decs003 apply #A26003D0 -> -7.50E+3 -decs004 apply -7.50E+3 -> #A26003D0 -decs005 apply #A25003D0 -> -750 -decs006 apply -750 -> #A25003D0 -decs007 apply #A24003D0 -> -75.0 -decs008 apply -75.0 -> #A24003D0 -decs009 apply #A22003D0 -> -0.750 -decs010 apply -0.750 -> #A22003D0 -decs011 apply #A21003D0 -> -0.0750 -decs012 apply -0.0750 -> #A21003D0 -decs013 apply #A1f003D0 -> -0.000750 -decs014 apply -0.000750 -> #A1f003D0 -decs015 apply #A1d003D0 -> -0.00000750 -decs016 apply -0.00000750 -> #A1d003D0 -decs017 apply #A1c003D0 -> -7.50E-7 -decs018 apply -7.50E-7 -> #A1c003D0 - --- Normality -decs020 apply 1234567 -> #2654d2e7 -decs021 apply -1234567 -> #a654d2e7 -decs022 apply 1111111 -> #26524491 - --- Nmax and similar -decs031 apply 9.999999E+96 -> #77f3fcff -decs032 apply #77f3fcff -> 9.999999E+96 -decs033 apply 1.234567E+96 -> #47f4d2e7 -decs034 apply #47f4d2e7 -> 1.234567E+96 --- fold-downs (more below) -decs035 apply 1.23E+96 -> #47f4c000 Clamped -decs036 apply #47f4c000 -> 1.230000E+96 -decs037 apply 1E+96 -> #47f00000 Clamped -decs038 apply #47f00000 -> 1.000000E+96 - -decs051 apply 12345 -> #225049c5 -decs052 apply #225049c5 -> 12345 -decs053 apply 1234 -> #22500534 -decs054 apply #22500534 -> 1234 -decs055 apply 123 -> #225000a3 -decs056 apply #225000a3 -> 123 -decs057 apply 12 -> #22500012 -decs058 apply #22500012 -> 12 -decs059 apply 1 -> #22500001 -decs060 apply #22500001 -> 1 -decs061 apply 1.23 -> #223000a3 -decs062 apply #223000a3 -> 1.23 -decs063 apply 123.45 -> #223049c5 -decs064 apply #223049c5 -> 123.45 - --- Nmin and below -decs071 apply 1E-95 -> #00600001 -decs072 apply #00600001 -> 1E-95 -decs073 apply 1.000000E-95 -> #04000000 -decs074 apply #04000000 -> 1.000000E-95 -decs075 apply 1.000001E-95 -> #04000001 -decs076 apply #04000001 -> 1.000001E-95 - -decs077 apply 0.100000E-95 -> #00020000 Subnormal -decs07x apply 1.00000E-96 -> 1.00000E-96 Subnormal -decs078 apply #00020000 -> 1.00000E-96 Subnormal -decs079 apply 0.000010E-95 -> #00000010 Subnormal -decs080 apply #00000010 -> 1.0E-100 Subnormal -decs081 apply 0.000001E-95 -> #00000001 Subnormal -decs082 apply #00000001 -> 1E-101 Subnormal -decs083 apply 1e-101 -> #00000001 Subnormal -decs084 apply #00000001 -> 1E-101 Subnormal -decs08x apply 1e-101 -> 1E-101 Subnormal - --- underflows cannot be tested; just check edge case -decs090 apply 1e-101 -> #00000001 Subnormal - --- same again, negatives -- - --- Nmax and similar -decs122 apply -9.999999E+96 -> #f7f3fcff -decs123 apply #f7f3fcff -> -9.999999E+96 -decs124 apply -1.234567E+96 -> #c7f4d2e7 -decs125 apply #c7f4d2e7 -> -1.234567E+96 --- fold-downs (more below) -decs130 apply -1.23E+96 -> #c7f4c000 Clamped -decs131 apply #c7f4c000 -> -1.230000E+96 -decs132 apply -1E+96 -> #c7f00000 Clamped -decs133 apply #c7f00000 -> -1.000000E+96 - -decs151 apply -12345 -> #a25049c5 -decs152 apply #a25049c5 -> -12345 -decs153 apply -1234 -> #a2500534 -decs154 apply #a2500534 -> -1234 -decs155 apply -123 -> #a25000a3 -decs156 apply #a25000a3 -> -123 -decs157 apply -12 -> #a2500012 -decs158 apply #a2500012 -> -12 -decs159 apply -1 -> #a2500001 -decs160 apply #a2500001 -> -1 -decs161 apply -1.23 -> #a23000a3 -decs162 apply #a23000a3 -> -1.23 -decs163 apply -123.45 -> #a23049c5 -decs164 apply #a23049c5 -> -123.45 - --- Nmin and below -decs171 apply -1E-95 -> #80600001 -decs172 apply #80600001 -> -1E-95 -decs173 apply -1.000000E-95 -> #84000000 -decs174 apply #84000000 -> -1.000000E-95 -decs175 apply -1.000001E-95 -> #84000001 -decs176 apply #84000001 -> -1.000001E-95 - -decs177 apply -0.100000E-95 -> #80020000 Subnormal -decs178 apply #80020000 -> -1.00000E-96 Subnormal -decs179 apply -0.000010E-95 -> #80000010 Subnormal -decs180 apply #80000010 -> -1.0E-100 Subnormal -decs181 apply -0.000001E-95 -> #80000001 Subnormal -decs182 apply #80000001 -> -1E-101 Subnormal -decs183 apply -1e-101 -> #80000001 Subnormal -decs184 apply #80000001 -> -1E-101 Subnormal - --- underflow edge case -decs190 apply -1e-101 -> #80000001 Subnormal - --- zeros -decs400 apply 0E-400 -> #00000000 Clamped -decs401 apply 0E-101 -> #00000000 -decs402 apply #00000000 -> 0E-101 -decs403 apply 0.000000E-95 -> #00000000 -decs404 apply #00000000 -> 0E-101 -decs405 apply 0E-2 -> #22300000 -decs406 apply #22300000 -> 0.00 -decs407 apply 0 -> #22500000 -decs408 apply #22500000 -> 0 -decs409 apply 0E+3 -> #22800000 -decs410 apply #22800000 -> 0E+3 -decs411 apply 0E+90 -> #43f00000 -decs412 apply #43f00000 -> 0E+90 --- clamped zeros... -decs413 apply 0E+91 -> #43f00000 Clamped -decs414 apply #43f00000 -> 0E+90 -decs415 apply 0E+96 -> #43f00000 Clamped -decs416 apply #43f00000 -> 0E+90 -decs417 apply 0E+400 -> #43f00000 Clamped -decs418 apply #43f00000 -> 0E+90 - --- negative zeros -decs420 apply -0E-400 -> #80000000 Clamped -decs421 apply -0E-101 -> #80000000 -decs422 apply #80000000 -> -0E-101 -decs423 apply -0.000000E-95 -> #80000000 -decs424 apply #80000000 -> -0E-101 -decs425 apply -0E-2 -> #a2300000 -decs426 apply #a2300000 -> -0.00 -decs427 apply -0 -> #a2500000 -decs428 apply #a2500000 -> -0 -decs429 apply -0E+3 -> #a2800000 -decs430 apply #a2800000 -> -0E+3 -decs431 apply -0E+90 -> #c3f00000 -decs432 apply #c3f00000 -> -0E+90 --- clamped zeros... -decs433 apply -0E+91 -> #c3f00000 Clamped -decs434 apply #c3f00000 -> -0E+90 -decs435 apply -0E+96 -> #c3f00000 Clamped -decs436 apply #c3f00000 -> -0E+90 -decs437 apply -0E+400 -> #c3f00000 Clamped -decs438 apply #c3f00000 -> -0E+90 - --- Specials -decs500 apply Infinity -> #78000000 -decs501 apply #78787878 -> #78000000 -decs502 apply #78000000 -> Infinity -decs503 apply #79797979 -> #78000000 -decs504 apply #79000000 -> Infinity -decs505 apply #7a7a7a7a -> #78000000 -decs506 apply #7a000000 -> Infinity -decs507 apply #7b7b7b7b -> #78000000 -decs508 apply #7b000000 -> Infinity -decs509 apply #7c7c7c7c -> #7c0c7c7c - -decs510 apply NaN -> #7c000000 -decs511 apply #7c000000 -> NaN -decs512 apply #7d7d7d7d -> #7c0d7d7d -decs513 apply #7d000000 -> NaN -decs514 apply #7e7e7e7e -> #7e0e7c7e -decs515 apply #7e000000 -> sNaN -decs516 apply #7f7f7f7f -> #7e0f7c7f -decs517 apply #7f000000 -> sNaN -decs518 apply #7fffffff -> sNaN999999 -decs519 apply #7fffffff -> #7e03fcff - -decs520 apply -Infinity -> #f8000000 -decs521 apply #f8787878 -> #f8000000 -decs522 apply #f8000000 -> -Infinity -decs523 apply #f9797979 -> #f8000000 -decs524 apply #f9000000 -> -Infinity -decs525 apply #fa7a7a7a -> #f8000000 -decs526 apply #fa000000 -> -Infinity -decs527 apply #fb7b7b7b -> #f8000000 -decs528 apply #fb000000 -> -Infinity - -decs529 apply -NaN -> #fc000000 -decs530 apply #fc7c7c7c -> #fc0c7c7c -decs531 apply #fc000000 -> -NaN -decs532 apply #fd7d7d7d -> #fc0d7d7d -decs533 apply #fd000000 -> -NaN -decs534 apply #fe7e7e7e -> #fe0e7c7e -decs535 apply #fe000000 -> -sNaN -decs536 apply #ff7f7f7f -> #fe0f7c7f -decs537 apply #ff000000 -> -sNaN -decs538 apply #ffffffff -> -sNaN999999 -decs539 apply #ffffffff -> #fe03fcff - --- diagnostic NaNs -decs540 apply NaN -> #7c000000 -decs541 apply NaN0 -> #7c000000 -decs542 apply NaN1 -> #7c000001 -decs543 apply NaN12 -> #7c000012 -decs544 apply NaN79 -> #7c000079 -decs545 apply NaN12345 -> #7c0049c5 -decs546 apply NaN123456 -> #7c028e56 -decs547 apply NaN799799 -> #7c0f7fdf -decs548 apply NaN999999 -> #7c03fcff - - --- fold-down full sequence -decs601 apply 1E+96 -> #47f00000 Clamped -decs602 apply #47f00000 -> 1.000000E+96 -decs603 apply 1E+95 -> #43f20000 Clamped -decs604 apply #43f20000 -> 1.00000E+95 -decs605 apply 1E+94 -> #43f04000 Clamped -decs606 apply #43f04000 -> 1.0000E+94 -decs607 apply 1E+93 -> #43f00400 Clamped -decs608 apply #43f00400 -> 1.000E+93 -decs609 apply 1E+92 -> #43f00080 Clamped -decs610 apply #43f00080 -> 1.00E+92 -decs611 apply 1E+91 -> #43f00010 Clamped -decs612 apply #43f00010 -> 1.0E+91 -decs613 apply 1E+90 -> #43f00001 -decs614 apply #43f00001 -> 1E+90 - - --- Selected DPD codes -decs700 apply #22500000 -> 0 -decs701 apply #22500009 -> 9 -decs702 apply #22500010 -> 10 -decs703 apply #22500019 -> 19 -decs704 apply #22500020 -> 20 -decs705 apply #22500029 -> 29 -decs706 apply #22500030 -> 30 -decs707 apply #22500039 -> 39 -decs708 apply #22500040 -> 40 -decs709 apply #22500049 -> 49 -decs710 apply #22500050 -> 50 -decs711 apply #22500059 -> 59 -decs712 apply #22500060 -> 60 -decs713 apply #22500069 -> 69 -decs714 apply #22500070 -> 70 -decs715 apply #22500071 -> 71 -decs716 apply #22500072 -> 72 -decs717 apply #22500073 -> 73 -decs718 apply #22500074 -> 74 -decs719 apply #22500075 -> 75 -decs720 apply #22500076 -> 76 -decs721 apply #22500077 -> 77 -decs722 apply #22500078 -> 78 -decs723 apply #22500079 -> 79 - -decs730 apply #2250029e -> 994 -decs731 apply #2250029f -> 995 -decs732 apply #225002a0 -> 520 -decs733 apply #225002a1 -> 521 - --- DPD: one of each of the huffman groups -decs740 apply #225003f7 -> 777 -decs741 apply #225003f8 -> 778 -decs742 apply #225003eb -> 787 -decs743 apply #2250037d -> 877 -decs744 apply #2250039f -> 997 -decs745 apply #225003bf -> 979 -decs746 apply #225003df -> 799 -decs747 apply #2250006e -> 888 - - --- DPD all-highs cases (includes the 24 redundant codes) -decs750 apply #2250006e -> 888 -decs751 apply #2250016e -> 888 -decs752 apply #2250026e -> 888 -decs753 apply #2250036e -> 888 -decs754 apply #2250006f -> 889 -decs755 apply #2250016f -> 889 -decs756 apply #2250026f -> 889 -decs757 apply #2250036f -> 889 - -decs760 apply #2250007e -> 898 -decs761 apply #2250017e -> 898 -decs762 apply #2250027e -> 898 -decs763 apply #2250037e -> 898 -decs764 apply #2250007f -> 899 -decs765 apply #2250017f -> 899 -decs766 apply #2250027f -> 899 -decs767 apply #2250037f -> 899 - -decs770 apply #225000ee -> 988 -decs771 apply #225001ee -> 988 -decs772 apply #225002ee -> 988 -decs773 apply #225003ee -> 988 -decs774 apply #225000ef -> 989 -decs775 apply #225001ef -> 989 -decs776 apply #225002ef -> 989 -decs777 apply #225003ef -> 989 - -decs780 apply #225000fe -> 998 -decs781 apply #225001fe -> 998 -decs782 apply #225002fe -> 998 -decs783 apply #225003fe -> 998 -decs784 apply #225000ff -> 999 -decs785 apply #225001ff -> 999 -decs786 apply #225002ff -> 999 -decs787 apply #225003ff -> 999 - --- narrowing case -decs790 apply 2.00E-99 -> #00000100 Subnormal -decs791 apply #00000100 -> 2.00E-99 Subnormal diff --git a/qdecimal/test/tc_full/exp.decTest b/qdecimal/test/tc_full/exp.decTest deleted file mode 100644 index 2159d53..0000000 --- a/qdecimal/test/tc_full/exp.decTest +++ /dev/null @@ -1,674 +0,0 @@ ------------------------------------------------------------------------- --- exp.decTest -- decimal natural exponentiation -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Tests of the exponential funtion. Currently all testcases here --- show results which are correctly rounded (within <= 0.5 ulp). - -extended: 1 -precision: 9 -rounding: half_even -maxExponent: 384 -minexponent: -383 - --- basics (examples in specificiation, etc.) -expx001 exp -Infinity -> 0 -expx002 exp -10 -> 0.0000453999298 Inexact Rounded -expx003 exp -1 -> 0.367879441 Inexact Rounded -expx004 exp 0 -> 1 -expx005 exp -0 -> 1 -expx006 exp 1 -> 2.71828183 Inexact Rounded -expx007 exp 0.693147181 -> 2.00000000 Inexact Rounded -expx008 exp 10 -> 22026.4658 Inexact Rounded -expx009 exp +Infinity -> Infinity - --- tiny edge cases -precision: 7 -expx011 exp 0.1 -> 1.105171 Inexact Rounded -expx012 exp 0.01 -> 1.010050 Inexact Rounded -expx013 exp 0.001 -> 1.001001 Inexact Rounded -expx014 exp 0.0001 -> 1.000100 Inexact Rounded -expx015 exp 0.00001 -> 1.000010 Inexact Rounded -expx016 exp 0.000001 -> 1.000001 Inexact Rounded -expx017 exp 0.0000001 -> 1.000000 Inexact Rounded -expx018 exp 0.0000003 -> 1.000000 Inexact Rounded -expx019 exp 0.0000004 -> 1.000000 Inexact Rounded -expx020 exp 0.0000005 -> 1.000001 Inexact Rounded -expx021 exp 0.0000008 -> 1.000001 Inexact Rounded -expx022 exp 0.0000009 -> 1.000001 Inexact Rounded -expx023 exp 0.0000010 -> 1.000001 Inexact Rounded -expx024 exp 0.0000011 -> 1.000001 Inexact Rounded -expx025 exp 0.00000009 -> 1.000000 Inexact Rounded -expx026 exp 0.00000005 -> 1.000000 Inexact Rounded -expx027 exp 0.00000004 -> 1.000000 Inexact Rounded -expx028 exp 0.00000001 -> 1.000000 Inexact Rounded - --- and some more zeros -expx030 exp 0.00000000 -> 1 -expx031 exp 0E+100 -> 1 -expx032 exp 0E-100 -> 1 -expx033 exp -0.00000000 -> 1 -expx034 exp -0E+100 -> 1 -expx035 exp -0E-100 -> 1 - --- basic e=0, e=1, e=2, e=4, e>=8 cases -precision: 7 -expx041 exp 1 -> 2.718282 Inexact Rounded -expx042 exp -1 -> 0.3678794 Inexact Rounded -expx043 exp 10 -> 22026.47 Inexact Rounded -expx044 exp -10 -> 0.00004539993 Inexact Rounded -expx045 exp 100 -> 2.688117E+43 Inexact Rounded -expx046 exp -100 -> 3.720076E-44 Inexact Rounded -expx047 exp 1000 -> Infinity Overflow Inexact Rounded -expx048 exp -1000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx049 exp 100000000 -> Infinity Overflow Inexact Rounded -expx050 exp -100000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal - --- miscellanea --- similar to 'VF bug' test, at 17, but with last digit corrected for decimal -precision: 16 -expx055 exp -5.42410311287441459172E+2 -> 2.717658486884572E-236 Inexact Rounded --- result from NetRexx/Java prototype -> 2.7176584868845721117677929628617246054459644711108E-236 --- result from Rexx (series) version -> 2.717658486884572111767792962861724605446E-236 -precision: 17 -expx056 exp -5.42410311287441459172E+2 -> 2.7176584868845721E-236 Inexact Rounded -precision: 18 -expx057 exp -5.42410311287441459172E+2 -> 2.71765848688457211E-236 Inexact Rounded -precision: 19 -expx058 exp -5.42410311287441459172E+2 -> 2.717658486884572112E-236 Inexact Rounded -precision: 20 -expx059 exp -5.42410311287441459172E+2 -> 2.7176584868845721118E-236 Inexact Rounded - --- rounding in areas of ..500.., ..499.., ..100.., ..999.. sequences -precision: 50 -expx101 exp -9E-8 -> 0.99999991000000404999987850000273374995079250073811 Inexact Rounded -precision: 31 -expx102 exp -9E-8 -> 0.9999999100000040499998785000027 Inexact Rounded -precision: 30 -expx103 exp -9E-8 -> 0.999999910000004049999878500003 Inexact Rounded -precision: 29 -expx104 exp -9E-8 -> 0.99999991000000404999987850000 Inexact Rounded -precision: 28 -expx105 exp -9E-8 -> 0.9999999100000040499998785000 Inexact Rounded -precision: 27 -expx106 exp -9E-8 -> 0.999999910000004049999878500 Inexact Rounded -precision: 26 -expx107 exp -9E-8 -> 0.99999991000000404999987850 Inexact Rounded -precision: 25 -expx108 exp -9E-8 -> 0.9999999100000040499998785 Inexact Rounded -precision: 24 -expx109 exp -9E-8 -> 0.999999910000004049999879 Inexact Rounded -precision: 23 -expx110 exp -9E-8 -> 0.99999991000000404999988 Inexact Rounded -precision: 22 -expx111 exp -9E-8 -> 0.9999999100000040499999 Inexact Rounded -precision: 21 -expx112 exp -9E-8 -> 0.999999910000004050000 Inexact Rounded -precision: 20 -expx113 exp -9E-8 -> 0.99999991000000405000 Inexact Rounded -precision: 19 -expx114 exp -9E-8 -> 0.9999999100000040500 Inexact Rounded -precision: 18 -expx115 exp -9E-8 -> 0.999999910000004050 Inexact Rounded -precision: 17 -expx116 exp -9E-8 -> 0.99999991000000405 Inexact Rounded -precision: 16 -expx117 exp -9E-8 -> 0.9999999100000040 Inexact Rounded -precision: 15 -expx118 exp -9E-8 -> 0.999999910000004 Inexact Rounded -precision: 14 -expx119 exp -9E-8 -> 0.99999991000000 Inexact Rounded -precision: 13 -expx120 exp -9E-8 -> 0.9999999100000 Inexact Rounded -precision: 12 -expx121 exp -9E-8 -> 0.999999910000 Inexact Rounded -precision: 11 -expx122 exp -9E-8 -> 0.99999991000 Inexact Rounded -precision: 10 -expx123 exp -9E-8 -> 0.9999999100 Inexact Rounded -precision: 9 -expx124 exp -9E-8 -> 0.999999910 Inexact Rounded -precision: 8 -expx125 exp -9E-8 -> 0.99999991 Inexact Rounded -precision: 7 -expx126 exp -9E-8 -> 0.9999999 Inexact Rounded -precision: 6 -expx127 exp -9E-8 -> 1.00000 Inexact Rounded -precision: 5 -expx128 exp -9E-8 -> 1.0000 Inexact Rounded -precision: 4 -expx129 exp -9E-8 -> 1.000 Inexact Rounded -precision: 3 -expx130 exp -9E-8 -> 1.00 Inexact Rounded -precision: 2 -expx131 exp -9E-8 -> 1.0 Inexact Rounded -precision: 1 -expx132 exp -9E-8 -> 1 Inexact Rounded - - --- sanity checks, with iteration counts [normalized so 0<=|x|<1] -precision: 50 - -expx210 exp 0 -> 1 --- iterations: 2 -expx211 exp -1E-40 -> 0.99999999999999999999999999999999999999990000000000 Inexact Rounded --- iterations: 8 -expx212 exp -9E-7 -> 0.99999910000040499987850002733749507925073811240510 Inexact Rounded --- iterations: 6 -expx213 exp -9E-8 -> 0.99999991000000404999987850000273374995079250073811 Inexact Rounded --- iterations: 15 -expx214 exp -0.003 -> 0.99700449550337297601206623409756091074177480489845 Inexact Rounded --- iterations: 14 -expx215 exp -0.001 -> 0.99900049983337499166805535716765597470235590236008 Inexact Rounded --- iterations: 26 -expx216 exp -0.1 -> 0.90483741803595957316424905944643662119470536098040 Inexact Rounded --- iterations: 39 -expx217 exp -0.7 -> 0.49658530379140951470480009339752896170766716571182 Inexact Rounded --- iterations: 41 -expx218 exp -0.9 -> 0.40656965974059911188345423964562598783370337617038 Inexact Rounded --- iterations: 43 -expx219 exp -0.99 -> 0.37157669102204569053152411990820138691802885490501 Inexact Rounded --- iterations: 26 -expx220 exp -1 -> 0.36787944117144232159552377016146086744581113103177 Inexact Rounded --- iterations: 26 -expx221 exp -1.01 -> 0.36421897957152331975704629563734548959589139192482 Inexact Rounded --- iterations: 27 -expx222 exp -1.1 -> 0.33287108369807955328884690643131552161247952156921 Inexact Rounded --- iterations: 28 -expx223 exp -1.5 -> 0.22313016014842982893328047076401252134217162936108 Inexact Rounded --- iterations: 30 -expx224 exp -2 -> 0.13533528323661269189399949497248440340763154590958 Inexact Rounded --- iterations: 36 -expx225 exp -5 -> 0.0067379469990854670966360484231484242488495850273551 Inexact Rounded --- iterations: 26 -expx226 exp -10 -> 0.000045399929762484851535591515560550610237918088866565 Inexact Rounded --- iterations: 28 -expx227 exp -14 -> 8.3152871910356788406398514256526229460765836498457E-7 Inexact Rounded --- iterations: 29 -expx228 exp -15 -> 3.0590232050182578837147949770228963937082078081856E-7 Inexact Rounded --- iterations: 30 -expx233 exp 0 -> 1 --- iterations: 2 -expx234 exp 1E-40 -> 1.0000000000000000000000000000000000000001000000000 Inexact Rounded --- iterations: 7 -expx235 exp 9E-7 -> 1.0000009000004050001215000273375049207507381125949 Inexact Rounded --- iterations: 6 -expx236 exp 9E-8 -> 1.0000000900000040500001215000027337500492075007381 Inexact Rounded --- iterations: 15 -expx237 exp 0.003 -> 1.0030045045033770260129340913489002053318727195619 Inexact Rounded --- iterations: 13 -expx238 exp 0.001 -> 1.0010005001667083416680557539930583115630762005807 Inexact Rounded --- iterations: 25 -expx239 exp 0.1 -> 1.1051709180756476248117078264902466682245471947375 Inexact Rounded --- iterations: 38 -expx240 exp 0.7 -> 2.0137527074704765216245493885830652700175423941459 Inexact Rounded --- iterations: 41 -expx241 exp 0.9 -> 2.4596031111569496638001265636024706954217723064401 Inexact Rounded --- iterations: 42 -expx242 exp 0.99 -> 2.6912344723492622890998794040710139721802931841030 Inexact Rounded --- iterations: 26 -expx243 exp 1 -> 2.7182818284590452353602874713526624977572470937000 Inexact Rounded --- iterations: 26 -expx244 exp 1.01 -> 2.7456010150169164939897763166603876240737508195960 Inexact Rounded --- iterations: 26 -expx245 exp 1.1 -> 3.0041660239464331120584079535886723932826810260163 Inexact Rounded --- iterations: 28 -expx246 exp 1.5 -> 4.4816890703380648226020554601192758190057498683697 Inexact Rounded --- iterations: 29 -expx247 exp 2 -> 7.3890560989306502272304274605750078131803155705518 Inexact Rounded --- iterations: 36 -expx248 exp 5 -> 148.41315910257660342111558004055227962348766759388 Inexact Rounded --- iterations: 26 -expx249 exp 10 -> 22026.465794806716516957900645284244366353512618557 Inexact Rounded --- iterations: 28 -expx250 exp 14 -> 1202604.2841647767777492367707678594494124865433761 Inexact Rounded --- iterations: 28 -expx251 exp 15 -> 3269017.3724721106393018550460917213155057385438200 Inexact Rounded --- iterations: 29 - --- a biggie [result verified 3 ways] -precision: 250 -expx260 exp 1 -> 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921817413596629043572900334295260595630738132328627943490763233829880753195251019011573834187930702154089149934884167509244761460668 Inexact Rounded - --- extreme range boundaries -precision: 16 -maxExponent: 999999 -minExponent: -999999 --- Ntiny boundary -expx290 exp -2302618.022332529 -> 0E-1000014 Underflow Subnormal Inexact Rounded Clamped -expx291 exp -2302618.022332528 -> 1E-1000014 Underflow Subnormal Inexact Rounded --- Nmax/10 and Nmax boundary -expx292 exp 2302582.790408952 -> 9.999999993100277E+999998 Inexact Rounded -expx293 exp 2302582.790408953 -> 1.000000000310028E+999999 Inexact Rounded -expx294 exp 2302585.092993946 -> 9.999999003159870E+999999 Inexact Rounded -expx295 exp 2302585.092994036 -> 9.999999903159821E+999999 Inexact Rounded -expx296 exp 2302585.092994045 -> 9.999999993159820E+999999 Inexact Rounded -expx297 exp 2302585.092994046 -> Infinity Overflow Inexact Rounded - --- 0<-x<<1 effects -precision: 30 -expx320 exp -4.9999999999999E-8 -> 0.999999950000001250000979166617 Inexact Rounded -expx321 exp -5.0000000000000E-8 -> 0.999999950000001249999979166667 Inexact Rounded -expx322 exp -5.0000000000001E-8 -> 0.999999950000001249998979166717 Inexact Rounded -precision: 20 -expx323 exp -4.9999999999999E-8 -> 0.99999995000000125000 Inexact Rounded -expx324 exp -5.0000000000000E-8 -> 0.99999995000000125000 Inexact Rounded -expx325 exp -5.0000000000001E-8 -> 0.99999995000000125000 Inexact Rounded -precision: 14 -expx326 exp -4.9999999999999E-8 -> 0.99999995000000 Inexact Rounded -expx327 exp -5.0000000000000E-8 -> 0.99999995000000 Inexact Rounded -expx328 exp -5.0000000000001E-8 -> 0.99999995000000 Inexact Rounded --- overprecise and 0<-x<<1 -precision: 8 -expx330 exp -4.9999999999999E-8 -> 0.99999995 Inexact Rounded -expx331 exp -5.0000000000000E-8 -> 0.99999995 Inexact Rounded -expx332 exp -5.0000000000001E-8 -> 0.99999995 Inexact Rounded -precision: 7 -expx333 exp -4.9999999999999E-8 -> 1.000000 Inexact Rounded -expx334 exp -5.0000000000000E-8 -> 1.000000 Inexact Rounded -expx335 exp -5.0000000000001E-8 -> 1.000000 Inexact Rounded -precision: 3 -expx336 exp -4.9999999999999E-8 -> 1.00 Inexact Rounded -expx337 exp -5.0000000000000E-8 -> 1.00 Inexact Rounded -expx338 exp -5.0000000000001E-8 -> 1.00 Inexact Rounded - --- 0 1.00000005000000124999902083328 Inexact Rounded -expx341 exp 5.0000000000000E-8 -> 1.00000005000000125000002083333 Inexact Rounded -expx342 exp 5.0000000000001E-8 -> 1.00000005000000125000102083338 Inexact Rounded -precision: 20 -expx343 exp 4.9999999999999E-8 -> 1.0000000500000012500 Inexact Rounded -expx344 exp 5.0000000000000E-8 -> 1.0000000500000012500 Inexact Rounded -expx345 exp 5.0000000000001E-8 -> 1.0000000500000012500 Inexact Rounded -precision: 14 -expx346 exp 4.9999999999999E-8 -> 1.0000000500000 Inexact Rounded -expx347 exp 5.0000000000000E-8 -> 1.0000000500000 Inexact Rounded -expx348 exp 5.0000000000001E-8 -> 1.0000000500000 Inexact Rounded --- overprecise and 0 1.0000001 Inexact Rounded -expx351 exp 5.0000000000000E-8 -> 1.0000001 Inexact Rounded -expx352 exp 5.0000000000001E-8 -> 1.0000001 Inexact Rounded -precision: 7 -expx353 exp 4.9999999999999E-8 -> 1.000000 Inexact Rounded -expx354 exp 5.0000000000000E-8 -> 1.000000 Inexact Rounded -expx355 exp 5.0000000000001E-8 -> 1.000000 Inexact Rounded -precision: 3 -expx356 exp 4.9999999999999E-8 -> 1.00 Inexact Rounded -expx357 exp 5.0000000000000E-8 -> 1.00 Inexact Rounded -expx358 exp 5.0000000000001E-8 -> 1.00 Inexact Rounded - --- cases near 1 -- 1 2345678901234567890 -precision: 20 -expx401 exp 0.99999999999996 -> 2.7182818284589365041 Inexact Rounded -expx402 exp 0.99999999999997 -> 2.7182818284589636869 Inexact Rounded -expx403 exp 0.99999999999998 -> 2.7182818284589908697 Inexact Rounded -expx404 exp 0.99999999999999 -> 2.7182818284590180525 Inexact Rounded -expx405 exp 1.0000000000000 -> 2.7182818284590452354 Inexact Rounded -expx406 exp 1.0000000000001 -> 2.7182818284593170635 Inexact Rounded -expx407 exp 1.0000000000002 -> 2.7182818284595888917 Inexact Rounded -precision: 14 -expx411 exp 0.99999999999996 -> 2.7182818284589 Inexact Rounded -expx412 exp 0.99999999999997 -> 2.7182818284590 Inexact Rounded -expx413 exp 0.99999999999998 -> 2.7182818284590 Inexact Rounded -expx414 exp 0.99999999999999 -> 2.7182818284590 Inexact Rounded -expx415 exp 1.0000000000000 -> 2.7182818284590 Inexact Rounded -expx416 exp 1.0000000000001 -> 2.7182818284593 Inexact Rounded -expx417 exp 1.0000000000002 -> 2.7182818284596 Inexact Rounded --- overprecise... -precision: 7 -expx421 exp 0.99999999999996 -> 2.718282 Inexact Rounded -expx422 exp 0.99999999999997 -> 2.718282 Inexact Rounded -expx423 exp 0.99999999999998 -> 2.718282 Inexact Rounded -expx424 exp 0.99999999999999 -> 2.718282 Inexact Rounded -expx425 exp 1.0000000000001 -> 2.718282 Inexact Rounded -expx426 exp 1.0000000000002 -> 2.718282 Inexact Rounded -expx427 exp 1.0000000000003 -> 2.718282 Inexact Rounded -precision: 2 -expx431 exp 0.99999999999996 -> 2.7 Inexact Rounded -expx432 exp 0.99999999999997 -> 2.7 Inexact Rounded -expx433 exp 0.99999999999998 -> 2.7 Inexact Rounded -expx434 exp 0.99999999999999 -> 2.7 Inexact Rounded -expx435 exp 1.0000000000001 -> 2.7 Inexact Rounded -expx436 exp 1.0000000000002 -> 2.7 Inexact Rounded -expx437 exp 1.0000000000003 -> 2.7 Inexact Rounded - --- basics at low precisions -precision: 3 -expx501 exp -Infinity -> 0 -expx502 exp -10 -> 0.0000454 Inexact Rounded -expx503 exp -1 -> 0.368 Inexact Rounded -expx504 exp 0 -> 1 -expx505 exp -0 -> 1 -expx506 exp 1 -> 2.72 Inexact Rounded -expx507 exp 0.693147181 -> 2.00 Inexact Rounded -expx508 exp 10 -> 2.20E+4 Inexact Rounded -expx509 exp +Infinity -> Infinity -precision: 2 -expx511 exp -Infinity -> 0 -expx512 exp -10 -> 0.000045 Inexact Rounded -expx513 exp -1 -> 0.37 Inexact Rounded -expx514 exp 0 -> 1 -expx515 exp -0 -> 1 -expx516 exp 1 -> 2.7 Inexact Rounded -expx517 exp 0.693147181 -> 2.0 Inexact Rounded -expx518 exp 10 -> 2.2E+4 Inexact Rounded -expx519 exp +Infinity -> Infinity -precision: 1 -expx521 exp -Infinity -> 0 -expx522 exp -10 -> 0.00005 Inexact Rounded -expx523 exp -1 -> 0.4 Inexact Rounded -expx524 exp 0 -> 1 -expx525 exp -0 -> 1 -expx526 exp 1 -> 3 Inexact Rounded -expx527 exp 0.693147181 -> 2 Inexact Rounded -expx528 exp 10 -> 2E+4 Inexact Rounded -expx529 exp +Infinity -> Infinity - --- overflows, including some overprecise borderlines -precision: 7 -maxExponent: 384 -minExponent: -383 -expx701 exp 1000000000 -> Infinity Overflow Inexact Rounded -expx702 exp 100000000 -> Infinity Overflow Inexact Rounded -expx703 exp 10000000 -> Infinity Overflow Inexact Rounded -expx704 exp 1000000 -> Infinity Overflow Inexact Rounded -expx705 exp 100000 -> Infinity Overflow Inexact Rounded -expx706 exp 10000 -> Infinity Overflow Inexact Rounded -expx707 exp 1000 -> Infinity Overflow Inexact Rounded -expx708 exp 886.4952608 -> Infinity Overflow Inexact Rounded -expx709 exp 886.4952607 -> 9.999999E+384 Inexact Rounded -expx710 exp 886.49527 -> Infinity Overflow Inexact Rounded -expx711 exp 886.49526 -> 9.999992E+384 Inexact Rounded -precision: 16 -expx721 exp 886.4952608027075883 -> Infinity Overflow Inexact Rounded -expx722 exp 886.4952608027075882 -> 9.999999999999999E+384 Inexact Rounded -expx723 exp 886.49526080270759 -> Infinity Overflow Inexact Rounded -expx724 exp 886.49526080270758 -> 9.999999999999917E+384 Inexact Rounded -expx725 exp 886.4952608027076 -> Infinity Overflow Inexact Rounded -expx726 exp 886.4952608027075 -> 9.999999999999117E+384 Inexact Rounded --- and by special request ... -precision: 15 -expx731 exp 886.495260802708 -> Infinity Overflow Inexact Rounded -expx732 exp 886.495260802707 -> 9.99999999999412E+384 Inexact Rounded -expx733 exp 886.495260802706 -> 9.99999999998412E+384 Inexact Rounded -maxExponent: 999 -minExponent: -999 -expx735 exp 2302.58509299405 -> Infinity Overflow Inexact Rounded -expx736 exp 2302.58509299404 -> 9.99999999994316E+999 Inexact Rounded -expx737 exp 2302.58509299403 -> 9.99999999984316E+999 Inexact Rounded - --- subnormals and underflows, including underflow-to-zero edge point -precision: 7 -maxExponent: 384 -minExponent: -383 -expx751 exp -1000000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx752 exp -100000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx753 exp -10000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx754 exp -1000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx755 exp -100000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx756 exp -10000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx757 exp -1000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal -expx758 exp -881.89009 -> 1.000001E-383 Inexact Rounded -expx759 exp -881.8901 -> 9.99991E-384 Inexact Rounded Underflow Subnormal -expx760 exp -885 -> 4.4605E-385 Inexact Rounded Underflow Subnormal -expx761 exp -888 -> 2.221E-386 Inexact Rounded Underflow Subnormal -expx762 exp -890 -> 3.01E-387 Inexact Rounded Underflow Subnormal -expx763 exp -892.9 -> 1.7E-388 Inexact Rounded Underflow Subnormal -expx764 exp -893 -> 1.5E-388 Inexact Rounded Underflow Subnormal -expx765 exp -893.5 -> 9E-389 Inexact Rounded Underflow Subnormal -expx766 exp -895.7056 -> 1E-389 Inexact Rounded Underflow Subnormal -expx769 exp -895.8 -> 1E-389 Inexact Rounded Underflow Subnormal -expx770 exp -895.73 -> 1E-389 Inexact Rounded Underflow Subnormal -expx771 exp -896.3987 -> 1E-389 Inexact Rounded Underflow Subnormal -expx772 exp -896.3988 -> 0E-389 Inexact Rounded Underflow Subnormal Clamped -expx773 exp -898.0081 -> 0E-389 Inexact Rounded Underflow Subnormal Clamped -expx774 exp -898.0082 -> 0E-389 Inexact Rounded Underflow Subnormal Clamped - --- special values -maxexponent: 999 -minexponent: -999 -expx820 exp Inf -> Infinity -expx821 exp -Inf -> 0 -expx822 exp NaN -> NaN -expx823 exp sNaN -> NaN Invalid_operation --- propagating NaNs -expx824 exp sNaN123 -> NaN123 Invalid_operation -expx825 exp -sNaN321 -> -NaN321 Invalid_operation -expx826 exp NaN456 -> NaN456 -expx827 exp -NaN654 -> -NaN654 -expx828 exp NaN1 -> NaN1 - --- Invalid operations due to restrictions --- [next two probably skipped by most test harnesses] -precision: 100000000 -expx901 exp -Infinity -> NaN Invalid_context -precision: 99999999 -expx902 exp -Infinity -> NaN Invalid_context - -precision: 9 -maxExponent: 1000000 -minExponent: -999999 -expx903 exp -Infinity -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999999 -expx904 exp -Infinity -> 0 -maxExponent: 999999 -minExponent: -1000000 -expx905 exp -Infinity -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999998 -expx906 exp -Infinity -> 0 - --- -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_even - --- Null test -expx900 exp # -> NaN Invalid_operation - - --- Randoms P=50, within 0-999 -Precision: 50 -maxExponent: 384 -minExponent: -383 -expx1501 exp 656.35397950590285612266095596539934213943872885728 -> 1.1243757610640319783611178528839652672062820040314E+285 Inexact Rounded -expx1502 exp 0.93620571093652800225038550600780322831236082781471 -> 2.5502865130986176689199711857825771311178046842009 Inexact Rounded -expx1503 exp 0.00000000000000008340785856601514714183373874105791 -> 1.0000000000000000834078585660151506202691740252512 Inexact Rounded -expx1504 exp 0.00009174057262887789625745574686545163168788456203 -> 1.0000917447809239005146722341251524081006051473273 Inexact Rounded -expx1505 exp 33.909116897973797735657751591014926629051117541243 -> 532773181025002.03543618901306726495870476617232229 Inexact Rounded -expx1506 exp 0.00000740470413004406592124575295278456936809587311 -> 1.0000074047315449333590066395670306135567889210814 Inexact Rounded -expx1507 exp 0.00000000000124854922222108802453746922483071445492 -> 1.0000000000012485492222218674621176239911424968263 Inexact Rounded -expx1508 exp 4.1793280674155659794286951159430651258356014391382 -> 65.321946520147199404199787811336860087975118278185 Inexact Rounded -expx1509 exp 485.43595745460655893746179890255529919221550201686 -> 6.6398403920459617255950476953129377459845366585463E+210 Inexact Rounded -expx1510 exp 0.00000000003547259806590856032527875157830328156597 -> 1.0000000000354725980665377129320589406715000685515 Inexact Rounded -expx1511 exp 0.00000000000000759621497339104047930616478635042678 -> 1.0000000000000075962149733910693305471257715463887 Inexact Rounded -expx1512 exp 9.7959168821760339304571595474480640286072720233796 -> 17960.261146042955179164303653412650751681436352437 Inexact Rounded -expx1513 exp 0.00000000566642006258290526783901451194943164535581 -> 1.0000000056664200786370634609832438815665249347650 Inexact Rounded -expx1514 exp 741.29888791134298194088827572374718940925820027354 -> 8.7501694006317332808128946666402622432064923198731E+321 Inexact Rounded -expx1515 exp 032.75573003552517668808529099897153710887014947935 -> 168125196578678.17725841108617955904425345631092339 Inexact Rounded -expx1516 exp 42.333700726429333308594265553422902463737399437644 -> 2428245675864172475.4681119493045657797309369672012 Inexact Rounded -expx1517 exp 0.00000000000000559682616876491888197609158802835798 -> 1.0000000000000055968261687649345442076732739577049 Inexact Rounded -expx1518 exp 0.00000000000080703688668280193584758300973549486312 -> 1.0000000000008070368866831275901158164321867914342 Inexact Rounded -expx1519 exp 640.72396012796509482382712891709072570653606838251 -> 1.8318094990683394229304133068983914236995326891045E+278 Inexact Rounded -expx1520 exp 0.00000000000000509458922167631071416948112219512224 -> 1.0000000000000050945892216763236915891499324358556 Inexact Rounded -expx1521 exp 6.7670394314315206378625221583973414660727960241395 -> 868.73613012822031367806248697092884415119568271315 Inexact Rounded -expx1522 exp 04.823217407412963506638267226891024138054783122548 -> 124.36457929588837129731821077586705505565904205366 Inexact Rounded -expx1523 exp 193.51307878701196403991208482520115359690106143615 -> 1.1006830872854715677390914655452261550768957576034E+84 Inexact Rounded -expx1524 exp 5.7307749038303650539200345901210497015617393970463 -> 308.20800743106843083522721523715645950574866495196 Inexact Rounded -expx1525 exp 0.00000000000095217825199797965200541169123743500267 -> 1.0000000000009521782519984329737172007991390381273 Inexact Rounded -expx1526 exp 0.00027131440949183370966393682617930153495028919140 -> 1.0002713512185751022906058160480606598754913607364 Inexact Rounded -expx1527 exp 0.00000000064503059114680682343002315662069272707123 -> 1.0000000006450305913548390552323517403613135496633 Inexact Rounded -expx1528 exp 0.00000000000000095616643506527288866235238548440593 -> 1.0000000000000009561664350652733457894781582009094 Inexact Rounded -expx1529 exp 0.00000000000000086449942811678650244459550252743433 -> 1.0000000000000008644994281167868761242261096529986 Inexact Rounded -expx1530 exp 0.06223488355635359965683053157729204988381887621850 -> 1.0642122813392406657789688931838919323826250630831 Inexact Rounded -expx1531 exp 0.00000400710807804429435502657131912308680674057053 -> 1.0000040071161065125925620890019319832127863559260 Inexact Rounded -expx1532 exp 85.522796894744576211573232055494551429297878413017 -> 13870073686404228452757799770251085177.853337368935 Inexact Rounded -expx1533 exp 9.1496720811363678696938036379756663548353399954363 -> 9411.3537122832743386783597629161763057370034495157 Inexact Rounded -expx1534 exp 8.2215705240788294472944382056330516738577785177942 -> 3720.3406813383076953899654701615084425598377758189 Inexact Rounded -expx1535 exp 0.00000000015772064569640613142823203726821076239561 -> 1.0000000001577206457088440324683315788358926129830 Inexact Rounded -expx1536 exp 0.58179346473959531432624153576883440625538017532480 -> 1.7892445018275360163797022372655837188423194863605 Inexact Rounded -expx1537 exp 33.555726197149525061455517784870570470833498096559 -> 374168069896324.62578073148993526626307095854407952 Inexact Rounded -expx1538 exp 9.7898079803906215094140010009583375537259810398659 -> 17850.878119912208888217100998019986634620368538426 Inexact Rounded -expx1539 exp 89.157697327174521542502447953032536541038636966347 -> 525649152320166503771224149330448089550.67293829227 Inexact Rounded -expx1540 exp 25.022947600123328912029051897171319573322888514885 -> 73676343442.952517824345431437683153304645851960524 Inexact Rounded - --- exp(1) at 34 -Precision: 34 -expx1200 exp 1 -> 2.718281828459045235360287471352662 Inexact Rounded - --- Randoms P=34, within 0-999 -Precision: 34 -maxExponent: 6144 -minExponent: -6143 -expx1201 exp 309.5948855821510212996700645087188 -> 2.853319692901387521201738015050724E+134 Inexact Rounded -expx1202 exp 9.936543068706211420422803962680164 -> 20672.15839203171877476511093276022 Inexact Rounded -expx1203 exp 6.307870323881505684429839491707908 -> 548.8747777054637296137277391754665 Inexact Rounded -expx1204 exp 0.0003543281389438420535201308282503 -> 1.000354390920573746164733350843155 Inexact Rounded -expx1205 exp 0.0000037087453363918375598394920229 -> 1.000003708752213796324841920189323 Inexact Rounded -expx1206 exp 0.0020432312687512438040222444116585 -> 1.002045320088164826013561630975308 Inexact Rounded -expx1207 exp 6.856313340032177672550343216129586 -> 949.8587981604144147983589660524396 Inexact Rounded -expx1208 exp 0.0000000000402094928333815643326418 -> 1.000000000040209492834189965989612 Inexact Rounded -expx1209 exp 0.0049610784722412117632647003545839 -> 1.004973404997901987039589029277833 Inexact Rounded -expx1210 exp 0.0000891471883724066909746786702686 -> 1.000089151162101085412780088266699 Inexact Rounded -expx1211 exp 08.59979170376061890684723211112566 -> 5430.528314920905714615339273738097 Inexact Rounded -expx1212 exp 9.473117039341003854872778112752590 -> 13005.36234331224953460055897913917 Inexact Rounded -expx1213 exp 0.0999060724692207648429969999310118 -> 1.105067116975190602296052700726802 Inexact Rounded -expx1214 exp 0.0000000927804533555877884082269247 -> 1.000000092780457659694183954740772 Inexact Rounded -expx1215 exp 0.0376578583872889916298772818265677 -> 1.038375900489771946477857818447556 Inexact Rounded -expx1216 exp 261.6896411697539524911536116712307 -> 4.470613562127465095241600174941460E+113 Inexact Rounded -expx1217 exp 0.0709997423269162980875824213889626 -> 1.073580949235407949417814485533172 Inexact Rounded -expx1218 exp 0.0000000444605583295169895235658731 -> 1.000000044460559317887627657593900 Inexact Rounded -expx1219 exp 0.0000021224072854777512281369815185 -> 1.000002122409537785687390631070906 Inexact Rounded -expx1220 exp 547.5174462574156885473558485475052 -> 6.078629247383807942612114579728672E+237 Inexact Rounded -expx1221 exp 0.0000009067598041615192002339844670 -> 1.000000906760215268314680115374387 Inexact Rounded -expx1222 exp 0.0316476500308065365803455533244603 -> 1.032153761880187977658387961769034 Inexact Rounded -expx1223 exp 84.46160530377645101833996706384473 -> 4.799644995897968383503269871697856E+36 Inexact Rounded -expx1224 exp 0.0000000000520599740290848018904145 -> 1.000000000052059974030439922338393 Inexact Rounded -expx1225 exp 0.0000006748530640093620665651726708 -> 1.000000674853291722742292331812997 Inexact Rounded -expx1226 exp 0.0000000116853119761042020507916169 -> 1.000000011685312044377460306165203 Inexact Rounded -expx1227 exp 0.0022593818094258636727616886693280 -> 1.002261936135876893707094845543461 Inexact Rounded -expx1228 exp 0.0029398857673478912249856509667517 -> 1.002944211469495086813087651287012 Inexact Rounded -expx1229 exp 0.7511480029928802775376270557636963 -> 2.119431734510320169806976569366789 Inexact Rounded -expx1230 exp 174.9431952176750671150886423048447 -> 9.481222305374955011464619468044051E+75 Inexact Rounded -expx1231 exp 0.0000810612451694136129199895164424 -> 1.000081064530720924186615149646920 Inexact Rounded -expx1232 exp 51.06888989702669288180946272499035 -> 15098613888619165073959.89896018749 Inexact Rounded -expx1233 exp 0.0000000005992887599437093651494510 -> 1.000000000599288760123282874082758 Inexact Rounded -expx1234 exp 714.8549046761054856311108828903972 -> 2.867744544891081117381595080480784E+310 Inexact Rounded -expx1235 exp 0.0000000004468247802990643645607110 -> 1.000000000446824780398890556720233 Inexact Rounded -expx1236 exp 831.5818151589890366323551672043709 -> 1.417077409182624969435938062261655E+361 Inexact Rounded -expx1237 exp 0.0000000006868323825179605747108044 -> 1.000000000686832382753829935602454 Inexact Rounded -expx1238 exp 0.0000001306740266408976840228440255 -> 1.000000130674035178748675187648098 Inexact Rounded -expx1239 exp 0.3182210609022267704811502412335163 -> 1.374680115667798185758927247894859 Inexact Rounded -expx1240 exp 0.0147741234179104437440264644295501 -> 1.014883800239950682628277534839222 Inexact Rounded - --- Randoms P=16, within 0-99 -Precision: 16 -maxExponent: 384 -minExponent: -383 -expx1101 exp 8.473011527013724 -> 4783.900643969246 Inexact Rounded -expx1102 exp 0.0000055753022764 -> 1.000005575317818 Inexact Rounded -expx1103 exp 0.0000323474114482 -> 1.000032347934631 Inexact Rounded -expx1104 exp 64.54374138544166 -> 1.073966476173531E+28 Inexact Rounded -expx1105 exp 90.47203246416569 -> 1.956610887250643E+39 Inexact Rounded -expx1106 exp 9.299931532342757 -> 10937.27033325227 Inexact Rounded -expx1107 exp 8.759678437852203 -> 6372.062234495381 Inexact Rounded -expx1108 exp 0.0000931755127172 -> 1.000093179853690 Inexact Rounded -expx1109 exp 0.0000028101158373 -> 1.000002810119786 Inexact Rounded -expx1110 exp 0.0000008008130919 -> 1.000000800813413 Inexact Rounded -expx1111 exp 8.339771722299049 -> 4187.133803081878 Inexact Rounded -expx1112 exp 0.0026140497995474 -> 1.002617469406750 Inexact Rounded -expx1113 exp 0.7478033356261771 -> 2.112354781975418 Inexact Rounded -expx1114 exp 51.77663761827966 -> 3.064135801120365E+22 Inexact Rounded -expx1115 exp 0.1524989783061012 -> 1.164741272084955 Inexact Rounded -expx1116 exp 0.0066298798669219 -> 1.006651906170791 Inexact Rounded -expx1117 exp 9.955141865534960 -> 21060.23334287038 Inexact Rounded -expx1118 exp 92.34503059198483 -> 1.273318993481226E+40 Inexact Rounded -expx1119 exp 0.0000709388677346 -> 1.000070941383956 Inexact Rounded -expx1120 exp 79.12883036433204 -> 2.318538899389243E+34 Inexact Rounded -expx1121 exp 0.0000090881548873 -> 1.000009088196185 Inexact Rounded -expx1122 exp 0.0424828809603411 -> 1.043398194245720 Inexact Rounded -expx1123 exp 0.8009035891427416 -> 2.227552811933310 Inexact Rounded -expx1124 exp 8.825786167283102 -> 6807.540455289995 Inexact Rounded -expx1125 exp 1.535457249746275 -> 4.643448260146849 Inexact Rounded -expx1126 exp 69.02254254355800 -> 9.464754500670653E+29 Inexact Rounded -expx1127 exp 0.0007050554368713 -> 1.000705304046880 Inexact Rounded -expx1128 exp 0.0000081206549504 -> 1.000008120687923 Inexact Rounded -expx1129 exp 0.621774854641137 -> 1.862230298554903 Inexact Rounded -expx1130 exp 3.847629031404354 -> 46.88177613568203 Inexact Rounded -expx1131 exp 24.81250184697732 -> 59694268456.19966 Inexact Rounded -expx1132 exp 5.107546500516044 -> 165.2643809755670 Inexact Rounded -expx1133 exp 79.17810943951986 -> 2.435656372541360E+34 Inexact Rounded -expx1134 exp 0.0051394695667015 -> 1.005152699295301 Inexact Rounded -expx1135 exp 57.44504488501725 -> 8.872908566929688E+24 Inexact Rounded -expx1136 exp 0.0000508388968036 -> 1.000050840189122 Inexact Rounded -expx1137 exp 69.71309932148997 -> 1.888053740693541E+30 Inexact Rounded -expx1138 exp 0.0064183412981502 -> 1.006438982988835 Inexact Rounded -expx1139 exp 9.346991220814677 -> 11464.27802035082 Inexact Rounded -expx1140 exp 33.09087139999152 -> 235062229168763.5 Inexact Rounded - --- Randoms P=7, within 0-9 -Precision: 7 -maxExponent: 96 -minExponent: -95 -expx1001 exp 2.395441 -> 10.97304 Inexact Rounded -expx1002 exp 0.6406779 -> 1.897767 Inexact Rounded -expx1003 exp 0.5618218 -> 1.753865 Inexact Rounded -expx1004 exp 3.055120 -> 21.22373 Inexact Rounded -expx1005 exp 1.536792 -> 4.649650 Inexact Rounded -expx1006 exp 0.0801591 -> 1.083459 Inexact Rounded -expx1007 exp 0.0966875 -> 1.101516 Inexact Rounded -expx1008 exp 0.0646761 -> 1.066813 Inexact Rounded -expx1009 exp 0.0095670 -> 1.009613 Inexact Rounded -expx1010 exp 2.956859 -> 19.23745 Inexact Rounded -expx1011 exp 7.504679 -> 1816.522 Inexact Rounded -expx1012 exp 0.0045259 -> 1.004536 Inexact Rounded -expx1013 exp 3.810071 -> 45.15364 Inexact Rounded -expx1014 exp 1.502390 -> 4.492413 Inexact Rounded -expx1015 exp 0.0321523 -> 1.032675 Inexact Rounded -expx1016 exp 0.0057214 -> 1.005738 Inexact Rounded -expx1017 exp 9.811445 -> 18241.33 Inexact Rounded -expx1018 exp 3.245249 -> 25.66810 Inexact Rounded -expx1019 exp 0.3189742 -> 1.375716 Inexact Rounded -expx1020 exp 0.8621610 -> 2.368273 Inexact Rounded -expx1021 exp 0.0122511 -> 1.012326 Inexact Rounded -expx1022 exp 2.202088 -> 9.043877 Inexact Rounded -expx1023 exp 8.778203 -> 6491.202 Inexact Rounded -expx1024 exp 0.1896279 -> 1.208800 Inexact Rounded -expx1025 exp 0.4510947 -> 1.570030 Inexact Rounded -expx1026 exp 0.276413 -> 1.318392 Inexact Rounded -expx1027 exp 4.490067 -> 89.12742 Inexact Rounded -expx1028 exp 0.0439786 -> 1.044960 Inexact Rounded -expx1029 exp 0.8168245 -> 2.263301 Inexact Rounded -expx1030 exp 0.0391658 -> 1.039943 Inexact Rounded -expx1031 exp 9.261816 -> 10528.24 Inexact Rounded -expx1032 exp 9.611186 -> 14930.87 Inexact Rounded -expx1033 exp 9.118125 -> 9119.087 Inexact Rounded -expx1034 exp 9.469083 -> 12953.00 Inexact Rounded -expx1035 exp 0.0499983 -> 1.051269 Inexact Rounded -expx1036 exp 0.0050746 -> 1.005087 Inexact Rounded -expx1037 exp 0.0014696 -> 1.001471 Inexact Rounded -expx1038 exp 9.138494 -> 9306.739 Inexact Rounded -expx1039 exp 0.0065436 -> 1.006565 Inexact Rounded -expx1040 exp 0.7284803 -> 2.071930 Inexact Rounded - diff --git a/qdecimal/test/tc_full/fma.decTest b/qdecimal/test/tc_full/fma.decTest deleted file mode 100644 index e4b250c..0000000 --- a/qdecimal/test/tc_full/fma.decTest +++ /dev/null @@ -1,3426 +0,0 @@ ------------------------------------------------------------------------- --- fma.decTest -- decimal fused multiply add -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- These tests comprese three parts: --- 1. Sanity checks and other three-operand tests (especially those --- where the fused operation makes a difference) --- 2. Multiply tests (third operand is neutral zero [0E+emax]) --- 3. Addition tests (first operand is 1) --- The multiply and addition tests are extensive because FMA may have --- its own dedicated multiplication or addition routine(s), and they --- also inherently check the left-to-right properties. - --- Sanity checks -fmax0001 fma 1 1 1 -> 2 -fmax0002 fma 1 1 2 -> 3 -fmax0003 fma 2 2 3 -> 7 -fmax0004 fma 9 9 9 -> 90 -fmax0005 fma -1 1 1 -> 0 -fmax0006 fma -1 1 2 -> 1 -fmax0007 fma -2 2 3 -> -1 -fmax0008 fma -9 9 9 -> -72 -fmax0011 fma 1 -1 1 -> 0 -fmax0012 fma 1 -1 2 -> 1 -fmax0013 fma 2 -2 3 -> -1 -fmax0014 fma 9 -9 9 -> -72 -fmax0015 fma 1 1 -1 -> 0 -fmax0016 fma 1 1 -2 -> -1 -fmax0017 fma 2 2 -3 -> 1 -fmax0018 fma 9 9 -9 -> 72 -fmax0019 fma 3 5 7 -> 22 -fmax0029 fma 3 -5 7 -> -8 - --- non-integer exacts -fma0100 fma 25.2 63.6 -438 -> 1164.72 -fma0101 fma 0.301 0.380 334 -> 334.114380 -fma0102 fma 49.2 -4.8 23.3 -> -212.86 -fma0103 fma 4.22 0.079 -94.6 -> -94.26662 -fma0104 fma 903 0.797 0.887 -> 720.578 -fma0105 fma 6.13 -161 65.9 -> -921.03 -fma0106 fma 28.2 727 5.45 -> 20506.85 -fma0107 fma 4 605 688 -> 3108 -fma0108 fma 93.3 0.19 0.226 -> 17.953 -fma0109 fma 0.169 -341 5.61 -> -52.019 -fma0110 fma -72.2 30 -51.2 -> -2217.2 -fma0111 fma -0.409 13 20.4 -> 15.083 -fma0112 fma 317 77.0 19.0 -> 24428.0 -fma0113 fma 47 6.58 1.62 -> 310.88 -fma0114 fma 1.36 0.984 0.493 -> 1.83124 -fma0115 fma 72.7 274 1.56 -> 19921.36 -fma0116 fma 335 847 83 -> 283828 -fma0117 fma 666 0.247 25.4 -> 189.902 -fma0118 fma -3.87 3.06 78.0 -> 66.1578 -fma0119 fma 0.742 192 35.6 -> 178.064 -fma0120 fma -91.6 5.29 0.153 -> -484.411 - --- cases where result is different from separate multiply + add; each --- is preceded by the result of unfused multiply and add --- [this is about 20% of all similar cases in general] --- 888565290 1557.96930 -86087.7578 -> 1.38435735E+12 -fma0201 fma 888565290 1557.96930 -86087.7578 -> 1.38435736E+12 Inexact Rounded --- -85519342.9 735155419 42010431 -> -6.28700084E+16 -fma0205 fma -85519342.9 735155419 42010431 -> -6.28700083E+16 Inexact Rounded --- -98025.5 -294603.472 10414348.2 -> 2.88890669E+10 -fma0208 fma -98025.5 -294603.472 10414348.2 -> 2.88890670E+10 Inexact Rounded --- 5967627.39 83526540.6 498494.810 -> 4.98455271E+14 -fma0211 fma 5967627.39 83526540.6 498494.810 -> 4.98455272E+14 Inexact Rounded --- 3456.9433 874.39518 197866.615 -> 3220601.18 -fma0216 fma 3456.9433 874.39518 197866.615 -> 3220601.17 Inexact Rounded --- 62769.8287 2096.98927 48.420317 -> 131627705 -fma0218 fma 62769.8287 2096.98927 48.420317 -> 131627706 Inexact Rounded --- -68.81500 59961113.9 -8988862 -> -4.13521291E+9 -fma0219 fma -68.81500 59961113.9 -8988862 -> -4.13521292E+9 Inexact Rounded --- 2126341.02 63491.5152 302427455 -> 1.35307040E+11 -fma0226 fma 2126341.02 63491.5152 302427455 -> 1.35307041E+11 Inexact Rounded - - --- Infinite combinations -fmax0800 fma Inf Inf Inf -> Infinity -fmax0801 fma Inf Inf -Inf -> NaN Invalid_operation -fmax0802 fma Inf -Inf Inf -> NaN Invalid_operation -fmax0803 fma Inf -Inf -Inf -> -Infinity -fmax0804 fma -Inf Inf Inf -> NaN Invalid_operation -fmax0805 fma -Inf Inf -Inf -> -Infinity -fmax0806 fma -Inf -Inf Inf -> Infinity -fmax0807 fma -Inf -Inf -Inf -> NaN Invalid_operation -fmax0808 fma -Inf 0 1 -> NaN Invalid_operation -fmax0809 fma -Inf 0 NaN -> NaN Invalid_operation - --- Triple NaN propagation -fmax0900 fma NaN2 NaN3 NaN5 -> NaN2 -fmax0901 fma 0 NaN3 NaN5 -> NaN3 -fmax0902 fma 0 0 NaN5 -> NaN5 --- first sNaN wins (consider qNaN from earlier sNaN being --- overridden by an sNaN in third operand) -fmax0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation -fmax0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation -fmax0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation -fmax0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation -fmax0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation -fmax0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation - --- MULTIPLICATION TESTS ------------------------------------------------ --- sanity checks (as base, above) -fmax2000 fma 2 2 0E+999999 -> 4 -fmax2001 fma 2 3 0E+999999 -> 6 -fmax2002 fma 5 1 0E+999999 -> 5 -fmax2003 fma 5 2 0E+999999 -> 10 -fmax2004 fma 1.20 2 0E+999999 -> 2.40 -fmax2005 fma 1.20 0 0E+999999 -> 0.00 -fmax2006 fma 1.20 -2 0E+999999 -> -2.40 -fmax2007 fma -1.20 2 0E+999999 -> -2.40 -fmax2008 fma -1.20 0 0E+999999 -> 0.00 -fmax2009 fma -1.20 -2 0E+999999 -> 2.40 -fmax2010 fma 5.09 7.1 0E+999999 -> 36.139 -fmax2011 fma 2.5 4 0E+999999 -> 10.0 -fmax2012 fma 2.50 4 0E+999999 -> 10.00 -fmax2013 fma 1.23456789 1.00000000 0E+999999 -> 1.23456789 Rounded -fmax2014 fma 9.999999999 9.999999999 0E+999999 -> 100.000000 Inexact Rounded -fmax2015 fma 2.50 4 0E+999999 -> 10.00 -precision: 6 -fmax2016 fma 2.50 4 0E+999999 -> 10.00 -fmax2017 fma 9.999999 9.999999 0E+999999 -> 100.000 Inexact Rounded -fmax2018 fma 9.999999 -9.999999 0E+999999 -> -100.000 Inexact Rounded -fmax2019 fma -9.999999 9.999999 0E+999999 -> -100.000 Inexact Rounded -fmax2020 fma -9.999999 -9.999999 0E+999999 -> 100.000 Inexact Rounded - --- 1999.12.21: next one is a edge case if intermediate longs are used -precision: 15 -fmax2059 fma 999999999999 9765625 0E+999999 -> 9.76562499999023E+18 Inexact Rounded -precision: 30 -fmax2160 fma 999999999999 9765625 0E+999999 -> 9765624999990234375 -precision: 9 ------ - --- zeros, etc. -fmax2021 fma 0 0 0E+999999 -> 0 -fmax2022 fma 0 -0 0E+999999 -> 0 -fmax2023 fma -0 0 0E+999999 -> 0 -fmax2024 fma -0 -0 0E+999999 -> 0 -fmax2025 fma -0.0 -0.0 0E+999999 -> 0.00 -fmax2026 fma -0.0 -0.0 0E+999999 -> 0.00 -fmax2027 fma -0.0 -0.0 0E+999999 -> 0.00 -fmax2028 fma -0.0 -0.0 0E+999999 -> 0.00 -fmax2030 fma 5.00 1E-3 0E+999999 -> 0.00500 -fmax2031 fma 00.00 0.000 0E+999999 -> 0.00000 -fmax2032 fma 00.00 0E-3 0E+999999 -> 0.00000 -- rhs is 0 -fmax2033 fma 0E-3 00.00 0E+999999 -> 0.00000 -- lhs is 0 -fmax2034 fma -5.00 1E-3 0E+999999 -> -0.00500 -fmax2035 fma -00.00 0.000 0E+999999 -> 0.00000 -fmax2036 fma -00.00 0E-3 0E+999999 -> 0.00000 -- rhs is 0 -fmax2037 fma -0E-3 00.00 0E+999999 -> 0.00000 -- lhs is 0 -fmax2038 fma 5.00 -1E-3 0E+999999 -> -0.00500 -fmax2039 fma 00.00 -0.000 0E+999999 -> 0.00000 -fmax2040 fma 00.00 -0E-3 0E+999999 -> 0.00000 -- rhs is 0 -fmax2041 fma 0E-3 -00.00 0E+999999 -> 0.00000 -- lhs is 0 -fmax2042 fma -5.00 -1E-3 0E+999999 -> 0.00500 -fmax2043 fma -00.00 -0.000 0E+999999 -> 0.00000 -fmax2044 fma -00.00 -0E-3 0E+999999 -> 0.00000 -- rhs is 0 -fmax2045 fma -0E-3 -00.00 0E+999999 -> 0.00000 -- lhs is 0 - --- examples from decarith multiply -fmax2050 fma 1.20 3 0E+999999 -> 3.60 -fmax2051 fma 7 3 0E+999999 -> 21 -fmax2052 fma 0.9 0.8 0E+999999 -> 0.72 -fmax2053 fma 0.9 -0 0E+999999 -> 0.0 -fmax2054 fma 654321 654321 0E+999999 -> 4.28135971E+11 Inexact Rounded - -fmax2060 fma 123.45 1e7 0E+999999 -> 1.2345E+9 -fmax2061 fma 123.45 1e8 0E+999999 -> 1.2345E+10 -fmax2062 fma 123.45 1e+9 0E+999999 -> 1.2345E+11 -fmax2063 fma 123.45 1e10 0E+999999 -> 1.2345E+12 -fmax2064 fma 123.45 1e11 0E+999999 -> 1.2345E+13 -fmax2065 fma 123.45 1e12 0E+999999 -> 1.2345E+14 -fmax2066 fma 123.45 1e13 0E+999999 -> 1.2345E+15 - - --- test some intermediate lengths -precision: 9 -fmax2080 fma 0.1 123456789 0E+999999 -> 12345678.9 -fmax2081 fma 0.1 1234567891 0E+999999 -> 123456789 Inexact Rounded -fmax2082 fma 0.1 12345678912 0E+999999 -> 1.23456789E+9 Inexact Rounded -fmax2083 fma 0.1 12345678912345 0E+999999 -> 1.23456789E+12 Inexact Rounded -fmax2084 fma 0.1 123456789 0E+999999 -> 12345678.9 -precision: 8 -fmax2085 fma 0.1 12345678912 0E+999999 -> 1.2345679E+9 Inexact Rounded -fmax2086 fma 0.1 12345678912345 0E+999999 -> 1.2345679E+12 Inexact Rounded -precision: 7 -fmax2087 fma 0.1 12345678912 0E+999999 -> 1.234568E+9 Inexact Rounded -fmax2088 fma 0.1 12345678912345 0E+999999 -> 1.234568E+12 Inexact Rounded - -precision: 9 -fmax2090 fma 123456789 0.1 0E+999999 -> 12345678.9 -fmax2091 fma 1234567891 0.1 0E+999999 -> 123456789 Inexact Rounded -fmax2092 fma 12345678912 0.1 0E+999999 -> 1.23456789E+9 Inexact Rounded -fmax2093 fma 12345678912345 0.1 0E+999999 -> 1.23456789E+12 Inexact Rounded -fmax2094 fma 123456789 0.1 0E+999999 -> 12345678.9 -precision: 8 -fmax2095 fma 12345678912 0.1 0E+999999 -> 1.2345679E+9 Inexact Rounded -fmax2096 fma 12345678912345 0.1 0E+999999 -> 1.2345679E+12 Inexact Rounded -precision: 7 -fmax2097 fma 12345678912 0.1 0E+999999 -> 1.234568E+9 Inexact Rounded -fmax2098 fma 12345678912345 0.1 0E+999999 -> 1.234568E+12 Inexact Rounded - --- test some more edge cases and carries -maxexponent: 9999 -minexponent: -9999 -precision: 33 -fmax2101 fma 9 9 0E+999999 -> 81 -fmax2102 fma 9 90 0E+999999 -> 810 -fmax2103 fma 9 900 0E+999999 -> 8100 -fmax2104 fma 9 9000 0E+999999 -> 81000 -fmax2105 fma 9 90000 0E+999999 -> 810000 -fmax2106 fma 9 900000 0E+999999 -> 8100000 -fmax2107 fma 9 9000000 0E+999999 -> 81000000 -fmax2108 fma 9 90000000 0E+999999 -> 810000000 -fmax2109 fma 9 900000000 0E+999999 -> 8100000000 -fmax2110 fma 9 9000000000 0E+999999 -> 81000000000 -fmax2111 fma 9 90000000000 0E+999999 -> 810000000000 -fmax2112 fma 9 900000000000 0E+999999 -> 8100000000000 -fmax2113 fma 9 9000000000000 0E+999999 -> 81000000000000 -fmax2114 fma 9 90000000000000 0E+999999 -> 810000000000000 -fmax2115 fma 9 900000000000000 0E+999999 -> 8100000000000000 -fmax2116 fma 9 9000000000000000 0E+999999 -> 81000000000000000 -fmax2117 fma 9 90000000000000000 0E+999999 -> 810000000000000000 -fmax2118 fma 9 900000000000000000 0E+999999 -> 8100000000000000000 -fmax2119 fma 9 9000000000000000000 0E+999999 -> 81000000000000000000 -fmax2120 fma 9 90000000000000000000 0E+999999 -> 810000000000000000000 -fmax2121 fma 9 900000000000000000000 0E+999999 -> 8100000000000000000000 -fmax2122 fma 9 9000000000000000000000 0E+999999 -> 81000000000000000000000 -fmax2123 fma 9 90000000000000000000000 0E+999999 -> 810000000000000000000000 --- test some more edge cases without carries -fmax2131 fma 3 3 0E+999999 -> 9 -fmax2132 fma 3 30 0E+999999 -> 90 -fmax2133 fma 3 300 0E+999999 -> 900 -fmax2134 fma 3 3000 0E+999999 -> 9000 -fmax2135 fma 3 30000 0E+999999 -> 90000 -fmax2136 fma 3 300000 0E+999999 -> 900000 -fmax2137 fma 3 3000000 0E+999999 -> 9000000 -fmax2138 fma 3 30000000 0E+999999 -> 90000000 -fmax2139 fma 3 300000000 0E+999999 -> 900000000 -fmax2140 fma 3 3000000000 0E+999999 -> 9000000000 -fmax2141 fma 3 30000000000 0E+999999 -> 90000000000 -fmax2142 fma 3 300000000000 0E+999999 -> 900000000000 -fmax2143 fma 3 3000000000000 0E+999999 -> 9000000000000 -fmax2144 fma 3 30000000000000 0E+999999 -> 90000000000000 -fmax2145 fma 3 300000000000000 0E+999999 -> 900000000000000 -fmax2146 fma 3 3000000000000000 0E+999999 -> 9000000000000000 -fmax2147 fma 3 30000000000000000 0E+999999 -> 90000000000000000 -fmax2148 fma 3 300000000000000000 0E+999999 -> 900000000000000000 -fmax2149 fma 3 3000000000000000000 0E+999999 -> 9000000000000000000 -fmax2150 fma 3 30000000000000000000 0E+999999 -> 90000000000000000000 -fmax2151 fma 3 300000000000000000000 0E+999999 -> 900000000000000000000 -fmax2152 fma 3 3000000000000000000000 0E+999999 -> 9000000000000000000000 -fmax2153 fma 3 30000000000000000000000 0E+999999 -> 90000000000000000000000 - -maxexponent: 999999 -minexponent: -999999 -precision: 9 --- test some cases that are close to exponent overflow/underflow -fmax2170 fma 1 9e999999 0E+999999 -> 9E+999999 -fmax2171 fma 1 9.9e999999 0E+999999 -> 9.9E+999999 -fmax2172 fma 1 9.99e999999 0E+999999 -> 9.99E+999999 -fmax2173 fma 9e999999 1 0E+999999 -> 9E+999999 -fmax2174 fma 9.9e999999 1 0E+999999 -> 9.9E+999999 -fmax2176 fma 9.99e999999 1 0E+999999 -> 9.99E+999999 -fmax2177 fma 1 9.99999e999999 0E+999999 -> 9.99999E+999999 -fmax2178 fma 9.99999e999999 1 0E+999999 -> 9.99999E+999999 - -fmax2180 fma 0.1 9e-999998 0E+999999 -> 9E-999999 -fmax2181 fma 0.1 99e-999998 0E+999999 -> 9.9E-999998 -fmax2182 fma 0.1 999e-999998 0E+999999 -> 9.99E-999997 - -fmax2183 fma 0.1 9e-999998 0E+999999 -> 9E-999999 -fmax2184 fma 0.1 99e-999998 0E+999999 -> 9.9E-999998 -fmax2185 fma 0.1 999e-999998 0E+999999 -> 9.99E-999997 -fmax2186 fma 0.1 999e-999997 0E+999999 -> 9.99E-999996 -fmax2187 fma 0.1 9999e-999997 0E+999999 -> 9.999E-999995 -fmax2188 fma 0.1 99999e-999997 0E+999999 -> 9.9999E-999994 - -fmax2190 fma 1 9e-999998 0E+999999 -> 9E-999998 -fmax2191 fma 1 99e-999998 0E+999999 -> 9.9E-999997 -fmax2192 fma 1 999e-999998 0E+999999 -> 9.99E-999996 -fmax2193 fma 9e-999998 1 0E+999999 -> 9E-999998 -fmax2194 fma 99e-999998 1 0E+999999 -> 9.9E-999997 -fmax2195 fma 999e-999998 1 0E+999999 -> 9.99E-999996 - --- long operand triangle -precision: 33 -fmax2246 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916511992830 Inexact Rounded -precision: 32 -fmax2247 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651199283 Inexact Rounded -precision: 31 -fmax2248 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165119928 Inexact Rounded -precision: 30 -fmax2249 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916511993 Inexact Rounded -precision: 29 -fmax2250 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651199 Inexact Rounded -precision: 28 -fmax2251 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165120 Inexact Rounded -precision: 27 -fmax2252 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916512 Inexact Rounded -precision: 26 -fmax2253 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651 Inexact Rounded -precision: 25 -fmax2254 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165 Inexact Rounded -precision: 24 -fmax2255 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671917 Inexact Rounded -precision: 23 -fmax2256 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967192 Inexact Rounded -precision: 22 -fmax2257 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719 Inexact Rounded -precision: 21 -fmax2258 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369672 Inexact Rounded -precision: 20 -fmax2259 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967 Inexact Rounded -precision: 19 -fmax2260 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933697 Inexact Rounded -precision: 18 -fmax2261 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193370 Inexact Rounded -precision: 17 -fmax2262 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119337 Inexact Rounded -precision: 16 -fmax2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011934 Inexact Rounded -precision: 15 -fmax2264 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193 Inexact Rounded -precision: 14 -fmax2265 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119 Inexact Rounded -precision: 13 -fmax2266 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908012 Inexact Rounded -precision: 12 -fmax2267 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801 Inexact Rounded -precision: 11 -fmax2268 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080 Inexact Rounded -precision: 10 -fmax2269 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908 Inexact Rounded -precision: 9 -fmax2270 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.291 Inexact Rounded -precision: 8 -fmax2271 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29 Inexact Rounded -precision: 7 -fmax2272 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.3 Inexact Rounded -precision: 6 -fmax2273 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433 Inexact Rounded -precision: 5 -fmax2274 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.4543E+5 Inexact Rounded -precision: 4 -fmax2275 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.454E+5 Inexact Rounded -precision: 3 -fmax2276 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.45E+5 Inexact Rounded -precision: 2 -fmax2277 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.5E+5 Inexact Rounded -precision: 1 -fmax2278 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1E+5 Inexact Rounded - --- test some edge cases with exact rounding -maxexponent: 9999 -minexponent: -9999 -precision: 9 -fmax2301 fma 9 9 0E+999999 -> 81 -fmax2302 fma 9 90 0E+999999 -> 810 -fmax2303 fma 9 900 0E+999999 -> 8100 -fmax2304 fma 9 9000 0E+999999 -> 81000 -fmax2305 fma 9 90000 0E+999999 -> 810000 -fmax2306 fma 9 900000 0E+999999 -> 8100000 -fmax2307 fma 9 9000000 0E+999999 -> 81000000 -fmax2308 fma 9 90000000 0E+999999 -> 810000000 -fmax2309 fma 9 900000000 0E+999999 -> 8.10000000E+9 Rounded -fmax2310 fma 9 9000000000 0E+999999 -> 8.10000000E+10 Rounded -fmax2311 fma 9 90000000000 0E+999999 -> 8.10000000E+11 Rounded -fmax2312 fma 9 900000000000 0E+999999 -> 8.10000000E+12 Rounded -fmax2313 fma 9 9000000000000 0E+999999 -> 8.10000000E+13 Rounded -fmax2314 fma 9 90000000000000 0E+999999 -> 8.10000000E+14 Rounded -fmax2315 fma 9 900000000000000 0E+999999 -> 8.10000000E+15 Rounded -fmax2316 fma 9 9000000000000000 0E+999999 -> 8.10000000E+16 Rounded -fmax2317 fma 9 90000000000000000 0E+999999 -> 8.10000000E+17 Rounded -fmax2318 fma 9 900000000000000000 0E+999999 -> 8.10000000E+18 Rounded -fmax2319 fma 9 9000000000000000000 0E+999999 -> 8.10000000E+19 Rounded -fmax2320 fma 9 90000000000000000000 0E+999999 -> 8.10000000E+20 Rounded -fmax2321 fma 9 900000000000000000000 0E+999999 -> 8.10000000E+21 Rounded -fmax2322 fma 9 9000000000000000000000 0E+999999 -> 8.10000000E+22 Rounded -fmax2323 fma 9 90000000000000000000000 0E+999999 -> 8.10000000E+23 Rounded - --- fastpath breakers -precision: 29 -fmax2330 fma 1.491824697641270317824852952837224 1.105170918075647624811707826490246514675628614562883537345747603 0E+999999 -> 1.6487212707001281468486507878 Inexact Rounded -precision: 55 -fmax2331 fma 0.8958341352965282506768545828765117803873717284891040428 0.8958341352965282506768545828765117803873717284891040428 0E+999999 -> 0.8025187979624784829842553829934069955890983696752228299 Inexact Rounded - - --- tryzeros cases -precision: 7 -rounding: half_up -maxExponent: 92 -minexponent: -92 -fmax2504 fma 0E-60 1000E-60 0E+999999 -> 0E-98 Clamped -fmax2505 fma 100E+60 0E+60 0E+999999 -> 0E+92 Clamped - --- mixed with zeros -maxexponent: 999999 -minexponent: -999999 -precision: 9 -fmax2541 fma 0 -1 0E+999999 -> 0 -fmax2542 fma -0 -1 0E+999999 -> 0 -fmax2543 fma 0 1 0E+999999 -> 0 -fmax2544 fma -0 1 0E+999999 -> 0 -fmax2545 fma -1 0 0E+999999 -> 0 -fmax2546 fma -1 -0 0E+999999 -> 0 -fmax2547 fma 1 0 0E+999999 -> 0 -fmax2548 fma 1 -0 0E+999999 -> 0 - -fmax2551 fma 0.0 -1 0E+999999 -> 0.0 -fmax2552 fma -0.0 -1 0E+999999 -> 0.0 -fmax2553 fma 0.0 1 0E+999999 -> 0.0 -fmax2554 fma -0.0 1 0E+999999 -> 0.0 -fmax2555 fma -1.0 0 0E+999999 -> 0.0 -fmax2556 fma -1.0 -0 0E+999999 -> 0.0 -fmax2557 fma 1.0 0 0E+999999 -> 0.0 -fmax2558 fma 1.0 -0 0E+999999 -> 0.0 - -fmax2561 fma 0 -1.0 0E+999999 -> 0.0 -fmax2562 fma -0 -1.0 0E+999999 -> 0.0 -fmax2563 fma 0 1.0 0E+999999 -> 0.0 -fmax2564 fma -0 1.0 0E+999999 -> 0.0 -fmax2565 fma -1 0.0 0E+999999 -> 0.0 -fmax2566 fma -1 -0.0 0E+999999 -> 0.0 -fmax2567 fma 1 0.0 0E+999999 -> 0.0 -fmax2568 fma 1 -0.0 0E+999999 -> 0.0 - -fmax2571 fma 0.0 -1.0 0E+999999 -> 0.00 -fmax2572 fma -0.0 -1.0 0E+999999 -> 0.00 -fmax2573 fma 0.0 1.0 0E+999999 -> 0.00 -fmax2574 fma -0.0 1.0 0E+999999 -> 0.00 -fmax2575 fma -1.0 0.0 0E+999999 -> 0.00 -fmax2576 fma -1.0 -0.0 0E+999999 -> 0.00 -fmax2577 fma 1.0 0.0 0E+999999 -> 0.00 -fmax2578 fma 1.0 -0.0 0E+999999 -> 0.00 - - --- Specials -fmax2580 fma Inf -Inf 0E+999999 -> -Infinity -fmax2581 fma Inf -1000 0E+999999 -> -Infinity -fmax2582 fma Inf -1 0E+999999 -> -Infinity -fmax2583 fma Inf -0 0E+999999 -> NaN Invalid_operation -fmax2584 fma Inf 0 0E+999999 -> NaN Invalid_operation -fmax2585 fma Inf 1 0E+999999 -> Infinity -fmax2586 fma Inf 1000 0E+999999 -> Infinity -fmax2587 fma Inf Inf 0E+999999 -> Infinity -fmax2588 fma -1000 Inf 0E+999999 -> -Infinity -fmax2589 fma -Inf Inf 0E+999999 -> -Infinity -fmax2590 fma -1 Inf 0E+999999 -> -Infinity -fmax2591 fma -0 Inf 0E+999999 -> NaN Invalid_operation -fmax2592 fma 0 Inf 0E+999999 -> NaN Invalid_operation -fmax2593 fma 1 Inf 0E+999999 -> Infinity -fmax2594 fma 1000 Inf 0E+999999 -> Infinity -fmax2595 fma Inf Inf 0E+999999 -> Infinity - -fmax2600 fma -Inf -Inf 0E+999999 -> Infinity -fmax2601 fma -Inf -1000 0E+999999 -> Infinity -fmax2602 fma -Inf -1 0E+999999 -> Infinity -fmax2603 fma -Inf -0 0E+999999 -> NaN Invalid_operation -fmax2604 fma -Inf 0 0E+999999 -> NaN Invalid_operation -fmax2605 fma -Inf 1 0E+999999 -> -Infinity -fmax2606 fma -Inf 1000 0E+999999 -> -Infinity -fmax2607 fma -Inf Inf 0E+999999 -> -Infinity -fmax2608 fma -1000 Inf 0E+999999 -> -Infinity -fmax2609 fma -Inf -Inf 0E+999999 -> Infinity -fmax2610 fma -1 -Inf 0E+999999 -> Infinity -fmax2611 fma -0 -Inf 0E+999999 -> NaN Invalid_operation -fmax2612 fma 0 -Inf 0E+999999 -> NaN Invalid_operation -fmax2613 fma 1 -Inf 0E+999999 -> -Infinity -fmax2614 fma 1000 -Inf 0E+999999 -> -Infinity -fmax2615 fma Inf -Inf 0E+999999 -> -Infinity - -fmax2621 fma NaN -Inf 0E+999999 -> NaN -fmax2622 fma NaN -1000 0E+999999 -> NaN -fmax2623 fma NaN -1 0E+999999 -> NaN -fmax2624 fma NaN -0 0E+999999 -> NaN -fmax2625 fma NaN 0 0E+999999 -> NaN -fmax2626 fma NaN 1 0E+999999 -> NaN -fmax2627 fma NaN 1000 0E+999999 -> NaN -fmax2628 fma NaN Inf 0E+999999 -> NaN -fmax2629 fma NaN NaN 0E+999999 -> NaN -fmax2630 fma -Inf NaN 0E+999999 -> NaN -fmax2631 fma -1000 NaN 0E+999999 -> NaN -fmax2632 fma -1 NaN 0E+999999 -> NaN -fmax2633 fma -0 NaN 0E+999999 -> NaN -fmax2634 fma 0 NaN 0E+999999 -> NaN -fmax2635 fma 1 NaN 0E+999999 -> NaN -fmax2636 fma 1000 NaN 0E+999999 -> NaN -fmax2637 fma Inf NaN 0E+999999 -> NaN - -fmax2641 fma sNaN -Inf 0E+999999 -> NaN Invalid_operation -fmax2642 fma sNaN -1000 0E+999999 -> NaN Invalid_operation -fmax2643 fma sNaN -1 0E+999999 -> NaN Invalid_operation -fmax2644 fma sNaN -0 0E+999999 -> NaN Invalid_operation -fmax2645 fma sNaN 0 0E+999999 -> NaN Invalid_operation -fmax2646 fma sNaN 1 0E+999999 -> NaN Invalid_operation -fmax2647 fma sNaN 1000 0E+999999 -> NaN Invalid_operation -fmax2648 fma sNaN NaN 0E+999999 -> NaN Invalid_operation -fmax2649 fma sNaN sNaN 0E+999999 -> NaN Invalid_operation -fmax2650 fma NaN sNaN 0E+999999 -> NaN Invalid_operation -fmax2651 fma -Inf sNaN 0E+999999 -> NaN Invalid_operation -fmax2652 fma -1000 sNaN 0E+999999 -> NaN Invalid_operation -fmax2653 fma -1 sNaN 0E+999999 -> NaN Invalid_operation -fmax2654 fma -0 sNaN 0E+999999 -> NaN Invalid_operation -fmax2655 fma 0 sNaN 0E+999999 -> NaN Invalid_operation -fmax2656 fma 1 sNaN 0E+999999 -> NaN Invalid_operation -fmax2657 fma 1000 sNaN 0E+999999 -> NaN Invalid_operation -fmax2658 fma Inf sNaN 0E+999999 -> NaN Invalid_operation -fmax2659 fma NaN sNaN 0E+999999 -> NaN Invalid_operation - --- propagating NaNs -fmax2661 fma NaN9 -Inf 0E+999999 -> NaN9 -fmax2662 fma NaN8 999 0E+999999 -> NaN8 -fmax2663 fma NaN71 Inf 0E+999999 -> NaN71 -fmax2664 fma NaN6 NaN5 0E+999999 -> NaN6 -fmax2665 fma -Inf NaN4 0E+999999 -> NaN4 -fmax2666 fma -999 NaN33 0E+999999 -> NaN33 -fmax2667 fma Inf NaN2 0E+999999 -> NaN2 - -fmax2671 fma sNaN99 -Inf 0E+999999 -> NaN99 Invalid_operation -fmax2672 fma sNaN98 -11 0E+999999 -> NaN98 Invalid_operation -fmax2673 fma sNaN97 NaN 0E+999999 -> NaN97 Invalid_operation -fmax2674 fma sNaN16 sNaN94 0E+999999 -> NaN16 Invalid_operation -fmax2675 fma NaN95 sNaN93 0E+999999 -> NaN93 Invalid_operation -fmax2676 fma -Inf sNaN92 0E+999999 -> NaN92 Invalid_operation -fmax2677 fma 088 sNaN91 0E+999999 -> NaN91 Invalid_operation -fmax2678 fma Inf sNaN90 0E+999999 -> NaN90 Invalid_operation -fmax2679 fma NaN sNaN89 0E+999999 -> NaN89 Invalid_operation - -fmax2681 fma -NaN9 -Inf 0E+999999 -> -NaN9 -fmax2682 fma -NaN8 999 0E+999999 -> -NaN8 -fmax2683 fma -NaN71 Inf 0E+999999 -> -NaN71 -fmax2684 fma -NaN6 -NaN5 0E+999999 -> -NaN6 -fmax2685 fma -Inf -NaN4 0E+999999 -> -NaN4 -fmax2686 fma -999 -NaN33 0E+999999 -> -NaN33 -fmax2687 fma Inf -NaN2 0E+999999 -> -NaN2 - -fmax2691 fma -sNaN99 -Inf 0E+999999 -> -NaN99 Invalid_operation -fmax2692 fma -sNaN98 -11 0E+999999 -> -NaN98 Invalid_operation -fmax2693 fma -sNaN97 NaN 0E+999999 -> -NaN97 Invalid_operation -fmax2694 fma -sNaN16 -sNaN94 0E+999999 -> -NaN16 Invalid_operation -fmax2695 fma -NaN95 -sNaN93 0E+999999 -> -NaN93 Invalid_operation -fmax2696 fma -Inf -sNaN92 0E+999999 -> -NaN92 Invalid_operation -fmax2697 fma 088 -sNaN91 0E+999999 -> -NaN91 Invalid_operation -fmax2698 fma Inf -sNaN90 0E+999999 -> -NaN90 Invalid_operation -fmax2699 fma -NaN -sNaN89 0E+999999 -> -NaN89 Invalid_operation - -fmax2701 fma -NaN -Inf 0E+999999 -> -NaN -fmax2702 fma -NaN 999 0E+999999 -> -NaN -fmax2703 fma -NaN Inf 0E+999999 -> -NaN -fmax2704 fma -NaN -NaN 0E+999999 -> -NaN -fmax2705 fma -Inf -NaN0 0E+999999 -> -NaN -fmax2706 fma -999 -NaN 0E+999999 -> -NaN -fmax2707 fma Inf -NaN 0E+999999 -> -NaN - -fmax2711 fma -sNaN -Inf 0E+999999 -> -NaN Invalid_operation -fmax2712 fma -sNaN -11 0E+999999 -> -NaN Invalid_operation -fmax2713 fma -sNaN00 NaN 0E+999999 -> -NaN Invalid_operation -fmax2714 fma -sNaN -sNaN 0E+999999 -> -NaN Invalid_operation -fmax2715 fma -NaN -sNaN 0E+999999 -> -NaN Invalid_operation -fmax2716 fma -Inf -sNaN 0E+999999 -> -NaN Invalid_operation -fmax2717 fma 088 -sNaN 0E+999999 -> -NaN Invalid_operation -fmax2718 fma Inf -sNaN 0E+999999 -> -NaN Invalid_operation -fmax2719 fma -NaN -sNaN 0E+999999 -> -NaN Invalid_operation - --- overflow and underflow tests .. note subnormal results -maxexponent: 999999 -minexponent: -999999 -fmax2730 fma +1.23456789012345E-0 9E+999999 0E+999999 -> Infinity Inexact Overflow Rounded -fmax2731 fma 9E+999999 +1.23456789012345E-0 0E+999999 -> Infinity Inexact Overflow Rounded -fmax2732 fma +0.100 9E-999999 0E+999999 -> 9.00E-1000000 Subnormal -fmax2733 fma 9E-999999 +0.100 0E+999999 -> 9.00E-1000000 Subnormal -fmax2735 fma -1.23456789012345E-0 9E+999999 0E+999999 -> -Infinity Inexact Overflow Rounded -fmax2736 fma 9E+999999 -1.23456789012345E-0 0E+999999 -> -Infinity Inexact Overflow Rounded -fmax2737 fma -0.100 9E-999999 0E+999999 -> -9.00E-1000000 Subnormal -fmax2738 fma 9E-999999 -0.100 0E+999999 -> -9.00E-1000000 Subnormal - --- signs -fmax2751 fma 1e+777777 1e+411111 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2752 fma 1e+777777 -1e+411111 0E+999999 -> -Infinity Overflow Inexact Rounded -fmax2753 fma -1e+777777 1e+411111 0E+999999 -> -Infinity Overflow Inexact Rounded -fmax2754 fma -1e+777777 -1e+411111 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2755 fma 1e-777777 1e-411111 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -fmax2756 fma 1e-777777 -1e-411111 0E+999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -fmax2757 fma -1e-777777 1e-411111 0E+999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -fmax2758 fma -1e-777777 -1e-411111 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -precision: 9 -fmax2760 fma 1e-600000 1e-400001 0E+999999 -> 1E-1000001 Subnormal -fmax2761 fma 1e-600000 1e-400002 0E+999999 -> 1E-1000002 Subnormal -fmax2762 fma 1e-600000 1e-400003 0E+999999 -> 1E-1000003 Subnormal -fmax2763 fma 1e-600000 1e-400004 0E+999999 -> 1E-1000004 Subnormal -fmax2764 fma 1e-600000 1e-400005 0E+999999 -> 1E-1000005 Subnormal -fmax2765 fma 1e-600000 1e-400006 0E+999999 -> 1E-1000006 Subnormal -fmax2766 fma 1e-600000 1e-400007 0E+999999 -> 1E-1000007 Subnormal -fmax2767 fma 1e-600000 1e-400008 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -fmax2768 fma 1e-600000 1e-400009 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -fmax2769 fma 1e-600000 1e-400010 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -fmax2770 fma 1e+600000 1e+400001 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2771 fma 1e+600000 1e+400002 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2772 fma 1e+600000 1e+400003 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2773 fma 1e+600000 1e+400004 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2774 fma 1e+600000 1e+400005 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2775 fma 1e+600000 1e+400006 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2776 fma 1e+600000 1e+400007 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2777 fma 1e+600000 1e+400008 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2778 fma 1e+600000 1e+400009 0E+999999 -> Infinity Overflow Inexact Rounded -fmax2779 fma 1e+600000 1e+400010 0E+999999 -> Infinity Overflow Inexact Rounded - --- 'subnormal' test edge condition at higher precisions -precision: 99 -fmax2780 fma 1e-600000 1e-400007 0E+999999 -> 1E-1000007 Subnormal -fmax2781 fma 1e-600000 1e-400008 0E+999999 -> 1E-1000008 Subnormal -fmax2782 fma 1e-600000 1e-400097 0E+999999 -> 1E-1000097 Subnormal -fmax2783 fma 1e-600000 1e-400098 0E+999999 -> 0E-1000097 Underflow Subnormal Inexact Rounded Clamped -precision: 999 -fmax2784 fma 1e-600000 1e-400997 0E+999999 -> 1E-1000997 Subnormal -fmax2785 fma 1e-600000 1e-400998 0E+999999 -> 0E-1000997 Underflow Subnormal Inexact Rounded Clamped - --- test subnormals rounding -precision: 5 -maxExponent: 999 -minexponent: -999 -rounding: half_even - -fmax2801 fma 1.0000E-999 1 0E+999999 -> 1.0000E-999 -fmax2802 fma 1.000E-999 1e-1 0E+999999 -> 1.000E-1000 Subnormal -fmax2803 fma 1.00E-999 1e-2 0E+999999 -> 1.00E-1001 Subnormal -fmax2804 fma 1.0E-999 1e-3 0E+999999 -> 1.0E-1002 Subnormal -fmax2805 fma 1.0E-999 1e-4 0E+999999 -> 1E-1003 Subnormal Rounded -fmax2806 fma 1.3E-999 1e-4 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded -fmax2807 fma 1.5E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2808 fma 1.7E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2809 fma 2.3E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2810 fma 2.5E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2811 fma 2.7E-999 1e-4 0E+999999 -> 3E-1003 Underflow Subnormal Inexact Rounded -fmax2812 fma 1.49E-999 1e-4 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded -fmax2813 fma 1.50E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2814 fma 1.51E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2815 fma 2.49E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2816 fma 2.50E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded -fmax2817 fma 2.51E-999 1e-4 0E+999999 -> 3E-1003 Underflow Subnormal Inexact Rounded - -fmax2818 fma 1E-999 1e-4 0E+999999 -> 1E-1003 Subnormal -fmax2819 fma 3E-999 1e-5 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -fmax2820 fma 5E-999 1e-5 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -fmax2821 fma 7E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded -fmax2822 fma 9E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded -fmax2823 fma 9.9E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded - -fmax2824 fma 1E-999 -1e-4 0E+999999 -> -1E-1003 Subnormal -fmax2825 fma 3E-999 -1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped -fmax2826 fma -5E-999 1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped -fmax2827 fma 7E-999 -1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded -fmax2828 fma -9E-999 1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded -fmax2829 fma 9.9E-999 -1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded -fmax2830 fma 3.0E-999 -1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped - -fmax2831 fma 1.0E-501 1e-501 0E+999999 -> 1.0E-1002 Subnormal -fmax2832 fma 2.0E-501 2e-501 0E+999999 -> 4.0E-1002 Subnormal -fmax2833 fma 4.0E-501 4e-501 0E+999999 -> 1.60E-1001 Subnormal -fmax2834 fma 10.0E-501 10e-501 0E+999999 -> 1.000E-1000 Subnormal -fmax2835 fma 30.0E-501 30e-501 0E+999999 -> 9.000E-1000 Subnormal -fmax2836 fma 40.0E-501 40e-501 0E+999999 -> 1.6000E-999 - --- squares -fmax2840 fma 1E-502 1e-502 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -fmax2841 fma 1E-501 1e-501 0E+999999 -> 1E-1002 Subnormal -fmax2842 fma 2E-501 2e-501 0E+999999 -> 4E-1002 Subnormal -fmax2843 fma 4E-501 4e-501 0E+999999 -> 1.6E-1001 Subnormal -fmax2844 fma 10E-501 10e-501 0E+999999 -> 1.00E-1000 Subnormal -fmax2845 fma 30E-501 30e-501 0E+999999 -> 9.00E-1000 Subnormal -fmax2846 fma 40E-501 40e-501 0E+999999 -> 1.600E-999 - --- cubes -fmax2850 fma 1E-670 1e-335 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -fmax2851 fma 1E-668 1e-334 0E+999999 -> 1E-1002 Subnormal -fmax2852 fma 4E-668 2e-334 0E+999999 -> 8E-1002 Subnormal -fmax2853 fma 9E-668 3e-334 0E+999999 -> 2.7E-1001 Subnormal -fmax2854 fma 16E-668 4e-334 0E+999999 -> 6.4E-1001 Subnormal -fmax2855 fma 25E-668 5e-334 0E+999999 -> 1.25E-1000 Subnormal -fmax2856 fma 10E-668 100e-334 0E+999999 -> 1.000E-999 - --- test derived from result of 0.099 ** 999 at 15 digits with unlimited exponent -precision: 19 -fmax2860 fma 6636851557994578716E-520 6636851557994578716E-520 0E+999999 -> 4.40477986028551E-1003 Underflow Subnormal Inexact Rounded - --- Long operand overflow may be a different path -precision: 3 -maxExponent: 999999 -minexponent: -999999 -fmax2870 fma 1 9.999E+999999 0E+999999 -> Infinity Inexact Overflow Rounded -fmax2871 fma 1 -9.999E+999999 0E+999999 -> -Infinity Inexact Overflow Rounded -fmax2872 fma 9.999E+999999 1 0E+999999 -> Infinity Inexact Overflow Rounded -fmax2873 fma -9.999E+999999 1 0E+999999 -> -Infinity Inexact Overflow Rounded - --- check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 -fmax2881 fma 1.2347E-40 1.2347E-40 0E+999999 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax2882 fma 1.234E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow -fmax2883 fma 1.23E-40 1.23E-40 0E+999999 -> 1.513E-80 Inexact Rounded Subnormal Underflow -fmax2884 fma 1.2E-40 1.2E-40 0E+999999 -> 1.44E-80 Subnormal -fmax2885 fma 1.2E-40 1.2E-41 0E+999999 -> 1.44E-81 Subnormal -fmax2886 fma 1.2E-40 1.2E-42 0E+999999 -> 1.4E-82 Subnormal Inexact Rounded Underflow -fmax2887 fma 1.2E-40 1.3E-42 0E+999999 -> 1.6E-82 Subnormal Inexact Rounded Underflow -fmax2888 fma 1.3E-40 1.3E-42 0E+999999 -> 1.7E-82 Subnormal Inexact Rounded Underflow -fmax2889 fma 1.3E-40 1.3E-43 0E+999999 -> 2E-83 Subnormal Inexact Rounded Underflow -fmax2890 fma 1.3E-41 1.3E-43 0E+999999 -> 0E-83 Clamped Subnormal Inexact Rounded Underflow - -fmax2891 fma 1.2345E-39 1.234E-40 0E+999999 -> 1.5234E-79 Inexact Rounded -fmax2892 fma 1.23456E-39 1.234E-40 0E+999999 -> 1.5234E-79 Inexact Rounded -fmax2893 fma 1.2345E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow -fmax2894 fma 1.23456E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow -fmax2895 fma 1.2345E-41 1.234E-40 0E+999999 -> 1.52E-81 Inexact Rounded Subnormal Underflow -fmax2896 fma 1.23456E-41 1.234E-40 0E+999999 -> 1.52E-81 Inexact Rounded Subnormal Underflow - --- Now explore the case where we get a normal result with Underflow -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - -fmax2900 fma 0.3000000000E-191 0.3000000000E-191 0E+999999 -> 9.00000000000000E-384 Subnormal Rounded -fmax2901 fma 0.3000000001E-191 0.3000000001E-191 0E+999999 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded -fmax2902 fma 9.999999999999999E-383 0.0999999999999 0E+999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded -fmax2903 fma 9.999999999999999E-383 0.09999999999999 0E+999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded -fmax2904 fma 9.999999999999999E-383 0.099999999999999 0E+999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded -fmax2905 fma 9.999999999999999E-383 0.0999999999999999 0E+999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded --- prove operands are exact -fmax2906 fma 9.999999999999999E-383 1 0E+999999 -> 9.999999999999999E-383 -fmax2907 fma 1 0.09999999999999999 0E+999999 -> 0.09999999999999999 --- the next rounds to Nmin -fmax2908 fma 9.999999999999999E-383 0.09999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax2909 fma 9.999999999999999E-383 0.099999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax2910 fma 9.999999999999999E-383 0.0999999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax2911 fma 9.999999999999999E-383 0.09999999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded - --- Examples from SQL proposal (Krishna Kulkarni) -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 -fmax2921 fma 130E-2 120E-2 0E+999999 -> 1.5600 -fmax2922 fma 130E-2 12E-1 0E+999999 -> 1.560 -fmax2923 fma 130E-2 1E0 0E+999999 -> 1.30 - --- Null tests -fmax2990 fma # 10 0E+999999 -> NaN Invalid_operation -fmax2991 fma 10 # 0E+999999 -> NaN Invalid_operation - --- ADDITION TESTS ------------------------------------------------------ -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- [first group are 'quick confidence check'] -fmax3001 fma 1 1 1 -> 2 -fmax3002 fma 1 2 3 -> 5 -fmax3003 fma 1 '5.75' '3.3' -> 9.05 -fmax3004 fma 1 '5' '-3' -> 2 -fmax3005 fma 1 '-5' '-3' -> -8 -fmax3006 fma 1 '-7' '2.5' -> -4.5 -fmax3007 fma 1 '0.7' '0.3' -> 1.0 -fmax3008 fma 1 '1.25' '1.25' -> 2.50 -fmax3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' -fmax3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' - -fmax3011 fma 1 '0.4444444444' '0.5555555555' -> '1.00000000' Inexact Rounded -fmax3012 fma 1 '0.4444444440' '0.5555555555' -> '1.00000000' Inexact Rounded -fmax3013 fma 1 '0.4444444444' '0.5555555550' -> '0.999999999' Inexact Rounded -fmax3014 fma 1 '0.44444444449' '0' -> '0.444444444' Inexact Rounded -fmax3015 fma 1 '0.444444444499' '0' -> '0.444444444' Inexact Rounded -fmax3016 fma 1 '0.4444444444999' '0' -> '0.444444444' Inexact Rounded -fmax3017 fma 1 '0.4444444445000' '0' -> '0.444444445' Inexact Rounded -fmax3018 fma 1 '0.4444444445001' '0' -> '0.444444445' Inexact Rounded -fmax3019 fma 1 '0.444444444501' '0' -> '0.444444445' Inexact Rounded -fmax3020 fma 1 '0.44444444451' '0' -> '0.444444445' Inexact Rounded - -fmax3021 fma 1 0 1 -> 1 -fmax3022 fma 1 1 1 -> 2 -fmax3023 fma 1 2 1 -> 3 -fmax3024 fma 1 3 1 -> 4 -fmax3025 fma 1 4 1 -> 5 -fmax3026 fma 1 5 1 -> 6 -fmax3027 fma 1 6 1 -> 7 -fmax3028 fma 1 7 1 -> 8 -fmax3029 fma 1 8 1 -> 9 -fmax3030 fma 1 9 1 -> 10 - --- some carrying effects -fmax3031 fma 1 '0.9998' '0.0000' -> '0.9998' -fmax3032 fma 1 '0.9998' '0.0001' -> '0.9999' -fmax3033 fma 1 '0.9998' '0.0002' -> '1.0000' -fmax3034 fma 1 '0.9998' '0.0003' -> '1.0001' - -fmax3035 fma 1 '70' '10000e+9' -> '1.00000000E+13' Inexact Rounded -fmax3036 fma 1 '700' '10000e+9' -> '1.00000000E+13' Inexact Rounded -fmax3037 fma 1 '7000' '10000e+9' -> '1.00000000E+13' Inexact Rounded -fmax3038 fma 1 '70000' '10000e+9' -> '1.00000001E+13' Inexact Rounded -fmax3039 fma 1 '700000' '10000e+9' -> '1.00000007E+13' Rounded - --- symmetry: -fmax3040 fma 1 '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded -fmax3041 fma 1 '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded -fmax3042 fma 1 '10000e+9' '7000' -> '1.00000000E+13' Inexact Rounded -fmax3044 fma 1 '10000e+9' '70000' -> '1.00000001E+13' Inexact Rounded -fmax3045 fma 1 '10000e+9' '700000' -> '1.00000007E+13' Rounded - --- same, higher precision -precision: 15 -fmax3046 fma 1 '10000e+9' '7' -> '10000000000007' -fmax3047 fma 1 '10000e+9' '70' -> '10000000000070' -fmax3048 fma 1 '10000e+9' '700' -> '10000000000700' -fmax3049 fma 1 '10000e+9' '7000' -> '10000000007000' -fmax3050 fma 1 '10000e+9' '70000' -> '10000000070000' -fmax3051 fma 1 '10000e+9' '700000' -> '10000000700000' -fmax3052 fma 1 '10000e+9' '7000000' -> '10000007000000' - --- examples from decarith -fmax3053 fma 1 '12' '7.00' -> '19.00' -fmax3054 fma 1 '1.3' '-1.07' -> '0.23' -fmax3055 fma 1 '1.3' '-1.30' -> '0.00' -fmax3056 fma 1 '1.3' '-2.07' -> '-0.77' -fmax3057 fma 1 '1E+2' '1E+4' -> '1.01E+4' - --- zero preservation -precision: 6 -fmax3060 fma 1 '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded -fmax3061 fma 1 1 '0.0001' -> '1.0001' -fmax3062 fma 1 1 '0.00001' -> '1.00001' -fmax3063 fma 1 1 '0.000001' -> '1.00000' Inexact Rounded -fmax3064 fma 1 1 '0.0000001' -> '1.00000' Inexact Rounded -fmax3065 fma 1 1 '0.00000001' -> '1.00000' Inexact Rounded - --- some funny zeros [in case of bad signum] -fmax3070 fma 1 1 0 -> 1 -fmax3071 fma 1 1 0. -> 1 -fmax3072 fma 1 1 .0 -> 1.0 -fmax3073 fma 1 1 0.0 -> 1.0 -fmax3074 fma 1 1 0.00 -> 1.00 -fmax3075 fma 1 0 1 -> 1 -fmax3076 fma 1 0. 1 -> 1 -fmax3077 fma 1 .0 1 -> 1.0 -fmax3078 fma 1 0.0 1 -> 1.0 -fmax3079 fma 1 0.00 1 -> 1.00 - -precision: 9 - --- some carries -fmax3080 fma 1 999999998 1 -> 999999999 -fmax3081 fma 1 999999999 1 -> 1.00000000E+9 Rounded -fmax3082 fma 1 99999999 1 -> 100000000 -fmax3083 fma 1 9999999 1 -> 10000000 -fmax3084 fma 1 999999 1 -> 1000000 -fmax3085 fma 1 99999 1 -> 100000 -fmax3086 fma 1 9999 1 -> 10000 -fmax3087 fma 1 999 1 -> 1000 -fmax3088 fma 1 99 1 -> 100 -fmax3089 fma 1 9 1 -> 10 - - --- more LHS swaps -fmax3090 fma 1 '-56267E-10' 0 -> '-0.0000056267' -fmax3091 fma 1 '-56267E-6' 0 -> '-0.056267' -fmax3092 fma 1 '-56267E-5' 0 -> '-0.56267' -fmax3093 fma 1 '-56267E-4' 0 -> '-5.6267' -fmax3094 fma 1 '-56267E-3' 0 -> '-56.267' -fmax3095 fma 1 '-56267E-2' 0 -> '-562.67' -fmax3096 fma 1 '-56267E-1' 0 -> '-5626.7' -fmax3097 fma 1 '-56267E-0' 0 -> '-56267' -fmax3098 fma 1 '-5E-10' 0 -> '-5E-10' -fmax3099 fma 1 '-5E-7' 0 -> '-5E-7' -fmax3100 fma 1 '-5E-6' 0 -> '-0.000005' -fmax3101 fma 1 '-5E-5' 0 -> '-0.00005' -fmax3102 fma 1 '-5E-4' 0 -> '-0.0005' -fmax3103 fma 1 '-5E-1' 0 -> '-0.5' -fmax3104 fma 1 '-5E0' 0 -> '-5' -fmax3105 fma 1 '-5E1' 0 -> '-50' -fmax3106 fma 1 '-5E5' 0 -> '-500000' -fmax3107 fma 1 '-5E8' 0 -> '-500000000' -fmax3108 fma 1 '-5E9' 0 -> '-5.00000000E+9' Rounded -fmax3109 fma 1 '-5E10' 0 -> '-5.00000000E+10' Rounded -fmax3110 fma 1 '-5E11' 0 -> '-5.00000000E+11' Rounded -fmax3111 fma 1 '-5E100' 0 -> '-5.00000000E+100' Rounded - --- more RHS swaps -fmax3113 fma 1 0 '-56267E-10' -> '-0.0000056267' -fmax3114 fma 1 0 '-56267E-6' -> '-0.056267' -fmax3116 fma 1 0 '-56267E-5' -> '-0.56267' -fmax3117 fma 1 0 '-56267E-4' -> '-5.6267' -fmax3119 fma 1 0 '-56267E-3' -> '-56.267' -fmax3120 fma 1 0 '-56267E-2' -> '-562.67' -fmax3121 fma 1 0 '-56267E-1' -> '-5626.7' -fmax3122 fma 1 0 '-56267E-0' -> '-56267' -fmax3123 fma 1 0 '-5E-10' -> '-5E-10' -fmax3124 fma 1 0 '-5E-7' -> '-5E-7' -fmax3125 fma 1 0 '-5E-6' -> '-0.000005' -fmax3126 fma 1 0 '-5E-5' -> '-0.00005' -fmax3127 fma 1 0 '-5E-4' -> '-0.0005' -fmax3128 fma 1 0 '-5E-1' -> '-0.5' -fmax3129 fma 1 0 '-5E0' -> '-5' -fmax3130 fma 1 0 '-5E1' -> '-50' -fmax3131 fma 1 0 '-5E5' -> '-500000' -fmax3132 fma 1 0 '-5E8' -> '-500000000' -fmax3133 fma 1 0 '-5E9' -> '-5.00000000E+9' Rounded -fmax3134 fma 1 0 '-5E10' -> '-5.00000000E+10' Rounded -fmax3135 fma 1 0 '-5E11' -> '-5.00000000E+11' Rounded -fmax3136 fma 1 0 '-5E100' -> '-5.00000000E+100' Rounded - --- related -fmax3137 fma 1 1 '0E-12' -> '1.00000000' Rounded -fmax3138 fma 1 -1 '0E-12' -> '-1.00000000' Rounded -fmax3139 fma 1 '0E-12' 1 -> '1.00000000' Rounded -fmax3140 fma 1 '0E-12' -1 -> '-1.00000000' Rounded -fmax3141 fma 1 1E+4 0.0000 -> '10000.0000' -fmax3142 fma 1 1E+4 0.00000 -> '10000.0000' Rounded -fmax3143 fma 1 0.000 1E+5 -> '100000.000' -fmax3144 fma 1 0.0000 1E+5 -> '100000.000' Rounded - --- [some of the next group are really constructor tests] -fmax3146 fma 1 '00.0' 0 -> '0.0' -fmax3147 fma 1 '0.00' 0 -> '0.00' -fmax3148 fma 1 0 '0.00' -> '0.00' -fmax3149 fma 1 0 '00.0' -> '0.0' -fmax3150 fma 1 '00.0' '0.00' -> '0.00' -fmax3151 fma 1 '0.00' '00.0' -> '0.00' -fmax3152 fma 1 '3' '.3' -> '3.3' -fmax3153 fma 1 '3.' '.3' -> '3.3' -fmax3154 fma 1 '3.0' '.3' -> '3.3' -fmax3155 fma 1 '3.00' '.3' -> '3.30' -fmax3156 fma 1 '3' '3' -> '6' -fmax3157 fma 1 '3' '+3' -> '6' -fmax3158 fma 1 '3' '-3' -> '0' -fmax3159 fma 1 '0.3' '-0.3' -> '0.0' -fmax3160 fma 1 '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -precision: 15 -fmax3161 fma 1 '1E+12' '-1' -> '999999999999' -fmax3162 fma 1 '1E+12' '1.11' -> '1000000000001.11' -fmax3163 fma 1 '1.11' '1E+12' -> '1000000000001.11' -fmax3164 fma 1 '-1' '1E+12' -> '999999999999' -fmax3165 fma 1 '7E+12' '-1' -> '6999999999999' -fmax3166 fma 1 '7E+12' '1.11' -> '7000000000001.11' -fmax3167 fma 1 '1.11' '7E+12' -> '7000000000001.11' -fmax3168 fma 1 '-1' '7E+12' -> '6999999999999' - --- 123456789012345 123456789012345 1 23456789012345 -fmax3170 fma 1 '0.444444444444444' '0.555555555555563' -> '1.00000000000001' Inexact Rounded -fmax3171 fma 1 '0.444444444444444' '0.555555555555562' -> '1.00000000000001' Inexact Rounded -fmax3172 fma 1 '0.444444444444444' '0.555555555555561' -> '1.00000000000001' Inexact Rounded -fmax3173 fma 1 '0.444444444444444' '0.555555555555560' -> '1.00000000000000' Inexact Rounded -fmax3174 fma 1 '0.444444444444444' '0.555555555555559' -> '1.00000000000000' Inexact Rounded -fmax3175 fma 1 '0.444444444444444' '0.555555555555558' -> '1.00000000000000' Inexact Rounded -fmax3176 fma 1 '0.444444444444444' '0.555555555555557' -> '1.00000000000000' Inexact Rounded -fmax3177 fma 1 '0.444444444444444' '0.555555555555556' -> '1.00000000000000' Rounded -fmax3178 fma 1 '0.444444444444444' '0.555555555555555' -> '0.999999999999999' -fmax3179 fma 1 '0.444444444444444' '0.555555555555554' -> '0.999999999999998' -fmax3180 fma 1 '0.444444444444444' '0.555555555555553' -> '0.999999999999997' -fmax3181 fma 1 '0.444444444444444' '0.555555555555552' -> '0.999999999999996' -fmax3182 fma 1 '0.444444444444444' '0.555555555555551' -> '0.999999999999995' -fmax3183 fma 1 '0.444444444444444' '0.555555555555550' -> '0.999999999999994' - --- and some more, including residue effects and different roundings -precision: 9 -rounding: half_up -fmax3200 fma 1 '123456789' 0 -> '123456789' -fmax3201 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded -fmax3202 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded -fmax3203 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded -fmax3204 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded -fmax3205 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded -fmax3206 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded -fmax3207 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded -fmax3208 fma 1 '123456789' 0.5 -> '123456790' Inexact Rounded -fmax3209 fma 1 '123456789' 0.500000001 -> '123456790' Inexact Rounded -fmax3210 fma 1 '123456789' 0.500001 -> '123456790' Inexact Rounded -fmax3211 fma 1 '123456789' 0.51 -> '123456790' Inexact Rounded -fmax3212 fma 1 '123456789' 0.6 -> '123456790' Inexact Rounded -fmax3213 fma 1 '123456789' 0.9 -> '123456790' Inexact Rounded -fmax3214 fma 1 '123456789' 0.99999 -> '123456790' Inexact Rounded -fmax3215 fma 1 '123456789' 0.999999999 -> '123456790' Inexact Rounded -fmax3216 fma 1 '123456789' 1 -> '123456790' -fmax3217 fma 1 '123456789' 1.000000001 -> '123456790' Inexact Rounded -fmax3218 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded -fmax3219 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded - -rounding: half_even -fmax3220 fma 1 '123456789' 0 -> '123456789' -fmax3221 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded -fmax3222 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded -fmax3223 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded -fmax3224 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded -fmax3225 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded -fmax3226 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded -fmax3227 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded -fmax3228 fma 1 '123456789' 0.5 -> '123456790' Inexact Rounded -fmax3229 fma 1 '123456789' 0.500000001 -> '123456790' Inexact Rounded -fmax3230 fma 1 '123456789' 0.500001 -> '123456790' Inexact Rounded -fmax3231 fma 1 '123456789' 0.51 -> '123456790' Inexact Rounded -fmax3232 fma 1 '123456789' 0.6 -> '123456790' Inexact Rounded -fmax3233 fma 1 '123456789' 0.9 -> '123456790' Inexact Rounded -fmax3234 fma 1 '123456789' 0.99999 -> '123456790' Inexact Rounded -fmax3235 fma 1 '123456789' 0.999999999 -> '123456790' Inexact Rounded -fmax3236 fma 1 '123456789' 1 -> '123456790' -fmax3237 fma 1 '123456789' 1.00000001 -> '123456790' Inexact Rounded -fmax3238 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded -fmax3239 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded --- critical few with even bottom digit... -fmax3240 fma 1 '123456788' 0.499999999 -> '123456788' Inexact Rounded -fmax3241 fma 1 '123456788' 0.5 -> '123456788' Inexact Rounded -fmax3242 fma 1 '123456788' 0.500000001 -> '123456789' Inexact Rounded - -rounding: down -fmax3250 fma 1 '123456789' 0 -> '123456789' -fmax3251 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded -fmax3252 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded -fmax3253 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded -fmax3254 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded -fmax3255 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded -fmax3256 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded -fmax3257 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded -fmax3258 fma 1 '123456789' 0.5 -> '123456789' Inexact Rounded -fmax3259 fma 1 '123456789' 0.500000001 -> '123456789' Inexact Rounded -fmax3260 fma 1 '123456789' 0.500001 -> '123456789' Inexact Rounded -fmax3261 fma 1 '123456789' 0.51 -> '123456789' Inexact Rounded -fmax3262 fma 1 '123456789' 0.6 -> '123456789' Inexact Rounded -fmax3263 fma 1 '123456789' 0.9 -> '123456789' Inexact Rounded -fmax3264 fma 1 '123456789' 0.99999 -> '123456789' Inexact Rounded -fmax3265 fma 1 '123456789' 0.999999999 -> '123456789' Inexact Rounded -fmax3266 fma 1 '123456789' 1 -> '123456790' -fmax3267 fma 1 '123456789' 1.00000001 -> '123456790' Inexact Rounded -fmax3268 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded -fmax3269 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded - --- input preparation tests (operands should not be rounded) -precision: 3 -rounding: half_up - -fmax3270 fma 1 '12345678900000' 9999999999999 -> '2.23E+13' Inexact Rounded -fmax3271 fma 1 '9999999999999' 12345678900000 -> '2.23E+13' Inexact Rounded - -fmax3272 fma 1 '12E+3' '3444' -> '1.54E+4' Inexact Rounded -fmax3273 fma 1 '12E+3' '3446' -> '1.54E+4' Inexact Rounded -fmax3274 fma 1 '12E+3' '3449.9' -> '1.54E+4' Inexact Rounded -fmax3275 fma 1 '12E+3' '3450.0' -> '1.55E+4' Inexact Rounded -fmax3276 fma 1 '12E+3' '3450.1' -> '1.55E+4' Inexact Rounded -fmax3277 fma 1 '12E+3' '3454' -> '1.55E+4' Inexact Rounded -fmax3278 fma 1 '12E+3' '3456' -> '1.55E+4' Inexact Rounded - -fmax3281 fma 1 '3444' '12E+3' -> '1.54E+4' Inexact Rounded -fmax3282 fma 1 '3446' '12E+3' -> '1.54E+4' Inexact Rounded -fmax3283 fma 1 '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded -fmax3284 fma 1 '3450.0' '12E+3' -> '1.55E+4' Inexact Rounded -fmax3285 fma 1 '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded -fmax3286 fma 1 '3454' '12E+3' -> '1.55E+4' Inexact Rounded -fmax3287 fma 1 '3456' '12E+3' -> '1.55E+4' Inexact Rounded - -rounding: half_down -fmax3291 fma 1 '3444' '12E+3' -> '1.54E+4' Inexact Rounded -fmax3292 fma 1 '3446' '12E+3' -> '1.54E+4' Inexact Rounded -fmax3293 fma 1 '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded -fmax3294 fma 1 '3450.0' '12E+3' -> '1.54E+4' Inexact Rounded -fmax3295 fma 1 '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded -fmax3296 fma 1 '3454' '12E+3' -> '1.55E+4' Inexact Rounded -fmax3297 fma 1 '3456' '12E+3' -> '1.55E+4' Inexact Rounded - --- 1 in last place tests -rounding: half_up -fmax3301 fma 1 -1 1 -> 0 -fmax3302 fma 1 0 1 -> 1 -fmax3303 fma 1 1 1 -> 2 -fmax3304 fma 1 12 1 -> 13 -fmax3305 fma 1 98 1 -> 99 -fmax3306 fma 1 99 1 -> 100 -fmax3307 fma 1 100 1 -> 101 -fmax3308 fma 1 101 1 -> 102 -fmax3309 fma 1 -1 -1 -> -2 -fmax3310 fma 1 0 -1 -> -1 -fmax3311 fma 1 1 -1 -> 0 -fmax3312 fma 1 12 -1 -> 11 -fmax3313 fma 1 98 -1 -> 97 -fmax3314 fma 1 99 -1 -> 98 -fmax3315 fma 1 100 -1 -> 99 -fmax3316 fma 1 101 -1 -> 100 - -fmax3321 fma 1 -0.01 0.01 -> 0.00 -fmax3322 fma 1 0.00 0.01 -> 0.01 -fmax3323 fma 1 0.01 0.01 -> 0.02 -fmax3324 fma 1 0.12 0.01 -> 0.13 -fmax3325 fma 1 0.98 0.01 -> 0.99 -fmax3326 fma 1 0.99 0.01 -> 1.00 -fmax3327 fma 1 1.00 0.01 -> 1.01 -fmax3328 fma 1 1.01 0.01 -> 1.02 -fmax3329 fma 1 -0.01 -0.01 -> -0.02 -fmax3330 fma 1 0.00 -0.01 -> -0.01 -fmax3331 fma 1 0.01 -0.01 -> 0.00 -fmax3332 fma 1 0.12 -0.01 -> 0.11 -fmax3333 fma 1 0.98 -0.01 -> 0.97 -fmax3334 fma 1 0.99 -0.01 -> 0.98 -fmax3335 fma 1 1.00 -0.01 -> 0.99 -fmax3336 fma 1 1.01 -0.01 -> 1.00 - --- some more cases where fma 1 ing 0 affects the coefficient -precision: 9 -fmax3340 fma 1 1E+3 0 -> 1000 -fmax3341 fma 1 1E+8 0 -> 100000000 -fmax3342 fma 1 1E+9 0 -> 1.00000000E+9 Rounded -fmax3343 fma 1 1E+10 0 -> 1.00000000E+10 Rounded --- which simply follow from these cases ... -fmax3344 fma 1 1E+3 1 -> 1001 -fmax3345 fma 1 1E+8 1 -> 100000001 -fmax3346 fma 1 1E+9 1 -> 1.00000000E+9 Inexact Rounded -fmax3347 fma 1 1E+10 1 -> 1.00000000E+10 Inexact Rounded -fmax3348 fma 1 1E+3 7 -> 1007 -fmax3349 fma 1 1E+8 7 -> 100000007 -fmax3350 fma 1 1E+9 7 -> 1.00000001E+9 Inexact Rounded -fmax3351 fma 1 1E+10 7 -> 1.00000000E+10 Inexact Rounded - --- tryzeros cases -precision: 7 -rounding: half_up -maxExponent: 92 -minexponent: -92 -fmax3361 fma 1 0E+50 10000E+1 -> 1.0000E+5 -fmax3362 fma 1 10000E+1 0E-50 -> 100000.0 Rounded -fmax3363 fma 1 10000E+1 10000E-50 -> 100000.0 Rounded Inexact -fmax3364 fma 1 9.999999E+92 -9.999999E+92 -> 0E+86 - --- a curiosity from JSR 13 testing -rounding: half_down -precision: 10 -fmax3370 fma 1 99999999 81512 -> 100081511 -precision: 6 -fmax3371 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact -rounding: half_up -precision: 10 -fmax3372 fma 1 99999999 81512 -> 100081511 -precision: 6 -fmax3373 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact -rounding: half_even -precision: 10 -fmax3374 fma 1 99999999 81512 -> 100081511 -precision: 6 -fmax3375 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact - --- ulp replacement tests -precision: 9 -maxexponent: 999999 -minexponent: -999999 -fmax3400 fma 1 1 77e-7 -> 1.0000077 -fmax3401 fma 1 1 77e-8 -> 1.00000077 -fmax3402 fma 1 1 77e-9 -> 1.00000008 Inexact Rounded -fmax3403 fma 1 1 77e-10 -> 1.00000001 Inexact Rounded -fmax3404 fma 1 1 77e-11 -> 1.00000000 Inexact Rounded -fmax3405 fma 1 1 77e-12 -> 1.00000000 Inexact Rounded -fmax3406 fma 1 1 77e-999 -> 1.00000000 Inexact Rounded -fmax3407 fma 1 1 77e-999999 -> 1.00000000 Inexact Rounded - -fmax3410 fma 1 10 77e-7 -> 10.0000077 -fmax3411 fma 1 10 77e-8 -> 10.0000008 Inexact Rounded -fmax3412 fma 1 10 77e-9 -> 10.0000001 Inexact Rounded -fmax3413 fma 1 10 77e-10 -> 10.0000000 Inexact Rounded -fmax3414 fma 1 10 77e-11 -> 10.0000000 Inexact Rounded -fmax3415 fma 1 10 77e-12 -> 10.0000000 Inexact Rounded -fmax3416 fma 1 10 77e-999 -> 10.0000000 Inexact Rounded -fmax3417 fma 1 10 77e-999999 -> 10.0000000 Inexact Rounded - -fmax3420 fma 1 77e-7 1 -> 1.0000077 -fmax3421 fma 1 77e-8 1 -> 1.00000077 -fmax3422 fma 1 77e-9 1 -> 1.00000008 Inexact Rounded -fmax3423 fma 1 77e-10 1 -> 1.00000001 Inexact Rounded -fmax3424 fma 1 77e-11 1 -> 1.00000000 Inexact Rounded -fmax3425 fma 1 77e-12 1 -> 1.00000000 Inexact Rounded -fmax3426 fma 1 77e-999 1 -> 1.00000000 Inexact Rounded -fmax3427 fma 1 77e-999999 1 -> 1.00000000 Inexact Rounded - -fmax3430 fma 1 77e-7 10 -> 10.0000077 -fmax3431 fma 1 77e-8 10 -> 10.0000008 Inexact Rounded -fmax3432 fma 1 77e-9 10 -> 10.0000001 Inexact Rounded -fmax3433 fma 1 77e-10 10 -> 10.0000000 Inexact Rounded -fmax3434 fma 1 77e-11 10 -> 10.0000000 Inexact Rounded -fmax3435 fma 1 77e-12 10 -> 10.0000000 Inexact Rounded -fmax3436 fma 1 77e-999 10 -> 10.0000000 Inexact Rounded -fmax3437 fma 1 77e-999999 10 -> 10.0000000 Inexact Rounded - --- negative ulps -fmax3440 fma 1 1 -77e-7 -> 0.9999923 -fmax3441 fma 1 1 -77e-8 -> 0.99999923 -fmax3442 fma 1 1 -77e-9 -> 0.999999923 -fmax3443 fma 1 1 -77e-10 -> 0.999999992 Inexact Rounded -fmax3444 fma 1 1 -77e-11 -> 0.999999999 Inexact Rounded -fmax3445 fma 1 1 -77e-12 -> 1.00000000 Inexact Rounded -fmax3446 fma 1 1 -77e-999 -> 1.00000000 Inexact Rounded -fmax3447 fma 1 1 -77e-999999 -> 1.00000000 Inexact Rounded - -fmax3450 fma 1 10 -77e-7 -> 9.9999923 -fmax3451 fma 1 10 -77e-8 -> 9.99999923 -fmax3452 fma 1 10 -77e-9 -> 9.99999992 Inexact Rounded -fmax3453 fma 1 10 -77e-10 -> 9.99999999 Inexact Rounded -fmax3454 fma 1 10 -77e-11 -> 10.0000000 Inexact Rounded -fmax3455 fma 1 10 -77e-12 -> 10.0000000 Inexact Rounded -fmax3456 fma 1 10 -77e-999 -> 10.0000000 Inexact Rounded -fmax3457 fma 1 10 -77e-999999 -> 10.0000000 Inexact Rounded - -fmax3460 fma 1 -77e-7 1 -> 0.9999923 -fmax3461 fma 1 -77e-8 1 -> 0.99999923 -fmax3462 fma 1 -77e-9 1 -> 0.999999923 -fmax3463 fma 1 -77e-10 1 -> 0.999999992 Inexact Rounded -fmax3464 fma 1 -77e-11 1 -> 0.999999999 Inexact Rounded -fmax3465 fma 1 -77e-12 1 -> 1.00000000 Inexact Rounded -fmax3466 fma 1 -77e-999 1 -> 1.00000000 Inexact Rounded -fmax3467 fma 1 -77e-999999 1 -> 1.00000000 Inexact Rounded - -fmax3470 fma 1 -77e-7 10 -> 9.9999923 -fmax3471 fma 1 -77e-8 10 -> 9.99999923 -fmax3472 fma 1 -77e-9 10 -> 9.99999992 Inexact Rounded -fmax3473 fma 1 -77e-10 10 -> 9.99999999 Inexact Rounded -fmax3474 fma 1 -77e-11 10 -> 10.0000000 Inexact Rounded -fmax3475 fma 1 -77e-12 10 -> 10.0000000 Inexact Rounded -fmax3476 fma 1 -77e-999 10 -> 10.0000000 Inexact Rounded -fmax3477 fma 1 -77e-999999 10 -> 10.0000000 Inexact Rounded - --- negative ulps -fmax3480 fma 1 -1 77e-7 -> -0.9999923 -fmax3481 fma 1 -1 77e-8 -> -0.99999923 -fmax3482 fma 1 -1 77e-9 -> -0.999999923 -fmax3483 fma 1 -1 77e-10 -> -0.999999992 Inexact Rounded -fmax3484 fma 1 -1 77e-11 -> -0.999999999 Inexact Rounded -fmax3485 fma 1 -1 77e-12 -> -1.00000000 Inexact Rounded -fmax3486 fma 1 -1 77e-999 -> -1.00000000 Inexact Rounded -fmax3487 fma 1 -1 77e-999999 -> -1.00000000 Inexact Rounded - -fmax3490 fma 1 -10 77e-7 -> -9.9999923 -fmax3491 fma 1 -10 77e-8 -> -9.99999923 -fmax3492 fma 1 -10 77e-9 -> -9.99999992 Inexact Rounded -fmax3493 fma 1 -10 77e-10 -> -9.99999999 Inexact Rounded -fmax3494 fma 1 -10 77e-11 -> -10.0000000 Inexact Rounded -fmax3495 fma 1 -10 77e-12 -> -10.0000000 Inexact Rounded -fmax3496 fma 1 -10 77e-999 -> -10.0000000 Inexact Rounded -fmax3497 fma 1 -10 77e-999999 -> -10.0000000 Inexact Rounded - -fmax3500 fma 1 77e-7 -1 -> -0.9999923 -fmax3501 fma 1 77e-8 -1 -> -0.99999923 -fmax3502 fma 1 77e-9 -1 -> -0.999999923 -fmax3503 fma 1 77e-10 -1 -> -0.999999992 Inexact Rounded -fmax3504 fma 1 77e-11 -1 -> -0.999999999 Inexact Rounded -fmax3505 fma 1 77e-12 -1 -> -1.00000000 Inexact Rounded -fmax3506 fma 1 77e-999 -1 -> -1.00000000 Inexact Rounded -fmax3507 fma 1 77e-999999 -1 -> -1.00000000 Inexact Rounded - -fmax3510 fma 1 77e-7 -10 -> -9.9999923 -fmax3511 fma 1 77e-8 -10 -> -9.99999923 -fmax3512 fma 1 77e-9 -10 -> -9.99999992 Inexact Rounded -fmax3513 fma 1 77e-10 -10 -> -9.99999999 Inexact Rounded -fmax3514 fma 1 77e-11 -10 -> -10.0000000 Inexact Rounded -fmax3515 fma 1 77e-12 -10 -> -10.0000000 Inexact Rounded -fmax3516 fma 1 77e-999 -10 -> -10.0000000 Inexact Rounded -fmax3517 fma 1 77e-999999 -10 -> -10.0000000 Inexact Rounded - - --- long operands -maxexponent: 999 -minexponent: -999 -precision: 9 -fmax3521 fma 1 12345678000 0 -> 1.23456780E+10 Rounded -fmax3522 fma 1 0 12345678000 -> 1.23456780E+10 Rounded -fmax3523 fma 1 1234567800 0 -> 1.23456780E+9 Rounded -fmax3524 fma 1 0 1234567800 -> 1.23456780E+9 Rounded -fmax3525 fma 1 1234567890 0 -> 1.23456789E+9 Rounded -fmax3526 fma 1 0 1234567890 -> 1.23456789E+9 Rounded -fmax3527 fma 1 1234567891 0 -> 1.23456789E+9 Inexact Rounded -fmax3528 fma 1 0 1234567891 -> 1.23456789E+9 Inexact Rounded -fmax3529 fma 1 12345678901 0 -> 1.23456789E+10 Inexact Rounded -fmax3530 fma 1 0 12345678901 -> 1.23456789E+10 Inexact Rounded -fmax3531 fma 1 1234567896 0 -> 1.23456790E+9 Inexact Rounded -fmax3532 fma 1 0 1234567896 -> 1.23456790E+9 Inexact Rounded - -precision: 15 --- still checking -fmax3541 fma 1 12345678000 0 -> 12345678000 -fmax3542 fma 1 0 12345678000 -> 12345678000 -fmax3543 fma 1 1234567800 0 -> 1234567800 -fmax3544 fma 1 0 1234567800 -> 1234567800 -fmax3545 fma 1 1234567890 0 -> 1234567890 -fmax3546 fma 1 0 1234567890 -> 1234567890 -fmax3547 fma 1 1234567891 0 -> 1234567891 -fmax3548 fma 1 0 1234567891 -> 1234567891 -fmax3549 fma 1 12345678901 0 -> 12345678901 -fmax3550 fma 1 0 12345678901 -> 12345678901 -fmax3551 fma 1 1234567896 0 -> 1234567896 -fmax3552 fma 1 0 1234567896 -> 1234567896 - --- verify a query -precision: 16 -maxExponent: +394 -minExponent: -393 -rounding: down -fmax3561 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded -fmax3562 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded --- and using decimal64 bounds... -precision: 16 -maxExponent: +384 -minExponent: -383 -rounding: down -fmax3563 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded -fmax3564 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded - - --- some more residue effects with extreme rounding -precision: 9 -rounding: half_up -fmax3601 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: half_even -fmax3602 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: half_down -fmax3603 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: floor -fmax3604 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded -rounding: ceiling -fmax3605 fma 1 123456789 0.000001 -> 123456790 Inexact Rounded -rounding: up -fmax3606 fma 1 123456789 0.000001 -> 123456790 Inexact Rounded -rounding: down -fmax3607 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded - -rounding: half_up -fmax3611 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: half_even -fmax3612 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: half_down -fmax3613 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: floor -fmax3614 fma 1 123456789 -0.000001 -> 123456788 Inexact Rounded -rounding: ceiling -fmax3615 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: up -fmax3616 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded -rounding: down -fmax3617 fma 1 123456789 -0.000001 -> 123456788 Inexact Rounded - -rounding: half_up -fmax3621 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: half_even -fmax3622 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: half_down -fmax3623 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: floor -fmax3624 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded -rounding: ceiling -fmax3625 fma 1 123456789 0.499999 -> 123456790 Inexact Rounded -rounding: up -fmax3626 fma 1 123456789 0.499999 -> 123456790 Inexact Rounded -rounding: down -fmax3627 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded - -rounding: half_up -fmax3631 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: half_even -fmax3632 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: half_down -fmax3633 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: floor -fmax3634 fma 1 123456789 -0.499999 -> 123456788 Inexact Rounded -rounding: ceiling -fmax3635 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: up -fmax3636 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded -rounding: down -fmax3637 fma 1 123456789 -0.499999 -> 123456788 Inexact Rounded - -rounding: half_up -fmax3641 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: half_even -fmax3642 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: half_down -fmax3643 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: floor -fmax3644 fma 1 123456789 0.500001 -> 123456789 Inexact Rounded -rounding: ceiling -fmax3645 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: up -fmax3646 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded -rounding: down -fmax3647 fma 1 123456789 0.500001 -> 123456789 Inexact Rounded - -rounding: half_up -fmax3651 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: half_even -fmax3652 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: half_down -fmax3653 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: floor -fmax3654 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded -rounding: ceiling -fmax3655 fma 1 123456789 -0.500001 -> 123456789 Inexact Rounded -rounding: up -fmax3656 fma 1 123456789 -0.500001 -> 123456789 Inexact Rounded -rounding: down -fmax3657 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded - --- long operand triangle -rounding: half_up -precision: 37 -fmax3660 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114834538 -precision: 36 -fmax3661 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483454 Inexact Rounded -precision: 35 -fmax3662 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148345 Inexact Rounded -precision: 34 -fmax3663 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114835 Inexact Rounded -precision: 33 -fmax3664 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483 Inexact Rounded -precision: 32 -fmax3665 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148 Inexact Rounded -precision: 31 -fmax3666 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337115 Inexact Rounded -precision: 30 -fmax3667 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711 Inexact Rounded -precision: 29 -fmax3668 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371 Inexact Rounded -precision: 28 -fmax3669 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337 Inexact Rounded -precision: 27 -fmax3670 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892234 Inexact Rounded -precision: 26 -fmax3671 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223 Inexact Rounded -precision: 25 -fmax3672 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922 Inexact Rounded -precision: 24 -fmax3673 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892 Inexact Rounded -precision: 23 -fmax3674 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389 Inexact Rounded -precision: 22 -fmax3675 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023639 Inexact Rounded -precision: 21 -fmax3676 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102364 Inexact Rounded -precision: 20 -fmax3677 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236 Inexact Rounded -precision: 19 -fmax3678 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211024 Inexact Rounded -precision: 18 -fmax3679 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102 Inexact Rounded -precision: 17 -fmax3680 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110 Inexact Rounded -precision: 16 -fmax3681 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211 Inexact Rounded -precision: 15 -fmax3682 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221 Inexact Rounded -precision: 14 -fmax3683 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422 Inexact Rounded -precision: 13 -fmax3684 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42 Inexact Rounded -precision: 12 -fmax3685 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4 Inexact Rounded -precision: 11 -fmax3686 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166 Inexact Rounded -precision: 10 -fmax3687 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117417E+10 Inexact Rounded -precision: 9 -fmax3688 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84711742E+10 Inexact Rounded -precision: 8 -fmax3689 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471174E+10 Inexact Rounded -precision: 7 -fmax3690 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117E+10 Inexact Rounded -precision: 6 -fmax3691 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84712E+10 Inexact Rounded -precision: 5 -fmax3692 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471E+10 Inexact Rounded -precision: 4 -fmax3693 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847E+10 Inexact Rounded -precision: 3 -fmax3694 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.85E+10 Inexact Rounded -precision: 2 -fmax3695 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8E+10 Inexact Rounded -precision: 1 -fmax3696 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 1E+11 Inexact Rounded - --- more zeros, etc. -rounding: half_up -precision: 9 - -fmax3701 fma 1 5.00 1.00E-3 -> 5.00100 -fmax3702 fma 1 00.00 0.000 -> 0.000 -fmax3703 fma 1 00.00 0E-3 -> 0.000 -fmax3704 fma 1 0E-3 00.00 -> 0.000 - -fmax3710 fma 1 0E+3 00.00 -> 0.00 -fmax3711 fma 1 0E+3 00.0 -> 0.0 -fmax3712 fma 1 0E+3 00. -> 0 -fmax3713 fma 1 0E+3 00.E+1 -> 0E+1 -fmax3714 fma 1 0E+3 00.E+2 -> 0E+2 -fmax3715 fma 1 0E+3 00.E+3 -> 0E+3 -fmax3716 fma 1 0E+3 00.E+4 -> 0E+3 -fmax3717 fma 1 0E+3 00.E+5 -> 0E+3 -fmax3718 fma 1 0E+3 -00.0 -> 0.0 -fmax3719 fma 1 0E+3 -00. -> 0 -fmax3731 fma 1 0E+3 -00.E+1 -> 0E+1 - -fmax3720 fma 1 00.00 0E+3 -> 0.00 -fmax3721 fma 1 00.0 0E+3 -> 0.0 -fmax3722 fma 1 00. 0E+3 -> 0 -fmax3723 fma 1 00.E+1 0E+3 -> 0E+1 -fmax3724 fma 1 00.E+2 0E+3 -> 0E+2 -fmax3725 fma 1 00.E+3 0E+3 -> 0E+3 -fmax3726 fma 1 00.E+4 0E+3 -> 0E+3 -fmax3727 fma 1 00.E+5 0E+3 -> 0E+3 -fmax3728 fma 1 -00.00 0E+3 -> 0.00 -fmax3729 fma 1 -00.0 0E+3 -> 0.0 -fmax3730 fma 1 -00. 0E+3 -> 0 - -fmax3732 fma 1 0 0 -> 0 -fmax3733 fma 1 0 -0 -> 0 -fmax3734 fma 1 -0 0 -> 0 -fmax3735 fma 1 -0 -0 -> -0 -- IEEE 854 special case - -fmax3736 fma 1 1 -1 -> 0 -fmax3737 fma 1 -1 -1 -> -2 -fmax3738 fma 1 1 1 -> 2 -fmax3739 fma 1 -1 1 -> 0 - -fmax3741 fma 1 0 -1 -> -1 -fmax3742 fma 1 -0 -1 -> -1 -fmax3743 fma 1 0 1 -> 1 -fmax3744 fma 1 -0 1 -> 1 -fmax3745 fma 1 -1 0 -> -1 -fmax3746 fma 1 -1 -0 -> -1 -fmax3747 fma 1 1 0 -> 1 -fmax3748 fma 1 1 -0 -> 1 - -fmax3751 fma 1 0.0 -1 -> -1.0 -fmax3752 fma 1 -0.0 -1 -> -1.0 -fmax3753 fma 1 0.0 1 -> 1.0 -fmax3754 fma 1 -0.0 1 -> 1.0 -fmax3755 fma 1 -1.0 0 -> -1.0 -fmax3756 fma 1 -1.0 -0 -> -1.0 -fmax3757 fma 1 1.0 0 -> 1.0 -fmax3758 fma 1 1.0 -0 -> 1.0 - -fmax3761 fma 1 0 -1.0 -> -1.0 -fmax3762 fma 1 -0 -1.0 -> -1.0 -fmax3763 fma 1 0 1.0 -> 1.0 -fmax3764 fma 1 -0 1.0 -> 1.0 -fmax3765 fma 1 -1 0.0 -> -1.0 -fmax3766 fma 1 -1 -0.0 -> -1.0 -fmax3767 fma 1 1 0.0 -> 1.0 -fmax3768 fma 1 1 -0.0 -> 1.0 - -fmax3771 fma 1 0.0 -1.0 -> -1.0 -fmax3772 fma 1 -0.0 -1.0 -> -1.0 -fmax3773 fma 1 0.0 1.0 -> 1.0 -fmax3774 fma 1 -0.0 1.0 -> 1.0 -fmax3775 fma 1 -1.0 0.0 -> -1.0 -fmax3776 fma 1 -1.0 -0.0 -> -1.0 -fmax3777 fma 1 1.0 0.0 -> 1.0 -fmax3778 fma 1 1.0 -0.0 -> 1.0 - --- Specials -fmax3780 fma 1 -Inf -Inf -> -Infinity -fmax3781 fma 1 -Inf -1000 -> -Infinity -fmax3782 fma 1 -Inf -1 -> -Infinity -fmax3783 fma 1 -Inf -0 -> -Infinity -fmax3784 fma 1 -Inf 0 -> -Infinity -fmax3785 fma 1 -Inf 1 -> -Infinity -fmax3786 fma 1 -Inf 1000 -> -Infinity -fmax3787 fma 1 -1000 -Inf -> -Infinity -fmax3788 fma 1 -Inf -Inf -> -Infinity -fmax3789 fma 1 -1 -Inf -> -Infinity -fmax3790 fma 1 -0 -Inf -> -Infinity -fmax3791 fma 1 0 -Inf -> -Infinity -fmax3792 fma 1 1 -Inf -> -Infinity -fmax3793 fma 1 1000 -Inf -> -Infinity -fmax3794 fma 1 Inf -Inf -> NaN Invalid_operation - -fmax3800 fma 1 Inf -Inf -> NaN Invalid_operation -fmax3801 fma 1 Inf -1000 -> Infinity -fmax3802 fma 1 Inf -1 -> Infinity -fmax3803 fma 1 Inf -0 -> Infinity -fmax3804 fma 1 Inf 0 -> Infinity -fmax3805 fma 1 Inf 1 -> Infinity -fmax3806 fma 1 Inf 1000 -> Infinity -fmax3807 fma 1 Inf Inf -> Infinity -fmax3808 fma 1 -1000 Inf -> Infinity -fmax3809 fma 1 -Inf Inf -> NaN Invalid_operation -fmax3810 fma 1 -1 Inf -> Infinity -fmax3811 fma 1 -0 Inf -> Infinity -fmax3812 fma 1 0 Inf -> Infinity -fmax3813 fma 1 1 Inf -> Infinity -fmax3814 fma 1 1000 Inf -> Infinity -fmax3815 fma 1 Inf Inf -> Infinity - -fmax3821 fma 1 NaN -Inf -> NaN -fmax3822 fma 1 NaN -1000 -> NaN -fmax3823 fma 1 NaN -1 -> NaN -fmax3824 fma 1 NaN -0 -> NaN -fmax3825 fma 1 NaN 0 -> NaN -fmax3826 fma 1 NaN 1 -> NaN -fmax3827 fma 1 NaN 1000 -> NaN -fmax3828 fma 1 NaN Inf -> NaN -fmax3829 fma 1 NaN NaN -> NaN -fmax3830 fma 1 -Inf NaN -> NaN -fmax3831 fma 1 -1000 NaN -> NaN -fmax3832 fma 1 -1 NaN -> NaN -fmax3833 fma 1 -0 NaN -> NaN -fmax3834 fma 1 0 NaN -> NaN -fmax3835 fma 1 1 NaN -> NaN -fmax3836 fma 1 1000 NaN -> NaN -fmax3837 fma 1 Inf NaN -> NaN - -fmax3841 fma 1 sNaN -Inf -> NaN Invalid_operation -fmax3842 fma 1 sNaN -1000 -> NaN Invalid_operation -fmax3843 fma 1 sNaN -1 -> NaN Invalid_operation -fmax3844 fma 1 sNaN -0 -> NaN Invalid_operation -fmax3845 fma 1 sNaN 0 -> NaN Invalid_operation -fmax3846 fma 1 sNaN 1 -> NaN Invalid_operation -fmax3847 fma 1 sNaN 1000 -> NaN Invalid_operation -fmax3848 fma 1 sNaN NaN -> NaN Invalid_operation -fmax3849 fma 1 sNaN sNaN -> NaN Invalid_operation -fmax3850 fma 1 NaN sNaN -> NaN Invalid_operation -fmax3851 fma 1 -Inf sNaN -> NaN Invalid_operation -fmax3852 fma 1 -1000 sNaN -> NaN Invalid_operation -fmax3853 fma 1 -1 sNaN -> NaN Invalid_operation -fmax3854 fma 1 -0 sNaN -> NaN Invalid_operation -fmax3855 fma 1 0 sNaN -> NaN Invalid_operation -fmax3856 fma 1 1 sNaN -> NaN Invalid_operation -fmax3857 fma 1 1000 sNaN -> NaN Invalid_operation -fmax3858 fma 1 Inf sNaN -> NaN Invalid_operation -fmax3859 fma 1 NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -fmax3861 fma 1 NaN1 -Inf -> NaN1 -fmax3862 fma 1 +NaN2 -1000 -> NaN2 -fmax3863 fma 1 NaN3 1000 -> NaN3 -fmax3864 fma 1 NaN4 Inf -> NaN4 -fmax3865 fma 1 NaN5 +NaN6 -> NaN5 -fmax3866 fma 1 -Inf NaN7 -> NaN7 -fmax3867 fma 1 -1000 NaN8 -> NaN8 -fmax3868 fma 1 1000 NaN9 -> NaN9 -fmax3869 fma 1 Inf +NaN10 -> NaN10 -fmax3871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation -fmax3872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation -fmax3873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation -fmax3874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation -fmax3875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation -fmax3876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation -fmax3877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation -fmax3878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation -fmax3879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation -fmax3880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation -fmax3881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation -fmax3882 fma 1 -NaN26 NaN28 -> -NaN26 -fmax3883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation -fmax3884 fma 1 1000 -NaN30 -> -NaN30 -fmax3885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation - --- overflow, underflow and subnormal tests -maxexponent: 999999 -minexponent: -999999 -precision: 9 -fmax3890 fma 1 1E+999999 9E+999999 -> Infinity Overflow Inexact Rounded -fmax3891 fma 1 9E+999999 1E+999999 -> Infinity Overflow Inexact Rounded -fmax3892 fma 1 -1.1E-999999 1E-999999 -> -1E-1000000 Subnormal -fmax3893 fma 1 1E-999999 -1.1e-999999 -> -1E-1000000 Subnormal -fmax3894 fma 1 -1.0001E-999999 1E-999999 -> -1E-1000003 Subnormal -fmax3895 fma 1 1E-999999 -1.0001e-999999 -> -1E-1000003 Subnormal -fmax3896 fma 1 -1E+999999 -9E+999999 -> -Infinity Overflow Inexact Rounded -fmax3897 fma 1 -9E+999999 -1E+999999 -> -Infinity Overflow Inexact Rounded -fmax3898 fma 1 +1.1E-999999 -1E-999999 -> 1E-1000000 Subnormal -fmax3899 fma 1 -1E-999999 +1.1e-999999 -> 1E-1000000 Subnormal -fmax3900 fma 1 +1.0001E-999999 -1E-999999 -> 1E-1000003 Subnormal -fmax3901 fma 1 -1E-999999 +1.0001e-999999 -> 1E-1000003 Subnormal -fmax3902 fma 1 -1E+999999 +9E+999999 -> 8E+999999 -fmax3903 fma 1 -9E+999999 +1E+999999 -> -8E+999999 - -precision: 3 -fmax3904 fma 1 0 -9.999E+999999 -> -Infinity Inexact Overflow Rounded -fmax3905 fma 1 -9.999E+999999 0 -> -Infinity Inexact Overflow Rounded -fmax3906 fma 1 0 9.999E+999999 -> Infinity Inexact Overflow Rounded -fmax3907 fma 1 9.999E+999999 0 -> Infinity Inexact Overflow Rounded - -precision: 3 -maxexponent: 999 -minexponent: -999 -fmax3910 fma 1 1.00E-999 0 -> 1.00E-999 -fmax3911 fma 1 0.1E-999 0 -> 1E-1000 Subnormal -fmax3912 fma 1 0.10E-999 0 -> 1.0E-1000 Subnormal -fmax3913 fma 1 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded -fmax3914 fma 1 0.01E-999 0 -> 1E-1001 Subnormal --- next is rounded to Nmin -fmax3915 fma 1 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow -fmax3916 fma 1 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -fmax3917 fma 1 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow -fmax3918 fma 1 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -fmax3919 fma 1 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -fmax3920 fma 1 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - -fmax3930 fma 1 -1.00E-999 0 -> -1.00E-999 -fmax3931 fma 1 -0.1E-999 0 -> -1E-1000 Subnormal -fmax3932 fma 1 -0.10E-999 0 -> -1.0E-1000 Subnormal -fmax3933 fma 1 -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded -fmax3934 fma 1 -0.01E-999 0 -> -1E-1001 Subnormal --- next is rounded to Nmin -fmax3935 fma 1 -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow -fmax3936 fma 1 -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -fmax3937 fma 1 -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow -fmax3938 fma 1 -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -fmax3939 fma 1 -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -fmax3940 fma 1 -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped - --- some non-zero subnormal fma 1 s -fmax3950 fma 1 1.00E-999 0.1E-999 -> 1.10E-999 -fmax3951 fma 1 0.1E-999 0.1E-999 -> 2E-1000 Subnormal -fmax3952 fma 1 0.10E-999 0.1E-999 -> 2.0E-1000 Subnormal -fmax3953 fma 1 0.100E-999 0.1E-999 -> 2.0E-1000 Subnormal Rounded -fmax3954 fma 1 0.01E-999 0.1E-999 -> 1.1E-1000 Subnormal -fmax3955 fma 1 0.999E-999 0.1E-999 -> 1.10E-999 Inexact Rounded -fmax3956 fma 1 0.099E-999 0.1E-999 -> 2.0E-1000 Inexact Rounded Subnormal Underflow -fmax3957 fma 1 0.009E-999 0.1E-999 -> 1.1E-1000 Inexact Rounded Subnormal Underflow -fmax3958 fma 1 0.001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -fmax3959 fma 1 0.0009E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -fmax3960 fma 1 0.0001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow --- negatives... -fmax3961 fma 1 1.00E-999 -0.1E-999 -> 9.0E-1000 Subnormal -fmax3962 fma 1 0.1E-999 -0.1E-999 -> 0E-1000 -fmax3963 fma 1 0.10E-999 -0.1E-999 -> 0E-1001 -fmax3964 fma 1 0.100E-999 -0.1E-999 -> 0E-1001 Clamped -fmax3965 fma 1 0.01E-999 -0.1E-999 -> -9E-1001 Subnormal -fmax3966 fma 1 0.999E-999 -0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow -fmax3967 fma 1 0.099E-999 -0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -fmax3968 fma 1 0.009E-999 -0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow -fmax3969 fma 1 0.001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -fmax3970 fma 1 0.0009E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -fmax3971 fma 1 0.0001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow - --- some 'real' numbers -maxExponent: 384 -minExponent: -383 -precision: 8 -fmax3566 fma 1 99999061735E-394 0E-394 -> 9.999906E-384 Inexact Rounded Underflow Subnormal -precision: 7 -fmax3567 fma 1 99999061735E-394 0E-394 -> 9.99991E-384 Inexact Rounded Underflow Subnormal -precision: 6 -fmax3568 fma 1 99999061735E-394 0E-394 -> 9.9999E-384 Inexact Rounded Underflow Subnormal - --- now the case where we can get underflow but the result is normal --- [note this can't happen if the operands are also bounded, as we --- cannot represent 1E-399, for example] -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - -fmax3571 fma 1 1E-383 0 -> 1E-383 -fmax3572 fma 1 1E-384 0 -> 1E-384 Subnormal -fmax3573 fma 1 1E-383 1E-384 -> 1.1E-383 -fmax3574 subtract 1E-383 1E-384 -> 9E-384 Subnormal - --- Here we explore the boundary of rounding a subnormal to Nmin -fmax3575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -fmax3576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -fmax3577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax3578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax3579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax3580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded - --- check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 --- Add: lhs and rhs 0 -fmax31001 fma 1 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31002 fma 1 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31003 fma 1 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31004 fma 1 0 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31005 fma 1 0 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31006 fma 1 0 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow - --- Add: lhs >> rhs and vice versa -fmax31011 fma 1 1.52444E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31012 fma 1 1.52445E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31013 fma 1 1.52446E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31014 fma 1 1E-100 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31015 fma 1 1E-100 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -fmax31016 fma 1 1E-100 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow - --- Add: lhs + rhs fma 1 ition carried out -fmax31021 fma 1 1.52443E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -fmax31022 fma 1 1.52444E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -fmax31023 fma 1 1.52445E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -fmax31024 fma 1 1.00001E-80 1.52443E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -fmax31025 fma 1 1.00001E-80 1.52444E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -fmax31026 fma 1 1.00001E-80 1.52445E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow - --- And for round down full and subnormal results -precision: 16 -maxExponent: +384 -minExponent: -383 -rounding: down - -fmax31100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact -fmax31101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact -fmax31103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact -fmax31104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact -fmax31105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact -fmax31106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact -fmax31107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact -fmax31108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact -fmax31109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact - -rounding: ceiling -fmax31110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact -fmax31111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact -fmax31113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact -fmax31114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact -fmax31115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact -fmax31116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact -fmax31117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact -fmax31118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact -fmax31119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact - -rounding: down -precision: 7 -maxExponent: +96 -minExponent: -95 -fmax31130 fma 1 1 -1e-200 -> 0.9999999 Rounded Inexact --- subnormal boundary -fmax31131 fma 1 1.000000E-94 -1e-200 -> 9.999999E-95 Rounded Inexact -fmax31132 fma 1 1.000001E-95 -1e-200 -> 1.000000E-95 Rounded Inexact -fmax31133 fma 1 1.000000E-95 -1e-200 -> 9.99999E-96 Rounded Inexact Subnormal Underflow -fmax31134 fma 1 0.999999E-95 -1e-200 -> 9.99998E-96 Rounded Inexact Subnormal Underflow -fmax31135 fma 1 0.001000E-95 -1e-200 -> 9.99E-99 Rounded Inexact Subnormal Underflow -fmax31136 fma 1 0.000999E-95 -1e-200 -> 9.98E-99 Rounded Inexact Subnormal Underflow -fmax31137 fma 1 1.000000E-95 -1e-101 -> 9.99999E-96 Subnormal -fmax31138 fma 1 10000E-101 -1e-200 -> 9.999E-98 Subnormal Inexact Rounded Underflow -fmax31139 fma 1 1000E-101 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow -fmax31140 fma 1 100E-101 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow -fmax31141 fma 1 10E-101 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow -fmax31142 fma 1 1E-101 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped -fmax31143 fma 1 0E-101 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped -fmax31144 fma 1 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped - -fmax31151 fma 1 10000E-102 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow -fmax31152 fma 1 1000E-102 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow -fmax31153 fma 1 100E-102 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow -fmax31154 fma 1 10E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped -fmax31155 fma 1 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped -fmax31156 fma 1 0E-102 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped -fmax31157 fma 1 1E-103 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped - -fmax31160 fma 1 100E-105 -1e-101 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped -fmax31161 fma 1 100E-105 -1e-201 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped - --- tests based on Gunnar Degnbol's edge case -precision: 15 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -fmax31200 fma 1 1E15 -0.5 -> 1.00000000000000E+15 Inexact Rounded -fmax31201 fma 1 1E15 -0.50 -> 1.00000000000000E+15 Inexact Rounded -fmax31210 fma 1 1E15 -0.51 -> 999999999999999 Inexact Rounded -fmax31211 fma 1 1E15 -0.501 -> 999999999999999 Inexact Rounded -fmax31212 fma 1 1E15 -0.5001 -> 999999999999999 Inexact Rounded -fmax31213 fma 1 1E15 -0.50001 -> 999999999999999 Inexact Rounded -fmax31214 fma 1 1E15 -0.500001 -> 999999999999999 Inexact Rounded -fmax31215 fma 1 1E15 -0.5000001 -> 999999999999999 Inexact Rounded -fmax31216 fma 1 1E15 -0.50000001 -> 999999999999999 Inexact Rounded -fmax31217 fma 1 1E15 -0.500000001 -> 999999999999999 Inexact Rounded -fmax31218 fma 1 1E15 -0.5000000001 -> 999999999999999 Inexact Rounded -fmax31219 fma 1 1E15 -0.50000000001 -> 999999999999999 Inexact Rounded -fmax31220 fma 1 1E15 -0.500000000001 -> 999999999999999 Inexact Rounded -fmax31221 fma 1 1E15 -0.5000000000001 -> 999999999999999 Inexact Rounded -fmax31222 fma 1 1E15 -0.50000000000001 -> 999999999999999 Inexact Rounded -fmax31223 fma 1 1E15 -0.500000000000001 -> 999999999999999 Inexact Rounded -fmax31224 fma 1 1E15 -0.5000000000000001 -> 999999999999999 Inexact Rounded -fmax31225 fma 1 1E15 -0.5000000000000000 -> 1.00000000000000E+15 Inexact Rounded -fmax31230 fma 1 1E15 -5000000.000000001 -> 999999995000000 Inexact Rounded - -precision: 16 - -fmax31300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded -fmax31310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded -fmax31311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded -fmax31312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded -fmax31313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded -fmax31314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded -fmax31315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded -fmax31316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded -fmax31317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded -fmax31318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded -fmax31319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded -fmax31320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded -fmax31321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded -fmax31322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded -fmax31323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded -fmax31324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded -fmax31325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded -fmax31336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded -fmax31337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded -fmax31338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded -fmax31339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded - -fmax31340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded -fmax31341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded - -fmax31349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded -fmax31350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded -fmax31351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded -fmax31352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded -fmax31353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded -fmax31354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded -fmax31355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded -fmax31356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded -fmax31357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded -fmax31358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded -fmax31359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded -fmax31360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded -fmax31361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded -fmax31362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded -fmax31363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded -fmax31364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded -fmax31365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded -fmax31376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded -fmax31377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded -fmax31378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded -fmax31379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded -fmax31380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded -fmax31381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded -fmax31382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded -fmax31392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded -fmax31393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded -fmax31394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded -fmax31395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded -fmax31396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -precision: 15 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -fmax31400 fma 1 0 1.23456789012345 -> 1.23456789012345 -fmax31401 fma 1 0 1.23456789012345E-1 -> 0.123456789012345 -fmax31402 fma 1 0 1.23456789012345E-2 -> 0.0123456789012345 -fmax31403 fma 1 0 1.23456789012345E-3 -> 0.00123456789012345 -fmax31404 fma 1 0 1.23456789012345E-4 -> 0.000123456789012345 -fmax31405 fma 1 0 1.23456789012345E-5 -> 0.0000123456789012345 -fmax31406 fma 1 0 1.23456789012345E-6 -> 0.00000123456789012345 -fmax31407 fma 1 0 1.23456789012345E-7 -> 1.23456789012345E-7 -fmax31408 fma 1 0 1.23456789012345E-8 -> 1.23456789012345E-8 -fmax31409 fma 1 0 1.23456789012345E-9 -> 1.23456789012345E-9 -fmax31410 fma 1 0 1.23456789012345E-10 -> 1.23456789012345E-10 -fmax31411 fma 1 0 1.23456789012345E-11 -> 1.23456789012345E-11 -fmax31412 fma 1 0 1.23456789012345E-12 -> 1.23456789012345E-12 -fmax31413 fma 1 0 1.23456789012345E-13 -> 1.23456789012345E-13 -fmax31414 fma 1 0 1.23456789012345E-14 -> 1.23456789012345E-14 -fmax31415 fma 1 0 1.23456789012345E-15 -> 1.23456789012345E-15 -fmax31416 fma 1 0 1.23456789012345E-16 -> 1.23456789012345E-16 -fmax31417 fma 1 0 1.23456789012345E-17 -> 1.23456789012345E-17 -fmax31418 fma 1 0 1.23456789012345E-18 -> 1.23456789012345E-18 -fmax31419 fma 1 0 1.23456789012345E-19 -> 1.23456789012345E-19 - --- same, precision 16.. -precision: 16 -fmax31420 fma 1 0 1.123456789012345 -> 1.123456789012345 -fmax31421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345 -fmax31422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345 -fmax31423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345 -fmax31424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345 -fmax31425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345 -fmax31426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345 -fmax31427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7 -fmax31428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8 -fmax31429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9 -fmax31430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10 -fmax31431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11 -fmax31432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12 -fmax31433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13 -fmax31434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14 -fmax31435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15 -fmax31436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16 -fmax31437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17 -fmax31438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18 -fmax31439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19 - --- same, reversed 0 -fmax31440 fma 1 1.123456789012345 0 -> 1.123456789012345 -fmax31441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345 -fmax31442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345 -fmax31443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345 -fmax31444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345 -fmax31445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345 -fmax31446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345 -fmax31447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7 -fmax31448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8 -fmax31449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9 -fmax31450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10 -fmax31451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11 -fmax31452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12 -fmax31453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13 -fmax31454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14 -fmax31455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15 -fmax31456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16 -fmax31457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17 -fmax31458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18 -fmax31459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19 - --- same, Es on the 0 -fmax31460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345 -fmax31461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345 -fmax31462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345 -fmax31463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345 -fmax31464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345 -fmax31465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345 -fmax31466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345 -fmax31467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345 -fmax31468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345 -fmax31469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345 -fmax31470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345 -fmax31471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345 -fmax31472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345 -fmax31473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345 -fmax31474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345 -fmax31475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345 --- next four flag Rounded because the 0 extends the result -fmax31476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded -fmax31477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded -fmax31478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded -fmax31479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -precision: 16 -maxExponent: 384 -minexponent: -383 - -rounding: half_up --- exact zeros from zeros -fmax31500 fma 1 0 0E-19 -> 0E-19 -fmax31501 fma 1 -0 0E-19 -> 0E-19 -fmax31502 fma 1 0 -0E-19 -> 0E-19 -fmax31503 fma 1 -0 -0E-19 -> -0E-19 -fmax31504 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax31505 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax31506 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax31507 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax31511 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31512 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31513 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31514 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax31515 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31516 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax31517 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax31518 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_down --- exact zeros from zeros -fmax31520 fma 1 0 0E-19 -> 0E-19 -fmax31521 fma 1 -0 0E-19 -> 0E-19 -fmax31522 fma 1 0 -0E-19 -> 0E-19 -fmax31523 fma 1 -0 -0E-19 -> -0E-19 -fmax31524 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax31525 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax31526 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax31527 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax31531 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31532 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31533 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31534 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax31535 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31536 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax31537 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax31538 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_even --- exact zeros from zeros -fmax31540 fma 1 0 0E-19 -> 0E-19 -fmax31541 fma 1 -0 0E-19 -> 0E-19 -fmax31542 fma 1 0 -0E-19 -> 0E-19 -fmax31543 fma 1 -0 -0E-19 -> -0E-19 -fmax31544 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax31545 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax31546 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax31547 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax31551 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31552 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31553 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31554 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax31555 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31556 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax31557 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax31558 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: up --- exact zeros from zeros -fmax31560 fma 1 0 0E-19 -> 0E-19 -fmax31561 fma 1 -0 0E-19 -> 0E-19 -fmax31562 fma 1 0 -0E-19 -> 0E-19 -fmax31563 fma 1 -0 -0E-19 -> -0E-19 -fmax31564 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax31565 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax31566 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax31567 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax31571 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax31572 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax31573 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -fmax31574 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -fmax31575 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax31576 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax31577 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax31578 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - -rounding: down --- exact zeros from zeros -fmax31580 fma 1 0 0E-19 -> 0E-19 -fmax31581 fma 1 -0 0E-19 -> 0E-19 -fmax31582 fma 1 0 -0E-19 -> 0E-19 -fmax31583 fma 1 -0 -0E-19 -> -0E-19 -fmax31584 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax31585 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax31586 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax31587 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax31591 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31592 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31593 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31594 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax31595 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31596 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax31597 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax31598 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: ceiling --- exact zeros from zeros -fmax31600 fma 1 0 0E-19 -> 0E-19 -fmax31601 fma 1 -0 0E-19 -> 0E-19 -fmax31602 fma 1 0 -0E-19 -> 0E-19 -fmax31603 fma 1 -0 -0E-19 -> -0E-19 -fmax31604 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax31605 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax31606 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax31607 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax31611 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax31612 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax31613 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31614 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax31615 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax31616 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax31617 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax31618 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -fmax31620 fma 1 0 0E-19 -> 0E-19 -fmax31621 fma 1 -0 0E-19 -> -0E-19 -- * -fmax31622 fma 1 0 -0E-19 -> -0E-19 -- * -fmax31623 fma 1 -0 -0E-19 -> -0E-19 -fmax31624 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax31625 fma 1 -0E-400 0E-19 -> -0E-398 Clamped -- * -fmax31626 fma 1 0E-400 -0E-19 -> -0E-398 Clamped -- * -fmax31627 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax31631 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31632 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31633 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -fmax31634 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -fmax31635 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax31636 fma 1 -1E-401 1E-401 -> -0E-398 Clamped -- * -fmax31637 fma 1 1E-401 -1E-401 -> -0E-398 Clamped -- * -fmax31638 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - --- BigDecimal problem testcases 2006.01.23 -precision: 16 -maxExponent: 384 -minexponent: -383 - -rounding: down -precision: 7 -fmax31651 fma 1 10001E+2 -2E+1 -> 1.00008E+6 -precision: 6 -fmax31652 fma 1 10001E+2 -2E+1 -> 1.00008E+6 -precision: 5 -fmax31653 fma 1 10001E+2 -2E+1 -> 1.0000E+6 Inexact Rounded -precision: 4 -fmax31654 fma 1 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded -precision: 3 -fmax31655 fma 1 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded -precision: 2 -fmax31656 fma 1 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded -precision: 1 -fmax31657 fma 1 10001E+2 -2E+1 -> 1E+6 Inexact Rounded - -rounding: half_even -precision: 7 -fmax31661 fma 1 10001E+2 -2E+1 -> 1.00008E+6 -precision: 6 -fmax31662 fma 1 10001E+2 -2E+1 -> 1.00008E+6 -precision: 5 -fmax31663 fma 1 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded -precision: 4 -fmax31664 fma 1 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded -precision: 3 -fmax31665 fma 1 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded -precision: 2 -fmax31666 fma 1 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded -precision: 1 -fmax31667 fma 1 10001E+2 -2E+1 -> 1E+6 Inexact Rounded - -rounding: up -precision: 7 -fmax31671 fma 1 10001E+2 -2E+1 -> 1.00008E+6 -precision: 6 -fmax31672 fma 1 10001E+2 -2E+1 -> 1.00008E+6 -precision: 5 -fmax31673 fma 1 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded -precision: 4 -fmax31674 fma 1 10001E+2 -2E+1 -> 1.001E+6 Inexact Rounded -precision: 3 -fmax31675 fma 1 10001E+2 -2E+1 -> 1.01E+6 Inexact Rounded -precision: 2 -fmax31676 fma 1 10001E+2 -2E+1 -> 1.1E+6 Inexact Rounded -precision: 1 -fmax31677 fma 1 10001E+2 -2E+1 -> 2E+6 Inexact Rounded - -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 --- Examples from SQL proposal (Krishna Kulkarni) -fmax31701 fma 1 130E-2 120E-2 -> 2.50 -fmax31702 fma 1 130E-2 12E-1 -> 2.50 -fmax31703 fma 1 130E-2 1E0 -> 2.30 -fmax31704 fma 1 1E2 1E4 -> 1.01E+4 -fmax31705 subtract 130E-2 120E-2 -> 0.10 -fmax31706 subtract 130E-2 12E-1 -> 0.10 -fmax31707 subtract 130E-2 1E0 -> 0.30 -fmax31708 subtract 1E2 1E4 -> -9.9E+3 - ------------------------------------------------------------------------- --- Same as above, using decimal64 default parameters -- ------------------------------------------------------------------------- -precision: 16 -rounding: half_even -maxExponent: 384 -minexponent: -383 - --- [first group are 'quick confidence check'] -fmax36001 fma 1 1 1 -> 2 -fmax36002 fma 1 2 3 -> 5 -fmax36003 fma 1 '5.75' '3.3' -> 9.05 -fmax36004 fma 1 '5' '-3' -> 2 -fmax36005 fma 1 '-5' '-3' -> -8 -fmax36006 fma 1 '-7' '2.5' -> -4.5 -fmax36007 fma 1 '0.7' '0.3' -> 1.0 -fmax36008 fma 1 '1.25' '1.25' -> 2.50 -fmax36009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' -fmax36010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' - -fmax36011 fma 1 '0.44444444444444444' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded -fmax36012 fma 1 '0.44444444444444440' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded -fmax36013 fma 1 '0.44444444444444444' '0.55555555555555550' -> '0.9999999999999999' Inexact Rounded -fmax36014 fma 1 '0.444444444444444449' '0' -> '0.4444444444444444' Inexact Rounded -fmax36015 fma 1 '0.4444444444444444499' '0' -> '0.4444444444444444' Inexact Rounded -fmax36016 fma 1 '0.44444444444444444999' '0' -> '0.4444444444444444' Inexact Rounded -fmax36017 fma 1 '0.44444444444444445000' '0' -> '0.4444444444444444' Inexact Rounded -fmax36018 fma 1 '0.44444444444444445001' '0' -> '0.4444444444444445' Inexact Rounded -fmax36019 fma 1 '0.4444444444444444501' '0' -> '0.4444444444444445' Inexact Rounded -fmax36020 fma 1 '0.444444444444444451' '0' -> '0.4444444444444445' Inexact Rounded - -fmax36021 fma 1 0 1 -> 1 -fmax36022 fma 1 1 1 -> 2 -fmax36023 fma 1 2 1 -> 3 -fmax36024 fma 1 3 1 -> 4 -fmax36025 fma 1 4 1 -> 5 -fmax36026 fma 1 5 1 -> 6 -fmax36027 fma 1 6 1 -> 7 -fmax36028 fma 1 7 1 -> 8 -fmax36029 fma 1 8 1 -> 9 -fmax36030 fma 1 9 1 -> 10 - --- some carrying effects -fmax36031 fma 1 '0.9998' '0.0000' -> '0.9998' -fmax36032 fma 1 '0.9998' '0.0001' -> '0.9999' -fmax36033 fma 1 '0.9998' '0.0002' -> '1.0000' -fmax36034 fma 1 '0.9998' '0.0003' -> '1.0001' - -fmax36035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -fmax36036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -fmax36037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded -fmax36038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded -fmax36039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded - --- symmetry: -fmax36040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded -fmax36041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded -fmax36042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded -fmax36044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded -fmax36045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded - -fmax36046 fma 1 '10000e+9' '7' -> '10000000000007' -fmax36047 fma 1 '10000e+9' '70' -> '10000000000070' -fmax36048 fma 1 '10000e+9' '700' -> '10000000000700' -fmax36049 fma 1 '10000e+9' '7000' -> '10000000007000' -fmax36050 fma 1 '10000e+9' '70000' -> '10000000070000' -fmax36051 fma 1 '10000e+9' '700000' -> '10000000700000' - --- examples from decarith -fmax36053 fma 1 '12' '7.00' -> '19.00' -fmax36054 fma 1 '1.3' '-1.07' -> '0.23' -fmax36055 fma 1 '1.3' '-1.30' -> '0.00' -fmax36056 fma 1 '1.3' '-2.07' -> '-0.77' -fmax36057 fma 1 '1E+2' '1E+4' -> '1.01E+4' - --- from above -fmax36061 fma 1 1 '0.1' -> '1.1' -fmax36062 fma 1 1 '0.01' -> '1.01' -fmax36063 fma 1 1 '0.001' -> '1.001' -fmax36064 fma 1 1 '0.0001' -> '1.0001' -fmax36065 fma 1 1 '0.00001' -> '1.00001' -fmax36066 fma 1 1 '0.000001' -> '1.000001' -fmax36067 fma 1 1 '0.0000001' -> '1.0000001' -fmax36068 fma 1 1 '0.00000001' -> '1.00000001' - --- some funny zeros [in case of bad signum] -fmax36070 fma 1 1 0 -> 1 -fmax36071 fma 1 1 0. -> 1 -fmax36072 fma 1 1 .0 -> 1.0 -fmax36073 fma 1 1 0.0 -> 1.0 -fmax36074 fma 1 1 0.00 -> 1.00 -fmax36075 fma 1 0 1 -> 1 -fmax36076 fma 1 0. 1 -> 1 -fmax36077 fma 1 .0 1 -> 1.0 -fmax36078 fma 1 0.0 1 -> 1.0 -fmax36079 fma 1 0.00 1 -> 1.00 - --- some carries -fmax36080 fma 1 9999999999999998 1 -> 9999999999999999 -fmax36081 fma 1 9999999999999999 1 -> 1.000000000000000E+16 Rounded -fmax36082 fma 1 999999999999999 1 -> 1000000000000000 -fmax36083 fma 1 9999999999999 1 -> 10000000000000 -fmax36084 fma 1 99999999999 1 -> 100000000000 -fmax36085 fma 1 999999999 1 -> 1000000000 -fmax36086 fma 1 9999999 1 -> 10000000 -fmax36087 fma 1 99999 1 -> 100000 -fmax36088 fma 1 999 1 -> 1000 -fmax36089 fma 1 9 1 -> 10 - - --- more LHS swaps -fmax36090 fma 1 '-56267E-10' 0 -> '-0.0000056267' -fmax36091 fma 1 '-56267E-6' 0 -> '-0.056267' -fmax36092 fma 1 '-56267E-5' 0 -> '-0.56267' -fmax36093 fma 1 '-56267E-4' 0 -> '-5.6267' -fmax36094 fma 1 '-56267E-3' 0 -> '-56.267' -fmax36095 fma 1 '-56267E-2' 0 -> '-562.67' -fmax36096 fma 1 '-56267E-1' 0 -> '-5626.7' -fmax36097 fma 1 '-56267E-0' 0 -> '-56267' -fmax36098 fma 1 '-5E-10' 0 -> '-5E-10' -fmax36099 fma 1 '-5E-7' 0 -> '-5E-7' -fmax36100 fma 1 '-5E-6' 0 -> '-0.000005' -fmax36101 fma 1 '-5E-5' 0 -> '-0.00005' -fmax36102 fma 1 '-5E-4' 0 -> '-0.0005' -fmax36103 fma 1 '-5E-1' 0 -> '-0.5' -fmax36104 fma 1 '-5E0' 0 -> '-5' -fmax36105 fma 1 '-5E1' 0 -> '-50' -fmax36106 fma 1 '-5E5' 0 -> '-500000' -fmax36107 fma 1 '-5E15' 0 -> '-5000000000000000' -fmax36108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded -fmax36109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded -fmax36110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded -fmax36111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded - --- more RHS swaps -fmax36113 fma 1 0 '-56267E-10' -> '-0.0000056267' -fmax36114 fma 1 0 '-56267E-6' -> '-0.056267' -fmax36116 fma 1 0 '-56267E-5' -> '-0.56267' -fmax36117 fma 1 0 '-56267E-4' -> '-5.6267' -fmax36119 fma 1 0 '-56267E-3' -> '-56.267' -fmax36120 fma 1 0 '-56267E-2' -> '-562.67' -fmax36121 fma 1 0 '-56267E-1' -> '-5626.7' -fmax36122 fma 1 0 '-56267E-0' -> '-56267' -fmax36123 fma 1 0 '-5E-10' -> '-5E-10' -fmax36124 fma 1 0 '-5E-7' -> '-5E-7' -fmax36125 fma 1 0 '-5E-6' -> '-0.000005' -fmax36126 fma 1 0 '-5E-5' -> '-0.00005' -fmax36127 fma 1 0 '-5E-4' -> '-0.0005' -fmax36128 fma 1 0 '-5E-1' -> '-0.5' -fmax36129 fma 1 0 '-5E0' -> '-5' -fmax36130 fma 1 0 '-5E1' -> '-50' -fmax36131 fma 1 0 '-5E5' -> '-500000' -fmax36132 fma 1 0 '-5E15' -> '-5000000000000000' -fmax36133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded -fmax36134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded -fmax36135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded -fmax36136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded - --- related -fmax36137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded -fmax36138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded -fmax36139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded -fmax36140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded -fmax36141 fma 1 1E+11 0.0000 -> '100000000000.0000' -fmax36142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded -fmax36143 fma 1 0.000 1E+12 -> '1000000000000.000' -fmax36144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded - --- [some of the next group are really constructor tests] -fmax36146 fma 1 '00.0' 0 -> '0.0' -fmax36147 fma 1 '0.00' 0 -> '0.00' -fmax36148 fma 1 0 '0.00' -> '0.00' -fmax36149 fma 1 0 '00.0' -> '0.0' -fmax36150 fma 1 '00.0' '0.00' -> '0.00' -fmax36151 fma 1 '0.00' '00.0' -> '0.00' -fmax36152 fma 1 '3' '.3' -> '3.3' -fmax36153 fma 1 '3.' '.3' -> '3.3' -fmax36154 fma 1 '3.0' '.3' -> '3.3' -fmax36155 fma 1 '3.00' '.3' -> '3.30' -fmax36156 fma 1 '3' '3' -> '6' -fmax36157 fma 1 '3' '+3' -> '6' -fmax36158 fma 1 '3' '-3' -> '0' -fmax36159 fma 1 '0.3' '-0.3' -> '0.0' -fmax36160 fma 1 '0.03' '-0.03' -> '0.00' - --- try borderline precision, with carries, etc. -fmax36161 fma 1 '1E+13' '-1' -> '9999999999999' -fmax36162 fma 1 '1E+13' '1.11' -> '10000000000001.11' -fmax36163 fma 1 '1.11' '1E+13' -> '10000000000001.11' -fmax36164 fma 1 '-1' '1E+13' -> '9999999999999' -fmax36165 fma 1 '7E+13' '-1' -> '69999999999999' -fmax36166 fma 1 '7E+13' '1.11' -> '70000000000001.11' -fmax36167 fma 1 '1.11' '7E+13' -> '70000000000001.11' -fmax36168 fma 1 '-1' '7E+13' -> '69999999999999' - --- 1234567890123456 1234567890123456 1 234567890123456 -fmax36170 fma 1 '0.4444444444444444' '0.5555555555555563' -> '1.000000000000001' Inexact Rounded -fmax36171 fma 1 '0.4444444444444444' '0.5555555555555562' -> '1.000000000000001' Inexact Rounded -fmax36172 fma 1 '0.4444444444444444' '0.5555555555555561' -> '1.000000000000000' Inexact Rounded -fmax36173 fma 1 '0.4444444444444444' '0.5555555555555560' -> '1.000000000000000' Inexact Rounded -fmax36174 fma 1 '0.4444444444444444' '0.5555555555555559' -> '1.000000000000000' Inexact Rounded -fmax36175 fma 1 '0.4444444444444444' '0.5555555555555558' -> '1.000000000000000' Inexact Rounded -fmax36176 fma 1 '0.4444444444444444' '0.5555555555555557' -> '1.000000000000000' Inexact Rounded -fmax36177 fma 1 '0.4444444444444444' '0.5555555555555556' -> '1.000000000000000' Rounded -fmax36178 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999' -fmax36179 fma 1 '0.4444444444444444' '0.5555555555555554' -> '0.9999999999999998' -fmax36180 fma 1 '0.4444444444444444' '0.5555555555555553' -> '0.9999999999999997' -fmax36181 fma 1 '0.4444444444444444' '0.5555555555555552' -> '0.9999999999999996' -fmax36182 fma 1 '0.4444444444444444' '0.5555555555555551' -> '0.9999999999999995' -fmax36183 fma 1 '0.4444444444444444' '0.5555555555555550' -> '0.9999999999999994' - --- and some more, including residue effects and different roundings -rounding: half_up -fmax36200 fma 1 '6543210123456789' 0 -> '6543210123456789' -fmax36201 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -fmax36202 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -fmax36203 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -fmax36204 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -fmax36205 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -fmax36206 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -fmax36207 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -fmax36208 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -fmax36209 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -fmax36210 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -fmax36211 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -fmax36212 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -fmax36213 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -fmax36214 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -fmax36215 fma 1 '6543210123456789' 0.999999 -> '6543210123456790' Inexact Rounded -fmax36216 fma 1 '6543210123456789' 1 -> '6543210123456790' -fmax36217 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded -fmax36218 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -fmax36219 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - -rounding: half_even -fmax36220 fma 1 '6543210123456789' 0 -> '6543210123456789' -fmax36221 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -fmax36222 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -fmax36223 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -fmax36224 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -fmax36225 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -fmax36226 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -fmax36227 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -fmax36228 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded -fmax36229 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded -fmax36230 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded -fmax36231 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded -fmax36232 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded -fmax36233 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded -fmax36234 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded -fmax36235 fma 1 '6543210123456789' 0.999999 -> '6543210123456790' Inexact Rounded -fmax36236 fma 1 '6543210123456789' 1 -> '6543210123456790' -fmax36237 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -fmax36238 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -fmax36239 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded --- critical few with even bottom digit... -fmax36240 fma 1 '6543210123456788' 0.499999 -> '6543210123456788' Inexact Rounded -fmax36241 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded -fmax36242 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded - -rounding: down -fmax36250 fma 1 '6543210123456789' 0 -> '6543210123456789' -fmax36251 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded -fmax36252 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded -fmax36253 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded -fmax36254 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded -fmax36255 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded -fmax36256 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -fmax36257 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded -fmax36258 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded -fmax36259 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded -fmax36260 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded -fmax36261 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded -fmax36262 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded -fmax36263 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded -fmax36264 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded -fmax36265 fma 1 '6543210123456789' 0.999999 -> '6543210123456789' Inexact Rounded -fmax36266 fma 1 '6543210123456789' 1 -> '6543210123456790' -fmax36267 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded -fmax36268 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded -fmax36269 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded - --- 1 in last place tests -rounding: half_even -fmax36301 fma 1 -1 1 -> 0 -fmax36302 fma 1 0 1 -> 1 -fmax36303 fma 1 1 1 -> 2 -fmax36304 fma 1 12 1 -> 13 -fmax36305 fma 1 98 1 -> 99 -fmax36306 fma 1 99 1 -> 100 -fmax36307 fma 1 100 1 -> 101 -fmax36308 fma 1 101 1 -> 102 -fmax36309 fma 1 -1 -1 -> -2 -fmax36310 fma 1 0 -1 -> -1 -fmax36311 fma 1 1 -1 -> 0 -fmax36312 fma 1 12 -1 -> 11 -fmax36313 fma 1 98 -1 -> 97 -fmax36314 fma 1 99 -1 -> 98 -fmax36315 fma 1 100 -1 -> 99 -fmax36316 fma 1 101 -1 -> 100 - -fmax36321 fma 1 -0.01 0.01 -> 0.00 -fmax36322 fma 1 0.00 0.01 -> 0.01 -fmax36323 fma 1 0.01 0.01 -> 0.02 -fmax36324 fma 1 0.12 0.01 -> 0.13 -fmax36325 fma 1 0.98 0.01 -> 0.99 -fmax36326 fma 1 0.99 0.01 -> 1.00 -fmax36327 fma 1 1.00 0.01 -> 1.01 -fmax36328 fma 1 1.01 0.01 -> 1.02 -fmax36329 fma 1 -0.01 -0.01 -> -0.02 -fmax36330 fma 1 0.00 -0.01 -> -0.01 -fmax36331 fma 1 0.01 -0.01 -> 0.00 -fmax36332 fma 1 0.12 -0.01 -> 0.11 -fmax36333 fma 1 0.98 -0.01 -> 0.97 -fmax36334 fma 1 0.99 -0.01 -> 0.98 -fmax36335 fma 1 1.00 -0.01 -> 0.99 -fmax36336 fma 1 1.01 -0.01 -> 1.00 - --- some more cases where fma 1 ing 0 affects the coefficient -fmax36340 fma 1 1E+3 0 -> 1000 -fmax36341 fma 1 1E+15 0 -> 1000000000000000 -fmax36342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded -fmax36343 fma 1 1E+17 0 -> 1.000000000000000E+17 Rounded --- which simply follow from these cases ... -fmax36344 fma 1 1E+3 1 -> 1001 -fmax36345 fma 1 1E+15 1 -> 1000000000000001 -fmax36346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded -fmax36347 fma 1 1E+17 1 -> 1.000000000000000E+17 Inexact Rounded -fmax36348 fma 1 1E+3 7 -> 1007 -fmax36349 fma 1 1E+15 7 -> 1000000000000007 -fmax36350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded -fmax36351 fma 1 1E+17 7 -> 1.000000000000000E+17 Inexact Rounded - --- tryzeros cases -fmax36361 fma 1 0E+50 10000E+1 -> 1.0000E+5 -fmax36362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded -fmax36363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact -fmax36364 fma 1 12.34 0e-398 -> 12.34000000000000 Rounded - --- ulp replacement tests -fmax36400 fma 1 1 77e-14 -> 1.00000000000077 -fmax36401 fma 1 1 77e-15 -> 1.000000000000077 -fmax36402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded -fmax36403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded -fmax36404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded -fmax36405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded -fmax36406 fma 1 1 77e-99 -> 1.000000000000000 Inexact Rounded - -fmax36410 fma 1 10 77e-14 -> 10.00000000000077 -fmax36411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded -fmax36412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded -fmax36413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded -fmax36414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded -fmax36415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded -fmax36416 fma 1 10 77e-99 -> 10.00000000000000 Inexact Rounded - -fmax36420 fma 1 77e-14 1 -> 1.00000000000077 -fmax36421 fma 1 77e-15 1 -> 1.000000000000077 -fmax36422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded -fmax36423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded -fmax36424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded -fmax36425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded -fmax36426 fma 1 77e-99 1 -> 1.000000000000000 Inexact Rounded - -fmax36430 fma 1 77e-14 10 -> 10.00000000000077 -fmax36431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded -fmax36432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded -fmax36433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded -fmax36434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded -fmax36435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded -fmax36436 fma 1 77e-99 10 -> 10.00000000000000 Inexact Rounded - --- negative ulps -fmax36440 fma 1 1 -77e-14 -> 0.99999999999923 -fmax36441 fma 1 1 -77e-15 -> 0.999999999999923 -fmax36442 fma 1 1 -77e-16 -> 0.9999999999999923 -fmax36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded -fmax36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded -fmax36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded -fmax36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded - -fmax36450 fma 1 10 -77e-14 -> 9.99999999999923 -fmax36451 fma 1 10 -77e-15 -> 9.999999999999923 -fmax36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded -fmax36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded -fmax36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded -fmax36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded -fmax36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded - -fmax36460 fma 1 -77e-14 1 -> 0.99999999999923 -fmax36461 fma 1 -77e-15 1 -> 0.999999999999923 -fmax36462 fma 1 -77e-16 1 -> 0.9999999999999923 -fmax36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded -fmax36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded -fmax36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded -fmax36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded - -fmax36470 fma 1 -77e-14 10 -> 9.99999999999923 -fmax36471 fma 1 -77e-15 10 -> 9.999999999999923 -fmax36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded -fmax36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded -fmax36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded -fmax36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded -fmax36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded - --- negative ulps -fmax36480 fma 1 -1 77e-14 -> -0.99999999999923 -fmax36481 fma 1 -1 77e-15 -> -0.999999999999923 -fmax36482 fma 1 -1 77e-16 -> -0.9999999999999923 -fmax36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded -fmax36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded -fmax36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded -fmax36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded - -fmax36490 fma 1 -10 77e-14 -> -9.99999999999923 -fmax36491 fma 1 -10 77e-15 -> -9.999999999999923 -fmax36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded -fmax36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded -fmax36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded -fmax36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded -fmax36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded - -fmax36500 fma 1 77e-14 -1 -> -0.99999999999923 -fmax36501 fma 1 77e-15 -1 -> -0.999999999999923 -fmax36502 fma 1 77e-16 -1 -> -0.9999999999999923 -fmax36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded -fmax36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded -fmax36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded -fmax36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded - -fmax36510 fma 1 77e-14 -10 -> -9.99999999999923 -fmax36511 fma 1 77e-15 -10 -> -9.999999999999923 -fmax36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded -fmax36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded -fmax36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded -fmax36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded -fmax36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded - - --- long operands -fmax36521 fma 1 101234562345678000 0 -> 1.012345623456780E+17 Rounded -fmax36522 fma 1 0 101234562345678000 -> 1.012345623456780E+17 Rounded -fmax36523 fma 1 10123456234567800 0 -> 1.012345623456780E+16 Rounded -fmax36524 fma 1 0 10123456234567800 -> 1.012345623456780E+16 Rounded -fmax36525 fma 1 10123456234567890 0 -> 1.012345623456789E+16 Rounded -fmax36526 fma 1 0 10123456234567890 -> 1.012345623456789E+16 Rounded -fmax36527 fma 1 10123456234567891 0 -> 1.012345623456789E+16 Inexact Rounded -fmax36528 fma 1 0 10123456234567891 -> 1.012345623456789E+16 Inexact Rounded -fmax36529 fma 1 101234562345678901 0 -> 1.012345623456789E+17 Inexact Rounded -fmax36530 fma 1 0 101234562345678901 -> 1.012345623456789E+17 Inexact Rounded -fmax36531 fma 1 10123456234567896 0 -> 1.012345623456790E+16 Inexact Rounded -fmax36532 fma 1 0 10123456234567896 -> 1.012345623456790E+16 Inexact Rounded - --- verify a query -rounding: down -fmax36561 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded -fmax36562 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded --- and using decimal64 bounds... -rounding: down -fmax36563 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded -fmax36564 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded - --- more zeros, etc. -rounding: half_even - -fmax36701 fma 1 5.00 1.00E-3 -> 5.00100 -fmax36702 fma 1 00.00 0.000 -> 0.000 -fmax36703 fma 1 00.00 0E-3 -> 0.000 -fmax36704 fma 1 0E-3 00.00 -> 0.000 - -fmax36710 fma 1 0E+3 00.00 -> 0.00 -fmax36711 fma 1 0E+3 00.0 -> 0.0 -fmax36712 fma 1 0E+3 00. -> 0 -fmax36713 fma 1 0E+3 00.E+1 -> 0E+1 -fmax36714 fma 1 0E+3 00.E+2 -> 0E+2 -fmax36715 fma 1 0E+3 00.E+3 -> 0E+3 -fmax36716 fma 1 0E+3 00.E+4 -> 0E+3 -fmax36717 fma 1 0E+3 00.E+5 -> 0E+3 -fmax36718 fma 1 0E+3 -00.0 -> 0.0 -fmax36719 fma 1 0E+3 -00. -> 0 -fmax36731 fma 1 0E+3 -00.E+1 -> 0E+1 - -fmax36720 fma 1 00.00 0E+3 -> 0.00 -fmax36721 fma 1 00.0 0E+3 -> 0.0 -fmax36722 fma 1 00. 0E+3 -> 0 -fmax36723 fma 1 00.E+1 0E+3 -> 0E+1 -fmax36724 fma 1 00.E+2 0E+3 -> 0E+2 -fmax36725 fma 1 00.E+3 0E+3 -> 0E+3 -fmax36726 fma 1 00.E+4 0E+3 -> 0E+3 -fmax36727 fma 1 00.E+5 0E+3 -> 0E+3 -fmax36728 fma 1 -00.00 0E+3 -> 0.00 -fmax36729 fma 1 -00.0 0E+3 -> 0.0 -fmax36730 fma 1 -00. 0E+3 -> 0 - -fmax36732 fma 1 0 0 -> 0 -fmax36733 fma 1 0 -0 -> 0 -fmax36734 fma 1 -0 0 -> 0 -fmax36735 fma 1 -0 -0 -> -0 -- IEEE 854 special case - -fmax36736 fma 1 1 -1 -> 0 -fmax36737 fma 1 -1 -1 -> -2 -fmax36738 fma 1 1 1 -> 2 -fmax36739 fma 1 -1 1 -> 0 - -fmax36741 fma 1 0 -1 -> -1 -fmax36742 fma 1 -0 -1 -> -1 -fmax36743 fma 1 0 1 -> 1 -fmax36744 fma 1 -0 1 -> 1 -fmax36745 fma 1 -1 0 -> -1 -fmax36746 fma 1 -1 -0 -> -1 -fmax36747 fma 1 1 0 -> 1 -fmax36748 fma 1 1 -0 -> 1 - -fmax36751 fma 1 0.0 -1 -> -1.0 -fmax36752 fma 1 -0.0 -1 -> -1.0 -fmax36753 fma 1 0.0 1 -> 1.0 -fmax36754 fma 1 -0.0 1 -> 1.0 -fmax36755 fma 1 -1.0 0 -> -1.0 -fmax36756 fma 1 -1.0 -0 -> -1.0 -fmax36757 fma 1 1.0 0 -> 1.0 -fmax36758 fma 1 1.0 -0 -> 1.0 - -fmax36761 fma 1 0 -1.0 -> -1.0 -fmax36762 fma 1 -0 -1.0 -> -1.0 -fmax36763 fma 1 0 1.0 -> 1.0 -fmax36764 fma 1 -0 1.0 -> 1.0 -fmax36765 fma 1 -1 0.0 -> -1.0 -fmax36766 fma 1 -1 -0.0 -> -1.0 -fmax36767 fma 1 1 0.0 -> 1.0 -fmax36768 fma 1 1 -0.0 -> 1.0 - -fmax36771 fma 1 0.0 -1.0 -> -1.0 -fmax36772 fma 1 -0.0 -1.0 -> -1.0 -fmax36773 fma 1 0.0 1.0 -> 1.0 -fmax36774 fma 1 -0.0 1.0 -> 1.0 -fmax36775 fma 1 -1.0 0.0 -> -1.0 -fmax36776 fma 1 -1.0 -0.0 -> -1.0 -fmax36777 fma 1 1.0 0.0 -> 1.0 -fmax36778 fma 1 1.0 -0.0 -> 1.0 - --- Specials -fmax36780 fma 1 -Inf -Inf -> -Infinity -fmax36781 fma 1 -Inf -1000 -> -Infinity -fmax36782 fma 1 -Inf -1 -> -Infinity -fmax36783 fma 1 -Inf -0 -> -Infinity -fmax36784 fma 1 -Inf 0 -> -Infinity -fmax36785 fma 1 -Inf 1 -> -Infinity -fmax36786 fma 1 -Inf 1000 -> -Infinity -fmax36787 fma 1 -1000 -Inf -> -Infinity -fmax36788 fma 1 -Inf -Inf -> -Infinity -fmax36789 fma 1 -1 -Inf -> -Infinity -fmax36790 fma 1 -0 -Inf -> -Infinity -fmax36791 fma 1 0 -Inf -> -Infinity -fmax36792 fma 1 1 -Inf -> -Infinity -fmax36793 fma 1 1000 -Inf -> -Infinity -fmax36794 fma 1 Inf -Inf -> NaN Invalid_operation - -fmax36800 fma 1 Inf -Inf -> NaN Invalid_operation -fmax36801 fma 1 Inf -1000 -> Infinity -fmax36802 fma 1 Inf -1 -> Infinity -fmax36803 fma 1 Inf -0 -> Infinity -fmax36804 fma 1 Inf 0 -> Infinity -fmax36805 fma 1 Inf 1 -> Infinity -fmax36806 fma 1 Inf 1000 -> Infinity -fmax36807 fma 1 Inf Inf -> Infinity -fmax36808 fma 1 -1000 Inf -> Infinity -fmax36809 fma 1 -Inf Inf -> NaN Invalid_operation -fmax36810 fma 1 -1 Inf -> Infinity -fmax36811 fma 1 -0 Inf -> Infinity -fmax36812 fma 1 0 Inf -> Infinity -fmax36813 fma 1 1 Inf -> Infinity -fmax36814 fma 1 1000 Inf -> Infinity -fmax36815 fma 1 Inf Inf -> Infinity - -fmax36821 fma 1 NaN -Inf -> NaN -fmax36822 fma 1 NaN -1000 -> NaN -fmax36823 fma 1 NaN -1 -> NaN -fmax36824 fma 1 NaN -0 -> NaN -fmax36825 fma 1 NaN 0 -> NaN -fmax36826 fma 1 NaN 1 -> NaN -fmax36827 fma 1 NaN 1000 -> NaN -fmax36828 fma 1 NaN Inf -> NaN -fmax36829 fma 1 NaN NaN -> NaN -fmax36830 fma 1 -Inf NaN -> NaN -fmax36831 fma 1 -1000 NaN -> NaN -fmax36832 fma 1 -1 NaN -> NaN -fmax36833 fma 1 -0 NaN -> NaN -fmax36834 fma 1 0 NaN -> NaN -fmax36835 fma 1 1 NaN -> NaN -fmax36836 fma 1 1000 NaN -> NaN -fmax36837 fma 1 Inf NaN -> NaN - -fmax36841 fma 1 sNaN -Inf -> NaN Invalid_operation -fmax36842 fma 1 sNaN -1000 -> NaN Invalid_operation -fmax36843 fma 1 sNaN -1 -> NaN Invalid_operation -fmax36844 fma 1 sNaN -0 -> NaN Invalid_operation -fmax36845 fma 1 sNaN 0 -> NaN Invalid_operation -fmax36846 fma 1 sNaN 1 -> NaN Invalid_operation -fmax36847 fma 1 sNaN 1000 -> NaN Invalid_operation -fmax36848 fma 1 sNaN NaN -> NaN Invalid_operation -fmax36849 fma 1 sNaN sNaN -> NaN Invalid_operation -fmax36850 fma 1 NaN sNaN -> NaN Invalid_operation -fmax36851 fma 1 -Inf sNaN -> NaN Invalid_operation -fmax36852 fma 1 -1000 sNaN -> NaN Invalid_operation -fmax36853 fma 1 -1 sNaN -> NaN Invalid_operation -fmax36854 fma 1 -0 sNaN -> NaN Invalid_operation -fmax36855 fma 1 0 sNaN -> NaN Invalid_operation -fmax36856 fma 1 1 sNaN -> NaN Invalid_operation -fmax36857 fma 1 1000 sNaN -> NaN Invalid_operation -fmax36858 fma 1 Inf sNaN -> NaN Invalid_operation -fmax36859 fma 1 NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -fmax36861 fma 1 NaN1 -Inf -> NaN1 -fmax36862 fma 1 +NaN2 -1000 -> NaN2 -fmax36863 fma 1 NaN3 1000 -> NaN3 -fmax36864 fma 1 NaN4 Inf -> NaN4 -fmax36865 fma 1 NaN5 +NaN6 -> NaN5 -fmax36866 fma 1 -Inf NaN7 -> NaN7 -fmax36867 fma 1 -1000 NaN8 -> NaN8 -fmax36868 fma 1 1000 NaN9 -> NaN9 -fmax36869 fma 1 Inf +NaN10 -> NaN10 -fmax36871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation -fmax36872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation -fmax36873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation -fmax36874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation -fmax36875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation -fmax36876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation -fmax36877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation -fmax36878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation -fmax36879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation -fmax36880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation -fmax36881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation -fmax36882 fma 1 -NaN26 NaN28 -> -NaN26 -fmax36883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation -fmax36884 fma 1 1000 -NaN30 -> -NaN30 -fmax36885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation - --- now the case where we can get underflow but the result is normal --- [note this can't happen if the operands are also bounded, as we --- cannot represent 1E-399, for example] - -fmax36571 fma 1 1E-383 0 -> 1E-383 -fmax36572 fma 1 1E-384 0 -> 1E-384 Subnormal -fmax36573 fma 1 1E-383 1E-384 -> 1.1E-383 -fmax36574 subtract 1E-383 1E-384 -> 9E-384 Subnormal - --- Here we explore the boundary of rounding a subnormal to Nmin -fmax36575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -fmax36576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal -fmax36577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax36578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax36579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -fmax36580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded - --- check overflow edge case --- 1234567890123456 -fmax36972 apply 9.999999999999999E+384 -> 9.999999999999999E+384 -fmax36973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded -fmax36974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded -fmax36975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded -fmax36976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded -fmax36977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded -fmax36978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded -fmax36979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded -fmax36980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded -fmax36981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded -fmax36982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded -fmax36983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded -fmax36984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded - -fmax36985 apply -9.999999999999999E+384 -> -9.999999999999999E+384 -fmax36986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded -fmax36987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded -fmax36988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded -fmax36989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded -fmax36990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded -fmax36991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded -fmax36992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded -fmax36993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded -fmax36994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded -fmax36995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded -fmax36996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded -fmax36997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded - --- And for round down full and subnormal results -rounding: down -fmax361100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact -fmax361101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact -fmax361103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact -fmax361104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact -fmax361105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact -fmax361106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact -fmax361107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact -fmax361108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact -fmax361109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact - -rounding: ceiling -fmax361110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact -fmax361111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact -fmax361113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact -fmax361114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact -fmax361115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact -fmax361116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact -fmax361117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact -fmax361118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact -fmax361119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact - --- tests based on Gunnar Degnbol's edge case -rounding: half_even - -fmax361300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded -fmax361310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded -fmax361311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded -fmax361312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded -fmax361313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded -fmax361314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded -fmax361315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded -fmax361316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded -fmax361317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded -fmax361318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded -fmax361319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded -fmax361320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded -fmax361321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded -fmax361322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded -fmax361323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded -fmax361324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded -fmax361325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded -fmax361336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded -fmax361337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded -fmax361338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded -fmax361339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded - -fmax361340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded -fmax361341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded - -fmax361349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded -fmax361350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded -fmax361351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded -fmax361352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded -fmax361353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded -fmax361354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded -fmax361355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded -fmax361356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded -fmax361357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded -fmax361358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded -fmax361359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded -fmax361360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded -fmax361361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded -fmax361362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded -fmax361363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded -fmax361364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded -fmax361365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded -fmax361376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded -fmax361377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded -fmax361378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded -fmax361379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded -fmax361380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded -fmax361381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded -fmax361382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded -fmax361392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded -fmax361393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded -fmax361394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded -fmax361395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded -fmax361396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded - --- More GD edge cases, where difference between the unadjusted --- exponents is larger than the maximum precision and one side is 0 -fmax361420 fma 1 0 1.123456789012345 -> 1.123456789012345 -fmax361421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345 -fmax361422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345 -fmax361423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345 -fmax361424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345 -fmax361425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345 -fmax361426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345 -fmax361427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7 -fmax361428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8 -fmax361429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9 -fmax361430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10 -fmax361431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11 -fmax361432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12 -fmax361433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13 -fmax361434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14 -fmax361435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15 -fmax361436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16 -fmax361437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17 -fmax361438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18 -fmax361439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19 - --- same, reversed 0 -fmax361440 fma 1 1.123456789012345 0 -> 1.123456789012345 -fmax361441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345 -fmax361442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345 -fmax361443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345 -fmax361444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345 -fmax361445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345 -fmax361446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345 -fmax361447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7 -fmax361448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8 -fmax361449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9 -fmax361450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10 -fmax361451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11 -fmax361452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12 -fmax361453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13 -fmax361454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14 -fmax361455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15 -fmax361456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16 -fmax361457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17 -fmax361458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18 -fmax361459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19 - --- same, Es on the 0 -fmax361460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345 -fmax361461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345 -fmax361462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345 -fmax361463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345 -fmax361464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345 -fmax361465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345 -fmax361466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345 -fmax361467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345 -fmax361468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345 -fmax361469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345 -fmax361470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345 -fmax361471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345 -fmax361472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345 -fmax361473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345 -fmax361474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345 -fmax361475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345 --- next four flag Rounded because the 0 extends the result -fmax361476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded -fmax361477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded -fmax361478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded -fmax361479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded - --- sum of two opposite-sign operands is exactly 0 and floor => -0 -rounding: half_up --- exact zeros from zeros -fmax361500 fma 1 0 0E-19 -> 0E-19 -fmax361501 fma 1 -0 0E-19 -> 0E-19 -fmax361502 fma 1 0 -0E-19 -> 0E-19 -fmax361503 fma 1 -0 -0E-19 -> -0E-19 -fmax361504 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax361505 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax361506 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax361507 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax361511 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361512 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361513 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361514 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax361515 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361516 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax361517 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax361518 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_down --- exact zeros from zeros -fmax361520 fma 1 0 0E-19 -> 0E-19 -fmax361521 fma 1 -0 0E-19 -> 0E-19 -fmax361522 fma 1 0 -0E-19 -> 0E-19 -fmax361523 fma 1 -0 -0E-19 -> -0E-19 -fmax361524 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax361525 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax361526 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax361527 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax361531 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361532 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361533 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361534 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax361535 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361536 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax361537 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax361538 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: half_even --- exact zeros from zeros -fmax361540 fma 1 0 0E-19 -> 0E-19 -fmax361541 fma 1 -0 0E-19 -> 0E-19 -fmax361542 fma 1 0 -0E-19 -> 0E-19 -fmax361543 fma 1 -0 -0E-19 -> -0E-19 -fmax361544 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax361545 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax361546 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax361547 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax361551 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361552 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361553 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361554 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax361555 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361556 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax361557 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax361558 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: up --- exact zeros from zeros -fmax361560 fma 1 0 0E-19 -> 0E-19 -fmax361561 fma 1 -0 0E-19 -> 0E-19 -fmax361562 fma 1 0 -0E-19 -> 0E-19 -fmax361563 fma 1 -0 -0E-19 -> -0E-19 -fmax361564 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax361565 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax361566 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax361567 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax361571 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax361572 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax361573 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -fmax361574 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -fmax361575 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax361576 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax361577 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax361578 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - -rounding: down --- exact zeros from zeros -fmax361580 fma 1 0 0E-19 -> 0E-19 -fmax361581 fma 1 -0 0E-19 -> 0E-19 -fmax361582 fma 1 0 -0E-19 -> 0E-19 -fmax361583 fma 1 -0 -0E-19 -> -0E-19 -fmax361584 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax361585 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax361586 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax361587 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax361591 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361592 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361593 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361594 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax361595 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361596 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax361597 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax361598 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - -rounding: ceiling --- exact zeros from zeros -fmax361600 fma 1 0 0E-19 -> 0E-19 -fmax361601 fma 1 -0 0E-19 -> 0E-19 -fmax361602 fma 1 0 -0E-19 -> 0E-19 -fmax361603 fma 1 -0 -0E-19 -> -0E-19 -fmax361604 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax361605 fma 1 -0E-400 0E-19 -> 0E-398 Clamped -fmax361606 fma 1 0E-400 -0E-19 -> 0E-398 Clamped -fmax361607 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax361611 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax361612 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax361613 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361614 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped --- some exact zeros from non-zeros -fmax361615 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow -fmax361616 fma 1 -1E-401 1E-401 -> 0E-398 Clamped -fmax361617 fma 1 1E-401 -1E-401 -> 0E-398 Clamped -fmax361618 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped - --- and the extra-special ugly case; unusual minuses marked by -- * -rounding: floor --- exact zeros from zeros -fmax361620 fma 1 0 0E-19 -> 0E-19 -fmax361621 fma 1 -0 0E-19 -> -0E-19 -- * -fmax361622 fma 1 0 -0E-19 -> -0E-19 -- * -fmax361623 fma 1 -0 -0E-19 -> -0E-19 -fmax361624 fma 1 0E-400 0E-19 -> 0E-398 Clamped -fmax361625 fma 1 -0E-400 0E-19 -> -0E-398 Clamped -- * -fmax361626 fma 1 0E-400 -0E-19 -> -0E-398 Clamped -- * -fmax361627 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped --- inexact zeros -fmax361631 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361632 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361633 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -fmax361634 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow --- some exact zeros from non-zeros -fmax361635 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped -fmax361636 fma 1 -1E-401 1E-401 -> -0E-398 Clamped -- * -fmax361637 fma 1 1E-401 -1E-401 -> -0E-398 Clamped -- * -fmax361638 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow - --- Examples from SQL proposal (Krishna Kulkarni) -fmax361701 fma 1 130E-2 120E-2 -> 2.50 -fmax361702 fma 1 130E-2 12E-1 -> 2.50 -fmax361703 fma 1 130E-2 1E0 -> 2.30 -fmax361704 fma 1 1E2 1E4 -> 1.01E+4 -fmax361705 subtract 130E-2 120E-2 -> 0.10 -fmax361706 subtract 130E-2 12E-1 -> 0.10 -fmax361707 subtract 130E-2 1E0 -> 0.30 -fmax361708 subtract 1E2 1E4 -> -9.9E+3 - --- Gappy coefficients; check residue handling even with full coefficient gap -rounding: half_even - -fmax362001 fma 1 1234567890123456 1 -> 1234567890123457 -fmax362002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded -fmax362003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded -fmax362004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded -fmax362005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded -fmax362006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded -fmax362007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded -fmax362008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded -fmax362009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded -fmax362010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded -fmax362011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded -fmax362012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded -fmax362013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded -fmax362014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded -fmax362015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded -fmax362016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded -fmax362017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded -fmax362018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded -fmax362019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded -fmax362020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded -fmax362021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded - --- widening second argument at gap -fmax362030 fma 1 12345678 1 -> 12345679 -fmax362031 fma 1 12345678 0.1 -> 12345678.1 -fmax362032 fma 1 12345678 0.12 -> 12345678.12 -fmax362033 fma 1 12345678 0.123 -> 12345678.123 -fmax362034 fma 1 12345678 0.1234 -> 12345678.1234 -fmax362035 fma 1 12345678 0.12345 -> 12345678.12345 -fmax362036 fma 1 12345678 0.123456 -> 12345678.123456 -fmax362037 fma 1 12345678 0.1234567 -> 12345678.1234567 -fmax362038 fma 1 12345678 0.12345678 -> 12345678.12345678 -fmax362039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded -fmax362040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded -fmax362041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded -fmax362042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded -fmax362043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded -fmax362044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded -fmax362045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded -fmax362046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded -fmax362047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded -fmax362048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded -fmax362049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded --- 90123456 -rounding: half_even -fmax362050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded -fmax362051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded -fmax362052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded -fmax362053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded -fmax362054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded -fmax362055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded -fmax362056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded -fmax362057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded -fmax362060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded -fmax362061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded -fmax362062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded -fmax362063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded -fmax362064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded -fmax362065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded -fmax362066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded -fmax362067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded --- far-out residues (full coefficient gap is 16+15 digits) -rounding: up -fmax362070 fma 1 12345678 1E-8 -> 12345678.00000001 -fmax362071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded -fmax362072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded -fmax362073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded -fmax362074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded -fmax362075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded -fmax362076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded -fmax362077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded -fmax362078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded -fmax362079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded -fmax362080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded -fmax362081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded -fmax362082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded -fmax362083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded -fmax362084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded -fmax362085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded -fmax362086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded -fmax362087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded -fmax362088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded -fmax362089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded - --- payload decapitate x3 -precision: 5 -fmax363000 fma 1 1 sNaN1234567890 -> NaN67890 Invalid_operation -fmax363001 fma 1 -sNaN1234512345 1 -> -NaN12345 Invalid_operation -fmax363002 fma sNaN1234554321 1 1 -> NaN54321 Invalid_operation - --- Null tests -fmax39990 fma 1 10 # -> NaN Invalid_operation -fmax39991 fma 1 # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/inexact.decTest b/qdecimal/test/tc_full/inexact.decTest deleted file mode 100644 index cc59aec..0000000 --- a/qdecimal/test/tc_full/inexact.decTest +++ /dev/null @@ -1,215 +0,0 @@ ------------------------------------------------------------------------- --- inexact.decTest -- decimal inexact and rounded edge cases -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -inx001 add 1 1 -> 2 -inx002 add 123456789 0 -> 123456789 -inx003 add 123456789 0.0 -> 123456789 Rounded -inx004 add 123456789 0.00 -> 123456789 Rounded -inx005 add 123456789 1 -> 123456790 -inx006 add 123456789 0.1 -> 123456789 Inexact Rounded -inx007 add 123456789 0.01 -> 123456789 Inexact Rounded -inx008 add 123456789 0.001 -> 123456789 Inexact Rounded -inx009 add 123456789 0.000001 -> 123456789 Inexact Rounded -inx010 add 123456789 0.000000001 -> 123456789 Inexact Rounded -inx011 add 123456789 0.000000000001 -> 123456789 Inexact Rounded - -inx012 add 123456789 0.9 -> 123456790 Inexact Rounded -inx013 add 123456789 0.09 -> 123456789 Inexact Rounded -inx014 add 123456789 0.009 -> 123456789 Inexact Rounded -inx015 add 123456789 0.000009 -> 123456789 Inexact Rounded -inx016 add 123456789 0.000000009 -> 123456789 Inexact Rounded -inx017 add 123456789 0.000000000009 -> 123456789 Inexact Rounded - -inx021 add 1 -1 -> 0 -inx022 add 123456789 -0 -> 123456789 -inx023 add 123456789 -0.0 -> 123456789 Rounded -inx024 add 123456789 -0.00 -> 123456789 Rounded -inx025 add 123456789 -1 -> 123456788 -inx026 add 123456789 -0.1 -> 123456789 Inexact Rounded -inx027 add 123456789 -0.01 -> 123456789 Inexact Rounded -inx028 add 123456789 -0.001 -> 123456789 Inexact Rounded -inx029 add 123456789 -0.000001 -> 123456789 Inexact Rounded -inx030 add 123456789 -0.000000001 -> 123456789 Inexact Rounded -inx031 add 123456789 -0.000000000001 -> 123456789 Inexact Rounded -inx032 add 123456789 -0.9 -> 123456788 Inexact Rounded -inx033 add 123456789 -0.09 -> 123456789 Inexact Rounded -inx034 add 123456789 -0.009 -> 123456789 Inexact Rounded -inx035 add 123456789 -0.000009 -> 123456789 Inexact Rounded -inx036 add 123456789 -0.000000009 -> 123456789 Inexact Rounded -inx037 add 123456789 -0.000000000009 -> 123456789 Inexact Rounded - -inx042 add 0 123456789 -> 123456789 -inx043 add 0.0 123456789 -> 123456789 Rounded -inx044 add 0.00 123456789 -> 123456789 Rounded -inx045 add 1 123456789 -> 123456790 -inx046 add 0.1 123456789 -> 123456789 Inexact Rounded -inx047 add 0.01 123456789 -> 123456789 Inexact Rounded -inx048 add 0.001 123456789 -> 123456789 Inexact Rounded -inx049 add 0.000001 123456789 -> 123456789 Inexact Rounded -inx050 add 0.000000001 123456789 -> 123456789 Inexact Rounded -inx051 add 0.000000000001 123456789 -> 123456789 Inexact Rounded -inx052 add 0.9 123456789 -> 123456790 Inexact Rounded -inx053 add 0.09 123456789 -> 123456789 Inexact Rounded -inx054 add 0.009 123456789 -> 123456789 Inexact Rounded -inx055 add 0.000009 123456789 -> 123456789 Inexact Rounded -inx056 add 0.000000009 123456789 -> 123456789 Inexact Rounded -inx057 add 0.000000000009 123456789 -> 123456789 Inexact Rounded - -inx062 add -0 123456789 -> 123456789 -inx063 add -0.0 123456789 -> 123456789 Rounded -inx064 add -0.00 123456789 -> 123456789 Rounded -inx065 add -1 123456789 -> 123456788 -inx066 add -0.1 123456789 -> 123456789 Inexact Rounded -inx067 add -0.01 123456789 -> 123456789 Inexact Rounded -inx068 add -0.001 123456789 -> 123456789 Inexact Rounded -inx069 add -0.000001 123456789 -> 123456789 Inexact Rounded -inx070 add -0.000000001 123456789 -> 123456789 Inexact Rounded -inx071 add -0.000000000001 123456789 -> 123456789 Inexact Rounded -inx072 add -0.9 123456789 -> 123456788 Inexact Rounded -inx073 add -0.09 123456789 -> 123456789 Inexact Rounded -inx074 add -0.009 123456789 -> 123456789 Inexact Rounded -inx075 add -0.000009 123456789 -> 123456789 Inexact Rounded -inx076 add -0.000000009 123456789 -> 123456789 Inexact Rounded -inx077 add -0.000000000009 123456789 -> 123456789 Inexact Rounded - --- some boundaries -inx081 add 999999999 0 -> 999999999 -inx082 add 0.999999999 0.000000000 -> 0.999999999 -inx083 add 999999999 1 -> 1.00000000E+9 Rounded -inx084 add 0.999999999 0.000000001 -> 1.00000000 Rounded -inx085 add 999999999 2 -> 1.00000000E+9 Inexact Rounded -inx086 add 0.999999999 0.000000002 -> 1.00000000 Inexact Rounded -inx087 add 999999999 3 -> 1.00000000E+9 Inexact Rounded -inx089 add 0.999999999 0.000000003 -> 1.00000000 Inexact Rounded - --- minus, plus, and subtract all assumed to work like add. - --- multiply -precision: 8 -inx101 multiply 1000 1000 -> 1000000 -inx102 multiply 9000 9000 -> 81000000 -inx103 multiply 9999 9999 -> 99980001 -inx104 multiply 1000 10000 -> 10000000 -inx105 multiply 10000 10000 -> 1.0000000E+8 Rounded -inx106 multiply 10001 10000 -> 1.0001000E+8 Rounded -inx107 multiply 10001 10001 -> 1.0002000E+8 Inexact Rounded -inx108 multiply 10101 10001 -> 1.0102010E+8 Inexact Rounded -inx109 multiply 10001 10101 -> 1.0102010E+8 Inexact Rounded - --- divide -precision: 4 -inx201 divide 1000 1000 -> 1 -inx202 divide 1000 1 -> 1000 -inx203 divide 1000 2 -> 500 -inx204 divide 1000 3 -> 333.3 Inexact Rounded -inx205 divide 1000 4 -> 250 -inx206 divide 1000 5 -> 200 -inx207 divide 1000 6 -> 166.7 Inexact Rounded -inx208 divide 1000 7 -> 142.9 Inexact Rounded -inx209 divide 1000 8 -> 125 -inx210 divide 1000 9 -> 111.1 Inexact Rounded -inx211 divide 1000 10 -> 100 - -inx220 divide 1 1 -> 1 -inx221 divide 1 2 -> 0.5 -inx222 divide 1 4 -> 0.25 -inx223 divide 1 8 -> 0.125 -inx224 divide 1 16 -> 0.0625 -inx225 divide 1 32 -> 0.03125 -inx226 divide 1 64 -> 0.01563 Inexact Rounded -inx227 divide 1 128 -> 0.007813 Inexact Rounded - -precision: 5 -inx230 divide 1 1 -> 1 -inx231 divide 1 2 -> 0.5 -inx232 divide 1 4 -> 0.25 -inx233 divide 1 8 -> 0.125 -inx234 divide 1 16 -> 0.0625 -inx235 divide 1 32 -> 0.03125 -inx236 divide 1 64 -> 0.015625 -inx237 divide 1 128 -> 0.0078125 - -precision: 3 -inx240 divide 1 1 -> 1 -inx241 divide 1 2 -> 0.5 -inx242 divide 1 4 -> 0.25 -inx243 divide 1 8 -> 0.125 -inx244 divide 1 16 -> 0.0625 -inx245 divide 1 32 -> 0.0313 Inexact Rounded -inx246 divide 1 64 -> 0.0156 Inexact Rounded -inx247 divide 1 128 -> 0.00781 Inexact Rounded - -precision: 2 -inx250 divide 1 1 -> 1 -inx251 divide 1 2 -> 0.5 -inx252 divide 1 4 -> 0.25 -inx253 divide 1 8 -> 0.13 Inexact Rounded -inx254 divide 1 16 -> 0.063 Inexact Rounded -inx255 divide 1 32 -> 0.031 Inexact Rounded -inx256 divide 1 64 -> 0.016 Inexact Rounded -inx257 divide 1 128 -> 0.0078 Inexact Rounded - -precision: 1 -inx260 divide 1 1 -> 1 -inx261 divide 1 2 -> 0.5 -inx262 divide 1 4 -> 0.3 Inexact Rounded -inx263 divide 1 8 -> 0.1 Inexact Rounded -inx264 divide 1 16 -> 0.06 Inexact Rounded -inx265 divide 1 32 -> 0.03 Inexact Rounded -inx266 divide 1 64 -> 0.02 Inexact Rounded -inx267 divide 1 128 -> 0.008 Inexact Rounded - - --- power -precision: 4 -inx301 power 0.5 2 -> 0.25 -inx302 power 0.5 4 -> 0.0625 -inx303 power 0.5 8 -> 0.003906 Inexact Rounded -inx304 power 0.5 16 -> 0.00001526 Inexact Rounded -inx305 power 0.5 32 -> 2.328E-10 Inexact Rounded - --- compare, divideInteger, and remainder are always exact - --- rescale -precision: 4 -inx401 rescale 0 0 -> 0 -inx402 rescale 1 0 -> 1 -inx403 rescale 0.1 +2 -> 0E+2 Inexact Rounded -inx404 rescale 0.1 +1 -> 0E+1 Inexact Rounded -inx405 rescale 0.1 0 -> 0 Inexact Rounded -inx406 rescale 0.1 -1 -> 0.1 -inx407 rescale 0.1 -2 -> 0.10 - --- long operands cause rounding too -precision: 9 -inx801 plus 123456789 -> 123456789 -inx802 plus 1234567890 -> 1.23456789E+9 Rounded -inx803 plus 1234567891 -> 1.23456789E+9 Inexact Rounded -inx804 plus 1234567892 -> 1.23456789E+9 Inexact Rounded -inx805 plus 1234567899 -> 1.23456790E+9 Inexact Rounded -inx806 plus 1234567900 -> 1.23456790E+9 Rounded - diff --git a/qdecimal/test/tc_full/invert.decTest b/qdecimal/test/tc_full/invert.decTest deleted file mode 100644 index 3594bb4..0000000 --- a/qdecimal/test/tc_full/invert.decTest +++ /dev/null @@ -1,176 +0,0 @@ ------------------------------------------------------------------------- --- invert.decTest -- digitwise logical INVERT -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check (truth table), and examples from decArith -invx001 invert 0 -> 111111111 -invx002 invert 1 -> 111111110 -invx003 invert 10 -> 111111101 -invx004 invert 111111111 -> 0 -invx005 invert 000000000 -> 111111111 -invx006 invert 101010101 -> '10101010' --- and at msd and msd-1 -invx007 invert 000000000 -> 111111111 -invx009 invert 100000000 -> 11111111 -invx011 invert 000000000 -> 111111111 -invx013 invert 010000000 -> 101111111 - --- Various lengths --- 123456789 123456789 -invx021 invert 111111111 -> 0 -invx022 invert 111111111111 -> 0 -invx023 invert 11111111 -> 100000000 -invx025 invert 1111111 -> 110000000 -invx026 invert 111111 -> 111000000 -invx027 invert 11111 -> 111100000 -invx028 invert 1111 -> 111110000 -invx029 invert 111 -> 111111000 -invx031 invert 11 -> 111111100 -invx032 invert 1 -> 111111110 -invx033 invert 111111111111 -> 0 -invx034 invert 11111111111 -> 0 -invx035 invert 1111111111 -> 0 -invx036 invert 111111111 -> 0 - -invx080 invert 011111111 -> 100000000 -invx081 invert 101111111 -> 10000000 -invx082 invert 110111111 -> 1000000 -invx083 invert 111011111 -> 100000 -invx084 invert 111101111 -> 10000 -invx085 invert 111110111 -> 1000 -invx086 invert 111111011 -> 100 -invx087 invert 111111101 -> 10 -invx088 invert 111111110 -> 1 -invx089 invert 011111011 -> 100000100 -invx090 invert 101111101 -> 10000010 -invx091 invert 110111110 -> 1000001 -invx092 invert 111011101 -> 100010 -invx093 invert 111101011 -> 10100 -invx094 invert 111110111 -> 1000 -invx095 invert 111101011 -> 10100 -invx096 invert 111011101 -> 100010 -invx097 invert 110111110 -> 1000001 -invx098 invert 101111101 -> 10000010 -invx099 invert 011111011 -> 100000100 - --- non-0/1 should not be accepted, nor should signs -invx220 invert 111111112 -> NaN Invalid_operation -invx221 invert 333333333 -> NaN Invalid_operation -invx222 invert 555555555 -> NaN Invalid_operation -invx223 invert 777777777 -> NaN Invalid_operation -invx224 invert 999999999 -> NaN Invalid_operation -invx225 invert 222222222 -> NaN Invalid_operation -invx226 invert 444444444 -> NaN Invalid_operation -invx227 invert 666666666 -> NaN Invalid_operation -invx228 invert 888888888 -> NaN Invalid_operation -invx229 invert 999999999 -> NaN Invalid_operation -invx230 invert 999999999 -> NaN Invalid_operation -invx231 invert 999999999 -> NaN Invalid_operation -invx232 invert 999999999 -> NaN Invalid_operation --- a few randoms -invx240 invert 567468689 -> NaN Invalid_operation -invx241 invert 567367689 -> NaN Invalid_operation -invx242 invert -631917772 -> NaN Invalid_operation -invx243 invert -756253257 -> NaN Invalid_operation -invx244 invert 835590149 -> NaN Invalid_operation --- test MSD -invx250 invert 200000000 -> NaN Invalid_operation -invx251 invert 300000000 -> NaN Invalid_operation -invx252 invert 400000000 -> NaN Invalid_operation -invx253 invert 500000000 -> NaN Invalid_operation -invx254 invert 600000000 -> NaN Invalid_operation -invx255 invert 700000000 -> NaN Invalid_operation -invx256 invert 800000000 -> NaN Invalid_operation -invx257 invert 900000000 -> NaN Invalid_operation --- test MSD-1 -invx270 invert 021000000 -> NaN Invalid_operation -invx271 invert 030100000 -> NaN Invalid_operation -invx272 invert 040010000 -> NaN Invalid_operation -invx273 invert 050001000 -> NaN Invalid_operation -invx274 invert 160000100 -> NaN Invalid_operation -invx275 invert 170000010 -> NaN Invalid_operation -invx276 invert 180000000 -> NaN Invalid_operation -invx277 invert 190000000 -> NaN Invalid_operation --- test LSD -invx280 invert 000000002 -> NaN Invalid_operation -invx281 invert 000000003 -> NaN Invalid_operation -invx282 invert 000000004 -> NaN Invalid_operation -invx283 invert 000000005 -> NaN Invalid_operation -invx284 invert 101000006 -> NaN Invalid_operation -invx285 invert 100100007 -> NaN Invalid_operation -invx286 invert 100010008 -> NaN Invalid_operation -invx287 invert 100001009 -> NaN Invalid_operation --- test Middie -invx288 invert 000020000 -> NaN Invalid_operation -invx289 invert 000030001 -> NaN Invalid_operation -invx290 invert 000040000 -> NaN Invalid_operation -invx291 invert 000050000 -> NaN Invalid_operation -invx292 invert 101060000 -> NaN Invalid_operation -invx293 invert 100170010 -> NaN Invalid_operation -invx294 invert 100080100 -> NaN Invalid_operation -invx295 invert 100091000 -> NaN Invalid_operation --- signs -invx296 invert -100001000 -> NaN Invalid_operation -invx299 invert 100001000 -> 11110111 - --- Nmax, Nmin, Ntiny -invx341 invert 9.99999999E+999 -> NaN Invalid_operation -invx342 invert 1E-999 -> NaN Invalid_operation -invx343 invert 1.00000000E-999 -> NaN Invalid_operation -invx344 invert 1E-1007 -> NaN Invalid_operation -invx345 invert -1E-1007 -> NaN Invalid_operation -invx346 invert -1.00000000E-999 -> NaN Invalid_operation -invx347 invert -1E-999 -> NaN Invalid_operation -invx348 invert -9.99999999E+999 -> NaN Invalid_operation - --- A few other non-integers -invx361 invert 1.0 -> NaN Invalid_operation -invx362 invert 1E+1 -> NaN Invalid_operation -invx363 invert 0.0 -> NaN Invalid_operation -invx364 invert 0E+1 -> NaN Invalid_operation -invx365 invert 9.9 -> NaN Invalid_operation -invx366 invert 9E+1 -> NaN Invalid_operation - --- All Specials are in error -invx788 invert -Inf -> NaN Invalid_operation -invx794 invert Inf -> NaN Invalid_operation -invx821 invert NaN -> NaN Invalid_operation -invx841 invert sNaN -> NaN Invalid_operation --- propagating NaNs -invx861 invert NaN1 -> NaN Invalid_operation -invx862 invert +NaN2 -> NaN Invalid_operation -invx863 invert NaN3 -> NaN Invalid_operation -invx864 invert NaN4 -> NaN Invalid_operation -invx865 invert NaN5 -> NaN Invalid_operation -invx871 invert sNaN11 -> NaN Invalid_operation -invx872 invert sNaN12 -> NaN Invalid_operation -invx873 invert sNaN13 -> NaN Invalid_operation -invx874 invert sNaN14 -> NaN Invalid_operation -invx875 invert sNaN15 -> NaN Invalid_operation -invx876 invert NaN16 -> NaN Invalid_operation -invx881 invert +NaN25 -> NaN Invalid_operation -invx882 invert -NaN26 -> NaN Invalid_operation -invx883 invert -sNaN27 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/ln.decTest b/qdecimal/test/tc_full/ln.decTest deleted file mode 100644 index 3dd19df..0000000 --- a/qdecimal/test/tc_full/ln.decTest +++ /dev/null @@ -1,611 +0,0 @@ ------------------------------------------------------------------------- --- ln.decTest -- decimal natural logarithm -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 16 -rounding: half_even -maxExponent: 384 -minexponent: -383 - --- basics (examples in specification) -precision: 9 -lnxs001 ln 0 -> -Infinity -lnxs002 ln 1.000 -> 0 -lnxs003 ln 2.71828183 -> 1.00000000 Inexact Rounded -lnxs004 ln 10 -> 2.30258509 Inexact Rounded -lnxs005 ln +Infinity -> Infinity - - --- basics -precision: 16 -lnx0001 ln 0 -> -Infinity -lnx0002 ln 1E-9 -> -20.72326583694641 Inexact Rounded -lnx0003 ln 0.0007 -> -7.264430222920869 Inexact Rounded -lnx0004 ln 0.1 -> -2.302585092994046 Inexact Rounded -lnx0005 ln 0.7 -> -0.3566749439387324 Inexact Rounded -lnx0006 ln 1 -> 0 -lnx0007 ln 1.000 -> 0 -lnx0008 ln 1.5 -> 0.4054651081081644 Inexact Rounded -lnx0009 ln 2 -> 0.6931471805599453 Inexact Rounded -lnx0010 ln 2.718281828459045 -> 0.9999999999999999 Inexact Rounded -lnx0011 ln 2.718281828459046 -> 1.000000000000000 Inexact Rounded -lnx0012 ln 2.718281828459047 -> 1.000000000000001 Inexact Rounded -lnx0013 ln 10 -> 2.302585092994046 Inexact Rounded -lnx0014 ln 10.5 -> 2.351375257163478 Inexact Rounded -lnx0015 ln 9999 -> 9.210240366975849 Inexact Rounded -lnx0016 ln 1E6 -> 13.81551055796427 Inexact Rounded -lnx0017 ln 1E+9 -> 20.72326583694641 Inexact Rounded -lnx0018 ln +Infinity -> Infinity - --- notable cases --- negatives -lnx0021 ln -1E-9 -> NaN Invalid_operation -lnx0022 ln -0.0007 -> NaN Invalid_operation -lnx0023 ln -0.1 -> NaN Invalid_operation -lnx0024 ln -0.7 -> NaN Invalid_operation -lnx0025 ln -1 -> NaN Invalid_operation -lnx0026 ln -1.5 -> NaN Invalid_operation -lnx0027 ln -2 -> NaN Invalid_operation -lnx0029 ln -10.5 -> NaN Invalid_operation -lnx0028 ln -9999 -> NaN Invalid_operation -lnx0030 ln -2.718281828459045 -> NaN Invalid_operation -lnx0031 ln -2.718281828459046 -> NaN Invalid_operation -lnx0032 ln -0 -> -Infinity -lnx0033 ln -0E+17 -> -Infinity -lnx0034 ln -0E-17 -> -Infinity --- other zeros -lnx0041 ln 0 -> -Infinity -lnx0042 ln 0E+17 -> -Infinity -lnx0043 ln 0E-17 -> -Infinity --- infinities -lnx0045 ln -Infinity -> NaN Invalid_operation -lnx0046 ln +Infinity -> Infinity --- ones -lnx0050 ln 1 -> 0 -lnx0051 ln 1.0 -> 0 -lnx0052 ln 1.000000000000000 -> 0 -lnx0053 ln 1.000000000000000000 -> 0 - --- lower precision basics -Precision: 7 -lnx0101 ln 0 -> -Infinity -lnx0102 ln 1E-9 -> -20.72327 Inexact Rounded -lnx0103 ln 0.0007 -> -7.264430 Inexact Rounded -lnx0104 ln 0.1 -> -2.302585 Inexact Rounded -lnx0105 ln 0.7 -> -0.3566749 Inexact Rounded -lnx0106 ln 1 -> 0 -lnx0107 ln 1.5 -> 0.4054651 Inexact Rounded -lnx0108 ln 2 -> 0.6931472 Inexact Rounded -lnx0109 ln 2.718281828459045 -> 1.000000 Inexact Rounded -lnx0110 ln 2.718281828459046 -> 1.000000 Inexact Rounded -lnx0111 ln 2.718281828459047 -> 1.000000 Inexact Rounded -lnx0112 ln 10 -> 2.302585 Inexact Rounded -lnx0113 ln 10.5 -> 2.351375 Inexact Rounded -lnx0114 ln 9999 -> 9.210240 Inexact Rounded -lnx0115 ln 1E6 -> 13.81551 Inexact Rounded -lnx0116 ln 1E+9 -> 20.72327 Inexact Rounded -lnx0117 ln +Infinity -> Infinity -Precision: 2 -lnx0121 ln 0 -> -Infinity -lnx0122 ln 1E-9 -> -21 Inexact Rounded -lnx0123 ln 0.0007 -> -7.3 Inexact Rounded -lnx0124 ln 0.1 -> -2.3 Inexact Rounded -lnx0125 ln 0.7 -> -0.36 Inexact Rounded -lnx0126 ln 1 -> 0 -lnx0127 ln 1.5 -> 0.41 Inexact Rounded -lnx0128 ln 2 -> 0.69 Inexact Rounded -lnx0129 ln 2.718281828459045 -> 1.0 Inexact Rounded -lnx0130 ln 2.718281828459046 -> 1.0 Inexact Rounded -lnx0131 ln 2.718281828459047 -> 1.0 Inexact Rounded -lnx0132 ln 10 -> 2.3 Inexact Rounded -lnx0133 ln 10.5 -> 2.4 Inexact Rounded -lnx0134 ln 9999 -> 9.2 Inexact Rounded -lnx0135 ln 1E6 -> 14 Inexact Rounded -lnx0136 ln 1E+9 -> 21 Inexact Rounded -lnx0137 ln +Infinity -> Infinity -Precision: 1 -lnx0141 ln 0 -> -Infinity -lnx0142 ln 1E-9 -> -2E+1 Inexact Rounded -lnx0143 ln 0.0007 -> -7 Inexact Rounded -lnx0144 ln 0.1 -> -2 Inexact Rounded -lnx0145 ln 0.7 -> -0.4 Inexact Rounded -lnx0146 ln 1 -> 0 -lnx0147 ln 1.5 -> 0.4 Inexact Rounded -lnx0148 ln 2 -> 0.7 Inexact Rounded -lnx0149 ln 2.718281828459045 -> 1 Inexact Rounded -lnx0150 ln 2.718281828459046 -> 1 Inexact Rounded -lnx0151 ln 2.718281828459047 -> 1 Inexact Rounded -lnx0152 ln 10 -> 2 Inexact Rounded -lnx0153 ln 10.5 -> 2 Inexact Rounded -lnx0154 ln 9999 -> 9 Inexact Rounded -lnx0155 ln 1E6 -> 1E+1 Inexact Rounded -lnx0156 ln 1E+9 -> 2E+1 Inexact Rounded -lnx0157 ln +Infinity -> Infinity - --- group low-precision ln(1)s: -precision: 1 -lnx0161 ln 1 -> 0 -precision: 2 -lnx0162 ln 1 -> 0 -precision: 3 -lnx0163 ln 1 -> 0 -precision: 4 -lnx0164 ln 1 -> 0 -precision: 5 -lnx0165 ln 1 -> 0 -precision: 6 -lnx0166 ln 1 -> 0 -precision: 7 -lnx0167 ln 1 -> 0 -precision: 8 -lnx0168 ln 1 -> 0 - --- edge-test ln(2) and ln(10) in case of lookasides -precision: 45 -lnx201 ln 2 -> 0.693147180559945309417232121458176568075500134 Inexact Rounded -lnx202 ln 10 -> 2.30258509299404568401799145468436420760110149 Inexact Rounded -precision: 44 -lnx203 ln 2 -> 0.69314718055994530941723212145817656807550013 Inexact Rounded -lnx204 ln 10 -> 2.3025850929940456840179914546843642076011015 Inexact Rounded -precision: 43 -lnx205 ln 2 -> 0.6931471805599453094172321214581765680755001 Inexact Rounded -lnx206 ln 10 -> 2.302585092994045684017991454684364207601101 Inexact Rounded -precision: 42 -lnx207 ln 2 -> 0.693147180559945309417232121458176568075500 Inexact Rounded -lnx208 ln 10 -> 2.30258509299404568401799145468436420760110 Inexact Rounded -precision: 41 -lnx209 ln 2 -> 0.69314718055994530941723212145817656807550 Inexact Rounded -lnx210 ln 10 -> 2.3025850929940456840179914546843642076011 Inexact Rounded -precision: 40 -lnx211 ln 2 -> 0.6931471805599453094172321214581765680755 Inexact Rounded -lnx212 ln 10 -> 2.302585092994045684017991454684364207601 Inexact Rounded -precision: 39 -lnx213 ln 2 -> 0.693147180559945309417232121458176568076 Inexact Rounded -lnx214 ln 10 -> 2.30258509299404568401799145468436420760 Inexact Rounded -precision: 38 -lnx215 ln 2 -> 0.69314718055994530941723212145817656808 Inexact Rounded -lnx216 ln 10 -> 2.3025850929940456840179914546843642076 Inexact Rounded -precision: 37 -lnx217 ln 2 -> 0.6931471805599453094172321214581765681 Inexact Rounded -lnx218 ln 10 -> 2.302585092994045684017991454684364208 Inexact Rounded -precision: 36 -lnx219 ln 2 -> 0.693147180559945309417232121458176568 Inexact Rounded -lnx220 ln 10 -> 2.30258509299404568401799145468436421 Inexact Rounded -precision: 35 -lnx221 ln 2 -> 0.69314718055994530941723212145817657 Inexact Rounded -lnx222 ln 10 -> 2.3025850929940456840179914546843642 Inexact Rounded -precision: 34 -lnx223 ln 2 -> 0.6931471805599453094172321214581766 Inexact Rounded -lnx224 ln 10 -> 2.302585092994045684017991454684364 Inexact Rounded -precision: 33 -lnx225 ln 2 -> 0.693147180559945309417232121458177 Inexact Rounded -lnx226 ln 10 -> 2.30258509299404568401799145468436 Inexact Rounded -precision: 32 -lnx227 ln 2 -> 0.69314718055994530941723212145818 Inexact Rounded -lnx228 ln 10 -> 2.3025850929940456840179914546844 Inexact Rounded -precision: 31 -lnx229 ln 2 -> 0.6931471805599453094172321214582 Inexact Rounded -lnx230 ln 10 -> 2.302585092994045684017991454684 Inexact Rounded -precision: 30 -lnx231 ln 2 -> 0.693147180559945309417232121458 Inexact Rounded -lnx232 ln 10 -> 2.30258509299404568401799145468 Inexact Rounded - --- extreme input range values -maxExponent: 384 -minExponent: -383 -Precision: 16 - -lnx0901 ln 1e-400 -> -921.0340371976183 Inexact Rounded -lnx0902 ln 1e+400 -> 921.0340371976183 Inexact Rounded -lnx0903 ln 1e-999999 -> -2302582.790408953 Inexact Rounded -lnx0904 ln 1e+999999 -> 2302582.790408953 Inexact Rounded -lnx0905 ln 1e-1000013 -> -2302615.026600255 Inexact Rounded -lnx0906 ln 2e-1000013 -> -2302614.333453074 Inexact Rounded - -lnx0910 ln 9.999999e+999999 -> 2302585.092993946 Inexact Rounded -lnx0911 ln 9.9999999e+999999 -> 2302585.092994036 Inexact Rounded -lnx0912 ln 9.99999999e+999999 -> 2302585.092994045 Inexact Rounded -lnx0913 ln 9.999999999e+999999 -> 2302585.092994046 Inexact Rounded -lnx0914 ln 9.999999999999e+999999 -> 2302585.092994046 Inexact Rounded -lnx0915 ln 9.999999999999999e+999999 -> 2302585.092994046 Inexact Rounded -lnx0916 ln 9.999999999999999999999999e+999999 -> 2302585.092994046 Inexact Rounded - --- randoms --- P=50, within 0-999 -Precision: 50 -maxExponent: 384 -minExponent: -383 -lnx1501 ln 0.00098800906574486388604608477869812518857023768951 -> -6.9198186844033787995945147836955586009548513043689 Inexact Rounded -lnx1502 ln 158.15866624664623070184595045304145949900714987827 -> 5.0635987458895647454907806507503825602758392287684 Inexact Rounded -lnx1503 ln 0.00565661412059571925040285814021799775249288309321 -> -5.1749297776760632102047540300491550931651318975237 Inexact Rounded -lnx1504 ln 0.00000006914232532620489602008402091666547903180607 -> -16.487098770877825308138976818688771638172333034347 Inexact Rounded -lnx1505 ln 0.00025380374621297657504661540749355251231770070723 -> -8.2789492423005003205242162741569033124260321954589 Inexact Rounded -lnx1506 ln 83.033654063877426261108592599182418953442677554806 -> 4.4192459962647137976949249810815698465031609843669 Inexact Rounded -lnx1507 ln 0.00000000416863228092481651627734668440663678118729 -> -19.295677845122141772791294599714950175284915666430 Inexact Rounded -lnx1508 ln 0.00000140847873187820570181214271960511080523457669 -> -13.473000349581967189668305314384952251556809480339 Inexact Rounded -lnx1509 ln 66.176106555181527101630351127583944689752069132522 -> 4.1923194696232505883666171116966137694013431504252 Inexact Rounded -lnx1510 ln 0.00000000000009899043487403590900111602024562297908 -> -29.943753166877840985821508112917991506656545174163 Inexact Rounded -lnx1511 ln 0.00000000000324618296721747097510453388683912733569 -> -26.453541281444586819009546418577507163362590139422 Inexact Rounded -lnx1512 ln 72.646968818463546449499147579023555008392860423385 -> 4.2856116660689646882852128853423566276718230426479 Inexact Rounded -lnx1513 ln 0.00000000000000066755483124635612574263153825990523 -> -34.942910142802769319262875080398852491588707172483 Inexact Rounded -lnx1514 ln 61.002910447202398204114909451851111424657671911002 -> 4.1109215752843377323363182051446177066434038096529 Inexact Rounded -lnx1515 ln 917.06917611331980999227893584010544542312239174774 -> 6.8211829068303114128752453661946446979787826282907 Inexact Rounded -lnx1516 ln 0.00000000170823794883673083358549749078972003965194 -> -20.187803436976150477297246666771626827057191023004 Inexact Rounded -lnx1517 ln 0.53731767845358224445809761315159249898566542910649 -> -0.62116577939968409211736413628236285160048357000961 Inexact Rounded -lnx1518 ln 0.00000000000000008965291392882804161299758708033373 -> -36.950585970980857376081265073276303670820056916206 Inexact Rounded -lnx1519 ln 0.00000000006990244916026429904498278982530170295668 -> -23.383920429244457578373523508427783144589480420753 Inexact Rounded -lnx1520 ln 4.0312542977070300070506064666536478373801988540614 -> 1.3940775676592451945795752796421391871302024763305 Inexact Rounded -lnx1521 ln 271.84991311551875601432518819562391699324632396423 -> 5.6052501239873862517916679747146539808077431873478 Inexact Rounded -lnx1522 ln 7.4118671629373864667229445746862314443895404818689 -> 2.0030823863706344628239147639318289961917060121141 Inexact Rounded -lnx1523 ln 0.00000000000002026311452625364905357321664186034258 -> -31.529974180054438792043856877314043794320951134754 Inexact Rounded -lnx1524 ln 0.00000000000009563398651261756952398250624737809347 -> -29.978248130576972953141284136962670021368834792579 Inexact Rounded -lnx1525 ln 0.00000000009556772669409858653026558223465197808991 -> -23.071185939748285541228206161472956661196956741186 Inexact Rounded -lnx1526 ln 6.8441648298027301292342057248737326152250794026761 -> 1.9233964395801946597272589473417948024361005082908 Inexact Rounded -lnx1527 ln 0.00000000000073059699884439979394945822035704264577 -> -27.944914388353724718836101828677771967128509603158 Inexact Rounded -lnx1528 ln 0.00000000000000002610078280419082263138064745416787 -> -38.184566367516207885573773320135965798717120735115 Inexact Rounded -lnx1529 ln 0.00000000000000000150259517166294243088546806083283 -> -41.039337946266676108538170837580051699618334928421 Inexact Rounded -lnx1530 ln 0.00000000000000087919160541714580707181969708502091 -> -34.667528818827671507514319744047440696187358676848 Inexact Rounded -lnx1531 ln 0.00000000000395726725120787763271849577708068584598 -> -26.255467416961357741818735787226671938678424748431 Inexact Rounded -lnx1532 ln 0.00000000002014334901669366218018377213150715938355 -> -24.628146955635359035289123027319969201693737159108 Inexact Rounded -lnx1533 ln 0.00000008097927101101093117753938766241442896030637 -> -16.329072628469715178637178365710373398203190937454 Inexact Rounded -lnx1534 ln 0.00000000000017115834162632864392039668116243984176 -> -29.396187292434898225453626794459285157263177528034 Inexact Rounded -lnx1535 ln 0.39168317593866334087305459933723864294857086105035 -> -0.93730199062757240485836637306785037368746737693029 Inexact Rounded -lnx1536 ln 79.335036798971515026519630103325369729637514127617 -> 4.3736798570287828823772149735170431010616961976965 Inexact Rounded -lnx1537 ln 0.00000000000000056004952129926137413602116591493625 -> -35.118506463181870020730685884333000241039028127213 Inexact Rounded -lnx1538 ln 0.00000006006035907843890918832481099660639553666078 -> -16.627915795747112566532705974853114454405010472043 Inexact Rounded -lnx1539 ln 0.00000000085242024937414906371333826574632450587590 -> -20.882941460268101080186482230657774997273494107221 Inexact Rounded -lnx1540 ln 0.00000000000043671099499262350316173246550771951561 -> -28.459504757285639221776305968469058854558726593945 Inexact Rounded - --- P=34, within 0-999 -Precision: 34 -lnx1201 ln 0.0086732880815927182997566810334394 -> -4.747507311920844752486938187973721 Inexact Rounded -lnx1202 ln 0.0007104103693460260609792222569854 -> -7.249667769903503023005549250347695 Inexact Rounded -lnx1203 ln 786.8398945385105190697541493392742 -> 6.668024790031836340471824147010546 Inexact Rounded -lnx1204 ln 0.7723073620282687656895190171967399 -> -0.2583726708506850868786816238217326 Inexact Rounded -lnx1205 ln 0.0061057951517197631287183938412200 -> -5.098516933918797347064454103742635 Inexact Rounded -lnx1206 ln 0.6181379708184393730103917562498745 -> -0.4810435926903365087463387760350021 Inexact Rounded -lnx1207 ln 09.13888261229039989110753389096760 -> 2.212538125507975574509563027696021 Inexact Rounded -lnx1208 ln 802.0105417063143696497292158147174 -> 6.687121752052341737234832203350214 Inexact Rounded -lnx1209 ln 778.7749710387773713523028497333058 -> 6.657722135126935472086625031413031 Inexact Rounded -lnx1210 ln 0.0024457295895346502513567679390616 -> -6.013411799940245345321348290398517 Inexact Rounded -lnx1211 ln 0.0000511296947872828310338864217860 -> -9.881145118237281798081573131711636 Inexact Rounded -lnx1212 ln 0.0000246803508602554924938685155658 -> -10.60950314264825661825360971430218 Inexact Rounded -lnx1213 ln 9.027898199253511668242977766616082 -> 2.200319582778899029786017830557293 Inexact Rounded -lnx1214 ln 0.0991812396542505631850692800904188 -> -2.310806398964672258823043180400384 Inexact Rounded -lnx1215 ln 0.0000000000070238810143028811223924 -> -25.68170519961636647174714538290075 Inexact Rounded -lnx1216 ln 2.630101665342826494730394729313167 -> 0.9670225014664367465128243039749559 Inexact Rounded -lnx1217 ln 0.0056878928594359587691526063254683 -> -5.169415422904037819736637399445096 Inexact Rounded -lnx1218 ln 567.3436047121057843908106573095590 -> 6.340965124964258486463444360787970 Inexact Rounded -lnx1219 ln 1.199291248124655996614605745649725 -> 0.1817307557425911805765087755675657 Inexact Rounded -lnx1220 ln 25.02050448582031098696267479135557 -> 3.219695668137659139544178905459317 Inexact Rounded -lnx1221 ln 0.0000000000009939597023558756961300 -> -27.63707972996537636504396558259058 Inexact Rounded -lnx1222 ln 0.0000007988551670159429716506430403 -> -14.04008617542597230988198612376415 Inexact Rounded -lnx1223 ln 4.681515800176129184873770605589795 -> 1.543621946415383338972124445445748 Inexact Rounded -lnx1224 ln 15.95126669161103011206658749345781 -> 2.769538242479483539275986395443539 Inexact Rounded -lnx1225 ln 0.0301626783922211213675457279076066 -> -3.501149933677283341023932281826341 Inexact Rounded -lnx1226 ln 000.0040544064881821770528475185674 -> -5.507950967557021671647165889608324 Inexact Rounded -lnx1227 ln 29.01617095935593792095913785100360 -> 3.367853293862745651888450004473297 Inexact Rounded -lnx1228 ln 78.01836167344736733024804243195323 -> 4.356944205055768575987781375003992 Inexact Rounded -lnx1229 ln 0.0000000096545319316965321158634893 -> -18.45583840160965814462095477365013 Inexact Rounded -lnx1230 ln 97.95475237720579752770587185074428 -> 4.584505661612812742208619358214729 Inexact Rounded -lnx1231 ln 528.0609262050423246402564228432371 -> 6.269211667589138113396583894315956 Inexact Rounded -lnx1232 ln 0.0000002250064349732969696660452972 -> -15.30713683526963996712167701738724 Inexact Rounded -lnx1233 ln 47.97063637767998658567199049725754 -> 3.870589081585660692195989854842372 Inexact Rounded -lnx1234 ln 0.0005394311344541432318853513414361 -> -7.524995428393925934087126702974121 Inexact Rounded -lnx1235 ln 0.0000000090973385649567471674972633 -> -18.51528393158931783447035004125791 Inexact Rounded -lnx1236 ln 0.0000000000238776490227576197317977 -> -24.45807828188389561331158879207262 Inexact Rounded -lnx1237 ln 0.0000236587000231921532145326218758 -> -10.65177964499823314952429277979034 Inexact Rounded -lnx1238 ln 499.1277448846130709827154556125942 -> 6.212862064761427967461188083514774 Inexact Rounded -lnx1239 ln 0.0000003960192300284787663712417647 -> -14.74180306619298548093697608293284 Inexact Rounded -lnx1240 ln 41.08268350829477451667228892495136 -> 3.715586706887278039173584859218960 Inexact Rounded - --- P=16, within 0-99 -Precision: 16 -lnx1101 ln 7.964875261033948 -> 2.075041282352241 Inexact Rounded -lnx1102 ln 13.54527396845394 -> 2.606037701870263 Inexact Rounded -lnx1103 ln 0.0008026554341331 -> -7.127585034321814 Inexact Rounded -lnx1104 ln 0.0000030582233261 -> -12.69767642300625 Inexact Rounded -lnx1105 ln 0.0004477497509672 -> -7.711276073210766 Inexact Rounded -lnx1106 ln 7.616268622474371 -> 2.030286567675148 Inexact Rounded -lnx1107 ln 51.58329925806381 -> 3.943197962309569 Inexact Rounded -lnx1108 ln 0.0018197497951263 -> -6.309056262549345 Inexact Rounded -lnx1109 ln 2.956282457072984 -> 1.083932552334575 Inexact Rounded -lnx1110 ln 0.3843325579189906 -> -0.9562470649400558 Inexact Rounded -lnx1111 ln 0.0074466329265663 -> -4.899993304919237 Inexact Rounded -lnx1112 ln 0.0003372478532993 -> -7.994692428206378 Inexact Rounded -lnx1113 ln 0.0084792263167809 -> -4.770136069569271 Inexact Rounded -lnx1114 ln 5.926756998151102 -> 1.779477182834305 Inexact Rounded -lnx1115 ln 9.025699152180897 -> 2.200075969604119 Inexact Rounded -lnx1116 ln 1.910124643533526 -> 0.6471684983238183 Inexact Rounded -lnx1117 ln 0.8158922711411020 -> -0.2034729533939387 Inexact Rounded -lnx1118 ln 0.0067080016475322 -> -5.004454189414139 Inexact Rounded -lnx1119 ln 0.0047583242092716 -> -5.347859729601094 Inexact Rounded -lnx1120 ln 0.0386647411641339 -> -3.252827175263113 Inexact Rounded -lnx1121 ln 0.0050226427841761 -> -5.293799032774131 Inexact Rounded -lnx1122 ln 6.927937541637261 -> 1.935562155866906 Inexact Rounded -lnx1123 ln 0.0000095745343513 -> -11.55640365579814 Inexact Rounded -lnx1124 ln 1.602465492956538 -> 0.4715433763243936 Inexact Rounded -lnx1125 ln 38.98415625087535 -> 3.663155313610213 Inexact Rounded -lnx1126 ln 5.343182042276734 -> 1.675821363568112 Inexact Rounded -lnx1127 ln 55.89763703245816 -> 4.023522107934110 Inexact Rounded -lnx1128 ln 0.7445257810280847 -> -0.2950077988101030 Inexact Rounded -lnx1129 ln 1.631407314946094 -> 0.4894430257201248 Inexact Rounded -lnx1130 ln 0.0005462451932602 -> -7.512442611116852 Inexact Rounded -lnx1131 ln 0.0000864173269362 -> -9.356322359017317 Inexact Rounded -lnx1132 ln 5.227161719132849 -> 1.653868438439637 Inexact Rounded -lnx1133 ln 60.57078466941998 -> 4.103812675662452 Inexact Rounded -lnx1134 ln 0.0992864325333160 -> -2.309746348350318 Inexact Rounded -lnx1135 ln 09.48564268447325 -> 2.249779359074983 Inexact Rounded -lnx1136 ln 0.0036106089355634 -> -5.623878840650787 Inexact Rounded -lnx1137 ln 1.805176865587172 -> 0.5906585734593707 Inexact Rounded -lnx1138 ln 62.59363259642255 -> 4.136663557220559 Inexact Rounded -lnx1139 ln 4.373828261137201 -> 1.475638657912000 Inexact Rounded -lnx1140 ln 0.994483524148738 -> -0.005531747794938690 Inexact Rounded - --- P=7, within 0-9 -Precision: 7 -lnx1001 ln 0.0912025 -> -2.394673 Inexact Rounded -lnx1002 ln 0.9728626 -> -0.02751242 Inexact Rounded -lnx1003 ln 0.3886032 -> -0.9451965 Inexact Rounded -lnx1004 ln 8.798639 -> 2.174597 Inexact Rounded -lnx1005 ln 2.459121 -> 0.8998040 Inexact Rounded -lnx1006 ln 2.013193 -> 0.6997220 Inexact Rounded -lnx1007 ln 9.064857 -> 2.204405 Inexact Rounded -lnx1008 ln 5.796417 -> 1.757240 Inexact Rounded -lnx1009 ln 0.1143471 -> -2.168517 Inexact Rounded -lnx1010 ln 0.5341542 -> -0.6270707 Inexact Rounded -lnx1011 ln 6.693781 -> 1.901179 Inexact Rounded -lnx1012 ln 0.0081779 -> -4.806320 Inexact Rounded -lnx1013 ln 8.313616 -> 2.117895 Inexact Rounded -lnx1014 ln 3.486925 -> 1.249020 Inexact Rounded -lnx1015 ln 0.1801401 -> -1.714020 Inexact Rounded -lnx1016 ln 0.5227148 -> -0.6487193 Inexact Rounded -lnx1017 ln 7.818111 -> 2.056443 Inexact Rounded -lnx1018 ln 0.0870671 -> -2.441076 Inexact Rounded -lnx1019 ln 8.153966 -> 2.098504 Inexact Rounded -lnx1020 ln 2.040975 -> 0.7134276 Inexact Rounded -lnx1021 ln 1.481642 -> 0.3931509 Inexact Rounded -lnx1022 ln 0.2610123 -> -1.343188 Inexact Rounded -lnx1023 ln 0.466723 -> -0.7620193 Inexact Rounded -lnx1024 ln 0.0518756 -> -2.958907 Inexact Rounded -lnx1025 ln 2.056410 -> 0.7209617 Inexact Rounded -lnx1026 ln 0.181522 -> -1.706378 Inexact Rounded -lnx1027 ln 0.515551 -> -0.6625190 Inexact Rounded -lnx1028 ln 8.425089 -> 2.131214 Inexact Rounded -lnx1029 ln 2.077091 -> 0.7309684 Inexact Rounded -lnx1030 ln 6.212705 -> 1.826596 Inexact Rounded -lnx1031 ln 5.729343 -> 1.745601 Inexact Rounded -lnx1032 ln 4.831251 -> 1.575105 Inexact Rounded -lnx1033 ln 2.029760 -> 0.7079176 Inexact Rounded -lnx1034 ln 8.615060 -> 2.153512 Inexact Rounded -lnx1035 ln 0.0611511 -> -2.794407 Inexact Rounded -lnx1036 ln 5.195269 -> 1.647748 Inexact Rounded -lnx1037 ln 9.617686 -> 2.263604 Inexact Rounded -lnx1038 ln 0.0049382 -> -5.310754 Inexact Rounded -lnx1039 ln 2.786840 -> 1.024908 Inexact Rounded -lnx1040 ln 0.0091073 -> -4.698679 Inexact Rounded - --- from here 3-digit tests are based on reverse exp tests -precision: 9 -rounding: half_even -maxExponent: 384 -minexponent: -383 - -lnx001 ln 0 -> -Infinity -lnx002 ln 0.367879441 -> -1.00000000 Inexact Rounded -lnx003 ln 1 -> 0 -lnx005 ln 2.71828183 -> 1.00000000 Inexact Rounded -lnx006 ln 2.00000000 -> 0.693147181 Inexact Rounded -lnx007 ln +Infinity -> Infinity - --- tiny edge cases -precision: 7 -lnx011 ln 1.105171 -> 0.1000001 Inexact Rounded -lnx012 ln 1.010050 -> 0.009999835 Inexact Rounded -lnx013 ln 1.000010 -> 0.000009999950 Inexact Rounded -lnx014 ln 1.000001 -> 9.999995E-7 Inexact Rounded -lnx015 ln 1.000000 -> 0 - --- basic e=0, e=1, e=2, e=4, e>=8 cases -precision: 7 -lnx041 ln 2.718282 -> 1.000000 Inexact Rounded -lnx042 ln 0.3678794 -> -1.000000 Inexact Rounded -lnx043 ln 22026.47 -> 10.00000 Inexact Rounded -lnx044 ln 0.00004539993 -> -10.00000 Inexact Rounded -lnx045 ln 2.688117E+43 -> 100.0000 Inexact Rounded -lnx046 ln 3.720076E-44 -> -100.0000 Inexact Rounded -lnx047 ln Infinity -> Infinity -lnx048 ln 0E-389 -> -Infinity - --- miscellanea -precision: 16 -lnx055 ln 2.717658486884572E-236 -> -542.4103112874415 Inexact Rounded -precision: 17 -lnx056 ln 2.7176584868845721E-236 -> -542.41031128744146 Inexact Rounded -precision: 18 -lnx057 ln 2.71765848688457211E-236 -> -542.410311287441459 Inexact Rounded -precision: 19 -lnx058 ln 2.717658486884572112E-236 -> -542.4103112874414592 Inexact Rounded -precision: 20 -lnx059 ln 2.7176584868845721118E-236 -> -542.41031128744145917 Inexact Rounded - --- inputs ending in ..500.., ..499.., ..100.., ..999.. sequences -precision: 50 -lnx102 ln 0.9999999100000040499998785000027 -> -9.0000000000000000000000033749953829996446124861750E-8 Inexact Rounded -precision: 30 -lnx103 ln 0.999999910000004049999878500003 -> -8.99999999999999999999997337499E-8 Inexact Rounded -precision: 29 -lnx104 ln 0.99999991000000404999987850000 -> -9.0000000000000000000002733750E-8 Inexact Rounded -precision: 28 -lnx105 ln 0.9999999100000040499998785000 -> -9.000000000000000000000273375E-8 Inexact Rounded -precision: 27 -lnx106 ln 0.999999910000004049999878500 -> -9.00000000000000000000027338E-8 Inexact Rounded -precision: 26 -lnx107 ln 0.99999991000000404999987850 -> -9.0000000000000000000002734E-8 Inexact Rounded -precision: 25 -lnx108 ln 0.9999999100000040499998785 -> -9.000000000000000000000273E-8 Inexact Rounded -precision: 24 -lnx109 ln 0.999999910000004049999879 -> -8.99999999999999995000027E-8 Inexact Rounded -precision: 23 -lnx110 ln 0.99999991000000404999988 -> -8.9999999999999998500003E-8 Inexact Rounded -precision: 22 -lnx111 ln 0.9999999100000040499999 -> -8.999999999999997850000E-8 Inexact Rounded -precision: 21 -lnx112 ln 0.999999910000004050000 -> -8.99999999999998785000E-8 Inexact Rounded -precision: 20 -lnx113 ln 0.99999991000000405000 -> -8.9999999999999878500E-8 Inexact Rounded -precision: 19 -lnx114 ln 0.9999999100000040500 -> -8.999999999999987850E-8 Inexact Rounded -precision: 18 -lnx115 ln 0.999999910000004050 -> -8.99999999999998785E-8 Inexact Rounded --- next may be a > 0.5ulp case; a more precise answer is: --- -8.99999999999998784999918E-8 -precision: 17 -lnx116 ln 0.99999991000000405 -> -8.9999999999999878E-8 Inexact Rounded -precision: 16 -lnx117 ln 0.9999999100000040 -> -9.000000004999988E-8 Inexact Rounded -precision: 15 -lnx118 ln 0.999999910000004 -> -9.00000000499999E-8 Inexact Rounded -precision: 14 -lnx119 ln 0.99999991000000 -> -9.0000004050000E-8 Inexact Rounded -precision: 13 -lnx120 ln 0.9999999100000 -> -9.000000405000E-8 Inexact Rounded -precision: 12 -lnx121 ln 0.999999910000 -> -9.00000040500E-8 Inexact Rounded -precision: 11 -lnx122 ln 0.99999991000 -> -9.0000004050E-8 Inexact Rounded -precision: 10 -lnx123 ln 0.9999999100 -> -9.000000405E-8 Inexact Rounded -precision: 9 -lnx124 ln 0.999999910 -> -9.00000041E-8 Inexact Rounded -precision: 8 -lnx125 ln 0.99999991 -> -9.0000004E-8 Inexact Rounded -precision: 7 -lnx126 ln 0.9999999 -> -1.000000E-7 Inexact Rounded -precision: 16 -lnx126b ln 0.9999999 -> -1.000000050000003E-7 Inexact Rounded -precision: 6 -lnx127 ln 0.999999 -> -0.00000100000 Inexact Rounded -precision: 5 -lnx128 ln 0.99999 -> -0.000010000 Inexact Rounded -precision: 4 -lnx129 ln 0.9999 -> -0.0001000 Inexact Rounded -precision: 3 -lnx130 ln 0.999 -> -0.00100 Inexact Rounded -precision: 2 -lnx131 ln 0.99 -> -0.010 Inexact Rounded -precision: 1 -lnx132 ln 0.9 -> -0.1 Inexact Rounded - - --- cases near 1 -- 1 2345678901234567890 -precision: 20 -lnx401 ln 2.7182818284589365041 -> 0.99999999999996000000 Inexact Rounded -lnx402 ln 2.7182818284589636869 -> 0.99999999999997000000 Inexact Rounded -lnx403 ln 2.7182818284589908697 -> 0.99999999999997999999 Inexact Rounded -lnx404 ln 2.7182818284590180525 -> 0.99999999999998999998 Inexact Rounded -lnx405 ln 2.7182818284590452354 -> 1.0000000000000000000 Inexact Rounded -lnx406 ln 2.7182818284593170635 -> 1.0000000000001000000 Inexact Rounded -lnx407 ln 2.7182818284595888917 -> 1.0000000000002000000 Inexact Rounded -precision: 14 -lnx411 ln 2.7182818284589 -> 0.99999999999995 Inexact Rounded -lnx413 ln 2.7182818284590 -> 0.99999999999998 Inexact Rounded -lnx416 ln 2.7182818284591 -> 1.0000000000000 Inexact Rounded -lnx417 ln 2.7182818284592 -> 1.0000000000001 Inexact Rounded - --- overflows, including some exp overprecise borderlines -precision: 7 -maxExponent: 384 -minExponent: -383 -lnx709 ln 9.999999E+384 -> 886.4953 Inexact Rounded -lnx711 ln 9.999992E+384 -> 886.4953 Inexact Rounded -precision: 16 -lnx722 ln 9.999999999999999E+384 -> 886.4952608027076 Inexact Rounded -lnx724 ln 9.999999999999917E+384 -> 886.4952608027076 Inexact Rounded -lnx726 ln 9.999999999999117E+384 -> 886.4952608027075 Inexact Rounded --- and more... -precision: 15 -maxExponent: 999 -minExponent: -999 -lnx731 ln 9.99999999999999E+999 -> 2302.58509299405 Inexact Rounded --- next may be a > 0.5ulp case; a more precise answer is: --- 2302.58509299404495001799145442 -lnx732 ln 9.99999999999266E+999 -> 2302.58509299404 Inexact Rounded -lnx733 ln 9.99999999999265E+999 -> 2302.58509299404 Inexact Rounded -lnx734 ln 9.99999999999264E+999 -> 2302.58509299404 Inexact Rounded - --- subnormals and underflows for exp, including underflow-to-zero edge point -precision: 7 -maxExponent: 384 -minExponent: -383 -lnx751 ln 0E-389 -> -Infinity -lnx758 ln 1.000001E-383 -> -881.8901 Inexact Rounded -lnx759 ln 9.99991E-384 -> -881.8901 Inexact Rounded -lnx760 ln 4.4605E-385 -> -885.0000 Inexact Rounded -lnx761 ln 2.221E-386 -> -887.9999 Inexact Rounded -lnx762 ln 3.01E-387 -> -889.9985 Inexact Rounded -lnx763 ln 1.7E-388 -> -892.8724 Inexact Rounded -lnx764 ln 1.5E-388 -> -892.9976 Inexact Rounded -lnx765 ln 9E-389 -> -893.5084 Inexact Rounded -lnx766 ln 1E-389 -> -895.7056 Inexact Rounded -lnx774 ln 0E-389 -> -Infinity - --- special values -lnx820 ln Infinity -> Infinity -lnx821 ln 0 -> -Infinity -lnx822 ln NaN -> NaN -lnx823 ln sNaN -> NaN Invalid_operation --- propagating NaNs -lnx824 ln sNaN123 -> NaN123 Invalid_operation -lnx825 ln -sNaN321 -> -NaN321 Invalid_operation -lnx826 ln NaN456 -> NaN456 -lnx827 ln -NaN654 -> -NaN654 -lnx828 ln NaN1 -> NaN1 - --- Invalid operations due to restrictions --- [next two probably skipped by most test harnesses] -precision: 100000000 -lnx901 ln 1 -> NaN Invalid_context -precision: 99999999 -lnx902 ln 0 -> NaN Invalid_context - -precision: 9 -maxExponent: 1000000 -minExponent: -999999 -lnx903 ln 1 -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999999 -lnx904 ln 0 -> -Infinity -maxExponent: 999999 -minExponent: -1000000 -lnx905 ln 1 -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999998 -lnx906 ln 0 -> -Infinity - --- payload decapitate -precision: 5 -lnx910 ln -sNaN1234567890 -> -NaN67890 Invalid_operation - --- Null test -lnx900 ln # -> NaN Invalid_operation - - diff --git a/qdecimal/test/tc_full/log10.decTest b/qdecimal/test/tc_full/log10.decTest deleted file mode 100644 index bd8b836..0000000 --- a/qdecimal/test/tc_full/log10.decTest +++ /dev/null @@ -1,551 +0,0 @@ ------------------------------------------------------------------------- --- log10.decTest -- decimal logarithm in base 10 -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This emphasises the testing of notable cases, as they will often --- have unusual paths (especially the 10**n results). - -extended: 1 -precision: 16 -rounding: half_even -maxExponent: 384 -minexponent: -383 - --- examples in specification -precision: 9 -logxs000 log10 0 -> -Infinity -logxs001 log10 0.001 -> -3 -logxs002 log10 1 -> 0 -logxs003 log10 2 -> 0.301029996 Inexact Rounded -logxs004 log10 10 -> 1 -logxs005 log10 70 -> 1.84509804 Inexact Rounded -logxs006 log10 +Infinity -> Infinity - - --- basics (examples in specification, etc.) -precision: 16 -logx0000 log10 0 -> -Infinity -logx0001 log10 7E-1000 -> -999.1549019599857 Inexact Rounded -logx0002 log10 1.1E-9 -> -8.958607314841775 Inexact Rounded -logx0003 log10 0.0007 -> -3.154901959985743 Inexact Rounded -logx0004 log10 0.11 -> -0.9586073148417750 Inexact Rounded -logx0005 log10 0.7 -> -0.1549019599857432 Inexact Rounded -logx0006 log10 1 -> 0 -logx0007 log10 1.5 -> 0.1760912590556812 Inexact Rounded -logx0008 log10 2 -> 0.3010299956639812 Inexact Rounded -logx0009 log10 2.718281828459045 -> 0.4342944819032518 Inexact Rounded -logx0010 log10 2.718281828459046 -> 0.4342944819032519 Inexact Rounded -logx0011 log10 2.718281828459047 -> 0.4342944819032521 Inexact Rounded -logx0012 log10 7 -> 0.8450980400142568 Inexact Rounded -logx0013 log10 10 -> 1 -logx0014 log10 10.5 -> 1.021189299069938 Inexact Rounded -logx0015 log10 11 -> 1.041392685158225 Inexact Rounded -logx0016 log10 70 -> 1.845098040014257 Inexact Rounded -logx0017 log10 9999 -> 3.999956568380192 Inexact Rounded -logx0018 log10 1.21E6 -> 6.082785370316450 Inexact Rounded -logx0019 log10 1.1E+9 -> 9.041392685158225 Inexact Rounded -logx0020 log10 7E+1000 -> 1000.845098040014 Inexact Rounded -logx0021 log10 +Infinity -> Infinity - --- notable cases --- negatives -logx0031 log10 -1E-9 -> NaN Invalid_operation -logx0032 log10 -0.0007 -> NaN Invalid_operation -logx0033 log10 -0.1 -> NaN Invalid_operation -logx0034 log10 -0.7 -> NaN Invalid_operation -logx0035 log10 -1 -> NaN Invalid_operation -logx0036 log10 -1.5 -> NaN Invalid_operation -logx0037 log10 -2 -> NaN Invalid_operation -logx0038 log10 -10.5 -> NaN Invalid_operation -logx0039 log10 -10.5 -> NaN Invalid_operation -logx0040 log10 -9999 -> NaN Invalid_operation -logx0041 log10 -10 -> NaN Invalid_operation -logx0042 log10 -0 -> -Infinity -logx0043 log10 -0E+17 -> -Infinity -logx0044 log10 -0E-17 -> -Infinity --- other zeros -logx0051 log10 0 -> -Infinity -logx0052 log10 0E+17 -> -Infinity -logx0053 log10 0E-17 -> -Infinity --- infinities -logx0055 log10 -Infinity -> NaN Invalid_operation -logx0056 log10 +Infinity -> Infinity --- ones -logx0061 log10 1 -> 0 -logx0062 log10 1.0 -> 0 -logx0063 log10 1.000000000000000 -> 0 -logx0064 log10 1.000000000000000000 -> 0 - --- notable cases -- exact powers of 10 -logx1100 log10 1 -> 0 -logx1101 log10 10 -> 1 -logx1102 log10 100 -> 2 -logx1103 log10 1000 -> 3 -logx1104 log10 10000 -> 4 -logx1105 log10 100000 -> 5 -logx1106 log10 1000000 -> 6 -logx1107 log10 10000000 -> 7 -logx1108 log10 100000000 -> 8 -logx1109 log10 1000000000 -> 9 -logx1110 log10 10000000000 -> 10 -logx1111 log10 100000000000 -> 11 -logx1112 log10 1000000000000 -> 12 -logx1113 log10 0.00000000001 -> -11 -logx1114 log10 0.0000000001 -> -10 -logx1115 log10 0.000000001 -> -9 -logx1116 log10 0.00000001 -> -8 -logx1117 log10 0.0000001 -> -7 -logx1118 log10 0.000001 -> -6 -logx1119 log10 0.00001 -> -5 -logx1120 log10 0.0001 -> -4 -logx1121 log10 0.001 -> -3 -logx1122 log10 0.01 -> -2 -logx1123 log10 0.1 -> -1 -logx1124 log10 1E-99 -> -99 -logx1125 log10 1E-100 -> -100 -logx1126 log10 1E-383 -> -383 - --- check normally exact cases round properly -precision: 1 -logx1141 log10 10000000000 -> 1E+1 Rounded -logx1142 log10 1000000000000 -> 1E+1 Inexact Rounded -logx1143 log10 1E+100 -> 1E+2 Rounded -logx1144 log10 1E+123 -> 1E+2 Inexact Rounded -logx1145 log10 1E+126 -> 1E+2 Inexact Rounded -logx1146 log10 1E+916 -> 9E+2 Inexact Rounded -logx1147 log10 1E+999 -> 1E+3 Inexact Rounded - -precision: 2 -logx1151 log10 10000000000 -> 10 -logx1152 log10 1000000000000 -> 12 -logx1153 log10 1E+100 -> 1.0E+2 Rounded -logx1154 log10 1E+123 -> 1.2E+2 Inexact Rounded -logx1155 log10 1E+126 -> 1.3E+2 Inexact Rounded -logx1156 log10 1E+916 -> 9.2E+2 Inexact Rounded -logx1157 log10 1E+999 -> 1.0E+3 Inexact Rounded --- some half-way point rounds, other cases, and negatives -logx1158 log10 1E+125 -> 1.2E+2 Inexact Rounded -logx1159 log10 1E+135 -> 1.4E+2 Inexact Rounded -logx1160 log10 1E+129 -> 1.3E+2 Inexact Rounded -logx1161 log10 1E+131 -> 1.3E+2 Inexact Rounded -logx1162 log10 1E-123 -> -1.2E+2 Inexact Rounded -logx1163 log10 1E-126 -> -1.3E+2 Inexact Rounded -logx1164 log10 1E-916 -> -9.2E+2 Inexact Rounded -logx1165 log10 1E-999 -> -1.0E+3 Inexact Rounded -logx1166 log10 1E-125 -> -1.2E+2 Inexact Rounded -logx1167 log10 1E-135 -> -1.4E+2 Inexact Rounded -logx1168 log10 1E-129 -> -1.3E+2 Inexact Rounded -logx1169 log10 1E-131 -> -1.3E+2 Inexact Rounded - -precision: 3 -logx1171 log10 10000000000 -> 10 -logx1172 log10 1000000000000 -> 12 -logx1173 log10 1E+100 -> 100 -logx1174 log10 1E+123 -> 123 -logx1175 log10 1E+126 -> 126 -logx1176 log10 1E+916 -> 916 -logx1177 log10 1E+999 -> 999 - --- log10(2) .. tests both ln(2) and ln(10) constants, too -precision: 50 -logx1201 log10 2 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded -logx1202 log10 2.000 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded -logx1203 log10 0.2E1 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded -precision: 49 -logx1204 log10 2 -> 0.3010299956639811952137388947244930267681898814621 Inexact Rounded -precision: 48 -logx1205 log10 2 -> 0.301029995663981195213738894724493026768189881462 Inexact Rounded -precision: 47 -logx1206 log10 2 -> 0.30102999566398119521373889472449302676818988146 Inexact Rounded -precision: 46 -logx1207 log10 2 -> 0.3010299956639811952137388947244930267681898815 Inexact Rounded -precision: 45 -logx1208 log10 2 -> 0.301029995663981195213738894724493026768189881 Inexact Rounded -precision: 44 -logx1209 log10 2 -> 0.30102999566398119521373889472449302676818988 Inexact Rounded -precision: 43 -logx1210 log10 2 -> 0.3010299956639811952137388947244930267681899 Inexact Rounded -precision: 42 -logx1211 log10 2 -> 0.301029995663981195213738894724493026768190 Inexact Rounded -precision: 41 -logx1212 log10 2 -> 0.30102999566398119521373889472449302676819 Inexact Rounded -precision: 40 -logx1213 log10 2 -> 0.3010299956639811952137388947244930267682 Inexact Rounded -precision: 39 -logx1214 log10 2 -> 0.301029995663981195213738894724493026768 Inexact Rounded -precision: 38 -logx1215 log10 2 -> 0.30102999566398119521373889472449302677 Inexact Rounded -precision: 37 -logx1216 log10 2 -> 0.3010299956639811952137388947244930268 Inexact Rounded -precision: 36 -logx1217 log10 2 -> 0.301029995663981195213738894724493027 Inexact Rounded -precision: 35 -logx1218 log10 2 -> 0.30102999566398119521373889472449303 Inexact Rounded -precision: 34 -logx1219 log10 2 -> 0.3010299956639811952137388947244930 Inexact Rounded -precision: 33 -logx1220 log10 2 -> 0.301029995663981195213738894724493 Inexact Rounded -precision: 32 -logx1221 log10 2 -> 0.30102999566398119521373889472449 Inexact Rounded -precision: 31 -logx1222 log10 2 -> 0.3010299956639811952137388947245 Inexact Rounded -precision: 30 -logx1223 log10 2 -> 0.301029995663981195213738894724 Inexact Rounded -precision: 29 -logx1224 log10 2 -> 0.30102999566398119521373889472 Inexact Rounded -precision: 28 -logx1225 log10 2 -> 0.3010299956639811952137388947 Inexact Rounded -precision: 27 -logx1226 log10 2 -> 0.301029995663981195213738895 Inexact Rounded -precision: 26 -logx1227 log10 2 -> 0.30102999566398119521373889 Inexact Rounded -precision: 25 -logx1228 log10 2 -> 0.3010299956639811952137389 Inexact Rounded -precision: 24 -logx1229 log10 2 -> 0.301029995663981195213739 Inexact Rounded -precision: 23 -logx1230 log10 2 -> 0.30102999566398119521374 Inexact Rounded -precision: 22 -logx1231 log10 2 -> 0.3010299956639811952137 Inexact Rounded -precision: 21 -logx1232 log10 2 -> 0.301029995663981195214 Inexact Rounded -precision: 20 -logx1233 log10 2 -> 0.30102999566398119521 Inexact Rounded -precision: 19 -logx1234 log10 2 -> 0.3010299956639811952 Inexact Rounded -precision: 18 -logx1235 log10 2 -> 0.301029995663981195 Inexact Rounded -precision: 17 -logx1236 log10 2 -> 0.30102999566398120 Inexact Rounded -precision: 16 -logx1237 log10 2 -> 0.3010299956639812 Inexact Rounded -precision: 15 -logx1238 log10 2 -> 0.301029995663981 Inexact Rounded -precision: 14 -logx1239 log10 2 -> 0.30102999566398 Inexact Rounded -precision: 13 -logx1240 log10 2 -> 0.3010299956640 Inexact Rounded -precision: 12 -logx1241 log10 2 -> 0.301029995664 Inexact Rounded -precision: 11 -logx1242 log10 2 -> 0.30102999566 Inexact Rounded -precision: 10 -logx1243 log10 2 -> 0.3010299957 Inexact Rounded -precision: 9 -logx1244 log10 2 -> 0.301029996 Inexact Rounded -precision: 8 -logx1245 log10 2 -> 0.30103000 Inexact Rounded -precision: 7 -logx1246 log10 2 -> 0.3010300 Inexact Rounded -precision: 6 -logx1247 log10 2 -> 0.301030 Inexact Rounded -precision: 5 -logx1248 log10 2 -> 0.30103 Inexact Rounded -precision: 4 -logx1249 log10 2 -> 0.3010 Inexact Rounded -precision: 3 -logx1250 log10 2 -> 0.301 Inexact Rounded -precision: 2 -logx1251 log10 2 -> 0.30 Inexact Rounded -precision: 1 -logx1252 log10 2 -> 0.3 Inexact Rounded - -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_even - --- More close-to-e, etc., tests -precision: 34 -logx1301 log10 2.718281828459045235360287471352661 -> 0.4342944819032518276511289189166048 Inexact Rounded -logx1302 log10 2.718281828459045235360287471352662 -> 0.4342944819032518276511289189166050 Inexact Rounded -logx1303 log10 2.718281828459045235360287471352663 -> 0.4342944819032518276511289189166052 Inexact Rounded -logx1304 log10 0.99999999999999999999999999999999 -> -4.342944819032518276511289189166073E-33 Inexact Rounded -logx1305 log10 0.999999999999999999999999999999999 -> -4.342944819032518276511289189166053E-34 Inexact Rounded -logx1306 log10 0.9999999999999999999999999999999999 -> -4.342944819032518276511289189166051E-35 Inexact Rounded -logx1307 log10 1.000000000000000000000000000000000 -> 0 -logx1308 log10 1.0000000000000000000000000000000001 -> 4.342944819032518276511289189166051E-35 Inexact Rounded -logx1309 log10 1.000000000000000000000000000000001 -> 4.342944819032518276511289189166049E-34 Inexact Rounded -logx1310 log10 1.00000000000000000000000000000001 -> 4.342944819032518276511289189166029E-33 Inexact Rounded --- lower p -precision: 7 -logx1320 log10 0.999999 -> -4.342947E-7 Inexact Rounded -logx1321 log10 0.9999999 -> -4.342945E-8 Inexact Rounded -logx1322 log10 0.99999999 -> -4.342945E-9 Inexact Rounded -logx1323 log10 0.999999999 -> -4.342945E-10 Inexact Rounded -logx1324 log10 1.00000000 -> 0 -logx1325 log10 1.00000001 -> 4.342945E-9 Inexact Rounded -logx1326 log10 1.0000001 -> 4.342945E-8 Inexact Rounded -logx1327 log10 1.000001 -> 4.342943E-7 Inexact Rounded - --- near 10^3 -precision: 9 -logx1331 log10 999.9999998 -> 3.00000000 Inexact Rounded -logx1332 log10 999.9999999 -> 3.00000000 Inexact Rounded -logx1333 log10 1000.000000 -> 3 -logx1334 log10 1000.000001 -> 3.00000000 Inexact Rounded -logx1335 log10 1000.000002 -> 3.00000000 Inexact Rounded -precision: 16 -logx1341 log10 999.9999998 -> 2.999999999913141 Inexact Rounded -logx1342 log10 999.9999999 -> 2.999999999956571 Inexact Rounded -logx1343 log10 1000.000000 -> 3 -logx1344 log10 1000.000001 -> 3.000000000434294 Inexact Rounded -logx1345 log10 1000.000002 -> 3.000000000868589 Inexact Rounded - --- suggestions from Ilan Nehama -logx1400 log10 10E-3 -> -2 -logx1401 log10 10E-2 -> -1 -logx1402 log10 100E-2 -> 0 -logx1403 log10 1000E-2 -> 1 -logx1404 log10 10000E-2 -> 2 -logx1405 log10 10E-1 -> 0 -logx1406 log10 100E-1 -> 1 -logx1407 log10 1000E-1 -> 2 -logx1408 log10 10000E-1 -> 3 -logx1409 log10 10E0 -> 1 -logx1410 log10 100E0 -> 2 -logx1411 log10 1000E0 -> 3 -logx1412 log10 10000E0 -> 4 -logx1413 log10 10E1 -> 2 -logx1414 log10 100E1 -> 3 -logx1415 log10 1000E1 -> 4 -logx1416 log10 10000E1 -> 5 -logx1417 log10 10E2 -> 3 -logx1418 log10 100E2 -> 4 -logx1419 log10 1000E2 -> 5 -logx1420 log10 10000E2 -> 6 - --- Randoms --- P=50, within 0-9999 -Precision: 50 -logx2501 log10 0.00035448001667968141775891246991912655961163345904 -> -3.4504082425411775290864053318247274944685586188505 Inexact Rounded -logx2502 log10 70.636455726424311228255338637935330826995136597644 -> 1.8490288998408492045793070255302335558140975719247 Inexact Rounded -logx2503 log10 0.00000000000000233550362473821889060812804063040169 -> -14.631619454343834858023578299142866557717904223667 Inexact Rounded -logx2504 log10 97.783628621523244679901260358286898958832135433764 -> 1.9902661493224219517897657964362571690592734407330 Inexact Rounded -logx2505 log10 0062.2377135315858392802612812022807838599572017342 -> 1.7940536293085066199287632725026837018486533544141 Inexact Rounded -logx2506 log10 6.3767634652071053619977602804724129652981747879532 -> 0.80460030789825961615100163576080761326857374098644 Inexact Rounded -logx2507 log10 63.297088981313278529306533814195068850532666658798 -> 1.8013837373724427092417170149098614410849353839673 Inexact Rounded -logx2508 log10 0.00000077239693316881797717820110898167721602299187 -> -6.1121594592718550613773886241951966264826760310047 Inexact Rounded -logx2509 log10 0.00000003953580359780185534830572461922527831395002 -> -7.4030094293833847136252547069905477213541787177561 Inexact Rounded -logx2510 log10 754.62905817369989169188998111527272688791544577204 -> 2.8777335243761300047758534304371912099958057545416 Inexact Rounded -logx2511 log10 0.00000048360378410241428936607147056283282849158312 -> -6.3155103095309353457604038397980091650760346334512 Inexact Rounded -logx2512 log10 0.00007509037583645612577196104591672080542932166089 -> -4.1244157219700166314012344705538088030592896111026 Inexact Rounded -logx2513 log10 0.00000000000705475944638915053419839063567898092064 -> -11.151517790256466048553810002525868198178167950377 Inexact Rounded -logx2514 log10 9.6210300460497657917445410947099633479609165120661 -> 0.98322157093260978206633922877716078683518617768411 Inexact Rounded -logx2515 log10 0.00000000050150361386555527496607245976120864985611 -> -9.2997259330798261040411086835563234390934934629340 Inexact Rounded -logx2516 log10 098.24754029731994125797723545333677604490074810751 -> 1.9923216862874337077795278629351060819105679670633 Inexact Rounded -logx2517 log10 7.5091998150046994320441463854301624742491015752980 -> 0.87559366078005924080766469158763499725414024128781 Inexact Rounded -logx2518 log10 0.00000000000079540571273330075193668596942268542425 -> -12.099411294165176028817305108475326325006250936963 Inexact Rounded -logx2519 log10 0.00000042395034799555215782907515074134154915491701 -> -6.3726850039125381134069450802108893075604464135297 Inexact Rounded -logx2520 log10 56.683376304674355481905023145238799909301732694982 -> 1.7534557107853480435703421826077606250636580091754 Inexact Rounded -logx2521 log10 48.734033811444195070807606721517169810438049581227 -> 1.6878323602741065190942654710049433808208291564049 Inexact Rounded -logx2522 log10 0.00074830310930046865009851706989430228561880221063 -> -3.1259224502209974082223667712016445572431791920618 Inexact Rounded -logx2523 log10 36.677348885111593384020836720396262497122708598359 -> 1.5643979364260796086754530282302605477567469395425 Inexact Rounded -logx2524 log10 0.00000000000000004495678560480432858812419145833744 -> -16.347204748239740510014320630363244015916029619561 Inexact Rounded -logx2525 log10 9509.5854013650642799374159131940108748594774307104 -> 3.9781615829916326741100166519726824430945406302661 Inexact Rounded -logx2526 log10 0.07834891268689177014044454793608715276615743819097 -> -1.1059670262197643147805517398621288897669876996348 Inexact Rounded -logx2527 log10 0.00000029584529880706128444454688454999032801904794 -> -6.5289353275814043710076526920566721570375026917206 Inexact Rounded -logx2528 log10 3.0713496544497618098794332787772186176981011904294 -> 0.48732926103896828546424341029492468100431414072994 Inexact Rounded -logx2529 log10 352.66392670788816474407442785460803833927136413943 -> 2.5473610388199562714709836398243933320284077008314 Inexact Rounded -logx2530 log10 0.00304743125181876267210516527361742185617091801650 -> -2.5160660830163981967774124745311497447050056400207 Inexact Rounded -logx2531 log10 0.00000076120535894952136499250364604538117729437183 -> -6.1184981629047051532448413863950776496652483019415 Inexact Rounded -logx2532 log10 769.88795978534353052965286195053735007473187735815 -> 2.8864275277862652709986498581064117950288798222100 Inexact Rounded -logx2533 log10 0.00000000000000041297494808612226304619570016336188 -> -15.384076292745415917510668454361868659468669804710 Inexact Rounded -logx2534 log10 860.88864595714426940247940960258558876903741966974 -> 2.9349469800554277915920278090647283233440859155176 Inexact Rounded -logx2535 log10 5839.0328812994787235900178587371051096898683972444 -> 3.7663409208972392569269125539438874737147906238543 Inexact Rounded -logx2536 log10 0.00000028532710151284840471670497112821201598377841 -> -6.5446569753514027675878879843238065488490618159490 Inexact Rounded -logx2537 log10 0.00000000000000009734490059931638483445631835651581 -> -16.011686794011271135978633880864278692254243106931 Inexact Rounded -logx2538 log10 5.8610949526439529489252302463450302981511714144330 -> 0.76797875722452549281028552067645732490929361952278 Inexact Rounded -logx2539 log10 6.6282432221115923372151148990137179611977576327206 -> 0.82139843639227213211012044000785757267155736071361 Inexact Rounded -logx2540 log10 0.00000000001994071862386846626954819923923344413454 -> -10.700259194632339980266559224447212260115021637626 Inexact Rounded - --- P=34, within 0-9999 -Precision: 34 -logx2201 log10 1.522513203889714179088327328864183 -> 0.1825610677098896250496651330492109 Inexact Rounded -logx2202 log10 0.171123774769717316154080888930404 -> -0.7666896483548462582461898092764408 Inexact Rounded -logx2203 log10 0.0000000997467236251714283104963838 -> -7.001101360652518274271569010312115 Inexact Rounded -logx2204 log10 0.0008856103624122479769647543468633 -> -3.052757310476070891830490327138190 Inexact Rounded -logx2205 log10 1.938274868738032930709498221236758 -> 0.2874153648259449520201536171714594 Inexact Rounded -logx2206 log10 479.5667847823826713082613445010097 -> 2.680849095850361068709165157286435 Inexact Rounded -logx2207 log10 8856.136599178820202141823157336804 -> 3.947244306584767101480454261950559 Inexact Rounded -logx2208 log10 0.0000911026318801903982642871344858 -> -4.040469076434979398438617464033826 Inexact Rounded -logx2209 log10 0.0000000000017271112650427414732630 -> -11.76267968314038748995178212654921 Inexact Rounded -logx2210 log10 6.962605370078885647639503548229695 -> 0.8427717807200322352686396925992250 Inexact Rounded -logx2211 log10 0.3354804428992793132855923541692781 -> -0.4743327923012159170967636070844834 Inexact Rounded -logx2212 log10 2.079864257474859008252165836663504 -> 0.3180349916198059046812506741388856 Inexact Rounded -logx2213 log10 2805.479529292939499220276986621988 -> 3.448007104139974344565978780624744 Inexact Rounded -logx2214 log10 66.45731133034187374557028537213949 -> 1.822542767005644041661520936223086 Inexact Rounded -logx2215 log10 0.0000001206521261762681738274822835 -> -6.918465020390216969561494755767318 Inexact Rounded -logx2216 log10 0.0000000001884891916264401160472381 -> -9.724713548119065386091933007528633 Inexact Rounded -logx2217 log10 0.0000015467279551726326581314582759 -> -5.810586065070435383755759514608738 Inexact Rounded -logx2218 log10 0.0090776316728068586744633914135952 -> -2.042027442843745884503280954390114 Inexact Rounded -logx2219 log10 0.0000000000024541106528713393740030 -> -11.61010585935635713090119156069479 Inexact Rounded -logx2220 log10 14.12936879385863410081087750645856 -> 1.150122760895466989841057385742662 Inexact Rounded -logx2221 log10 0.0000036912481831392922922647231392 -> -5.432826753789892283556211380824203 Inexact Rounded -logx2222 log10 0.0000000004067477525420424270138734 -> -9.390674838050073122857868012475060 Inexact Rounded -logx2223 log10 7080.122562705399744969319589806194 -> 3.850040775747103318724330047546916 Inexact Rounded -logx2224 log10 261.3491411363679209175524790255725 -> 2.417221077227536319655699517530855 Inexact Rounded -logx2225 log10 003.9945581449915240094728380041494 -> 0.6014687471531988260823066997845691 Inexact Rounded -logx2226 log10 0.0000000000583549164588495206767840 -> -10.23392254834182677023231713519341 Inexact Rounded -logx2227 log10 9567.961832607240278342761088487484 -> 3.980819434211107631569386147016368 Inexact Rounded -logx2228 log10 06.26592979160342972777219828867033 -> 0.7969855243966221408595024012574729 Inexact Rounded -logx2229 log10 0.0000000000589847046598067273287319 -> -10.22926059078206218717755253582907 Inexact Rounded -logx2230 log10 567.9388648235589204769442863724997 -> 2.754301589058313576472380262907638 Inexact Rounded -logx2231 log10 039.7790325480037778918162264883415 -> 1.599654216592019199639285308997886 Inexact Rounded -logx2232 log10 0.0000000005123951921894162149817207 -> -9.290394953898862694847327137242690 Inexact Rounded -logx2233 log10 0.0000000000038500999723636904276723 -> -11.41452799337924056186867324854691 Inexact Rounded -logx2234 log10 0.0006726500658977759825616537935864 -> -3.172210810922768725687671849421792 Inexact Rounded -logx2235 log10 260.2400250475967528429943779126507 -> 2.415374092073799204236801383070064 Inexact Rounded -logx2236 log10 0.0000000006101942339385102585042548 -> -9.214531900562046557191261226632509 Inexact Rounded -logx2237 log10 0.0000000010846867501382746760066557 -> -8.964695664883282406359874242387236 Inexact Rounded -logx2238 log10 60.24078375568814769010333711509928 -> 1.779890613567084253168373266648922 Inexact Rounded -logx2239 log10 0.0012058738711757669337600252986093 -> -2.918698115012605915753728220896010 Inexact Rounded -logx2240 log10 230.9450930197841600611503095185600 -> 2.363508739056822846742942599628966 Inexact Rounded - --- P=16, within 0-999 -Precision: 16 -logx2101 log10 0.0072067119605184 -> -2.142262835573038 Inexact Rounded -logx2102 log10 503.6828482226624 -> 2.702157162195652 Inexact Rounded -logx2103 log10 64.96074447821815 -> 1.812650993464174 Inexact Rounded -logx2104 log10 48.75408597467246 -> 1.688011018842600 Inexact Rounded -logx2105 log10 0.0329009839269587 -> -1.482791113975280 Inexact Rounded -logx2106 log10 223.5320415060633 -> 2.349339784523410 Inexact Rounded -logx2107 log10 73.12765002292194 -> 1.864081617476268 Inexact Rounded -logx2108 log10 487.3749378358509 -> 2.687863192802252 Inexact Rounded -logx2109 log10 0.0000019671987621 -> -5.706151757557926 Inexact Rounded -logx2110 log10 0.0570680660609784 -> -1.243606844697873 Inexact Rounded -logx2111 log10 33.10311638788998 -> 1.519868880976773 Inexact Rounded -logx2112 log10 0.0687382699187077 -> -1.162801402868185 Inexact Rounded -logx2113 log10 258.9416193626484 -> 2.413201859654145 Inexact Rounded -logx2114 log10 0.0005306100136736 -> -3.275224558269725 Inexact Rounded -logx2115 log10 65.78490393408572 -> 1.818126244825109 Inexact Rounded -logx2116 log10 504.2328842073510 -> 2.702631165346958 Inexact Rounded -logx2117 log10 9.417432755815027 -> 0.9739325278524503 Inexact Rounded -logx2118 log10 006.7054835355498 -> 0.8264301004947640 Inexact Rounded -logx2119 log10 0.0917012272363915 -> -1.037624852133399 Inexact Rounded -logx2120 log10 5.959404385244921 -> 0.7752028561953401 Inexact Rounded -logx2121 log10 0.0001209759148486 -> -3.917301084968903 Inexact Rounded -logx2122 log10 0.0004706112139838 -> -3.327337728428039 Inexact Rounded -logx2123 log10 0.0069700457377046 -> -2.156764372035771 Inexact Rounded -logx2124 log10 0.5155584569852619 -> -0.2877220847805025 Inexact Rounded -logx2125 log10 88.06005885607414 -> 1.944778971389913 Inexact Rounded -logx2126 log10 0.0448240038219866 -> -1.348489353509709 Inexact Rounded -logx2127 log10 3.419622484059565 -> 0.5339781639101145 Inexact Rounded -logx2128 log10 5.171123353858721 -> 0.7135848977142854 Inexact Rounded -logx2129 log10 0.0002133188319807 -> -3.670970802945872 Inexact Rounded -logx2130 log10 46.21086703136966 -> 1.664744117045149 Inexact Rounded -logx2131 log10 0.0000631053714415 -> -4.199933672639880 Inexact Rounded -logx2132 log10 78.66019196870698 -> 1.895755001962469 Inexact Rounded -logx2133 log10 0.0007152278351188 -> -3.145555592082297 Inexact Rounded -logx2134 log10 45.52509819928536 -> 1.658250891256892 Inexact Rounded -logx2135 log10 0.0000703227795740 -> -4.152903971697183 Inexact Rounded -logx2136 log10 26.24438641426669 -> 1.419036423550599 Inexact Rounded -logx2137 log10 0.0000044654829535 -> -5.350131564166817 Inexact Rounded -logx2138 log10 0.7360702733062529 -> -0.1330807211893611 Inexact Rounded -logx2139 log10 8.417059176469655 -> 0.9251603805112778 Inexact Rounded -logx2140 log10 0.0002926570767968 -> -3.533640969664818 Inexact Rounded - --- P=7, within 0-99 -Precision: 7 -logx2001 log10 57.26089 -> 1.757858 Inexact Rounded -logx2002 log10 0.0575421 -> -1.240014 Inexact Rounded -logx2003 log10 0.5918465 -> -0.2277909 Inexact Rounded -logx2004 log10 0.0068776 -> -2.162563 Inexact Rounded -logx2005 log10 0.0066833 -> -2.175009 Inexact Rounded -logx2006 log10 9.926963 -> 0.9968164 Inexact Rounded -logx2007 log10 0.0041852 -> -2.378284 Inexact Rounded -logx2008 log10 84.15412 -> 1.925075 Inexact Rounded -logx2009 log10 2.466856 -> 0.3921438 Inexact Rounded -logx2010 log10 0.0058047 -> -2.236220 Inexact Rounded -logx2011 log10 9.885154 -> 0.9949834 Inexact Rounded -logx2012 log10 0.6667654 -> -0.1760269 Inexact Rounded -logx2013 log10 34.65736 -> 1.539795 Inexact Rounded -logx2014 log10 0.0026884 -> -2.570506 Inexact Rounded -logx2015 log10 0.0432767 -> -1.363746 Inexact Rounded -logx2016 log10 66.01407 -> 1.819637 Inexact Rounded -logx2017 log10 0.0070572 -> -2.151368 Inexact Rounded -logx2018 log10 0.0731613 -> -1.135719 Inexact Rounded -logx2019 log10 9.838983 -> 0.9929502 Inexact Rounded -logx2020 log10 15.89696 -> 1.201314 Inexact Rounded -logx2021 log10 8.459247 -> 0.9273317 Inexact Rounded -logx2022 log10 0.0010873 -> -2.963651 Inexact Rounded -logx2023 log10 0.6498619 -> -0.1871789 Inexact Rounded -logx2024 log10 0.0847008 -> -1.072112 Inexact Rounded -logx2025 log10 0.0075489 -> -2.122116 Inexact Rounded -logx2026 log10 51.11152 -> 1.708519 Inexact Rounded -logx2027 log10 0.7233866 -> -0.1406295 Inexact Rounded -logx2028 log10 2.254721 -> 0.3530928 Inexact Rounded -logx2029 log10 6.568444 -> 0.8174625 Inexact Rounded -logx2030 log10 83.72639 -> 1.922862 Inexact Rounded -logx2031 log10 6.720585 -> 0.8274071 Inexact Rounded -logx2032 log10 87.90366 -> 1.944007 Inexact Rounded -logx2033 log10 0.0433324 -> -1.363187 Inexact Rounded -logx2034 log10 34.63912 -> 1.539567 Inexact Rounded -logx2035 log10 0.8089059 -> -0.09210200 Inexact Rounded -logx2036 log10 7.793405 -> 0.8917272 Inexact Rounded -logx2037 log10 0.0041757 -> -2.379271 Inexact Rounded -logx2038 log10 7.135417 -> 0.8534194 Inexact Rounded -logx2039 log10 12.49570 -> 1.096761 Inexact Rounded -logx2040 log10 6.356276 -> 0.8032027 Inexact Rounded - --------- -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_even - --- special values -logx820 log10 Infinity -> Infinity -logx821 log10 0 -> -Infinity -logx822 log10 NaN -> NaN -logx823 log10 sNaN -> NaN Invalid_operation --- propagating NaNs -logx824 log10 sNaN123 -> NaN123 Invalid_operation -logx825 log10 -sNaN321 -> -NaN321 Invalid_operation -logx826 log10 NaN456 -> NaN456 -logx827 log10 -NaN654 -> -NaN654 -logx828 log10 NaN1 -> NaN1 - - --- Invalid operations due to restrictions --- [next two probably skipped by most test harnesses] -precision: 100000000 -logx901 log10 1 -> NaN Invalid_context -precision: 99999999 -logx902 log10 0 -> NaN Invalid_context - -precision: 9 -maxExponent: 1000000 -minExponent: -999999 -logx903 log10 1 -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999999 -logx904 log10 0 -> -Infinity -maxExponent: 999999 -minExponent: -1000000 -logx905 log10 1 -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999998 -logx906 log10 0 -> -Infinity - --- Null test -logx900 log10 # -> NaN Invalid_operation - - diff --git a/qdecimal/test/tc_full/logb.decTest b/qdecimal/test/tc_full/logb.decTest deleted file mode 100644 index e25881f..0000000 --- a/qdecimal/test/tc_full/logb.decTest +++ /dev/null @@ -1,162 +0,0 @@ ------------------------------------------------------------------------- --- logb.decTest -- return integral adjusted exponent as per 754r -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This emphasises the testing of notable cases, as they will often --- have unusual paths (especially the 10**n results). - -extended: 1 -rounding: half_even -maxExponent: 999 -minexponent: -999 - --- basics & examples -precision: 9 -logbx001 logb 0 -> -Infinity Division_by_zero -logbx002 logb 1E-999 -> -999 -logbx003 logb 9E-999 -> -999 -logbx004 logb 0.001 -> -3 -logbx005 logb 0.03 -> -2 -logbx006 logb 1 -> 0 -logbx007 logb 2 -> 0 -logbx008 logb 2.5 -> 0 -logbx009 logb 2.50 -> 0 -logbx010 logb 10 -> 1 -logbx011 logb 70 -> 1 -logbx012 logb 100 -> 2 -logbx013 logb 250 -> 2 -logbx014 logb +Infinity -> Infinity - --- negatives are treated as positives -logbx021 logb -0 -> -Infinity Division_by_zero -logbx022 logb -1E-999 -> -999 -logbx023 logb -9E-999 -> -999 -logbx024 logb -0.001 -> -3 -logbx025 logb -1 -> 0 -logbx026 logb -2 -> 0 -logbx027 logb -10 -> 1 -logbx028 logb -70 -> 1 -logbx029 logb -100 -> 2 -logbx030 logb -100000000 -> 8 -logbx031 logb -Infinity -> Infinity - --- zeros -logbx111 logb 0 -> -Infinity Division_by_zero -logbx112 logb -0 -> -Infinity Division_by_zero -logbx113 logb 0E+4 -> -Infinity Division_by_zero -logbx114 logb -0E+4 -> -Infinity Division_by_zero -logbx115 logb 0.0000 -> -Infinity Division_by_zero -logbx116 logb -0.0000 -> -Infinity Division_by_zero -logbx117 logb 0E-141 -> -Infinity Division_by_zero -logbx118 logb -0E-141 -> -Infinity Division_by_zero - --- full coefficients, alternating bits -logbx121 logb 268268268 -> 8 -logbx122 logb -268268268 -> 8 -logbx123 logb 134134134 -> 8 -logbx124 logb -134134134 -> 8 - --- Nmax, Nmin, Ntiny -logbx131 logb 9.99999999E+999 -> 999 -logbx132 logb 1E-999 -> -999 -logbx133 logb 1.00000000E-999 -> -999 -logbx134 logb 1E-1007 -> -1007 - -logbx135 logb -1E-1007 -> -1007 -logbx136 logb -1.00000000E-999 -> -999 -logbx137 logb -1E-999 -> -999 -logbx138 logb -9.99999999E+999 -> 999 - --- ones -logbx0061 logb 1 -> 0 -logbx0062 logb 1.0 -> 0 -logbx0063 logb 1.000000000000000 -> 0 -logbx0064 logb 1.000000000000000000 -> 0 - --- notable cases -- exact powers of 10 -logbx1100 logb 1 -> 0 -logbx1101 logb 10 -> 1 -logbx1102 logb 100 -> 2 -logbx1103 logb 1000 -> 3 -logbx1104 logb 10000 -> 4 -logbx1105 logb 100000 -> 5 -logbx1106 logb 1000000 -> 6 -logbx1107 logb 10000000 -> 7 -logbx1108 logb 100000000 -> 8 -logbx1109 logb 1000000000 -> 9 -logbx1110 logb 10000000000 -> 10 -logbx1111 logb 100000000000 -> 11 -logbx1112 logb 1000000000000 -> 12 -logbx1113 logb 0.00000000001 -> -11 -logbx1114 logb 0.0000000001 -> -10 -logbx1115 logb 0.000000001 -> -9 -logbx1116 logb 0.00000001 -> -8 -logbx1117 logb 0.0000001 -> -7 -logbx1118 logb 0.000001 -> -6 -logbx1119 logb 0.00001 -> -5 -logbx1120 logb 0.0001 -> -4 -logbx1121 logb 0.001 -> -3 -logbx1122 logb 0.01 -> -2 -logbx1123 logb 0.1 -> -1 -logbx1124 logb 1E-99 -> -99 -logbx1125 logb 1E-100 -> -100 -logbx1126 logb 1E-383 -> -383 -logbx1127 logb 1E-999 -> -999 - --- suggestions from Ilan Nehama -logbx1400 logb 10E-3 -> -2 -logbx1401 logb 10E-2 -> -1 -logbx1402 logb 100E-2 -> 0 -logbx1403 logb 1000E-2 -> 1 -logbx1404 logb 10000E-2 -> 2 -logbx1405 logb 10E-1 -> 0 -logbx1406 logb 100E-1 -> 1 -logbx1407 logb 1000E-1 -> 2 -logbx1408 logb 10000E-1 -> 3 -logbx1409 logb 10E0 -> 1 -logbx1410 logb 100E0 -> 2 -logbx1411 logb 1000E0 -> 3 -logbx1412 logb 10000E0 -> 4 -logbx1413 logb 10E1 -> 2 -logbx1414 logb 100E1 -> 3 -logbx1415 logb 1000E1 -> 4 -logbx1416 logb 10000E1 -> 5 -logbx1417 logb 10E2 -> 3 -logbx1418 logb 100E2 -> 4 -logbx1419 logb 1000E2 -> 5 -logbx1420 logb 10000E2 -> 6 - --- special values -logbx820 logb Infinity -> Infinity -logbx821 logb -Infinity -> Infinity -logbx822 logb 0 -> -Infinity Division_by_zero -logbx823 logb NaN -> NaN -logbx824 logb sNaN -> NaN Invalid_operation --- propagating NaNs -logbx825 logb sNaN123 -> NaN123 Invalid_operation -logbx826 logb -sNaN321 -> -NaN321 Invalid_operation -logbx827 logb NaN456 -> NaN456 -logbx828 logb -NaN654 -> -NaN654 -logbx829 logb NaN1 -> NaN1 - --- Null test -logbx900 logb # -> NaN Invalid_operation - - diff --git a/qdecimal/test/tc_full/max.decTest b/qdecimal/test/tc_full/max.decTest deleted file mode 100644 index fa75af2..0000000 --- a/qdecimal/test/tc_full/max.decTest +++ /dev/null @@ -1,424 +0,0 @@ ------------------------------------------------------------------------- --- max.decTest -- decimal maximum -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- sanity checks -maxx001 max -2 -2 -> -2 -maxx002 max -2 -1 -> -1 -maxx003 max -2 0 -> 0 -maxx004 max -2 1 -> 1 -maxx005 max -2 2 -> 2 -maxx006 max -1 -2 -> -1 -maxx007 max -1 -1 -> -1 -maxx008 max -1 0 -> 0 -maxx009 max -1 1 -> 1 -maxx010 max -1 2 -> 2 -maxx011 max 0 -2 -> 0 -maxx012 max 0 -1 -> 0 -maxx013 max 0 0 -> 0 -maxx014 max 0 1 -> 1 -maxx015 max 0 2 -> 2 -maxx016 max 1 -2 -> 1 -maxx017 max 1 -1 -> 1 -maxx018 max 1 0 -> 1 -maxx019 max 1 1 -> 1 -maxx020 max 1 2 -> 2 -maxx021 max 2 -2 -> 2 -maxx022 max 2 -1 -> 2 -maxx023 max 2 0 -> 2 -maxx025 max 2 1 -> 2 -maxx026 max 2 2 -> 2 - --- extended zeros -maxx030 max 0 0 -> 0 -maxx031 max 0 -0 -> 0 -maxx032 max 0 -0.0 -> 0 -maxx033 max 0 0.0 -> 0 -maxx034 max -0 0 -> 0 -- note: -0 = 0, but 0 chosen -maxx035 max -0 -0 -> -0 -maxx036 max -0 -0.0 -> -0.0 -maxx037 max -0 0.0 -> 0.0 -maxx038 max 0.0 0 -> 0 -maxx039 max 0.0 -0 -> 0.0 -maxx040 max 0.0 -0.0 -> 0.0 -maxx041 max 0.0 0.0 -> 0.0 -maxx042 max -0.0 0 -> 0 -maxx043 max -0.0 -0 -> -0.0 -maxx044 max -0.0 -0.0 -> -0.0 -maxx045 max -0.0 0.0 -> 0.0 - -maxx050 max -0E1 0E1 -> 0E+1 -maxx051 max -0E2 0E2 -> 0E+2 -maxx052 max -0E2 0E1 -> 0E+1 -maxx053 max -0E1 0E2 -> 0E+2 -maxx054 max 0E1 -0E1 -> 0E+1 -maxx055 max 0E2 -0E2 -> 0E+2 -maxx056 max 0E2 -0E1 -> 0E+2 -maxx057 max 0E1 -0E2 -> 0E+1 - -maxx058 max 0E1 0E1 -> 0E+1 -maxx059 max 0E2 0E2 -> 0E+2 -maxx060 max 0E2 0E1 -> 0E+2 -maxx061 max 0E1 0E2 -> 0E+2 -maxx062 max -0E1 -0E1 -> -0E+1 -maxx063 max -0E2 -0E2 -> -0E+2 -maxx064 max -0E2 -0E1 -> -0E+1 -maxx065 max -0E1 -0E2 -> -0E+1 - --- Specials -precision: 9 -maxx090 max Inf -Inf -> Infinity -maxx091 max Inf -1000 -> Infinity -maxx092 max Inf -1 -> Infinity -maxx093 max Inf -0 -> Infinity -maxx094 max Inf 0 -> Infinity -maxx095 max Inf 1 -> Infinity -maxx096 max Inf 1000 -> Infinity -maxx097 max Inf Inf -> Infinity -maxx098 max -1000 Inf -> Infinity -maxx099 max -Inf Inf -> Infinity -maxx100 max -1 Inf -> Infinity -maxx101 max -0 Inf -> Infinity -maxx102 max 0 Inf -> Infinity -maxx103 max 1 Inf -> Infinity -maxx104 max 1000 Inf -> Infinity -maxx105 max Inf Inf -> Infinity - -maxx120 max -Inf -Inf -> -Infinity -maxx121 max -Inf -1000 -> -1000 -maxx122 max -Inf -1 -> -1 -maxx123 max -Inf -0 -> -0 -maxx124 max -Inf 0 -> 0 -maxx125 max -Inf 1 -> 1 -maxx126 max -Inf 1000 -> 1000 -maxx127 max -Inf Inf -> Infinity -maxx128 max -Inf -Inf -> -Infinity -maxx129 max -1000 -Inf -> -1000 -maxx130 max -1 -Inf -> -1 -maxx131 max -0 -Inf -> -0 -maxx132 max 0 -Inf -> 0 -maxx133 max 1 -Inf -> 1 -maxx134 max 1000 -Inf -> 1000 -maxx135 max Inf -Inf -> Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -maxx141 max NaN -Inf -> -Infinity -maxx142 max NaN -1000 -> -1000 -maxx143 max NaN -1 -> -1 -maxx144 max NaN -0 -> -0 -maxx145 max NaN 0 -> 0 -maxx146 max NaN 1 -> 1 -maxx147 max NaN 1000 -> 1000 -maxx148 max NaN Inf -> Infinity -maxx149 max NaN NaN -> NaN -maxx150 max -Inf NaN -> -Infinity -maxx151 max -1000 NaN -> -1000 -maxx152 max -1 NaN -> -1 -maxx153 max -0 NaN -> -0 -maxx154 max 0 NaN -> 0 -maxx155 max 1 NaN -> 1 -maxx156 max 1000 NaN -> 1000 -maxx157 max Inf NaN -> Infinity - -maxx161 max sNaN -Inf -> NaN Invalid_operation -maxx162 max sNaN -1000 -> NaN Invalid_operation -maxx163 max sNaN -1 -> NaN Invalid_operation -maxx164 max sNaN -0 -> NaN Invalid_operation -maxx165 max sNaN 0 -> NaN Invalid_operation -maxx166 max sNaN 1 -> NaN Invalid_operation -maxx167 max sNaN 1000 -> NaN Invalid_operation -maxx168 max sNaN NaN -> NaN Invalid_operation -maxx169 max sNaN sNaN -> NaN Invalid_operation -maxx170 max NaN sNaN -> NaN Invalid_operation -maxx171 max -Inf sNaN -> NaN Invalid_operation -maxx172 max -1000 sNaN -> NaN Invalid_operation -maxx173 max -1 sNaN -> NaN Invalid_operation -maxx174 max -0 sNaN -> NaN Invalid_operation -maxx175 max 0 sNaN -> NaN Invalid_operation -maxx176 max 1 sNaN -> NaN Invalid_operation -maxx177 max 1000 sNaN -> NaN Invalid_operation -maxx178 max Inf sNaN -> NaN Invalid_operation -maxx179 max NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -maxx181 max NaN9 -Inf -> -Infinity -maxx182 max NaN8 9 -> 9 -maxx183 max -NaN7 Inf -> Infinity - -maxx184 max -NaN1 NaN11 -> -NaN1 -maxx185 max NaN2 NaN12 -> NaN2 -maxx186 max -NaN13 -NaN7 -> -NaN13 -maxx187 max NaN14 -NaN5 -> NaN14 - -maxx188 max -Inf NaN4 -> -Infinity -maxx189 max -9 -NaN3 -> -9 -maxx190 max Inf NaN2 -> Infinity - -maxx191 max sNaN99 -Inf -> NaN99 Invalid_operation -maxx192 max sNaN98 -1 -> NaN98 Invalid_operation -maxx193 max -sNaN97 NaN -> -NaN97 Invalid_operation -maxx194 max sNaN96 sNaN94 -> NaN96 Invalid_operation -maxx195 max NaN95 sNaN93 -> NaN93 Invalid_operation -maxx196 max -Inf sNaN92 -> NaN92 Invalid_operation -maxx197 max 0 sNaN91 -> NaN91 Invalid_operation -maxx198 max Inf -sNaN90 -> -NaN90 Invalid_operation -maxx199 max NaN sNaN89 -> NaN89 Invalid_operation - --- rounding checks -maxexponent: 999 -minexponent: -999 -precision: 9 -maxx201 max 12345678000 1 -> 1.23456780E+10 Rounded -maxx202 max 1 12345678000 -> 1.23456780E+10 Rounded -maxx203 max 1234567800 1 -> 1.23456780E+9 Rounded -maxx204 max 1 1234567800 -> 1.23456780E+9 Rounded -maxx205 max 1234567890 1 -> 1.23456789E+9 Rounded -maxx206 max 1 1234567890 -> 1.23456789E+9 Rounded -maxx207 max 1234567891 1 -> 1.23456789E+9 Inexact Rounded -maxx208 max 1 1234567891 -> 1.23456789E+9 Inexact Rounded -maxx209 max 12345678901 1 -> 1.23456789E+10 Inexact Rounded -maxx210 max 1 12345678901 -> 1.23456789E+10 Inexact Rounded -maxx211 max 1234567896 1 -> 1.23456790E+9 Inexact Rounded -maxx212 max 1 1234567896 -> 1.23456790E+9 Inexact Rounded -maxx213 max -1234567891 1 -> 1 -maxx214 max 1 -1234567891 -> 1 -maxx215 max -12345678901 1 -> 1 -maxx216 max 1 -12345678901 -> 1 -maxx217 max -1234567896 1 -> 1 -maxx218 max 1 -1234567896 -> 1 - -precision: 15 -maxx221 max 12345678000 1 -> 12345678000 -maxx222 max 1 12345678000 -> 12345678000 -maxx223 max 1234567800 1 -> 1234567800 -maxx224 max 1 1234567800 -> 1234567800 -maxx225 max 1234567890 1 -> 1234567890 -maxx226 max 1 1234567890 -> 1234567890 -maxx227 max 1234567891 1 -> 1234567891 -maxx228 max 1 1234567891 -> 1234567891 -maxx229 max 12345678901 1 -> 12345678901 -maxx230 max 1 12345678901 -> 12345678901 -maxx231 max 1234567896 1 -> 1234567896 -maxx232 max 1 1234567896 -> 1234567896 -maxx233 max -1234567891 1 -> 1 -maxx234 max 1 -1234567891 -> 1 -maxx235 max -12345678901 1 -> 1 -maxx236 max 1 -12345678901 -> 1 -maxx237 max -1234567896 1 -> 1 -maxx238 max 1 -1234567896 -> 1 - --- from examples -maxx280 max '3' '2' -> '3' -maxx281 max '-10' '3' -> '3' -maxx282 max '1.0' '1' -> '1' -maxx283 max '1' '1.0' -> '1' -maxx284 max '7' 'NaN' -> '7' - --- overflow and underflow tests ... -maxExponent: 999999999 -minexponent: -999999999 -maxx330 max +1.23456789012345E-0 9E+999999999 -> 9E+999999999 -maxx331 max 9E+999999999 +1.23456789012345E-0 -> 9E+999999999 -maxx332 max +0.100 9E-999999999 -> 0.100 -maxx333 max 9E-999999999 +0.100 -> 0.100 -maxx335 max -1.23456789012345E-0 9E+999999999 -> 9E+999999999 -maxx336 max 9E+999999999 -1.23456789012345E-0 -> 9E+999999999 -maxx337 max -0.100 9E-999999999 -> 9E-999999999 -maxx338 max 9E-999999999 -0.100 -> 9E-999999999 - -maxx339 max 1e-599999999 1e-400000001 -> 1E-400000001 -maxx340 max 1e-599999999 1e-400000000 -> 1E-400000000 -maxx341 max 1e-600000000 1e-400000000 -> 1E-400000000 -maxx342 max 9e-999999998 0.01 -> 0.01 -maxx343 max 9e-999999998 0.1 -> 0.1 -maxx344 max 0.01 9e-999999998 -> 0.01 -maxx345 max 1e599999999 1e400000001 -> 1E+599999999 -maxx346 max 1e599999999 1e400000000 -> 1E+599999999 -maxx347 max 1e600000000 1e400000000 -> 1E+600000000 -maxx348 max 9e999999998 100 -> 9E+999999998 -maxx349 max 9e999999998 10 -> 9E+999999998 -maxx350 max 100 9e999999998 -> 9E+999999998 --- signs -maxx351 max 1e+777777777 1e+411111111 -> 1E+777777777 -maxx352 max 1e+777777777 -1e+411111111 -> 1E+777777777 -maxx353 max -1e+777777777 1e+411111111 -> 1E+411111111 -maxx354 max -1e+777777777 -1e+411111111 -> -1E+411111111 -maxx355 max 1e-777777777 1e-411111111 -> 1E-411111111 -maxx356 max 1e-777777777 -1e-411111111 -> 1E-777777777 -maxx357 max -1e-777777777 1e-411111111 -> 1E-411111111 -maxx358 max -1e-777777777 -1e-411111111 -> -1E-777777777 - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -maxx401 max Inf 1.1 -> Infinity -maxx402 max 1.1 1 -> 1.1 -maxx403 max 1 1.0 -> 1 -maxx404 max 1.0 0.1 -> 1.0 -maxx405 max 0.1 0.10 -> 0.1 -maxx406 max 0.10 0.100 -> 0.10 -maxx407 max 0.10 0 -> 0.10 -maxx408 max 0 0.0 -> 0 -maxx409 max 0.0 -0 -> 0.0 -maxx410 max 0.0 -0.0 -> 0.0 -maxx411 max 0.00 -0.0 -> 0.00 -maxx412 max 0.0 -0.00 -> 0.0 -maxx413 max 0 -0.0 -> 0 -maxx414 max 0 -0 -> 0 -maxx415 max -0.0 -0 -> -0.0 -maxx416 max -0 -0.100 -> -0 -maxx417 max -0.100 -0.10 -> -0.100 -maxx418 max -0.10 -0.1 -> -0.10 -maxx419 max -0.1 -1.0 -> -0.1 -maxx420 max -1.0 -1 -> -1.0 -maxx421 max -1 -1.1 -> -1 -maxx423 max -1.1 -Inf -> -1.1 --- same with operands reversed -maxx431 max 1.1 Inf -> Infinity -maxx432 max 1 1.1 -> 1.1 -maxx433 max 1.0 1 -> 1 -maxx434 max 0.1 1.0 -> 1.0 -maxx435 max 0.10 0.1 -> 0.1 -maxx436 max 0.100 0.10 -> 0.10 -maxx437 max 0 0.10 -> 0.10 -maxx438 max 0.0 0 -> 0 -maxx439 max -0 0.0 -> 0.0 -maxx440 max -0.0 0.0 -> 0.0 -maxx441 max -0.0 0.00 -> 0.00 -maxx442 max -0.00 0.0 -> 0.0 -maxx443 max -0.0 0 -> 0 -maxx444 max -0 0 -> 0 -maxx445 max -0 -0.0 -> -0.0 -maxx446 max -0.100 -0 -> -0 -maxx447 max -0.10 -0.100 -> -0.100 -maxx448 max -0.1 -0.10 -> -0.10 -maxx449 max -1.0 -0.1 -> -0.1 -maxx450 max -1 -1.0 -> -1.0 -maxx451 max -1.1 -1 -> -1 -maxx453 max -Inf -1.1 -> -1.1 --- largies -maxx460 max 1000 1E+3 -> 1E+3 -maxx461 max 1E+3 1000 -> 1E+3 -maxx462 max 1000 -1E+3 -> 1000 -maxx463 max 1E+3 -1000 -> 1E+3 -maxx464 max -1000 1E+3 -> 1E+3 -maxx465 max -1E+3 1000 -> 1000 -maxx466 max -1000 -1E+3 -> -1000 -maxx467 max -1E+3 -1000 -> -1000 - --- rounding (results treated as though plus) -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 - -maxx470 max 1 .5 -> 1 -maxx471 max 10 5 -> 10 -maxx472 max 100 50 -> 100 -maxx473 max 1000 500 -> 1.00E+3 Rounded -maxx474 max 10000 5000 -> 1.00E+4 Rounded -maxx475 max 6 .5 -> 6 -maxx476 max 66 5 -> 66 -maxx477 max 666 50 -> 666 -maxx478 max 6666 500 -> 6.67E+3 Rounded Inexact -maxx479 max 66666 5000 -> 6.67E+4 Rounded Inexact -maxx480 max 33333 5000 -> 3.33E+4 Rounded Inexact -maxx481 max .5 1 -> 1 -maxx482 max .5 10 -> 10 -maxx483 max .5 100 -> 100 -maxx484 max .5 1000 -> 1.00E+3 Rounded -maxx485 max .5 10000 -> 1.00E+4 Rounded -maxx486 max .5 6 -> 6 -maxx487 max .5 66 -> 66 -maxx488 max .5 666 -> 666 -maxx489 max .5 6666 -> 6.67E+3 Rounded Inexact -maxx490 max .5 66666 -> 6.67E+4 Rounded Inexact -maxx491 max .5 33333 -> 3.33E+4 Rounded Inexact - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -maxx500 max 9.999E+999999999 0 -> Infinity Inexact Overflow Rounded -maxx501 max -9.999E+999999999 0 -> 0 - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -maxx510 max 1.00E-999 0 -> 1.00E-999 -maxx511 max 0.1E-999 0 -> 1E-1000 Subnormal -maxx512 max 0.10E-999 0 -> 1.0E-1000 Subnormal -maxx513 max 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded -maxx514 max 0.01E-999 0 -> 1E-1001 Subnormal --- next is rounded to Nmin -maxx515 max 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow -maxx516 max 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -maxx517 max 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow -maxx518 max 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -maxx519 max 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -maxx520 max 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - -maxx530 max -1.00E-999 0 -> 0 -maxx531 max -0.1E-999 0 -> 0 -maxx532 max -0.10E-999 0 -> 0 -maxx533 max -0.100E-999 0 -> 0 -maxx534 max -0.01E-999 0 -> 0 -maxx535 max -0.999E-999 0 -> 0 -maxx536 max -0.099E-999 0 -> 0 -maxx537 max -0.009E-999 0 -> 0 -maxx538 max -0.001E-999 0 -> 0 -maxx539 max -0.0009E-999 0 -> 0 -maxx540 max -0.0001E-999 0 -> 0 - --- misalignment traps for little-endian -precision: 9 -maxx551 max 1.0 0.1 -> 1.0 -maxx552 max 0.1 1.0 -> 1.0 -maxx553 max 10.0 0.1 -> 10.0 -maxx554 max 0.1 10.0 -> 10.0 -maxx555 max 100 1.0 -> 100 -maxx556 max 1.0 100 -> 100 -maxx557 max 1000 10.0 -> 1000 -maxx558 max 10.0 1000 -> 1000 -maxx559 max 10000 100.0 -> 10000 -maxx560 max 100.0 10000 -> 10000 -maxx661 max 100000 1000.0 -> 100000 -maxx662 max 1000.0 100000 -> 100000 -maxx663 max 1000000 10000.0 -> 1000000 -maxx664 max 10000.0 1000000 -> 1000000 - --- payload decapitate -precision: 5 -maxx670 max 11 -sNaN12345678901 -> -NaN78901 Invalid_operation - --- Null tests -maxx900 max 10 # -> NaN Invalid_operation -maxx901 max # 10 -> NaN Invalid_operation - - - diff --git a/qdecimal/test/tc_full/maxmag.decTest b/qdecimal/test/tc_full/maxmag.decTest deleted file mode 100644 index 8c19242..0000000 --- a/qdecimal/test/tc_full/maxmag.decTest +++ /dev/null @@ -1,404 +0,0 @@ ------------------------------------------------------------------------- --- maxmag.decTest -- decimal maximum by magnitude -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- sanity checks -mxgx001 maxmag -2 -2 -> -2 -mxgx002 maxmag -2 -1 -> -2 -mxgx003 maxmag -2 0 -> -2 -mxgx004 maxmag -2 1 -> -2 -mxgx005 maxmag -2 2 -> 2 -mxgx006 maxmag -1 -2 -> -2 -mxgx007 maxmag -1 -1 -> -1 -mxgx008 maxmag -1 0 -> -1 -mxgx009 maxmag -1 1 -> 1 -mxgx010 maxmag -1 2 -> 2 -mxgx011 maxmag 0 -2 -> -2 -mxgx012 maxmag 0 -1 -> -1 -mxgx013 maxmag 0 0 -> 0 -mxgx014 maxmag 0 1 -> 1 -mxgx015 maxmag 0 2 -> 2 -mxgx016 maxmag 1 -2 -> -2 -mxgx017 maxmag 1 -1 -> 1 -mxgx018 maxmag 1 0 -> 1 -mxgx019 maxmag 1 1 -> 1 -mxgx020 maxmag 1 2 -> 2 -mxgx021 maxmag 2 -2 -> 2 -mxgx022 maxmag 2 -1 -> 2 -mxgx023 maxmag 2 0 -> 2 -mxgx025 maxmag 2 1 -> 2 -mxgx026 maxmag 2 2 -> 2 - --- extended zeros -mxgx030 maxmag 0 0 -> 0 -mxgx031 maxmag 0 -0 -> 0 -mxgx032 maxmag 0 -0.0 -> 0 -mxgx033 maxmag 0 0.0 -> 0 -mxgx034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen -mxgx035 maxmag -0 -0 -> -0 -mxgx036 maxmag -0 -0.0 -> -0.0 -mxgx037 maxmag -0 0.0 -> 0.0 -mxgx038 maxmag 0.0 0 -> 0 -mxgx039 maxmag 0.0 -0 -> 0.0 -mxgx040 maxmag 0.0 -0.0 -> 0.0 -mxgx041 maxmag 0.0 0.0 -> 0.0 -mxgx042 maxmag -0.0 0 -> 0 -mxgx043 maxmag -0.0 -0 -> -0.0 -mxgx044 maxmag -0.0 -0.0 -> -0.0 -mxgx045 maxmag -0.0 0.0 -> 0.0 - -mxgx050 maxmag -0E1 0E1 -> 0E+1 -mxgx051 maxmag -0E2 0E2 -> 0E+2 -mxgx052 maxmag -0E2 0E1 -> 0E+1 -mxgx053 maxmag -0E1 0E2 -> 0E+2 -mxgx054 maxmag 0E1 -0E1 -> 0E+1 -mxgx055 maxmag 0E2 -0E2 -> 0E+2 -mxgx056 maxmag 0E2 -0E1 -> 0E+2 -mxgx057 maxmag 0E1 -0E2 -> 0E+1 - -mxgx058 maxmag 0E1 0E1 -> 0E+1 -mxgx059 maxmag 0E2 0E2 -> 0E+2 -mxgx060 maxmag 0E2 0E1 -> 0E+2 -mxgx061 maxmag 0E1 0E2 -> 0E+2 -mxgx062 maxmag -0E1 -0E1 -> -0E+1 -mxgx063 maxmag -0E2 -0E2 -> -0E+2 -mxgx064 maxmag -0E2 -0E1 -> -0E+1 -mxgx065 maxmag -0E1 -0E2 -> -0E+1 - --- Specials -precision: 9 -mxgx090 maxmag Inf -Inf -> Infinity -mxgx091 maxmag Inf -1000 -> Infinity -mxgx092 maxmag Inf -1 -> Infinity -mxgx093 maxmag Inf -0 -> Infinity -mxgx094 maxmag Inf 0 -> Infinity -mxgx095 maxmag Inf 1 -> Infinity -mxgx096 maxmag Inf 1000 -> Infinity -mxgx097 maxmag Inf Inf -> Infinity -mxgx098 maxmag -1000 Inf -> Infinity -mxgx099 maxmag -Inf Inf -> Infinity -mxgx100 maxmag -1 Inf -> Infinity -mxgx101 maxmag -0 Inf -> Infinity -mxgx102 maxmag 0 Inf -> Infinity -mxgx103 maxmag 1 Inf -> Infinity -mxgx104 maxmag 1000 Inf -> Infinity -mxgx105 maxmag Inf Inf -> Infinity - -mxgx120 maxmag -Inf -Inf -> -Infinity -mxgx121 maxmag -Inf -1000 -> -Infinity -mxgx122 maxmag -Inf -1 -> -Infinity -mxgx123 maxmag -Inf -0 -> -Infinity -mxgx124 maxmag -Inf 0 -> -Infinity -mxgx125 maxmag -Inf 1 -> -Infinity -mxgx126 maxmag -Inf 1000 -> -Infinity -mxgx127 maxmag -Inf Inf -> Infinity -mxgx128 maxmag -Inf -Inf -> -Infinity -mxgx129 maxmag -1000 -Inf -> -Infinity -mxgx130 maxmag -1 -Inf -> -Infinity -mxgx131 maxmag -0 -Inf -> -Infinity -mxgx132 maxmag 0 -Inf -> -Infinity -mxgx133 maxmag 1 -Inf -> -Infinity -mxgx134 maxmag 1000 -Inf -> -Infinity -mxgx135 maxmag Inf -Inf -> Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -mxgx141 maxmag NaN -Inf -> -Infinity -mxgx142 maxmag NaN -1000 -> -1000 -mxgx143 maxmag NaN -1 -> -1 -mxgx144 maxmag NaN -0 -> -0 -mxgx145 maxmag NaN 0 -> 0 -mxgx146 maxmag NaN 1 -> 1 -mxgx147 maxmag NaN 1000 -> 1000 -mxgx148 maxmag NaN Inf -> Infinity -mxgx149 maxmag NaN NaN -> NaN -mxgx150 maxmag -Inf NaN -> -Infinity -mxgx151 maxmag -1000 NaN -> -1000 -mxgx152 maxmag -1 NaN -> -1 -mxgx153 maxmag -0 NaN -> -0 -mxgx154 maxmag 0 NaN -> 0 -mxgx155 maxmag 1 NaN -> 1 -mxgx156 maxmag 1000 NaN -> 1000 -mxgx157 maxmag Inf NaN -> Infinity - -mxgx161 maxmag sNaN -Inf -> NaN Invalid_operation -mxgx162 maxmag sNaN -1000 -> NaN Invalid_operation -mxgx163 maxmag sNaN -1 -> NaN Invalid_operation -mxgx164 maxmag sNaN -0 -> NaN Invalid_operation -mxgx165 maxmag sNaN 0 -> NaN Invalid_operation -mxgx166 maxmag sNaN 1 -> NaN Invalid_operation -mxgx167 maxmag sNaN 1000 -> NaN Invalid_operation -mxgx168 maxmag sNaN NaN -> NaN Invalid_operation -mxgx169 maxmag sNaN sNaN -> NaN Invalid_operation -mxgx170 maxmag NaN sNaN -> NaN Invalid_operation -mxgx171 maxmag -Inf sNaN -> NaN Invalid_operation -mxgx172 maxmag -1000 sNaN -> NaN Invalid_operation -mxgx173 maxmag -1 sNaN -> NaN Invalid_operation -mxgx174 maxmag -0 sNaN -> NaN Invalid_operation -mxgx175 maxmag 0 sNaN -> NaN Invalid_operation -mxgx176 maxmag 1 sNaN -> NaN Invalid_operation -mxgx177 maxmag 1000 sNaN -> NaN Invalid_operation -mxgx178 maxmag Inf sNaN -> NaN Invalid_operation -mxgx179 maxmag NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -mxgx181 maxmag NaN9 -Inf -> -Infinity -mxgx182 maxmag NaN8 9 -> 9 -mxgx183 maxmag -NaN7 Inf -> Infinity - -mxgx184 maxmag -NaN1 NaN11 -> -NaN1 -mxgx185 maxmag NaN2 NaN12 -> NaN2 -mxgx186 maxmag -NaN13 -NaN7 -> -NaN13 -mxgx187 maxmag NaN14 -NaN5 -> NaN14 - -mxgx188 maxmag -Inf NaN4 -> -Infinity -mxgx189 maxmag -9 -NaN3 -> -9 -mxgx190 maxmag Inf NaN2 -> Infinity - -mxgx191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation -mxgx192 maxmag sNaN98 -1 -> NaN98 Invalid_operation -mxgx193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation -mxgx194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation -mxgx195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation -mxgx196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation -mxgx197 maxmag 0 sNaN91 -> NaN91 Invalid_operation -mxgx198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation -mxgx199 maxmag NaN sNaN89 -> NaN89 Invalid_operation - --- rounding checks -maxexponent: 999 -minexponent: -999 -precision: 9 -mxgx201 maxmag 12345678000 1 -> 1.23456780E+10 Rounded -mxgx202 maxmag 1 12345678000 -> 1.23456780E+10 Rounded -mxgx203 maxmag 1234567800 1 -> 1.23456780E+9 Rounded -mxgx204 maxmag 1 1234567800 -> 1.23456780E+9 Rounded -mxgx205 maxmag 1234567890 1 -> 1.23456789E+9 Rounded -mxgx206 maxmag 1 1234567890 -> 1.23456789E+9 Rounded -mxgx207 maxmag 1234567891 1 -> 1.23456789E+9 Inexact Rounded -mxgx208 maxmag 1 1234567891 -> 1.23456789E+9 Inexact Rounded -mxgx209 maxmag 12345678901 1 -> 1.23456789E+10 Inexact Rounded -mxgx210 maxmag 1 12345678901 -> 1.23456789E+10 Inexact Rounded -mxgx211 maxmag 1234567896 1 -> 1.23456790E+9 Inexact Rounded -mxgx212 maxmag 1 1234567896 -> 1.23456790E+9 Inexact Rounded -mxgx213 maxmag -1234567891 1 -> -1.23456789E+9 Inexact Rounded -mxgx214 maxmag 1 -1234567891 -> -1.23456789E+9 Inexact Rounded -mxgx215 maxmag -12345678901 1 -> -1.23456789E+10 Inexact Rounded -mxgx216 maxmag 1 -12345678901 -> -1.23456789E+10 Inexact Rounded -mxgx217 maxmag -1234567896 1 -> -1.23456790E+9 Inexact Rounded -mxgx218 maxmag 1 -1234567896 -> -1.23456790E+9 Inexact Rounded - -precision: 15 -mxgx221 maxmag 12345678000 1 -> 12345678000 -mxgx222 maxmag 1 12345678000 -> 12345678000 -mxgx223 maxmag 1234567800 1 -> 1234567800 -mxgx224 maxmag 1 1234567800 -> 1234567800 -mxgx225 maxmag 1234567890 1 -> 1234567890 -mxgx226 maxmag 1 1234567890 -> 1234567890 -mxgx227 maxmag 1234567891 1 -> 1234567891 -mxgx228 maxmag 1 1234567891 -> 1234567891 -mxgx229 maxmag 12345678901 1 -> 12345678901 -mxgx230 maxmag 1 12345678901 -> 12345678901 -mxgx231 maxmag 1234567896 1 -> 1234567896 -mxgx232 maxmag 1 1234567896 -> 1234567896 -mxgx233 maxmag -1234567891 1 -> -1234567891 -mxgx234 maxmag 1 -1234567891 -> -1234567891 -mxgx235 maxmag -12345678901 1 -> -12345678901 -mxgx236 maxmag 1 -12345678901 -> -12345678901 -mxgx237 maxmag -1234567896 1 -> -1234567896 -mxgx238 maxmag 1 -1234567896 -> -1234567896 - --- from examples -mxgx280 maxmag '3' '2' -> '3' -mxgx281 maxmag '-10' '3' -> '-10' -mxgx282 maxmag '1.0' '1' -> '1' -mxgx283 maxmag '1' '1.0' -> '1' -mxgx284 maxmag '7' 'NaN' -> '7' - --- overflow and underflow tests ... -maxExponent: 999999999 -minexponent: -999999999 -mxgx330 maxmag +1.23456789012345E-0 9E+999999999 -> 9E+999999999 -mxgx331 maxmag 9E+999999999 +1.23456789012345E-0 -> 9E+999999999 -mxgx332 maxmag +0.100 9E-999999999 -> 0.100 -mxgx333 maxmag 9E-999999999 +0.100 -> 0.100 -mxgx335 maxmag -1.23456789012345E-0 9E+999999999 -> 9E+999999999 -mxgx336 maxmag 9E+999999999 -1.23456789012345E-0 -> 9E+999999999 -mxgx337 maxmag -0.100 9E-999999999 -> -0.100 -mxgx338 maxmag 9E-999999999 -0.100 -> -0.100 - -mxgx339 maxmag 1e-599999999 1e-400000001 -> 1E-400000001 -mxgx340 maxmag 1e-599999999 1e-400000000 -> 1E-400000000 -mxgx341 maxmag 1e-600000000 1e-400000000 -> 1E-400000000 -mxgx342 maxmag 9e-999999998 0.01 -> 0.01 -mxgx343 maxmag 9e-999999998 0.1 -> 0.1 -mxgx344 maxmag 0.01 9e-999999998 -> 0.01 -mxgx345 maxmag 1e599999999 1e400000001 -> 1E+599999999 -mxgx346 maxmag 1e599999999 1e400000000 -> 1E+599999999 -mxgx347 maxmag 1e600000000 1e400000000 -> 1E+600000000 -mxgx348 maxmag 9e999999998 100 -> 9E+999999998 -mxgx349 maxmag 9e999999998 10 -> 9E+999999998 -mxgx350 maxmag 100 9e999999998 -> 9E+999999998 --- signs -mxgx351 maxmag 1e+777777777 1e+411111111 -> 1E+777777777 -mxgx352 maxmag 1e+777777777 -1e+411111111 -> 1E+777777777 -mxgx353 maxmag -1e+777777777 1e+411111111 -> -1E+777777777 -mxgx354 maxmag -1e+777777777 -1e+411111111 -> -1E+777777777 -mxgx355 maxmag 1e-777777777 1e-411111111 -> 1E-411111111 -mxgx356 maxmag 1e-777777777 -1e-411111111 -> -1E-411111111 -mxgx357 maxmag -1e-777777777 1e-411111111 -> 1E-411111111 -mxgx358 maxmag -1e-777777777 -1e-411111111 -> -1E-411111111 - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -mxgx401 maxmag Inf 1.1 -> Infinity -mxgx402 maxmag 1.1 1 -> 1.1 -mxgx403 maxmag 1 1.0 -> 1 -mxgx404 maxmag 1.0 0.1 -> 1.0 -mxgx405 maxmag 0.1 0.10 -> 0.1 -mxgx406 maxmag 0.10 0.100 -> 0.10 -mxgx407 maxmag 0.10 0 -> 0.10 -mxgx408 maxmag 0 0.0 -> 0 -mxgx409 maxmag 0.0 -0 -> 0.0 -mxgx410 maxmag 0.0 -0.0 -> 0.0 -mxgx411 maxmag 0.00 -0.0 -> 0.00 -mxgx412 maxmag 0.0 -0.00 -> 0.0 -mxgx413 maxmag 0 -0.0 -> 0 -mxgx414 maxmag 0 -0 -> 0 -mxgx415 maxmag -0.0 -0 -> -0.0 -mxgx416 maxmag -0 -0.100 -> -0.100 -mxgx417 maxmag -0.100 -0.10 -> -0.100 -mxgx418 maxmag -0.10 -0.1 -> -0.10 -mxgx419 maxmag -0.1 -1.0 -> -1.0 -mxgx420 maxmag -1.0 -1 -> -1.0 -mxgx421 maxmag -1 -1.1 -> -1.1 -mxgx423 maxmag -1.1 -Inf -> -Infinity --- same with operands reversed -mxgx431 maxmag 1.1 Inf -> Infinity -mxgx432 maxmag 1 1.1 -> 1.1 -mxgx433 maxmag 1.0 1 -> 1 -mxgx434 maxmag 0.1 1.0 -> 1.0 -mxgx435 maxmag 0.10 0.1 -> 0.1 -mxgx436 maxmag 0.100 0.10 -> 0.10 -mxgx437 maxmag 0 0.10 -> 0.10 -mxgx438 maxmag 0.0 0 -> 0 -mxgx439 maxmag -0 0.0 -> 0.0 -mxgx440 maxmag -0.0 0.0 -> 0.0 -mxgx441 maxmag -0.0 0.00 -> 0.00 -mxgx442 maxmag -0.00 0.0 -> 0.0 -mxgx443 maxmag -0.0 0 -> 0 -mxgx444 maxmag -0 0 -> 0 -mxgx445 maxmag -0 -0.0 -> -0.0 -mxgx446 maxmag -0.100 -0 -> -0.100 -mxgx447 maxmag -0.10 -0.100 -> -0.100 -mxgx448 maxmag -0.1 -0.10 -> -0.10 -mxgx449 maxmag -1.0 -0.1 -> -1.0 -mxgx450 maxmag -1 -1.0 -> -1.0 -mxgx451 maxmag -1.1 -1 -> -1.1 -mxgx453 maxmag -Inf -1.1 -> -Infinity --- largies -mxgx460 maxmag 1000 1E+3 -> 1E+3 -mxgx461 maxmag 1E+3 1000 -> 1E+3 -mxgx462 maxmag 1000 -1E+3 -> 1000 -mxgx463 maxmag 1E+3 -1000 -> 1E+3 -mxgx464 maxmag -1000 1E+3 -> 1E+3 -mxgx465 maxmag -1E+3 1000 -> 1000 -mxgx466 maxmag -1000 -1E+3 -> -1000 -mxgx467 maxmag -1E+3 -1000 -> -1000 - --- rounding (results treated as though plus) -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 - -mxgx470 maxmag 1 .5 -> 1 -mxgx471 maxmag 10 5 -> 10 -mxgx472 maxmag 100 50 -> 100 -mxgx473 maxmag 1000 500 -> 1.00E+3 Rounded -mxgx474 maxmag 10000 5000 -> 1.00E+4 Rounded -mxgx475 maxmag 6 .5 -> 6 -mxgx476 maxmag 66 5 -> 66 -mxgx477 maxmag 666 50 -> 666 -mxgx478 maxmag 6666 500 -> 6.67E+3 Rounded Inexact -mxgx479 maxmag 66666 5000 -> 6.67E+4 Rounded Inexact -mxgx480 maxmag 33333 5000 -> 3.33E+4 Rounded Inexact -mxgx481 maxmag .5 1 -> 1 -mxgx482 maxmag .5 10 -> 10 -mxgx483 maxmag .5 100 -> 100 -mxgx484 maxmag .5 1000 -> 1.00E+3 Rounded -mxgx485 maxmag .5 10000 -> 1.00E+4 Rounded -mxgx486 maxmag .5 6 -> 6 -mxgx487 maxmag .5 66 -> 66 -mxgx488 maxmag .5 666 -> 666 -mxgx489 maxmag .5 6666 -> 6.67E+3 Rounded Inexact -mxgx490 maxmag .5 66666 -> 6.67E+4 Rounded Inexact -mxgx491 maxmag .5 33333 -> 3.33E+4 Rounded Inexact - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -mxgx500 maxmag 9.999E+999999999 0 -> Infinity Inexact Overflow Rounded -mxgx501 maxmag -9.999E+999999999 0 -> -Infinity Inexact Overflow Rounded - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -mxgx510 maxmag 1.00E-999 0 -> 1.00E-999 -mxgx511 maxmag 0.1E-999 0 -> 1E-1000 Subnormal -mxgx512 maxmag 0.10E-999 0 -> 1.0E-1000 Subnormal -mxgx513 maxmag 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded -mxgx514 maxmag 0.01E-999 0 -> 1E-1001 Subnormal --- next is rounded to Nmin -mxgx515 maxmag 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow -mxgx516 maxmag 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -mxgx517 maxmag 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow -mxgx518 maxmag 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -mxgx519 maxmag 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -mxgx520 maxmag 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - -mxgx530 maxmag -1.00E-999 0 -> -1.00E-999 -mxgx531 maxmag -0.1E-999 0 -> -1E-1000 Subnormal -mxgx532 maxmag -0.10E-999 0 -> -1.0E-1000 Subnormal -mxgx533 maxmag -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded -mxgx534 maxmag -0.01E-999 0 -> -1E-1001 Subnormal --- next is rounded to -Nmin -mxgx535 maxmag -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow -mxgx536 maxmag -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -mxgx537 maxmag -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow -mxgx538 maxmag -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -mxgx539 maxmag -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -mxgx540 maxmag -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped - --- Null tests -mxgx900 maxmag 10 # -> NaN Invalid_operation -mxgx901 maxmag # 10 -> NaN Invalid_operation - - - diff --git a/qdecimal/test/tc_full/min.decTest b/qdecimal/test/tc_full/min.decTest deleted file mode 100644 index 58d90d3..0000000 --- a/qdecimal/test/tc_full/min.decTest +++ /dev/null @@ -1,407 +0,0 @@ ------------------------------------------------------------------------- --- min.decTest -- decimal minimum -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- sanity checks -mnmx001 min -2 -2 -> -2 -mnmx002 min -2 -1 -> -2 -mnmx003 min -2 0 -> -2 -mnmx004 min -2 1 -> -2 -mnmx005 min -2 2 -> -2 -mnmx006 min -1 -2 -> -2 -mnmx007 min -1 -1 -> -1 -mnmx008 min -1 0 -> -1 -mnmx009 min -1 1 -> -1 -mnmx010 min -1 2 -> -1 -mnmx011 min 0 -2 -> -2 -mnmx012 min 0 -1 -> -1 -mnmx013 min 0 0 -> 0 -mnmx014 min 0 1 -> 0 -mnmx015 min 0 2 -> 0 -mnmx016 min 1 -2 -> -2 -mnmx017 min 1 -1 -> -1 -mnmx018 min 1 0 -> 0 -mnmx019 min 1 1 -> 1 -mnmx020 min 1 2 -> 1 -mnmx021 min 2 -2 -> -2 -mnmx022 min 2 -1 -> -1 -mnmx023 min 2 0 -> 0 -mnmx025 min 2 1 -> 1 -mnmx026 min 2 2 -> 2 - --- extended zeros -mnmx030 min 0 0 -> 0 -mnmx031 min 0 -0 -> -0 -mnmx032 min 0 -0.0 -> -0.0 -mnmx033 min 0 0.0 -> 0.0 -mnmx034 min -0 0 -> -0 -mnmx035 min -0 -0 -> -0 -mnmx036 min -0 -0.0 -> -0 -mnmx037 min -0 0.0 -> -0 -mnmx038 min 0.0 0 -> 0.0 -mnmx039 min 0.0 -0 -> -0 -mnmx040 min 0.0 -0.0 -> -0.0 -mnmx041 min 0.0 0.0 -> 0.0 -mnmx042 min -0.0 0 -> -0.0 -mnmx043 min -0.0 -0 -> -0 -mnmx044 min -0.0 -0.0 -> -0.0 -mnmx045 min -0.0 0.0 -> -0.0 - -mnmx046 min 0E1 -0E1 -> -0E+1 -mnmx047 min -0E1 0E2 -> -0E+1 -mnmx048 min 0E2 0E1 -> 0E+1 -mnmx049 min 0E1 0E2 -> 0E+1 -mnmx050 min -0E3 -0E2 -> -0E+3 -mnmx051 min -0E2 -0E3 -> -0E+3 - --- Specials -precision: 9 -mnmx090 min Inf -Inf -> -Infinity -mnmx091 min Inf -1000 -> -1000 -mnmx092 min Inf -1 -> -1 -mnmx093 min Inf -0 -> -0 -mnmx094 min Inf 0 -> 0 -mnmx095 min Inf 1 -> 1 -mnmx096 min Inf 1000 -> 1000 -mnmx097 min Inf Inf -> Infinity -mnmx098 min -1000 Inf -> -1000 -mnmx099 min -Inf Inf -> -Infinity -mnmx100 min -1 Inf -> -1 -mnmx101 min -0 Inf -> -0 -mnmx102 min 0 Inf -> 0 -mnmx103 min 1 Inf -> 1 -mnmx104 min 1000 Inf -> 1000 -mnmx105 min Inf Inf -> Infinity - -mnmx120 min -Inf -Inf -> -Infinity -mnmx121 min -Inf -1000 -> -Infinity -mnmx122 min -Inf -1 -> -Infinity -mnmx123 min -Inf -0 -> -Infinity -mnmx124 min -Inf 0 -> -Infinity -mnmx125 min -Inf 1 -> -Infinity -mnmx126 min -Inf 1000 -> -Infinity -mnmx127 min -Inf Inf -> -Infinity -mnmx128 min -Inf -Inf -> -Infinity -mnmx129 min -1000 -Inf -> -Infinity -mnmx130 min -1 -Inf -> -Infinity -mnmx131 min -0 -Inf -> -Infinity -mnmx132 min 0 -Inf -> -Infinity -mnmx133 min 1 -Inf -> -Infinity -mnmx134 min 1000 -Inf -> -Infinity -mnmx135 min Inf -Inf -> -Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -mnmx141 min NaN -Inf -> -Infinity -mnmx142 min NaN -1000 -> -1000 -mnmx143 min NaN -1 -> -1 -mnmx144 min NaN -0 -> -0 -mnmx145 min NaN 0 -> 0 -mnmx146 min NaN 1 -> 1 -mnmx147 min NaN 1000 -> 1000 -mnmx148 min NaN Inf -> Infinity -mnmx149 min NaN NaN -> NaN -mnmx150 min -Inf NaN -> -Infinity -mnmx151 min -1000 NaN -> -1000 -mnmx152 min -1 -NaN -> -1 -mnmx153 min -0 NaN -> -0 -mnmx154 min 0 -NaN -> 0 -mnmx155 min 1 NaN -> 1 -mnmx156 min 1000 NaN -> 1000 -mnmx157 min Inf NaN -> Infinity - -mnmx161 min sNaN -Inf -> NaN Invalid_operation -mnmx162 min sNaN -1000 -> NaN Invalid_operation -mnmx163 min sNaN -1 -> NaN Invalid_operation -mnmx164 min sNaN -0 -> NaN Invalid_operation -mnmx165 min -sNaN 0 -> -NaN Invalid_operation -mnmx166 min -sNaN 1 -> -NaN Invalid_operation -mnmx167 min sNaN 1000 -> NaN Invalid_operation -mnmx168 min sNaN NaN -> NaN Invalid_operation -mnmx169 min sNaN sNaN -> NaN Invalid_operation -mnmx170 min NaN sNaN -> NaN Invalid_operation -mnmx171 min -Inf sNaN -> NaN Invalid_operation -mnmx172 min -1000 sNaN -> NaN Invalid_operation -mnmx173 min -1 sNaN -> NaN Invalid_operation -mnmx174 min -0 sNaN -> NaN Invalid_operation -mnmx175 min 0 sNaN -> NaN Invalid_operation -mnmx176 min 1 sNaN -> NaN Invalid_operation -mnmx177 min 1000 sNaN -> NaN Invalid_operation -mnmx178 min Inf sNaN -> NaN Invalid_operation -mnmx179 min NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -mnmx181 min NaN9 -Inf -> -Infinity -mnmx182 min -NaN8 9990 -> 9990 -mnmx183 min NaN71 Inf -> Infinity - -mnmx184 min NaN1 NaN54 -> NaN1 -mnmx185 min NaN22 -NaN53 -> NaN22 -mnmx186 min -NaN3 NaN6 -> -NaN3 -mnmx187 min -NaN44 NaN7 -> -NaN44 - -mnmx188 min -Inf NaN41 -> -Infinity -mnmx189 min -9999 -NaN33 -> -9999 -mnmx190 min Inf NaN2 -> Infinity - -mnmx191 min sNaN99 -Inf -> NaN99 Invalid_operation -mnmx192 min sNaN98 -11 -> NaN98 Invalid_operation -mnmx193 min -sNaN97 NaN8 -> -NaN97 Invalid_operation -mnmx194 min sNaN69 sNaN94 -> NaN69 Invalid_operation -mnmx195 min NaN95 sNaN93 -> NaN93 Invalid_operation -mnmx196 min -Inf sNaN92 -> NaN92 Invalid_operation -mnmx197 min 088 sNaN91 -> NaN91 Invalid_operation -mnmx198 min Inf -sNaN90 -> -NaN90 Invalid_operation -mnmx199 min NaN sNaN86 -> NaN86 Invalid_operation - --- rounding checks -- chosen is rounded, or not -maxExponent: 999 -minexponent: -999 -precision: 9 -mnmx201 min -12345678000 1 -> -1.23456780E+10 Rounded -mnmx202 min 1 -12345678000 -> -1.23456780E+10 Rounded -mnmx203 min -1234567800 1 -> -1.23456780E+9 Rounded -mnmx204 min 1 -1234567800 -> -1.23456780E+9 Rounded -mnmx205 min -1234567890 1 -> -1.23456789E+9 Rounded -mnmx206 min 1 -1234567890 -> -1.23456789E+9 Rounded -mnmx207 min -1234567891 1 -> -1.23456789E+9 Inexact Rounded -mnmx208 min 1 -1234567891 -> -1.23456789E+9 Inexact Rounded -mnmx209 min -12345678901 1 -> -1.23456789E+10 Inexact Rounded -mnmx210 min 1 -12345678901 -> -1.23456789E+10 Inexact Rounded -mnmx211 min -1234567896 1 -> -1.23456790E+9 Inexact Rounded -mnmx212 min 1 -1234567896 -> -1.23456790E+9 Inexact Rounded -mnmx213 min 1234567891 1 -> 1 -mnmx214 min 1 1234567891 -> 1 -mnmx215 min 12345678901 1 -> 1 -mnmx216 min 1 12345678901 -> 1 -mnmx217 min 1234567896 1 -> 1 -mnmx218 min 1 1234567896 -> 1 - -precision: 15 -mnmx221 min -12345678000 1 -> -12345678000 -mnmx222 min 1 -12345678000 -> -12345678000 -mnmx223 min -1234567800 1 -> -1234567800 -mnmx224 min 1 -1234567800 -> -1234567800 -mnmx225 min -1234567890 1 -> -1234567890 -mnmx226 min 1 -1234567890 -> -1234567890 -mnmx227 min -1234567891 1 -> -1234567891 -mnmx228 min 1 -1234567891 -> -1234567891 -mnmx229 min -12345678901 1 -> -12345678901 -mnmx230 min 1 -12345678901 -> -12345678901 -mnmx231 min -1234567896 1 -> -1234567896 -mnmx232 min 1 -1234567896 -> -1234567896 -mnmx233 min 1234567891 1 -> 1 -mnmx234 min 1 1234567891 -> 1 -mnmx235 min 12345678901 1 -> 1 -mnmx236 min 1 12345678901 -> 1 -mnmx237 min 1234567896 1 -> 1 -mnmx238 min 1 1234567896 -> 1 - --- from examples -mnmx280 min '3' '2' -> '2' -mnmx281 min '-10' '3' -> '-10' -mnmx282 min '1.0' '1' -> '1.0' -mnmx283 min '1' '1.0' -> '1.0' -mnmx284 min '7' 'NaN' -> '7' - --- overflow and underflow tests .. subnormal results [inputs] now allowed -maxExponent: 999999999 -minexponent: -999999999 -mnmx330 min -1.23456789012345E-0 -9E+999999999 -> -9E+999999999 -mnmx331 min -9E+999999999 -1.23456789012345E-0 -> -9E+999999999 -mnmx332 min -0.100 -9E-999999999 -> -0.100 -mnmx333 min -9E-999999999 -0.100 -> -0.100 -mnmx335 min +1.23456789012345E-0 -9E+999999999 -> -9E+999999999 -mnmx336 min -9E+999999999 1.23456789012345E-0 -> -9E+999999999 -mnmx337 min +0.100 -9E-999999999 -> -9E-999999999 -mnmx338 min -9E-999999999 0.100 -> -9E-999999999 - -mnmx339 min -1e-599999999 -1e-400000001 -> -1E-400000001 -mnmx340 min -1e-599999999 -1e-400000000 -> -1E-400000000 -mnmx341 min -1e-600000000 -1e-400000000 -> -1E-400000000 -mnmx342 min -9e-999999998 -0.01 -> -0.01 -mnmx343 min -9e-999999998 -0.1 -> -0.1 -mnmx344 min -0.01 -9e-999999998 -> -0.01 -mnmx345 min -1e599999999 -1e400000001 -> -1E+599999999 -mnmx346 min -1e599999999 -1e400000000 -> -1E+599999999 -mnmx347 min -1e600000000 -1e400000000 -> -1E+600000000 -mnmx348 min -9e999999998 -100 -> -9E+999999998 -mnmx349 min -9e999999998 -10 -> -9E+999999998 -mnmx350 min -100 -9e999999998 -> -9E+999999998 --- signs -mnmx351 min -1e+777777777 -1e+411111111 -> -1E+777777777 -mnmx352 min -1e+777777777 +1e+411111111 -> -1E+777777777 -mnmx353 min +1e+777777777 -1e+411111111 -> -1E+411111111 -mnmx354 min +1e+777777777 +1e+411111111 -> 1E+411111111 -mnmx355 min -1e-777777777 -1e-411111111 -> -1E-411111111 -mnmx356 min -1e-777777777 +1e-411111111 -> -1E-777777777 -mnmx357 min +1e-777777777 -1e-411111111 -> -1E-411111111 -mnmx358 min +1e-777777777 +1e-411111111 -> 1E-777777777 - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -mnmx401 min Inf 1.1 -> 1.1 -mnmx402 min 1.1 1 -> 1 -mnmx403 min 1 1.0 -> 1.0 -mnmx404 min 1.0 0.1 -> 0.1 -mnmx405 min 0.1 0.10 -> 0.10 -mnmx406 min 0.10 0.100 -> 0.100 -mnmx407 min 0.10 0 -> 0 -mnmx408 min 0 0.0 -> 0.0 -mnmx409 min 0.0 -0 -> -0 -mnmx410 min 0.0 -0.0 -> -0.0 -mnmx411 min 0.00 -0.0 -> -0.0 -mnmx412 min 0.0 -0.00 -> -0.00 -mnmx413 min 0 -0.0 -> -0.0 -mnmx414 min 0 -0 -> -0 -mnmx415 min -0.0 -0 -> -0 -mnmx416 min -0 -0.100 -> -0.100 -mnmx417 min -0.100 -0.10 -> -0.10 -mnmx418 min -0.10 -0.1 -> -0.1 -mnmx419 min -0.1 -1.0 -> -1.0 -mnmx420 min -1.0 -1 -> -1 -mnmx421 min -1 -1.1 -> -1.1 -mnmx423 min -1.1 -Inf -> -Infinity --- same with operands reversed -mnmx431 min 1.1 Inf -> 1.1 -mnmx432 min 1 1.1 -> 1 -mnmx433 min 1.0 1 -> 1.0 -mnmx434 min 0.1 1.0 -> 0.1 -mnmx435 min 0.10 0.1 -> 0.10 -mnmx436 min 0.100 0.10 -> 0.100 -mnmx437 min 0 0.10 -> 0 -mnmx438 min 0.0 0 -> 0.0 -mnmx439 min -0 0.0 -> -0 -mnmx440 min -0.0 0.0 -> -0.0 -mnmx441 min -0.0 0.00 -> -0.0 -mnmx442 min -0.00 0.0 -> -0.00 -mnmx443 min -0.0 0 -> -0.0 -mnmx444 min -0 0 -> -0 -mnmx445 min -0 -0.0 -> -0 -mnmx446 min -0.100 -0 -> -0.100 -mnmx447 min -0.10 -0.100 -> -0.10 -mnmx448 min -0.1 -0.10 -> -0.1 -mnmx449 min -1.0 -0.1 -> -1.0 -mnmx450 min -1 -1.0 -> -1 -mnmx451 min -1.1 -1 -> -1.1 -mnmx453 min -Inf -1.1 -> -Infinity --- largies -mnmx460 min 1000 1E+3 -> 1000 -mnmx461 min 1E+3 1000 -> 1000 -mnmx462 min 1000 -1E+3 -> -1E+3 -mnmx463 min 1E+3 -1000 -> -1000 -mnmx464 min -1000 1E+3 -> -1000 -mnmx465 min -1E+3 1000 -> -1E+3 -mnmx466 min -1000 -1E+3 -> -1E+3 -mnmx467 min -1E+3 -1000 -> -1E+3 - --- rounding (results treated as though plus) -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 - -mnmx470 min 1 5 -> 1 -mnmx471 min 10 50 -> 10 -mnmx472 min 100 500 -> 100 -mnmx473 min 1000 5000 -> 1.00E+3 Rounded -mnmx474 min 10000 50000 -> 1.00E+4 Rounded -mnmx475 min 6 50 -> 6 -mnmx476 min 66 500 -> 66 -mnmx477 min 666 5000 -> 666 -mnmx478 min 6666 50000 -> 6.67E+3 Rounded Inexact -mnmx479 min 66666 500000 -> 6.67E+4 Rounded Inexact -mnmx480 min 33333 500000 -> 3.33E+4 Rounded Inexact -mnmx481 min 75401 1 -> 1 -mnmx482 min 75402 10 -> 10 -mnmx483 min 75403 100 -> 100 -mnmx484 min 75404 1000 -> 1.00E+3 Rounded -mnmx485 min 75405 10000 -> 1.00E+4 Rounded -mnmx486 min 75406 6 -> 6 -mnmx487 min 75407 66 -> 66 -mnmx488 min 75408 666 -> 666 -mnmx489 min 75409 6666 -> 6.67E+3 Rounded Inexact -mnmx490 min 75410 66666 -> 6.67E+4 Rounded Inexact -mnmx491 min 75411 33333 -> 3.33E+4 Rounded Inexact - - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -mnmx500 min 9.999E+999999999 0 -> 0 -mnmx501 min -9.999E+999999999 0 -> -Infinity Inexact Overflow Rounded - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -mnmx510 min 1.00E-999 0 -> 0 -mnmx511 min 0.1E-999 0 -> 0 -mnmx512 min 0.10E-999 0 -> 0 -mnmx513 min 0.100E-999 0 -> 0 -mnmx514 min 0.01E-999 0 -> 0 -mnmx515 min 0.999E-999 0 -> 0 -mnmx516 min 0.099E-999 0 -> 0 -mnmx517 min 0.009E-999 0 -> 0 -mnmx518 min 0.001E-999 0 -> 0 -mnmx519 min 0.0009E-999 0 -> 0 -mnmx520 min 0.0001E-999 0 -> 0 - -mnmx530 min -1.00E-999 0 -> -1.00E-999 -mnmx531 min -0.1E-999 0 -> -1E-1000 Subnormal -mnmx532 min -0.10E-999 0 -> -1.0E-1000 Subnormal -mnmx533 min -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded -mnmx534 min -0.01E-999 0 -> -1E-1001 Subnormal --- next is rounded to Nmin -mnmx535 min -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow -mnmx536 min -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -mnmx537 min -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow -mnmx538 min -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -mnmx539 min -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -mnmx540 min -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped - --- misalignment traps for little-endian -precision: 9 -mnmx551 min 1.0 0.1 -> 0.1 -mnmx552 min 0.1 1.0 -> 0.1 -mnmx553 min 10.0 0.1 -> 0.1 -mnmx554 min 0.1 10.0 -> 0.1 -mnmx555 min 100 1.0 -> 1.0 -mnmx556 min 1.0 100 -> 1.0 -mnmx557 min 1000 10.0 -> 10.0 -mnmx558 min 10.0 1000 -> 10.0 -mnmx559 min 10000 100.0 -> 100.0 -mnmx560 min 100.0 10000 -> 100.0 -mnmx561 min 100000 1000.0 -> 1000.0 -mnmx562 min 1000.0 100000 -> 1000.0 -mnmx563 min 1000000 10000.0 -> 10000.0 -mnmx564 min 10000.0 1000000 -> 10000.0 - --- Null tests -mnm900 min 10 # -> NaN Invalid_operation -mnm901 min # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/minmag.decTest b/qdecimal/test/tc_full/minmag.decTest deleted file mode 100644 index bc0a154..0000000 --- a/qdecimal/test/tc_full/minmag.decTest +++ /dev/null @@ -1,390 +0,0 @@ ------------------------------------------------------------------------- --- minmag.decTest -- decimal minimum by magnitude -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases and rounding - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- sanity checks -mngx001 minmag -2 -2 -> -2 -mngx002 minmag -2 -1 -> -1 -mngx003 minmag -2 0 -> 0 -mngx004 minmag -2 1 -> 1 -mngx005 minmag -2 2 -> -2 -mngx006 minmag -1 -2 -> -1 -mngx007 minmag -1 -1 -> -1 -mngx008 minmag -1 0 -> 0 -mngx009 minmag -1 1 -> -1 -mngx010 minmag -1 2 -> -1 -mngx011 minmag 0 -2 -> 0 -mngx012 minmag 0 -1 -> 0 -mngx013 minmag 0 0 -> 0 -mngx014 minmag 0 1 -> 0 -mngx015 minmag 0 2 -> 0 -mngx016 minmag 1 -2 -> 1 -mngx017 minmag 1 -1 -> -1 -mngx018 minmag 1 0 -> 0 -mngx019 minmag 1 1 -> 1 -mngx020 minmag 1 2 -> 1 -mngx021 minmag 2 -2 -> -2 -mngx022 minmag 2 -1 -> -1 -mngx023 minmag 2 0 -> 0 -mngx025 minmag 2 1 -> 1 -mngx026 minmag 2 2 -> 2 - --- extended zeros -mngx030 minmag 0 0 -> 0 -mngx031 minmag 0 -0 -> -0 -mngx032 minmag 0 -0.0 -> -0.0 -mngx033 minmag 0 0.0 -> 0.0 -mngx034 minmag -0 0 -> -0 -mngx035 minmag -0 -0 -> -0 -mngx036 minmag -0 -0.0 -> -0 -mngx037 minmag -0 0.0 -> -0 -mngx038 minmag 0.0 0 -> 0.0 -mngx039 minmag 0.0 -0 -> -0 -mngx040 minmag 0.0 -0.0 -> -0.0 -mngx041 minmag 0.0 0.0 -> 0.0 -mngx042 minmag -0.0 0 -> -0.0 -mngx043 minmag -0.0 -0 -> -0 -mngx044 minmag -0.0 -0.0 -> -0.0 -mngx045 minmag -0.0 0.0 -> -0.0 - -mngx046 minmag 0E1 -0E1 -> -0E+1 -mngx047 minmag -0E1 0E2 -> -0E+1 -mngx048 minmag 0E2 0E1 -> 0E+1 -mngx049 minmag 0E1 0E2 -> 0E+1 -mngx050 minmag -0E3 -0E2 -> -0E+3 -mngx051 minmag -0E2 -0E3 -> -0E+3 - --- Specials -precision: 9 -mngx090 minmag Inf -Inf -> -Infinity -mngx091 minmag Inf -1000 -> -1000 -mngx092 minmag Inf -1 -> -1 -mngx093 minmag Inf -0 -> -0 -mngx094 minmag Inf 0 -> 0 -mngx095 minmag Inf 1 -> 1 -mngx096 minmag Inf 1000 -> 1000 -mngx097 minmag Inf Inf -> Infinity -mngx098 minmag -1000 Inf -> -1000 -mngx099 minmag -Inf Inf -> -Infinity -mngx100 minmag -1 Inf -> -1 -mngx101 minmag -0 Inf -> -0 -mngx102 minmag 0 Inf -> 0 -mngx103 minmag 1 Inf -> 1 -mngx104 minmag 1000 Inf -> 1000 -mngx105 minmag Inf Inf -> Infinity - -mngx120 minmag -Inf -Inf -> -Infinity -mngx121 minmag -Inf -1000 -> -1000 -mngx122 minmag -Inf -1 -> -1 -mngx123 minmag -Inf -0 -> -0 -mngx124 minmag -Inf 0 -> 0 -mngx125 minmag -Inf 1 -> 1 -mngx126 minmag -Inf 1000 -> 1000 -mngx127 minmag -Inf Inf -> -Infinity -mngx128 minmag -Inf -Inf -> -Infinity -mngx129 minmag -1000 -Inf -> -1000 -mngx130 minmag -1 -Inf -> -1 -mngx131 minmag -0 -Inf -> -0 -mngx132 minmag 0 -Inf -> 0 -mngx133 minmag 1 -Inf -> 1 -mngx134 minmag 1000 -Inf -> 1000 -mngx135 minmag Inf -Inf -> -Infinity - --- 2004.08.02 754r chooses number over NaN in mixed cases -mngx141 minmag NaN -Inf -> -Infinity -mngx142 minmag NaN -1000 -> -1000 -mngx143 minmag NaN -1 -> -1 -mngx144 minmag NaN -0 -> -0 -mngx145 minmag NaN 0 -> 0 -mngx146 minmag NaN 1 -> 1 -mngx147 minmag NaN 1000 -> 1000 -mngx148 minmag NaN Inf -> Infinity -mngx149 minmag NaN NaN -> NaN -mngx150 minmag -Inf NaN -> -Infinity -mngx151 minmag -1000 NaN -> -1000 -mngx152 minmag -1 -NaN -> -1 -mngx153 minmag -0 NaN -> -0 -mngx154 minmag 0 -NaN -> 0 -mngx155 minmag 1 NaN -> 1 -mngx156 minmag 1000 NaN -> 1000 -mngx157 minmag Inf NaN -> Infinity - -mngx161 minmag sNaN -Inf -> NaN Invalid_operation -mngx162 minmag sNaN -1000 -> NaN Invalid_operation -mngx163 minmag sNaN -1 -> NaN Invalid_operation -mngx164 minmag sNaN -0 -> NaN Invalid_operation -mngx165 minmag -sNaN 0 -> -NaN Invalid_operation -mngx166 minmag -sNaN 1 -> -NaN Invalid_operation -mngx167 minmag sNaN 1000 -> NaN Invalid_operation -mngx168 minmag sNaN NaN -> NaN Invalid_operation -mngx169 minmag sNaN sNaN -> NaN Invalid_operation -mngx170 minmag NaN sNaN -> NaN Invalid_operation -mngx171 minmag -Inf sNaN -> NaN Invalid_operation -mngx172 minmag -1000 sNaN -> NaN Invalid_operation -mngx173 minmag -1 sNaN -> NaN Invalid_operation -mngx174 minmag -0 sNaN -> NaN Invalid_operation -mngx175 minmag 0 sNaN -> NaN Invalid_operation -mngx176 minmag 1 sNaN -> NaN Invalid_operation -mngx177 minmag 1000 sNaN -> NaN Invalid_operation -mngx178 minmag Inf sNaN -> NaN Invalid_operation -mngx179 minmag NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -mngx181 minmag NaN9 -Inf -> -Infinity -mngx182 minmag -NaN8 9990 -> 9990 -mngx183 minmag NaN71 Inf -> Infinity - -mngx184 minmag NaN1 NaN54 -> NaN1 -mngx185 minmag NaN22 -NaN53 -> NaN22 -mngx186 minmag -NaN3 NaN6 -> -NaN3 -mngx187 minmag -NaN44 NaN7 -> -NaN44 - -mngx188 minmag -Inf NaN41 -> -Infinity -mngx189 minmag -9999 -NaN33 -> -9999 -mngx190 minmag Inf NaN2 -> Infinity - -mngx191 minmag sNaN99 -Inf -> NaN99 Invalid_operation -mngx192 minmag sNaN98 -11 -> NaN98 Invalid_operation -mngx193 minmag -sNaN97 NaN8 -> -NaN97 Invalid_operation -mngx194 minmag sNaN69 sNaN94 -> NaN69 Invalid_operation -mngx195 minmag NaN95 sNaN93 -> NaN93 Invalid_operation -mngx196 minmag -Inf sNaN92 -> NaN92 Invalid_operation -mngx197 minmag 088 sNaN91 -> NaN91 Invalid_operation -mngx198 minmag Inf -sNaN90 -> -NaN90 Invalid_operation -mngx199 minmag NaN sNaN86 -> NaN86 Invalid_operation - --- rounding checks -- chosen is rounded, or not -maxExponent: 999 -minexponent: -999 -precision: 9 -mngx201 minmag -12345678000 1 -> 1 -mngx202 minmag 1 -12345678000 -> 1 -mngx203 minmag -1234567800 1 -> 1 -mngx204 minmag 1 -1234567800 -> 1 -mngx205 minmag -1234567890 1 -> 1 -mngx206 minmag 1 -1234567890 -> 1 -mngx207 minmag -1234567891 1 -> 1 -mngx208 minmag 1 -1234567891 -> 1 -mngx209 minmag -12345678901 1 -> 1 -mngx210 minmag 1 -12345678901 -> 1 -mngx211 minmag -1234567896 1 -> 1 -mngx212 minmag 1 -1234567896 -> 1 -mngx213 minmag 1234567891 1 -> 1 -mngx214 minmag 1 1234567891 -> 1 -mngx215 minmag 12345678901 1 -> 1 -mngx216 minmag 1 12345678901 -> 1 -mngx217 minmag 1234567896 1 -> 1 -mngx218 minmag 1 1234567896 -> 1 - -precision: 15 -mngx221 minmag -12345678000 1 -> 1 -mngx222 minmag 1 -12345678000 -> 1 -mngx223 minmag -1234567800 1 -> 1 -mngx224 minmag 1 -1234567800 -> 1 -mngx225 minmag -1234567890 1 -> 1 -mngx226 minmag 1 -1234567890 -> 1 -mngx227 minmag -1234567891 1 -> 1 -mngx228 minmag 1 -1234567891 -> 1 -mngx229 minmag -12345678901 1 -> 1 -mngx230 minmag 1 -12345678901 -> 1 -mngx231 minmag -1234567896 1 -> 1 -mngx232 minmag 1 -1234567896 -> 1 -mngx233 minmag 1234567891 1 -> 1 -mngx234 minmag 1 1234567891 -> 1 -mngx235 minmag 12345678901 1 -> 1 -mngx236 minmag 1 12345678901 -> 1 -mngx237 minmag 1234567896 1 -> 1 -mngx238 minmag 1 1234567896 -> 1 - --- from examples -mngx280 minmag '3' '2' -> '2' -mngx281 minmag '-10' '3' -> '3' -mngx282 minmag '1.0' '1' -> '1.0' -mngx283 minmag '1' '1.0' -> '1.0' -mngx284 minmag '7' 'NaN' -> '7' - --- overflow and underflow tests .. subnormal results [inputs] now allowed -maxExponent: 999999999 -minexponent: -999999999 -mngx330 minmag -1.23456789012345E-0 -9E+999999999 -> -1.23456789012345 -mngx331 minmag -9E+999999999 -1.23456789012345E-0 -> -1.23456789012345 -mngx332 minmag -0.100 -9E-999999999 -> -9E-999999999 -mngx333 minmag -9E-999999999 -0.100 -> -9E-999999999 -mngx335 minmag +1.23456789012345E-0 -9E+999999999 -> 1.23456789012345 -mngx336 minmag -9E+999999999 1.23456789012345E-0 -> 1.23456789012345 -mngx337 minmag +0.100 -9E-999999999 -> -9E-999999999 -mngx338 minmag -9E-999999999 0.100 -> -9E-999999999 - -mngx339 minmag -1e-599999999 -1e-400000001 -> -1E-599999999 -mngx340 minmag -1e-599999999 -1e-400000000 -> -1E-599999999 -mngx341 minmag -1e-600000000 -1e-400000000 -> -1E-600000000 -mngx342 minmag -9e-999999998 -0.01 -> -9E-999999998 -mngx343 minmag -9e-999999998 -0.1 -> -9E-999999998 -mngx344 minmag -0.01 -9e-999999998 -> -9E-999999998 -mngx345 minmag -1e599999999 -1e400000001 -> -1E+400000001 -mngx346 minmag -1e599999999 -1e400000000 -> -1E+400000000 -mngx347 minmag -1e600000000 -1e400000000 -> -1E+400000000 -mngx348 minmag -9e999999998 -100 -> -100 -mngx349 minmag -9e999999998 -10 -> -10 -mngx350 minmag -100 -9e999999998 -> -100 --- signs -mngx351 minmag -1e+777777777 -1e+411111111 -> -1E+411111111 -mngx352 minmag -1e+777777777 +1e+411111111 -> 1E+411111111 -mngx353 minmag +1e+777777777 -1e+411111111 -> -1E+411111111 -mngx354 minmag +1e+777777777 +1e+411111111 -> 1E+411111111 -mngx355 minmag -1e-777777777 -1e-411111111 -> -1E-777777777 -mngx356 minmag -1e-777777777 +1e-411111111 -> -1E-777777777 -mngx357 minmag +1e-777777777 -1e-411111111 -> 1E-777777777 -mngx358 minmag +1e-777777777 +1e-411111111 -> 1E-777777777 - --- expanded list from min/max 754r purple prose --- [explicit tests for exponent ordering] -mngx401 minmag Inf 1.1 -> 1.1 -mngx402 minmag 1.1 1 -> 1 -mngx403 minmag 1 1.0 -> 1.0 -mngx404 minmag 1.0 0.1 -> 0.1 -mngx405 minmag 0.1 0.10 -> 0.10 -mngx406 minmag 0.10 0.100 -> 0.100 -mngx407 minmag 0.10 0 -> 0 -mngx408 minmag 0 0.0 -> 0.0 -mngx409 minmag 0.0 -0 -> -0 -mngx410 minmag 0.0 -0.0 -> -0.0 -mngx411 minmag 0.00 -0.0 -> -0.0 -mngx412 minmag 0.0 -0.00 -> -0.00 -mngx413 minmag 0 -0.0 -> -0.0 -mngx414 minmag 0 -0 -> -0 -mngx415 minmag -0.0 -0 -> -0 -mngx416 minmag -0 -0.100 -> -0 -mngx417 minmag -0.100 -0.10 -> -0.10 -mngx418 minmag -0.10 -0.1 -> -0.1 -mngx419 minmag -0.1 -1.0 -> -0.1 -mngx420 minmag -1.0 -1 -> -1 -mngx421 minmag -1 -1.1 -> -1 -mngx423 minmag -1.1 -Inf -> -1.1 --- same with operands reversed -mngx431 minmag 1.1 Inf -> 1.1 -mngx432 minmag 1 1.1 -> 1 -mngx433 minmag 1.0 1 -> 1.0 -mngx434 minmag 0.1 1.0 -> 0.1 -mngx435 minmag 0.10 0.1 -> 0.10 -mngx436 minmag 0.100 0.10 -> 0.100 -mngx437 minmag 0 0.10 -> 0 -mngx438 minmag 0.0 0 -> 0.0 -mngx439 minmag -0 0.0 -> -0 -mngx440 minmag -0.0 0.0 -> -0.0 -mngx441 minmag -0.0 0.00 -> -0.0 -mngx442 minmag -0.00 0.0 -> -0.00 -mngx443 minmag -0.0 0 -> -0.0 -mngx444 minmag -0 0 -> -0 -mngx445 minmag -0 -0.0 -> -0 -mngx446 minmag -0.100 -0 -> -0 -mngx447 minmag -0.10 -0.100 -> -0.10 -mngx448 minmag -0.1 -0.10 -> -0.1 -mngx449 minmag -1.0 -0.1 -> -0.1 -mngx450 minmag -1 -1.0 -> -1 -mngx451 minmag -1.1 -1 -> -1 -mngx453 minmag -Inf -1.1 -> -1.1 --- largies -mngx460 minmag 1000 1E+3 -> 1000 -mngx461 minmag 1E+3 1000 -> 1000 -mngx462 minmag 1000 -1E+3 -> -1E+3 -mngx463 minmag 1E+3 -1000 -> -1000 -mngx464 minmag -1000 1E+3 -> -1000 -mngx465 minmag -1E+3 1000 -> -1E+3 -mngx466 minmag -1000 -1E+3 -> -1E+3 -mngx467 minmag -1E+3 -1000 -> -1E+3 - --- rounding (results treated as though plus) -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 - -mngx470 minmag 1 5 -> 1 -mngx471 minmag 10 50 -> 10 -mngx472 minmag 100 500 -> 100 -mngx473 minmag 1000 5000 -> 1.00E+3 Rounded -mngx474 minmag 10000 50000 -> 1.00E+4 Rounded -mngx475 minmag 6 50 -> 6 -mngx476 minmag 66 500 -> 66 -mngx477 minmag 666 5000 -> 666 -mngx478 minmag 6666 50000 -> 6.67E+3 Rounded Inexact -mngx479 minmag 66666 500000 -> 6.67E+4 Rounded Inexact -mngx480 minmag 33333 500000 -> 3.33E+4 Rounded Inexact -mngx481 minmag 75401 1 -> 1 -mngx482 minmag 75402 10 -> 10 -mngx483 minmag 75403 100 -> 100 -mngx484 minmag 75404 1000 -> 1.00E+3 Rounded -mngx485 minmag 75405 10000 -> 1.00E+4 Rounded -mngx486 minmag 75406 6 -> 6 -mngx487 minmag 75407 66 -> 66 -mngx488 minmag 75408 666 -> 666 -mngx489 minmag 75409 6666 -> 6.67E+3 Rounded Inexact -mngx490 minmag 75410 66666 -> 6.67E+4 Rounded Inexact -mngx491 minmag 75411 33333 -> 3.33E+4 Rounded Inexact - - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -mngx500 minmag 9.999E+999999999 0 -> 0 -mngx501 minmag -9.999E+999999999 0 -> 0 - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -mngx510 minmag 1.00E-999 0 -> 0 -mngx511 minmag 0.1E-999 0 -> 0 -mngx512 minmag 0.10E-999 0 -> 0 -mngx513 minmag 0.100E-999 0 -> 0 -mngx514 minmag 0.01E-999 0 -> 0 -mngx515 minmag 0.999E-999 0 -> 0 -mngx516 minmag 0.099E-999 0 -> 0 -mngx517 minmag 0.009E-999 0 -> 0 -mngx518 minmag 0.001E-999 0 -> 0 -mngx519 minmag 0.0009E-999 0 -> 0 -mngx520 minmag 0.0001E-999 0 -> 0 - -mngx530 minmag -1.00E-999 0 -> 0 -mngx531 minmag -0.1E-999 0 -> 0 -mngx532 minmag -0.10E-999 0 -> 0 -mngx533 minmag -0.100E-999 0 -> 0 -mngx534 minmag -0.01E-999 0 -> 0 -mngx535 minmag -0.999E-999 0 -> 0 -mngx536 minmag -0.099E-999 0 -> 0 -mngx537 minmag -0.009E-999 0 -> 0 -mngx538 minmag -0.001E-999 0 -> 0 -mngx539 minmag -0.0009E-999 0 -> 0 -mngx540 minmag -0.0001E-999 0 -> 0 - - --- Null tests -mng900 minmag 10 # -> NaN Invalid_operation -mng901 minmag # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/minus.decTest b/qdecimal/test/tc_full/minus.decTest deleted file mode 100644 index 1961456..0000000 --- a/qdecimal/test/tc_full/minus.decTest +++ /dev/null @@ -1,182 +0,0 @@ ------------------------------------------------------------------------- --- minus.decTest -- decimal negation -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests primarily tests the existence of the operator. --- Subtraction, rounding, and more overflows are tested elsewhere. - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -minx001 minus '1' -> '-1' -minx002 minus '-1' -> '1' -minx003 minus '1.00' -> '-1.00' -minx004 minus '-1.00' -> '1.00' -minx005 minus '0' -> '0' -minx006 minus '0.00' -> '0.00' -minx007 minus '00.0' -> '0.0' -minx008 minus '00.00' -> '0.00' -minx009 minus '00' -> '0' - -minx010 minus '-2' -> '2' -minx011 minus '2' -> '-2' -minx012 minus '-2.00' -> '2.00' -minx013 minus '2.00' -> '-2.00' -minx014 minus '-0' -> '0' -minx015 minus '-0.00' -> '0.00' -minx016 minus '-00.0' -> '0.0' -minx017 minus '-00.00' -> '0.00' -minx018 minus '-00' -> '0' - --- "lhs" zeros in plus and minus have exponent = operand -minx020 minus '-0E3' -> '0E+3' -minx021 minus '-0E2' -> '0E+2' -minx022 minus '-0E1' -> '0E+1' -minx023 minus '-0E0' -> '0' -minx024 minus '+0E0' -> '0' -minx025 minus '+0E1' -> '0E+1' -minx026 minus '+0E2' -> '0E+2' -minx027 minus '+0E3' -> '0E+3' - -minx030 minus '-5E3' -> '5E+3' -minx031 minus '-5E8' -> '5E+8' -minx032 minus '-5E13' -> '5E+13' -minx033 minus '-5E18' -> '5E+18' -minx034 minus '+5E3' -> '-5E+3' -minx035 minus '+5E8' -> '-5E+8' -minx036 minus '+5E13' -> '-5E+13' -minx037 minus '+5E18' -> '-5E+18' - -minx050 minus '-2000000' -> '2000000' -minx051 minus '2000000' -> '-2000000' -precision: 7 -minx052 minus '-2000000' -> '2000000' -minx053 minus '2000000' -> '-2000000' -precision: 6 -minx054 minus '-2000000' -> '2.00000E+6' Rounded -minx055 minus '2000000' -> '-2.00000E+6' Rounded -precision: 3 -minx056 minus '-2000000' -> '2.00E+6' Rounded -minx057 minus '2000000' -> '-2.00E+6' Rounded - --- more fixed, potential LHS swaps/overlays if done by 0 subtract x -precision: 9 -minx060 minus '56267E-10' -> '-0.0000056267' -minx061 minus '56267E-5' -> '-0.56267' -minx062 minus '56267E-2' -> '-562.67' -minx063 minus '56267E-1' -> '-5626.7' -minx065 minus '56267E-0' -> '-56267' -minx066 minus '56267E+0' -> '-56267' -minx067 minus '56267E+1' -> '-5.6267E+5' -minx068 minus '56267E+2' -> '-5.6267E+6' -minx069 minus '56267E+3' -> '-5.6267E+7' -minx070 minus '56267E+4' -> '-5.6267E+8' -minx071 minus '56267E+5' -> '-5.6267E+9' -minx072 minus '56267E+6' -> '-5.6267E+10' -minx080 minus '-56267E-10' -> '0.0000056267' -minx081 minus '-56267E-5' -> '0.56267' -minx082 minus '-56267E-2' -> '562.67' -minx083 minus '-56267E-1' -> '5626.7' -minx085 minus '-56267E-0' -> '56267' -minx086 minus '-56267E+0' -> '56267' -minx087 minus '-56267E+1' -> '5.6267E+5' -minx088 minus '-56267E+2' -> '5.6267E+6' -minx089 minus '-56267E+3' -> '5.6267E+7' -minx090 minus '-56267E+4' -> '5.6267E+8' -minx091 minus '-56267E+5' -> '5.6267E+9' -minx092 minus '-56267E+6' -> '5.6267E+10' - - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -minx100 minus 9.999E+999999999 -> -Infinity Inexact Overflow Rounded -minx101 minus -9.999E+999999999 -> Infinity Inexact Overflow Rounded - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -minx110 minus 1.00E-999 -> -1.00E-999 -minx111 minus 0.1E-999 -> -1E-1000 Subnormal -minx112 minus 0.10E-999 -> -1.0E-1000 Subnormal -minx113 minus 0.100E-999 -> -1.0E-1000 Subnormal Rounded -minx114 minus 0.01E-999 -> -1E-1001 Subnormal --- next is rounded to Emin -minx115 minus 0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow -minx116 minus 0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -minx117 minus 0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow -minx118 minus 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -minx119 minus 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -minx120 minus 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped - -minx130 minus -1.00E-999 -> 1.00E-999 -minx131 minus -0.1E-999 -> 1E-1000 Subnormal -minx132 minus -0.10E-999 -> 1.0E-1000 Subnormal -minx133 minus -0.100E-999 -> 1.0E-1000 Subnormal Rounded -minx134 minus -0.01E-999 -> 1E-1001 Subnormal --- next is rounded to Emin -minx135 minus -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow -minx136 minus -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -minx137 minus -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow -minx138 minus -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -minx139 minus -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -minx140 minus -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -minx301 minus 12345678000 -> -1.23456780E+10 Rounded -minx302 minus 1234567800 -> -1.23456780E+9 Rounded -minx303 minus 1234567890 -> -1.23456789E+9 Rounded -minx304 minus 1234567891 -> -1.23456789E+9 Inexact Rounded -minx305 minus 12345678901 -> -1.23456789E+10 Inexact Rounded -minx306 minus 1234567896 -> -1.23456790E+9 Inexact Rounded - -precision: 15 --- still checking -minx321 minus 12345678000 -> -12345678000 -minx322 minus 1234567800 -> -1234567800 -minx323 minus 1234567890 -> -1234567890 -minx324 minus 1234567891 -> -1234567891 -minx325 minus 12345678901 -> -12345678901 -minx326 minus 1234567896 -> -1234567896 - --- specials -minx420 minus 'Inf' -> '-Infinity' -minx421 minus '-Inf' -> 'Infinity' -minx422 minus NaN -> NaN -minx423 minus sNaN -> NaN Invalid_operation -minx424 minus NaN255 -> NaN255 -minx425 minus sNaN256 -> NaN256 Invalid_operation -minx426 minus -NaN -> -NaN -minx427 minus -sNaN -> -NaN Invalid_operation -minx428 minus -NaN255 -> -NaN255 -minx429 minus -sNaN256 -> -NaN256 Invalid_operation - --- Null tests -minx900 minus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/multiply.decTest b/qdecimal/test/tc_full/multiply.decTest deleted file mode 100644 index d215bac..0000000 --- a/qdecimal/test/tc_full/multiply.decTest +++ /dev/null @@ -1,731 +0,0 @@ ------------------------------------------------------------------------- --- multiply.decTest -- decimal multiplication -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- sanity checks (as base, above) -mulx000 multiply 2 2 -> 4 -mulx001 multiply 2 3 -> 6 -mulx002 multiply 5 1 -> 5 -mulx003 multiply 5 2 -> 10 -mulx004 multiply 1.20 2 -> 2.40 -mulx005 multiply 1.20 0 -> 0.00 -mulx006 multiply 1.20 -2 -> -2.40 -mulx007 multiply -1.20 2 -> -2.40 -mulx008 multiply -1.20 0 -> -0.00 -mulx009 multiply -1.20 -2 -> 2.40 -mulx010 multiply 5.09 7.1 -> 36.139 -mulx011 multiply 2.5 4 -> 10.0 -mulx012 multiply 2.50 4 -> 10.00 -mulx013 multiply 1.23456789 1.00000000 -> 1.23456789 Rounded -mulx014 multiply 9.999999999 9.999999999 -> 100.000000 Inexact Rounded -mulx015 multiply 2.50 4 -> 10.00 -precision: 6 -mulx016 multiply 2.50 4 -> 10.00 -mulx017 multiply 9.999999999 9.999999999 -> 100.000 Inexact Rounded -mulx018 multiply 9.999999999 -9.999999999 -> -100.000 Inexact Rounded -mulx019 multiply -9.999999999 9.999999999 -> -100.000 Inexact Rounded -mulx020 multiply -9.999999999 -9.999999999 -> 100.000 Inexact Rounded - --- 1999.12.21: next one is a edge case if intermediate longs are used -precision: 15 -mulx059 multiply 999999999999 9765625 -> 9.76562499999023E+18 Inexact Rounded -precision: 30 -mulx160 multiply 999999999999 9765625 -> 9765624999990234375 -precision: 9 ------ - --- zeros, etc. -mulx021 multiply 0 0 -> 0 -mulx022 multiply 0 -0 -> -0 -mulx023 multiply -0 0 -> -0 -mulx024 multiply -0 -0 -> 0 -mulx025 multiply -0.0 -0.0 -> 0.00 -mulx026 multiply -0.0 -0.0 -> 0.00 -mulx027 multiply -0.0 -0.0 -> 0.00 -mulx028 multiply -0.0 -0.0 -> 0.00 -mulx030 multiply 5.00 1E-3 -> 0.00500 -mulx031 multiply 00.00 0.000 -> 0.00000 -mulx032 multiply 00.00 0E-3 -> 0.00000 -- rhs is 0 -mulx033 multiply 0E-3 00.00 -> 0.00000 -- lhs is 0 -mulx034 multiply -5.00 1E-3 -> -0.00500 -mulx035 multiply -00.00 0.000 -> -0.00000 -mulx036 multiply -00.00 0E-3 -> -0.00000 -- rhs is 0 -mulx037 multiply -0E-3 00.00 -> -0.00000 -- lhs is 0 -mulx038 multiply 5.00 -1E-3 -> -0.00500 -mulx039 multiply 00.00 -0.000 -> -0.00000 -mulx040 multiply 00.00 -0E-3 -> -0.00000 -- rhs is 0 -mulx041 multiply 0E-3 -00.00 -> -0.00000 -- lhs is 0 -mulx042 multiply -5.00 -1E-3 -> 0.00500 -mulx043 multiply -00.00 -0.000 -> 0.00000 -mulx044 multiply -00.00 -0E-3 -> 0.00000 -- rhs is 0 -mulx045 multiply -0E-3 -00.00 -> 0.00000 -- lhs is 0 - --- examples from decarith -mulx050 multiply 1.20 3 -> 3.60 -mulx051 multiply 7 3 -> 21 -mulx052 multiply 0.9 0.8 -> 0.72 -mulx053 multiply 0.9 -0 -> -0.0 -mulx054 multiply 654321 654321 -> 4.28135971E+11 Inexact Rounded - -mulx060 multiply 123.45 1e7 -> 1.2345E+9 -mulx061 multiply 123.45 1e8 -> 1.2345E+10 -mulx062 multiply 123.45 1e+9 -> 1.2345E+11 -mulx063 multiply 123.45 1e10 -> 1.2345E+12 -mulx064 multiply 123.45 1e11 -> 1.2345E+13 -mulx065 multiply 123.45 1e12 -> 1.2345E+14 -mulx066 multiply 123.45 1e13 -> 1.2345E+15 - - --- test some intermediate lengths -precision: 9 -mulx080 multiply 0.1 123456789 -> 12345678.9 -mulx081 multiply 0.1 1234567891 -> 123456789 Inexact Rounded -mulx082 multiply 0.1 12345678912 -> 1.23456789E+9 Inexact Rounded -mulx083 multiply 0.1 12345678912345 -> 1.23456789E+12 Inexact Rounded -mulx084 multiply 0.1 123456789 -> 12345678.9 -precision: 8 -mulx085 multiply 0.1 12345678912 -> 1.2345679E+9 Inexact Rounded -mulx086 multiply 0.1 12345678912345 -> 1.2345679E+12 Inexact Rounded -precision: 7 -mulx087 multiply 0.1 12345678912 -> 1.234568E+9 Inexact Rounded -mulx088 multiply 0.1 12345678912345 -> 1.234568E+12 Inexact Rounded - -precision: 9 -mulx090 multiply 123456789 0.1 -> 12345678.9 -mulx091 multiply 1234567891 0.1 -> 123456789 Inexact Rounded -mulx092 multiply 12345678912 0.1 -> 1.23456789E+9 Inexact Rounded -mulx093 multiply 12345678912345 0.1 -> 1.23456789E+12 Inexact Rounded -mulx094 multiply 123456789 0.1 -> 12345678.9 -precision: 8 -mulx095 multiply 12345678912 0.1 -> 1.2345679E+9 Inexact Rounded -mulx096 multiply 12345678912345 0.1 -> 1.2345679E+12 Inexact Rounded -precision: 7 -mulx097 multiply 12345678912 0.1 -> 1.234568E+9 Inexact Rounded -mulx098 multiply 12345678912345 0.1 -> 1.234568E+12 Inexact Rounded - --- test some more edge cases and carries -maxexponent: 9999 -minexponent: -9999 -precision: 33 -mulx101 multiply 9 9 -> 81 -mulx102 multiply 9 90 -> 810 -mulx103 multiply 9 900 -> 8100 -mulx104 multiply 9 9000 -> 81000 -mulx105 multiply 9 90000 -> 810000 -mulx106 multiply 9 900000 -> 8100000 -mulx107 multiply 9 9000000 -> 81000000 -mulx108 multiply 9 90000000 -> 810000000 -mulx109 multiply 9 900000000 -> 8100000000 -mulx110 multiply 9 9000000000 -> 81000000000 -mulx111 multiply 9 90000000000 -> 810000000000 -mulx112 multiply 9 900000000000 -> 8100000000000 -mulx113 multiply 9 9000000000000 -> 81000000000000 -mulx114 multiply 9 90000000000000 -> 810000000000000 -mulx115 multiply 9 900000000000000 -> 8100000000000000 -mulx116 multiply 9 9000000000000000 -> 81000000000000000 -mulx117 multiply 9 90000000000000000 -> 810000000000000000 -mulx118 multiply 9 900000000000000000 -> 8100000000000000000 -mulx119 multiply 9 9000000000000000000 -> 81000000000000000000 -mulx120 multiply 9 90000000000000000000 -> 810000000000000000000 -mulx121 multiply 9 900000000000000000000 -> 8100000000000000000000 -mulx122 multiply 9 9000000000000000000000 -> 81000000000000000000000 -mulx123 multiply 9 90000000000000000000000 -> 810000000000000000000000 --- test some more edge cases without carries -mulx131 multiply 3 3 -> 9 -mulx132 multiply 3 30 -> 90 -mulx133 multiply 3 300 -> 900 -mulx134 multiply 3 3000 -> 9000 -mulx135 multiply 3 30000 -> 90000 -mulx136 multiply 3 300000 -> 900000 -mulx137 multiply 3 3000000 -> 9000000 -mulx138 multiply 3 30000000 -> 90000000 -mulx139 multiply 3 300000000 -> 900000000 -mulx140 multiply 3 3000000000 -> 9000000000 -mulx141 multiply 3 30000000000 -> 90000000000 -mulx142 multiply 3 300000000000 -> 900000000000 -mulx143 multiply 3 3000000000000 -> 9000000000000 -mulx144 multiply 3 30000000000000 -> 90000000000000 -mulx145 multiply 3 300000000000000 -> 900000000000000 -mulx146 multiply 3 3000000000000000 -> 9000000000000000 -mulx147 multiply 3 30000000000000000 -> 90000000000000000 -mulx148 multiply 3 300000000000000000 -> 900000000000000000 -mulx149 multiply 3 3000000000000000000 -> 9000000000000000000 -mulx150 multiply 3 30000000000000000000 -> 90000000000000000000 -mulx151 multiply 3 300000000000000000000 -> 900000000000000000000 -mulx152 multiply 3 3000000000000000000000 -> 9000000000000000000000 -mulx153 multiply 3 30000000000000000000000 -> 90000000000000000000000 - -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 --- test some cases that are close to exponent overflow/underflow -mulx170 multiply 1 9e999999999 -> 9E+999999999 -mulx171 multiply 1 9.9e999999999 -> 9.9E+999999999 -mulx172 multiply 1 9.99e999999999 -> 9.99E+999999999 -mulx173 multiply 9e999999999 1 -> 9E+999999999 -mulx174 multiply 9.9e999999999 1 -> 9.9E+999999999 -mulx176 multiply 9.99e999999999 1 -> 9.99E+999999999 -mulx177 multiply 1 9.99999999e999999999 -> 9.99999999E+999999999 -mulx178 multiply 9.99999999e999999999 1 -> 9.99999999E+999999999 - -mulx180 multiply 0.1 9e-999999998 -> 9E-999999999 -mulx181 multiply 0.1 99e-999999998 -> 9.9E-999999998 -mulx182 multiply 0.1 999e-999999998 -> 9.99E-999999997 - -mulx183 multiply 0.1 9e-999999998 -> 9E-999999999 -mulx184 multiply 0.1 99e-999999998 -> 9.9E-999999998 -mulx185 multiply 0.1 999e-999999998 -> 9.99E-999999997 -mulx186 multiply 0.1 999e-999999997 -> 9.99E-999999996 -mulx187 multiply 0.1 9999e-999999997 -> 9.999E-999999995 -mulx188 multiply 0.1 99999e-999999997 -> 9.9999E-999999994 - -mulx190 multiply 1 9e-999999998 -> 9E-999999998 -mulx191 multiply 1 99e-999999998 -> 9.9E-999999997 -mulx192 multiply 1 999e-999999998 -> 9.99E-999999996 -mulx193 multiply 9e-999999998 1 -> 9E-999999998 -mulx194 multiply 99e-999999998 1 -> 9.9E-999999997 -mulx195 multiply 999e-999999998 1 -> 9.99E-999999996 - -mulx196 multiply 1e-599999999 1e-400000000 -> 1E-999999999 -mulx197 multiply 1e-600000000 1e-399999999 -> 1E-999999999 -mulx198 multiply 1.2e-599999999 1.2e-400000000 -> 1.44E-999999999 -mulx199 multiply 1.2e-600000000 1.2e-399999999 -> 1.44E-999999999 - -mulx201 multiply 1e599999999 1e400000000 -> 1E+999999999 -mulx202 multiply 1e600000000 1e399999999 -> 1E+999999999 -mulx203 multiply 1.2e599999999 1.2e400000000 -> 1.44E+999999999 -mulx204 multiply 1.2e600000000 1.2e399999999 -> 1.44E+999999999 - --- long operand triangle -precision: 33 -mulx246 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671916511992830 Inexact Rounded -precision: 32 -mulx247 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651199283 Inexact Rounded -precision: 31 -mulx248 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165119928 Inexact Rounded -precision: 30 -mulx249 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671916511993 Inexact Rounded -precision: 29 -mulx250 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651199 Inexact Rounded -precision: 28 -mulx251 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165120 Inexact Rounded -precision: 27 -mulx252 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671916512 Inexact Rounded -precision: 26 -mulx253 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651 Inexact Rounded -precision: 25 -mulx254 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165 Inexact Rounded -precision: 24 -mulx255 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671917 Inexact Rounded -precision: 23 -mulx256 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967192 Inexact Rounded -precision: 22 -mulx257 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719 Inexact Rounded -precision: 21 -mulx258 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369672 Inexact Rounded -precision: 20 -mulx259 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967 Inexact Rounded -precision: 19 -mulx260 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933697 Inexact Rounded -precision: 18 -mulx261 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193370 Inexact Rounded -precision: 17 -mulx262 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119337 Inexact Rounded -precision: 16 -mulx263 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011934 Inexact Rounded -precision: 15 -mulx264 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193 Inexact Rounded -precision: 14 -mulx265 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119 Inexact Rounded -precision: 13 -mulx266 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908012 Inexact Rounded -precision: 12 -mulx267 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801 Inexact Rounded -precision: 11 -mulx268 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080 Inexact Rounded -precision: 10 -mulx269 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908 Inexact Rounded -precision: 9 -mulx270 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.291 Inexact Rounded -precision: 8 -mulx271 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29 Inexact Rounded -precision: 7 -mulx272 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.3 Inexact Rounded -precision: 6 -mulx273 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433 Inexact Rounded -precision: 5 -mulx274 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.4543E+5 Inexact Rounded -precision: 4 -mulx275 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.454E+5 Inexact Rounded -precision: 3 -mulx276 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.45E+5 Inexact Rounded -precision: 2 -mulx277 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.5E+5 Inexact Rounded -precision: 1 -mulx278 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1E+5 Inexact Rounded - --- test some edge cases with exact rounding -maxexponent: 9999 -minexponent: -9999 -precision: 9 -mulx301 multiply 9 9 -> 81 -mulx302 multiply 9 90 -> 810 -mulx303 multiply 9 900 -> 8100 -mulx304 multiply 9 9000 -> 81000 -mulx305 multiply 9 90000 -> 810000 -mulx306 multiply 9 900000 -> 8100000 -mulx307 multiply 9 9000000 -> 81000000 -mulx308 multiply 9 90000000 -> 810000000 -mulx309 multiply 9 900000000 -> 8.10000000E+9 Rounded -mulx310 multiply 9 9000000000 -> 8.10000000E+10 Rounded -mulx311 multiply 9 90000000000 -> 8.10000000E+11 Rounded -mulx312 multiply 9 900000000000 -> 8.10000000E+12 Rounded -mulx313 multiply 9 9000000000000 -> 8.10000000E+13 Rounded -mulx314 multiply 9 90000000000000 -> 8.10000000E+14 Rounded -mulx315 multiply 9 900000000000000 -> 8.10000000E+15 Rounded -mulx316 multiply 9 9000000000000000 -> 8.10000000E+16 Rounded -mulx317 multiply 9 90000000000000000 -> 8.10000000E+17 Rounded -mulx318 multiply 9 900000000000000000 -> 8.10000000E+18 Rounded -mulx319 multiply 9 9000000000000000000 -> 8.10000000E+19 Rounded -mulx320 multiply 9 90000000000000000000 -> 8.10000000E+20 Rounded -mulx321 multiply 9 900000000000000000000 -> 8.10000000E+21 Rounded -mulx322 multiply 9 9000000000000000000000 -> 8.10000000E+22 Rounded -mulx323 multiply 9 90000000000000000000000 -> 8.10000000E+23 Rounded - --- fastpath breakers -precision: 29 -mulx330 multiply 1.491824697641270317824852952837224 1.105170918075647624811707826490246514675628614562883537345747603 -> 1.6487212707001281468486507878 Inexact Rounded -precision: 55 -mulx331 multiply 0.8958341352965282506768545828765117803873717284891040428 0.8958341352965282506768545828765117803873717284891040428 -> 0.8025187979624784829842553829934069955890983696752228299 Inexact Rounded - - --- tryzeros cases -precision: 7 -rounding: half_up -maxExponent: 92 -minexponent: -92 -mulx504 multiply 0E-60 1000E-60 -> 0E-98 Clamped -mulx505 multiply 100E+60 0E+60 -> 0E+92 Clamped - --- mixed with zeros -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -mulx541 multiply 0 -1 -> -0 -mulx542 multiply -0 -1 -> 0 -mulx543 multiply 0 1 -> 0 -mulx544 multiply -0 1 -> -0 -mulx545 multiply -1 0 -> -0 -mulx546 multiply -1 -0 -> 0 -mulx547 multiply 1 0 -> 0 -mulx548 multiply 1 -0 -> -0 - -mulx551 multiply 0.0 -1 -> -0.0 -mulx552 multiply -0.0 -1 -> 0.0 -mulx553 multiply 0.0 1 -> 0.0 -mulx554 multiply -0.0 1 -> -0.0 -mulx555 multiply -1.0 0 -> -0.0 -mulx556 multiply -1.0 -0 -> 0.0 -mulx557 multiply 1.0 0 -> 0.0 -mulx558 multiply 1.0 -0 -> -0.0 - -mulx561 multiply 0 -1.0 -> -0.0 -mulx562 multiply -0 -1.0 -> 0.0 -mulx563 multiply 0 1.0 -> 0.0 -mulx564 multiply -0 1.0 -> -0.0 -mulx565 multiply -1 0.0 -> -0.0 -mulx566 multiply -1 -0.0 -> 0.0 -mulx567 multiply 1 0.0 -> 0.0 -mulx568 multiply 1 -0.0 -> -0.0 - -mulx571 multiply 0.0 -1.0 -> -0.00 -mulx572 multiply -0.0 -1.0 -> 0.00 -mulx573 multiply 0.0 1.0 -> 0.00 -mulx574 multiply -0.0 1.0 -> -0.00 -mulx575 multiply -1.0 0.0 -> -0.00 -mulx576 multiply -1.0 -0.0 -> 0.00 -mulx577 multiply 1.0 0.0 -> 0.00 -mulx578 multiply 1.0 -0.0 -> -0.00 - - --- Specials -mulx580 multiply Inf -Inf -> -Infinity -mulx581 multiply Inf -1000 -> -Infinity -mulx582 multiply Inf -1 -> -Infinity -mulx583 multiply Inf -0 -> NaN Invalid_operation -mulx584 multiply Inf 0 -> NaN Invalid_operation -mulx585 multiply Inf 1 -> Infinity -mulx586 multiply Inf 1000 -> Infinity -mulx587 multiply Inf Inf -> Infinity -mulx588 multiply -1000 Inf -> -Infinity -mulx589 multiply -Inf Inf -> -Infinity -mulx590 multiply -1 Inf -> -Infinity -mulx591 multiply -0 Inf -> NaN Invalid_operation -mulx592 multiply 0 Inf -> NaN Invalid_operation -mulx593 multiply 1 Inf -> Infinity -mulx594 multiply 1000 Inf -> Infinity -mulx595 multiply Inf Inf -> Infinity - -mulx600 multiply -Inf -Inf -> Infinity -mulx601 multiply -Inf -1000 -> Infinity -mulx602 multiply -Inf -1 -> Infinity -mulx603 multiply -Inf -0 -> NaN Invalid_operation -mulx604 multiply -Inf 0 -> NaN Invalid_operation -mulx605 multiply -Inf 1 -> -Infinity -mulx606 multiply -Inf 1000 -> -Infinity -mulx607 multiply -Inf Inf -> -Infinity -mulx608 multiply -1000 Inf -> -Infinity -mulx609 multiply -Inf -Inf -> Infinity -mulx610 multiply -1 -Inf -> Infinity -mulx611 multiply -0 -Inf -> NaN Invalid_operation -mulx612 multiply 0 -Inf -> NaN Invalid_operation -mulx613 multiply 1 -Inf -> -Infinity -mulx614 multiply 1000 -Inf -> -Infinity -mulx615 multiply Inf -Inf -> -Infinity - -mulx621 multiply NaN -Inf -> NaN -mulx622 multiply NaN -1000 -> NaN -mulx623 multiply NaN -1 -> NaN -mulx624 multiply NaN -0 -> NaN -mulx625 multiply NaN 0 -> NaN -mulx626 multiply NaN 1 -> NaN -mulx627 multiply NaN 1000 -> NaN -mulx628 multiply NaN Inf -> NaN -mulx629 multiply NaN NaN -> NaN -mulx630 multiply -Inf NaN -> NaN -mulx631 multiply -1000 NaN -> NaN -mulx632 multiply -1 NaN -> NaN -mulx633 multiply -0 NaN -> NaN -mulx634 multiply 0 NaN -> NaN -mulx635 multiply 1 NaN -> NaN -mulx636 multiply 1000 NaN -> NaN -mulx637 multiply Inf NaN -> NaN - -mulx641 multiply sNaN -Inf -> NaN Invalid_operation -mulx642 multiply sNaN -1000 -> NaN Invalid_operation -mulx643 multiply sNaN -1 -> NaN Invalid_operation -mulx644 multiply sNaN -0 -> NaN Invalid_operation -mulx645 multiply sNaN 0 -> NaN Invalid_operation -mulx646 multiply sNaN 1 -> NaN Invalid_operation -mulx647 multiply sNaN 1000 -> NaN Invalid_operation -mulx648 multiply sNaN NaN -> NaN Invalid_operation -mulx649 multiply sNaN sNaN -> NaN Invalid_operation -mulx650 multiply NaN sNaN -> NaN Invalid_operation -mulx651 multiply -Inf sNaN -> NaN Invalid_operation -mulx652 multiply -1000 sNaN -> NaN Invalid_operation -mulx653 multiply -1 sNaN -> NaN Invalid_operation -mulx654 multiply -0 sNaN -> NaN Invalid_operation -mulx655 multiply 0 sNaN -> NaN Invalid_operation -mulx656 multiply 1 sNaN -> NaN Invalid_operation -mulx657 multiply 1000 sNaN -> NaN Invalid_operation -mulx658 multiply Inf sNaN -> NaN Invalid_operation -mulx659 multiply NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -mulx661 multiply NaN9 -Inf -> NaN9 -mulx662 multiply NaN8 999 -> NaN8 -mulx663 multiply NaN71 Inf -> NaN71 -mulx664 multiply NaN6 NaN5 -> NaN6 -mulx665 multiply -Inf NaN4 -> NaN4 -mulx666 multiply -999 NaN33 -> NaN33 -mulx667 multiply Inf NaN2 -> NaN2 - -mulx671 multiply sNaN99 -Inf -> NaN99 Invalid_operation -mulx672 multiply sNaN98 -11 -> NaN98 Invalid_operation -mulx673 multiply sNaN97 NaN -> NaN97 Invalid_operation -mulx674 multiply sNaN16 sNaN94 -> NaN16 Invalid_operation -mulx675 multiply NaN95 sNaN93 -> NaN93 Invalid_operation -mulx676 multiply -Inf sNaN92 -> NaN92 Invalid_operation -mulx677 multiply 088 sNaN91 -> NaN91 Invalid_operation -mulx678 multiply Inf sNaN90 -> NaN90 Invalid_operation -mulx679 multiply NaN sNaN89 -> NaN89 Invalid_operation - -mulx681 multiply -NaN9 -Inf -> -NaN9 -mulx682 multiply -NaN8 999 -> -NaN8 -mulx683 multiply -NaN71 Inf -> -NaN71 -mulx684 multiply -NaN6 -NaN5 -> -NaN6 -mulx685 multiply -Inf -NaN4 -> -NaN4 -mulx686 multiply -999 -NaN33 -> -NaN33 -mulx687 multiply Inf -NaN2 -> -NaN2 - -mulx691 multiply -sNaN99 -Inf -> -NaN99 Invalid_operation -mulx692 multiply -sNaN98 -11 -> -NaN98 Invalid_operation -mulx693 multiply -sNaN97 NaN -> -NaN97 Invalid_operation -mulx694 multiply -sNaN16 -sNaN94 -> -NaN16 Invalid_operation -mulx695 multiply -NaN95 -sNaN93 -> -NaN93 Invalid_operation -mulx696 multiply -Inf -sNaN92 -> -NaN92 Invalid_operation -mulx697 multiply 088 -sNaN91 -> -NaN91 Invalid_operation -mulx698 multiply Inf -sNaN90 -> -NaN90 Invalid_operation -mulx699 multiply -NaN -sNaN89 -> -NaN89 Invalid_operation - -mulx701 multiply -NaN -Inf -> -NaN -mulx702 multiply -NaN 999 -> -NaN -mulx703 multiply -NaN Inf -> -NaN -mulx704 multiply -NaN -NaN -> -NaN -mulx705 multiply -Inf -NaN0 -> -NaN -mulx706 multiply -999 -NaN -> -NaN -mulx707 multiply Inf -NaN -> -NaN - -mulx711 multiply -sNaN -Inf -> -NaN Invalid_operation -mulx712 multiply -sNaN -11 -> -NaN Invalid_operation -mulx713 multiply -sNaN00 NaN -> -NaN Invalid_operation -mulx714 multiply -sNaN -sNaN -> -NaN Invalid_operation -mulx715 multiply -NaN -sNaN -> -NaN Invalid_operation -mulx716 multiply -Inf -sNaN -> -NaN Invalid_operation -mulx717 multiply 088 -sNaN -> -NaN Invalid_operation -mulx718 multiply Inf -sNaN -> -NaN Invalid_operation -mulx719 multiply -NaN -sNaN -> -NaN Invalid_operation - --- overflow and underflow tests .. note subnormal results -maxexponent: 999999999 -minexponent: -999999999 -mulx730 multiply +1.23456789012345E-0 9E+999999999 -> Infinity Inexact Overflow Rounded -mulx731 multiply 9E+999999999 +1.23456789012345E-0 -> Infinity Inexact Overflow Rounded -mulx732 multiply +0.100 9E-999999999 -> 9.00E-1000000000 Subnormal -mulx733 multiply 9E-999999999 +0.100 -> 9.00E-1000000000 Subnormal -mulx735 multiply -1.23456789012345E-0 9E+999999999 -> -Infinity Inexact Overflow Rounded -mulx736 multiply 9E+999999999 -1.23456789012345E-0 -> -Infinity Inexact Overflow Rounded -mulx737 multiply -0.100 9E-999999999 -> -9.00E-1000000000 Subnormal -mulx738 multiply 9E-999999999 -0.100 -> -9.00E-1000000000 Subnormal - -mulx739 multiply 1e-599999999 1e-400000001 -> 1E-1000000000 Subnormal -mulx740 multiply 1e-599999999 1e-400000000 -> 1E-999999999 -mulx741 multiply 1e-600000000 1e-400000000 -> 1E-1000000000 Subnormal -mulx742 multiply 9e-999999998 0.01 -> 9E-1000000000 Subnormal -mulx743 multiply 9e-999999998 0.1 -> 9E-999999999 -mulx744 multiply 0.01 9e-999999998 -> 9E-1000000000 Subnormal -mulx745 multiply 1e599999999 1e400000001 -> Infinity Overflow Inexact Rounded -mulx746 multiply 1e599999999 1e400000000 -> 1E+999999999 -mulx747 multiply 1e600000000 1e400000000 -> Infinity Overflow Inexact Rounded -mulx748 multiply 9e999999998 100 -> Infinity Overflow Inexact Rounded -mulx749 multiply 9e999999998 10 -> 9.0E+999999999 -mulx750 multiply 100 9e999999998 -> Infinity Overflow Inexact Rounded --- signs -mulx751 multiply 1e+777777777 1e+411111111 -> Infinity Overflow Inexact Rounded -mulx752 multiply 1e+777777777 -1e+411111111 -> -Infinity Overflow Inexact Rounded -mulx753 multiply -1e+777777777 1e+411111111 -> -Infinity Overflow Inexact Rounded -mulx754 multiply -1e+777777777 -1e+411111111 -> Infinity Overflow Inexact Rounded -mulx755 multiply 1e-777777777 1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -mulx756 multiply 1e-777777777 -1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -mulx757 multiply -1e-777777777 1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -mulx758 multiply -1e-777777777 -1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped - --- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) -precision: 9 -mulx760 multiply 1e-600000000 1e-400000001 -> 1E-1000000001 Subnormal -mulx761 multiply 1e-600000000 1e-400000002 -> 1E-1000000002 Subnormal -mulx762 multiply 1e-600000000 1e-400000003 -> 1E-1000000003 Subnormal -mulx763 multiply 1e-600000000 1e-400000004 -> 1E-1000000004 Subnormal -mulx764 multiply 1e-600000000 1e-400000005 -> 1E-1000000005 Subnormal -mulx765 multiply 1e-600000000 1e-400000006 -> 1E-1000000006 Subnormal -mulx766 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal -mulx767 multiply 1e-600000000 1e-400000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -mulx768 multiply 1e-600000000 1e-400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -mulx769 multiply 1e-600000000 1e-400000010 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped --- [no equivalent of 'subnormal' for overflow] -mulx770 multiply 1e+600000000 1e+400000001 -> Infinity Overflow Inexact Rounded -mulx771 multiply 1e+600000000 1e+400000002 -> Infinity Overflow Inexact Rounded -mulx772 multiply 1e+600000000 1e+400000003 -> Infinity Overflow Inexact Rounded -mulx773 multiply 1e+600000000 1e+400000004 -> Infinity Overflow Inexact Rounded -mulx774 multiply 1e+600000000 1e+400000005 -> Infinity Overflow Inexact Rounded -mulx775 multiply 1e+600000000 1e+400000006 -> Infinity Overflow Inexact Rounded -mulx776 multiply 1e+600000000 1e+400000007 -> Infinity Overflow Inexact Rounded -mulx777 multiply 1e+600000000 1e+400000008 -> Infinity Overflow Inexact Rounded -mulx778 multiply 1e+600000000 1e+400000009 -> Infinity Overflow Inexact Rounded -mulx779 multiply 1e+600000000 1e+400000010 -> Infinity Overflow Inexact Rounded - --- 'subnormal' test edge condition at higher precisions -precision: 99 -mulx780 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal -mulx781 multiply 1e-600000000 1e-400000008 -> 1E-1000000008 Subnormal -mulx782 multiply 1e-600000000 1e-400000097 -> 1E-1000000097 Subnormal -mulx783 multiply 1e-600000000 1e-400000098 -> 0E-1000000097 Underflow Subnormal Inexact Rounded Clamped -precision: 999 -mulx784 multiply 1e-600000000 1e-400000997 -> 1E-1000000997 Subnormal -mulx785 multiply 1e-600000000 1e-400000998 -> 0E-1000000997 Underflow Subnormal Inexact Rounded Clamped - --- following testcases [through mulx800] not yet run against code -precision: 9999 -mulx786 multiply 1e-600000000 1e-400009997 -> 1E-1000009997 Subnormal -mulx787 multiply 1e-600000000 1e-400009998 -> 0E-1000009997 Underflow Subnormal Inexact Rounded Clamped -precision: 99999 -mulx788 multiply 1e-600000000 1e-400099997 -> 1E-1000099997 Subnormal -mulx789 multiply 1e-600000000 1e-400099998 -> 0E-1000099997 Underflow Subnormal Inexact Rounded Clamped -precision: 999999 -mulx790 multiply 1e-600000000 1e-400999997 -> 1E-1000999997 Subnormal -mulx791 multiply 1e-600000000 1e-400999998 -> 0E-1000999997 Underflow Subnormal Inexact Rounded Clamped -precision: 9999999 -mulx792 multiply 1e-600000000 1e-409999997 -> 1E-1009999997 Subnormal -mulx793 multiply 1e-600000000 1e-409999998 -> 0E-1009999997 Underflow Subnormal Inexact Rounded Clamped -precision: 99999999 -mulx794 multiply 1e-600000000 1e-499999997 -> 1E-1099999997 Subnormal -mulx795 multiply 1e-600000000 1e-499999998 -> 0E-1099999997 Underflow Subnormal Inexact Rounded Clamped -precision: 999999999 -mulx796 multiply 1e-999999999 1e-999999997 -> 1E-1999999996 Subnormal -mulx797 multiply 1e-999999999 1e-999999998 -> 1E-1999999997 Subnormal -mulx798 multiply 1e-999999999 1e-999999999 -> 0E-1999999997 Underflow Subnormal Inexact Rounded Clamped -mulx799 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal -mulx800 multiply 1e-600000000 1e-400000008 -> 1E-1000000008 Subnormal - --- test subnormals rounding -precision: 5 -maxExponent: 999 -minexponent: -999 -rounding: half_even - -mulx801 multiply 1.0000E-999 1 -> 1.0000E-999 -mulx802 multiply 1.000E-999 1e-1 -> 1.000E-1000 Subnormal -mulx803 multiply 1.00E-999 1e-2 -> 1.00E-1001 Subnormal -mulx804 multiply 1.0E-999 1e-3 -> 1.0E-1002 Subnormal -mulx805 multiply 1.0E-999 1e-4 -> 1E-1003 Subnormal Rounded -mulx806 multiply 1.3E-999 1e-4 -> 1E-1003 Underflow Subnormal Inexact Rounded -mulx807 multiply 1.5E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx808 multiply 1.7E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx809 multiply 2.3E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx810 multiply 2.5E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx811 multiply 2.7E-999 1e-4 -> 3E-1003 Underflow Subnormal Inexact Rounded -mulx812 multiply 1.49E-999 1e-4 -> 1E-1003 Underflow Subnormal Inexact Rounded -mulx813 multiply 1.50E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx814 multiply 1.51E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx815 multiply 2.49E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx816 multiply 2.50E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded -mulx817 multiply 2.51E-999 1e-4 -> 3E-1003 Underflow Subnormal Inexact Rounded - -mulx818 multiply 1E-999 1e-4 -> 1E-1003 Subnormal -mulx819 multiply 3E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -mulx820 multiply 5E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -mulx821 multiply 7E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded -mulx822 multiply 9E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded -mulx823 multiply 9.9E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded - -mulx824 multiply 1E-999 -1e-4 -> -1E-1003 Subnormal -mulx825 multiply 3E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped -mulx826 multiply -5E-999 1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped -mulx827 multiply 7E-999 -1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded -mulx828 multiply -9E-999 1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded -mulx829 multiply 9.9E-999 -1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded -mulx830 multiply 3.0E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped - -mulx831 multiply 1.0E-501 1e-501 -> 1.0E-1002 Subnormal -mulx832 multiply 2.0E-501 2e-501 -> 4.0E-1002 Subnormal -mulx833 multiply 4.0E-501 4e-501 -> 1.60E-1001 Subnormal -mulx834 multiply 10.0E-501 10e-501 -> 1.000E-1000 Subnormal -mulx835 multiply 30.0E-501 30e-501 -> 9.000E-1000 Subnormal -mulx836 multiply 40.0E-501 40e-501 -> 1.6000E-999 - --- squares -mulx840 multiply 1E-502 1e-502 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -mulx841 multiply 1E-501 1e-501 -> 1E-1002 Subnormal -mulx842 multiply 2E-501 2e-501 -> 4E-1002 Subnormal -mulx843 multiply 4E-501 4e-501 -> 1.6E-1001 Subnormal -mulx844 multiply 10E-501 10e-501 -> 1.00E-1000 Subnormal -mulx845 multiply 30E-501 30e-501 -> 9.00E-1000 Subnormal -mulx846 multiply 40E-501 40e-501 -> 1.600E-999 - --- cubes -mulx850 multiply 1E-670 1e-335 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -mulx851 multiply 1E-668 1e-334 -> 1E-1002 Subnormal -mulx852 multiply 4E-668 2e-334 -> 8E-1002 Subnormal -mulx853 multiply 9E-668 3e-334 -> 2.7E-1001 Subnormal -mulx854 multiply 16E-668 4e-334 -> 6.4E-1001 Subnormal -mulx855 multiply 25E-668 5e-334 -> 1.25E-1000 Subnormal -mulx856 multiply 10E-668 100e-334 -> 1.000E-999 - --- test derived from result of 0.099 ** 999 at 15 digits with unlimited exponent -precision: 19 -mulx860 multiply 6636851557994578716E-520 6636851557994578716E-520 -> 4.40477986028551E-1003 Underflow Subnormal Inexact Rounded - --- Long operand overflow may be a different path -precision: 3 -maxExponent: 999999999 -minexponent: -999999999 -mulx870 multiply 1 9.999E+999999999 -> Infinity Inexact Overflow Rounded -mulx871 multiply 1 -9.999E+999999999 -> -Infinity Inexact Overflow Rounded -mulx872 multiply 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded -mulx873 multiply -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded - --- check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 -mulx881 multiply 1.2347E-40 1.2347E-40 -> 1.524E-80 Inexact Rounded Subnormal Underflow -mulx882 multiply 1.234E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow -mulx883 multiply 1.23E-40 1.23E-40 -> 1.513E-80 Inexact Rounded Subnormal Underflow -mulx884 multiply 1.2E-40 1.2E-40 -> 1.44E-80 Subnormal -mulx885 multiply 1.2E-40 1.2E-41 -> 1.44E-81 Subnormal -mulx886 multiply 1.2E-40 1.2E-42 -> 1.4E-82 Subnormal Inexact Rounded Underflow -mulx887 multiply 1.2E-40 1.3E-42 -> 1.6E-82 Subnormal Inexact Rounded Underflow -mulx888 multiply 1.3E-40 1.3E-42 -> 1.7E-82 Subnormal Inexact Rounded Underflow -mulx889 multiply 1.3E-40 1.3E-43 -> 2E-83 Subnormal Inexact Rounded Underflow -mulx890 multiply 1.3E-41 1.3E-43 -> 0E-83 Clamped Subnormal Inexact Rounded Underflow - -mulx891 multiply 1.2345E-39 1.234E-40 -> 1.5234E-79 Inexact Rounded -mulx892 multiply 1.23456E-39 1.234E-40 -> 1.5234E-79 Inexact Rounded -mulx893 multiply 1.2345E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow -mulx894 multiply 1.23456E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow -mulx895 multiply 1.2345E-41 1.234E-40 -> 1.52E-81 Inexact Rounded Subnormal Underflow -mulx896 multiply 1.23456E-41 1.234E-40 -> 1.52E-81 Inexact Rounded Subnormal Underflow - --- Now explore the case where we get a normal result with Underflow -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - -mulx900 multiply 0.3000000000E-191 0.3000000000E-191 -> 9.00000000000000E-384 Subnormal Rounded -mulx901 multiply 0.3000000001E-191 0.3000000001E-191 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded -mulx902 multiply 9.999999999999999E-383 0.0999999999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded -mulx903 multiply 9.999999999999999E-383 0.09999999999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded -mulx904 multiply 9.999999999999999E-383 0.099999999999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded -mulx905 multiply 9.999999999999999E-383 0.0999999999999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded --- prove operands are exact -mulx906 multiply 9.999999999999999E-383 1 -> 9.999999999999999E-383 -mulx907 multiply 1 0.09999999999999999 -> 0.09999999999999999 --- the next rounds to Nmin -mulx908 multiply 9.999999999999999E-383 0.09999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -mulx909 multiply 9.999999999999999E-383 0.099999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -mulx910 multiply 9.999999999999999E-383 0.0999999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -mulx911 multiply 9.999999999999999E-383 0.09999999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded - - --- Examples from SQL proposal (Krishna Kulkarni) -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 -mulx1001 multiply 130E-2 120E-2 -> 1.5600 -mulx1002 multiply 130E-2 12E-1 -> 1.560 -mulx1003 multiply 130E-2 1E0 -> 1.30 -mulx1004 multiply 1E2 1E4 -> 1E+6 - --- payload decapitate -precision: 5 -mulx1010 multiply 11 -sNaN1234567890 -> -NaN67890 Invalid_operation - --- Null tests -mulx990 multiply 10 # -> NaN Invalid_operation -mulx991 multiply # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/nextminus.decTest b/qdecimal/test/tc_full/nextminus.decTest deleted file mode 100644 index d4f1880..0000000 --- a/qdecimal/test/tc_full/nextminus.decTest +++ /dev/null @@ -1,148 +0,0 @@ ------------------------------------------------------------------------- --- nextminus.decTest -- decimal next that is less [754r nextdown] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -nextm001 nextminus 0.999999995 -> 0.999999994 -nextm002 nextminus 0.999999996 -> 0.999999995 -nextm003 nextminus 0.999999997 -> 0.999999996 -nextm004 nextminus 0.999999998 -> 0.999999997 -nextm005 nextminus 0.999999999 -> 0.999999998 -nextm006 nextminus 1.00000000 -> 0.999999999 -nextm007 nextminus 1.0 -> 0.999999999 -nextm008 nextminus 1 -> 0.999999999 -nextm009 nextminus 1.00000001 -> 1.00000000 -nextm010 nextminus 1.00000002 -> 1.00000001 -nextm011 nextminus 1.00000003 -> 1.00000002 -nextm012 nextminus 1.00000004 -> 1.00000003 -nextm013 nextminus 1.00000005 -> 1.00000004 -nextm014 nextminus 1.00000006 -> 1.00000005 -nextm015 nextminus 1.00000007 -> 1.00000006 -nextm016 nextminus 1.00000008 -> 1.00000007 -nextm017 nextminus 1.00000009 -> 1.00000008 -nextm018 nextminus 1.00000010 -> 1.00000009 -nextm019 nextminus 1.00000011 -> 1.00000010 -nextm020 nextminus 1.00000012 -> 1.00000011 - -nextm021 nextminus -0.999999995 -> -0.999999996 -nextm022 nextminus -0.999999996 -> -0.999999997 -nextm023 nextminus -0.999999997 -> -0.999999998 -nextm024 nextminus -0.999999998 -> -0.999999999 -nextm025 nextminus -0.999999999 -> -1.00000000 -nextm026 nextminus -1.00000000 -> -1.00000001 -nextm027 nextminus -1.0 -> -1.00000001 -nextm028 nextminus -1 -> -1.00000001 -nextm029 nextminus -1.00000001 -> -1.00000002 -nextm030 nextminus -1.00000002 -> -1.00000003 -nextm031 nextminus -1.00000003 -> -1.00000004 -nextm032 nextminus -1.00000004 -> -1.00000005 -nextm033 nextminus -1.00000005 -> -1.00000006 -nextm034 nextminus -1.00000006 -> -1.00000007 -nextm035 nextminus -1.00000007 -> -1.00000008 -nextm036 nextminus -1.00000008 -> -1.00000009 -nextm037 nextminus -1.00000009 -> -1.00000010 -nextm038 nextminus -1.00000010 -> -1.00000011 -nextm039 nextminus -1.00000011 -> -1.00000012 - --- input operand is >precision -nextm041 nextminus 1.00000010998 -> 1.00000010 -nextm042 nextminus 1.00000010999 -> 1.00000010 -nextm043 nextminus 1.00000011000 -> 1.00000010 -nextm044 nextminus 1.00000011001 -> 1.00000011 -nextm045 nextminus 1.00000011002 -> 1.00000011 -nextm046 nextminus 1.00000011002 -> 1.00000011 -nextm047 nextminus 1.00000011052 -> 1.00000011 -nextm048 nextminus 1.00000011552 -> 1.00000011 -nextm049 nextminus -1.00000010998 -> -1.00000011 -nextm050 nextminus -1.00000010999 -> -1.00000011 -nextm051 nextminus -1.00000011000 -> -1.00000012 -nextm052 nextminus -1.00000011001 -> -1.00000012 -nextm053 nextminus -1.00000011002 -> -1.00000012 -nextm054 nextminus -1.00000011002 -> -1.00000012 -nextm055 nextminus -1.00000011052 -> -1.00000012 -nextm056 nextminus -1.00000011552 -> -1.00000012 --- ultra-tiny inputs -nextm060 nextminus 1E-99999 -> 0E-391 -nextm061 nextminus 1E-999999999 -> 0E-391 -nextm062 nextminus 1E-391 -> 0E-391 -nextm063 nextminus -1E-99999 -> -1E-391 -nextm064 nextminus -1E-999999999 -> -1E-391 -nextm065 nextminus -1E-391 -> -2E-391 - --- Zeros -nextm100 nextminus -0 -> -1E-391 -nextm101 nextminus 0 -> -1E-391 -nextm102 nextminus 0.00 -> -1E-391 -nextm103 nextminus -0.00 -> -1E-391 -nextm104 nextminus 0E-300 -> -1E-391 -nextm105 nextminus 0E+300 -> -1E-391 -nextm106 nextminus 0E+30000 -> -1E-391 -nextm107 nextminus -0E+30000 -> -1E-391 - -precision: 9 -maxExponent: 999 -minexponent: -999 --- specials -nextm150 nextminus Inf -> 9.99999999E+999 -nextm151 nextminus -Inf -> -Infinity -nextm152 nextminus NaN -> NaN -nextm153 nextminus sNaN -> NaN Invalid_operation -nextm154 nextminus NaN77 -> NaN77 -nextm155 nextminus sNaN88 -> NaN88 Invalid_operation -nextm156 nextminus -NaN -> -NaN -nextm157 nextminus -sNaN -> -NaN Invalid_operation -nextm158 nextminus -NaN77 -> -NaN77 -nextm159 nextminus -sNaN88 -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -nextm170 nextminus 9.99999999E+999 -> 9.99999998E+999 -nextm171 nextminus 9.99999998E+999 -> 9.99999997E+999 -nextm172 nextminus 1E-999 -> 9.9999999E-1000 -nextm173 nextminus 1.00000000E-999 -> 9.9999999E-1000 -nextm174 nextminus 9E-1007 -> 8E-1007 -nextm175 nextminus 9.9E-1006 -> 9.8E-1006 -nextm176 nextminus 9.9999E-1003 -> 9.9998E-1003 -nextm177 nextminus 9.9999999E-1000 -> 9.9999998E-1000 -nextm178 nextminus 9.9999998E-1000 -> 9.9999997E-1000 -nextm179 nextminus 9.9999997E-1000 -> 9.9999996E-1000 -nextm180 nextminus 0E-1007 -> -1E-1007 -nextm181 nextminus 1E-1007 -> 0E-1007 -nextm182 nextminus 2E-1007 -> 1E-1007 - -nextm183 nextminus -0E-1007 -> -1E-1007 -nextm184 nextminus -1E-1007 -> -2E-1007 -nextm185 nextminus -2E-1007 -> -3E-1007 -nextm186 nextminus -10E-1007 -> -1.1E-1006 -nextm187 nextminus -100E-1007 -> -1.01E-1005 -nextm188 nextminus -100000E-1007 -> -1.00001E-1002 -nextm189 nextminus -1.0000E-999 -> -1.00000001E-999 -nextm190 nextminus -1.00000000E-999 -> -1.00000001E-999 -nextm191 nextminus -1E-999 -> -1.00000001E-999 -nextm192 nextminus -9.99999998E+999 -> -9.99999999E+999 -nextm193 nextminus -9.99999999E+999 -> -Infinity - --- Null tests -nextm900 nextminus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/nextplus.decTest b/qdecimal/test/tc_full/nextplus.decTest deleted file mode 100644 index 8d831b1..0000000 --- a/qdecimal/test/tc_full/nextplus.decTest +++ /dev/null @@ -1,150 +0,0 @@ ------------------------------------------------------------------------- --- nextplus.decTest -- decimal next that is greater [754r nextup] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -nextp001 nextplus 0.999999995 -> 0.999999996 -nextp002 nextplus 0.999999996 -> 0.999999997 -nextp003 nextplus 0.999999997 -> 0.999999998 -nextp004 nextplus 0.999999998 -> 0.999999999 -nextp005 nextplus 0.999999999 -> 1.00000000 -nextp006 nextplus 1.00000000 -> 1.00000001 -nextp007 nextplus 1.0 -> 1.00000001 -nextp008 nextplus 1 -> 1.00000001 -nextp009 nextplus 1.00000001 -> 1.00000002 -nextp010 nextplus 1.00000002 -> 1.00000003 -nextp011 nextplus 1.00000003 -> 1.00000004 -nextp012 nextplus 1.00000004 -> 1.00000005 -nextp013 nextplus 1.00000005 -> 1.00000006 -nextp014 nextplus 1.00000006 -> 1.00000007 -nextp015 nextplus 1.00000007 -> 1.00000008 -nextp016 nextplus 1.00000008 -> 1.00000009 -nextp017 nextplus 1.00000009 -> 1.00000010 -nextp018 nextplus 1.00000010 -> 1.00000011 -nextp019 nextplus 1.00000011 -> 1.00000012 - -nextp021 nextplus -0.999999995 -> -0.999999994 -nextp022 nextplus -0.999999996 -> -0.999999995 -nextp023 nextplus -0.999999997 -> -0.999999996 -nextp024 nextplus -0.999999998 -> -0.999999997 -nextp025 nextplus -0.999999999 -> -0.999999998 -nextp026 nextplus -1.00000000 -> -0.999999999 -nextp027 nextplus -1.0 -> -0.999999999 -nextp028 nextplus -1 -> -0.999999999 -nextp029 nextplus -1.00000001 -> -1.00000000 -nextp030 nextplus -1.00000002 -> -1.00000001 -nextp031 nextplus -1.00000003 -> -1.00000002 -nextp032 nextplus -1.00000004 -> -1.00000003 -nextp033 nextplus -1.00000005 -> -1.00000004 -nextp034 nextplus -1.00000006 -> -1.00000005 -nextp035 nextplus -1.00000007 -> -1.00000006 -nextp036 nextplus -1.00000008 -> -1.00000007 -nextp037 nextplus -1.00000009 -> -1.00000008 -nextp038 nextplus -1.00000010 -> -1.00000009 -nextp039 nextplus -1.00000011 -> -1.00000010 -nextp040 nextplus -1.00000012 -> -1.00000011 - --- input operand is >precision -nextp041 nextplus 1.00000010998 -> 1.00000011 -nextp042 nextplus 1.00000010999 -> 1.00000011 -nextp043 nextplus 1.00000011000 -> 1.00000012 -nextp044 nextplus 1.00000011001 -> 1.00000012 -nextp045 nextplus 1.00000011002 -> 1.00000012 -nextp046 nextplus 1.00000011002 -> 1.00000012 -nextp047 nextplus 1.00000011052 -> 1.00000012 -nextp048 nextplus 1.00000011552 -> 1.00000012 -nextp049 nextplus -1.00000010998 -> -1.00000010 -nextp050 nextplus -1.00000010999 -> -1.00000010 -nextp051 nextplus -1.00000011000 -> -1.00000010 -nextp052 nextplus -1.00000011001 -> -1.00000011 -nextp053 nextplus -1.00000011002 -> -1.00000011 -nextp054 nextplus -1.00000011002 -> -1.00000011 -nextp055 nextplus -1.00000011052 -> -1.00000011 -nextp056 nextplus -1.00000011552 -> -1.00000011 --- ultra-tiny inputs -nextp060 nextplus 1E-99999 -> 1E-391 -nextp061 nextplus 1E-999999999 -> 1E-391 -nextp062 nextplus 1E-391 -> 2E-391 -nextp063 nextplus -1E-99999 -> -0E-391 -nextp064 nextplus -1E-999999999 -> -0E-391 -nextp065 nextplus -1E-391 -> -0E-391 - --- Zeros -nextp100 nextplus 0 -> 1E-391 -nextp101 nextplus 0.00 -> 1E-391 -nextp102 nextplus 0E-300 -> 1E-391 -nextp103 nextplus 0E+300 -> 1E-391 -nextp104 nextplus 0E+30000 -> 1E-391 -nextp105 nextplus -0 -> 1E-391 -nextp106 nextplus -0.00 -> 1E-391 -nextp107 nextplus -0E-300 -> 1E-391 -nextp108 nextplus -0E+300 -> 1E-391 -nextp109 nextplus -0E+30000 -> 1E-391 - -maxExponent: 999 -minexponent: -999 -precision: 9 --- specials -nextp150 nextplus Inf -> Infinity -nextp151 nextplus -Inf -> -9.99999999E+999 -nextp152 nextplus NaN -> NaN -nextp153 nextplus sNaN -> NaN Invalid_operation -nextp154 nextplus NaN77 -> NaN77 -nextp155 nextplus sNaN88 -> NaN88 Invalid_operation -nextp156 nextplus -NaN -> -NaN -nextp157 nextplus -sNaN -> -NaN Invalid_operation -nextp158 nextplus -NaN77 -> -NaN77 -nextp159 nextplus -sNaN88 -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -nextp170 nextplus 9.99999999E+999 -> Infinity -nextp171 nextplus 9.99999998E+999 -> 9.99999999E+999 -nextp172 nextplus 1E-999 -> 1.00000001E-999 -nextp173 nextplus 1.00000000E-999 -> 1.00000001E-999 -nextp174 nextplus 9E-1007 -> 1.0E-1006 -nextp175 nextplus 9.9E-1006 -> 1.00E-1005 -nextp176 nextplus 9.9999E-1003 -> 1.00000E-1002 -nextp177 nextplus 9.9999999E-1000 -> 1.00000000E-999 -nextp178 nextplus 9.9999998E-1000 -> 9.9999999E-1000 -nextp179 nextplus 9.9999997E-1000 -> 9.9999998E-1000 -nextp180 nextplus 0E-1007 -> 1E-1007 -nextp181 nextplus 1E-1007 -> 2E-1007 -nextp182 nextplus 2E-1007 -> 3E-1007 - -nextp183 nextplus -0E-1007 -> 1E-1007 -nextp184 nextplus -1E-1007 -> -0E-1007 -nextp185 nextplus -2E-1007 -> -1E-1007 -nextp186 nextplus -10E-1007 -> -9E-1007 -nextp187 nextplus -100E-1007 -> -9.9E-1006 -nextp188 nextplus -100000E-1007 -> -9.9999E-1003 -nextp189 nextplus -1.0000E-999 -> -9.9999999E-1000 -nextp190 nextplus -1.00000000E-999 -> -9.9999999E-1000 -nextp191 nextplus -1E-999 -> -9.9999999E-1000 -nextp192 nextplus -9.99999998E+999 -> -9.99999997E+999 -nextp193 nextplus -9.99999999E+999 -> -9.99999998E+999 - --- Null tests -nextp900 nextplus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/nexttoward.decTest b/qdecimal/test/tc_full/nexttoward.decTest deleted file mode 100644 index 196089f..0000000 --- a/qdecimal/test/tc_full/nexttoward.decTest +++ /dev/null @@ -1,426 +0,0 @@ ------------------------------------------------------------------------- --- nexttoward.decTest -- decimal next toward rhs [754r nextafter] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- Sanity check with a scattering of numerics -nextt001 nexttoward 10 10 -> 10 -nextt002 nexttoward -10 -10 -> -10 -nextt003 nexttoward 1 10 -> 1.00000001 -nextt004 nexttoward 1 -10 -> 0.999999999 -nextt005 nexttoward -1 10 -> -0.999999999 -nextt006 nexttoward -1 -10 -> -1.00000001 -nextt007 nexttoward 0 10 -> 1E-391 Underflow Subnormal Inexact Rounded -nextt008 nexttoward 0 -10 -> -1E-391 Underflow Subnormal Inexact Rounded -nextt009 nexttoward 9.99999999E+384 +Infinity -> Infinity Overflow Inexact Rounded -nextt010 nexttoward -9.99999999E+384 -Infinity -> -Infinity Overflow Inexact Rounded - -------- lhs=rhs --- finites -nextt101 nexttoward 7 7 -> 7 -nextt102 nexttoward -7 -7 -> -7 -nextt103 nexttoward 75 75 -> 75 -nextt104 nexttoward -75 -75 -> -75 -nextt105 nexttoward 7.50 7.5 -> 7.50 -nextt106 nexttoward -7.50 -7.50 -> -7.50 -nextt107 nexttoward 7.500 7.5000 -> 7.500 -nextt108 nexttoward -7.500 -7.5 -> -7.500 - --- zeros -nextt111 nexttoward 0 0 -> 0 -nextt112 nexttoward -0 -0 -> -0 -nextt113 nexttoward 0E+4 0 -> 0E+4 -nextt114 nexttoward -0E+4 -0 -> -0E+4 -nextt115 nexttoward 0.0000 0.00000 -> 0.0000 -nextt116 nexttoward -0.0000 -0.00 -> -0.0000 -nextt117 nexttoward 0E-141 0 -> 0E-141 -nextt118 nexttoward -0E-141 -000 -> -0E-141 - --- full coefficients, alternating bits -nextt121 nexttoward 268268268 268268268 -> 268268268 -nextt122 nexttoward -268268268 -268268268 -> -268268268 -nextt123 nexttoward 134134134 134134134 -> 134134134 -nextt124 nexttoward -134134134 -134134134 -> -134134134 - --- Nmax, Nmin, Ntiny -nextt131 nexttoward 9.99999999E+384 9.99999999E+384 -> 9.99999999E+384 -nextt132 nexttoward 1E-383 1E-383 -> 1E-383 -nextt133 nexttoward 1.00000000E-383 1.00000000E-383 -> 1.00000000E-383 -nextt134 nexttoward 1E-391 1E-391 -> 1E-391 - -nextt135 nexttoward -1E-391 -1E-391 -> -1E-391 -nextt136 nexttoward -1.00000000E-383 -1.00000000E-383 -> -1.00000000E-383 -nextt137 nexttoward -1E-383 -1E-383 -> -1E-383 -nextt138 nexttoward -9.99999999E+384 -9.99999999E+384 -> -9.99999999E+384 - -------- lhs 0.999999996 -nextt202 nexttoward 0.999999996 Infinity -> 0.999999997 -nextt203 nexttoward 0.999999997 Infinity -> 0.999999998 -nextt204 nexttoward 0.999999998 Infinity -> 0.999999999 -nextt205 nexttoward 0.999999999 Infinity -> 1.00000000 -nextt206 nexttoward 1.00000000 Infinity -> 1.00000001 -nextt207 nexttoward 1.0 Infinity -> 1.00000001 -nextt208 nexttoward 1 Infinity -> 1.00000001 -nextt209 nexttoward 1.00000001 Infinity -> 1.00000002 -nextt210 nexttoward 1.00000002 Infinity -> 1.00000003 -nextt211 nexttoward 1.00000003 Infinity -> 1.00000004 -nextt212 nexttoward 1.00000004 Infinity -> 1.00000005 -nextt213 nexttoward 1.00000005 Infinity -> 1.00000006 -nextt214 nexttoward 1.00000006 Infinity -> 1.00000007 -nextt215 nexttoward 1.00000007 Infinity -> 1.00000008 -nextt216 nexttoward 1.00000008 Infinity -> 1.00000009 -nextt217 nexttoward 1.00000009 Infinity -> 1.00000010 -nextt218 nexttoward 1.00000010 Infinity -> 1.00000011 -nextt219 nexttoward 1.00000011 Infinity -> 1.00000012 - -nextt221 nexttoward -0.999999995 Infinity -> -0.999999994 -nextt222 nexttoward -0.999999996 Infinity -> -0.999999995 -nextt223 nexttoward -0.999999997 Infinity -> -0.999999996 -nextt224 nexttoward -0.999999998 Infinity -> -0.999999997 -nextt225 nexttoward -0.999999999 Infinity -> -0.999999998 -nextt226 nexttoward -1.00000000 Infinity -> -0.999999999 -nextt227 nexttoward -1.0 Infinity -> -0.999999999 -nextt228 nexttoward -1 Infinity -> -0.999999999 -nextt229 nexttoward -1.00000001 Infinity -> -1.00000000 -nextt230 nexttoward -1.00000002 Infinity -> -1.00000001 -nextt231 nexttoward -1.00000003 Infinity -> -1.00000002 -nextt232 nexttoward -1.00000004 Infinity -> -1.00000003 -nextt233 nexttoward -1.00000005 Infinity -> -1.00000004 -nextt234 nexttoward -1.00000006 Infinity -> -1.00000005 -nextt235 nexttoward -1.00000007 Infinity -> -1.00000006 -nextt236 nexttoward -1.00000008 Infinity -> -1.00000007 -nextt237 nexttoward -1.00000009 Infinity -> -1.00000008 -nextt238 nexttoward -1.00000010 Infinity -> -1.00000009 -nextt239 nexttoward -1.00000011 Infinity -> -1.00000010 -nextt240 nexttoward -1.00000012 Infinity -> -1.00000011 - --- input operand is >precision -nextt241 nexttoward 1.00000010998 Infinity -> 1.00000011 -nextt242 nexttoward 1.00000010999 Infinity -> 1.00000011 -nextt243 nexttoward 1.00000011000 Infinity -> 1.00000012 -nextt244 nexttoward 1.00000011001 Infinity -> 1.00000012 -nextt245 nexttoward 1.00000011002 Infinity -> 1.00000012 -nextt246 nexttoward 1.00000011002 Infinity -> 1.00000012 -nextt247 nexttoward 1.00000011052 Infinity -> 1.00000012 -nextt248 nexttoward 1.00000011552 Infinity -> 1.00000012 -nextt249 nexttoward -1.00000010998 Infinity -> -1.00000010 -nextt250 nexttoward -1.00000010999 Infinity -> -1.00000010 -nextt251 nexttoward -1.00000011000 Infinity -> -1.00000010 -nextt252 nexttoward -1.00000011001 Infinity -> -1.00000011 -nextt253 nexttoward -1.00000011002 Infinity -> -1.00000011 -nextt254 nexttoward -1.00000011002 Infinity -> -1.00000011 -nextt255 nexttoward -1.00000011052 Infinity -> -1.00000011 -nextt256 nexttoward -1.00000011552 Infinity -> -1.00000011 --- ultra-tiny inputs -nextt260 nexttoward 1E-99999 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt261 nexttoward 1E-999999999 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt262 nexttoward 1E-391 Infinity -> 2E-391 Underflow Subnormal Inexact Rounded -nextt263 nexttoward -1E-99999 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped -nextt264 nexttoward -1E-999999999 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped -nextt265 nexttoward -1E-391 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped - --- Zeros -nextt300 nexttoward 0 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt301 nexttoward 0.00 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt302 nexttoward 0E-300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt303 nexttoward 0E+300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt304 nexttoward 0E+30000 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt305 nexttoward -0 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt306 nexttoward -0.00 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt307 nexttoward -0E-300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt308 nexttoward -0E+300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -nextt309 nexttoward -0E+30000 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded - --- specials -nextt350 nexttoward Inf Infinity -> Infinity -nextt351 nexttoward -Inf Infinity -> -9.99999999E+384 -nextt352 nexttoward NaN Infinity -> NaN -nextt353 nexttoward sNaN Infinity -> NaN Invalid_operation -nextt354 nexttoward NaN77 Infinity -> NaN77 -nextt355 nexttoward sNaN88 Infinity -> NaN88 Invalid_operation -nextt356 nexttoward -NaN Infinity -> -NaN -nextt357 nexttoward -sNaN Infinity -> -NaN Invalid_operation -nextt358 nexttoward -NaN77 Infinity -> -NaN77 -nextt359 nexttoward -sNaN88 Infinity -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -maxExponent: 999 -minexponent: -999 -nextt370 nexttoward 9.99999999E+999 Infinity -> Infinity Overflow Inexact Rounded -nextt371 nexttoward 9.99999998E+999 Infinity -> 9.99999999E+999 -nextt372 nexttoward 1E-999 Infinity -> 1.00000001E-999 -nextt373 nexttoward 1.00000000E-999 Infinity -> 1.00000001E-999 -nextt374 nexttoward 0.999999999E-999 Infinity -> 1.00000000E-999 -nextt375 nexttoward 0.99999999E-999 Infinity -> 1.00000000E-999 -nextt376 nexttoward 9E-1007 Infinity -> 1.0E-1006 Underflow Subnormal Inexact Rounded -nextt377 nexttoward 9.9E-1006 Infinity -> 1.00E-1005 Underflow Subnormal Inexact Rounded -nextt378 nexttoward 9.9999E-1003 Infinity -> 1.00000E-1002 Underflow Subnormal Inexact Rounded -nextt379 nexttoward 9.9999998E-1000 Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded -nextt380 nexttoward 9.9999997E-1000 Infinity -> 9.9999998E-1000 Underflow Subnormal Inexact Rounded -nextt381 nexttoward 0E-1007 Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded -nextt382 nexttoward 1E-1007 Infinity -> 2E-1007 Underflow Subnormal Inexact Rounded -nextt383 nexttoward 2E-1007 Infinity -> 3E-1007 Underflow Subnormal Inexact Rounded - -nextt385 nexttoward -0E-1007 Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded -nextt386 nexttoward -1E-1007 Infinity -> -0E-1007 Underflow Subnormal Inexact Rounded Clamped -nextt387 nexttoward -2E-1007 Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded -nextt388 nexttoward -10E-1007 Infinity -> -9E-1007 Underflow Subnormal Inexact Rounded -nextt389 nexttoward -100E-1007 Infinity -> -9.9E-1006 Underflow Subnormal Inexact Rounded -nextt390 nexttoward -100000E-1007 Infinity -> -9.9999E-1003 Underflow Subnormal Inexact Rounded -nextt391 nexttoward -1.0000E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded -nextt392 nexttoward -1.00000000E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded -nextt393 nexttoward -1E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded -nextt394 nexttoward -9.99999998E+999 Infinity -> -9.99999997E+999 -nextt395 nexttoward -9.99999999E+999 Infinity -> -9.99999998E+999 - -------- lhs>rhs -maxExponent: 384 -minexponent: -383 -nextt401 nexttoward 0.999999995 -Infinity -> 0.999999994 -nextt402 nexttoward 0.999999996 -Infinity -> 0.999999995 -nextt403 nexttoward 0.999999997 -Infinity -> 0.999999996 -nextt404 nexttoward 0.999999998 -Infinity -> 0.999999997 -nextt405 nexttoward 0.999999999 -Infinity -> 0.999999998 -nextt406 nexttoward 1.00000000 -Infinity -> 0.999999999 -nextt407 nexttoward 1.0 -Infinity -> 0.999999999 -nextt408 nexttoward 1 -Infinity -> 0.999999999 -nextt409 nexttoward 1.00000001 -Infinity -> 1.00000000 -nextt410 nexttoward 1.00000002 -Infinity -> 1.00000001 -nextt411 nexttoward 1.00000003 -Infinity -> 1.00000002 -nextt412 nexttoward 1.00000004 -Infinity -> 1.00000003 -nextt413 nexttoward 1.00000005 -Infinity -> 1.00000004 -nextt414 nexttoward 1.00000006 -Infinity -> 1.00000005 -nextt415 nexttoward 1.00000007 -Infinity -> 1.00000006 -nextt416 nexttoward 1.00000008 -Infinity -> 1.00000007 -nextt417 nexttoward 1.00000009 -Infinity -> 1.00000008 -nextt418 nexttoward 1.00000010 -Infinity -> 1.00000009 -nextt419 nexttoward 1.00000011 -Infinity -> 1.00000010 -nextt420 nexttoward 1.00000012 -Infinity -> 1.00000011 - -nextt421 nexttoward -0.999999995 -Infinity -> -0.999999996 -nextt422 nexttoward -0.999999996 -Infinity -> -0.999999997 -nextt423 nexttoward -0.999999997 -Infinity -> -0.999999998 -nextt424 nexttoward -0.999999998 -Infinity -> -0.999999999 -nextt425 nexttoward -0.999999999 -Infinity -> -1.00000000 -nextt426 nexttoward -1.00000000 -Infinity -> -1.00000001 -nextt427 nexttoward -1.0 -Infinity -> -1.00000001 -nextt428 nexttoward -1 -Infinity -> -1.00000001 -nextt429 nexttoward -1.00000001 -Infinity -> -1.00000002 -nextt430 nexttoward -1.00000002 -Infinity -> -1.00000003 -nextt431 nexttoward -1.00000003 -Infinity -> -1.00000004 -nextt432 nexttoward -1.00000004 -Infinity -> -1.00000005 -nextt433 nexttoward -1.00000005 -Infinity -> -1.00000006 -nextt434 nexttoward -1.00000006 -Infinity -> -1.00000007 -nextt435 nexttoward -1.00000007 -Infinity -> -1.00000008 -nextt436 nexttoward -1.00000008 -Infinity -> -1.00000009 -nextt437 nexttoward -1.00000009 -Infinity -> -1.00000010 -nextt438 nexttoward -1.00000010 -Infinity -> -1.00000011 -nextt439 nexttoward -1.00000011 -Infinity -> -1.00000012 - --- input operand is >precision -nextt441 nexttoward 1.00000010998 -Infinity -> 1.00000010 -nextt442 nexttoward 1.00000010999 -Infinity -> 1.00000010 -nextt443 nexttoward 1.00000011000 -Infinity -> 1.00000010 -nextt444 nexttoward 1.00000011001 -Infinity -> 1.00000011 -nextt445 nexttoward 1.00000011002 -Infinity -> 1.00000011 -nextt446 nexttoward 1.00000011002 -Infinity -> 1.00000011 -nextt447 nexttoward 1.00000011052 -Infinity -> 1.00000011 -nextt448 nexttoward 1.00000011552 -Infinity -> 1.00000011 -nextt449 nexttoward -1.00000010998 -Infinity -> -1.00000011 -nextt450 nexttoward -1.00000010999 -Infinity -> -1.00000011 -nextt451 nexttoward -1.00000011000 -Infinity -> -1.00000012 -nextt452 nexttoward -1.00000011001 -Infinity -> -1.00000012 -nextt453 nexttoward -1.00000011002 -Infinity -> -1.00000012 -nextt454 nexttoward -1.00000011002 -Infinity -> -1.00000012 -nextt455 nexttoward -1.00000011052 -Infinity -> -1.00000012 -nextt456 nexttoward -1.00000011552 -Infinity -> -1.00000012 --- ultra-tiny inputs -nextt460 nexttoward 1E-99999 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped -nextt461 nexttoward 1E-999999999 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped -nextt462 nexttoward 1E-391 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped -nextt463 nexttoward -1E-99999 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt464 nexttoward -1E-999999999 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt465 nexttoward -1E-391 -Infinity -> -2E-391 Underflow Subnormal Inexact Rounded - --- Zeros -nextt500 nexttoward -0 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt501 nexttoward 0 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt502 nexttoward 0.00 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt503 nexttoward -0.00 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt504 nexttoward 0E-300 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt505 nexttoward 0E+300 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt506 nexttoward 0E+30000 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt507 nexttoward -0E+30000 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded -nextt508 nexttoward 0.00 -0.0000 -> -0.00 - --- specials -nextt550 nexttoward Inf -Infinity -> 9.99999999E+384 -nextt551 nexttoward -Inf -Infinity -> -Infinity -nextt552 nexttoward NaN -Infinity -> NaN -nextt553 nexttoward sNaN -Infinity -> NaN Invalid_operation -nextt554 nexttoward NaN77 -Infinity -> NaN77 -nextt555 nexttoward sNaN88 -Infinity -> NaN88 Invalid_operation -nextt556 nexttoward -NaN -Infinity -> -NaN -nextt557 nexttoward -sNaN -Infinity -> -NaN Invalid_operation -nextt558 nexttoward -NaN77 -Infinity -> -NaN77 -nextt559 nexttoward -sNaN88 -Infinity -> -NaN88 Invalid_operation - --- Nmax, Nmin, Ntiny, subnormals -maxExponent: 999 -minexponent: -999 -nextt570 nexttoward 9.99999999E+999 -Infinity -> 9.99999998E+999 -nextt571 nexttoward 9.99999998E+999 -Infinity -> 9.99999997E+999 -nextt572 nexttoward 1E-999 -Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded -nextt573 nexttoward 1.00000000E-999 -Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded -nextt574 nexttoward 9E-1007 -Infinity -> 8E-1007 Underflow Subnormal Inexact Rounded -nextt575 nexttoward 9.9E-1006 -Infinity -> 9.8E-1006 Underflow Subnormal Inexact Rounded -nextt576 nexttoward 9.9999E-1003 -Infinity -> 9.9998E-1003 Underflow Subnormal Inexact Rounded -nextt577 nexttoward 9.9999999E-1000 -Infinity -> 9.9999998E-1000 Underflow Subnormal Inexact Rounded -nextt578 nexttoward 9.9999998E-1000 -Infinity -> 9.9999997E-1000 Underflow Subnormal Inexact Rounded -nextt579 nexttoward 9.9999997E-1000 -Infinity -> 9.9999996E-1000 Underflow Subnormal Inexact Rounded -nextt580 nexttoward 0E-1007 -Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded -nextt581 nexttoward 1E-1007 -Infinity -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped -nextt582 nexttoward 2E-1007 -Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded - -nextt583 nexttoward -0E-1007 -Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded -nextt584 nexttoward -1E-1007 -Infinity -> -2E-1007 Underflow Subnormal Inexact Rounded -nextt585 nexttoward -2E-1007 -Infinity -> -3E-1007 Underflow Subnormal Inexact Rounded -nextt586 nexttoward -10E-1007 -Infinity -> -1.1E-1006 Underflow Subnormal Inexact Rounded -nextt587 nexttoward -100E-1007 -Infinity -> -1.01E-1005 Underflow Subnormal Inexact Rounded -nextt588 nexttoward -100000E-1007 -Infinity -> -1.00001E-1002 Underflow Subnormal Inexact Rounded -nextt589 nexttoward -1.0000E-999 -Infinity -> -1.00000001E-999 -nextt590 nexttoward -1.00000000E-999 -Infinity -> -1.00000001E-999 -nextt591 nexttoward -1E-999 -Infinity -> -1.00000001E-999 -nextt592 nexttoward -9.99999998E+999 -Infinity -> -9.99999999E+999 -nextt593 nexttoward -9.99999999E+999 -Infinity -> -Infinity Overflow Inexact Rounded - - - - -------- Specials -maxExponent: 384 -minexponent: -383 -nextt780 nexttoward -Inf -Inf -> -Infinity -nextt781 nexttoward -Inf -1000 -> -9.99999999E+384 -nextt782 nexttoward -Inf -1 -> -9.99999999E+384 -nextt783 nexttoward -Inf -0 -> -9.99999999E+384 -nextt784 nexttoward -Inf 0 -> -9.99999999E+384 -nextt785 nexttoward -Inf 1 -> -9.99999999E+384 -nextt786 nexttoward -Inf 1000 -> -9.99999999E+384 -nextt787 nexttoward -1000 -Inf -> -1000.00001 -nextt788 nexttoward -Inf -Inf -> -Infinity -nextt789 nexttoward -1 -Inf -> -1.00000001 -nextt790 nexttoward -0 -Inf -> -1E-391 Underflow Subnormal Inexact Rounded -nextt791 nexttoward 0 -Inf -> -1E-391 Underflow Subnormal Inexact Rounded -nextt792 nexttoward 1 -Inf -> 0.999999999 -nextt793 nexttoward 1000 -Inf -> 999.999999 -nextt794 nexttoward Inf -Inf -> 9.99999999E+384 - -nextt800 nexttoward Inf -Inf -> 9.99999999E+384 -nextt801 nexttoward Inf -1000 -> 9.99999999E+384 -nextt802 nexttoward Inf -1 -> 9.99999999E+384 -nextt803 nexttoward Inf -0 -> 9.99999999E+384 -nextt804 nexttoward Inf 0 -> 9.99999999E+384 -nextt805 nexttoward Inf 1 -> 9.99999999E+384 -nextt806 nexttoward Inf 1000 -> 9.99999999E+384 -nextt807 nexttoward Inf Inf -> Infinity -nextt808 nexttoward -1000 Inf -> -999.999999 -nextt809 nexttoward -Inf Inf -> -9.99999999E+384 -nextt810 nexttoward -1 Inf -> -0.999999999 -nextt811 nexttoward -0 Inf -> 1E-391 Underflow Subnormal Inexact Rounded -nextt812 nexttoward 0 Inf -> 1E-391 Underflow Subnormal Inexact Rounded -nextt813 nexttoward 1 Inf -> 1.00000001 -nextt814 nexttoward 1000 Inf -> 1000.00001 -nextt815 nexttoward Inf Inf -> Infinity - -nextt821 nexttoward NaN -Inf -> NaN -nextt822 nexttoward NaN -1000 -> NaN -nextt823 nexttoward NaN -1 -> NaN -nextt824 nexttoward NaN -0 -> NaN -nextt825 nexttoward NaN 0 -> NaN -nextt826 nexttoward NaN 1 -> NaN -nextt827 nexttoward NaN 1000 -> NaN -nextt828 nexttoward NaN Inf -> NaN -nextt829 nexttoward NaN NaN -> NaN -nextt830 nexttoward -Inf NaN -> NaN -nextt831 nexttoward -1000 NaN -> NaN -nextt832 nexttoward -1 NaN -> NaN -nextt833 nexttoward -0 NaN -> NaN -nextt834 nexttoward 0 NaN -> NaN -nextt835 nexttoward 1 NaN -> NaN -nextt836 nexttoward 1000 NaN -> NaN -nextt837 nexttoward Inf NaN -> NaN - -nextt841 nexttoward sNaN -Inf -> NaN Invalid_operation -nextt842 nexttoward sNaN -1000 -> NaN Invalid_operation -nextt843 nexttoward sNaN -1 -> NaN Invalid_operation -nextt844 nexttoward sNaN -0 -> NaN Invalid_operation -nextt845 nexttoward sNaN 0 -> NaN Invalid_operation -nextt846 nexttoward sNaN 1 -> NaN Invalid_operation -nextt847 nexttoward sNaN 1000 -> NaN Invalid_operation -nextt848 nexttoward sNaN NaN -> NaN Invalid_operation -nextt849 nexttoward sNaN sNaN -> NaN Invalid_operation -nextt850 nexttoward NaN sNaN -> NaN Invalid_operation -nextt851 nexttoward -Inf sNaN -> NaN Invalid_operation -nextt852 nexttoward -1000 sNaN -> NaN Invalid_operation -nextt853 nexttoward -1 sNaN -> NaN Invalid_operation -nextt854 nexttoward -0 sNaN -> NaN Invalid_operation -nextt855 nexttoward 0 sNaN -> NaN Invalid_operation -nextt856 nexttoward 1 sNaN -> NaN Invalid_operation -nextt857 nexttoward 1000 sNaN -> NaN Invalid_operation -nextt858 nexttoward Inf sNaN -> NaN Invalid_operation -nextt859 nexttoward NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -nextt861 nexttoward NaN1 -Inf -> NaN1 -nextt862 nexttoward +NaN2 -1000 -> NaN2 -nextt863 nexttoward NaN3 1000 -> NaN3 -nextt864 nexttoward NaN4 Inf -> NaN4 -nextt865 nexttoward NaN5 +NaN6 -> NaN5 -nextt866 nexttoward -Inf NaN7 -> NaN7 -nextt867 nexttoward -1000 NaN8 -> NaN8 -nextt868 nexttoward 1000 NaN9 -> NaN9 -nextt869 nexttoward Inf +NaN10 -> NaN10 -nextt871 nexttoward sNaN11 -Inf -> NaN11 Invalid_operation -nextt872 nexttoward sNaN12 -1000 -> NaN12 Invalid_operation -nextt873 nexttoward sNaN13 1000 -> NaN13 Invalid_operation -nextt874 nexttoward sNaN14 NaN17 -> NaN14 Invalid_operation -nextt875 nexttoward sNaN15 sNaN18 -> NaN15 Invalid_operation -nextt876 nexttoward NaN16 sNaN19 -> NaN19 Invalid_operation -nextt877 nexttoward -Inf +sNaN20 -> NaN20 Invalid_operation -nextt878 nexttoward -1000 sNaN21 -> NaN21 Invalid_operation -nextt879 nexttoward 1000 sNaN22 -> NaN22 Invalid_operation -nextt880 nexttoward Inf sNaN23 -> NaN23 Invalid_operation -nextt881 nexttoward +NaN25 +sNaN24 -> NaN24 Invalid_operation -nextt882 nexttoward -NaN26 NaN28 -> -NaN26 -nextt883 nexttoward -sNaN27 sNaN29 -> -NaN27 Invalid_operation -nextt884 nexttoward 1000 -NaN30 -> -NaN30 -nextt885 nexttoward 1000 -sNaN31 -> -NaN31 Invalid_operation - --- Null tests -nextt900 nexttoward 1 # -> NaN Invalid_operation -nextt901 nexttoward # 1 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/or.decTest b/qdecimal/test/tc_full/or.decTest deleted file mode 100644 index 6f0f0b0..0000000 --- a/qdecimal/test/tc_full/or.decTest +++ /dev/null @@ -1,334 +0,0 @@ ------------------------------------------------------------------------- --- or.decTest -- digitwise logical OR -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check (truth table) -orx001 or 0 0 -> 0 -orx002 or 0 1 -> 1 -orx003 or 1 0 -> 1 -orx004 or 1 1 -> 1 -orx005 or 1100 1010 -> 1110 --- and at msd and msd-1 -orx006 or 000000000 000000000 -> 0 -orx007 or 000000000 100000000 -> 100000000 -orx008 or 100000000 000000000 -> 100000000 -orx009 or 100000000 100000000 -> 100000000 -orx010 or 000000000 000000000 -> 0 -orx011 or 000000000 010000000 -> 10000000 -orx012 or 010000000 000000000 -> 10000000 -orx013 or 010000000 010000000 -> 10000000 - --- Various lengths --- 123456789 123456789 123456789 -orx021 or 111111111 111111111 -> 111111111 -orx022 or 111111111111 111111111 -> 111111111 -orx023 or 11111111 11111111 -> 11111111 -orx025 or 1111111 1111111 -> 1111111 -orx026 or 111111 111111 -> 111111 -orx027 or 11111 11111 -> 11111 -orx028 or 1111 1111 -> 1111 -orx029 or 111 111 -> 111 -orx031 or 11 11 -> 11 -orx032 or 1 1 -> 1 -orx033 or 111111111111 1111111111 -> 111111111 -orx034 or 11111111111 11111111111 -> 111111111 -orx035 or 1111111111 111111111111 -> 111111111 -orx036 or 111111111 1111111111111 -> 111111111 - -orx040 or 111111111 111111111111 -> 111111111 -orx041 or 11111111 111111111111 -> 111111111 -orx042 or 11111111 111111111 -> 111111111 -orx043 or 1111111 100000010 -> 101111111 -orx044 or 111111 100000100 -> 100111111 -orx045 or 11111 100001000 -> 100011111 -orx046 or 1111 100010000 -> 100011111 -orx047 or 111 100100000 -> 100100111 -orx048 or 11 101000000 -> 101000011 -orx049 or 1 110000000 -> 110000001 - -orx050 or 1111111111 1 -> 111111111 -orx051 or 111111111 1 -> 111111111 -orx052 or 11111111 1 -> 11111111 -orx053 or 1111111 1 -> 1111111 -orx054 or 111111 1 -> 111111 -orx055 or 11111 1 -> 11111 -orx056 or 1111 1 -> 1111 -orx057 or 111 1 -> 111 -orx058 or 11 1 -> 11 -orx059 or 1 1 -> 1 - -orx060 or 1111111111 0 -> 111111111 -orx061 or 111111111 0 -> 111111111 -orx062 or 11111111 0 -> 11111111 -orx063 or 1111111 0 -> 1111111 -orx064 or 111111 0 -> 111111 -orx065 or 11111 0 -> 11111 -orx066 or 1111 0 -> 1111 -orx067 or 111 0 -> 111 -orx068 or 11 0 -> 11 -orx069 or 1 0 -> 1 - -orx070 or 1 1111111111 -> 111111111 -orx071 or 1 111111111 -> 111111111 -orx072 or 1 11111111 -> 11111111 -orx073 or 1 1111111 -> 1111111 -orx074 or 1 111111 -> 111111 -orx075 or 1 11111 -> 11111 -orx076 or 1 1111 -> 1111 -orx077 or 1 111 -> 111 -orx078 or 1 11 -> 11 -orx079 or 1 1 -> 1 - -orx080 or 0 1111111111 -> 111111111 -orx081 or 0 111111111 -> 111111111 -orx082 or 0 11111111 -> 11111111 -orx083 or 0 1111111 -> 1111111 -orx084 or 0 111111 -> 111111 -orx085 or 0 11111 -> 11111 -orx086 or 0 1111 -> 1111 -orx087 or 0 111 -> 111 -orx088 or 0 11 -> 11 -orx089 or 0 1 -> 1 - -orx090 or 011111111 111101111 -> 111111111 -orx091 or 101111111 111101111 -> 111111111 -orx092 or 110111111 111101111 -> 111111111 -orx093 or 111011111 111101111 -> 111111111 -orx094 or 111101111 111101111 -> 111101111 -orx095 or 111110111 111101111 -> 111111111 -orx096 or 111111011 111101111 -> 111111111 -orx097 or 111111101 111101111 -> 111111111 -orx098 or 111111110 111101111 -> 111111111 - -orx100 or 111101111 011111111 -> 111111111 -orx101 or 111101111 101111111 -> 111111111 -orx102 or 111101111 110111111 -> 111111111 -orx103 or 111101111 111011111 -> 111111111 -orx104 or 111101111 111101111 -> 111101111 -orx105 or 111101111 111110111 -> 111111111 -orx106 or 111101111 111111011 -> 111111111 -orx107 or 111101111 111111101 -> 111111111 -orx108 or 111101111 111111110 -> 111111111 - --- non-0/1 should not be accepted, nor should signs -orx220 or 111111112 111111111 -> NaN Invalid_operation -orx221 or 333333333 333333333 -> NaN Invalid_operation -orx222 or 555555555 555555555 -> NaN Invalid_operation -orx223 or 777777777 777777777 -> NaN Invalid_operation -orx224 or 999999999 999999999 -> NaN Invalid_operation -orx225 or 222222222 999999999 -> NaN Invalid_operation -orx226 or 444444444 999999999 -> NaN Invalid_operation -orx227 or 666666666 999999999 -> NaN Invalid_operation -orx228 or 888888888 999999999 -> NaN Invalid_operation -orx229 or 999999999 222222222 -> NaN Invalid_operation -orx230 or 999999999 444444444 -> NaN Invalid_operation -orx231 or 999999999 666666666 -> NaN Invalid_operation -orx232 or 999999999 888888888 -> NaN Invalid_operation --- a few randoms -orx240 or 567468689 -934981942 -> NaN Invalid_operation -orx241 or 567367689 934981942 -> NaN Invalid_operation -orx242 or -631917772 -706014634 -> NaN Invalid_operation -orx243 or -756253257 138579234 -> NaN Invalid_operation -orx244 or 835590149 567435400 -> NaN Invalid_operation --- test MSD -orx250 or 200000000 100000000 -> NaN Invalid_operation -orx251 or 700000000 100000000 -> NaN Invalid_operation -orx252 or 800000000 100000000 -> NaN Invalid_operation -orx253 or 900000000 100000000 -> NaN Invalid_operation -orx254 or 200000000 000000000 -> NaN Invalid_operation -orx255 or 700000000 000000000 -> NaN Invalid_operation -orx256 or 800000000 000000000 -> NaN Invalid_operation -orx257 or 900000000 000000000 -> NaN Invalid_operation -orx258 or 100000000 200000000 -> NaN Invalid_operation -orx259 or 100000000 700000000 -> NaN Invalid_operation -orx260 or 100000000 800000000 -> NaN Invalid_operation -orx261 or 100000000 900000000 -> NaN Invalid_operation -orx262 or 000000000 200000000 -> NaN Invalid_operation -orx263 or 000000000 700000000 -> NaN Invalid_operation -orx264 or 000000000 800000000 -> NaN Invalid_operation -orx265 or 000000000 900000000 -> NaN Invalid_operation --- test MSD-1 -orx270 or 020000000 100000000 -> NaN Invalid_operation -orx271 or 070100000 100000000 -> NaN Invalid_operation -orx272 or 080010000 100000001 -> NaN Invalid_operation -orx273 or 090001000 100000010 -> NaN Invalid_operation -orx274 or 100000100 020010100 -> NaN Invalid_operation -orx275 or 100000000 070001000 -> NaN Invalid_operation -orx276 or 100000010 080010100 -> NaN Invalid_operation -orx277 or 100000000 090000010 -> NaN Invalid_operation --- test LSD -orx280 or 001000002 100000000 -> NaN Invalid_operation -orx281 or 000000007 100000000 -> NaN Invalid_operation -orx282 or 000000008 100000000 -> NaN Invalid_operation -orx283 or 000000009 100000000 -> NaN Invalid_operation -orx284 or 100000000 000100002 -> NaN Invalid_operation -orx285 or 100100000 001000007 -> NaN Invalid_operation -orx286 or 100010000 010000008 -> NaN Invalid_operation -orx287 or 100001000 100000009 -> NaN Invalid_operation --- test Middie -orx288 or 001020000 100000000 -> NaN Invalid_operation -orx289 or 000070001 100000000 -> NaN Invalid_operation -orx290 or 000080000 100010000 -> NaN Invalid_operation -orx291 or 000090000 100001000 -> NaN Invalid_operation -orx292 or 100000010 000020100 -> NaN Invalid_operation -orx293 or 100100000 000070010 -> NaN Invalid_operation -orx294 or 100010100 000080001 -> NaN Invalid_operation -orx295 or 100001000 000090000 -> NaN Invalid_operation --- signs -orx296 or -100001000 -000000000 -> NaN Invalid_operation -orx297 or -100001000 000010000 -> NaN Invalid_operation -orx298 or 100001000 -000000000 -> NaN Invalid_operation -orx299 or 100001000 000011000 -> 100011000 - --- Nmax, Nmin, Ntiny -orx331 or 2 9.99999999E+999 -> NaN Invalid_operation -orx332 or 3 1E-999 -> NaN Invalid_operation -orx333 or 4 1.00000000E-999 -> NaN Invalid_operation -orx334 or 5 1E-1007 -> NaN Invalid_operation -orx335 or 6 -1E-1007 -> NaN Invalid_operation -orx336 or 7 -1.00000000E-999 -> NaN Invalid_operation -orx337 or 8 -1E-999 -> NaN Invalid_operation -orx338 or 9 -9.99999999E+999 -> NaN Invalid_operation -orx341 or 9.99999999E+999 -18 -> NaN Invalid_operation -orx342 or 1E-999 01 -> NaN Invalid_operation -orx343 or 1.00000000E-999 -18 -> NaN Invalid_operation -orx344 or 1E-1007 18 -> NaN Invalid_operation -orx345 or -1E-1007 -10 -> NaN Invalid_operation -orx346 or -1.00000000E-999 18 -> NaN Invalid_operation -orx347 or -1E-999 10 -> NaN Invalid_operation -orx348 or -9.99999999E+999 -18 -> NaN Invalid_operation - --- A few other non-integers -orx361 or 1.0 1 -> NaN Invalid_operation -orx362 or 1E+1 1 -> NaN Invalid_operation -orx363 or 0.0 1 -> NaN Invalid_operation -orx364 or 0E+1 1 -> NaN Invalid_operation -orx365 or 9.9 1 -> NaN Invalid_operation -orx366 or 9E+1 1 -> NaN Invalid_operation -orx371 or 0 1.0 -> NaN Invalid_operation -orx372 or 0 1E+1 -> NaN Invalid_operation -orx373 or 0 0.0 -> NaN Invalid_operation -orx374 or 0 0E+1 -> NaN Invalid_operation -orx375 or 0 9.9 -> NaN Invalid_operation -orx376 or 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -orx780 or -Inf -Inf -> NaN Invalid_operation -orx781 or -Inf -1000 -> NaN Invalid_operation -orx782 or -Inf -1 -> NaN Invalid_operation -orx783 or -Inf -0 -> NaN Invalid_operation -orx784 or -Inf 0 -> NaN Invalid_operation -orx785 or -Inf 1 -> NaN Invalid_operation -orx786 or -Inf 1000 -> NaN Invalid_operation -orx787 or -1000 -Inf -> NaN Invalid_operation -orx788 or -Inf -Inf -> NaN Invalid_operation -orx789 or -1 -Inf -> NaN Invalid_operation -orx790 or -0 -Inf -> NaN Invalid_operation -orx791 or 0 -Inf -> NaN Invalid_operation -orx792 or 1 -Inf -> NaN Invalid_operation -orx793 or 1000 -Inf -> NaN Invalid_operation -orx794 or Inf -Inf -> NaN Invalid_operation - -orx800 or Inf -Inf -> NaN Invalid_operation -orx801 or Inf -1000 -> NaN Invalid_operation -orx802 or Inf -1 -> NaN Invalid_operation -orx803 or Inf -0 -> NaN Invalid_operation -orx804 or Inf 0 -> NaN Invalid_operation -orx805 or Inf 1 -> NaN Invalid_operation -orx806 or Inf 1000 -> NaN Invalid_operation -orx807 or Inf Inf -> NaN Invalid_operation -orx808 or -1000 Inf -> NaN Invalid_operation -orx809 or -Inf Inf -> NaN Invalid_operation -orx810 or -1 Inf -> NaN Invalid_operation -orx811 or -0 Inf -> NaN Invalid_operation -orx812 or 0 Inf -> NaN Invalid_operation -orx813 or 1 Inf -> NaN Invalid_operation -orx814 or 1000 Inf -> NaN Invalid_operation -orx815 or Inf Inf -> NaN Invalid_operation - -orx821 or NaN -Inf -> NaN Invalid_operation -orx822 or NaN -1000 -> NaN Invalid_operation -orx823 or NaN -1 -> NaN Invalid_operation -orx824 or NaN -0 -> NaN Invalid_operation -orx825 or NaN 0 -> NaN Invalid_operation -orx826 or NaN 1 -> NaN Invalid_operation -orx827 or NaN 1000 -> NaN Invalid_operation -orx828 or NaN Inf -> NaN Invalid_operation -orx829 or NaN NaN -> NaN Invalid_operation -orx830 or -Inf NaN -> NaN Invalid_operation -orx831 or -1000 NaN -> NaN Invalid_operation -orx832 or -1 NaN -> NaN Invalid_operation -orx833 or -0 NaN -> NaN Invalid_operation -orx834 or 0 NaN -> NaN Invalid_operation -orx835 or 1 NaN -> NaN Invalid_operation -orx836 or 1000 NaN -> NaN Invalid_operation -orx837 or Inf NaN -> NaN Invalid_operation - -orx841 or sNaN -Inf -> NaN Invalid_operation -orx842 or sNaN -1000 -> NaN Invalid_operation -orx843 or sNaN -1 -> NaN Invalid_operation -orx844 or sNaN -0 -> NaN Invalid_operation -orx845 or sNaN 0 -> NaN Invalid_operation -orx846 or sNaN 1 -> NaN Invalid_operation -orx847 or sNaN 1000 -> NaN Invalid_operation -orx848 or sNaN NaN -> NaN Invalid_operation -orx849 or sNaN sNaN -> NaN Invalid_operation -orx850 or NaN sNaN -> NaN Invalid_operation -orx851 or -Inf sNaN -> NaN Invalid_operation -orx852 or -1000 sNaN -> NaN Invalid_operation -orx853 or -1 sNaN -> NaN Invalid_operation -orx854 or -0 sNaN -> NaN Invalid_operation -orx855 or 0 sNaN -> NaN Invalid_operation -orx856 or 1 sNaN -> NaN Invalid_operation -orx857 or 1000 sNaN -> NaN Invalid_operation -orx858 or Inf sNaN -> NaN Invalid_operation -orx859 or NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -orx861 or NaN1 -Inf -> NaN Invalid_operation -orx862 or +NaN2 -1000 -> NaN Invalid_operation -orx863 or NaN3 1000 -> NaN Invalid_operation -orx864 or NaN4 Inf -> NaN Invalid_operation -orx865 or NaN5 +NaN6 -> NaN Invalid_operation -orx866 or -Inf NaN7 -> NaN Invalid_operation -orx867 or -1000 NaN8 -> NaN Invalid_operation -orx868 or 1000 NaN9 -> NaN Invalid_operation -orx869 or Inf +NaN10 -> NaN Invalid_operation -orx871 or sNaN11 -Inf -> NaN Invalid_operation -orx872 or sNaN12 -1000 -> NaN Invalid_operation -orx873 or sNaN13 1000 -> NaN Invalid_operation -orx874 or sNaN14 NaN17 -> NaN Invalid_operation -orx875 or sNaN15 sNaN18 -> NaN Invalid_operation -orx876 or NaN16 sNaN19 -> NaN Invalid_operation -orx877 or -Inf +sNaN20 -> NaN Invalid_operation -orx878 or -1000 sNaN21 -> NaN Invalid_operation -orx879 or 1000 sNaN22 -> NaN Invalid_operation -orx880 or Inf sNaN23 -> NaN Invalid_operation -orx881 or +NaN25 +sNaN24 -> NaN Invalid_operation -orx882 or -NaN26 NaN28 -> NaN Invalid_operation -orx883 or -sNaN27 sNaN29 -> NaN Invalid_operation -orx884 or 1000 -NaN30 -> NaN Invalid_operation -orx885 or 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/plus.decTest b/qdecimal/test/tc_full/plus.decTest deleted file mode 100644 index bb1edba..0000000 --- a/qdecimal/test/tc_full/plus.decTest +++ /dev/null @@ -1,195 +0,0 @@ ------------------------------------------------------------------------- --- plus.decTest -- decimal monadic addition -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests primarily tests the existence of the operator. --- Addition and rounding, and most overflows, are tested elsewhere. - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -plux001 plus '1' -> '1' -plux002 plus '-1' -> '-1' -plux003 plus '1.00' -> '1.00' -plux004 plus '-1.00' -> '-1.00' -plux005 plus '0' -> '0' -plux006 plus '0.00' -> '0.00' -plux007 plus '00.0' -> '0.0' -plux008 plus '00.00' -> '0.00' -plux009 plus '00' -> '0' - -plux010 plus '-2' -> '-2' -plux011 plus '2' -> '2' -plux012 plus '-2.00' -> '-2.00' -plux013 plus '2.00' -> '2.00' -plux014 plus '-0' -> '0' -plux015 plus '-0.00' -> '0.00' -plux016 plus '-00.0' -> '0.0' -plux017 plus '-00.00' -> '0.00' -plux018 plus '-00' -> '0' - -plux020 plus '-2000000' -> '-2000000' -plux021 plus '2000000' -> '2000000' -precision: 7 -plux022 plus '-2000000' -> '-2000000' -plux023 plus '2000000' -> '2000000' -precision: 6 -plux024 plus '-2000000' -> '-2.00000E+6' Rounded -plux025 plus '2000000' -> '2.00000E+6' Rounded -precision: 3 -plux026 plus '-2000000' -> '-2.00E+6' Rounded -plux027 plus '2000000' -> '2.00E+6' Rounded - --- more fixed, potential LHS swaps if done by add 0 -precision: 9 -plux060 plus '56267E-10' -> '0.0000056267' -plux061 plus '56267E-5' -> '0.56267' -plux062 plus '56267E-2' -> '562.67' -plux063 plus '56267E-1' -> '5626.7' -plux065 plus '56267E-0' -> '56267' -plux066 plus '56267E+0' -> '56267' -plux067 plus '56267E+1' -> '5.6267E+5' -plux068 plus '56267E+2' -> '5.6267E+6' -plux069 plus '56267E+3' -> '5.6267E+7' -plux070 plus '56267E+4' -> '5.6267E+8' -plux071 plus '56267E+5' -> '5.6267E+9' -plux072 plus '56267E+6' -> '5.6267E+10' -plux080 plus '-56267E-10' -> '-0.0000056267' -plux081 plus '-56267E-5' -> '-0.56267' -plux082 plus '-56267E-2' -> '-562.67' -plux083 plus '-56267E-1' -> '-5626.7' -plux085 plus '-56267E-0' -> '-56267' -plux086 plus '-56267E+0' -> '-56267' -plux087 plus '-56267E+1' -> '-5.6267E+5' -plux088 plus '-56267E+2' -> '-5.6267E+6' -plux089 plus '-56267E+3' -> '-5.6267E+7' -plux090 plus '-56267E+4' -> '-5.6267E+8' -plux091 plus '-56267E+5' -> '-5.6267E+9' -plux092 plus '-56267E+6' -> '-5.6267E+10' - --- "lhs" zeros in plus and minus have exponent = operand -plux120 plus '-0E3' -> '0E+3' -plux121 plus '-0E2' -> '0E+2' -plux122 plus '-0E1' -> '0E+1' -plux123 plus '-0E0' -> '0' -plux124 plus '+0E0' -> '0' -plux125 plus '+0E1' -> '0E+1' -plux126 plus '+0E2' -> '0E+2' -plux127 plus '+0E3' -> '0E+3' - -plux130 plus '-5E3' -> '-5E+3' -plux131 plus '-5E8' -> '-5E+8' -plux132 plus '-5E13' -> '-5E+13' -plux133 plus '-5E18' -> '-5E+18' -plux134 plus '+5E3' -> '5E+3' -plux135 plus '+5E8' -> '5E+8' -plux136 plus '+5E13' -> '5E+13' -plux137 plus '+5E18' -> '5E+18' - --- specials -plux150 plus 'Inf' -> 'Infinity' -plux151 plus '-Inf' -> '-Infinity' -plux152 plus NaN -> NaN -plux153 plus sNaN -> NaN Invalid_operation -plux154 plus NaN77 -> NaN77 -plux155 plus sNaN88 -> NaN88 Invalid_operation -plux156 plus -NaN -> -NaN -plux157 plus -sNaN -> -NaN Invalid_operation -plux158 plus -NaN77 -> -NaN77 -plux159 plus -sNaN88 -> -NaN88 Invalid_operation - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -plux160 plus 9.999E+999999999 -> Infinity Inexact Overflow Rounded -plux161 plus -9.999E+999999999 -> -Infinity Inexact Overflow Rounded - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -plux210 plus 1.00E-999 -> 1.00E-999 -plux211 plus 0.1E-999 -> 1E-1000 Subnormal -plux212 plus 0.10E-999 -> 1.0E-1000 Subnormal -plux213 plus 0.100E-999 -> 1.0E-1000 Subnormal Rounded -plux214 plus 0.01E-999 -> 1E-1001 Subnormal --- next is rounded to Emin -plux215 plus 0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow -plux216 plus 0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -plux217 plus 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow -plux218 plus 0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -plux219 plus 0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -plux220 plus 0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - -plux230 plus -1.00E-999 -> -1.00E-999 -plux231 plus -0.1E-999 -> -1E-1000 Subnormal -plux232 plus -0.10E-999 -> -1.0E-1000 Subnormal -plux233 plus -0.100E-999 -> -1.0E-1000 Subnormal Rounded -plux234 plus -0.01E-999 -> -1E-1001 Subnormal --- next is rounded to Emin -plux235 plus -0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow -plux236 plus -0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -plux237 plus -0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow -plux238 plus -0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -plux239 plus -0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -plux240 plus -0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped - --- subnormals clamped to 0-Etiny -precision: 16 -maxExponent: 384 -minExponent: -383 -plux251 plus 7E-398 -> 7E-398 Subnormal -plux252 plus 0E-398 -> 0E-398 -plux253 plus 7E-399 -> 1E-398 Subnormal Underflow Inexact Rounded -plux254 plus 4E-399 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded -plux255 plus 7E-400 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded -plux256 plus 7E-401 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded -plux257 plus 0E-399 -> 0E-398 Clamped -plux258 plus 0E-400 -> 0E-398 Clamped -plux259 plus 0E-401 -> 0E-398 Clamped - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -plux301 plus 12345678000 -> 1.23456780E+10 Rounded -plux302 plus 1234567800 -> 1.23456780E+9 Rounded -plux303 plus 1234567890 -> 1.23456789E+9 Rounded -plux304 plus 1234567891 -> 1.23456789E+9 Inexact Rounded -plux305 plus 12345678901 -> 1.23456789E+10 Inexact Rounded -plux306 plus 1234567896 -> 1.23456790E+9 Inexact Rounded - --- still checking -precision: 15 -plux321 plus 12345678000 -> 12345678000 -plux322 plus 1234567800 -> 1234567800 -plux323 plus 1234567890 -> 1234567890 -plux324 plus 1234567891 -> 1234567891 -plux325 plus 12345678901 -> 12345678901 -plux326 plus 1234567896 -> 1234567896 -precision: 9 - --- Null tests -plu900 plus # -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/power.decTest b/qdecimal/test/tc_full/power.decTest deleted file mode 100644 index 09dc2e5..0000000 --- a/qdecimal/test/tc_full/power.decTest +++ /dev/null @@ -1,1624 +0,0 @@ ------------------------------------------------------------------------- --- power.decTest -- decimal exponentiation [power(x, y)] -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- In addition to the power operator testcases here, see also the file --- powersqrt.decTest which includes all the tests from --- squareroot.decTest implemented using power(x, 0.5) - -extended: 1 -precision: 16 -rounding: half_even -maxExponent: 384 -minExponent: -383 - --- base checks. Note 0**0 is an error. -powx001 power '0' '0' -> NaN Invalid_operation -powx002 power '0' '1' -> '0' -powx003 power '0' '2' -> '0' -powx004 power '1' '0' -> '1' -powx005 power '1' '1' -> '1' -powx006 power '1' '2' -> '1' - -powx010 power '2' '0' -> '1' -powx011 power '2' '1' -> '2' -powx012 power '2' '2' -> '4' -powx013 power '2' '3' -> '8' -powx014 power '2' '4' -> '16' -powx015 power '2' '5' -> '32' -powx016 power '2' '6' -> '64' -powx017 power '2' '7' -> '128' -powx018 power '2' '8' -> '256' -powx019 power '2' '9' -> '512' -powx020 power '2' '10' -> '1024' -powx021 power '2' '11' -> '2048' -powx022 power '2' '12' -> '4096' -powx023 power '2' '15' -> '32768' -powx024 power '2' '16' -> '65536' -powx025 power '2' '31' -> '2147483648' --- NB 0 not stripped in next -powx026 power '2' '32' -> '4294967296' - -precision: 9 -powx027 power '2' '31' -> '2.14748365E+9' Inexact Rounded --- NB 0 not stripped in next -powx028 power '2' '32' -> '4.29496730E+9' Inexact Rounded -precision: 10 -powx029 power '2' '31' -> '2147483648' -powx030 power '2' '32' -> '4294967296' -precision: 9 - -powx031 power '3' '2' -> 9 -powx032 power '4' '2' -> 16 -powx033 power '5' '2' -> 25 -powx034 power '6' '2' -> 36 -powx035 power '7' '2' -> 49 -powx036 power '8' '2' -> 64 -powx037 power '9' '2' -> 81 -powx038 power '10' '2' -> 100 -powx039 power '11' '2' -> 121 -powx040 power '12' '2' -> 144 - -powx041 power '3' '3' -> 27 -powx042 power '4' '3' -> 64 -powx043 power '5' '3' -> 125 -powx044 power '6' '3' -> 216 -powx045 power '7' '3' -> 343 -powx047 power '-3' '3' -> -27 -powx048 power '-4' '3' -> -64 -powx049 power '-5' '3' -> -125 -powx050 power '-6' '3' -> -216 -powx051 power '-7' '3' -> -343 - -powx052 power '10' '0' -> 1 -powx053 power '10' '1' -> 10 -powx054 power '10' '2' -> 100 -powx055 power '10' '3' -> 1000 -powx056 power '10' '4' -> 10000 -powx057 power '10' '5' -> 100000 -powx058 power '10' '6' -> 1000000 -powx059 power '10' '7' -> 10000000 -powx060 power '10' '8' -> 100000000 -powx061 power '10' '9' -> 1.00000000E+9 Rounded -powx062 power '10' '22' -> 1.00000000E+22 Rounded -powx063 power '10' '77' -> 1.00000000E+77 Rounded -powx064 power '10' '99' -> 1.00000000E+99 Rounded - -powx070 power '0.3' '0' -> '1' -powx071 power '0.3' '1' -> '0.3' -powx072 power '0.3' '1.00' -> '0.3' -powx073 power '0.3' '2.00' -> '0.09' -powx074 power '0.3' '2.000000000' -> '0.09' -powx075 power '6.0' '1' -> '6.0' -- NB zeros not stripped -powx076 power '6.0' '2' -> '36.00' -- .. -powx077 power '-3' '2' -> '9' -- from NetRexx book -powx078 power '4' '3' -> '64' -- .. (sort of) - -powx080 power 0.1 0 -> 1 -powx081 power 0.1 1 -> 0.1 -powx082 power 0.1 2 -> 0.01 -powx083 power 0.1 3 -> 0.001 -powx084 power 0.1 4 -> 0.0001 -powx085 power 0.1 5 -> 0.00001 -powx086 power 0.1 6 -> 0.000001 -powx087 power 0.1 7 -> 1E-7 -powx088 power 0.1 8 -> 1E-8 -powx089 power 0.1 9 -> 1E-9 - -powx090 power 101 2 -> 10201 -powx091 power 101 3 -> 1030301 -powx092 power 101 4 -> 104060401 -powx093 power 101 5 -> 1.05101005E+10 Inexact Rounded -powx094 power 101 6 -> 1.06152015E+12 Inexact Rounded -powx095 power 101 7 -> 1.07213535E+14 Inexact Rounded - --- negative powers -powx099 power '1' '-1' -> 1 -powx100 power '3' '-1' -> 0.333333333 Inexact Rounded -powx101 power '2' '-1' -> 0.5 -powx102 power '2' '-2' -> 0.25 -powx103 power '2' '-4' -> 0.0625 -powx104 power '2' '-8' -> 0.00390625 -powx105 power '2' '-16' -> 0.0000152587891 Inexact Rounded -powx106 power '2' '-32' -> 2.32830644E-10 Inexact Rounded -powx108 power '2' '-64' -> 5.42101086E-20 Inexact Rounded -powx110 power '10' '-8' -> 1E-8 -powx111 power '10' '-7' -> 1E-7 -powx112 power '10' '-6' -> 0.000001 -powx113 power '10' '-5' -> 0.00001 -powx114 power '10' '-4' -> 0.0001 -powx115 power '10' '-3' -> 0.001 -powx116 power '10' '-2' -> 0.01 -powx117 power '10' '-1' -> 0.1 -powx121 power '10' '-77' -> '1E-77' -powx122 power '10' '-22' -> '1E-22' - -powx123 power '2' '-1' -> '0.5' -powx124 power '2' '-2' -> '0.25' -powx125 power '2' '-4' -> '0.0625' - -powx126 power '0' '-1' -> Infinity -powx127 power '0' '-2' -> Infinity -powx128 power -0 '-1' -> -Infinity -powx129 power -0 '-2' -> Infinity - --- "0.5" tests from original Rexx diagnostics [loop unrolled] -powx200 power 0.5 0 -> 1 -powx201 power 0.5 1 -> 0.5 -powx202 power 0.5 2 -> 0.25 -powx203 power 0.5 3 -> 0.125 -powx204 power 0.5 4 -> 0.0625 -powx205 power 0.5 5 -> 0.03125 -powx206 power 0.5 6 -> 0.015625 -powx207 power 0.5 7 -> 0.0078125 -powx208 power 0.5 8 -> 0.00390625 -powx209 power 0.5 9 -> 0.001953125 -powx210 power 0.5 10 -> 0.0009765625 - -powx211 power 1 100000000 -> 1 -powx212 power 1 999999998 -> 1 -powx213 power 1 999999999 -> 1 - - --- The Vienna case. Checks both setup and 1/acc working precision --- Modified 1998.12.14 as RHS no longer rounded before use (must fit) --- Modified 1990.02.04 as LHS is now rounded (instead of truncated to guard) --- '123456789E+10' -- lhs .. rounded to 1.23E+18 --- '-1.23000e+2' -- rhs .. [was: -1.23455e+2, rounds to -123] --- Modified 2002.10.06 -- finally, no input rounding --- With input rounding, result would be 8.74E-2226 -precision: 3 -maxexponent: 5000 -minexponent: -5000 -powx219 power '123456789E+10' '-1.23000e+2' -> '5.54E-2226' Inexact Rounded - --- zeros -maxexponent: +96 -minexponent: -95 -precision: 7 -powx223 power 0E-30 3 -> 0 -powx224 power 0E-10 3 -> 0 -powx225 power 0E-1 3 -> 0 -powx226 power 0E+0 3 -> 0 -powx227 power 0 3 -> 0 -powx228 power 0E+1 3 -> 0 -powx229 power 0E+10 3 -> 0 -powx230 power 0E+30 3 -> 0 -powx231 power 3 0E-30 -> 1 -powx232 power 3 0E-10 -> 1 -powx233 power 3 0E-1 -> 1 -powx234 power 3 0E+0 -> 1 -powx235 power 3 0 -> 1 -powx236 power 3 0E+1 -> 1 -powx237 power 3 0E+10 -> 1 -powx238 power 3 0E+30 -> 1 -powx239 power 0E-30 -3 -> Infinity -powx240 power 0E-10 -3 -> Infinity -powx241 power 0E-1 -3 -> Infinity -powx242 power 0E+0 -3 -> Infinity -powx243 power 0 -3 -> Infinity -powx244 power 0E+1 -3 -> Infinity -powx245 power 0E+10 -3 -> Infinity -powx246 power 0E+30 -3 -> Infinity -powx247 power -3 0E-30 -> 1 -powx248 power -3 0E-10 -> 1 -powx249 power -3 0E-1 -> 1 -powx250 power -3 0E+0 -> 1 -powx251 power -3 0 -> 1 -powx252 power -3 0E+1 -> 1 -powx253 power -3 0E+10 -> 1 -powx254 power -3 0E+30 -> 1 - --- a few lhs negatives -precision: 9 -maxExponent: 999 -minexponent: -999 -powx260 power -10 '0' -> 1 -powx261 power -10 '1' -> -10 -powx262 power -10 '2' -> 100 -powx263 power -10 '3' -> -1000 -powx264 power -10 '4' -> 10000 -powx265 power -10 '5' -> -100000 -powx266 power -10 '6' -> 1000000 -powx267 power -10 '7' -> -10000000 -powx268 power -10 '8' -> 100000000 -powx269 power -10 '9' -> -1.00000000E+9 Rounded -powx270 power -10 '22' -> 1.00000000E+22 Rounded -powx271 power -10 '77' -> -1.00000000E+77 Rounded -powx272 power -10 '99' -> -1.00000000E+99 Rounded - --- some more edge cases -precision: 15 -maxExponent: 999 -minexponent: -999 -powx391 power 0.1 999 -> 1E-999 -powx392 power 0.099 999 -> 4.360732062E-1004 Underflow Subnormal Inexact Rounded -powx393 power 0.098 999 -> 1.71731E-1008 Underflow Subnormal Inexact Rounded -powx394 power 0.097 999 -> 6E-1013 Underflow Subnormal Inexact Rounded -powx395 power 0.096 999 -> 0E-1013 Underflow Subnormal Inexact Rounded Clamped -powx396 power 0.01 999 -> 0E-1013 Underflow Subnormal Inexact Rounded Clamped -powx397 power 0.02 100000000 -> 0E-1013 Underflow Subnormal Inexact Rounded Clamped - --- multiply tests are here to aid checking and test for consistent handling --- of underflow -precision: 5 -maxexponent: 999 -minexponent: -999 - --- squares -mulx400 multiply 1E-502 1e-502 -> 0E-1003 Subnormal Inexact Underflow Rounded Clamped -mulx401 multiply 1E-501 1e-501 -> 1E-1002 Subnormal -mulx402 multiply 2E-501 2e-501 -> 4E-1002 Subnormal -mulx403 multiply 4E-501 4e-501 -> 1.6E-1001 Subnormal -mulx404 multiply 10E-501 10e-501 -> 1.00E-1000 Subnormal -mulx405 multiply 30E-501 30e-501 -> 9.00E-1000 Subnormal -mulx406 multiply 40E-501 40e-501 -> 1.600E-999 - -powx400 power 1E-502 2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -powx401 power 1E-501 2 -> 1E-1002 Subnormal -powx402 power 2E-501 2 -> 4E-1002 Subnormal -powx403 power 4E-501 2 -> 1.6E-1001 Subnormal -powx404 power 10E-501 2 -> 1.00E-1000 Subnormal -powx405 power 30E-501 2 -> 9.00E-1000 Subnormal -powx406 power 40E-501 2 -> 1.600E-999 - --- cubes -mulx410 multiply 1E-670 1e-335 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -mulx411 multiply 1E-668 1e-334 -> 1E-1002 Subnormal -mulx412 multiply 4E-668 2e-334 -> 8E-1002 Subnormal -mulx413 multiply 9E-668 3e-334 -> 2.7E-1001 Subnormal -mulx414 multiply 16E-668 4e-334 -> 6.4E-1001 Subnormal -mulx415 multiply 25E-668 5e-334 -> 1.25E-1000 Subnormal -mulx416 multiply 10E-668 100e-334 -> 1.000E-999 - -powx410 power 1E-335 3 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -powx411 power 1E-334 3 -> 1E-1002 Subnormal -powx412 power 2E-334 3 -> 8E-1002 Subnormal -powx413 power 3E-334 3 -> 2.7E-1001 Subnormal -powx414 power 4E-334 3 -> 6.4E-1001 Subnormal -powx415 power 5E-334 3 -> 1.25E-1000 Subnormal -powx416 power 10E-334 3 -> 1.000E-999 - --- negative powers, testing subnormals -precision: 5 -maxExponent: 999 -minexponent: -999 -powx421 power 2.5E-501 -2 -> Infinity Overflow Inexact Rounded -powx422 power 2.5E-500 -2 -> 1.6E+999 - -powx423 power 2.5E+499 -2 -> 1.6E-999 -powx424 power 2.5E+500 -2 -> 1.6E-1001 Subnormal -powx425 power 2.5E+501 -2 -> 2E-1003 Underflow Subnormal Inexact Rounded -powx426 power 2.5E+502 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped - -powx427 power 0.25E+499 -2 -> 1.6E-997 -powx428 power 0.25E+500 -2 -> 1.6E-999 -powx429 power 0.25E+501 -2 -> 1.6E-1001 Subnormal -powx430 power 0.25E+502 -2 -> 2E-1003 Underflow Subnormal Inexact Rounded -powx431 power 0.25E+503 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped - -powx432 power 0.04E+499 -2 -> 6.25E-996 -powx433 power 0.04E+500 -2 -> 6.25E-998 -powx434 power 0.04E+501 -2 -> 6.25E-1000 Subnormal -powx435 power 0.04E+502 -2 -> 6.2E-1002 Underflow Subnormal Inexact Rounded -powx436 power 0.04E+503 -2 -> 1E-1003 Underflow Subnormal Inexact Rounded -powx437 power 0.04E+504 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped - -powx441 power 0.04E+334 -3 -> 1.5625E-998 -powx442 power 0.04E+335 -3 -> 1.56E-1001 Underflow Subnormal Inexact Rounded -powx443 power 0.04E+336 -3 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped -powx444 power 0.25E+333 -3 -> 6.4E-998 -powx445 power 0.25E+334 -3 -> 6.4E-1001 Subnormal -powx446 power 0.25E+335 -3 -> 1E-1003 Underflow Subnormal Inexact Rounded -powx447 power 0.25E+336 -3 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped --- check sign for cubes and a few squares -powx448 power -0.04E+334 -3 -> -1.5625E-998 -powx449 power -0.04E+335 -3 -> -1.56E-1001 Underflow Subnormal Inexact Rounded -powx450 power -0.04E+336 -3 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped -powx451 power -0.25E+333 -3 -> -6.4E-998 -powx452 power -0.25E+334 -3 -> -6.4E-1001 Subnormal -powx453 power -0.25E+335 -3 -> -1E-1003 Underflow Subnormal Inexact Rounded -powx454 power -0.25E+336 -3 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped -powx455 power -0.04E+499 -2 -> 6.25E-996 -powx456 power -0.04E+500 -2 -> 6.25E-998 -powx457 power -0.04E+501 -2 -> 6.25E-1000 Subnormal -powx458 power -0.04E+502 -2 -> 6.2E-1002 Underflow Subnormal Inexact Rounded - --- test -0s -precision: 9 -powx560 power 0 0 -> NaN Invalid_operation -powx561 power 0 -0 -> NaN Invalid_operation -powx562 power -0 0 -> NaN Invalid_operation -powx563 power -0 -0 -> NaN Invalid_operation -powx564 power 1 0 -> 1 -powx565 power 1 -0 -> 1 -powx566 power -1 0 -> 1 -powx567 power -1 -0 -> 1 -powx568 power 0 1 -> 0 -powx569 power 0 -1 -> Infinity -powx570 power -0 1 -> -0 -powx571 power -0 -1 -> -Infinity -powx572 power 0 2 -> 0 -powx573 power 0 -2 -> Infinity -powx574 power -0 2 -> 0 -powx575 power -0 -2 -> Infinity -powx576 power 0 3 -> 0 -powx577 power 0 -3 -> Infinity -powx578 power -0 3 -> -0 -powx579 power -0 -3 -> -Infinity - --- Specials -powx580 power Inf -Inf -> 0 -powx581 power Inf -1000 -> 0 -powx582 power Inf -1 -> 0 -powx583 power Inf -0.5 -> 0 -powx584 power Inf -0 -> 1 -powx585 power Inf 0 -> 1 -powx586 power Inf 0.5 -> Infinity -powx587 power Inf 1 -> Infinity -powx588 power Inf 1000 -> Infinity -powx589 power Inf Inf -> Infinity -powx590 power -1000 Inf -> NaN Invalid_operation -powx591 power -Inf Inf -> NaN Invalid_operation -powx592 power -1 Inf -> NaN Invalid_operation -powx593 power -0.5 Inf -> NaN Invalid_operation -powx594 power -0 Inf -> 0 -powx595 power 0 Inf -> 0 -powx596 power 0.5 Inf -> 0 -powx597 power 1 Inf -> 1.00000000 Inexact Rounded -powx598 power 1000 Inf -> Infinity -powx599 power Inf Inf -> Infinity - -powx600 power -Inf -Inf -> NaN Invalid_operation -powx601 power -Inf -1000 -> 0 -powx602 power -Inf -1 -> -0 -powx603 power -Inf -0.5 -> NaN Invalid_operation -powx604 power -Inf -0 -> 1 -powx605 power -Inf 0 -> 1 -powx606 power -Inf 0.5 -> NaN Invalid_operation -powx607 power -Inf 1 -> -Infinity -powx608 power -Inf 1000 -> Infinity -powx609 power -Inf Inf -> NaN Invalid_operation -powx610 power -1000 Inf -> NaN Invalid_operation -powx611 power -Inf -Inf -> NaN Invalid_operation -powx612 power -1 -Inf -> NaN Invalid_operation -powx613 power -0.5 -Inf -> NaN Invalid_operation -powx614 power -0 -Inf -> Infinity -powx615 power 0 -Inf -> Infinity -powx616 power 0.5 -Inf -> Infinity -powx617 power 1 -Inf -> 1.00000000 Inexact Rounded -powx618 power 1000 -Inf -> 0 -powx619 power Inf -Inf -> 0 - -powx621 power NaN -Inf -> NaN -powx622 power NaN -1000 -> NaN -powx623 power NaN -1 -> NaN -powx624 power NaN -0.5 -> NaN -powx625 power NaN -0 -> NaN -powx626 power NaN 0 -> NaN -powx627 power NaN 0.5 -> NaN -powx628 power NaN 1 -> NaN -powx629 power NaN 1000 -> NaN -powx630 power NaN Inf -> NaN -powx631 power NaN NaN -> NaN -powx632 power -Inf NaN -> NaN -powx633 power -1000 NaN -> NaN -powx634 power -1 NaN -> NaN -powx635 power -0 NaN -> NaN -powx636 power 0 NaN -> NaN -powx637 power 1 NaN -> NaN -powx638 power 1000 NaN -> NaN -powx639 power Inf NaN -> NaN - -powx641 power sNaN -Inf -> NaN Invalid_operation -powx642 power sNaN -1000 -> NaN Invalid_operation -powx643 power sNaN -1 -> NaN Invalid_operation -powx644 power sNaN -0.5 -> NaN Invalid_operation -powx645 power sNaN -0 -> NaN Invalid_operation -powx646 power sNaN 0 -> NaN Invalid_operation -powx647 power sNaN 0.5 -> NaN Invalid_operation -powx648 power sNaN 1 -> NaN Invalid_operation -powx649 power sNaN 1000 -> NaN Invalid_operation -powx650 power sNaN NaN -> NaN Invalid_operation -powx651 power sNaN sNaN -> NaN Invalid_operation -powx652 power NaN sNaN -> NaN Invalid_operation -powx653 power -Inf sNaN -> NaN Invalid_operation -powx654 power -1000 sNaN -> NaN Invalid_operation -powx655 power -1 sNaN -> NaN Invalid_operation -powx656 power -0.5 sNaN -> NaN Invalid_operation -powx657 power -0 sNaN -> NaN Invalid_operation -powx658 power 0 sNaN -> NaN Invalid_operation -powx659 power 0.5 sNaN -> NaN Invalid_operation -powx660 power 1 sNaN -> NaN Invalid_operation -powx661 power 1000 sNaN -> NaN Invalid_operation -powx662 power Inf sNaN -> NaN Invalid_operation -powx663 power NaN sNaN -> NaN Invalid_operation - --- NaN propagation -powx670 power NaN3 sNaN7 -> NaN7 Invalid_operation -powx671 power sNaN8 NaN6 -> NaN8 Invalid_operation -powx672 power 1 sNaN7 -> NaN7 Invalid_operation -powx673 power sNaN8 1 -> NaN8 Invalid_operation -powx674 power Inf sNaN7 -> NaN7 Invalid_operation -powx675 power sNaN8 Inf -> NaN8 Invalid_operation -powx676 power Inf NaN9 -> NaN9 -powx677 power NaN6 Inf -> NaN6 -powx678 power 1 NaN5 -> NaN5 -powx679 power NaN2 1 -> NaN2 -powx680 power NaN2 Nan4 -> NaN2 -powx681 power NaN Nan4 -> NaN -powx682 power NaN345 Nan -> NaN345 -powx683 power Inf -sNaN7 -> -NaN7 Invalid_operation -powx684 power -sNaN8 Inf -> -NaN8 Invalid_operation -powx685 power Inf -NaN9 -> -NaN9 -powx686 power -NaN6 Inf -> -NaN6 -powx687 power -NaN2 -Nan4 -> -NaN2 - --- long operand and RHS range checks -maxexponent: 999 -minexponent: -999 -precision: 9 -powx701 power 12345678000 1 -> 1.23456780E+10 Rounded -powx702 power 1234567800 1 -> 1.23456780E+9 Rounded -powx703 power 1234567890 1 -> 1.23456789E+9 Rounded -powx704 power 1234567891 1 -> 1.23456789E+9 Inexact Rounded -powx705 power 12345678901 1 -> 1.23456789E+10 Inexact Rounded -powx706 power 1234567896 1 -> 1.23456790E+9 Inexact Rounded - -precision: 15 --- still checking -powx741 power 12345678000 1 -> 12345678000 -powx742 power 1234567800 1 -> 1234567800 -powx743 power 1234567890 1 -> 1234567890 -powx744 power 1234567891 1 -> 1234567891 -powx745 power 12345678901 1 -> 12345678901 -powx746 power 1234567896 1 -> 1234567896 - -maxexponent: 999999 -minexponent: -999999 -precision: 9 - --- near out-of-range edge cases -powx163 power '10' '999999' -> '1.00000000E+999999' Rounded -powx164 power '10' '999998' -> '1.00000000E+999998' Rounded -powx165 power '10' '999997' -> '1.00000000E+999997' Rounded -powx166 power '10' '333333' -> '1.00000000E+333333' Rounded -powx183 power '7' '1000000' -> 1.09651419E+845098 Inexact Rounded -powx184 power '7' '1000001' -> 7.67559934E+845098 Inexact Rounded -powx186 power '7' '-1000001' -> 1.30282986E-845099 Inexact Rounded -powx187 power '7' '-1000000' -> 9.11980901E-845099 Inexact Rounded -powx118 power '10' '-333333' -> 1E-333333 -powx119 power '10' '-999998' -> 1E-999998 -powx120 power '10' '-999999' -> 1E-999999 -powx181 power '7' '999998' -> 2.23778406E+845096 Inexact Rounded -powx182 power '7' '999999' -> 1.56644884E+845097 Inexact Rounded -powx189 power '7' '-999999' -> 6.38386631E-845098 Inexact Rounded -powx190 power '7' '-999998' -> 4.46870641E-845097 Inexact Rounded - --- overflow and underflow tests -precision: 9 - -powx277 power 9 999999 -> 3.59084629E+954241 Inexact Rounded -powx278 power 9.99999999 999999 -> 9.99000501E+999998 Inexact Rounded -powx279 power 10 999999 -> 1.00000000E+999999 Rounded -powx280 power 10.0000001 999999 -> 1.01005016E+999999 Inexact Rounded -powx281 power 10.000001 999999 -> 1.10517080E+999999 Inexact Rounded -powx282 power 10.00001 999999 -> 2.71827775E+999999 Inexact Rounded -powx283 power 10.0001 999999 -> Infinity Overflow Inexact Rounded -powx285 power 11 999999 -> Infinity Overflow Inexact Rounded -powx286 power 12 999999 -> Infinity Overflow Inexact Rounded -powx287 power 999 999999 -> Infinity Overflow Inexact Rounded -powx288 power 999999999 999999 -> Infinity Overflow Inexact Rounded -powx289 power 9.9E999999999 999999 -> Infinity Overflow Inexact Rounded - -powx290 power 0.5 999999 -> 2.02006812E-301030 Inexact Rounded -powx291 power 0.1 999999 -> 1E-999999 -- unrounded -powx292 power 0.09 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx293 power 0.05 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx294 power 0.01 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx295 power 0.0001 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx297 power 0.0000001 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx298 power 0.0000000001 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx299 power 1E-999999999 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped - -powx310 power -9 999999 -> -3.59084629E+954241 Inexact Rounded -powx311 power -10 999999 -> -1.00000000E+999999 Rounded -powx312 power -10.0001 999999 -> -Infinity Overflow Inexact Rounded -powx313 power -10.1 999999 -> -Infinity Overflow Inexact Rounded -powx314 power -11 999999 -> -Infinity Overflow Inexact Rounded -powx315 power -12 999999 -> -Infinity Overflow Inexact Rounded -powx316 power -999 999999 -> -Infinity Overflow Inexact Rounded -powx317 power -999999 999999 -> -Infinity Overflow Inexact Rounded -powx318 power -999999999 999999 -> -Infinity Overflow Inexact Rounded -powx319 power -9.9E999999999 999999 -> -Infinity Overflow Inexact Rounded - -powx320 power -0.5 999999 -> -2.02006812E-301030 Inexact Rounded -powx321 power -0.1 999999 -> -1E-999999 -powx322 power -0.09 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx323 power -0.05 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx324 power -0.01 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx325 power -0.0001 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx327 power -0.0000001 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx328 power -0.0000000001 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx329 power -1E-999999999 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped - --- note no trim of next result -powx330 power -9 999998 -> 3.98982921E+954240 Inexact Rounded -powx331 power -10 999998 -> 1.00000000E+999998 Rounded -powx332 power -10.0001 999998 -> Infinity Overflow Inexact Rounded -powx333 power -10.1 999998 -> Infinity Overflow Inexact Rounded -powx334 power -11 999998 -> Infinity Overflow Inexact Rounded -powx335 power -12 999998 -> Infinity Overflow Inexact Rounded -powx336 power -999 999998 -> Infinity Overflow Inexact Rounded -powx337 power -999999 999998 -> Infinity Overflow Inexact Rounded -powx338 power -999999999 999998 -> Infinity Overflow Inexact Rounded -powx339 power -9.9E999999999 999998 -> Infinity Overflow Inexact Rounded - -powx340 power -0.5 999998 -> 4.04013624E-301030 Inexact Rounded -powx341 power -0.1 999998 -> 1E-999998 -- NB exact unrounded -powx342 power -0.09 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx343 power -0.05 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx344 power -0.01 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx345 power -0.0001 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx347 power -0.0000001 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx348 power -0.0000000001 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx349 power -1E-999999999 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped - --- some subnormals -precision: 9 --- [precision is 9, so smallest exponent is -1000000007 -powx350 power 1e-1 500000 -> 1E-500000 -powx351 power 1e-2 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -powx352 power 1e-2 500000 -> 1E-1000000 Subnormal -powx353 power 1e-2 500001 -> 1E-1000002 Subnormal -powx354 power 1e-2 500002 -> 1E-1000004 Subnormal -powx355 power 1e-2 500003 -> 1E-1000006 Subnormal -powx356 power 1e-2 500004 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped - -powx360 power 0.010001 500000 -> 5.17176082E-999979 Inexact Rounded -powx361 power 0.010000001 500000 -> 1.0512711E-1000000 Underflow Subnormal Inexact Rounded -powx362 power 0.010000001 500001 -> 1.05127E-1000002 Underflow Subnormal Inexact Rounded -powx363 power 0.0100000009 500000 -> 1.0460279E-1000000 Underflow Subnormal Inexact Rounded -powx364 power 0.0100000001 500000 -> 1.0050125E-1000000 Underflow Subnormal Inexact Rounded -powx365 power 0.01 500000 -> 1E-1000000 Subnormal -powx366 power 0.0099999999 500000 -> 9.950125E-1000001 Underflow Subnormal Inexact Rounded -powx367 power 0.0099999998 500000 -> 9.900498E-1000001 Underflow Subnormal Inexact Rounded -powx368 power 0.0099999997 500000 -> 9.851119E-1000001 Underflow Subnormal Inexact Rounded -powx369 power 0.0099999996 500000 -> 9.801987E-1000001 Underflow Subnormal Inexact Rounded -powx370 power 0.009 500000 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped - --- 1/subnormal -> overflow -powx371 power 1e-1 -500000 -> 1E+500000 -powx372 power 1e-2 -999999 -> Infinity Overflow Inexact Rounded -powx373 power 1e-2 -500000 -> Infinity Overflow Inexact Rounded -powx374 power 1e-2 -500001 -> Infinity Overflow Inexact Rounded -powx375 power 1e-2 -500002 -> Infinity Overflow Inexact Rounded -powx376 power 1e-2 -500003 -> Infinity Overflow Inexact Rounded -powx377 power 1e-2 -500004 -> Infinity Overflow Inexact Rounded - -powx381 power 0.010001 -500000 -> 1.93357743E+999978 Inexact Rounded -powx382 power 0.010000001 -500000 -> 9.51229427E+999999 Inexact Rounded -powx383 power 0.010000001 -500001 -> Infinity Overflow Inexact Rounded -powx384 power 0.0100000009 -500000 -> 9.55997484E+999999 Inexact Rounded -powx385 power 0.0100000001 -500000 -> 9.95012479E+999999 Inexact Rounded -powx386 power 0.01 -500000 -> Infinity Overflow Inexact Rounded -powx387 power 0.009999 -500000 -> Infinity Overflow Inexact Rounded - --- negative power giving subnormal -powx388 power 100.000001 -500000 -> 9.950125E-1000001 Underflow Subnormal Inexact Rounded - - --- test some 'false integer' boundaries -precision: 16 -rounding: half_even -maxExponent: 384 -minExponent: -383 -powx501 power 100 1E+1 -> 1.000000000000000E+20 Rounded -powx502 power 100 1E+2 -> 1.000000000000000E+200 Rounded -powx503 power 100 1E+3 -> Infinity Overflow Inexact Rounded -powx504 power 100 1E+4 -> Infinity Overflow Inexact Rounded -powx505 power 100 1E+5 -> Infinity Overflow Inexact Rounded -powx506 power 100 1E+6 -> Infinity Overflow Inexact Rounded -powx507 power 100 1E+7 -> Infinity Overflow Inexact Rounded -powx508 power 100 1E+8 -> Infinity Overflow Inexact Rounded -powx509 power 100 1E+9 -> Infinity Overflow Inexact Rounded -powx510 power 100 1E+10 -> Infinity Overflow Inexact Rounded -powx511 power 100 1E+11 -> Infinity Overflow Inexact Rounded -powx512 power 100 1E+12 -> Infinity Overflow Inexact Rounded -powx513 power 100 1E+13 -> Infinity Overflow Inexact Rounded -powx514 power 100 1E+14 -> Infinity Overflow Inexact Rounded -powx515 power 100 1E+15 -> Infinity Overflow Inexact Rounded -powx516 power 100 1E+16 -> Infinity Overflow Inexact Rounded -powx517 power 100 1E+17 -> Infinity Overflow Inexact Rounded -powx518 power 100 1E+18 -> Infinity Overflow Inexact Rounded -powx519 power 100 1E+19 -> Infinity Overflow Inexact Rounded -powx520 power 100 1E+20 -> Infinity Overflow Inexact Rounded -powx521 power 100 1E+21 -> Infinity Overflow Inexact Rounded -powx522 power 100 1E+22 -> Infinity Overflow Inexact Rounded -powx523 power 100 1E+23 -> Infinity Overflow Inexact Rounded -powx524 power 100 1E+24 -> Infinity Overflow Inexact Rounded -powx525 power 100 1E+25 -> Infinity Overflow Inexact Rounded -powx526 power 100 1E+26 -> Infinity Overflow Inexact Rounded -powx527 power 100 1E+27 -> Infinity Overflow Inexact Rounded -powx528 power 100 1E+28 -> Infinity Overflow Inexact Rounded -powx529 power 100 1E+29 -> Infinity Overflow Inexact Rounded -powx530 power 100 1E+30 -> Infinity Overflow Inexact Rounded -powx531 power 100 1E+40 -> Infinity Overflow Inexact Rounded -powx532 power 100 1E+50 -> Infinity Overflow Inexact Rounded -powx533 power 100 1E+100 -> Infinity Overflow Inexact Rounded -powx534 power 100 1E+383 -> Infinity Overflow Inexact Rounded - --- a check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 -powx750 power 1.2347E-40 2 -> 1.524E-80 Inexact Rounded Subnormal Underflow - --- Null tests -powx900 power 1 # -> NaN Invalid_operation -powx901 power # 1 -> NaN Invalid_operation - ----------------------------------------------------------------------- --- Below here are tests with a precision or context outside of the -- --- decNumber 'mathematical functions' restricted range. These -- --- remain supported in decNumber to minimize breakage, but may be -- --- outside the range of other implementations. -- ----------------------------------------------------------------------- -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -powx1063 power '10' '999999999' -> '1.00000000E+999999999' Rounded -powx1064 power '10' '999999998' -> '1.00000000E+999999998' Rounded -powx1065 power '10' '999999997' -> '1.00000000E+999999997' Rounded -powx1066 power '10' '333333333' -> '1.00000000E+333333333' Rounded --- next two are integer-out-of range -powx1183 power '7' '1000000000' -> NaN Invalid_context -powx1184 power '7' '1000000001' -> NaN Invalid_context -powx1186 power '7' '-1000000001' -> 1.38243630E-845098041 Inexact Rounded -powx1187 power '7' '-1000000000' -> 9.67705411E-845098041 Inexact Rounded - --- out-of-range edge cases -powx1118 power '10' '-333333333' -> 1E-333333333 -powx1119 power '10' '-999999998' -> 1E-999999998 -powx1120 power '10' '-999999999' -> 1E-999999999 -powx1181 power '7' '999999998' -> 2.10892313E+845098038 Inexact Rounded -powx1182 power '7' '999999999' -> 1.47624619E+845098039 Inexact Rounded -powx1189 power '7' '-999999999' -> 6.77393787E-845098040 Inexact Rounded -powx1190 power '7' '-999999998' -> 4.74175651E-845098039 Inexact Rounded - --- A (rare) case where the last digit is not within 0.5 ULP with classic precision -precision: 9 -powx1215 power "-21971575.0E+31454441" "-7" -> "-4.04549502E-220181139" Inexact Rounded -precision: 20 -powx1216 power "-21971575.0E+31454441" "-7" -> "-4.0454950249324891788E-220181139" Inexact Rounded - --- overflow and underflow tests -precision: 9 -powx1280 power 9 999999999 -> 3.05550054E+954242508 Inexact Rounded -powx1281 power 10 999999999 -> 1.00000000E+999999999 Rounded -powx1282 power 10.0001 999999999 -> Infinity Overflow Inexact Rounded -powx1283 power 10.1 999999999 -> Infinity Overflow Inexact Rounded -powx1284 power 11 999999999 -> Infinity Overflow Inexact Rounded -powx1285 power 12 999999999 -> Infinity Overflow Inexact Rounded -powx1286 power 999 999999999 -> Infinity Overflow Inexact Rounded -powx1287 power 999999 999999999 -> Infinity Overflow Inexact Rounded -powx1288 power 999999999 999999999 -> Infinity Overflow Inexact Rounded -powx1289 power 9.9E999999999 999999999 -> Infinity Overflow Inexact Rounded - -powx1290 power 0.5 999999999 -> 4.33559594E-301029996 Inexact Rounded -powx1291 power 0.1 999999999 -> 1E-999999999 -- unrounded -powx1292 power 0.09 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1293 power 0.05 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1294 power 0.01 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1295 power 0.0001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1297 power 0.0000001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1298 power 0.0000000001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1299 power 1E-999999999 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped - -powx1310 power -9 999999999 -> -3.05550054E+954242508 Inexact Rounded -powx1311 power -10 999999999 -> -1.00000000E+999999999 Rounded -powx1312 power -10.0001 999999999 -> -Infinity Overflow Inexact Rounded -powx1313 power -10.1 999999999 -> -Infinity Overflow Inexact Rounded -powx1314 power -11 999999999 -> -Infinity Overflow Inexact Rounded -powx1315 power -12 999999999 -> -Infinity Overflow Inexact Rounded -powx1316 power -999 999999999 -> -Infinity Overflow Inexact Rounded -powx1317 power -999999 999999999 -> -Infinity Overflow Inexact Rounded -powx1318 power -999999999 999999999 -> -Infinity Overflow Inexact Rounded -powx1319 power -9.9E999999999 999999999 -> -Infinity Overflow Inexact Rounded - -powx1320 power -0.5 999999999 -> -4.33559594E-301029996 Inexact Rounded -powx1321 power -0.1 999999999 -> -1E-999999999 -powx1322 power -0.09 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1323 power -0.05 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1324 power -0.01 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1325 power -0.0001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1327 power -0.0000001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1328 power -0.0000000001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1329 power -1E-999999999 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped - --- note no trim of next result -powx1330 power -9 999999998 -> 3.39500060E+954242507 Inexact Rounded -powx1331 power -10 999999998 -> 1.00000000E+999999998 Rounded -powx1332 power -10.0001 999999998 -> Infinity Overflow Inexact Rounded -powx1333 power -10.1 999999998 -> Infinity Overflow Inexact Rounded -powx1334 power -11 999999998 -> Infinity Overflow Inexact Rounded -powx1335 power -12 999999998 -> Infinity Overflow Inexact Rounded -powx1336 power -999 999999998 -> Infinity Overflow Inexact Rounded -powx1337 power -999999 999999998 -> Infinity Overflow Inexact Rounded -powx1338 power -999999999 999999998 -> Infinity Overflow Inexact Rounded -powx1339 power -9.9E999999999 999999998 -> Infinity Overflow Inexact Rounded - -powx1340 power -0.5 999999998 -> 8.67119187E-301029996 Inexact Rounded -powx1341 power -0.1 999999998 -> 1E-999999998 -- NB exact unrounded -powx1342 power -0.09 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1343 power -0.05 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1344 power -0.01 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1345 power -0.0001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1347 power -0.0000001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1348 power -0.0000000001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1349 power -1E-999999999 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped - --- some subnormals -precision: 9 --- [precision is 9, so smallest exponent is -1000000007 -powx1350 power 1e-1 500000000 -> 1E-500000000 -powx1351 power 1e-2 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1352 power 1e-2 500000000 -> 1E-1000000000 Subnormal -powx1353 power 1e-2 500000001 -> 1E-1000000002 Subnormal -powx1354 power 1e-2 500000002 -> 1E-1000000004 Subnormal -powx1355 power 1e-2 500000003 -> 1E-1000000006 Subnormal -powx1356 power 1e-2 500000004 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped - -powx1360 power 0.010001 500000000 -> 4.34941988E-999978287 Inexact Rounded -powx1361 power 0.010000001 500000000 -> 5.18469257E-999999979 Inexact Rounded -powx1362 power 0.010000001 500000001 -> 5.18469309E-999999981 Inexact Rounded -powx1363 power 0.0100000009 500000000 -> 3.49342003E-999999981 Inexact Rounded -powx1364 power 0.0100000001 500000000 -> 1.48413155E-999999998 Inexact Rounded -powx1365 power 0.01 500000000 -> 1E-1000000000 Subnormal -powx1366 power 0.0099999999 500000000 -> 6.7379E-1000000003 Underflow Subnormal Inexact Rounded -powx1367 power 0.0099999998 500000000 -> 4.54E-1000000005 Underflow Subnormal Inexact Rounded -powx1368 power 0.0099999997 500000000 -> 3E-1000000007 Underflow Subnormal Inexact Rounded -powx1369 power 0.0099999996 500000000 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -powx1370 power 0.009 500000000 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped - --- 1/subnormal -> overflow -powx1371 power 1e-1 -500000000 -> 1E+500000000 -powx1372 power 1e-2 -999999999 -> Infinity Overflow Inexact Rounded -powx1373 power 1e-2 -500000000 -> Infinity Overflow Inexact Rounded -powx1374 power 1e-2 -500000001 -> Infinity Overflow Inexact Rounded -powx1375 power 1e-2 -500000002 -> Infinity Overflow Inexact Rounded -powx1376 power 1e-2 -500000003 -> Infinity Overflow Inexact Rounded -powx1377 power 1e-2 -500000004 -> Infinity Overflow Inexact Rounded - -powx1381 power 0.010001 -500000000 -> 2.29915719E+999978286 Inexact Rounded -powx1382 power 0.010000001 -500000000 -> 1.92875467E+999999978 Inexact Rounded -powx1383 power 0.010000001 -500000001 -> 1.92875448E+999999980 Inexact Rounded -powx1384 power 0.0100000009 -500000000 -> 2.86252438E+999999980 Inexact Rounded -powx1385 power 0.0100000001 -500000000 -> 6.73794717E+999999997 Inexact Rounded -powx1386 power 0.01 -500000000 -> Infinity Overflow Inexact Rounded -powx1387 power 0.009999 -500000000 -> Infinity Overflow Inexact Rounded - --- negative power giving subnormal -powx1388 power 100.000001 -500000000 -> 6.7379E-1000000003 Underflow Subnormal Inexact Rounded - ----------------------------------------------------------------------- --- Below here are the tests with a non-integer rhs, including the -- --- tests that previously caused Invalid operation. An integer-only -- --- (on rhs) implementation should handle all the tests above as -- --- shown, and would flag most of the following tests as Invalid. -- ----------------------------------------------------------------------- -precision: 16 -rounding: half_even -maxExponent: 384 -minExponent: -383 - -powx2000 power 7 '10000000000' -> Infinity Overflow Inexact Rounded -powx2001 power 2 '2.000001' -> 4.000002772589683 Inexact Rounded -powx2002 power 2 '2.00000000' -> 4 -powx2003 power 2 '2.000000001' -> 4.000000002772589 Inexact Rounded -powx2004 power 2 '2.0000000001' -> 4.000000000277259 Inexact Rounded -powx2005 power 2 '2.00000000001' -> 4.000000000027726 Inexact Rounded -powx2006 power 2 '2.000000000001' -> 4.000000000002773 Inexact Rounded -powx2007 power 2 '2.0000000000001' -> 4.000000000000277 Inexact Rounded -powx2008 power 2 '2.00000000000001' -> 4.000000000000028 Inexact Rounded -powx2009 power 2 '2.000000000000001' -> 4.000000000000003 Inexact Rounded -powx2010 power 2 '2.0000000000000001' -> 4.000000000000000 Inexact Rounded --- 1 234567890123456 - -powx2011 power 1 1234 -> 1 -precision: 4 -powx2012 power 1 1234 -> 1 -precision: 3 -powx2013 power 1 1234 -> 1 -powx2014 power 1 12.34e+2 -> 1 -powx2015 power 1 12.3 -> 1.00 Inexact Rounded -powx2016 power 1 12.0 -> 1 -powx2017 power 1 1.01 -> 1.00 Inexact Rounded -powx2018 power 2 1.00 -> 2 -powx2019 power 2 2.00 -> 4 -precision: 9 -powx2030 power 1 1.0001 -> 1.00000000 Inexact Rounded -powx2031 power 1 1.0000001 -> 1.00000000 Inexact Rounded -powx2032 power 1 1.0000000001 -> 1.00000000 Inexact Rounded -powx2033 power 1 1.0000000000001 -> 1.00000000 Inexact Rounded -precision: 5 -powx2034 power 1 1.0001 -> 1.0000 Inexact Rounded -powx2035 power 1 1.0000001 -> 1.0000 Inexact Rounded -powx2036 power 1 1.0000000001 -> 1.0000 Inexact Rounded -powx2037 power 1 1.0000000000001 -> 1.0000 Inexact Rounded -powx2038 power 1 1.0000000000001 -> 1.0000 Inexact Rounded - -rounding: ceiling -precision: 3 -powx2039 power 1 1.01 -> 1.00 Inexact Rounded -powx2040 power 1 12.3 -> 1.00 Inexact Rounded -rounding: half_even - --- 1 ** any integer, including big ones, should be exact -powx2041 power 1 1000000000 -> 1 -powx2042 power 1 9999999999 -> 1 -powx2043 power 1 12345678000 -> 1 -powx2044 power 1 1234567800 -> 1 -powx2045 power 1 1234567890 -> 1 -powx2046 power 1 11234567891 -> 1 -powx2047 power 1 12345678901 -> 1 -powx2048 power 1 1234567896 -> 1 -powx2049 power 1 -1234567896 -> 1 -powx2051 power 1 1000000000 -> 1 -powx2052 power 1 -1000000000 -> 1 -powx2053 power 1 12345678000 -> 1 -powx2054 power 1 -1234567896 -> 1 -powx2055 power 1 1000000000 -> 1 -powx2056 power 1 4300000000 -> 1 -powx2057 power 1 -1000000000 -> 1 --- negatives ... but not out of range for decNumber -powx2061 power -1 100000 -> 1 -powx2062 power -1 999999 -> -1 -powx2063 power -1 1278000 -> 1 -powx2064 power -1 127803 -> -1 -powx2065 power -1 127890 -> 1 -powx2066 power -1 1167891 -> -1 -powx2067 power -1 1278901 -> -1 -powx2068 power -1 127896 -> 1 -powx2069 power -1 -167897 -> -1 -powx2071 power -1 100000 -> 1 -powx2072 power -1 -100001 -> -1 -powx2073 power -1 1278000 -> 1 -powx2074 power -1 -167896 -> 1 -powx2075 power -1 100000 -> 1 -powx2076 power -1 -100009 -> -1 - --- The above were derived from the earlier version of power.decTest; --- now start new tests for power(x,y) for non-integer y -precision: 9 - --- tests from specification -powx2081 power 2 3 -> '8' -powx2082 power -2 3 -> '-8' -powx2083 power 2 -3 -> '0.125' -powx2084 power 1.7 '8' -> '69.7575744' Inexact Rounded -powx2085 power 10 0.301029996 -> 2.00000000 Inexact Rounded -powx2086 power Infinity '-1' -> '0' -powx2087 power Infinity '0' -> '1' -powx2088 power Infinity '1' -> 'Infinity' -powx2089 power -Infinity '-1' -> '-0' -powx2090 power -Infinity '0' -> '1' -powx2091 power -Infinity '1' -> '-Infinity' -powx2092 power -Infinity '2' -> 'Infinity' -powx2093 power 0 0 -> 'NaN' Invalid_operation - -precision: 16 -rounding: half_even -maxExponent: 384 -minExponent: -383 - --- basics -powx2100 power 1E-7 1E-7 -> 0.9999983881917339 Inexact Rounded -powx2101 power 0.003 1E-7 -> 0.9999994190858697 Inexact Rounded -powx2102 power 0.7 1E-7 -> 0.9999999643325062 Inexact Rounded -powx2103 power 1.2 1E-7 -> 1.000000018232156 Inexact Rounded -powx2104 power 71 1E-7 -> 1.000000426268079 Inexact Rounded -powx2105 power 9E+9 1E-7 -> 1.000002292051668 Inexact Rounded - -powx2110 power 1E-7 0.003 -> 0.9527961640236519 Inexact Rounded -powx2111 power 0.003 0.003 -> 0.9827235503366797 Inexact Rounded -powx2112 power 0.7 0.003 -> 0.9989305474406207 Inexact Rounded -powx2113 power 1.2 0.003 -> 1.000547114282834 Inexact Rounded -powx2114 power 71 0.003 -> 1.012870156273545 Inexact Rounded -powx2115 power 9E+9 0.003 -> 1.071180671278787 Inexact Rounded - -powx2120 power 1E-7 0.7 -> 0.00001258925411794167 Inexact Rounded -powx2121 power 0.003 0.7 -> 0.01713897630281030 Inexact Rounded -powx2122 power 0.7 0.7 -> 0.7790559126704491 Inexact Rounded -powx2123 power 1.2 0.7 -> 1.136126977198889 Inexact Rounded -powx2124 power 71 0.7 -> 19.76427300093870 Inexact Rounded -powx2125 power 9E+9 0.7 -> 9289016.976853710 Inexact Rounded - -powx2130 power 1E-7 1.2 -> 3.981071705534973E-9 Inexact Rounded -powx2131 power 0.003 1.2 -> 0.0009387403933595694 Inexact Rounded -powx2132 power 0.7 1.2 -> 0.6518049405663864 Inexact Rounded -powx2133 power 1.2 1.2 -> 1.244564747203978 Inexact Rounded -powx2134 power 71 1.2 -> 166.5367244638552 Inexact Rounded -powx2135 power 9E+9 1.2 -> 881233526124.8791 Inexact Rounded - -powx2140 power 1E-7 71 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped -powx2141 power 0.003 71 -> 7.509466514979725E-180 Inexact Rounded -powx2142 power 0.7 71 -> 1.004525211269079E-11 Inexact Rounded -powx2143 power 1.2 71 -> 418666.7483186515 Inexact Rounded -powx2144 power 71 71 -> 2.750063734834616E+131 Inexact Rounded -powx2145 power 9E+9 71 -> Infinity Inexact Rounded Overflow - -powx2150 power 1E-7 9E+9 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped -powx2151 power 0.003 9E+9 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped -powx2152 power 0.7 9E+9 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped -powx2153 power 1.2 9E+9 -> Infinity Inexact Rounded Overflow -powx2154 power 71 9E+9 -> Infinity Inexact Rounded Overflow -powx2155 power 9E+9 9E+9 -> Infinity Inexact Rounded Overflow - --- number line milestones with lhs<1 and lhs>1 - --- Overflow boundary (Nmax) -powx2202 power 71 207.966651583983200 -> Infinity Inexact Rounded Overflow -powx2201 power 71 207.966651583983199 -> 9.999999999999994E+384 Inexact Rounded -powx2204 power 0.003 -152.603449817093577 -> Infinity Inexact Rounded Overflow -powx2203 power 0.003 -152.603449817093576 -> 9.999999999999994E+384 Inexact Rounded - --- Nmin boundary -powx2211 power 71 -206.886305341988480 -> 1.000000000000005E-383 Inexact Rounded -powx2212 power 71 -206.886305341988481 -> 1.000000000000001E-383 Inexact Rounded -powx2213 power 71 -206.886305341988482 -> 9.99999999999997E-384 Inexact Rounded Underflow Subnormal -powx2214 power 71 -206.886305341988483 -> 9.99999999999992E-384 Inexact Rounded Underflow Subnormal --- 9.999999999999924565357019820 - -powx2215 power 0.003 151.810704623238543 -> 1.000000000000009E-383 Inexact Rounded -powx2216 power 0.003 151.810704623238544 -> 1.000000000000003E-383 Inexact Rounded -powx2217 power 0.003 151.810704623238545 -> 9.99999999999997E-384 Inexact Rounded Underflow Subnormal -powx2218 power 0.003 151.810704623238546 -> 9.99999999999991E-384 Inexact Rounded Underflow Subnormal - --- Ntiny boundary, these edge cases determined using half_up rounding -rounding: half_up -powx2221 power 71 -215.151510469220498 -> 1E-398 Inexact Rounded Underflow Subnormal -powx2222 power 71 -215.151510469220499 -> 1E-398 Inexact Rounded Underflow Subnormal -powx2223 power 71 -215.151510469220500 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped -powx2224 power 71 -215.151510469220501 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped - -powx2225 power 0.003 157.875613618285691 -> 1E-398 Inexact Rounded Underflow Subnormal -powx2226 power 0.003 157.875613618285692 -> 1E-398 Inexact Rounded Underflow Subnormal -powx2227 power 0.003 157.875613618285693 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped -powx2228 power 0.003 220 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped -rounding: half_even - --- power(10, y) are important ... - --- Integer powers are exact, unless over/underflow -powx2301 power 10 385 -> Infinity Overflow Inexact Rounded -powx2302 power 10 384 -> 1.000000000000000E+384 Rounded -powx2303 power 10 17 -> 1.000000000000000E+17 Rounded -powx2304 power 10 16 -> 1.000000000000000E+16 Rounded -powx2305 power 10 15 -> 1000000000000000 -powx2306 power 10 10 -> 10000000000 -powx2307 power 10 5 -> 100000 -powx2308 power 10 1 -> 10 -powx2309 power 10 0 -> 1 -powx2310 power 10 -1 -> 0.1 -powx2311 power 10 -5 -> 0.00001 -powx2312 power 10 -6 -> 0.000001 -powx2313 power 10 -7 -> 1E-7 -powx2314 power 10 -8 -> 1E-8 -powx2315 power 10 -9 -> 1E-9 -powx2316 power 10 -10 -> 1E-10 -powx2317 power 10 -383 -> 1E-383 -powx2318 power 10 -384 -> 1E-384 Subnormal -powx2319 power 10 -385 -> 1E-385 Subnormal -powx2320 power 10 -397 -> 1E-397 Subnormal -powx2321 power 10 -398 -> 1E-398 Subnormal -powx2322 power 10 -399 -> 0E-398 Subnormal Underflow Inexact Rounded Clamped -powx2323 power 10 -400 -> 0E-398 Subnormal Underflow Inexact Rounded Clamped - --- Independent sanity check: 1961 Godfrey & Siddons four-figure logs -powx2351 power 10 0.0000 -> 1 -powx2352 power 10 0.3010 -> 1.999861869632744 Inexact Rounded -powx2353 power 10 0.4771 -> 2.999853181190793 Inexact Rounded -powx2354 power 10 0.6021 -> 4.000368510461250 Inexact Rounded -powx2355 power 10 0.6990 -> 5.000345349769785 Inexact Rounded -powx2356 power 10 0.7782 -> 6.000673538641164 Inexact Rounded -powx2357 power 10 0.8451 -> 7.000031591308969 Inexact Rounded -powx2358 power 10 0.9031 -> 8.000184448550990 Inexact Rounded -powx2359 power 10 0.9542 -> 8.999119108700520 Inexact Rounded -powx2360 power 10 0.9956 -> 9.899197750805841 Inexact Rounded -powx2361 power 10 0.9996 -> 9.990793899844618 Inexact Rounded -precision: 4 -powx2371 power 10 0.0000 -> 1 -powx2372 power 10 0.3010 -> 2.000 Inexact Rounded -powx2373 power 10 0.4771 -> 3.000 Inexact Rounded -powx2374 power 10 0.6021 -> 4.000 Inexact Rounded -powx2375 power 10 0.6990 -> 5.000 Inexact Rounded -powx2376 power 10 0.7782 -> 6.001 Inexact Rounded -powx2377 power 10 0.8451 -> 7.000 Inexact Rounded -powx2378 power 10 0.9031 -> 8.000 Inexact Rounded -powx2379 power 10 0.9542 -> 8.999 Inexact Rounded -powx2380 power 10 0.9956 -> 9.899 Inexact Rounded -powx2381 power 10 0.9996 -> 9.991 Inexact Rounded - --- 10**x ~=2 (inverse of the test in log10.decTest) -precision: 50 -powx2401 power 10 0.30102999566398119521373889472449302676818988146211 -> 2.0000000000000000000000000000000000000000000000000 Inexact Rounded -precision: 49 -powx2402 power 10 0.3010299956639811952137388947244930267681898814621 -> 2.000000000000000000000000000000000000000000000000 Inexact Rounded -precision: 48 -powx2403 power 10 0.301029995663981195213738894724493026768189881462 -> 2.00000000000000000000000000000000000000000000000 Inexact Rounded -precision: 47 -powx2404 power 10 0.30102999566398119521373889472449302676818988146 -> 2.0000000000000000000000000000000000000000000000 Inexact Rounded -precision: 46 -powx2405 power 10 0.3010299956639811952137388947244930267681898815 -> 2.000000000000000000000000000000000000000000000 Inexact Rounded -precision: 45 -powx2406 power 10 0.301029995663981195213738894724493026768189881 -> 2.00000000000000000000000000000000000000000000 Inexact Rounded -precision: 44 -powx2407 power 10 0.30102999566398119521373889472449302676818988 -> 2.0000000000000000000000000000000000000000000 Inexact Rounded -precision: 43 -powx2408 power 10 0.3010299956639811952137388947244930267681899 -> 2.000000000000000000000000000000000000000000 Inexact Rounded -precision: 42 -powx2409 power 10 0.301029995663981195213738894724493026768190 -> 2.00000000000000000000000000000000000000000 Inexact Rounded -precision: 41 -powx2410 power 10 0.30102999566398119521373889472449302676819 -> 2.0000000000000000000000000000000000000000 Inexact Rounded -precision: 40 -powx2411 power 10 0.3010299956639811952137388947244930267682 -> 2.000000000000000000000000000000000000000 Inexact Rounded -precision: 39 -powx2412 power 10 0.301029995663981195213738894724493026768 -> 2.00000000000000000000000000000000000000 Inexact Rounded -precision: 38 -powx2413 power 10 0.30102999566398119521373889472449302677 -> 2.0000000000000000000000000000000000000 Inexact Rounded -precision: 37 -powx2414 power 10 0.3010299956639811952137388947244930268 -> 2.000000000000000000000000000000000000 Inexact Rounded -precision: 36 -powx2415 power 10 0.301029995663981195213738894724493027 -> 2.00000000000000000000000000000000000 Inexact Rounded -precision: 35 -powx2416 power 10 0.30102999566398119521373889472449303 -> 2.0000000000000000000000000000000000 Inexact Rounded -precision: 34 -powx2417 power 10 0.3010299956639811952137388947244930 -> 2.000000000000000000000000000000000 Inexact Rounded -precision: 33 -powx2418 power 10 0.301029995663981195213738894724493 -> 2.00000000000000000000000000000000 Inexact Rounded -precision: 32 -powx2419 power 10 0.30102999566398119521373889472449 -> 2.0000000000000000000000000000000 Inexact Rounded -precision: 31 -powx2420 power 10 0.3010299956639811952137388947245 -> 2.000000000000000000000000000000 Inexact Rounded -precision: 30 -powx2421 power 10 0.301029995663981195213738894725 -> 2.00000000000000000000000000000 Inexact Rounded -precision: 29 -powx2422 power 10 0.30102999566398119521373889472 -> 2.0000000000000000000000000000 Inexact Rounded -precision: 28 -powx2423 power 10 0.3010299956639811952137388947 -> 2.000000000000000000000000000 Inexact Rounded -precision: 27 -powx2424 power 10 0.301029995663981195213738895 -> 2.00000000000000000000000000 Inexact Rounded -precision: 26 -powx2425 power 10 0.30102999566398119521373889 -> 2.0000000000000000000000000 Inexact Rounded -precision: 25 -powx2426 power 10 0.3010299956639811952137389 -> 2.000000000000000000000000 Inexact Rounded -precision: 24 -powx2427 power 10 0.301029995663981195213739 -> 2.00000000000000000000000 Inexact Rounded -precision: 23 -powx2428 power 10 0.30102999566398119521374 -> 2.0000000000000000000000 Inexact Rounded -precision: 22 -powx2429 power 10 0.3010299956639811952137 -> 2.000000000000000000000 Inexact Rounded -precision: 21 -powx2430 power 10 0.301029995663981195214 -> 2.00000000000000000000 Inexact Rounded -precision: 20 -powx2431 power 10 0.30102999566398119521 -> 2.0000000000000000000 Inexact Rounded -precision: 19 -powx2432 power 10 0.3010299956639811952 -> 2.000000000000000000 Inexact Rounded -precision: 18 -powx2433 power 10 0.301029995663981195 -> 2.00000000000000000 Inexact Rounded -precision: 17 -powx2434 power 10 0.30102999566398120 -> 2.0000000000000000 Inexact Rounded -precision: 16 -powx2435 power 10 0.3010299956639812 -> 2.000000000000000 Inexact Rounded -precision: 15 -powx2436 power 10 0.301029995663981 -> 2.00000000000000 Inexact Rounded -precision: 14 -powx2437 power 10 0.30102999566398 -> 2.0000000000000 Inexact Rounded -precision: 13 -powx2438 power 10 0.3010299956640 -> 2.000000000000 Inexact Rounded -precision: 12 -powx2439 power 10 0.301029995664 -> 2.00000000000 Inexact Rounded -precision: 11 -powx2440 power 10 0.30102999566 -> 2.0000000000 Inexact Rounded -precision: 10 -powx2441 power 10 0.3010299957 -> 2.000000000 Inexact Rounded -precision: 9 -powx2442 power 10 0.301029996 -> 2.00000000 Inexact Rounded -precision: 8 -powx2443 power 10 0.30103000 -> 2.0000000 Inexact Rounded -precision: 7 -powx2444 power 10 0.3010300 -> 2.000000 Inexact Rounded -precision: 6 -powx2445 power 10 0.301030 -> 2.00000 Inexact Rounded -precision: 5 -powx2446 power 10 0.30103 -> 2.0000 Inexact Rounded -precision: 4 -powx2447 power 10 0.3010 -> 2.000 Inexact Rounded -precision: 3 -powx2448 power 10 0.301 -> 2.00 Inexact Rounded -precision: 2 -powx2449 power 10 0.30 -> 2.0 Inexact Rounded -precision: 1 -powx2450 power 10 0.3 -> 2 Inexact Rounded - -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_even - --- Close-to-e tests -precision: 34 -powx2500 power 10 0.4342944819032518276511289189166048 -> 2.718281828459045235360287471352661 Inexact Rounded -powx2501 power 10 0.4342944819032518276511289189166049 -> 2.718281828459045235360287471352661 Inexact Rounded -powx2502 power 10 0.4342944819032518276511289189166050 -> 2.718281828459045235360287471352662 Inexact Rounded -powx2503 power 10 0.4342944819032518276511289189166051 -> 2.718281828459045235360287471352663 Inexact Rounded -powx2504 power 10 0.4342944819032518276511289189166052 -> 2.718281828459045235360287471352663 Inexact Rounded - --- e**e, 16->34 -powx2505 power 2.718281828459045 2.718281828459045 -> '15.15426224147925705633739513098219' Inexact Rounded - --- Sequence around an integer -powx2512 power 10 2.9999999999999999999999999999999997 -> 999.9999999999999999999999999999993 Inexact Rounded -powx2513 power 10 2.9999999999999999999999999999999998 -> 999.9999999999999999999999999999995 Inexact Rounded -powx2514 power 10 2.9999999999999999999999999999999999 -> 999.9999999999999999999999999999998 Inexact Rounded -powx2515 power 10 3.0000000000000000000000000000000000 -> 1000 -powx2516 power 10 3.0000000000000000000000000000000001 -> 1000.000000000000000000000000000000 Inexact Rounded -powx2517 power 10 3.0000000000000000000000000000000002 -> 1000.000000000000000000000000000000 Inexact Rounded -powx2518 power 10 3.0000000000000000000000000000000003 -> 1000.000000000000000000000000000001 Inexact Rounded - --- randomly generated tests -maxExponent: 384 -minExponent: -383 - --- P=34, within 0-999 -- positive arg2 -Precision: 34 -powx3201 power 5.301557744131969249145904611290735 369.3175647984435534243813466380579 -> 3.427165676345688240023113326603960E+267 Inexact Rounded -powx3202 power 0.0000000000506875655819165973738225 21.93514102704466434121826965196878 -> 1.498169860033487321566659495340789E-226 Inexact Rounded -powx3203 power 97.88877680721519917858007810494043 5.159898445242793470476673109899554 -> 18705942904.43290467281449559427982 Inexact Rounded -powx3204 power 7.380441015594399747973924380493799 17.93614173904818313507525109033288 -> 3715757985820076.273336082702577274 Inexact Rounded -powx3205 power 2.045623627647350918819219169855040 1082.999652407430697958175966996254 -> 4.208806435006704867447150904279854E+336 Inexact Rounded -powx3206 power 0.0000000762582873112118926142955423 20.30534237055073996975203864170432 -> 2.967574278677013090697130349198877E-145 Inexact Rounded -powx3207 power 0.0000000000194091470907814855660535 14.71164213947722238856835440242911 -> 2.564391397469554735037158345963280E-158 Inexact Rounded -powx3208 power 0.0000000000509434185382818596853504 20.97051498204188277347203735421595 -> 1.420157372748083000927138678417272E-216 Inexact Rounded -powx3209 power 0.0005389217212073307301395750745119 43.96798225485747315858678755538971 -> 1.957850185781292007977898626137240E-144 Inexact Rounded -powx3210 power 498.5690105989136050444077447411198 128.1038813807243375878831104745803 -> 3.882212970903893127009102293596268E+345 Inexact Rounded -powx3211 power 0.0000000935428918637303954281938975 5.736933454863278597460091596496099 -> 4.733219644540496152403967823635195E-41 Inexact Rounded -powx3212 power 8.581586784734161309180363110126352 252.0229459968869784643374981477208 -> 1.907464842458674622356177850049873E+235 Inexact Rounded -powx3213 power 294.1005302951621709143320795278305 155.5466374141708615975111014663722 -> 9.251717033292072959166737280729728E+383 Inexact Rounded -powx3214 power 0.0000000041253343654396865855722090 19.00170974760425576247662125110472 -> 4.779566288553864405790921353593512E-160 Inexact Rounded -powx3215 power 0.0000000000046912257352141395184092 24.66089523148729269098773236636878 -> 4.205126874048597849476723538057527E-280 Inexact Rounded -powx3216 power 0.0000000000036796674296520639450494 22.09713956900694689234335912523078 -> 2.173081843837539818472071316420405E-253 Inexact Rounded -powx3217 power 9.659887100303037657934372148567685 277.3765665424320875993026404492216 -> 1.614974043145519382749740616665041E+273 Inexact Rounded -powx3218 power 0.0000083231310642229204398943076403 29.33123211782131466471359128190372 -> 1.013330439786660210757226597785328E-149 Inexact Rounded -powx3219 power 0.0938084859086450954956863725653664 262.6091918199905272837286784975012 -> 1.262802485286301066967555821509344E-270 Inexact Rounded -powx3220 power 8.194926977580900145696305910223304 184.3705133945546202012995485297248 -> 2.696353910907824016690021495828584E+168 Inexact Rounded -powx3221 power 72.39594594653085161522285114566120 168.7721909489321402152033939836725 -> 7.379858293630460043361584410795031E+313 Inexact Rounded -powx3222 power 0.0000000000003436856010144185445537 26.34329868961274988994452526178983 -> 4.585379573595865689605567720192768E-329 Inexact Rounded -powx3223 power 20.18365633762226550254542489492623 127.2099705237021350103678072707790 -> 1.020919629336979353690271762206060E+166 Inexact Rounded -powx3224 power 0.0000000553723990761530290129268131 8.157597566134754638015199501162405 -> 6.349030513396147480954474615067145E-60 Inexact Rounded -powx3225 power 0.0001028742674265840656614682618035 93.99842317306603797965470281716482 -> 1.455871110222736531854990397769940E-375 Inexact Rounded -powx3226 power 95.90195152775543876489746343266050 143.5992850002211509777720799352475 -> 3.881540015848530405189834366588567E+284 Inexact Rounded -powx3227 power 0.0000000000041783747057233878360333 12.14591167764993506821334760954430 -> 6.190998557456885985124592807383163E-139 Inexact Rounded -powx3228 power 0.5572830497086740798434917090018768 1001.921811263919522230330241349166 -> 3.871145158537170450093833881625838E-255 Inexact Rounded -powx3229 power 516.4754759779093954790813881333232 29.23812463126309057800793645336343 -> 2.110986192408878294012450052929185E+79 Inexact Rounded -powx3230 power 0.0000835892099464584776847299020706 27.64279992884843877453592659341588 -> 1.891535098905506689512376224943293E-113 Inexact Rounded -powx3231 power 72.45836577748571838139900165184955 166.2562890735032545091688015160084 -> 1.784091549041561516923092542939141E+309 Inexact Rounded -powx3232 power 305.1823317643335924007629563009032 83.01065159508472884219290136319623 -> 1.757493136164395229602456782779110E+206 Inexact Rounded -powx3233 power 7.108527102951713603542835791733786 145.7057852766236365450463428821948 -> 1.285934774113104362663619896550528E+124 Inexact Rounded -powx3234 power 6.471393503175464828149365697049824 64.11741937262455725284754171995720 -> 9.978990355881803195280027533011699E+51 Inexact Rounded -powx3235 power 39.72898094138459885662380866268385 239.9677288017447400786672779735168 -> 5.422218208517098335832848487375086E+383 Inexact Rounded -powx3236 power 0.0002865592332736973000183287329933 90.34733869590583787065642532641096 -> 8.293733126976212033209243257136796E-321 Inexact Rounded -powx3237 power 0.0000011343384394864811195077357936 1.926568285528399656789140809399396 -> 3.516055639378350146874261077470142E-12 Inexact Rounded -powx3238 power 0.0000000035321610295065299384889224 7.583861778824284092434085265265582 -> 7.970899823817369764381976286536230E-65 Inexact Rounded -powx3239 power 657.5028301569352677543770758346683 90.55778453811965116200206020172758 -> 1.522530898581564200655160665723268E+255 Inexact Rounded -powx3240 power 8.484756398325748879450577520251447 389.7468292476262478578280531222417 -> 8.595142803587368093392510310811218E+361 Inexact Rounded - --- P=16, within 0-99 -- positive arg2 -Precision: 16 -powx3101 power 0.0000215524639223 48.37532522355252 -> 1.804663257287277E-226 Inexact Rounded -powx3102 power 00.80705856227999 2706.777535121391 -> 1.029625065876157E-252 Inexact Rounded -powx3103 power 3.445441676383689 428.5185892455830 -> 1.657401683096454E+230 Inexact Rounded -powx3104 power 0.0040158689495826 159.5725558816240 -> 4.255743665762492E-383 Inexact Rounded -powx3105 power 0.0000841553281215 38.32504413453944 -> 6.738653902512052E-157 Inexact Rounded -powx3106 power 0.7322610252571353 502.1254457674118 -> 1.109978126985943E-68 Inexact Rounded -powx3107 power 10.75052532144880 67.34180604734781 -> 2.873015019470189E+69 Inexact Rounded -powx3108 power 26.20425952945617 104.6002671186488 -> 2.301859355777030E+148 Inexact Rounded -powx3109 power 0.0000055737473850 31.16285859005424 -> 1.883348470100446E-164 Inexact Rounded -powx3110 power 61.06096011360700 10.93608439088726 -> 3.382686473028249E+19 Inexact Rounded -powx3111 power 9.340880853257137 179.9094938131726 -> 3.819299795937696E+174 Inexact Rounded -powx3112 power 0.0000050767371756 72.03346394186741 -> 4.216236691569869E-382 Inexact Rounded -powx3113 power 6.838478807860596 47.49665590602285 -> 4.547621630099203E+39 Inexact Rounded -powx3114 power 0.1299324346439081 397.7440523576938 -> 3.065047705553981E-353 Inexact Rounded -powx3115 power 0.0003418047034264 20.00516791512018 -> 4.546189665380487E-70 Inexact Rounded -powx3116 power 0.0001276899611715 78.12968287355703 -> 5.960217405063995E-305 Inexact Rounded -powx3117 power 25.93160588180509 252.6245071004620 -> 1.472171597589146E+357 Inexact Rounded -powx3118 power 35.47516857763178 86.14723037360925 -> 3.324299908481125E+133 Inexact Rounded -powx3119 power 0.0000048171086721 43.31965603038666 -> 4.572331516616228E-231 Inexact Rounded -powx3120 power 17.97652681097851 144.4684576550292 -> 1.842509906097860E+181 Inexact Rounded -powx3121 power 3.622765141518729 305.1948680344950 -> 4.132320967578704E+170 Inexact Rounded -powx3122 power 0.0080959002453519 143.9899444945627 -> 6.474627812947047E-302 Inexact Rounded -powx3123 power 9.841699927276571 299.2466668837188 -> 1.489097656208736E+297 Inexact Rounded -powx3124 power 0.0786659206232355 347.4750796962570 -> 2.05764809646925E-384 Inexact Rounded Underflow Subnormal -powx3125 power 0.0000084459792645 52.47348690745487 -> 6.076251876516942E-267 Inexact Rounded -powx3126 power 27.86589909967504 191.7296537102283 -> 1.157064112989386E+277 Inexact Rounded -powx3127 power 0.0000419907937234 58.44957702730767 -> 1.496950672075162E-256 Inexact Rounded -powx3128 power 0.0000664977739382 80.06749213261876 -> 3.488517620107875E-335 Inexact Rounded -powx3129 power 58.49554484886656 125.8480768373499 -> 2.449089862146640E+222 Inexact Rounded -powx3130 power 15.02820060024449 212.3527988973338 -> 8.307913932682067E+249 Inexact Rounded -powx3131 power 0.0002650089942992 30.92173123678761 -> 2.517827664836147E-111 Inexact Rounded -powx3132 power 0.0007342977426578 69.49168880741123 -> 1.600168665674440E-218 Inexact Rounded -powx3133 power 0.0063816068650629 150.1400094183812 -> 2.705057295799001E-330 Inexact Rounded -powx3134 power 9.912921122728791 297.8274013633411 -> 4.967624993438900E+296 Inexact Rounded -powx3135 power 1.988603563989245 768.4862967922182 -> 2.692842474899596E+229 Inexact Rounded -powx3136 power 8.418014519517691 164.2431359980725 -> 9.106211585888836E+151 Inexact Rounded -powx3137 power 6.068823604450686 120.2955212365837 -> 1.599431918105982E+94 Inexact Rounded -powx3138 power 56.90062738303850 54.90468294683645 -> 2.312839177902428E+96 Inexact Rounded -powx3139 power 5.710905139750871 73.44608752962156 -> 3.775876053709929E+55 Inexact Rounded -powx3140 power 0.0000017446761203 1.223981492228899 -> 8.952936595465635E-8 Inexact Rounded - --- P=7, within 0-9 -- positive arg2 -Precision: 7 -powx3001 power 8.738689 55.96523 -> 4.878180E+52 Inexact Rounded -powx3002 power 0.0404763 147.4965 -> 3.689722E-206 Inexact Rounded -powx3003 power 0.0604232 76.69778 -> 3.319183E-94 Inexact Rounded -powx3004 power 0.0058855 107.5018 -> 1.768875E-240 Inexact Rounded -powx3005 power 2.058302 1173.050 -> 5.778899E+367 Inexact Rounded -powx3006 power 0.0056998 85.70157 -> 4.716783E-193 Inexact Rounded -powx3007 power 0.8169297 3693.537 -> 4.475962E-325 Inexact Rounded -powx3008 power 0.2810153 659.9568 -> 1.533177E-364 Inexact Rounded -powx3009 power 4.617478 15.68308 -> 2.629748E+10 Inexact Rounded -powx3010 power 0.0296418 244.2302 -> 6.207949E-374 Inexact Rounded -powx3011 power 0.0036456 127.9987 -> 8.120891E-313 Inexact Rounded -powx3012 power 0.5012813 577.5418 -> 6.088802E-174 Inexact Rounded -powx3013 power 0.0033275 119.9800 -> 5.055049E-298 Inexact Rounded -powx3014 power 0.0037652 111.7092 -> 1.560351E-271 Inexact Rounded -powx3015 power 0.6463252 239.0568 -> 4.864564E-46 Inexact Rounded -powx3016 power 4.784378 475.0521 -> 8.964460E+322 Inexact Rounded -powx3017 power 4.610305 563.1791 -> 6.290298E+373 Inexact Rounded -powx3018 power 0.0175167 80.52208 -> 3.623472E-142 Inexact Rounded -powx3019 power 5.238307 356.7944 -> 4.011461E+256 Inexact Rounded -powx3020 power 0.0003527 96.26347 -> 4.377932E-333 Inexact Rounded -powx3021 power 0.0015155 136.0516 -> 2.57113E-384 Inexact Rounded Underflow Subnormal -powx3022 power 5.753573 273.2340 -> 4.373184E+207 Inexact Rounded -powx3023 power 7.778665 332.7917 -> 3.060640E+296 Inexact Rounded -powx3024 power 1.432479 2046.064 -> 2.325829E+319 Inexact Rounded -powx3025 power 5.610516 136.4563 -> 1.607502E+102 Inexact Rounded -powx3026 power 0.0050697 137.4513 -> 3.522315E-316 Inexact Rounded -powx3027 power 5.678737 85.16253 -> 1.713909E+64 Inexact Rounded -powx3028 power 0.0816167 236.1973 -> 9.228802E-258 Inexact Rounded -powx3029 power 0.2602805 562.0157 -> 2.944556E-329 Inexact Rounded -powx3030 power 0.0080936 24.25367 -> 1.839755E-51 Inexact Rounded -powx3031 power 4.092016 82.94603 -> 5.724948E+50 Inexact Rounded -powx3032 power 0.0078255 7.204184 -> 6.675342E-16 Inexact Rounded -powx3033 power 0.9917693 29846.44 -> 7.430177E-108 Inexact Rounded -powx3034 power 1.610380 301.2467 -> 2.170142E+62 Inexact Rounded -powx3035 power 0.0588236 212.1097 -> 1.023196E-261 Inexact Rounded -powx3036 power 2.498069 531.4647 -> 2.054561E+211 Inexact Rounded -powx3037 power 9.964342 326.5438 -> 1.089452E+326 Inexact Rounded -powx3038 power 0.0820626 268.8718 -> 1.107350E-292 Inexact Rounded -powx3039 power 6.176486 360.7779 -> 1.914449E+285 Inexact Rounded -powx3040 power 4.206363 16.17288 -> 1.231314E+10 Inexact Rounded - --- P=34, within 0-999 -- negative arg2 -Precision: 34 -powx3701 power 376.0915270000109486633402827007902 -35.69822349904102131649243701958463 -> 1.165722831225506457828653413200143E-92 Inexact Rounded -powx3702 power 0.0000000503747440074613191665845314 -9.520308341497979093021813571450575 -> 3.000432478861883953977971226770410E+69 Inexact Rounded -powx3703 power 290.6858731495339778337953407938308 -118.5459048597789693292455673428367 -> 9.357969047113989238392527565200302E-293 Inexact Rounded -powx3704 power 4.598864607620052062908700928454182 -299.8323667698931125720218537483753 -> 2.069641269855413539579128114448478E-199 Inexact Rounded -powx3705 power 2.556952676986830645708349254938903 -425.1755373251941383147998924703593 -> 4.428799777833598654260883861514638E-174 Inexact Rounded -powx3706 power 0.0000005656198763404221986640610118 -32.83361380678301321230028730075315 -> 1.340270622401829145968477601029251E+205 Inexact Rounded -powx3707 power 012.4841978642452960750801410372125 -214.3734291828712962809866663321921 -> 9.319857751170603140459057535971202E-236 Inexact Rounded -powx3708 power 0.0000000056041586148066919174315551 -37.21129049213858341528033343116533 -> 1.118345010652454313186702341873169E+307 Inexact Rounded -powx3709 power 0.0694569218941833767199998804202152 -8.697509072368973932501239815677732 -> 11862866995.51026489032838174290271 Inexact Rounded -powx3710 power 6.380984024259450398729243522354144 -451.0635696889193561457985486366827 -> 8.800353109387322474809325670314330E-364 Inexact Rounded -powx3711 power 786.0264840756809048288007204917801 -43.09935384678762773057342161718540 -> 1.616324183365644133979585419925934E-125 Inexact Rounded -powx3712 power 96.07836427113204744101287948445130 -185.1414572546330024388914720271876 -> 8.586320815218383004023264980018610E-368 Inexact Rounded -powx3713 power 0.0000000002332189796855870659792406 -5.779561613164628076880609893753327 -> 4.678450775876385793618570483345066E+55 Inexact Rounded -powx3714 power 0.7254146672024602242369943237968857 -2115.512891397828615710130092245691 -> 8.539080958041689288202111403102495E+294 Inexact Rounded -powx3715 power 0.0017380543649702864796144008592137 -6.307668017761022788220578633538713 -> 256309141459075651.2275798017695017 Inexact Rounded -powx3716 power 05.29498758952276908267649116142379 -287.3233896734103442991981056134167 -> 1.039130027847489364009368608104291E-208 Inexact Rounded -powx3717 power 15.64403593865932622003462779104178 -110.5296633358063267478609032002475 -> 9.750540276026524527375125980296142E-133 Inexact Rounded -powx3718 power 89.69639006761571087634945077373508 -181.3209914139357665609268339422627 -> 8.335034232277762924539395632025281E-355 Inexact Rounded -powx3719 power 6.974087483731006359914914110135058 -174.6815625746710345173615508179842 -> 4.553072265122011176641590109568031E-148 Inexact Rounded -powx3720 power 0.0034393024010554821130553772681993 -93.60931598413919272595497100497364 -> 4.067468855817145539589988349449394E+230 Inexact Rounded -powx3721 power 63.32834072300379155053737260965633 -168.3926799435088324825751446957616 -> 4.207907835462640471617519501741094E-304 Inexact Rounded -powx3722 power 00.00216088174206276369011255907785 -70.12279562855442784757874508991013 -> 8.000657143378187029609343435067057E+186 Inexact Rounded -powx3723 power 934.5957982703545893572134393004375 -102.2287735565878252484031426026726 -> 2.073813769209257617246544424827240E-304 Inexact Rounded -powx3724 power 107.9116792558793921873995885441177 -44.11941092260869786313838181499158 -> 2.005476533631183268912552168759595E-90 Inexact Rounded -powx3725 power 0.0000000000188049827381428191769262 -19.32118917192242027966847501724073 -> 1.713174297100918857053338286389034E+207 Inexact Rounded -powx3726 power 614.9820907366248142166636259027728 -4.069913257030791586645250035698123 -> 4.462432572576935752713876293746717E-12 Inexact Rounded -powx3727 power 752.0655175769182096165651274049422 -22.59292060348797472013598378334370 -> 1.039881526694635205040192531504131E-65 Inexact Rounded -powx3728 power 72.20446632047659449616175456059013 -175.4705356401853924020842356605072 -> 7.529540175791582421966947814549028E-327 Inexact Rounded -powx3729 power 518.8346486600403405764055847937416 -65.87320268592761588756963215588232 -> 1.420189426992170936958891180073151E-179 Inexact Rounded -powx3730 power 3.457164372003960576453458502270716 -440.3201118177861273814529713443698 -> 6.176418595751201287186292664257369E-238 Inexact Rounded -powx3731 power 7.908352793344189720739467675503991 -298.6646112894719680394152664740255 -> 5.935857120229147638104675057695125E-269 Inexact Rounded -powx3732 power 0.0000004297399403788595027926075086 -22.66504617185071293588817501468339 -> 2.012270405520600820469665145636204E+144 Inexact Rounded -powx3733 power 0.0000008592124097322966354868716443 -9.913109586558030204789520190180906 -> 1.354958763843310237046818832755215E+60 Inexact Rounded -powx3734 power 161.4806080561258105880907470989925 -70.72907837434814261716311990271578 -> 6.632555003698945544941329872901929E-157 Inexact Rounded -powx3735 power 0.0000000090669568624173832705631918 -36.53759624613665940127058439106640 -> 7.161808401023414735428130112941559E+293 Inexact Rounded -powx3736 power 0.0000000000029440295978365709342752 -1.297354238738921988884421117731562 -> 911731060579291.7661267358872917380 Inexact Rounded -powx3737 power 21.37477220144832172175460425143692 -76.95949933640539226475686997477889 -> 4.481741242418091914011962399912885E-103 Inexact Rounded -powx3738 power 0.0000000000186657798201636342150903 -20.18296240350678245567049161730909 -> 3.483954007114900406906338526575672E+216 Inexact Rounded -powx3739 power 0.0006522464792960191985996959126792 -80.03762491483514679886504099194414 -> 9.266548513614215557228467517053035E+254 Inexact Rounded -powx3740 power 0.0000000032851343694200568966168055 -21.53462116926375512242403160008026 -> 4.873201679668455240861376213601189E+182 Inexact Rounded - --- P=16, within 0-99 -- negative arg2 -Precision: 16 -powx3601 power 0.0000151338748474 -40.84655618364688 -> 7.628470824137755E+196 Inexact Rounded -powx3602 power 0.1542771848654862 -435.8830009466800 -> 6.389817177800744E+353 Inexact Rounded -powx3603 power 48.28477749367364 -218.5929209902050 -> 8.531049532576154E-369 Inexact Rounded -powx3604 power 7.960775891584911 -12.78113732182505 -> 3.053270889769488E-12 Inexact Rounded -powx3605 power 0.9430340651863058 -9010.470056913748 -> 3.313374654923807E+229 Inexact Rounded -powx3606 power 0.0000202661501602 -65.57915207383306 -> 5.997379176536464E+307 Inexact Rounded -powx3607 power 04.33007440798390 -232.0476834666588 -> 2.007827183010456E-148 Inexact Rounded -powx3608 power 0.0000141944643914 -11.32407921958717 -> 7.902934485074846E+54 Inexact Rounded -powx3609 power 0.0000021977758261 -53.53706138253307 -> 8.195631772317815E+302 Inexact Rounded -powx3610 power 39.51297655474188 -19.40370976012326 -> 1.040699608072659E-31 Inexact Rounded -powx3611 power 38.71210232488775 -66.58341618227921 -> 1.886855066146495E-106 Inexact Rounded -powx3612 power 0.0000804235229062 -6.715207948992859 -> 3.134757864389333E+27 Inexact Rounded -powx3613 power 0.0000073547092399 -11.27725685719934 -> 7.781428390953695E+57 Inexact Rounded -powx3614 power 52.72181272599316 -186.1422311607435 -> 2.916601998744177E-321 Inexact Rounded -powx3615 power 0.0969519963083306 -280.8220862151369 -> 3.955906885970987E+284 Inexact Rounded -powx3616 power 94.07263302150081 -148.2031146071230 -> 3.361958990752490E-293 Inexact Rounded -powx3617 power 85.80286965053704 -90.21453695813759 -> 3.715602429645798E-175 Inexact Rounded -powx3618 power 03.52699858152259 -492.0414362539196 -> 4.507309220081092E-270 Inexact Rounded -powx3619 power 0.0508278086396068 -181.0871731572167 -> 2.034428013017949E+234 Inexact Rounded -powx3620 power 0.395576740303172 -915.5524507432392 -> 5.706585187437578E+368 Inexact Rounded -powx3621 power 38.06105826789202 -49.75913753435335 -> 2.273188991431738E-79 Inexact Rounded -powx3622 power 0.0003656748910646 -73.28988491310354 -> 7.768936940568763E+251 Inexact Rounded -powx3623 power 0.0000006373551809 -51.30825234200690 -> 7.697618167701985E+317 Inexact Rounded -powx3624 power 82.41729920673856 -35.73319631625699 -> 3.424042354585529E-69 Inexact Rounded -powx3625 power 0.7845821453127670 -971.4982028897663 -> 2.283415527661089E+102 Inexact Rounded -powx3626 power 4.840983673433497 -182.3730452370515 -> 1.220591407927770E-125 Inexact Rounded -powx3627 power 0.0000006137592139 -2.122139474431484 -> 15231217034839.29 Inexact Rounded -powx3628 power 0.0003657962862984 -35.97993782448099 -> 4.512701319250839E+123 Inexact Rounded -powx3629 power 40.93693004443150 -165.1362408792997 -> 6.044276411057239E-267 Inexact Rounded -powx3630 power 0.2941552583028898 -17.41046264945892 -> 1787833103.503346 Inexact Rounded -powx3631 power 63.99335135369977 -69.92417205168579 -> 5.099359804872509E-127 Inexact Rounded -powx3632 power 0.0000657924467388 -89.14497293588313 -> 6.145878266688521E+372 Inexact Rounded -powx3633 power 11.35071250339147 -323.3705865614542 -> 6.863626248766775E-342 Inexact Rounded -powx3634 power 23.88024718470895 -277.7117513329510 -> 2.006441422612815E-383 Inexact Rounded -powx3635 power 0.0000009111939914 -58.51782946929182 -> 2.954352883996773E+353 Inexact Rounded -powx3636 power 0.0000878179048782 -75.81060420238669 -> 3.306878455207585E+307 Inexact Rounded -powx3637 power 07.39190564273779 -287.5047307244636 -> 1.692080354659805E-250 Inexact Rounded -powx3638 power 0.0000298310819799 -1.844740377759355 -> 222874718.7238888 Inexact Rounded -powx3639 power 0.0000006412929384 -28.24850078229290 -> 8.737164230666529E+174 Inexact Rounded -powx3640 power 0.0000010202965998 -47.17573701956498 -> 4.392845306049341E+282 Inexact Rounded - --- P=7, within 0-9 -- negative arg2 -Precision: 7 -powx3501 power 0.326324 -71.96509 -> 1.000673E+35 Inexact Rounded -powx3502 power 0.0017635 -0.7186967 -> 95.28419 Inexact Rounded -powx3503 power 8.564155 -253.0899 -> 8.850512E-237 Inexact Rounded -powx3504 power 8.987272 -2.155789 -> 0.008793859 Inexact Rounded -powx3505 power 9.604856 -139.9630 -> 3.073492E-138 Inexact Rounded -powx3506 power 0.8472919 -2539.085 -> 5.372686E+182 Inexact Rounded -powx3507 power 5.312329 -60.32965 -> 1.753121E-44 Inexact Rounded -powx3508 power 0.0338294 -100.5440 -> 7.423939E+147 Inexact Rounded -powx3509 power 0.0017777 -130.8583 -> 7.565629E+359 Inexact Rounded -powx3510 power 8.016154 -405.5689 -> 2.395977E-367 Inexact Rounded -powx3511 power 5.016570 -327.8906 -> 2.203784E-230 Inexact Rounded -powx3512 power 0.8161743 -744.5276 -> 4.786899E+65 Inexact Rounded -powx3513 power 0.0666343 -164.7320 -> 5.951240E+193 Inexact Rounded -powx3514 power 0.0803966 -202.2666 -> 2.715512E+221 Inexact Rounded -powx3515 power 0.0014752 -12.55547 -> 3.518905E+35 Inexact Rounded -powx3516 power 9.737565 -14.69615 -> 2.975672E-15 Inexact Rounded -powx3517 power 0.6634172 -152.7308 -> 1.654458E+27 Inexact Rounded -powx3518 power 0.0009337 -33.32939 -> 9.575039E+100 Inexact Rounded -powx3519 power 8.679922 -224.4194 -> 2.392446E-211 Inexact Rounded -powx3520 power 7.390494 -161.9483 -> 2.088375E-141 Inexact Rounded -powx3521 power 0.4631489 -417.1673 -> 2.821106E+139 Inexact Rounded -powx3522 power 0.0095471 -7.677458 -> 3.231855E+15 Inexact Rounded -powx3523 power 6.566339 -176.1867 -> 9.965633E-145 Inexact Rounded -powx3524 power 2.696128 -26.15501 -> 5.419731E-12 Inexact Rounded -powx3525 power 0.4464366 -852.1893 -> 2.957725E+298 Inexact Rounded -powx3526 power 0.4772006 -921.4111 -> 1.118105E+296 Inexact Rounded -powx3527 power 8.923696 -359.2211 -> 3.501573E-342 Inexact Rounded -powx3528 power 0.0018008 -66.91252 -> 4.402718E+183 Inexact Rounded -powx3529 power 0.0811964 -92.83278 -> 1.701111E+101 Inexact Rounded -powx3530 power 0.0711219 -58.94347 -> 4.644148E+67 Inexact Rounded -powx3531 power 7.958121 -50.66123 -> 2.311161E-46 Inexact Rounded -powx3532 power 6.106466 -81.83610 -> 4.943285E-65 Inexact Rounded -powx3533 power 4.557634 -129.5268 -> 4.737917E-86 Inexact Rounded -powx3534 power 0.0027348 -9.180135 -> 3.383524E+23 Inexact Rounded -powx3535 power 0.0083924 -46.24016 -> 9.996212E+95 Inexact Rounded -powx3536 power 2.138523 -47.25897 -> 2.507009E-16 Inexact Rounded -powx3537 power 1.626728 -1573.830 -> 2.668117E-333 Inexact Rounded -powx3538 power 0.082615 -164.5842 -> 1.717882E+178 Inexact Rounded -powx3539 power 7.636003 -363.6763 -> 8.366174E-322 Inexact Rounded -powx3540 power 0.0021481 -138.0065 -> 1.562505E+368 Inexact Rounded - - --- Invalid operations due to restrictions --- [next two probably skipped by most test harnesses] -precision: 100000000 -powx4001 power 1 1.1 -> NaN Invalid_context -precision: 99999999 -powx4002 power 1 1.1 -> NaN Invalid_context - -precision: 9 -maxExponent: 1000000 -minExponent: -999999 -powx4003 power 1 1.1 -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999999 -powx4004 power 1 1.1 -> 1.00000000 Inexact Rounded -maxExponent: 999999 -minExponent: -1000000 -powx4005 power 1 1.1 -> NaN Invalid_context -maxExponent: 999999 -minExponent: -999998 -powx4006 power 1 1.1 -> 1.00000000 Inexact Rounded - --- operand range violations -powx4007 power 1 1.1E+999999 -> 1 -powx4008 power 1 1.1E+1000000 -> NaN Invalid_operation -powx4009 power 1.1E+999999 1.1 -> Infinity Overflow Inexact Rounded -powx4010 power 1.1E+1000000 1.1 -> NaN Invalid_operation -powx4011 power 1 1.1E-1999997 -> 1.00000000 Inexact Rounded -powx4012 power 1 1.1E-1999998 -> NaN Invalid_operation -powx4013 power 1.1E-1999997 1.1 -> 0E-1000006 Underflow Inexact Rounded Clamped Subnormal -powx4014 power 1.1E-1999998 1.1 -> NaN Invalid_operation - --- rounding modes -- power is sensitive -precision: 7 -maxExponent: 99 -minExponent: -99 - --- 0.7 ** 3.3 => 0.30819354053418943822 --- 0.7 ** 3.4 => 0.29739477638272533854 --- -1.2 ** 17 => -22.18611106740436992 --- -1.3 ** 17 => -86.50415919381337933 --- 0.5 ** 11 => 0.00048828125 --- 3.15 ** 3 => 31.255875 - -rounding: up -powx4100 power 0.7 3.3 -> 0.3081936 Inexact Rounded -powx4101 power 0.7 3.4 -> 0.2973948 Inexact Rounded -powx4102 power -1.2 17 -> -22.18612 Inexact Rounded -powx4103 power -1.3 17 -> -86.50416 Inexact Rounded -powx4104 power 17 81.27115 -> 9.999974E+99 Inexact Rounded -powx4105 power 17 81.27116 -> Infinity Overflow Inexact Rounded - -rounding: down -powx4120 power 0.7 3.3 -> 0.3081935 Inexact Rounded -powx4121 power 0.7 3.4 -> 0.2973947 Inexact Rounded -powx4122 power -1.2 17 -> -22.18611 Inexact Rounded -powx4123 power -1.3 17 -> -86.50415 Inexact Rounded -powx4124 power 17 81.27115 -> 9.999973E+99 Inexact Rounded -powx4125 power 17 81.27116 -> 9.999999E+99 Overflow Inexact Rounded - -rounding: floor -powx4140 power 0.7 3.3 -> 0.3081935 Inexact Rounded -powx4141 power 0.7 3.4 -> 0.2973947 Inexact Rounded -powx4142 power -1.2 17 -> -22.18612 Inexact Rounded -powx4143 power -1.3 17 -> -86.50416 Inexact Rounded -powx4144 power 17 81.27115 -> 9.999973E+99 Inexact Rounded -powx4145 power 17 81.27116 -> 9.999999E+99 Overflow Inexact Rounded - -rounding: ceiling -powx4160 power 0.7 3.3 -> 0.3081936 Inexact Rounded -powx4161 power 0.7 3.4 -> 0.2973948 Inexact Rounded -powx4162 power -1.2 17 -> -22.18611 Inexact Rounded -powx4163 power -1.3 17 -> -86.50415 Inexact Rounded -powx4164 power 17 81.27115 -> 9.999974E+99 Inexact Rounded -powx4165 power 17 81.27116 -> Infinity Overflow Inexact Rounded - -rounding: half_up -powx4180 power 0.7 3.3 -> 0.3081935 Inexact Rounded -powx4181 power 0.7 3.4 -> 0.2973948 Inexact Rounded -powx4182 power -1.2 17 -> -22.18611 Inexact Rounded -powx4183 power -1.3 17 -> -86.50416 Inexact Rounded -powx4184 power 0.5 11 -> 0.0004882813 Inexact Rounded -powx4185 power 3.15 3 -> 31.25588 Inexact Rounded -powx4186 power 17 81.27115 -> 9.999974E+99 Inexact Rounded -powx4187 power 17 81.27116 -> Infinity Overflow Inexact Rounded - -rounding: half_even -powx4200 power 0.7 3.3 -> 0.3081935 Inexact Rounded -powx4201 power 0.7 3.4 -> 0.2973948 Inexact Rounded -powx4202 power -1.2 17 -> -22.18611 Inexact Rounded -powx4203 power -1.3 17 -> -86.50416 Inexact Rounded -powx4204 power 0.5 11 -> 0.0004882812 Inexact Rounded -powx4205 power 3.15 3 -> 31.25588 Inexact Rounded -powx4206 power 17 81.27115 -> 9.999974E+99 Inexact Rounded -powx4207 power 17 81.27116 -> Infinity Overflow Inexact Rounded - -rounding: half_down -powx4220 power 0.7 3.3 -> 0.3081935 Inexact Rounded -powx4221 power 0.7 3.4 -> 0.2973948 Inexact Rounded -powx4222 power -1.2 17 -> -22.18611 Inexact Rounded -powx4223 power -1.3 17 -> -86.50416 Inexact Rounded -powx4224 power 0.5 11 -> 0.0004882812 Inexact Rounded -powx4225 power 3.15 3 -> 31.25587 Inexact Rounded -powx4226 power -3.15 3 -> -31.25587 Inexact Rounded -powx4227 power 17 81.27115 -> 9.999974E+99 Inexact Rounded -powx4228 power 17 81.27116 -> Infinity Overflow Inexact Rounded - - --- more rounding tests as per Ilan Nehama's suggestions & analysis --- these are likely to show > 0.5 ulp error for very small powers -precision: 7 -maxExponent: 96 -minExponent: -95 - --- For x=nextfp(1)=1.00..001 (where the number of 0s is precision-2) --- power(x,y)=x when the rounding is up (e.g., toward_pos_inf or --- ceil) for any y in (0,1]. -rounding: ceiling -powx4301 power 1.000001 0 -> 1 --- The next test should be skipped for decNumber -powx4302 power 1.000001 1e-101 -> 1.000001 Inexact Rounded --- The next test should be skipped for decNumber -powx4303 power 1.000001 1e-95 -> 1.000001 Inexact Rounded -powx4304 power 1.000001 1e-10 -> 1.000001 Inexact Rounded -powx4305 power 1.000001 0.1 -> 1.000001 Inexact Rounded -powx4306 power 1.000001 0.1234567 -> 1.000001 Inexact Rounded -powx4307 power 1.000001 0.7 -> 1.000001 Inexact Rounded -powx4308 power 1.000001 0.9999999 -> 1.000001 Inexact Rounded -powx4309 power 1.000001 1.000000 -> 1.000001 --- power(x,y)=1 when the rounding is down (e.g. toward_zero or --- floor) for any y in [0,1). -rounding: floor -powx4321 power 1.000001 0 -> 1 -powx4322 power 1.000001 1e-101 -> 1.000000 Inexact Rounded -powx4323 power 1.000001 1e-95 -> 1.000000 Inexact Rounded -powx4324 power 1.000001 1e-10 -> 1.000000 Inexact Rounded -powx4325 power 1.000001 0.1 -> 1.000000 Inexact Rounded -powx4326 power 1.000001 0.1234567 -> 1.000000 Inexact Rounded -powx4327 power 1.000001 0.7 -> 1.000000 Inexact Rounded -powx4328 power 1.000001 0.9999999 -> 1.000000 Inexact Rounded -powx4329 power 1.000001 1.000000 -> 1.000001 - --- For x=prevfp(1)=0.99..99 (where the number of 9s is precision) --- power(x,y)=x when the rounding is down for any y in (0,1]. -rounding: floor -powx4341 power 0.9999999 0 -> 1 --- The next test should be skipped for decNumber -powx4342 power 0.9999999 1e-101 -> 0.9999999 Inexact Rounded --- The next test should be skipped for decNumber -powx4343 power 0.9999999 1e-95 -> 0.9999999 Inexact Rounded -powx4344 power 0.9999999 1e-10 -> 0.9999999 Inexact Rounded -powx4345 power 0.9999999 0.1 -> 0.9999999 Inexact Rounded -powx4346 power 0.9999999 0.1234567 -> 0.9999999 Inexact Rounded -powx4347 power 0.9999999 0.7 -> 0.9999999 Inexact Rounded -powx4348 power 0.9999999 0.9999999 -> 0.9999999 Inexact Rounded -powx4349 power 0.9999999 1.000000 -> 0.9999999 --- power(x,y)=1 when the rounding is up for any y in (0,1]. -rounding: ceiling -powx4361 power 0.9999999 0 -> 1 -powx4362 power 0.9999999 1e-101 -> 1.000000 Inexact Rounded -powx4363 power 0.9999999 1e-95 -> 1.000000 Inexact Rounded -powx4364 power 0.9999999 1e-10 -> 1.000000 Inexact Rounded -powx4365 power 0.9999999 0.1 -> 1.000000 Inexact Rounded -powx4366 power 0.9999999 0.1234567 -> 1.000000 Inexact Rounded -powx4367 power 0.9999999 0.7 -> 1.000000 Inexact Rounded -powx4368 power 0.9999999 0.9999999 -> 1.000000 Inexact Rounded -powx4369 power 0.9999999 1.000000 -> 0.9999999 - --- For x=nextfp(0) --- power(x,y)=0 when the rounding is down for any y larger than 1. -rounding: floor -powx4382 power 1e-101 0 -> 1 -powx4383 power 1e-101 0.9999999 -> 1E-101 Underflow Subnormal Inexact Rounded -powx4384 power 1e-101 1.000000 -> 1E-101 Subnormal -powx4385 power 1e-101 1.000001 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -powx4386 power 1e-101 2.000000 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped diff --git a/qdecimal/test/tc_full/powersqrt.decTest b/qdecimal/test/tc_full/powersqrt.decTest deleted file mode 100644 index d644e7b..0000000 --- a/qdecimal/test/tc_full/powersqrt.decTest +++ /dev/null @@ -1,2970 +0,0 @@ ------------------------------------------------------------------------- --- powersqrt.decTest -- decimal square root, using power -- --- Copyright (c) IBM Corporation, 2004, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- These testcases are taken from squareroot.decTest but are --- evaluated using the power operator. The differences in results --- (153 out of 2856) fall into the following categories: --- --- x ** 0.5 (x>0) has no preferred exponent, and is Inexact --- (and hence full precision); almost all differences are --- in this category --- 0.00 ** 0.5 becomes 0 (not 0.0), etc. --- -0 ** 0.5 becomes 0 (never -0) --- Some exact subnormals become inexact and hence underflows - -extended: 1 -precision: 9 -rounding: half_even -maxExponent: 384 -minexponent: -383 - --- basics -pwsx001 power 1 0.5 -> 1.00000000 Inexact Rounded -pwsx002 power -1 0.5 -> NaN Invalid_operation -pwsx003 power 1.00 0.5 -> 1.00000000 Inexact Rounded -pwsx004 power -1.00 0.5 -> NaN Invalid_operation -pwsx005 power 0 0.5 -> 0 -pwsx006 power 00.0 0.5 -> 0 -pwsx007 power 0.00 0.5 -> 0 -pwsx008 power 00.00 0.5 -> 0 -pwsx009 power 00.000 0.5 -> 0 -pwsx010 power 00.0000 0.5 -> 0 -pwsx011 power 00 0.5 -> 0 - -pwsx012 power -2 0.5 -> NaN Invalid_operation -pwsx013 power 2 0.5 -> 1.41421356 Inexact Rounded -pwsx014 power -2.00 0.5 -> NaN Invalid_operation -pwsx015 power 2.00 0.5 -> 1.41421356 Inexact Rounded -pwsx016 power -0 0.5 -> 0 -pwsx017 power -0.0 0.5 -> 0 -pwsx018 power -00.00 0.5 -> 0 -pwsx019 power -00.000 0.5 -> 0 -pwsx020 power -0.0000 0.5 -> 0 -pwsx021 power -0E+9 0.5 -> 0 -pwsx022 power -0E+10 0.5 -> 0 -pwsx023 power -0E+11 0.5 -> 0 -pwsx024 power -0E+12 0.5 -> 0 -pwsx025 power -00 0.5 -> 0 -pwsx026 power 0E+5 0.5 -> 0 -pwsx027 power 4.0 0.5 -> 2.00000000 Inexact Rounded -pwsx028 power 4.00 0.5 -> 2.00000000 Inexact Rounded - -pwsx030 power +0.1 0.5 -> 0.316227766 Inexact Rounded -pwsx031 power -0.1 0.5 -> NaN Invalid_operation -pwsx032 power +0.01 0.5 -> 0.100000000 Inexact Rounded -pwsx033 power -0.01 0.5 -> NaN Invalid_operation -pwsx034 power +0.001 0.5 -> 0.0316227766 Inexact Rounded -pwsx035 power -0.001 0.5 -> NaN Invalid_operation -pwsx036 power +0.000001 0.5 -> 0.00100000000 Inexact Rounded -pwsx037 power -0.000001 0.5 -> NaN Invalid_operation -pwsx038 power +0.000000000001 0.5 -> 0.00000100000000 Inexact Rounded -pwsx039 power -0.000000000001 0.5 -> NaN Invalid_operation - -pwsx041 power 1.1 0.5 -> 1.04880885 Inexact Rounded -pwsx042 power 1.10 0.5 -> 1.04880885 Inexact Rounded -pwsx043 power 1.100 0.5 -> 1.04880885 Inexact Rounded -pwsx044 power 1.110 0.5 -> 1.05356538 Inexact Rounded -pwsx045 power -1.1 0.5 -> NaN Invalid_operation -pwsx046 power -1.10 0.5 -> NaN Invalid_operation -pwsx047 power -1.100 0.5 -> NaN Invalid_operation -pwsx048 power -1.110 0.5 -> NaN Invalid_operation -pwsx049 power 9.9 0.5 -> 3.14642654 Inexact Rounded -pwsx050 power 9.90 0.5 -> 3.14642654 Inexact Rounded -pwsx051 power 9.900 0.5 -> 3.14642654 Inexact Rounded -pwsx052 power 9.990 0.5 -> 3.16069613 Inexact Rounded -pwsx053 power -9.9 0.5 -> NaN Invalid_operation -pwsx054 power -9.90 0.5 -> NaN Invalid_operation -pwsx055 power -9.900 0.5 -> NaN Invalid_operation -pwsx056 power -9.990 0.5 -> NaN Invalid_operation - -pwsx060 power 1 0.5 -> 1.00000000 Inexact Rounded -pwsx061 power 1.0 0.5 -> 1.00000000 Inexact Rounded -pwsx062 power 1.00 0.5 -> 1.00000000 Inexact Rounded -pwsx063 power 10.0 0.5 -> 3.16227766 Inexact Rounded -pwsx064 power 10.0 0.5 -> 3.16227766 Inexact Rounded -pwsx065 power 10.0 0.5 -> 3.16227766 Inexact Rounded -pwsx066 power 10.00 0.5 -> 3.16227766 Inexact Rounded -pwsx067 power 100 0.5 -> 10.0000000 Inexact Rounded -pwsx068 power 100.0 0.5 -> 10.0000000 Inexact Rounded -pwsx069 power 100.00 0.5 -> 10.0000000 Inexact Rounded -pwsx070 power 1.1000E+3 0.5 -> 33.1662479 Inexact Rounded -pwsx071 power 1.10000E+3 0.5 -> 33.1662479 Inexact Rounded -pwsx072 power -10.0 0.5 -> NaN Invalid_operation -pwsx073 power -10.00 0.5 -> NaN Invalid_operation -pwsx074 power -100.0 0.5 -> NaN Invalid_operation -pwsx075 power -100.00 0.5 -> NaN Invalid_operation -pwsx076 power -1.1000E+3 0.5 -> NaN Invalid_operation -pwsx077 power -1.10000E+3 0.5 -> NaN Invalid_operation - --- famous squares -pwsx080 power 1 0.5 -> 1.00000000 Inexact Rounded -pwsx081 power 4 0.5 -> 2.00000000 Inexact Rounded -pwsx082 power 9 0.5 -> 3.00000000 Inexact Rounded -pwsx083 power 16 0.5 -> 4.00000000 Inexact Rounded -pwsx084 power 25 0.5 -> 5.00000000 Inexact Rounded -pwsx085 power 36 0.5 -> 6.00000000 Inexact Rounded -pwsx086 power 49 0.5 -> 7.00000000 Inexact Rounded -pwsx087 power 64 0.5 -> 8.00000000 Inexact Rounded -pwsx088 power 81 0.5 -> 9.00000000 Inexact Rounded -pwsx089 power 100 0.5 -> 10.0000000 Inexact Rounded -pwsx090 power 121 0.5 -> 11.0000000 Inexact Rounded -pwsx091 power 144 0.5 -> 12.0000000 Inexact Rounded -pwsx092 power 169 0.5 -> 13.0000000 Inexact Rounded -pwsx093 power 256 0.5 -> 16.0000000 Inexact Rounded -pwsx094 power 1024 0.5 -> 32.0000000 Inexact Rounded -pwsx095 power 4096 0.5 -> 64.0000000 Inexact Rounded -pwsx100 power 0.01 0.5 -> 0.100000000 Inexact Rounded -pwsx101 power 0.04 0.5 -> 0.200000000 Inexact Rounded -pwsx102 power 0.09 0.5 -> 0.300000000 Inexact Rounded -pwsx103 power 0.16 0.5 -> 0.400000000 Inexact Rounded -pwsx104 power 0.25 0.5 -> 0.500000000 Inexact Rounded -pwsx105 power 0.36 0.5 -> 0.600000000 Inexact Rounded -pwsx106 power 0.49 0.5 -> 0.700000000 Inexact Rounded -pwsx107 power 0.64 0.5 -> 0.800000000 Inexact Rounded -pwsx108 power 0.81 0.5 -> 0.900000000 Inexact Rounded -pwsx109 power 1.00 0.5 -> 1.00000000 Inexact Rounded -pwsx110 power 1.21 0.5 -> 1.10000000 Inexact Rounded -pwsx111 power 1.44 0.5 -> 1.20000000 Inexact Rounded -pwsx112 power 1.69 0.5 -> 1.30000000 Inexact Rounded -pwsx113 power 2.56 0.5 -> 1.60000000 Inexact Rounded -pwsx114 power 10.24 0.5 -> 3.20000000 Inexact Rounded -pwsx115 power 40.96 0.5 -> 6.40000000 Inexact Rounded - --- Precision 1 squareroot tests [exhaustive, plus exponent adjusts] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 1 -pwsx1201 power 0.1 0.5 -> 0.3 Inexact Rounded -pwsx1202 power 0.01 0.5 -> 0.1 Inexact Rounded -pwsx1203 power 1.0E-1 0.5 -> 0.3 Inexact Rounded -pwsx1204 power 1.00E-2 0.5 -> 0.1 Inexact Rounded -pwsx1205 power 1E-3 0.5 -> 0.03 Inexact Rounded -pwsx1206 power 1E+1 0.5 -> 3 Inexact Rounded -pwsx1207 power 1E+2 0.5 -> 1E+1 Inexact Rounded -pwsx1208 power 1E+3 0.5 -> 3E+1 Inexact Rounded -pwsx1209 power 0.2 0.5 -> 0.4 Inexact Rounded -pwsx1210 power 0.02 0.5 -> 0.1 Inexact Rounded -pwsx1211 power 2.0E-1 0.5 -> 0.4 Inexact Rounded -pwsx1212 power 2.00E-2 0.5 -> 0.1 Inexact Rounded -pwsx1213 power 2E-3 0.5 -> 0.04 Inexact Rounded -pwsx1214 power 2E+1 0.5 -> 4 Inexact Rounded -pwsx1215 power 2E+2 0.5 -> 1E+1 Inexact Rounded -pwsx1216 power 2E+3 0.5 -> 4E+1 Inexact Rounded -pwsx1217 power 0.3 0.5 -> 0.5 Inexact Rounded -pwsx1218 power 0.03 0.5 -> 0.2 Inexact Rounded -pwsx1219 power 3.0E-1 0.5 -> 0.5 Inexact Rounded -pwsx1220 power 3.00E-2 0.5 -> 0.2 Inexact Rounded -pwsx1221 power 3E-3 0.5 -> 0.05 Inexact Rounded -pwsx1222 power 3E+1 0.5 -> 5 Inexact Rounded -pwsx1223 power 3E+2 0.5 -> 2E+1 Inexact Rounded -pwsx1224 power 3E+3 0.5 -> 5E+1 Inexact Rounded -pwsx1225 power 0.4 0.5 -> 0.6 Inexact Rounded -pwsx1226 power 0.04 0.5 -> 0.2 Inexact Rounded -pwsx1227 power 4.0E-1 0.5 -> 0.6 Inexact Rounded -pwsx1228 power 4.00E-2 0.5 -> 0.2 Inexact Rounded -pwsx1229 power 4E-3 0.5 -> 0.06 Inexact Rounded -pwsx1230 power 4E+1 0.5 -> 6 Inexact Rounded -pwsx1231 power 4E+2 0.5 -> 2E+1 Inexact Rounded -pwsx1232 power 4E+3 0.5 -> 6E+1 Inexact Rounded -pwsx1233 power 0.5 0.5 -> 0.7 Inexact Rounded -pwsx1234 power 0.05 0.5 -> 0.2 Inexact Rounded -pwsx1235 power 5.0E-1 0.5 -> 0.7 Inexact Rounded -pwsx1236 power 5.00E-2 0.5 -> 0.2 Inexact Rounded -pwsx1237 power 5E-3 0.5 -> 0.07 Inexact Rounded -pwsx1238 power 5E+1 0.5 -> 7 Inexact Rounded -pwsx1239 power 5E+2 0.5 -> 2E+1 Inexact Rounded -pwsx1240 power 5E+3 0.5 -> 7E+1 Inexact Rounded -pwsx1241 power 0.6 0.5 -> 0.8 Inexact Rounded -pwsx1242 power 0.06 0.5 -> 0.2 Inexact Rounded -pwsx1243 power 6.0E-1 0.5 -> 0.8 Inexact Rounded -pwsx1244 power 6.00E-2 0.5 -> 0.2 Inexact Rounded -pwsx1245 power 6E-3 0.5 -> 0.08 Inexact Rounded -pwsx1246 power 6E+1 0.5 -> 8 Inexact Rounded -pwsx1247 power 6E+2 0.5 -> 2E+1 Inexact Rounded -pwsx1248 power 6E+3 0.5 -> 8E+1 Inexact Rounded -pwsx1249 power 0.7 0.5 -> 0.8 Inexact Rounded -pwsx1250 power 0.07 0.5 -> 0.3 Inexact Rounded -pwsx1251 power 7.0E-1 0.5 -> 0.8 Inexact Rounded -pwsx1252 power 7.00E-2 0.5 -> 0.3 Inexact Rounded -pwsx1253 power 7E-3 0.5 -> 0.08 Inexact Rounded -pwsx1254 power 7E+1 0.5 -> 8 Inexact Rounded -pwsx1255 power 7E+2 0.5 -> 3E+1 Inexact Rounded -pwsx1256 power 7E+3 0.5 -> 8E+1 Inexact Rounded -pwsx1257 power 0.8 0.5 -> 0.9 Inexact Rounded -pwsx1258 power 0.08 0.5 -> 0.3 Inexact Rounded -pwsx1259 power 8.0E-1 0.5 -> 0.9 Inexact Rounded -pwsx1260 power 8.00E-2 0.5 -> 0.3 Inexact Rounded -pwsx1261 power 8E-3 0.5 -> 0.09 Inexact Rounded -pwsx1262 power 8E+1 0.5 -> 9 Inexact Rounded -pwsx1263 power 8E+2 0.5 -> 3E+1 Inexact Rounded -pwsx1264 power 8E+3 0.5 -> 9E+1 Inexact Rounded -pwsx1265 power 0.9 0.5 -> 0.9 Inexact Rounded -pwsx1266 power 0.09 0.5 -> 0.3 Inexact Rounded -pwsx1267 power 9.0E-1 0.5 -> 0.9 Inexact Rounded -pwsx1268 power 9.00E-2 0.5 -> 0.3 Inexact Rounded -pwsx1269 power 9E-3 0.5 -> 0.09 Inexact Rounded -pwsx1270 power 9E+1 0.5 -> 9 Inexact Rounded -pwsx1271 power 9E+2 0.5 -> 3E+1 Inexact Rounded -pwsx1272 power 9E+3 0.5 -> 9E+1 Inexact Rounded - --- Precision 2 squareroot tests [exhaustive, plus exponent adjusts] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 2 -pwsx2201 power 0.1 0.5 -> 0.32 Inexact Rounded -pwsx2202 power 0.01 0.5 -> 0.10 Inexact Rounded -pwsx2203 power 1.0E-1 0.5 -> 0.32 Inexact Rounded -pwsx2204 power 1.00E-2 0.5 -> 0.10 Inexact Rounded -pwsx2205 power 1E-3 0.5 -> 0.032 Inexact Rounded -pwsx2206 power 1E+1 0.5 -> 3.2 Inexact Rounded -pwsx2207 power 1E+2 0.5 -> 10 Inexact Rounded -pwsx2208 power 1E+3 0.5 -> 32 Inexact Rounded -pwsx2209 power 0.2 0.5 -> 0.45 Inexact Rounded -pwsx2210 power 0.02 0.5 -> 0.14 Inexact Rounded -pwsx2211 power 2.0E-1 0.5 -> 0.45 Inexact Rounded -pwsx2212 power 2.00E-2 0.5 -> 0.14 Inexact Rounded -pwsx2213 power 2E-3 0.5 -> 0.045 Inexact Rounded -pwsx2214 power 2E+1 0.5 -> 4.5 Inexact Rounded -pwsx2215 power 2E+2 0.5 -> 14 Inexact Rounded -pwsx2216 power 2E+3 0.5 -> 45 Inexact Rounded -pwsx2217 power 0.3 0.5 -> 0.55 Inexact Rounded -pwsx2218 power 0.03 0.5 -> 0.17 Inexact Rounded -pwsx2219 power 3.0E-1 0.5 -> 0.55 Inexact Rounded -pwsx2220 power 3.00E-2 0.5 -> 0.17 Inexact Rounded -pwsx2221 power 3E-3 0.5 -> 0.055 Inexact Rounded -pwsx2222 power 3E+1 0.5 -> 5.5 Inexact Rounded -pwsx2223 power 3E+2 0.5 -> 17 Inexact Rounded -pwsx2224 power 3E+3 0.5 -> 55 Inexact Rounded -pwsx2225 power 0.4 0.5 -> 0.63 Inexact Rounded -pwsx2226 power 0.04 0.5 -> 0.20 Inexact Rounded -pwsx2227 power 4.0E-1 0.5 -> 0.63 Inexact Rounded -pwsx2228 power 4.00E-2 0.5 -> 0.20 Inexact Rounded -pwsx2229 power 4E-3 0.5 -> 0.063 Inexact Rounded -pwsx2230 power 4E+1 0.5 -> 6.3 Inexact Rounded -pwsx2231 power 4E+2 0.5 -> 20 Inexact Rounded -pwsx2232 power 4E+3 0.5 -> 63 Inexact Rounded -pwsx2233 power 0.5 0.5 -> 0.71 Inexact Rounded -pwsx2234 power 0.05 0.5 -> 0.22 Inexact Rounded -pwsx2235 power 5.0E-1 0.5 -> 0.71 Inexact Rounded -pwsx2236 power 5.00E-2 0.5 -> 0.22 Inexact Rounded -pwsx2237 power 5E-3 0.5 -> 0.071 Inexact Rounded -pwsx2238 power 5E+1 0.5 -> 7.1 Inexact Rounded -pwsx2239 power 5E+2 0.5 -> 22 Inexact Rounded -pwsx2240 power 5E+3 0.5 -> 71 Inexact Rounded -pwsx2241 power 0.6 0.5 -> 0.77 Inexact Rounded -pwsx2242 power 0.06 0.5 -> 0.24 Inexact Rounded -pwsx2243 power 6.0E-1 0.5 -> 0.77 Inexact Rounded -pwsx2244 power 6.00E-2 0.5 -> 0.24 Inexact Rounded -pwsx2245 power 6E-3 0.5 -> 0.077 Inexact Rounded -pwsx2246 power 6E+1 0.5 -> 7.7 Inexact Rounded -pwsx2247 power 6E+2 0.5 -> 24 Inexact Rounded -pwsx2248 power 6E+3 0.5 -> 77 Inexact Rounded -pwsx2249 power 0.7 0.5 -> 0.84 Inexact Rounded -pwsx2250 power 0.07 0.5 -> 0.26 Inexact Rounded -pwsx2251 power 7.0E-1 0.5 -> 0.84 Inexact Rounded -pwsx2252 power 7.00E-2 0.5 -> 0.26 Inexact Rounded -pwsx2253 power 7E-3 0.5 -> 0.084 Inexact Rounded -pwsx2254 power 7E+1 0.5 -> 8.4 Inexact Rounded -pwsx2255 power 7E+2 0.5 -> 26 Inexact Rounded -pwsx2256 power 7E+3 0.5 -> 84 Inexact Rounded -pwsx2257 power 0.8 0.5 -> 0.89 Inexact Rounded -pwsx2258 power 0.08 0.5 -> 0.28 Inexact Rounded -pwsx2259 power 8.0E-1 0.5 -> 0.89 Inexact Rounded -pwsx2260 power 8.00E-2 0.5 -> 0.28 Inexact Rounded -pwsx2261 power 8E-3 0.5 -> 0.089 Inexact Rounded -pwsx2262 power 8E+1 0.5 -> 8.9 Inexact Rounded -pwsx2263 power 8E+2 0.5 -> 28 Inexact Rounded -pwsx2264 power 8E+3 0.5 -> 89 Inexact Rounded -pwsx2265 power 0.9 0.5 -> 0.95 Inexact Rounded -pwsx2266 power 0.09 0.5 -> 0.30 Inexact Rounded -pwsx2267 power 9.0E-1 0.5 -> 0.95 Inexact Rounded -pwsx2268 power 9.00E-2 0.5 -> 0.30 Inexact Rounded -pwsx2269 power 9E-3 0.5 -> 0.095 Inexact Rounded -pwsx2270 power 9E+1 0.5 -> 9.5 Inexact Rounded -pwsx2271 power 9E+2 0.5 -> 30 Inexact Rounded -pwsx2272 power 9E+3 0.5 -> 95 Inexact Rounded -pwsx2273 power 0.10 0.5 -> 0.32 Inexact Rounded -pwsx2274 power 0.010 0.5 -> 0.10 Inexact Rounded -pwsx2275 power 10.0E-1 0.5 -> 1.0 Inexact Rounded -pwsx2276 power 10.00E-2 0.5 -> 0.32 Inexact Rounded -pwsx2277 power 10E-3 0.5 -> 0.10 Inexact Rounded -pwsx2278 power 10E+1 0.5 -> 10 Inexact Rounded -pwsx2279 power 10E+2 0.5 -> 32 Inexact Rounded -pwsx2280 power 10E+3 0.5 -> 1.0E+2 Inexact Rounded -pwsx2281 power 0.11 0.5 -> 0.33 Inexact Rounded -pwsx2282 power 0.011 0.5 -> 0.10 Inexact Rounded -pwsx2283 power 11.0E-1 0.5 -> 1.0 Inexact Rounded -pwsx2284 power 11.00E-2 0.5 -> 0.33 Inexact Rounded -pwsx2285 power 11E-3 0.5 -> 0.10 Inexact Rounded -pwsx2286 power 11E+1 0.5 -> 10 Inexact Rounded -pwsx2287 power 11E+2 0.5 -> 33 Inexact Rounded -pwsx2288 power 11E+3 0.5 -> 1.0E+2 Inexact Rounded -pwsx2289 power 0.12 0.5 -> 0.35 Inexact Rounded -pwsx2290 power 0.012 0.5 -> 0.11 Inexact Rounded -pwsx2291 power 12.0E-1 0.5 -> 1.1 Inexact Rounded -pwsx2292 power 12.00E-2 0.5 -> 0.35 Inexact Rounded -pwsx2293 power 12E-3 0.5 -> 0.11 Inexact Rounded -pwsx2294 power 12E+1 0.5 -> 11 Inexact Rounded -pwsx2295 power 12E+2 0.5 -> 35 Inexact Rounded -pwsx2296 power 12E+3 0.5 -> 1.1E+2 Inexact Rounded -pwsx2297 power 0.13 0.5 -> 0.36 Inexact Rounded -pwsx2298 power 0.013 0.5 -> 0.11 Inexact Rounded -pwsx2299 power 13.0E-1 0.5 -> 1.1 Inexact Rounded -pwsx2300 power 13.00E-2 0.5 -> 0.36 Inexact Rounded -pwsx2301 power 13E-3 0.5 -> 0.11 Inexact Rounded -pwsx2302 power 13E+1 0.5 -> 11 Inexact Rounded -pwsx2303 power 13E+2 0.5 -> 36 Inexact Rounded -pwsx2304 power 13E+3 0.5 -> 1.1E+2 Inexact Rounded -pwsx2305 power 0.14 0.5 -> 0.37 Inexact Rounded -pwsx2306 power 0.014 0.5 -> 0.12 Inexact Rounded -pwsx2307 power 14.0E-1 0.5 -> 1.2 Inexact Rounded -pwsx2308 power 14.00E-2 0.5 -> 0.37 Inexact Rounded -pwsx2309 power 14E-3 0.5 -> 0.12 Inexact Rounded -pwsx2310 power 14E+1 0.5 -> 12 Inexact Rounded -pwsx2311 power 14E+2 0.5 -> 37 Inexact Rounded -pwsx2312 power 14E+3 0.5 -> 1.2E+2 Inexact Rounded -pwsx2313 power 0.15 0.5 -> 0.39 Inexact Rounded -pwsx2314 power 0.015 0.5 -> 0.12 Inexact Rounded -pwsx2315 power 15.0E-1 0.5 -> 1.2 Inexact Rounded -pwsx2316 power 15.00E-2 0.5 -> 0.39 Inexact Rounded -pwsx2317 power 15E-3 0.5 -> 0.12 Inexact Rounded -pwsx2318 power 15E+1 0.5 -> 12 Inexact Rounded -pwsx2319 power 15E+2 0.5 -> 39 Inexact Rounded -pwsx2320 power 15E+3 0.5 -> 1.2E+2 Inexact Rounded -pwsx2321 power 0.16 0.5 -> 0.40 Inexact Rounded -pwsx2322 power 0.016 0.5 -> 0.13 Inexact Rounded -pwsx2323 power 16.0E-1 0.5 -> 1.3 Inexact Rounded -pwsx2324 power 16.00E-2 0.5 -> 0.40 Inexact Rounded -pwsx2325 power 16E-3 0.5 -> 0.13 Inexact Rounded -pwsx2326 power 16E+1 0.5 -> 13 Inexact Rounded -pwsx2327 power 16E+2 0.5 -> 40 Inexact Rounded -pwsx2328 power 16E+3 0.5 -> 1.3E+2 Inexact Rounded -pwsx2329 power 0.17 0.5 -> 0.41 Inexact Rounded -pwsx2330 power 0.017 0.5 -> 0.13 Inexact Rounded -pwsx2331 power 17.0E-1 0.5 -> 1.3 Inexact Rounded -pwsx2332 power 17.00E-2 0.5 -> 0.41 Inexact Rounded -pwsx2333 power 17E-3 0.5 -> 0.13 Inexact Rounded -pwsx2334 power 17E+1 0.5 -> 13 Inexact Rounded -pwsx2335 power 17E+2 0.5 -> 41 Inexact Rounded -pwsx2336 power 17E+3 0.5 -> 1.3E+2 Inexact Rounded -pwsx2337 power 0.18 0.5 -> 0.42 Inexact Rounded -pwsx2338 power 0.018 0.5 -> 0.13 Inexact Rounded -pwsx2339 power 18.0E-1 0.5 -> 1.3 Inexact Rounded -pwsx2340 power 18.00E-2 0.5 -> 0.42 Inexact Rounded -pwsx2341 power 18E-3 0.5 -> 0.13 Inexact Rounded -pwsx2342 power 18E+1 0.5 -> 13 Inexact Rounded -pwsx2343 power 18E+2 0.5 -> 42 Inexact Rounded -pwsx2344 power 18E+3 0.5 -> 1.3E+2 Inexact Rounded -pwsx2345 power 0.19 0.5 -> 0.44 Inexact Rounded -pwsx2346 power 0.019 0.5 -> 0.14 Inexact Rounded -pwsx2347 power 19.0E-1 0.5 -> 1.4 Inexact Rounded -pwsx2348 power 19.00E-2 0.5 -> 0.44 Inexact Rounded -pwsx2349 power 19E-3 0.5 -> 0.14 Inexact Rounded -pwsx2350 power 19E+1 0.5 -> 14 Inexact Rounded -pwsx2351 power 19E+2 0.5 -> 44 Inexact Rounded -pwsx2352 power 19E+3 0.5 -> 1.4E+2 Inexact Rounded -pwsx2353 power 0.20 0.5 -> 0.45 Inexact Rounded -pwsx2354 power 0.020 0.5 -> 0.14 Inexact Rounded -pwsx2355 power 20.0E-1 0.5 -> 1.4 Inexact Rounded -pwsx2356 power 20.00E-2 0.5 -> 0.45 Inexact Rounded -pwsx2357 power 20E-3 0.5 -> 0.14 Inexact Rounded -pwsx2358 power 20E+1 0.5 -> 14 Inexact Rounded -pwsx2359 power 20E+2 0.5 -> 45 Inexact Rounded -pwsx2360 power 20E+3 0.5 -> 1.4E+2 Inexact Rounded -pwsx2361 power 0.21 0.5 -> 0.46 Inexact Rounded -pwsx2362 power 0.021 0.5 -> 0.14 Inexact Rounded -pwsx2363 power 21.0E-1 0.5 -> 1.4 Inexact Rounded -pwsx2364 power 21.00E-2 0.5 -> 0.46 Inexact Rounded -pwsx2365 power 21E-3 0.5 -> 0.14 Inexact Rounded -pwsx2366 power 21E+1 0.5 -> 14 Inexact Rounded -pwsx2367 power 21E+2 0.5 -> 46 Inexact Rounded -pwsx2368 power 21E+3 0.5 -> 1.4E+2 Inexact Rounded -pwsx2369 power 0.22 0.5 -> 0.47 Inexact Rounded -pwsx2370 power 0.022 0.5 -> 0.15 Inexact Rounded -pwsx2371 power 22.0E-1 0.5 -> 1.5 Inexact Rounded -pwsx2372 power 22.00E-2 0.5 -> 0.47 Inexact Rounded -pwsx2373 power 22E-3 0.5 -> 0.15 Inexact Rounded -pwsx2374 power 22E+1 0.5 -> 15 Inexact Rounded -pwsx2375 power 22E+2 0.5 -> 47 Inexact Rounded -pwsx2376 power 22E+3 0.5 -> 1.5E+2 Inexact Rounded -pwsx2377 power 0.23 0.5 -> 0.48 Inexact Rounded -pwsx2378 power 0.023 0.5 -> 0.15 Inexact Rounded -pwsx2379 power 23.0E-1 0.5 -> 1.5 Inexact Rounded -pwsx2380 power 23.00E-2 0.5 -> 0.48 Inexact Rounded -pwsx2381 power 23E-3 0.5 -> 0.15 Inexact Rounded -pwsx2382 power 23E+1 0.5 -> 15 Inexact Rounded -pwsx2383 power 23E+2 0.5 -> 48 Inexact Rounded -pwsx2384 power 23E+3 0.5 -> 1.5E+2 Inexact Rounded -pwsx2385 power 0.24 0.5 -> 0.49 Inexact Rounded -pwsx2386 power 0.024 0.5 -> 0.15 Inexact Rounded -pwsx2387 power 24.0E-1 0.5 -> 1.5 Inexact Rounded -pwsx2388 power 24.00E-2 0.5 -> 0.49 Inexact Rounded -pwsx2389 power 24E-3 0.5 -> 0.15 Inexact Rounded -pwsx2390 power 24E+1 0.5 -> 15 Inexact Rounded -pwsx2391 power 24E+2 0.5 -> 49 Inexact Rounded -pwsx2392 power 24E+3 0.5 -> 1.5E+2 Inexact Rounded -pwsx2393 power 0.25 0.5 -> 0.50 Inexact Rounded -pwsx2394 power 0.025 0.5 -> 0.16 Inexact Rounded -pwsx2395 power 25.0E-1 0.5 -> 1.6 Inexact Rounded -pwsx2396 power 25.00E-2 0.5 -> 0.50 Inexact Rounded -pwsx2397 power 25E-3 0.5 -> 0.16 Inexact Rounded -pwsx2398 power 25E+1 0.5 -> 16 Inexact Rounded -pwsx2399 power 25E+2 0.5 -> 50 Inexact Rounded -pwsx2400 power 25E+3 0.5 -> 1.6E+2 Inexact Rounded -pwsx2401 power 0.26 0.5 -> 0.51 Inexact Rounded -pwsx2402 power 0.026 0.5 -> 0.16 Inexact Rounded -pwsx2403 power 26.0E-1 0.5 -> 1.6 Inexact Rounded -pwsx2404 power 26.00E-2 0.5 -> 0.51 Inexact Rounded -pwsx2405 power 26E-3 0.5 -> 0.16 Inexact Rounded -pwsx2406 power 26E+1 0.5 -> 16 Inexact Rounded -pwsx2407 power 26E+2 0.5 -> 51 Inexact Rounded -pwsx2408 power 26E+3 0.5 -> 1.6E+2 Inexact Rounded -pwsx2409 power 0.27 0.5 -> 0.52 Inexact Rounded -pwsx2410 power 0.027 0.5 -> 0.16 Inexact Rounded -pwsx2411 power 27.0E-1 0.5 -> 1.6 Inexact Rounded -pwsx2412 power 27.00E-2 0.5 -> 0.52 Inexact Rounded -pwsx2413 power 27E-3 0.5 -> 0.16 Inexact Rounded -pwsx2414 power 27E+1 0.5 -> 16 Inexact Rounded -pwsx2415 power 27E+2 0.5 -> 52 Inexact Rounded -pwsx2416 power 27E+3 0.5 -> 1.6E+2 Inexact Rounded -pwsx2417 power 0.28 0.5 -> 0.53 Inexact Rounded -pwsx2418 power 0.028 0.5 -> 0.17 Inexact Rounded -pwsx2419 power 28.0E-1 0.5 -> 1.7 Inexact Rounded -pwsx2420 power 28.00E-2 0.5 -> 0.53 Inexact Rounded -pwsx2421 power 28E-3 0.5 -> 0.17 Inexact Rounded -pwsx2422 power 28E+1 0.5 -> 17 Inexact Rounded -pwsx2423 power 28E+2 0.5 -> 53 Inexact Rounded -pwsx2424 power 28E+3 0.5 -> 1.7E+2 Inexact Rounded -pwsx2425 power 0.29 0.5 -> 0.54 Inexact Rounded -pwsx2426 power 0.029 0.5 -> 0.17 Inexact Rounded -pwsx2427 power 29.0E-1 0.5 -> 1.7 Inexact Rounded -pwsx2428 power 29.00E-2 0.5 -> 0.54 Inexact Rounded -pwsx2429 power 29E-3 0.5 -> 0.17 Inexact Rounded -pwsx2430 power 29E+1 0.5 -> 17 Inexact Rounded -pwsx2431 power 29E+2 0.5 -> 54 Inexact Rounded -pwsx2432 power 29E+3 0.5 -> 1.7E+2 Inexact Rounded -pwsx2433 power 0.30 0.5 -> 0.55 Inexact Rounded -pwsx2434 power 0.030 0.5 -> 0.17 Inexact Rounded -pwsx2435 power 30.0E-1 0.5 -> 1.7 Inexact Rounded -pwsx2436 power 30.00E-2 0.5 -> 0.55 Inexact Rounded -pwsx2437 power 30E-3 0.5 -> 0.17 Inexact Rounded -pwsx2438 power 30E+1 0.5 -> 17 Inexact Rounded -pwsx2439 power 30E+2 0.5 -> 55 Inexact Rounded -pwsx2440 power 30E+3 0.5 -> 1.7E+2 Inexact Rounded -pwsx2441 power 0.31 0.5 -> 0.56 Inexact Rounded -pwsx2442 power 0.031 0.5 -> 0.18 Inexact Rounded -pwsx2443 power 31.0E-1 0.5 -> 1.8 Inexact Rounded -pwsx2444 power 31.00E-2 0.5 -> 0.56 Inexact Rounded -pwsx2445 power 31E-3 0.5 -> 0.18 Inexact Rounded -pwsx2446 power 31E+1 0.5 -> 18 Inexact Rounded -pwsx2447 power 31E+2 0.5 -> 56 Inexact Rounded -pwsx2448 power 31E+3 0.5 -> 1.8E+2 Inexact Rounded -pwsx2449 power 0.32 0.5 -> 0.57 Inexact Rounded -pwsx2450 power 0.032 0.5 -> 0.18 Inexact Rounded -pwsx2451 power 32.0E-1 0.5 -> 1.8 Inexact Rounded -pwsx2452 power 32.00E-2 0.5 -> 0.57 Inexact Rounded -pwsx2453 power 32E-3 0.5 -> 0.18 Inexact Rounded -pwsx2454 power 32E+1 0.5 -> 18 Inexact Rounded -pwsx2455 power 32E+2 0.5 -> 57 Inexact Rounded -pwsx2456 power 32E+3 0.5 -> 1.8E+2 Inexact Rounded -pwsx2457 power 0.33 0.5 -> 0.57 Inexact Rounded -pwsx2458 power 0.033 0.5 -> 0.18 Inexact Rounded -pwsx2459 power 33.0E-1 0.5 -> 1.8 Inexact Rounded -pwsx2460 power 33.00E-2 0.5 -> 0.57 Inexact Rounded -pwsx2461 power 33E-3 0.5 -> 0.18 Inexact Rounded -pwsx2462 power 33E+1 0.5 -> 18 Inexact Rounded -pwsx2463 power 33E+2 0.5 -> 57 Inexact Rounded -pwsx2464 power 33E+3 0.5 -> 1.8E+2 Inexact Rounded -pwsx2465 power 0.34 0.5 -> 0.58 Inexact Rounded -pwsx2466 power 0.034 0.5 -> 0.18 Inexact Rounded -pwsx2467 power 34.0E-1 0.5 -> 1.8 Inexact Rounded -pwsx2468 power 34.00E-2 0.5 -> 0.58 Inexact Rounded -pwsx2469 power 34E-3 0.5 -> 0.18 Inexact Rounded -pwsx2470 power 34E+1 0.5 -> 18 Inexact Rounded -pwsx2471 power 34E+2 0.5 -> 58 Inexact Rounded -pwsx2472 power 34E+3 0.5 -> 1.8E+2 Inexact Rounded -pwsx2473 power 0.35 0.5 -> 0.59 Inexact Rounded -pwsx2474 power 0.035 0.5 -> 0.19 Inexact Rounded -pwsx2475 power 35.0E-1 0.5 -> 1.9 Inexact Rounded -pwsx2476 power 35.00E-2 0.5 -> 0.59 Inexact Rounded -pwsx2477 power 35E-3 0.5 -> 0.19 Inexact Rounded -pwsx2478 power 35E+1 0.5 -> 19 Inexact Rounded -pwsx2479 power 35E+2 0.5 -> 59 Inexact Rounded -pwsx2480 power 35E+3 0.5 -> 1.9E+2 Inexact Rounded -pwsx2481 power 0.36 0.5 -> 0.60 Inexact Rounded -pwsx2482 power 0.036 0.5 -> 0.19 Inexact Rounded -pwsx2483 power 36.0E-1 0.5 -> 1.9 Inexact Rounded -pwsx2484 power 36.00E-2 0.5 -> 0.60 Inexact Rounded -pwsx2485 power 36E-3 0.5 -> 0.19 Inexact Rounded -pwsx2486 power 36E+1 0.5 -> 19 Inexact Rounded -pwsx2487 power 36E+2 0.5 -> 60 Inexact Rounded -pwsx2488 power 36E+3 0.5 -> 1.9E+2 Inexact Rounded -pwsx2489 power 0.37 0.5 -> 0.61 Inexact Rounded -pwsx2490 power 0.037 0.5 -> 0.19 Inexact Rounded -pwsx2491 power 37.0E-1 0.5 -> 1.9 Inexact Rounded -pwsx2492 power 37.00E-2 0.5 -> 0.61 Inexact Rounded -pwsx2493 power 37E-3 0.5 -> 0.19 Inexact Rounded -pwsx2494 power 37E+1 0.5 -> 19 Inexact Rounded -pwsx2495 power 37E+2 0.5 -> 61 Inexact Rounded -pwsx2496 power 37E+3 0.5 -> 1.9E+2 Inexact Rounded -pwsx2497 power 0.38 0.5 -> 0.62 Inexact Rounded -pwsx2498 power 0.038 0.5 -> 0.19 Inexact Rounded -pwsx2499 power 38.0E-1 0.5 -> 1.9 Inexact Rounded -pwsx2500 power 38.00E-2 0.5 -> 0.62 Inexact Rounded -pwsx2501 power 38E-3 0.5 -> 0.19 Inexact Rounded -pwsx2502 power 38E+1 0.5 -> 19 Inexact Rounded -pwsx2503 power 38E+2 0.5 -> 62 Inexact Rounded -pwsx2504 power 38E+3 0.5 -> 1.9E+2 Inexact Rounded -pwsx2505 power 0.39 0.5 -> 0.62 Inexact Rounded -pwsx2506 power 0.039 0.5 -> 0.20 Inexact Rounded -pwsx2507 power 39.0E-1 0.5 -> 2.0 Inexact Rounded -pwsx2508 power 39.00E-2 0.5 -> 0.62 Inexact Rounded -pwsx2509 power 39E-3 0.5 -> 0.20 Inexact Rounded -pwsx2510 power 39E+1 0.5 -> 20 Inexact Rounded -pwsx2511 power 39E+2 0.5 -> 62 Inexact Rounded -pwsx2512 power 39E+3 0.5 -> 2.0E+2 Inexact Rounded -pwsx2513 power 0.40 0.5 -> 0.63 Inexact Rounded -pwsx2514 power 0.040 0.5 -> 0.20 Inexact Rounded -pwsx2515 power 40.0E-1 0.5 -> 2.0 Inexact Rounded -pwsx2516 power 40.00E-2 0.5 -> 0.63 Inexact Rounded -pwsx2517 power 40E-3 0.5 -> 0.20 Inexact Rounded -pwsx2518 power 40E+1 0.5 -> 20 Inexact Rounded -pwsx2519 power 40E+2 0.5 -> 63 Inexact Rounded -pwsx2520 power 40E+3 0.5 -> 2.0E+2 Inexact Rounded -pwsx2521 power 0.41 0.5 -> 0.64 Inexact Rounded -pwsx2522 power 0.041 0.5 -> 0.20 Inexact Rounded -pwsx2523 power 41.0E-1 0.5 -> 2.0 Inexact Rounded -pwsx2524 power 41.00E-2 0.5 -> 0.64 Inexact Rounded -pwsx2525 power 41E-3 0.5 -> 0.20 Inexact Rounded -pwsx2526 power 41E+1 0.5 -> 20 Inexact Rounded -pwsx2527 power 41E+2 0.5 -> 64 Inexact Rounded -pwsx2528 power 41E+3 0.5 -> 2.0E+2 Inexact Rounded -pwsx2529 power 0.42 0.5 -> 0.65 Inexact Rounded -pwsx2530 power 0.042 0.5 -> 0.20 Inexact Rounded -pwsx2531 power 42.0E-1 0.5 -> 2.0 Inexact Rounded -pwsx2532 power 42.00E-2 0.5 -> 0.65 Inexact Rounded -pwsx2533 power 42E-3 0.5 -> 0.20 Inexact Rounded -pwsx2534 power 42E+1 0.5 -> 20 Inexact Rounded -pwsx2535 power 42E+2 0.5 -> 65 Inexact Rounded -pwsx2536 power 42E+3 0.5 -> 2.0E+2 Inexact Rounded -pwsx2537 power 0.43 0.5 -> 0.66 Inexact Rounded -pwsx2538 power 0.043 0.5 -> 0.21 Inexact Rounded -pwsx2539 power 43.0E-1 0.5 -> 2.1 Inexact Rounded -pwsx2540 power 43.00E-2 0.5 -> 0.66 Inexact Rounded -pwsx2541 power 43E-3 0.5 -> 0.21 Inexact Rounded -pwsx2542 power 43E+1 0.5 -> 21 Inexact Rounded -pwsx2543 power 43E+2 0.5 -> 66 Inexact Rounded -pwsx2544 power 43E+3 0.5 -> 2.1E+2 Inexact Rounded -pwsx2545 power 0.44 0.5 -> 0.66 Inexact Rounded -pwsx2546 power 0.044 0.5 -> 0.21 Inexact Rounded -pwsx2547 power 44.0E-1 0.5 -> 2.1 Inexact Rounded -pwsx2548 power 44.00E-2 0.5 -> 0.66 Inexact Rounded -pwsx2549 power 44E-3 0.5 -> 0.21 Inexact Rounded -pwsx2550 power 44E+1 0.5 -> 21 Inexact Rounded -pwsx2551 power 44E+2 0.5 -> 66 Inexact Rounded -pwsx2552 power 44E+3 0.5 -> 2.1E+2 Inexact Rounded -pwsx2553 power 0.45 0.5 -> 0.67 Inexact Rounded -pwsx2554 power 0.045 0.5 -> 0.21 Inexact Rounded -pwsx2555 power 45.0E-1 0.5 -> 2.1 Inexact Rounded -pwsx2556 power 45.00E-2 0.5 -> 0.67 Inexact Rounded -pwsx2557 power 45E-3 0.5 -> 0.21 Inexact Rounded -pwsx2558 power 45E+1 0.5 -> 21 Inexact Rounded -pwsx2559 power 45E+2 0.5 -> 67 Inexact Rounded -pwsx2560 power 45E+3 0.5 -> 2.1E+2 Inexact Rounded -pwsx2561 power 0.46 0.5 -> 0.68 Inexact Rounded -pwsx2562 power 0.046 0.5 -> 0.21 Inexact Rounded -pwsx2563 power 46.0E-1 0.5 -> 2.1 Inexact Rounded -pwsx2564 power 46.00E-2 0.5 -> 0.68 Inexact Rounded -pwsx2565 power 46E-3 0.5 -> 0.21 Inexact Rounded -pwsx2566 power 46E+1 0.5 -> 21 Inexact Rounded -pwsx2567 power 46E+2 0.5 -> 68 Inexact Rounded -pwsx2568 power 46E+3 0.5 -> 2.1E+2 Inexact Rounded -pwsx2569 power 0.47 0.5 -> 0.69 Inexact Rounded -pwsx2570 power 0.047 0.5 -> 0.22 Inexact Rounded -pwsx2571 power 47.0E-1 0.5 -> 2.2 Inexact Rounded -pwsx2572 power 47.00E-2 0.5 -> 0.69 Inexact Rounded -pwsx2573 power 47E-3 0.5 -> 0.22 Inexact Rounded -pwsx2574 power 47E+1 0.5 -> 22 Inexact Rounded -pwsx2575 power 47E+2 0.5 -> 69 Inexact Rounded -pwsx2576 power 47E+3 0.5 -> 2.2E+2 Inexact Rounded -pwsx2577 power 0.48 0.5 -> 0.69 Inexact Rounded -pwsx2578 power 0.048 0.5 -> 0.22 Inexact Rounded -pwsx2579 power 48.0E-1 0.5 -> 2.2 Inexact Rounded -pwsx2580 power 48.00E-2 0.5 -> 0.69 Inexact Rounded -pwsx2581 power 48E-3 0.5 -> 0.22 Inexact Rounded -pwsx2582 power 48E+1 0.5 -> 22 Inexact Rounded -pwsx2583 power 48E+2 0.5 -> 69 Inexact Rounded -pwsx2584 power 48E+3 0.5 -> 2.2E+2 Inexact Rounded -pwsx2585 power 0.49 0.5 -> 0.70 Inexact Rounded -pwsx2586 power 0.049 0.5 -> 0.22 Inexact Rounded -pwsx2587 power 49.0E-1 0.5 -> 2.2 Inexact Rounded -pwsx2588 power 49.00E-2 0.5 -> 0.70 Inexact Rounded -pwsx2589 power 49E-3 0.5 -> 0.22 Inexact Rounded -pwsx2590 power 49E+1 0.5 -> 22 Inexact Rounded -pwsx2591 power 49E+2 0.5 -> 70 Inexact Rounded -pwsx2592 power 49E+3 0.5 -> 2.2E+2 Inexact Rounded -pwsx2593 power 0.50 0.5 -> 0.71 Inexact Rounded -pwsx2594 power 0.050 0.5 -> 0.22 Inexact Rounded -pwsx2595 power 50.0E-1 0.5 -> 2.2 Inexact Rounded -pwsx2596 power 50.00E-2 0.5 -> 0.71 Inexact Rounded -pwsx2597 power 50E-3 0.5 -> 0.22 Inexact Rounded -pwsx2598 power 50E+1 0.5 -> 22 Inexact Rounded -pwsx2599 power 50E+2 0.5 -> 71 Inexact Rounded -pwsx2600 power 50E+3 0.5 -> 2.2E+2 Inexact Rounded -pwsx2601 power 0.51 0.5 -> 0.71 Inexact Rounded -pwsx2602 power 0.051 0.5 -> 0.23 Inexact Rounded -pwsx2603 power 51.0E-1 0.5 -> 2.3 Inexact Rounded -pwsx2604 power 51.00E-2 0.5 -> 0.71 Inexact Rounded -pwsx2605 power 51E-3 0.5 -> 0.23 Inexact Rounded -pwsx2606 power 51E+1 0.5 -> 23 Inexact Rounded -pwsx2607 power 51E+2 0.5 -> 71 Inexact Rounded -pwsx2608 power 51E+3 0.5 -> 2.3E+2 Inexact Rounded -pwsx2609 power 0.52 0.5 -> 0.72 Inexact Rounded -pwsx2610 power 0.052 0.5 -> 0.23 Inexact Rounded -pwsx2611 power 52.0E-1 0.5 -> 2.3 Inexact Rounded -pwsx2612 power 52.00E-2 0.5 -> 0.72 Inexact Rounded -pwsx2613 power 52E-3 0.5 -> 0.23 Inexact Rounded -pwsx2614 power 52E+1 0.5 -> 23 Inexact Rounded -pwsx2615 power 52E+2 0.5 -> 72 Inexact Rounded -pwsx2616 power 52E+3 0.5 -> 2.3E+2 Inexact Rounded -pwsx2617 power 0.53 0.5 -> 0.73 Inexact Rounded -pwsx2618 power 0.053 0.5 -> 0.23 Inexact Rounded -pwsx2619 power 53.0E-1 0.5 -> 2.3 Inexact Rounded -pwsx2620 power 53.00E-2 0.5 -> 0.73 Inexact Rounded -pwsx2621 power 53E-3 0.5 -> 0.23 Inexact Rounded -pwsx2622 power 53E+1 0.5 -> 23 Inexact Rounded -pwsx2623 power 53E+2 0.5 -> 73 Inexact Rounded -pwsx2624 power 53E+3 0.5 -> 2.3E+2 Inexact Rounded -pwsx2625 power 0.54 0.5 -> 0.73 Inexact Rounded -pwsx2626 power 0.054 0.5 -> 0.23 Inexact Rounded -pwsx2627 power 54.0E-1 0.5 -> 2.3 Inexact Rounded -pwsx2628 power 54.00E-2 0.5 -> 0.73 Inexact Rounded -pwsx2629 power 54E-3 0.5 -> 0.23 Inexact Rounded -pwsx2630 power 54E+1 0.5 -> 23 Inexact Rounded -pwsx2631 power 54E+2 0.5 -> 73 Inexact Rounded -pwsx2632 power 54E+3 0.5 -> 2.3E+2 Inexact Rounded -pwsx2633 power 0.55 0.5 -> 0.74 Inexact Rounded -pwsx2634 power 0.055 0.5 -> 0.23 Inexact Rounded -pwsx2635 power 55.0E-1 0.5 -> 2.3 Inexact Rounded -pwsx2636 power 55.00E-2 0.5 -> 0.74 Inexact Rounded -pwsx2637 power 55E-3 0.5 -> 0.23 Inexact Rounded -pwsx2638 power 55E+1 0.5 -> 23 Inexact Rounded -pwsx2639 power 55E+2 0.5 -> 74 Inexact Rounded -pwsx2640 power 55E+3 0.5 -> 2.3E+2 Inexact Rounded -pwsx2641 power 0.56 0.5 -> 0.75 Inexact Rounded -pwsx2642 power 0.056 0.5 -> 0.24 Inexact Rounded -pwsx2643 power 56.0E-1 0.5 -> 2.4 Inexact Rounded -pwsx2644 power 56.00E-2 0.5 -> 0.75 Inexact Rounded -pwsx2645 power 56E-3 0.5 -> 0.24 Inexact Rounded -pwsx2646 power 56E+1 0.5 -> 24 Inexact Rounded -pwsx2647 power 56E+2 0.5 -> 75 Inexact Rounded -pwsx2648 power 56E+3 0.5 -> 2.4E+2 Inexact Rounded -pwsx2649 power 0.57 0.5 -> 0.75 Inexact Rounded -pwsx2650 power 0.057 0.5 -> 0.24 Inexact Rounded -pwsx2651 power 57.0E-1 0.5 -> 2.4 Inexact Rounded -pwsx2652 power 57.00E-2 0.5 -> 0.75 Inexact Rounded -pwsx2653 power 57E-3 0.5 -> 0.24 Inexact Rounded -pwsx2654 power 57E+1 0.5 -> 24 Inexact Rounded -pwsx2655 power 57E+2 0.5 -> 75 Inexact Rounded -pwsx2656 power 57E+3 0.5 -> 2.4E+2 Inexact Rounded -pwsx2657 power 0.58 0.5 -> 0.76 Inexact Rounded -pwsx2658 power 0.058 0.5 -> 0.24 Inexact Rounded -pwsx2659 power 58.0E-1 0.5 -> 2.4 Inexact Rounded -pwsx2660 power 58.00E-2 0.5 -> 0.76 Inexact Rounded -pwsx2661 power 58E-3 0.5 -> 0.24 Inexact Rounded -pwsx2662 power 58E+1 0.5 -> 24 Inexact Rounded -pwsx2663 power 58E+2 0.5 -> 76 Inexact Rounded -pwsx2664 power 58E+3 0.5 -> 2.4E+2 Inexact Rounded -pwsx2665 power 0.59 0.5 -> 0.77 Inexact Rounded -pwsx2666 power 0.059 0.5 -> 0.24 Inexact Rounded -pwsx2667 power 59.0E-1 0.5 -> 2.4 Inexact Rounded -pwsx2668 power 59.00E-2 0.5 -> 0.77 Inexact Rounded -pwsx2669 power 59E-3 0.5 -> 0.24 Inexact Rounded -pwsx2670 power 59E+1 0.5 -> 24 Inexact Rounded -pwsx2671 power 59E+2 0.5 -> 77 Inexact Rounded -pwsx2672 power 59E+3 0.5 -> 2.4E+2 Inexact Rounded -pwsx2673 power 0.60 0.5 -> 0.77 Inexact Rounded -pwsx2674 power 0.060 0.5 -> 0.24 Inexact Rounded -pwsx2675 power 60.0E-1 0.5 -> 2.4 Inexact Rounded -pwsx2676 power 60.00E-2 0.5 -> 0.77 Inexact Rounded -pwsx2677 power 60E-3 0.5 -> 0.24 Inexact Rounded -pwsx2678 power 60E+1 0.5 -> 24 Inexact Rounded -pwsx2679 power 60E+2 0.5 -> 77 Inexact Rounded -pwsx2680 power 60E+3 0.5 -> 2.4E+2 Inexact Rounded -pwsx2681 power 0.61 0.5 -> 0.78 Inexact Rounded -pwsx2682 power 0.061 0.5 -> 0.25 Inexact Rounded -pwsx2683 power 61.0E-1 0.5 -> 2.5 Inexact Rounded -pwsx2684 power 61.00E-2 0.5 -> 0.78 Inexact Rounded -pwsx2685 power 61E-3 0.5 -> 0.25 Inexact Rounded -pwsx2686 power 61E+1 0.5 -> 25 Inexact Rounded -pwsx2687 power 61E+2 0.5 -> 78 Inexact Rounded -pwsx2688 power 61E+3 0.5 -> 2.5E+2 Inexact Rounded -pwsx2689 power 0.62 0.5 -> 0.79 Inexact Rounded -pwsx2690 power 0.062 0.5 -> 0.25 Inexact Rounded -pwsx2691 power 62.0E-1 0.5 -> 2.5 Inexact Rounded -pwsx2692 power 62.00E-2 0.5 -> 0.79 Inexact Rounded -pwsx2693 power 62E-3 0.5 -> 0.25 Inexact Rounded -pwsx2694 power 62E+1 0.5 -> 25 Inexact Rounded -pwsx2695 power 62E+2 0.5 -> 79 Inexact Rounded -pwsx2696 power 62E+3 0.5 -> 2.5E+2 Inexact Rounded -pwsx2697 power 0.63 0.5 -> 0.79 Inexact Rounded -pwsx2698 power 0.063 0.5 -> 0.25 Inexact Rounded -pwsx2699 power 63.0E-1 0.5 -> 2.5 Inexact Rounded -pwsx2700 power 63.00E-2 0.5 -> 0.79 Inexact Rounded -pwsx2701 power 63E-3 0.5 -> 0.25 Inexact Rounded -pwsx2702 power 63E+1 0.5 -> 25 Inexact Rounded -pwsx2703 power 63E+2 0.5 -> 79 Inexact Rounded -pwsx2704 power 63E+3 0.5 -> 2.5E+2 Inexact Rounded -pwsx2705 power 0.64 0.5 -> 0.80 Inexact Rounded -pwsx2706 power 0.064 0.5 -> 0.25 Inexact Rounded -pwsx2707 power 64.0E-1 0.5 -> 2.5 Inexact Rounded -pwsx2708 power 64.00E-2 0.5 -> 0.80 Inexact Rounded -pwsx2709 power 64E-3 0.5 -> 0.25 Inexact Rounded -pwsx2710 power 64E+1 0.5 -> 25 Inexact Rounded -pwsx2711 power 64E+2 0.5 -> 80 Inexact Rounded -pwsx2712 power 64E+3 0.5 -> 2.5E+2 Inexact Rounded -pwsx2713 power 0.65 0.5 -> 0.81 Inexact Rounded -pwsx2714 power 0.065 0.5 -> 0.25 Inexact Rounded -pwsx2715 power 65.0E-1 0.5 -> 2.5 Inexact Rounded -pwsx2716 power 65.00E-2 0.5 -> 0.81 Inexact Rounded -pwsx2717 power 65E-3 0.5 -> 0.25 Inexact Rounded -pwsx2718 power 65E+1 0.5 -> 25 Inexact Rounded -pwsx2719 power 65E+2 0.5 -> 81 Inexact Rounded -pwsx2720 power 65E+3 0.5 -> 2.5E+2 Inexact Rounded -pwsx2721 power 0.66 0.5 -> 0.81 Inexact Rounded -pwsx2722 power 0.066 0.5 -> 0.26 Inexact Rounded -pwsx2723 power 66.0E-1 0.5 -> 2.6 Inexact Rounded -pwsx2724 power 66.00E-2 0.5 -> 0.81 Inexact Rounded -pwsx2725 power 66E-3 0.5 -> 0.26 Inexact Rounded -pwsx2726 power 66E+1 0.5 -> 26 Inexact Rounded -pwsx2727 power 66E+2 0.5 -> 81 Inexact Rounded -pwsx2728 power 66E+3 0.5 -> 2.6E+2 Inexact Rounded -pwsx2729 power 0.67 0.5 -> 0.82 Inexact Rounded -pwsx2730 power 0.067 0.5 -> 0.26 Inexact Rounded -pwsx2731 power 67.0E-1 0.5 -> 2.6 Inexact Rounded -pwsx2732 power 67.00E-2 0.5 -> 0.82 Inexact Rounded -pwsx2733 power 67E-3 0.5 -> 0.26 Inexact Rounded -pwsx2734 power 67E+1 0.5 -> 26 Inexact Rounded -pwsx2735 power 67E+2 0.5 -> 82 Inexact Rounded -pwsx2736 power 67E+3 0.5 -> 2.6E+2 Inexact Rounded -pwsx2737 power 0.68 0.5 -> 0.82 Inexact Rounded -pwsx2738 power 0.068 0.5 -> 0.26 Inexact Rounded -pwsx2739 power 68.0E-1 0.5 -> 2.6 Inexact Rounded -pwsx2740 power 68.00E-2 0.5 -> 0.82 Inexact Rounded -pwsx2741 power 68E-3 0.5 -> 0.26 Inexact Rounded -pwsx2742 power 68E+1 0.5 -> 26 Inexact Rounded -pwsx2743 power 68E+2 0.5 -> 82 Inexact Rounded -pwsx2744 power 68E+3 0.5 -> 2.6E+2 Inexact Rounded -pwsx2745 power 0.69 0.5 -> 0.83 Inexact Rounded -pwsx2746 power 0.069 0.5 -> 0.26 Inexact Rounded -pwsx2747 power 69.0E-1 0.5 -> 2.6 Inexact Rounded -pwsx2748 power 69.00E-2 0.5 -> 0.83 Inexact Rounded -pwsx2749 power 69E-3 0.5 -> 0.26 Inexact Rounded -pwsx2750 power 69E+1 0.5 -> 26 Inexact Rounded -pwsx2751 power 69E+2 0.5 -> 83 Inexact Rounded -pwsx2752 power 69E+3 0.5 -> 2.6E+2 Inexact Rounded -pwsx2753 power 0.70 0.5 -> 0.84 Inexact Rounded -pwsx2754 power 0.070 0.5 -> 0.26 Inexact Rounded -pwsx2755 power 70.0E-1 0.5 -> 2.6 Inexact Rounded -pwsx2756 power 70.00E-2 0.5 -> 0.84 Inexact Rounded -pwsx2757 power 70E-3 0.5 -> 0.26 Inexact Rounded -pwsx2758 power 70E+1 0.5 -> 26 Inexact Rounded -pwsx2759 power 70E+2 0.5 -> 84 Inexact Rounded -pwsx2760 power 70E+3 0.5 -> 2.6E+2 Inexact Rounded -pwsx2761 power 0.71 0.5 -> 0.84 Inexact Rounded -pwsx2762 power 0.071 0.5 -> 0.27 Inexact Rounded -pwsx2763 power 71.0E-1 0.5 -> 2.7 Inexact Rounded -pwsx2764 power 71.00E-2 0.5 -> 0.84 Inexact Rounded -pwsx2765 power 71E-3 0.5 -> 0.27 Inexact Rounded -pwsx2766 power 71E+1 0.5 -> 27 Inexact Rounded -pwsx2767 power 71E+2 0.5 -> 84 Inexact Rounded -pwsx2768 power 71E+3 0.5 -> 2.7E+2 Inexact Rounded -pwsx2769 power 0.72 0.5 -> 0.85 Inexact Rounded -pwsx2770 power 0.072 0.5 -> 0.27 Inexact Rounded -pwsx2771 power 72.0E-1 0.5 -> 2.7 Inexact Rounded -pwsx2772 power 72.00E-2 0.5 -> 0.85 Inexact Rounded -pwsx2773 power 72E-3 0.5 -> 0.27 Inexact Rounded -pwsx2774 power 72E+1 0.5 -> 27 Inexact Rounded -pwsx2775 power 72E+2 0.5 -> 85 Inexact Rounded -pwsx2776 power 72E+3 0.5 -> 2.7E+2 Inexact Rounded -pwsx2777 power 0.73 0.5 -> 0.85 Inexact Rounded -pwsx2778 power 0.073 0.5 -> 0.27 Inexact Rounded -pwsx2779 power 73.0E-1 0.5 -> 2.7 Inexact Rounded -pwsx2780 power 73.00E-2 0.5 -> 0.85 Inexact Rounded -pwsx2781 power 73E-3 0.5 -> 0.27 Inexact Rounded -pwsx2782 power 73E+1 0.5 -> 27 Inexact Rounded -pwsx2783 power 73E+2 0.5 -> 85 Inexact Rounded -pwsx2784 power 73E+3 0.5 -> 2.7E+2 Inexact Rounded -pwsx2785 power 0.74 0.5 -> 0.86 Inexact Rounded -pwsx2786 power 0.074 0.5 -> 0.27 Inexact Rounded -pwsx2787 power 74.0E-1 0.5 -> 2.7 Inexact Rounded -pwsx2788 power 74.00E-2 0.5 -> 0.86 Inexact Rounded -pwsx2789 power 74E-3 0.5 -> 0.27 Inexact Rounded -pwsx2790 power 74E+1 0.5 -> 27 Inexact Rounded -pwsx2791 power 74E+2 0.5 -> 86 Inexact Rounded -pwsx2792 power 74E+3 0.5 -> 2.7E+2 Inexact Rounded -pwsx2793 power 0.75 0.5 -> 0.87 Inexact Rounded -pwsx2794 power 0.075 0.5 -> 0.27 Inexact Rounded -pwsx2795 power 75.0E-1 0.5 -> 2.7 Inexact Rounded -pwsx2796 power 75.00E-2 0.5 -> 0.87 Inexact Rounded -pwsx2797 power 75E-3 0.5 -> 0.27 Inexact Rounded -pwsx2798 power 75E+1 0.5 -> 27 Inexact Rounded -pwsx2799 power 75E+2 0.5 -> 87 Inexact Rounded -pwsx2800 power 75E+3 0.5 -> 2.7E+2 Inexact Rounded -pwsx2801 power 0.76 0.5 -> 0.87 Inexact Rounded -pwsx2802 power 0.076 0.5 -> 0.28 Inexact Rounded -pwsx2803 power 76.0E-1 0.5 -> 2.8 Inexact Rounded -pwsx2804 power 76.00E-2 0.5 -> 0.87 Inexact Rounded -pwsx2805 power 76E-3 0.5 -> 0.28 Inexact Rounded -pwsx2806 power 76E+1 0.5 -> 28 Inexact Rounded -pwsx2807 power 76E+2 0.5 -> 87 Inexact Rounded -pwsx2808 power 76E+3 0.5 -> 2.8E+2 Inexact Rounded -pwsx2809 power 0.77 0.5 -> 0.88 Inexact Rounded -pwsx2810 power 0.077 0.5 -> 0.28 Inexact Rounded -pwsx2811 power 77.0E-1 0.5 -> 2.8 Inexact Rounded -pwsx2812 power 77.00E-2 0.5 -> 0.88 Inexact Rounded -pwsx2813 power 77E-3 0.5 -> 0.28 Inexact Rounded -pwsx2814 power 77E+1 0.5 -> 28 Inexact Rounded -pwsx2815 power 77E+2 0.5 -> 88 Inexact Rounded -pwsx2816 power 77E+3 0.5 -> 2.8E+2 Inexact Rounded -pwsx2817 power 0.78 0.5 -> 0.88 Inexact Rounded -pwsx2818 power 0.078 0.5 -> 0.28 Inexact Rounded -pwsx2819 power 78.0E-1 0.5 -> 2.8 Inexact Rounded -pwsx2820 power 78.00E-2 0.5 -> 0.88 Inexact Rounded -pwsx2821 power 78E-3 0.5 -> 0.28 Inexact Rounded -pwsx2822 power 78E+1 0.5 -> 28 Inexact Rounded -pwsx2823 power 78E+2 0.5 -> 88 Inexact Rounded -pwsx2824 power 78E+3 0.5 -> 2.8E+2 Inexact Rounded -pwsx2825 power 0.79 0.5 -> 0.89 Inexact Rounded -pwsx2826 power 0.079 0.5 -> 0.28 Inexact Rounded -pwsx2827 power 79.0E-1 0.5 -> 2.8 Inexact Rounded -pwsx2828 power 79.00E-2 0.5 -> 0.89 Inexact Rounded -pwsx2829 power 79E-3 0.5 -> 0.28 Inexact Rounded -pwsx2830 power 79E+1 0.5 -> 28 Inexact Rounded -pwsx2831 power 79E+2 0.5 -> 89 Inexact Rounded -pwsx2832 power 79E+3 0.5 -> 2.8E+2 Inexact Rounded -pwsx2833 power 0.80 0.5 -> 0.89 Inexact Rounded -pwsx2834 power 0.080 0.5 -> 0.28 Inexact Rounded -pwsx2835 power 80.0E-1 0.5 -> 2.8 Inexact Rounded -pwsx2836 power 80.00E-2 0.5 -> 0.89 Inexact Rounded -pwsx2837 power 80E-3 0.5 -> 0.28 Inexact Rounded -pwsx2838 power 80E+1 0.5 -> 28 Inexact Rounded -pwsx2839 power 80E+2 0.5 -> 89 Inexact Rounded -pwsx2840 power 80E+3 0.5 -> 2.8E+2 Inexact Rounded -pwsx2841 power 0.81 0.5 -> 0.90 Inexact Rounded -pwsx2842 power 0.081 0.5 -> 0.28 Inexact Rounded -pwsx2843 power 81.0E-1 0.5 -> 2.8 Inexact Rounded -pwsx2844 power 81.00E-2 0.5 -> 0.90 Inexact Rounded -pwsx2845 power 81E-3 0.5 -> 0.28 Inexact Rounded -pwsx2846 power 81E+1 0.5 -> 28 Inexact Rounded -pwsx2847 power 81E+2 0.5 -> 90 Inexact Rounded -pwsx2848 power 81E+3 0.5 -> 2.8E+2 Inexact Rounded -pwsx2849 power 0.82 0.5 -> 0.91 Inexact Rounded -pwsx2850 power 0.082 0.5 -> 0.29 Inexact Rounded -pwsx2851 power 82.0E-1 0.5 -> 2.9 Inexact Rounded -pwsx2852 power 82.00E-2 0.5 -> 0.91 Inexact Rounded -pwsx2853 power 82E-3 0.5 -> 0.29 Inexact Rounded -pwsx2854 power 82E+1 0.5 -> 29 Inexact Rounded -pwsx2855 power 82E+2 0.5 -> 91 Inexact Rounded -pwsx2856 power 82E+3 0.5 -> 2.9E+2 Inexact Rounded -pwsx2857 power 0.83 0.5 -> 0.91 Inexact Rounded -pwsx2858 power 0.083 0.5 -> 0.29 Inexact Rounded -pwsx2859 power 83.0E-1 0.5 -> 2.9 Inexact Rounded -pwsx2860 power 83.00E-2 0.5 -> 0.91 Inexact Rounded -pwsx2861 power 83E-3 0.5 -> 0.29 Inexact Rounded -pwsx2862 power 83E+1 0.5 -> 29 Inexact Rounded -pwsx2863 power 83E+2 0.5 -> 91 Inexact Rounded -pwsx2864 power 83E+3 0.5 -> 2.9E+2 Inexact Rounded -pwsx2865 power 0.84 0.5 -> 0.92 Inexact Rounded -pwsx2866 power 0.084 0.5 -> 0.29 Inexact Rounded -pwsx2867 power 84.0E-1 0.5 -> 2.9 Inexact Rounded -pwsx2868 power 84.00E-2 0.5 -> 0.92 Inexact Rounded -pwsx2869 power 84E-3 0.5 -> 0.29 Inexact Rounded -pwsx2870 power 84E+1 0.5 -> 29 Inexact Rounded -pwsx2871 power 84E+2 0.5 -> 92 Inexact Rounded -pwsx2872 power 84E+3 0.5 -> 2.9E+2 Inexact Rounded -pwsx2873 power 0.85 0.5 -> 0.92 Inexact Rounded -pwsx2874 power 0.085 0.5 -> 0.29 Inexact Rounded -pwsx2875 power 85.0E-1 0.5 -> 2.9 Inexact Rounded -pwsx2876 power 85.00E-2 0.5 -> 0.92 Inexact Rounded -pwsx2877 power 85E-3 0.5 -> 0.29 Inexact Rounded -pwsx2878 power 85E+1 0.5 -> 29 Inexact Rounded -pwsx2879 power 85E+2 0.5 -> 92 Inexact Rounded -pwsx2880 power 85E+3 0.5 -> 2.9E+2 Inexact Rounded -pwsx2881 power 0.86 0.5 -> 0.93 Inexact Rounded -pwsx2882 power 0.086 0.5 -> 0.29 Inexact Rounded -pwsx2883 power 86.0E-1 0.5 -> 2.9 Inexact Rounded -pwsx2884 power 86.00E-2 0.5 -> 0.93 Inexact Rounded -pwsx2885 power 86E-3 0.5 -> 0.29 Inexact Rounded -pwsx2886 power 86E+1 0.5 -> 29 Inexact Rounded -pwsx2887 power 86E+2 0.5 -> 93 Inexact Rounded -pwsx2888 power 86E+3 0.5 -> 2.9E+2 Inexact Rounded -pwsx2889 power 0.87 0.5 -> 0.93 Inexact Rounded -pwsx2890 power 0.087 0.5 -> 0.29 Inexact Rounded -pwsx2891 power 87.0E-1 0.5 -> 2.9 Inexact Rounded -pwsx2892 power 87.00E-2 0.5 -> 0.93 Inexact Rounded -pwsx2893 power 87E-3 0.5 -> 0.29 Inexact Rounded -pwsx2894 power 87E+1 0.5 -> 29 Inexact Rounded -pwsx2895 power 87E+2 0.5 -> 93 Inexact Rounded -pwsx2896 power 87E+3 0.5 -> 2.9E+2 Inexact Rounded -pwsx2897 power 0.88 0.5 -> 0.94 Inexact Rounded -pwsx2898 power 0.088 0.5 -> 0.30 Inexact Rounded -pwsx2899 power 88.0E-1 0.5 -> 3.0 Inexact Rounded -pwsx2900 power 88.00E-2 0.5 -> 0.94 Inexact Rounded -pwsx2901 power 88E-3 0.5 -> 0.30 Inexact Rounded -pwsx2902 power 88E+1 0.5 -> 30 Inexact Rounded -pwsx2903 power 88E+2 0.5 -> 94 Inexact Rounded -pwsx2904 power 88E+3 0.5 -> 3.0E+2 Inexact Rounded -pwsx2905 power 0.89 0.5 -> 0.94 Inexact Rounded -pwsx2906 power 0.089 0.5 -> 0.30 Inexact Rounded -pwsx2907 power 89.0E-1 0.5 -> 3.0 Inexact Rounded -pwsx2908 power 89.00E-2 0.5 -> 0.94 Inexact Rounded -pwsx2909 power 89E-3 0.5 -> 0.30 Inexact Rounded -pwsx2910 power 89E+1 0.5 -> 30 Inexact Rounded -pwsx2911 power 89E+2 0.5 -> 94 Inexact Rounded -pwsx2912 power 89E+3 0.5 -> 3.0E+2 Inexact Rounded -pwsx2913 power 0.90 0.5 -> 0.95 Inexact Rounded -pwsx2914 power 0.090 0.5 -> 0.30 Inexact Rounded -pwsx2915 power 90.0E-1 0.5 -> 3.0 Inexact Rounded -pwsx2916 power 90.00E-2 0.5 -> 0.95 Inexact Rounded -pwsx2917 power 90E-3 0.5 -> 0.30 Inexact Rounded -pwsx2918 power 90E+1 0.5 -> 30 Inexact Rounded -pwsx2919 power 90E+2 0.5 -> 95 Inexact Rounded -pwsx2920 power 90E+3 0.5 -> 3.0E+2 Inexact Rounded -pwsx2921 power 0.91 0.5 -> 0.95 Inexact Rounded -pwsx2922 power 0.091 0.5 -> 0.30 Inexact Rounded -pwsx2923 power 91.0E-1 0.5 -> 3.0 Inexact Rounded -pwsx2924 power 91.00E-2 0.5 -> 0.95 Inexact Rounded -pwsx2925 power 91E-3 0.5 -> 0.30 Inexact Rounded -pwsx2926 power 91E+1 0.5 -> 30 Inexact Rounded -pwsx2927 power 91E+2 0.5 -> 95 Inexact Rounded -pwsx2928 power 91E+3 0.5 -> 3.0E+2 Inexact Rounded -pwsx2929 power 0.92 0.5 -> 0.96 Inexact Rounded -pwsx2930 power 0.092 0.5 -> 0.30 Inexact Rounded -pwsx2931 power 92.0E-1 0.5 -> 3.0 Inexact Rounded -pwsx2932 power 92.00E-2 0.5 -> 0.96 Inexact Rounded -pwsx2933 power 92E-3 0.5 -> 0.30 Inexact Rounded -pwsx2934 power 92E+1 0.5 -> 30 Inexact Rounded -pwsx2935 power 92E+2 0.5 -> 96 Inexact Rounded -pwsx2936 power 92E+3 0.5 -> 3.0E+2 Inexact Rounded -pwsx2937 power 0.93 0.5 -> 0.96 Inexact Rounded -pwsx2938 power 0.093 0.5 -> 0.30 Inexact Rounded -pwsx2939 power 93.0E-1 0.5 -> 3.0 Inexact Rounded -pwsx2940 power 93.00E-2 0.5 -> 0.96 Inexact Rounded -pwsx2941 power 93E-3 0.5 -> 0.30 Inexact Rounded -pwsx2942 power 93E+1 0.5 -> 30 Inexact Rounded -pwsx2943 power 93E+2 0.5 -> 96 Inexact Rounded -pwsx2944 power 93E+3 0.5 -> 3.0E+2 Inexact Rounded -pwsx2945 power 0.94 0.5 -> 0.97 Inexact Rounded -pwsx2946 power 0.094 0.5 -> 0.31 Inexact Rounded -pwsx2947 power 94.0E-1 0.5 -> 3.1 Inexact Rounded -pwsx2948 power 94.00E-2 0.5 -> 0.97 Inexact Rounded -pwsx2949 power 94E-3 0.5 -> 0.31 Inexact Rounded -pwsx2950 power 94E+1 0.5 -> 31 Inexact Rounded -pwsx2951 power 94E+2 0.5 -> 97 Inexact Rounded -pwsx2952 power 94E+3 0.5 -> 3.1E+2 Inexact Rounded -pwsx2953 power 0.95 0.5 -> 0.97 Inexact Rounded -pwsx2954 power 0.095 0.5 -> 0.31 Inexact Rounded -pwsx2955 power 95.0E-1 0.5 -> 3.1 Inexact Rounded -pwsx2956 power 95.00E-2 0.5 -> 0.97 Inexact Rounded -pwsx2957 power 95E-3 0.5 -> 0.31 Inexact Rounded -pwsx2958 power 95E+1 0.5 -> 31 Inexact Rounded -pwsx2959 power 95E+2 0.5 -> 97 Inexact Rounded -pwsx2960 power 95E+3 0.5 -> 3.1E+2 Inexact Rounded -pwsx2961 power 0.96 0.5 -> 0.98 Inexact Rounded -pwsx2962 power 0.096 0.5 -> 0.31 Inexact Rounded -pwsx2963 power 96.0E-1 0.5 -> 3.1 Inexact Rounded -pwsx2964 power 96.00E-2 0.5 -> 0.98 Inexact Rounded -pwsx2965 power 96E-3 0.5 -> 0.31 Inexact Rounded -pwsx2966 power 96E+1 0.5 -> 31 Inexact Rounded -pwsx2967 power 96E+2 0.5 -> 98 Inexact Rounded -pwsx2968 power 96E+3 0.5 -> 3.1E+2 Inexact Rounded -pwsx2969 power 0.97 0.5 -> 0.98 Inexact Rounded -pwsx2970 power 0.097 0.5 -> 0.31 Inexact Rounded -pwsx2971 power 97.0E-1 0.5 -> 3.1 Inexact Rounded -pwsx2972 power 97.00E-2 0.5 -> 0.98 Inexact Rounded -pwsx2973 power 97E-3 0.5 -> 0.31 Inexact Rounded -pwsx2974 power 97E+1 0.5 -> 31 Inexact Rounded -pwsx2975 power 97E+2 0.5 -> 98 Inexact Rounded -pwsx2976 power 97E+3 0.5 -> 3.1E+2 Inexact Rounded -pwsx2977 power 0.98 0.5 -> 0.99 Inexact Rounded -pwsx2978 power 0.098 0.5 -> 0.31 Inexact Rounded -pwsx2979 power 98.0E-1 0.5 -> 3.1 Inexact Rounded -pwsx2980 power 98.00E-2 0.5 -> 0.99 Inexact Rounded -pwsx2981 power 98E-3 0.5 -> 0.31 Inexact Rounded -pwsx2982 power 98E+1 0.5 -> 31 Inexact Rounded -pwsx2983 power 98E+2 0.5 -> 99 Inexact Rounded -pwsx2984 power 98E+3 0.5 -> 3.1E+2 Inexact Rounded -pwsx2985 power 0.99 0.5 -> 0.99 Inexact Rounded -pwsx2986 power 0.099 0.5 -> 0.31 Inexact Rounded -pwsx2987 power 99.0E-1 0.5 -> 3.1 Inexact Rounded -pwsx2988 power 99.00E-2 0.5 -> 0.99 Inexact Rounded -pwsx2989 power 99E-3 0.5 -> 0.31 Inexact Rounded -pwsx2990 power 99E+1 0.5 -> 31 Inexact Rounded -pwsx2991 power 99E+2 0.5 -> 99 Inexact Rounded -pwsx2992 power 99E+3 0.5 -> 3.1E+2 Inexact Rounded - --- Precision 3 squareroot tests [exhaustive, f and f/10] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 3 -pwsx3001 power 0.1 0.5 -> 0.316 Inexact Rounded -pwsx3002 power 0.01 0.5 -> 0.100 Inexact Rounded -pwsx3003 power 0.2 0.5 -> 0.447 Inexact Rounded -pwsx3004 power 0.02 0.5 -> 0.141 Inexact Rounded -pwsx3005 power 0.3 0.5 -> 0.548 Inexact Rounded -pwsx3006 power 0.03 0.5 -> 0.173 Inexact Rounded -pwsx3007 power 0.4 0.5 -> 0.632 Inexact Rounded -pwsx3008 power 0.04 0.5 -> 0.200 Inexact Rounded -pwsx3009 power 0.5 0.5 -> 0.707 Inexact Rounded -pwsx3010 power 0.05 0.5 -> 0.224 Inexact Rounded -pwsx3011 power 0.6 0.5 -> 0.775 Inexact Rounded -pwsx3012 power 0.06 0.5 -> 0.245 Inexact Rounded -pwsx3013 power 0.7 0.5 -> 0.837 Inexact Rounded -pwsx3014 power 0.07 0.5 -> 0.265 Inexact Rounded -pwsx3015 power 0.8 0.5 -> 0.894 Inexact Rounded -pwsx3016 power 0.08 0.5 -> 0.283 Inexact Rounded -pwsx3017 power 0.9 0.5 -> 0.949 Inexact Rounded -pwsx3018 power 0.09 0.5 -> 0.300 Inexact Rounded -pwsx3019 power 0.11 0.5 -> 0.332 Inexact Rounded -pwsx3020 power 0.011 0.5 -> 0.105 Inexact Rounded -pwsx3021 power 0.12 0.5 -> 0.346 Inexact Rounded -pwsx3022 power 0.012 0.5 -> 0.110 Inexact Rounded -pwsx3023 power 0.13 0.5 -> 0.361 Inexact Rounded -pwsx3024 power 0.013 0.5 -> 0.114 Inexact Rounded -pwsx3025 power 0.14 0.5 -> 0.374 Inexact Rounded -pwsx3026 power 0.014 0.5 -> 0.118 Inexact Rounded -pwsx3027 power 0.15 0.5 -> 0.387 Inexact Rounded -pwsx3028 power 0.015 0.5 -> 0.122 Inexact Rounded -pwsx3029 power 0.16 0.5 -> 0.400 Inexact Rounded -pwsx3030 power 0.016 0.5 -> 0.126 Inexact Rounded -pwsx3031 power 0.17 0.5 -> 0.412 Inexact Rounded -pwsx3032 power 0.017 0.5 -> 0.130 Inexact Rounded -pwsx3033 power 0.18 0.5 -> 0.424 Inexact Rounded -pwsx3034 power 0.018 0.5 -> 0.134 Inexact Rounded -pwsx3035 power 0.19 0.5 -> 0.436 Inexact Rounded -pwsx3036 power 0.019 0.5 -> 0.138 Inexact Rounded -pwsx3037 power 0.21 0.5 -> 0.458 Inexact Rounded -pwsx3038 power 0.021 0.5 -> 0.145 Inexact Rounded -pwsx3039 power 0.22 0.5 -> 0.469 Inexact Rounded -pwsx3040 power 0.022 0.5 -> 0.148 Inexact Rounded -pwsx3041 power 0.23 0.5 -> 0.480 Inexact Rounded -pwsx3042 power 0.023 0.5 -> 0.152 Inexact Rounded -pwsx3043 power 0.24 0.5 -> 0.490 Inexact Rounded -pwsx3044 power 0.024 0.5 -> 0.155 Inexact Rounded -pwsx3045 power 0.25 0.5 -> 0.500 Inexact Rounded -pwsx3046 power 0.025 0.5 -> 0.158 Inexact Rounded -pwsx3047 power 0.26 0.5 -> 0.510 Inexact Rounded -pwsx3048 power 0.026 0.5 -> 0.161 Inexact Rounded -pwsx3049 power 0.27 0.5 -> 0.520 Inexact Rounded -pwsx3050 power 0.027 0.5 -> 0.164 Inexact Rounded -pwsx3051 power 0.28 0.5 -> 0.529 Inexact Rounded -pwsx3052 power 0.028 0.5 -> 0.167 Inexact Rounded -pwsx3053 power 0.29 0.5 -> 0.539 Inexact Rounded -pwsx3054 power 0.029 0.5 -> 0.170 Inexact Rounded -pwsx3055 power 0.31 0.5 -> 0.557 Inexact Rounded -pwsx3056 power 0.031 0.5 -> 0.176 Inexact Rounded -pwsx3057 power 0.32 0.5 -> 0.566 Inexact Rounded -pwsx3058 power 0.032 0.5 -> 0.179 Inexact Rounded -pwsx3059 power 0.33 0.5 -> 0.574 Inexact Rounded -pwsx3060 power 0.033 0.5 -> 0.182 Inexact Rounded -pwsx3061 power 0.34 0.5 -> 0.583 Inexact Rounded -pwsx3062 power 0.034 0.5 -> 0.184 Inexact Rounded -pwsx3063 power 0.35 0.5 -> 0.592 Inexact Rounded -pwsx3064 power 0.035 0.5 -> 0.187 Inexact Rounded -pwsx3065 power 0.36 0.5 -> 0.600 Inexact Rounded -pwsx3066 power 0.036 0.5 -> 0.190 Inexact Rounded -pwsx3067 power 0.37 0.5 -> 0.608 Inexact Rounded -pwsx3068 power 0.037 0.5 -> 0.192 Inexact Rounded -pwsx3069 power 0.38 0.5 -> 0.616 Inexact Rounded -pwsx3070 power 0.038 0.5 -> 0.195 Inexact Rounded -pwsx3071 power 0.39 0.5 -> 0.624 Inexact Rounded -pwsx3072 power 0.039 0.5 -> 0.197 Inexact Rounded -pwsx3073 power 0.41 0.5 -> 0.640 Inexact Rounded -pwsx3074 power 0.041 0.5 -> 0.202 Inexact Rounded -pwsx3075 power 0.42 0.5 -> 0.648 Inexact Rounded -pwsx3076 power 0.042 0.5 -> 0.205 Inexact Rounded -pwsx3077 power 0.43 0.5 -> 0.656 Inexact Rounded -pwsx3078 power 0.043 0.5 -> 0.207 Inexact Rounded -pwsx3079 power 0.44 0.5 -> 0.663 Inexact Rounded -pwsx3080 power 0.044 0.5 -> 0.210 Inexact Rounded -pwsx3081 power 0.45 0.5 -> 0.671 Inexact Rounded -pwsx3082 power 0.045 0.5 -> 0.212 Inexact Rounded -pwsx3083 power 0.46 0.5 -> 0.678 Inexact Rounded -pwsx3084 power 0.046 0.5 -> 0.214 Inexact Rounded -pwsx3085 power 0.47 0.5 -> 0.686 Inexact Rounded -pwsx3086 power 0.047 0.5 -> 0.217 Inexact Rounded -pwsx3087 power 0.48 0.5 -> 0.693 Inexact Rounded -pwsx3088 power 0.048 0.5 -> 0.219 Inexact Rounded -pwsx3089 power 0.49 0.5 -> 0.700 Inexact Rounded -pwsx3090 power 0.049 0.5 -> 0.221 Inexact Rounded -pwsx3091 power 0.51 0.5 -> 0.714 Inexact Rounded -pwsx3092 power 0.051 0.5 -> 0.226 Inexact Rounded -pwsx3093 power 0.52 0.5 -> 0.721 Inexact Rounded -pwsx3094 power 0.052 0.5 -> 0.228 Inexact Rounded -pwsx3095 power 0.53 0.5 -> 0.728 Inexact Rounded -pwsx3096 power 0.053 0.5 -> 0.230 Inexact Rounded -pwsx3097 power 0.54 0.5 -> 0.735 Inexact Rounded -pwsx3098 power 0.054 0.5 -> 0.232 Inexact Rounded -pwsx3099 power 0.55 0.5 -> 0.742 Inexact Rounded -pwsx3100 power 0.055 0.5 -> 0.235 Inexact Rounded -pwsx3101 power 0.56 0.5 -> 0.748 Inexact Rounded -pwsx3102 power 0.056 0.5 -> 0.237 Inexact Rounded -pwsx3103 power 0.57 0.5 -> 0.755 Inexact Rounded -pwsx3104 power 0.057 0.5 -> 0.239 Inexact Rounded -pwsx3105 power 0.58 0.5 -> 0.762 Inexact Rounded -pwsx3106 power 0.058 0.5 -> 0.241 Inexact Rounded -pwsx3107 power 0.59 0.5 -> 0.768 Inexact Rounded -pwsx3108 power 0.059 0.5 -> 0.243 Inexact Rounded -pwsx3109 power 0.61 0.5 -> 0.781 Inexact Rounded -pwsx3110 power 0.061 0.5 -> 0.247 Inexact Rounded -pwsx3111 power 0.62 0.5 -> 0.787 Inexact Rounded -pwsx3112 power 0.062 0.5 -> 0.249 Inexact Rounded -pwsx3113 power 0.63 0.5 -> 0.794 Inexact Rounded -pwsx3114 power 0.063 0.5 -> 0.251 Inexact Rounded -pwsx3115 power 0.64 0.5 -> 0.800 Inexact Rounded -pwsx3116 power 0.064 0.5 -> 0.253 Inexact Rounded -pwsx3117 power 0.65 0.5 -> 0.806 Inexact Rounded -pwsx3118 power 0.065 0.5 -> 0.255 Inexact Rounded -pwsx3119 power 0.66 0.5 -> 0.812 Inexact Rounded -pwsx3120 power 0.066 0.5 -> 0.257 Inexact Rounded -pwsx3121 power 0.67 0.5 -> 0.819 Inexact Rounded -pwsx3122 power 0.067 0.5 -> 0.259 Inexact Rounded -pwsx3123 power 0.68 0.5 -> 0.825 Inexact Rounded -pwsx3124 power 0.068 0.5 -> 0.261 Inexact Rounded -pwsx3125 power 0.69 0.5 -> 0.831 Inexact Rounded -pwsx3126 power 0.069 0.5 -> 0.263 Inexact Rounded -pwsx3127 power 0.71 0.5 -> 0.843 Inexact Rounded -pwsx3128 power 0.071 0.5 -> 0.266 Inexact Rounded -pwsx3129 power 0.72 0.5 -> 0.849 Inexact Rounded -pwsx3130 power 0.072 0.5 -> 0.268 Inexact Rounded -pwsx3131 power 0.73 0.5 -> 0.854 Inexact Rounded -pwsx3132 power 0.073 0.5 -> 0.270 Inexact Rounded -pwsx3133 power 0.74 0.5 -> 0.860 Inexact Rounded -pwsx3134 power 0.074 0.5 -> 0.272 Inexact Rounded -pwsx3135 power 0.75 0.5 -> 0.866 Inexact Rounded -pwsx3136 power 0.075 0.5 -> 0.274 Inexact Rounded -pwsx3137 power 0.76 0.5 -> 0.872 Inexact Rounded -pwsx3138 power 0.076 0.5 -> 0.276 Inexact Rounded -pwsx3139 power 0.77 0.5 -> 0.877 Inexact Rounded -pwsx3140 power 0.077 0.5 -> 0.277 Inexact Rounded -pwsx3141 power 0.78 0.5 -> 0.883 Inexact Rounded -pwsx3142 power 0.078 0.5 -> 0.279 Inexact Rounded -pwsx3143 power 0.79 0.5 -> 0.889 Inexact Rounded -pwsx3144 power 0.079 0.5 -> 0.281 Inexact Rounded -pwsx3145 power 0.81 0.5 -> 0.900 Inexact Rounded -pwsx3146 power 0.081 0.5 -> 0.285 Inexact Rounded -pwsx3147 power 0.82 0.5 -> 0.906 Inexact Rounded -pwsx3148 power 0.082 0.5 -> 0.286 Inexact Rounded -pwsx3149 power 0.83 0.5 -> 0.911 Inexact Rounded -pwsx3150 power 0.083 0.5 -> 0.288 Inexact Rounded -pwsx3151 power 0.84 0.5 -> 0.917 Inexact Rounded -pwsx3152 power 0.084 0.5 -> 0.290 Inexact Rounded -pwsx3153 power 0.85 0.5 -> 0.922 Inexact Rounded -pwsx3154 power 0.085 0.5 -> 0.292 Inexact Rounded -pwsx3155 power 0.86 0.5 -> 0.927 Inexact Rounded -pwsx3156 power 0.086 0.5 -> 0.293 Inexact Rounded -pwsx3157 power 0.87 0.5 -> 0.933 Inexact Rounded -pwsx3158 power 0.087 0.5 -> 0.295 Inexact Rounded -pwsx3159 power 0.88 0.5 -> 0.938 Inexact Rounded -pwsx3160 power 0.088 0.5 -> 0.297 Inexact Rounded -pwsx3161 power 0.89 0.5 -> 0.943 Inexact Rounded -pwsx3162 power 0.089 0.5 -> 0.298 Inexact Rounded -pwsx3163 power 0.91 0.5 -> 0.954 Inexact Rounded -pwsx3164 power 0.091 0.5 -> 0.302 Inexact Rounded -pwsx3165 power 0.92 0.5 -> 0.959 Inexact Rounded -pwsx3166 power 0.092 0.5 -> 0.303 Inexact Rounded -pwsx3167 power 0.93 0.5 -> 0.964 Inexact Rounded -pwsx3168 power 0.093 0.5 -> 0.305 Inexact Rounded -pwsx3169 power 0.94 0.5 -> 0.970 Inexact Rounded -pwsx3170 power 0.094 0.5 -> 0.307 Inexact Rounded -pwsx3171 power 0.95 0.5 -> 0.975 Inexact Rounded -pwsx3172 power 0.095 0.5 -> 0.308 Inexact Rounded -pwsx3173 power 0.96 0.5 -> 0.980 Inexact Rounded -pwsx3174 power 0.096 0.5 -> 0.310 Inexact Rounded -pwsx3175 power 0.97 0.5 -> 0.985 Inexact Rounded -pwsx3176 power 0.097 0.5 -> 0.311 Inexact Rounded -pwsx3177 power 0.98 0.5 -> 0.990 Inexact Rounded -pwsx3178 power 0.098 0.5 -> 0.313 Inexact Rounded -pwsx3179 power 0.99 0.5 -> 0.995 Inexact Rounded -pwsx3180 power 0.099 0.5 -> 0.315 Inexact Rounded -pwsx3181 power 0.101 0.5 -> 0.318 Inexact Rounded -pwsx3182 power 0.0101 0.5 -> 0.100 Inexact Rounded -pwsx3183 power 0.102 0.5 -> 0.319 Inexact Rounded -pwsx3184 power 0.0102 0.5 -> 0.101 Inexact Rounded -pwsx3185 power 0.103 0.5 -> 0.321 Inexact Rounded -pwsx3186 power 0.0103 0.5 -> 0.101 Inexact Rounded -pwsx3187 power 0.104 0.5 -> 0.322 Inexact Rounded -pwsx3188 power 0.0104 0.5 -> 0.102 Inexact Rounded -pwsx3189 power 0.105 0.5 -> 0.324 Inexact Rounded -pwsx3190 power 0.0105 0.5 -> 0.102 Inexact Rounded -pwsx3191 power 0.106 0.5 -> 0.326 Inexact Rounded -pwsx3192 power 0.0106 0.5 -> 0.103 Inexact Rounded -pwsx3193 power 0.107 0.5 -> 0.327 Inexact Rounded -pwsx3194 power 0.0107 0.5 -> 0.103 Inexact Rounded -pwsx3195 power 0.108 0.5 -> 0.329 Inexact Rounded -pwsx3196 power 0.0108 0.5 -> 0.104 Inexact Rounded -pwsx3197 power 0.109 0.5 -> 0.330 Inexact Rounded -pwsx3198 power 0.0109 0.5 -> 0.104 Inexact Rounded -pwsx3199 power 0.111 0.5 -> 0.333 Inexact Rounded -pwsx3200 power 0.0111 0.5 -> 0.105 Inexact Rounded -pwsx3201 power 0.112 0.5 -> 0.335 Inexact Rounded -pwsx3202 power 0.0112 0.5 -> 0.106 Inexact Rounded -pwsx3203 power 0.113 0.5 -> 0.336 Inexact Rounded -pwsx3204 power 0.0113 0.5 -> 0.106 Inexact Rounded -pwsx3205 power 0.114 0.5 -> 0.338 Inexact Rounded -pwsx3206 power 0.0114 0.5 -> 0.107 Inexact Rounded -pwsx3207 power 0.115 0.5 -> 0.339 Inexact Rounded -pwsx3208 power 0.0115 0.5 -> 0.107 Inexact Rounded -pwsx3209 power 0.116 0.5 -> 0.341 Inexact Rounded -pwsx3210 power 0.0116 0.5 -> 0.108 Inexact Rounded -pwsx3211 power 0.117 0.5 -> 0.342 Inexact Rounded -pwsx3212 power 0.0117 0.5 -> 0.108 Inexact Rounded -pwsx3213 power 0.118 0.5 -> 0.344 Inexact Rounded -pwsx3214 power 0.0118 0.5 -> 0.109 Inexact Rounded -pwsx3215 power 0.119 0.5 -> 0.345 Inexact Rounded -pwsx3216 power 0.0119 0.5 -> 0.109 Inexact Rounded -pwsx3217 power 0.121 0.5 -> 0.348 Inexact Rounded -pwsx3218 power 0.0121 0.5 -> 0.110 Inexact Rounded -pwsx3219 power 0.122 0.5 -> 0.349 Inexact Rounded -pwsx3220 power 0.0122 0.5 -> 0.110 Inexact Rounded -pwsx3221 power 0.123 0.5 -> 0.351 Inexact Rounded -pwsx3222 power 0.0123 0.5 -> 0.111 Inexact Rounded -pwsx3223 power 0.124 0.5 -> 0.352 Inexact Rounded -pwsx3224 power 0.0124 0.5 -> 0.111 Inexact Rounded -pwsx3225 power 0.125 0.5 -> 0.354 Inexact Rounded -pwsx3226 power 0.0125 0.5 -> 0.112 Inexact Rounded -pwsx3227 power 0.126 0.5 -> 0.355 Inexact Rounded -pwsx3228 power 0.0126 0.5 -> 0.112 Inexact Rounded -pwsx3229 power 0.127 0.5 -> 0.356 Inexact Rounded -pwsx3230 power 0.0127 0.5 -> 0.113 Inexact Rounded -pwsx3231 power 0.128 0.5 -> 0.358 Inexact Rounded -pwsx3232 power 0.0128 0.5 -> 0.113 Inexact Rounded -pwsx3233 power 0.129 0.5 -> 0.359 Inexact Rounded -pwsx3234 power 0.0129 0.5 -> 0.114 Inexact Rounded -pwsx3235 power 0.131 0.5 -> 0.362 Inexact Rounded -pwsx3236 power 0.0131 0.5 -> 0.114 Inexact Rounded -pwsx3237 power 0.132 0.5 -> 0.363 Inexact Rounded -pwsx3238 power 0.0132 0.5 -> 0.115 Inexact Rounded -pwsx3239 power 0.133 0.5 -> 0.365 Inexact Rounded -pwsx3240 power 0.0133 0.5 -> 0.115 Inexact Rounded -pwsx3241 power 0.134 0.5 -> 0.366 Inexact Rounded -pwsx3242 power 0.0134 0.5 -> 0.116 Inexact Rounded -pwsx3243 power 0.135 0.5 -> 0.367 Inexact Rounded -pwsx3244 power 0.0135 0.5 -> 0.116 Inexact Rounded -pwsx3245 power 0.136 0.5 -> 0.369 Inexact Rounded -pwsx3246 power 0.0136 0.5 -> 0.117 Inexact Rounded -pwsx3247 power 0.137 0.5 -> 0.370 Inexact Rounded -pwsx3248 power 0.0137 0.5 -> 0.117 Inexact Rounded -pwsx3249 power 0.138 0.5 -> 0.371 Inexact Rounded -pwsx3250 power 0.0138 0.5 -> 0.117 Inexact Rounded -pwsx3251 power 0.139 0.5 -> 0.373 Inexact Rounded -pwsx3252 power 0.0139 0.5 -> 0.118 Inexact Rounded -pwsx3253 power 0.141 0.5 -> 0.375 Inexact Rounded -pwsx3254 power 0.0141 0.5 -> 0.119 Inexact Rounded -pwsx3255 power 0.142 0.5 -> 0.377 Inexact Rounded -pwsx3256 power 0.0142 0.5 -> 0.119 Inexact Rounded -pwsx3257 power 0.143 0.5 -> 0.378 Inexact Rounded -pwsx3258 power 0.0143 0.5 -> 0.120 Inexact Rounded -pwsx3259 power 0.144 0.5 -> 0.379 Inexact Rounded -pwsx3260 power 0.0144 0.5 -> 0.120 Inexact Rounded -pwsx3261 power 0.145 0.5 -> 0.381 Inexact Rounded -pwsx3262 power 0.0145 0.5 -> 0.120 Inexact Rounded -pwsx3263 power 0.146 0.5 -> 0.382 Inexact Rounded -pwsx3264 power 0.0146 0.5 -> 0.121 Inexact Rounded -pwsx3265 power 0.147 0.5 -> 0.383 Inexact Rounded -pwsx3266 power 0.0147 0.5 -> 0.121 Inexact Rounded -pwsx3267 power 0.148 0.5 -> 0.385 Inexact Rounded -pwsx3268 power 0.0148 0.5 -> 0.122 Inexact Rounded -pwsx3269 power 0.149 0.5 -> 0.386 Inexact Rounded -pwsx3270 power 0.0149 0.5 -> 0.122 Inexact Rounded -pwsx3271 power 0.151 0.5 -> 0.389 Inexact Rounded -pwsx3272 power 0.0151 0.5 -> 0.123 Inexact Rounded -pwsx3273 power 0.152 0.5 -> 0.390 Inexact Rounded -pwsx3274 power 0.0152 0.5 -> 0.123 Inexact Rounded -pwsx3275 power 0.153 0.5 -> 0.391 Inexact Rounded -pwsx3276 power 0.0153 0.5 -> 0.124 Inexact Rounded -pwsx3277 power 0.154 0.5 -> 0.392 Inexact Rounded -pwsx3278 power 0.0154 0.5 -> 0.124 Inexact Rounded -pwsx3279 power 0.155 0.5 -> 0.394 Inexact Rounded -pwsx3280 power 0.0155 0.5 -> 0.124 Inexact Rounded -pwsx3281 power 0.156 0.5 -> 0.395 Inexact Rounded -pwsx3282 power 0.0156 0.5 -> 0.125 Inexact Rounded -pwsx3283 power 0.157 0.5 -> 0.396 Inexact Rounded -pwsx3284 power 0.0157 0.5 -> 0.125 Inexact Rounded -pwsx3285 power 0.158 0.5 -> 0.397 Inexact Rounded -pwsx3286 power 0.0158 0.5 -> 0.126 Inexact Rounded -pwsx3287 power 0.159 0.5 -> 0.399 Inexact Rounded -pwsx3288 power 0.0159 0.5 -> 0.126 Inexact Rounded -pwsx3289 power 0.161 0.5 -> 0.401 Inexact Rounded -pwsx3290 power 0.0161 0.5 -> 0.127 Inexact Rounded -pwsx3291 power 0.162 0.5 -> 0.402 Inexact Rounded -pwsx3292 power 0.0162 0.5 -> 0.127 Inexact Rounded -pwsx3293 power 0.163 0.5 -> 0.404 Inexact Rounded -pwsx3294 power 0.0163 0.5 -> 0.128 Inexact Rounded -pwsx3295 power 0.164 0.5 -> 0.405 Inexact Rounded -pwsx3296 power 0.0164 0.5 -> 0.128 Inexact Rounded -pwsx3297 power 0.165 0.5 -> 0.406 Inexact Rounded -pwsx3298 power 0.0165 0.5 -> 0.128 Inexact Rounded -pwsx3299 power 0.166 0.5 -> 0.407 Inexact Rounded -pwsx3300 power 0.0166 0.5 -> 0.129 Inexact Rounded -pwsx3301 power 0.167 0.5 -> 0.409 Inexact Rounded -pwsx3302 power 0.0167 0.5 -> 0.129 Inexact Rounded -pwsx3303 power 0.168 0.5 -> 0.410 Inexact Rounded -pwsx3304 power 0.0168 0.5 -> 0.130 Inexact Rounded -pwsx3305 power 0.169 0.5 -> 0.411 Inexact Rounded -pwsx3306 power 0.0169 0.5 -> 0.130 Inexact Rounded -pwsx3307 power 0.171 0.5 -> 0.414 Inexact Rounded -pwsx3308 power 0.0171 0.5 -> 0.131 Inexact Rounded -pwsx3309 power 0.172 0.5 -> 0.415 Inexact Rounded -pwsx3310 power 0.0172 0.5 -> 0.131 Inexact Rounded -pwsx3311 power 0.173 0.5 -> 0.416 Inexact Rounded -pwsx3312 power 0.0173 0.5 -> 0.132 Inexact Rounded -pwsx3313 power 0.174 0.5 -> 0.417 Inexact Rounded -pwsx3314 power 0.0174 0.5 -> 0.132 Inexact Rounded -pwsx3315 power 0.175 0.5 -> 0.418 Inexact Rounded -pwsx3316 power 0.0175 0.5 -> 0.132 Inexact Rounded -pwsx3317 power 0.176 0.5 -> 0.420 Inexact Rounded -pwsx3318 power 0.0176 0.5 -> 0.133 Inexact Rounded -pwsx3319 power 0.177 0.5 -> 0.421 Inexact Rounded -pwsx3320 power 0.0177 0.5 -> 0.133 Inexact Rounded -pwsx3321 power 0.178 0.5 -> 0.422 Inexact Rounded -pwsx3322 power 0.0178 0.5 -> 0.133 Inexact Rounded -pwsx3323 power 0.179 0.5 -> 0.423 Inexact Rounded -pwsx3324 power 0.0179 0.5 -> 0.134 Inexact Rounded -pwsx3325 power 0.181 0.5 -> 0.425 Inexact Rounded -pwsx3326 power 0.0181 0.5 -> 0.135 Inexact Rounded -pwsx3327 power 0.182 0.5 -> 0.427 Inexact Rounded -pwsx3328 power 0.0182 0.5 -> 0.135 Inexact Rounded -pwsx3329 power 0.183 0.5 -> 0.428 Inexact Rounded -pwsx3330 power 0.0183 0.5 -> 0.135 Inexact Rounded -pwsx3331 power 0.184 0.5 -> 0.429 Inexact Rounded -pwsx3332 power 0.0184 0.5 -> 0.136 Inexact Rounded -pwsx3333 power 0.185 0.5 -> 0.430 Inexact Rounded -pwsx3334 power 0.0185 0.5 -> 0.136 Inexact Rounded -pwsx3335 power 0.186 0.5 -> 0.431 Inexact Rounded -pwsx3336 power 0.0186 0.5 -> 0.136 Inexact Rounded -pwsx3337 power 0.187 0.5 -> 0.432 Inexact Rounded -pwsx3338 power 0.0187 0.5 -> 0.137 Inexact Rounded -pwsx3339 power 0.188 0.5 -> 0.434 Inexact Rounded -pwsx3340 power 0.0188 0.5 -> 0.137 Inexact Rounded -pwsx3341 power 0.189 0.5 -> 0.435 Inexact Rounded -pwsx3342 power 0.0189 0.5 -> 0.137 Inexact Rounded -pwsx3343 power 0.191 0.5 -> 0.437 Inexact Rounded -pwsx3344 power 0.0191 0.5 -> 0.138 Inexact Rounded -pwsx3345 power 0.192 0.5 -> 0.438 Inexact Rounded -pwsx3346 power 0.0192 0.5 -> 0.139 Inexact Rounded -pwsx3347 power 0.193 0.5 -> 0.439 Inexact Rounded -pwsx3348 power 0.0193 0.5 -> 0.139 Inexact Rounded -pwsx3349 power 0.194 0.5 -> 0.440 Inexact Rounded -pwsx3350 power 0.0194 0.5 -> 0.139 Inexact Rounded -pwsx3351 power 0.195 0.5 -> 0.442 Inexact Rounded -pwsx3352 power 0.0195 0.5 -> 0.140 Inexact Rounded -pwsx3353 power 0.196 0.5 -> 0.443 Inexact Rounded -pwsx3354 power 0.0196 0.5 -> 0.140 Inexact Rounded -pwsx3355 power 0.197 0.5 -> 0.444 Inexact Rounded -pwsx3356 power 0.0197 0.5 -> 0.140 Inexact Rounded -pwsx3357 power 0.198 0.5 -> 0.445 Inexact Rounded -pwsx3358 power 0.0198 0.5 -> 0.141 Inexact Rounded -pwsx3359 power 0.199 0.5 -> 0.446 Inexact Rounded -pwsx3360 power 0.0199 0.5 -> 0.141 Inexact Rounded -pwsx3361 power 0.201 0.5 -> 0.448 Inexact Rounded -pwsx3362 power 0.0201 0.5 -> 0.142 Inexact Rounded -pwsx3363 power 0.202 0.5 -> 0.449 Inexact Rounded -pwsx3364 power 0.0202 0.5 -> 0.142 Inexact Rounded -pwsx3365 power 0.203 0.5 -> 0.451 Inexact Rounded -pwsx3366 power 0.0203 0.5 -> 0.142 Inexact Rounded -pwsx3367 power 0.204 0.5 -> 0.452 Inexact Rounded -pwsx3368 power 0.0204 0.5 -> 0.143 Inexact Rounded -pwsx3369 power 0.205 0.5 -> 0.453 Inexact Rounded -pwsx3370 power 0.0205 0.5 -> 0.143 Inexact Rounded -pwsx3371 power 0.206 0.5 -> 0.454 Inexact Rounded -pwsx3372 power 0.0206 0.5 -> 0.144 Inexact Rounded -pwsx3373 power 0.207 0.5 -> 0.455 Inexact Rounded -pwsx3374 power 0.0207 0.5 -> 0.144 Inexact Rounded -pwsx3375 power 0.208 0.5 -> 0.456 Inexact Rounded -pwsx3376 power 0.0208 0.5 -> 0.144 Inexact Rounded -pwsx3377 power 0.209 0.5 -> 0.457 Inexact Rounded -pwsx3378 power 0.0209 0.5 -> 0.145 Inexact Rounded -pwsx3379 power 0.211 0.5 -> 0.459 Inexact Rounded -pwsx3380 power 0.0211 0.5 -> 0.145 Inexact Rounded -pwsx3381 power 0.212 0.5 -> 0.460 Inexact Rounded -pwsx3382 power 0.0212 0.5 -> 0.146 Inexact Rounded -pwsx3383 power 0.213 0.5 -> 0.462 Inexact Rounded -pwsx3384 power 0.0213 0.5 -> 0.146 Inexact Rounded -pwsx3385 power 0.214 0.5 -> 0.463 Inexact Rounded -pwsx3386 power 0.0214 0.5 -> 0.146 Inexact Rounded -pwsx3387 power 0.215 0.5 -> 0.464 Inexact Rounded -pwsx3388 power 0.0215 0.5 -> 0.147 Inexact Rounded -pwsx3389 power 0.216 0.5 -> 0.465 Inexact Rounded -pwsx3390 power 0.0216 0.5 -> 0.147 Inexact Rounded -pwsx3391 power 0.217 0.5 -> 0.466 Inexact Rounded -pwsx3392 power 0.0217 0.5 -> 0.147 Inexact Rounded -pwsx3393 power 0.218 0.5 -> 0.467 Inexact Rounded -pwsx3394 power 0.0218 0.5 -> 0.148 Inexact Rounded -pwsx3395 power 0.219 0.5 -> 0.468 Inexact Rounded -pwsx3396 power 0.0219 0.5 -> 0.148 Inexact Rounded -pwsx3397 power 0.221 0.5 -> 0.470 Inexact Rounded -pwsx3398 power 0.0221 0.5 -> 0.149 Inexact Rounded -pwsx3399 power 0.222 0.5 -> 0.471 Inexact Rounded -pwsx3400 power 0.0222 0.5 -> 0.149 Inexact Rounded -pwsx3401 power 0.223 0.5 -> 0.472 Inexact Rounded -pwsx3402 power 0.0223 0.5 -> 0.149 Inexact Rounded -pwsx3403 power 0.224 0.5 -> 0.473 Inexact Rounded -pwsx3404 power 0.0224 0.5 -> 0.150 Inexact Rounded -pwsx3405 power 0.225 0.5 -> 0.474 Inexact Rounded -pwsx3406 power 0.0225 0.5 -> 0.150 Inexact Rounded -pwsx3407 power 0.226 0.5 -> 0.475 Inexact Rounded -pwsx3408 power 0.0226 0.5 -> 0.150 Inexact Rounded -pwsx3409 power 0.227 0.5 -> 0.476 Inexact Rounded -pwsx3410 power 0.0227 0.5 -> 0.151 Inexact Rounded -pwsx3411 power 0.228 0.5 -> 0.477 Inexact Rounded -pwsx3412 power 0.0228 0.5 -> 0.151 Inexact Rounded -pwsx3413 power 0.229 0.5 -> 0.479 Inexact Rounded -pwsx3414 power 0.0229 0.5 -> 0.151 Inexact Rounded -pwsx3415 power 0.231 0.5 -> 0.481 Inexact Rounded -pwsx3416 power 0.0231 0.5 -> 0.152 Inexact Rounded -pwsx3417 power 0.232 0.5 -> 0.482 Inexact Rounded -pwsx3418 power 0.0232 0.5 -> 0.152 Inexact Rounded -pwsx3419 power 0.233 0.5 -> 0.483 Inexact Rounded -pwsx3420 power 0.0233 0.5 -> 0.153 Inexact Rounded -pwsx3421 power 0.234 0.5 -> 0.484 Inexact Rounded -pwsx3422 power 0.0234 0.5 -> 0.153 Inexact Rounded -pwsx3423 power 0.235 0.5 -> 0.485 Inexact Rounded -pwsx3424 power 0.0235 0.5 -> 0.153 Inexact Rounded -pwsx3425 power 0.236 0.5 -> 0.486 Inexact Rounded -pwsx3426 power 0.0236 0.5 -> 0.154 Inexact Rounded -pwsx3427 power 0.237 0.5 -> 0.487 Inexact Rounded -pwsx3428 power 0.0237 0.5 -> 0.154 Inexact Rounded -pwsx3429 power 0.238 0.5 -> 0.488 Inexact Rounded -pwsx3430 power 0.0238 0.5 -> 0.154 Inexact Rounded -pwsx3431 power 0.239 0.5 -> 0.489 Inexact Rounded -pwsx3432 power 0.0239 0.5 -> 0.155 Inexact Rounded -pwsx3433 power 0.241 0.5 -> 0.491 Inexact Rounded -pwsx3434 power 0.0241 0.5 -> 0.155 Inexact Rounded -pwsx3435 power 0.242 0.5 -> 0.492 Inexact Rounded -pwsx3436 power 0.0242 0.5 -> 0.156 Inexact Rounded -pwsx3437 power 0.243 0.5 -> 0.493 Inexact Rounded -pwsx3438 power 0.0243 0.5 -> 0.156 Inexact Rounded -pwsx3439 power 0.244 0.5 -> 0.494 Inexact Rounded -pwsx3440 power 0.0244 0.5 -> 0.156 Inexact Rounded -pwsx3441 power 0.245 0.5 -> 0.495 Inexact Rounded -pwsx3442 power 0.0245 0.5 -> 0.157 Inexact Rounded -pwsx3443 power 0.246 0.5 -> 0.496 Inexact Rounded -pwsx3444 power 0.0246 0.5 -> 0.157 Inexact Rounded -pwsx3445 power 0.247 0.5 -> 0.497 Inexact Rounded -pwsx3446 power 0.0247 0.5 -> 0.157 Inexact Rounded -pwsx3447 power 0.248 0.5 -> 0.498 Inexact Rounded -pwsx3448 power 0.0248 0.5 -> 0.157 Inexact Rounded -pwsx3449 power 0.249 0.5 -> 0.499 Inexact Rounded -pwsx3450 power 0.0249 0.5 -> 0.158 Inexact Rounded -pwsx3451 power 0.251 0.5 -> 0.501 Inexact Rounded -pwsx3452 power 0.0251 0.5 -> 0.158 Inexact Rounded -pwsx3453 power 0.252 0.5 -> 0.502 Inexact Rounded -pwsx3454 power 0.0252 0.5 -> 0.159 Inexact Rounded -pwsx3455 power 0.253 0.5 -> 0.503 Inexact Rounded -pwsx3456 power 0.0253 0.5 -> 0.159 Inexact Rounded -pwsx3457 power 0.254 0.5 -> 0.504 Inexact Rounded -pwsx3458 power 0.0254 0.5 -> 0.159 Inexact Rounded -pwsx3459 power 0.255 0.5 -> 0.505 Inexact Rounded -pwsx3460 power 0.0255 0.5 -> 0.160 Inexact Rounded -pwsx3461 power 0.256 0.5 -> 0.506 Inexact Rounded -pwsx3462 power 0.0256 0.5 -> 0.160 Inexact Rounded -pwsx3463 power 0.257 0.5 -> 0.507 Inexact Rounded -pwsx3464 power 0.0257 0.5 -> 0.160 Inexact Rounded -pwsx3465 power 0.258 0.5 -> 0.508 Inexact Rounded -pwsx3466 power 0.0258 0.5 -> 0.161 Inexact Rounded -pwsx3467 power 0.259 0.5 -> 0.509 Inexact Rounded -pwsx3468 power 0.0259 0.5 -> 0.161 Inexact Rounded -pwsx3469 power 0.261 0.5 -> 0.511 Inexact Rounded -pwsx3470 power 0.0261 0.5 -> 0.162 Inexact Rounded -pwsx3471 power 0.262 0.5 -> 0.512 Inexact Rounded -pwsx3472 power 0.0262 0.5 -> 0.162 Inexact Rounded -pwsx3473 power 0.263 0.5 -> 0.513 Inexact Rounded -pwsx3474 power 0.0263 0.5 -> 0.162 Inexact Rounded -pwsx3475 power 0.264 0.5 -> 0.514 Inexact Rounded -pwsx3476 power 0.0264 0.5 -> 0.162 Inexact Rounded -pwsx3477 power 0.265 0.5 -> 0.515 Inexact Rounded -pwsx3478 power 0.0265 0.5 -> 0.163 Inexact Rounded -pwsx3479 power 0.266 0.5 -> 0.516 Inexact Rounded -pwsx3480 power 0.0266 0.5 -> 0.163 Inexact Rounded -pwsx3481 power 0.267 0.5 -> 0.517 Inexact Rounded -pwsx3482 power 0.0267 0.5 -> 0.163 Inexact Rounded -pwsx3483 power 0.268 0.5 -> 0.518 Inexact Rounded -pwsx3484 power 0.0268 0.5 -> 0.164 Inexact Rounded -pwsx3485 power 0.269 0.5 -> 0.519 Inexact Rounded -pwsx3486 power 0.0269 0.5 -> 0.164 Inexact Rounded -pwsx3487 power 0.271 0.5 -> 0.521 Inexact Rounded -pwsx3488 power 0.0271 0.5 -> 0.165 Inexact Rounded -pwsx3489 power 0.272 0.5 -> 0.522 Inexact Rounded -pwsx3490 power 0.0272 0.5 -> 0.165 Inexact Rounded -pwsx3491 power 0.273 0.5 -> 0.522 Inexact Rounded -pwsx3492 power 0.0273 0.5 -> 0.165 Inexact Rounded -pwsx3493 power 0.274 0.5 -> 0.523 Inexact Rounded -pwsx3494 power 0.0274 0.5 -> 0.166 Inexact Rounded -pwsx3495 power 0.275 0.5 -> 0.524 Inexact Rounded -pwsx3496 power 0.0275 0.5 -> 0.166 Inexact Rounded -pwsx3497 power 0.276 0.5 -> 0.525 Inexact Rounded -pwsx3498 power 0.0276 0.5 -> 0.166 Inexact Rounded -pwsx3499 power 0.277 0.5 -> 0.526 Inexact Rounded -pwsx3500 power 0.0277 0.5 -> 0.166 Inexact Rounded -pwsx3501 power 0.278 0.5 -> 0.527 Inexact Rounded -pwsx3502 power 0.0278 0.5 -> 0.167 Inexact Rounded -pwsx3503 power 0.279 0.5 -> 0.528 Inexact Rounded -pwsx3504 power 0.0279 0.5 -> 0.167 Inexact Rounded -pwsx3505 power 0.281 0.5 -> 0.530 Inexact Rounded -pwsx3506 power 0.0281 0.5 -> 0.168 Inexact Rounded -pwsx3507 power 0.282 0.5 -> 0.531 Inexact Rounded -pwsx3508 power 0.0282 0.5 -> 0.168 Inexact Rounded -pwsx3509 power 0.283 0.5 -> 0.532 Inexact Rounded -pwsx3510 power 0.0283 0.5 -> 0.168 Inexact Rounded -pwsx3511 power 0.284 0.5 -> 0.533 Inexact Rounded -pwsx3512 power 0.0284 0.5 -> 0.169 Inexact Rounded -pwsx3513 power 0.285 0.5 -> 0.534 Inexact Rounded -pwsx3514 power 0.0285 0.5 -> 0.169 Inexact Rounded -pwsx3515 power 0.286 0.5 -> 0.535 Inexact Rounded -pwsx3516 power 0.0286 0.5 -> 0.169 Inexact Rounded -pwsx3517 power 0.287 0.5 -> 0.536 Inexact Rounded -pwsx3518 power 0.0287 0.5 -> 0.169 Inexact Rounded -pwsx3519 power 0.288 0.5 -> 0.537 Inexact Rounded -pwsx3520 power 0.0288 0.5 -> 0.170 Inexact Rounded -pwsx3521 power 0.289 0.5 -> 0.538 Inexact Rounded -pwsx3522 power 0.0289 0.5 -> 0.170 Inexact Rounded -pwsx3523 power 0.291 0.5 -> 0.539 Inexact Rounded -pwsx3524 power 0.0291 0.5 -> 0.171 Inexact Rounded -pwsx3525 power 0.292 0.5 -> 0.540 Inexact Rounded -pwsx3526 power 0.0292 0.5 -> 0.171 Inexact Rounded -pwsx3527 power 0.293 0.5 -> 0.541 Inexact Rounded -pwsx3528 power 0.0293 0.5 -> 0.171 Inexact Rounded -pwsx3529 power 0.294 0.5 -> 0.542 Inexact Rounded -pwsx3530 power 0.0294 0.5 -> 0.171 Inexact Rounded -pwsx3531 power 0.295 0.5 -> 0.543 Inexact Rounded -pwsx3532 power 0.0295 0.5 -> 0.172 Inexact Rounded -pwsx3533 power 0.296 0.5 -> 0.544 Inexact Rounded -pwsx3534 power 0.0296 0.5 -> 0.172 Inexact Rounded -pwsx3535 power 0.297 0.5 -> 0.545 Inexact Rounded -pwsx3536 power 0.0297 0.5 -> 0.172 Inexact Rounded -pwsx3537 power 0.298 0.5 -> 0.546 Inexact Rounded -pwsx3538 power 0.0298 0.5 -> 0.173 Inexact Rounded -pwsx3539 power 0.299 0.5 -> 0.547 Inexact Rounded -pwsx3540 power 0.0299 0.5 -> 0.173 Inexact Rounded -pwsx3541 power 0.301 0.5 -> 0.549 Inexact Rounded -pwsx3542 power 0.0301 0.5 -> 0.173 Inexact Rounded -pwsx3543 power 0.302 0.5 -> 0.550 Inexact Rounded -pwsx3544 power 0.0302 0.5 -> 0.174 Inexact Rounded -pwsx3545 power 0.303 0.5 -> 0.550 Inexact Rounded -pwsx3546 power 0.0303 0.5 -> 0.174 Inexact Rounded -pwsx3547 power 0.304 0.5 -> 0.551 Inexact Rounded -pwsx3548 power 0.0304 0.5 -> 0.174 Inexact Rounded -pwsx3549 power 0.305 0.5 -> 0.552 Inexact Rounded -pwsx3550 power 0.0305 0.5 -> 0.175 Inexact Rounded -pwsx3551 power 0.306 0.5 -> 0.553 Inexact Rounded -pwsx3552 power 0.0306 0.5 -> 0.175 Inexact Rounded -pwsx3553 power 0.307 0.5 -> 0.554 Inexact Rounded -pwsx3554 power 0.0307 0.5 -> 0.175 Inexact Rounded -pwsx3555 power 0.308 0.5 -> 0.555 Inexact Rounded -pwsx3556 power 0.0308 0.5 -> 0.175 Inexact Rounded -pwsx3557 power 0.309 0.5 -> 0.556 Inexact Rounded -pwsx3558 power 0.0309 0.5 -> 0.176 Inexact Rounded -pwsx3559 power 0.311 0.5 -> 0.558 Inexact Rounded -pwsx3560 power 0.0311 0.5 -> 0.176 Inexact Rounded -pwsx3561 power 0.312 0.5 -> 0.559 Inexact Rounded -pwsx3562 power 0.0312 0.5 -> 0.177 Inexact Rounded -pwsx3563 power 0.313 0.5 -> 0.559 Inexact Rounded -pwsx3564 power 0.0313 0.5 -> 0.177 Inexact Rounded -pwsx3565 power 0.314 0.5 -> 0.560 Inexact Rounded -pwsx3566 power 0.0314 0.5 -> 0.177 Inexact Rounded -pwsx3567 power 0.315 0.5 -> 0.561 Inexact Rounded -pwsx3568 power 0.0315 0.5 -> 0.177 Inexact Rounded -pwsx3569 power 0.316 0.5 -> 0.562 Inexact Rounded -pwsx3570 power 0.0316 0.5 -> 0.178 Inexact Rounded -pwsx3571 power 0.317 0.5 -> 0.563 Inexact Rounded -pwsx3572 power 0.0317 0.5 -> 0.178 Inexact Rounded -pwsx3573 power 0.318 0.5 -> 0.564 Inexact Rounded -pwsx3574 power 0.0318 0.5 -> 0.178 Inexact Rounded -pwsx3575 power 0.319 0.5 -> 0.565 Inexact Rounded -pwsx3576 power 0.0319 0.5 -> 0.179 Inexact Rounded -pwsx3577 power 0.321 0.5 -> 0.567 Inexact Rounded -pwsx3578 power 0.0321 0.5 -> 0.179 Inexact Rounded -pwsx3579 power 0.322 0.5 -> 0.567 Inexact Rounded -pwsx3580 power 0.0322 0.5 -> 0.179 Inexact Rounded -pwsx3581 power 0.323 0.5 -> 0.568 Inexact Rounded -pwsx3582 power 0.0323 0.5 -> 0.180 Inexact Rounded -pwsx3583 power 0.324 0.5 -> 0.569 Inexact Rounded -pwsx3584 power 0.0324 0.5 -> 0.180 Inexact Rounded -pwsx3585 power 0.325 0.5 -> 0.570 Inexact Rounded -pwsx3586 power 0.0325 0.5 -> 0.180 Inexact Rounded -pwsx3587 power 0.326 0.5 -> 0.571 Inexact Rounded -pwsx3588 power 0.0326 0.5 -> 0.181 Inexact Rounded -pwsx3589 power 0.327 0.5 -> 0.572 Inexact Rounded -pwsx3590 power 0.0327 0.5 -> 0.181 Inexact Rounded -pwsx3591 power 0.328 0.5 -> 0.573 Inexact Rounded -pwsx3592 power 0.0328 0.5 -> 0.181 Inexact Rounded -pwsx3593 power 0.329 0.5 -> 0.574 Inexact Rounded -pwsx3594 power 0.0329 0.5 -> 0.181 Inexact Rounded -pwsx3595 power 0.331 0.5 -> 0.575 Inexact Rounded -pwsx3596 power 0.0331 0.5 -> 0.182 Inexact Rounded -pwsx3597 power 0.332 0.5 -> 0.576 Inexact Rounded -pwsx3598 power 0.0332 0.5 -> 0.182 Inexact Rounded -pwsx3599 power 0.333 0.5 -> 0.577 Inexact Rounded -pwsx3600 power 0.0333 0.5 -> 0.182 Inexact Rounded -pwsx3601 power 0.334 0.5 -> 0.578 Inexact Rounded -pwsx3602 power 0.0334 0.5 -> 0.183 Inexact Rounded -pwsx3603 power 0.335 0.5 -> 0.579 Inexact Rounded -pwsx3604 power 0.0335 0.5 -> 0.183 Inexact Rounded -pwsx3605 power 0.336 0.5 -> 0.580 Inexact Rounded -pwsx3606 power 0.0336 0.5 -> 0.183 Inexact Rounded -pwsx3607 power 0.337 0.5 -> 0.581 Inexact Rounded -pwsx3608 power 0.0337 0.5 -> 0.184 Inexact Rounded -pwsx3609 power 0.338 0.5 -> 0.581 Inexact Rounded -pwsx3610 power 0.0338 0.5 -> 0.184 Inexact Rounded -pwsx3611 power 0.339 0.5 -> 0.582 Inexact Rounded -pwsx3612 power 0.0339 0.5 -> 0.184 Inexact Rounded -pwsx3613 power 0.341 0.5 -> 0.584 Inexact Rounded -pwsx3614 power 0.0341 0.5 -> 0.185 Inexact Rounded -pwsx3615 power 0.342 0.5 -> 0.585 Inexact Rounded -pwsx3616 power 0.0342 0.5 -> 0.185 Inexact Rounded -pwsx3617 power 0.343 0.5 -> 0.586 Inexact Rounded -pwsx3618 power 0.0343 0.5 -> 0.185 Inexact Rounded -pwsx3619 power 0.344 0.5 -> 0.587 Inexact Rounded -pwsx3620 power 0.0344 0.5 -> 0.185 Inexact Rounded -pwsx3621 power 0.345 0.5 -> 0.587 Inexact Rounded -pwsx3622 power 0.0345 0.5 -> 0.186 Inexact Rounded -pwsx3623 power 0.346 0.5 -> 0.588 Inexact Rounded -pwsx3624 power 0.0346 0.5 -> 0.186 Inexact Rounded -pwsx3625 power 0.347 0.5 -> 0.589 Inexact Rounded -pwsx3626 power 0.0347 0.5 -> 0.186 Inexact Rounded -pwsx3627 power 0.348 0.5 -> 0.590 Inexact Rounded -pwsx3628 power 0.0348 0.5 -> 0.187 Inexact Rounded -pwsx3629 power 0.349 0.5 -> 0.591 Inexact Rounded -pwsx3630 power 0.0349 0.5 -> 0.187 Inexact Rounded -pwsx3631 power 0.351 0.5 -> 0.592 Inexact Rounded -pwsx3632 power 0.0351 0.5 -> 0.187 Inexact Rounded -pwsx3633 power 0.352 0.5 -> 0.593 Inexact Rounded -pwsx3634 power 0.0352 0.5 -> 0.188 Inexact Rounded -pwsx3635 power 0.353 0.5 -> 0.594 Inexact Rounded -pwsx3636 power 0.0353 0.5 -> 0.188 Inexact Rounded -pwsx3637 power 0.354 0.5 -> 0.595 Inexact Rounded -pwsx3638 power 0.0354 0.5 -> 0.188 Inexact Rounded -pwsx3639 power 0.355 0.5 -> 0.596 Inexact Rounded -pwsx3640 power 0.0355 0.5 -> 0.188 Inexact Rounded -pwsx3641 power 0.356 0.5 -> 0.597 Inexact Rounded -pwsx3642 power 0.0356 0.5 -> 0.189 Inexact Rounded -pwsx3643 power 0.357 0.5 -> 0.597 Inexact Rounded -pwsx3644 power 0.0357 0.5 -> 0.189 Inexact Rounded -pwsx3645 power 0.358 0.5 -> 0.598 Inexact Rounded -pwsx3646 power 0.0358 0.5 -> 0.189 Inexact Rounded -pwsx3647 power 0.359 0.5 -> 0.599 Inexact Rounded -pwsx3648 power 0.0359 0.5 -> 0.189 Inexact Rounded -pwsx3649 power 0.361 0.5 -> 0.601 Inexact Rounded -pwsx3650 power 0.0361 0.5 -> 0.190 Inexact Rounded -pwsx3651 power 0.362 0.5 -> 0.602 Inexact Rounded -pwsx3652 power 0.0362 0.5 -> 0.190 Inexact Rounded -pwsx3653 power 0.363 0.5 -> 0.602 Inexact Rounded -pwsx3654 power 0.0363 0.5 -> 0.191 Inexact Rounded -pwsx3655 power 0.364 0.5 -> 0.603 Inexact Rounded -pwsx3656 power 0.0364 0.5 -> 0.191 Inexact Rounded -pwsx3657 power 0.365 0.5 -> 0.604 Inexact Rounded -pwsx3658 power 0.0365 0.5 -> 0.191 Inexact Rounded -pwsx3659 power 0.366 0.5 -> 0.605 Inexact Rounded -pwsx3660 power 0.0366 0.5 -> 0.191 Inexact Rounded -pwsx3661 power 0.367 0.5 -> 0.606 Inexact Rounded -pwsx3662 power 0.0367 0.5 -> 0.192 Inexact Rounded -pwsx3663 power 0.368 0.5 -> 0.607 Inexact Rounded -pwsx3664 power 0.0368 0.5 -> 0.192 Inexact Rounded -pwsx3665 power 0.369 0.5 -> 0.607 Inexact Rounded -pwsx3666 power 0.0369 0.5 -> 0.192 Inexact Rounded -pwsx3667 power 0.371 0.5 -> 0.609 Inexact Rounded -pwsx3668 power 0.0371 0.5 -> 0.193 Inexact Rounded -pwsx3669 power 0.372 0.5 -> 0.610 Inexact Rounded -pwsx3670 power 0.0372 0.5 -> 0.193 Inexact Rounded -pwsx3671 power 0.373 0.5 -> 0.611 Inexact Rounded -pwsx3672 power 0.0373 0.5 -> 0.193 Inexact Rounded -pwsx3673 power 0.374 0.5 -> 0.612 Inexact Rounded -pwsx3674 power 0.0374 0.5 -> 0.193 Inexact Rounded -pwsx3675 power 0.375 0.5 -> 0.612 Inexact Rounded -pwsx3676 power 0.0375 0.5 -> 0.194 Inexact Rounded -pwsx3677 power 0.376 0.5 -> 0.613 Inexact Rounded -pwsx3678 power 0.0376 0.5 -> 0.194 Inexact Rounded -pwsx3679 power 0.377 0.5 -> 0.614 Inexact Rounded -pwsx3680 power 0.0377 0.5 -> 0.194 Inexact Rounded -pwsx3681 power 0.378 0.5 -> 0.615 Inexact Rounded -pwsx3682 power 0.0378 0.5 -> 0.194 Inexact Rounded -pwsx3683 power 0.379 0.5 -> 0.616 Inexact Rounded -pwsx3684 power 0.0379 0.5 -> 0.195 Inexact Rounded -pwsx3685 power 0.381 0.5 -> 0.617 Inexact Rounded -pwsx3686 power 0.0381 0.5 -> 0.195 Inexact Rounded -pwsx3687 power 0.382 0.5 -> 0.618 Inexact Rounded -pwsx3688 power 0.0382 0.5 -> 0.195 Inexact Rounded -pwsx3689 power 0.383 0.5 -> 0.619 Inexact Rounded -pwsx3690 power 0.0383 0.5 -> 0.196 Inexact Rounded -pwsx3691 power 0.384 0.5 -> 0.620 Inexact Rounded -pwsx3692 power 0.0384 0.5 -> 0.196 Inexact Rounded -pwsx3693 power 0.385 0.5 -> 0.620 Inexact Rounded -pwsx3694 power 0.0385 0.5 -> 0.196 Inexact Rounded -pwsx3695 power 0.386 0.5 -> 0.621 Inexact Rounded -pwsx3696 power 0.0386 0.5 -> 0.196 Inexact Rounded -pwsx3697 power 0.387 0.5 -> 0.622 Inexact Rounded -pwsx3698 power 0.0387 0.5 -> 0.197 Inexact Rounded -pwsx3699 power 0.388 0.5 -> 0.623 Inexact Rounded -pwsx3700 power 0.0388 0.5 -> 0.197 Inexact Rounded -pwsx3701 power 0.389 0.5 -> 0.624 Inexact Rounded -pwsx3702 power 0.0389 0.5 -> 0.197 Inexact Rounded -pwsx3703 power 0.391 0.5 -> 0.625 Inexact Rounded -pwsx3704 power 0.0391 0.5 -> 0.198 Inexact Rounded -pwsx3705 power 0.392 0.5 -> 0.626 Inexact Rounded -pwsx3706 power 0.0392 0.5 -> 0.198 Inexact Rounded -pwsx3707 power 0.393 0.5 -> 0.627 Inexact Rounded -pwsx3708 power 0.0393 0.5 -> 0.198 Inexact Rounded -pwsx3709 power 0.394 0.5 -> 0.628 Inexact Rounded -pwsx3710 power 0.0394 0.5 -> 0.198 Inexact Rounded -pwsx3711 power 0.395 0.5 -> 0.628 Inexact Rounded -pwsx3712 power 0.0395 0.5 -> 0.199 Inexact Rounded -pwsx3713 power 0.396 0.5 -> 0.629 Inexact Rounded -pwsx3714 power 0.0396 0.5 -> 0.199 Inexact Rounded -pwsx3715 power 0.397 0.5 -> 0.630 Inexact Rounded -pwsx3716 power 0.0397 0.5 -> 0.199 Inexact Rounded -pwsx3717 power 0.398 0.5 -> 0.631 Inexact Rounded -pwsx3718 power 0.0398 0.5 -> 0.199 Inexact Rounded -pwsx3719 power 0.399 0.5 -> 0.632 Inexact Rounded -pwsx3720 power 0.0399 0.5 -> 0.200 Inexact Rounded -pwsx3721 power 0.401 0.5 -> 0.633 Inexact Rounded -pwsx3722 power 0.0401 0.5 -> 0.200 Inexact Rounded -pwsx3723 power 0.402 0.5 -> 0.634 Inexact Rounded -pwsx3724 power 0.0402 0.5 -> 0.200 Inexact Rounded -pwsx3725 power 0.403 0.5 -> 0.635 Inexact Rounded -pwsx3726 power 0.0403 0.5 -> 0.201 Inexact Rounded -pwsx3727 power 0.404 0.5 -> 0.636 Inexact Rounded -pwsx3728 power 0.0404 0.5 -> 0.201 Inexact Rounded -pwsx3729 power 0.405 0.5 -> 0.636 Inexact Rounded -pwsx3730 power 0.0405 0.5 -> 0.201 Inexact Rounded -pwsx3731 power 0.406 0.5 -> 0.637 Inexact Rounded -pwsx3732 power 0.0406 0.5 -> 0.201 Inexact Rounded -pwsx3733 power 0.407 0.5 -> 0.638 Inexact Rounded -pwsx3734 power 0.0407 0.5 -> 0.202 Inexact Rounded -pwsx3735 power 0.408 0.5 -> 0.639 Inexact Rounded -pwsx3736 power 0.0408 0.5 -> 0.202 Inexact Rounded -pwsx3737 power 0.409 0.5 -> 0.640 Inexact Rounded -pwsx3738 power 0.0409 0.5 -> 0.202 Inexact Rounded -pwsx3739 power 0.411 0.5 -> 0.641 Inexact Rounded -pwsx3740 power 0.0411 0.5 -> 0.203 Inexact Rounded -pwsx3741 power 0.412 0.5 -> 0.642 Inexact Rounded -pwsx3742 power 0.0412 0.5 -> 0.203 Inexact Rounded -pwsx3743 power 0.413 0.5 -> 0.643 Inexact Rounded -pwsx3744 power 0.0413 0.5 -> 0.203 Inexact Rounded -pwsx3745 power 0.414 0.5 -> 0.643 Inexact Rounded -pwsx3746 power 0.0414 0.5 -> 0.203 Inexact Rounded -pwsx3747 power 0.415 0.5 -> 0.644 Inexact Rounded -pwsx3748 power 0.0415 0.5 -> 0.204 Inexact Rounded -pwsx3749 power 0.416 0.5 -> 0.645 Inexact Rounded -pwsx3750 power 0.0416 0.5 -> 0.204 Inexact Rounded -pwsx3751 power 0.417 0.5 -> 0.646 Inexact Rounded -pwsx3752 power 0.0417 0.5 -> 0.204 Inexact Rounded -pwsx3753 power 0.418 0.5 -> 0.647 Inexact Rounded -pwsx3754 power 0.0418 0.5 -> 0.204 Inexact Rounded -pwsx3755 power 0.419 0.5 -> 0.647 Inexact Rounded -pwsx3756 power 0.0419 0.5 -> 0.205 Inexact Rounded -pwsx3757 power 0.421 0.5 -> 0.649 Inexact Rounded -pwsx3758 power 0.0421 0.5 -> 0.205 Inexact Rounded -pwsx3759 power 0.422 0.5 -> 0.650 Inexact Rounded -pwsx3760 power 0.0422 0.5 -> 0.205 Inexact Rounded -pwsx3761 power 0.423 0.5 -> 0.650 Inexact Rounded -pwsx3762 power 0.0423 0.5 -> 0.206 Inexact Rounded -pwsx3763 power 0.424 0.5 -> 0.651 Inexact Rounded -pwsx3764 power 0.0424 0.5 -> 0.206 Inexact Rounded -pwsx3765 power 0.425 0.5 -> 0.652 Inexact Rounded -pwsx3766 power 0.0425 0.5 -> 0.206 Inexact Rounded -pwsx3767 power 0.426 0.5 -> 0.653 Inexact Rounded -pwsx3768 power 0.0426 0.5 -> 0.206 Inexact Rounded -pwsx3769 power 0.427 0.5 -> 0.653 Inexact Rounded -pwsx3770 power 0.0427 0.5 -> 0.207 Inexact Rounded -pwsx3771 power 0.428 0.5 -> 0.654 Inexact Rounded -pwsx3772 power 0.0428 0.5 -> 0.207 Inexact Rounded -pwsx3773 power 0.429 0.5 -> 0.655 Inexact Rounded -pwsx3774 power 0.0429 0.5 -> 0.207 Inexact Rounded -pwsx3775 power 0.431 0.5 -> 0.657 Inexact Rounded -pwsx3776 power 0.0431 0.5 -> 0.208 Inexact Rounded -pwsx3777 power 0.432 0.5 -> 0.657 Inexact Rounded -pwsx3778 power 0.0432 0.5 -> 0.208 Inexact Rounded -pwsx3779 power 0.433 0.5 -> 0.658 Inexact Rounded -pwsx3780 power 0.0433 0.5 -> 0.208 Inexact Rounded -pwsx3781 power 0.434 0.5 -> 0.659 Inexact Rounded -pwsx3782 power 0.0434 0.5 -> 0.208 Inexact Rounded -pwsx3783 power 0.435 0.5 -> 0.660 Inexact Rounded -pwsx3784 power 0.0435 0.5 -> 0.209 Inexact Rounded -pwsx3785 power 0.436 0.5 -> 0.660 Inexact Rounded -pwsx3786 power 0.0436 0.5 -> 0.209 Inexact Rounded -pwsx3787 power 0.437 0.5 -> 0.661 Inexact Rounded -pwsx3788 power 0.0437 0.5 -> 0.209 Inexact Rounded -pwsx3789 power 0.438 0.5 -> 0.662 Inexact Rounded -pwsx3790 power 0.0438 0.5 -> 0.209 Inexact Rounded -pwsx3791 power 0.439 0.5 -> 0.663 Inexact Rounded -pwsx3792 power 0.0439 0.5 -> 0.210 Inexact Rounded -pwsx3793 power 0.441 0.5 -> 0.664 Inexact Rounded -pwsx3794 power 0.0441 0.5 -> 0.210 Inexact Rounded -pwsx3795 power 0.442 0.5 -> 0.665 Inexact Rounded -pwsx3796 power 0.0442 0.5 -> 0.210 Inexact Rounded -pwsx3797 power 0.443 0.5 -> 0.666 Inexact Rounded -pwsx3798 power 0.0443 0.5 -> 0.210 Inexact Rounded -pwsx3799 power 0.444 0.5 -> 0.666 Inexact Rounded -pwsx3800 power 0.0444 0.5 -> 0.211 Inexact Rounded -pwsx3801 power 0.445 0.5 -> 0.667 Inexact Rounded -pwsx3802 power 0.0445 0.5 -> 0.211 Inexact Rounded -pwsx3803 power 0.446 0.5 -> 0.668 Inexact Rounded -pwsx3804 power 0.0446 0.5 -> 0.211 Inexact Rounded -pwsx3805 power 0.447 0.5 -> 0.669 Inexact Rounded -pwsx3806 power 0.0447 0.5 -> 0.211 Inexact Rounded -pwsx3807 power 0.448 0.5 -> 0.669 Inexact Rounded -pwsx3808 power 0.0448 0.5 -> 0.212 Inexact Rounded -pwsx3809 power 0.449 0.5 -> 0.670 Inexact Rounded -pwsx3810 power 0.0449 0.5 -> 0.212 Inexact Rounded -pwsx3811 power 0.451 0.5 -> 0.672 Inexact Rounded -pwsx3812 power 0.0451 0.5 -> 0.212 Inexact Rounded -pwsx3813 power 0.452 0.5 -> 0.672 Inexact Rounded -pwsx3814 power 0.0452 0.5 -> 0.213 Inexact Rounded -pwsx3815 power 0.453 0.5 -> 0.673 Inexact Rounded -pwsx3816 power 0.0453 0.5 -> 0.213 Inexact Rounded -pwsx3817 power 0.454 0.5 -> 0.674 Inexact Rounded -pwsx3818 power 0.0454 0.5 -> 0.213 Inexact Rounded -pwsx3819 power 0.455 0.5 -> 0.675 Inexact Rounded -pwsx3820 power 0.0455 0.5 -> 0.213 Inexact Rounded -pwsx3821 power 0.456 0.5 -> 0.675 Inexact Rounded -pwsx3822 power 0.0456 0.5 -> 0.214 Inexact Rounded -pwsx3823 power 0.457 0.5 -> 0.676 Inexact Rounded -pwsx3824 power 0.0457 0.5 -> 0.214 Inexact Rounded -pwsx3825 power 0.458 0.5 -> 0.677 Inexact Rounded -pwsx3826 power 0.0458 0.5 -> 0.214 Inexact Rounded -pwsx3827 power 0.459 0.5 -> 0.677 Inexact Rounded -pwsx3828 power 0.0459 0.5 -> 0.214 Inexact Rounded -pwsx3829 power 0.461 0.5 -> 0.679 Inexact Rounded -pwsx3830 power 0.0461 0.5 -> 0.215 Inexact Rounded -pwsx3831 power 0.462 0.5 -> 0.680 Inexact Rounded -pwsx3832 power 0.0462 0.5 -> 0.215 Inexact Rounded -pwsx3833 power 0.463 0.5 -> 0.680 Inexact Rounded -pwsx3834 power 0.0463 0.5 -> 0.215 Inexact Rounded -pwsx3835 power 0.464 0.5 -> 0.681 Inexact Rounded -pwsx3836 power 0.0464 0.5 -> 0.215 Inexact Rounded -pwsx3837 power 0.465 0.5 -> 0.682 Inexact Rounded -pwsx3838 power 0.0465 0.5 -> 0.216 Inexact Rounded -pwsx3839 power 0.466 0.5 -> 0.683 Inexact Rounded -pwsx3840 power 0.0466 0.5 -> 0.216 Inexact Rounded -pwsx3841 power 0.467 0.5 -> 0.683 Inexact Rounded -pwsx3842 power 0.0467 0.5 -> 0.216 Inexact Rounded -pwsx3843 power 0.468 0.5 -> 0.684 Inexact Rounded -pwsx3844 power 0.0468 0.5 -> 0.216 Inexact Rounded -pwsx3845 power 0.469 0.5 -> 0.685 Inexact Rounded -pwsx3846 power 0.0469 0.5 -> 0.217 Inexact Rounded -pwsx3847 power 0.471 0.5 -> 0.686 Inexact Rounded -pwsx3848 power 0.0471 0.5 -> 0.217 Inexact Rounded -pwsx3849 power 0.472 0.5 -> 0.687 Inexact Rounded -pwsx3850 power 0.0472 0.5 -> 0.217 Inexact Rounded -pwsx3851 power 0.473 0.5 -> 0.688 Inexact Rounded -pwsx3852 power 0.0473 0.5 -> 0.217 Inexact Rounded -pwsx3853 power 0.474 0.5 -> 0.688 Inexact Rounded -pwsx3854 power 0.0474 0.5 -> 0.218 Inexact Rounded -pwsx3855 power 0.475 0.5 -> 0.689 Inexact Rounded -pwsx3856 power 0.0475 0.5 -> 0.218 Inexact Rounded -pwsx3857 power 0.476 0.5 -> 0.690 Inexact Rounded -pwsx3858 power 0.0476 0.5 -> 0.218 Inexact Rounded -pwsx3859 power 0.477 0.5 -> 0.691 Inexact Rounded -pwsx3860 power 0.0477 0.5 -> 0.218 Inexact Rounded -pwsx3861 power 0.478 0.5 -> 0.691 Inexact Rounded -pwsx3862 power 0.0478 0.5 -> 0.219 Inexact Rounded -pwsx3863 power 0.479 0.5 -> 0.692 Inexact Rounded -pwsx3864 power 0.0479 0.5 -> 0.219 Inexact Rounded -pwsx3865 power 0.481 0.5 -> 0.694 Inexact Rounded -pwsx3866 power 0.0481 0.5 -> 0.219 Inexact Rounded -pwsx3867 power 0.482 0.5 -> 0.694 Inexact Rounded -pwsx3868 power 0.0482 0.5 -> 0.220 Inexact Rounded -pwsx3869 power 0.483 0.5 -> 0.695 Inexact Rounded -pwsx3870 power 0.0483 0.5 -> 0.220 Inexact Rounded -pwsx3871 power 0.484 0.5 -> 0.696 Inexact Rounded -pwsx3872 power 0.0484 0.5 -> 0.220 Inexact Rounded -pwsx3873 power 0.485 0.5 -> 0.696 Inexact Rounded -pwsx3874 power 0.0485 0.5 -> 0.220 Inexact Rounded -pwsx3875 power 0.486 0.5 -> 0.697 Inexact Rounded -pwsx3876 power 0.0486 0.5 -> 0.220 Inexact Rounded -pwsx3877 power 0.487 0.5 -> 0.698 Inexact Rounded -pwsx3878 power 0.0487 0.5 -> 0.221 Inexact Rounded -pwsx3879 power 0.488 0.5 -> 0.699 Inexact Rounded -pwsx3880 power 0.0488 0.5 -> 0.221 Inexact Rounded -pwsx3881 power 0.489 0.5 -> 0.699 Inexact Rounded -pwsx3882 power 0.0489 0.5 -> 0.221 Inexact Rounded -pwsx3883 power 0.491 0.5 -> 0.701 Inexact Rounded -pwsx3884 power 0.0491 0.5 -> 0.222 Inexact Rounded -pwsx3885 power 0.492 0.5 -> 0.701 Inexact Rounded -pwsx3886 power 0.0492 0.5 -> 0.222 Inexact Rounded -pwsx3887 power 0.493 0.5 -> 0.702 Inexact Rounded -pwsx3888 power 0.0493 0.5 -> 0.222 Inexact Rounded -pwsx3889 power 0.494 0.5 -> 0.703 Inexact Rounded -pwsx3890 power 0.0494 0.5 -> 0.222 Inexact Rounded -pwsx3891 power 0.495 0.5 -> 0.704 Inexact Rounded -pwsx3892 power 0.0495 0.5 -> 0.222 Inexact Rounded -pwsx3893 power 0.496 0.5 -> 0.704 Inexact Rounded -pwsx3894 power 0.0496 0.5 -> 0.223 Inexact Rounded -pwsx3895 power 0.497 0.5 -> 0.705 Inexact Rounded -pwsx3896 power 0.0497 0.5 -> 0.223 Inexact Rounded -pwsx3897 power 0.498 0.5 -> 0.706 Inexact Rounded -pwsx3898 power 0.0498 0.5 -> 0.223 Inexact Rounded -pwsx3899 power 0.499 0.5 -> 0.706 Inexact Rounded -pwsx3900 power 0.0499 0.5 -> 0.223 Inexact Rounded -pwsx3901 power 0.501 0.5 -> 0.708 Inexact Rounded -pwsx3902 power 0.0501 0.5 -> 0.224 Inexact Rounded -pwsx3903 power 0.502 0.5 -> 0.709 Inexact Rounded -pwsx3904 power 0.0502 0.5 -> 0.224 Inexact Rounded -pwsx3905 power 0.503 0.5 -> 0.709 Inexact Rounded -pwsx3906 power 0.0503 0.5 -> 0.224 Inexact Rounded -pwsx3907 power 0.504 0.5 -> 0.710 Inexact Rounded -pwsx3908 power 0.0504 0.5 -> 0.224 Inexact Rounded -pwsx3909 power 0.505 0.5 -> 0.711 Inexact Rounded -pwsx3910 power 0.0505 0.5 -> 0.225 Inexact Rounded -pwsx3911 power 0.506 0.5 -> 0.711 Inexact Rounded -pwsx3912 power 0.0506 0.5 -> 0.225 Inexact Rounded -pwsx3913 power 0.507 0.5 -> 0.712 Inexact Rounded -pwsx3914 power 0.0507 0.5 -> 0.225 Inexact Rounded -pwsx3915 power 0.508 0.5 -> 0.713 Inexact Rounded -pwsx3916 power 0.0508 0.5 -> 0.225 Inexact Rounded -pwsx3917 power 0.509 0.5 -> 0.713 Inexact Rounded -pwsx3918 power 0.0509 0.5 -> 0.226 Inexact Rounded -pwsx3919 power 0.511 0.5 -> 0.715 Inexact Rounded -pwsx3920 power 0.0511 0.5 -> 0.226 Inexact Rounded -pwsx3921 power 0.512 0.5 -> 0.716 Inexact Rounded -pwsx3922 power 0.0512 0.5 -> 0.226 Inexact Rounded -pwsx3923 power 0.513 0.5 -> 0.716 Inexact Rounded -pwsx3924 power 0.0513 0.5 -> 0.226 Inexact Rounded -pwsx3925 power 0.514 0.5 -> 0.717 Inexact Rounded -pwsx3926 power 0.0514 0.5 -> 0.227 Inexact Rounded -pwsx3927 power 0.515 0.5 -> 0.718 Inexact Rounded -pwsx3928 power 0.0515 0.5 -> 0.227 Inexact Rounded -pwsx3929 power 0.516 0.5 -> 0.718 Inexact Rounded -pwsx3930 power 0.0516 0.5 -> 0.227 Inexact Rounded -pwsx3931 power 0.517 0.5 -> 0.719 Inexact Rounded -pwsx3932 power 0.0517 0.5 -> 0.227 Inexact Rounded -pwsx3933 power 0.518 0.5 -> 0.720 Inexact Rounded -pwsx3934 power 0.0518 0.5 -> 0.228 Inexact Rounded -pwsx3935 power 0.519 0.5 -> 0.720 Inexact Rounded -pwsx3936 power 0.0519 0.5 -> 0.228 Inexact Rounded -pwsx3937 power 0.521 0.5 -> 0.722 Inexact Rounded -pwsx3938 power 0.0521 0.5 -> 0.228 Inexact Rounded -pwsx3939 power 0.522 0.5 -> 0.722 Inexact Rounded -pwsx3940 power 0.0522 0.5 -> 0.228 Inexact Rounded -pwsx3941 power 0.523 0.5 -> 0.723 Inexact Rounded -pwsx3942 power 0.0523 0.5 -> 0.229 Inexact Rounded -pwsx3943 power 0.524 0.5 -> 0.724 Inexact Rounded -pwsx3944 power 0.0524 0.5 -> 0.229 Inexact Rounded -pwsx3945 power 0.525 0.5 -> 0.725 Inexact Rounded -pwsx3946 power 0.0525 0.5 -> 0.229 Inexact Rounded -pwsx3947 power 0.526 0.5 -> 0.725 Inexact Rounded -pwsx3948 power 0.0526 0.5 -> 0.229 Inexact Rounded -pwsx3949 power 0.527 0.5 -> 0.726 Inexact Rounded -pwsx3950 power 0.0527 0.5 -> 0.230 Inexact Rounded -pwsx3951 power 0.528 0.5 -> 0.727 Inexact Rounded -pwsx3952 power 0.0528 0.5 -> 0.230 Inexact Rounded -pwsx3953 power 0.529 0.5 -> 0.727 Inexact Rounded -pwsx3954 power 0.0529 0.5 -> 0.230 Inexact Rounded -pwsx3955 power 0.531 0.5 -> 0.729 Inexact Rounded -pwsx3956 power 0.0531 0.5 -> 0.230 Inexact Rounded -pwsx3957 power 0.532 0.5 -> 0.729 Inexact Rounded -pwsx3958 power 0.0532 0.5 -> 0.231 Inexact Rounded -pwsx3959 power 0.533 0.5 -> 0.730 Inexact Rounded -pwsx3960 power 0.0533 0.5 -> 0.231 Inexact Rounded -pwsx3961 power 0.534 0.5 -> 0.731 Inexact Rounded -pwsx3962 power 0.0534 0.5 -> 0.231 Inexact Rounded -pwsx3963 power 0.535 0.5 -> 0.731 Inexact Rounded -pwsx3964 power 0.0535 0.5 -> 0.231 Inexact Rounded -pwsx3965 power 0.536 0.5 -> 0.732 Inexact Rounded -pwsx3966 power 0.0536 0.5 -> 0.232 Inexact Rounded -pwsx3967 power 0.537 0.5 -> 0.733 Inexact Rounded -pwsx3968 power 0.0537 0.5 -> 0.232 Inexact Rounded -pwsx3969 power 0.538 0.5 -> 0.733 Inexact Rounded -pwsx3970 power 0.0538 0.5 -> 0.232 Inexact Rounded -pwsx3971 power 0.539 0.5 -> 0.734 Inexact Rounded -pwsx3972 power 0.0539 0.5 -> 0.232 Inexact Rounded -pwsx3973 power 0.541 0.5 -> 0.736 Inexact Rounded -pwsx3974 power 0.0541 0.5 -> 0.233 Inexact Rounded -pwsx3975 power 0.542 0.5 -> 0.736 Inexact Rounded -pwsx3976 power 0.0542 0.5 -> 0.233 Inexact Rounded -pwsx3977 power 0.543 0.5 -> 0.737 Inexact Rounded -pwsx3978 power 0.0543 0.5 -> 0.233 Inexact Rounded -pwsx3979 power 0.544 0.5 -> 0.738 Inexact Rounded -pwsx3980 power 0.0544 0.5 -> 0.233 Inexact Rounded -pwsx3981 power 0.545 0.5 -> 0.738 Inexact Rounded -pwsx3982 power 0.0545 0.5 -> 0.233 Inexact Rounded -pwsx3983 power 0.546 0.5 -> 0.739 Inexact Rounded -pwsx3984 power 0.0546 0.5 -> 0.234 Inexact Rounded -pwsx3985 power 0.547 0.5 -> 0.740 Inexact Rounded -pwsx3986 power 0.0547 0.5 -> 0.234 Inexact Rounded -pwsx3987 power 0.548 0.5 -> 0.740 Inexact Rounded -pwsx3988 power 0.0548 0.5 -> 0.234 Inexact Rounded -pwsx3989 power 0.549 0.5 -> 0.741 Inexact Rounded -pwsx3990 power 0.0549 0.5 -> 0.234 Inexact Rounded -pwsx3991 power 0.551 0.5 -> 0.742 Inexact Rounded -pwsx3992 power 0.0551 0.5 -> 0.235 Inexact Rounded -pwsx3993 power 0.552 0.5 -> 0.743 Inexact Rounded -pwsx3994 power 0.0552 0.5 -> 0.235 Inexact Rounded -pwsx3995 power 0.553 0.5 -> 0.744 Inexact Rounded -pwsx3996 power 0.0553 0.5 -> 0.235 Inexact Rounded -pwsx3997 power 0.554 0.5 -> 0.744 Inexact Rounded -pwsx3998 power 0.0554 0.5 -> 0.235 Inexact Rounded -pwsx3999 power 0.555 0.5 -> 0.745 Inexact Rounded -pwsx4000 power 0.0555 0.5 -> 0.236 Inexact Rounded -pwsx4001 power 0.556 0.5 -> 0.746 Inexact Rounded -pwsx4002 power 0.0556 0.5 -> 0.236 Inexact Rounded -pwsx4003 power 0.557 0.5 -> 0.746 Inexact Rounded -pwsx4004 power 0.0557 0.5 -> 0.236 Inexact Rounded -pwsx4005 power 0.558 0.5 -> 0.747 Inexact Rounded -pwsx4006 power 0.0558 0.5 -> 0.236 Inexact Rounded -pwsx4007 power 0.559 0.5 -> 0.748 Inexact Rounded -pwsx4008 power 0.0559 0.5 -> 0.236 Inexact Rounded -pwsx4009 power 0.561 0.5 -> 0.749 Inexact Rounded -pwsx4010 power 0.0561 0.5 -> 0.237 Inexact Rounded -pwsx4011 power 0.562 0.5 -> 0.750 Inexact Rounded -pwsx4012 power 0.0562 0.5 -> 0.237 Inexact Rounded -pwsx4013 power 0.563 0.5 -> 0.750 Inexact Rounded -pwsx4014 power 0.0563 0.5 -> 0.237 Inexact Rounded -pwsx4015 power 0.564 0.5 -> 0.751 Inexact Rounded -pwsx4016 power 0.0564 0.5 -> 0.237 Inexact Rounded -pwsx4017 power 0.565 0.5 -> 0.752 Inexact Rounded -pwsx4018 power 0.0565 0.5 -> 0.238 Inexact Rounded -pwsx4019 power 0.566 0.5 -> 0.752 Inexact Rounded -pwsx4020 power 0.0566 0.5 -> 0.238 Inexact Rounded -pwsx4021 power 0.567 0.5 -> 0.753 Inexact Rounded -pwsx4022 power 0.0567 0.5 -> 0.238 Inexact Rounded -pwsx4023 power 0.568 0.5 -> 0.754 Inexact Rounded -pwsx4024 power 0.0568 0.5 -> 0.238 Inexact Rounded -pwsx4025 power 0.569 0.5 -> 0.754 Inexact Rounded -pwsx4026 power 0.0569 0.5 -> 0.239 Inexact Rounded -pwsx4027 power 0.571 0.5 -> 0.756 Inexact Rounded -pwsx4028 power 0.0571 0.5 -> 0.239 Inexact Rounded -pwsx4029 power 0.572 0.5 -> 0.756 Inexact Rounded -pwsx4030 power 0.0572 0.5 -> 0.239 Inexact Rounded -pwsx4031 power 0.573 0.5 -> 0.757 Inexact Rounded -pwsx4032 power 0.0573 0.5 -> 0.239 Inexact Rounded -pwsx4033 power 0.574 0.5 -> 0.758 Inexact Rounded -pwsx4034 power 0.0574 0.5 -> 0.240 Inexact Rounded -pwsx4035 power 0.575 0.5 -> 0.758 Inexact Rounded -pwsx4036 power 0.0575 0.5 -> 0.240 Inexact Rounded -pwsx4037 power 0.576 0.5 -> 0.759 Inexact Rounded -pwsx4038 power 0.0576 0.5 -> 0.240 Inexact Rounded -pwsx4039 power 0.577 0.5 -> 0.760 Inexact Rounded -pwsx4040 power 0.0577 0.5 -> 0.240 Inexact Rounded -pwsx4041 power 0.578 0.5 -> 0.760 Inexact Rounded -pwsx4042 power 0.0578 0.5 -> 0.240 Inexact Rounded -pwsx4043 power 0.579 0.5 -> 0.761 Inexact Rounded -pwsx4044 power 0.0579 0.5 -> 0.241 Inexact Rounded -pwsx4045 power 0.581 0.5 -> 0.762 Inexact Rounded -pwsx4046 power 0.0581 0.5 -> 0.241 Inexact Rounded -pwsx4047 power 0.582 0.5 -> 0.763 Inexact Rounded -pwsx4048 power 0.0582 0.5 -> 0.241 Inexact Rounded -pwsx4049 power 0.583 0.5 -> 0.764 Inexact Rounded -pwsx4050 power 0.0583 0.5 -> 0.241 Inexact Rounded -pwsx4051 power 0.584 0.5 -> 0.764 Inexact Rounded -pwsx4052 power 0.0584 0.5 -> 0.242 Inexact Rounded -pwsx4053 power 0.585 0.5 -> 0.765 Inexact Rounded -pwsx4054 power 0.0585 0.5 -> 0.242 Inexact Rounded -pwsx4055 power 0.586 0.5 -> 0.766 Inexact Rounded -pwsx4056 power 0.0586 0.5 -> 0.242 Inexact Rounded -pwsx4057 power 0.587 0.5 -> 0.766 Inexact Rounded -pwsx4058 power 0.0587 0.5 -> 0.242 Inexact Rounded -pwsx4059 power 0.588 0.5 -> 0.767 Inexact Rounded -pwsx4060 power 0.0588 0.5 -> 0.242 Inexact Rounded -pwsx4061 power 0.589 0.5 -> 0.767 Inexact Rounded -pwsx4062 power 0.0589 0.5 -> 0.243 Inexact Rounded -pwsx4063 power 0.591 0.5 -> 0.769 Inexact Rounded -pwsx4064 power 0.0591 0.5 -> 0.243 Inexact Rounded -pwsx4065 power 0.592 0.5 -> 0.769 Inexact Rounded -pwsx4066 power 0.0592 0.5 -> 0.243 Inexact Rounded -pwsx4067 power 0.593 0.5 -> 0.770 Inexact Rounded -pwsx4068 power 0.0593 0.5 -> 0.244 Inexact Rounded -pwsx4069 power 0.594 0.5 -> 0.771 Inexact Rounded -pwsx4070 power 0.0594 0.5 -> 0.244 Inexact Rounded -pwsx4071 power 0.595 0.5 -> 0.771 Inexact Rounded -pwsx4072 power 0.0595 0.5 -> 0.244 Inexact Rounded -pwsx4073 power 0.596 0.5 -> 0.772 Inexact Rounded -pwsx4074 power 0.0596 0.5 -> 0.244 Inexact Rounded -pwsx4075 power 0.597 0.5 -> 0.773 Inexact Rounded -pwsx4076 power 0.0597 0.5 -> 0.244 Inexact Rounded -pwsx4077 power 0.598 0.5 -> 0.773 Inexact Rounded -pwsx4078 power 0.0598 0.5 -> 0.245 Inexact Rounded -pwsx4079 power 0.599 0.5 -> 0.774 Inexact Rounded -pwsx4080 power 0.0599 0.5 -> 0.245 Inexact Rounded -pwsx4081 power 0.601 0.5 -> 0.775 Inexact Rounded -pwsx4082 power 0.0601 0.5 -> 0.245 Inexact Rounded -pwsx4083 power 0.602 0.5 -> 0.776 Inexact Rounded -pwsx4084 power 0.0602 0.5 -> 0.245 Inexact Rounded -pwsx4085 power 0.603 0.5 -> 0.777 Inexact Rounded -pwsx4086 power 0.0603 0.5 -> 0.246 Inexact Rounded -pwsx4087 power 0.604 0.5 -> 0.777 Inexact Rounded -pwsx4088 power 0.0604 0.5 -> 0.246 Inexact Rounded -pwsx4089 power 0.605 0.5 -> 0.778 Inexact Rounded -pwsx4090 power 0.0605 0.5 -> 0.246 Inexact Rounded -pwsx4091 power 0.606 0.5 -> 0.778 Inexact Rounded -pwsx4092 power 0.0606 0.5 -> 0.246 Inexact Rounded -pwsx4093 power 0.607 0.5 -> 0.779 Inexact Rounded -pwsx4094 power 0.0607 0.5 -> 0.246 Inexact Rounded -pwsx4095 power 0.608 0.5 -> 0.780 Inexact Rounded -pwsx4096 power 0.0608 0.5 -> 0.247 Inexact Rounded -pwsx4097 power 0.609 0.5 -> 0.780 Inexact Rounded -pwsx4098 power 0.0609 0.5 -> 0.247 Inexact Rounded -pwsx4099 power 0.611 0.5 -> 0.782 Inexact Rounded -pwsx4100 power 0.0611 0.5 -> 0.247 Inexact Rounded -pwsx4101 power 0.612 0.5 -> 0.782 Inexact Rounded -pwsx4102 power 0.0612 0.5 -> 0.247 Inexact Rounded -pwsx4103 power 0.613 0.5 -> 0.783 Inexact Rounded -pwsx4104 power 0.0613 0.5 -> 0.248 Inexact Rounded -pwsx4105 power 0.614 0.5 -> 0.784 Inexact Rounded -pwsx4106 power 0.0614 0.5 -> 0.248 Inexact Rounded -pwsx4107 power 0.615 0.5 -> 0.784 Inexact Rounded -pwsx4108 power 0.0615 0.5 -> 0.248 Inexact Rounded -pwsx4109 power 0.616 0.5 -> 0.785 Inexact Rounded -pwsx4110 power 0.0616 0.5 -> 0.248 Inexact Rounded -pwsx4111 power 0.617 0.5 -> 0.785 Inexact Rounded -pwsx4112 power 0.0617 0.5 -> 0.248 Inexact Rounded -pwsx4113 power 0.618 0.5 -> 0.786 Inexact Rounded -pwsx4114 power 0.0618 0.5 -> 0.249 Inexact Rounded -pwsx4115 power 0.619 0.5 -> 0.787 Inexact Rounded -pwsx4116 power 0.0619 0.5 -> 0.249 Inexact Rounded -pwsx4117 power 0.621 0.5 -> 0.788 Inexact Rounded -pwsx4118 power 0.0621 0.5 -> 0.249 Inexact Rounded -pwsx4119 power 0.622 0.5 -> 0.789 Inexact Rounded -pwsx4120 power 0.0622 0.5 -> 0.249 Inexact Rounded -pwsx4121 power 0.623 0.5 -> 0.789 Inexact Rounded -pwsx4122 power 0.0623 0.5 -> 0.250 Inexact Rounded -pwsx4123 power 0.624 0.5 -> 0.790 Inexact Rounded -pwsx4124 power 0.0624 0.5 -> 0.250 Inexact Rounded -pwsx4125 power 0.625 0.5 -> 0.791 Inexact Rounded -pwsx4126 power 0.0625 0.5 -> 0.250 Inexact Rounded -pwsx4127 power 0.626 0.5 -> 0.791 Inexact Rounded -pwsx4128 power 0.0626 0.5 -> 0.250 Inexact Rounded -pwsx4129 power 0.627 0.5 -> 0.792 Inexact Rounded -pwsx4130 power 0.0627 0.5 -> 0.250 Inexact Rounded -pwsx4131 power 0.628 0.5 -> 0.792 Inexact Rounded -pwsx4132 power 0.0628 0.5 -> 0.251 Inexact Rounded -pwsx4133 power 0.629 0.5 -> 0.793 Inexact Rounded -pwsx4134 power 0.0629 0.5 -> 0.251 Inexact Rounded -pwsx4135 power 0.631 0.5 -> 0.794 Inexact Rounded -pwsx4136 power 0.0631 0.5 -> 0.251 Inexact Rounded -pwsx4137 power 0.632 0.5 -> 0.795 Inexact Rounded -pwsx4138 power 0.0632 0.5 -> 0.251 Inexact Rounded -pwsx4139 power 0.633 0.5 -> 0.796 Inexact Rounded -pwsx4140 power 0.0633 0.5 -> 0.252 Inexact Rounded -pwsx4141 power 0.634 0.5 -> 0.796 Inexact Rounded -pwsx4142 power 0.0634 0.5 -> 0.252 Inexact Rounded -pwsx4143 power 0.635 0.5 -> 0.797 Inexact Rounded -pwsx4144 power 0.0635 0.5 -> 0.252 Inexact Rounded -pwsx4145 power 0.636 0.5 -> 0.797 Inexact Rounded -pwsx4146 power 0.0636 0.5 -> 0.252 Inexact Rounded -pwsx4147 power 0.637 0.5 -> 0.798 Inexact Rounded -pwsx4148 power 0.0637 0.5 -> 0.252 Inexact Rounded -pwsx4149 power 0.638 0.5 -> 0.799 Inexact Rounded -pwsx4150 power 0.0638 0.5 -> 0.253 Inexact Rounded -pwsx4151 power 0.639 0.5 -> 0.799 Inexact Rounded -pwsx4152 power 0.0639 0.5 -> 0.253 Inexact Rounded -pwsx4153 power 0.641 0.5 -> 0.801 Inexact Rounded -pwsx4154 power 0.0641 0.5 -> 0.253 Inexact Rounded -pwsx4155 power 0.642 0.5 -> 0.801 Inexact Rounded -pwsx4156 power 0.0642 0.5 -> 0.253 Inexact Rounded -pwsx4157 power 0.643 0.5 -> 0.802 Inexact Rounded -pwsx4158 power 0.0643 0.5 -> 0.254 Inexact Rounded -pwsx4159 power 0.644 0.5 -> 0.802 Inexact Rounded -pwsx4160 power 0.0644 0.5 -> 0.254 Inexact Rounded -pwsx4161 power 0.645 0.5 -> 0.803 Inexact Rounded -pwsx4162 power 0.0645 0.5 -> 0.254 Inexact Rounded -pwsx4163 power 0.646 0.5 -> 0.804 Inexact Rounded -pwsx4164 power 0.0646 0.5 -> 0.254 Inexact Rounded -pwsx4165 power 0.647 0.5 -> 0.804 Inexact Rounded -pwsx4166 power 0.0647 0.5 -> 0.254 Inexact Rounded -pwsx4167 power 0.648 0.5 -> 0.805 Inexact Rounded -pwsx4168 power 0.0648 0.5 -> 0.255 Inexact Rounded -pwsx4169 power 0.649 0.5 -> 0.806 Inexact Rounded -pwsx4170 power 0.0649 0.5 -> 0.255 Inexact Rounded -pwsx4171 power 0.651 0.5 -> 0.807 Inexact Rounded -pwsx4172 power 0.0651 0.5 -> 0.255 Inexact Rounded -pwsx4173 power 0.652 0.5 -> 0.807 Inexact Rounded -pwsx4174 power 0.0652 0.5 -> 0.255 Inexact Rounded -pwsx4175 power 0.653 0.5 -> 0.808 Inexact Rounded -pwsx4176 power 0.0653 0.5 -> 0.256 Inexact Rounded -pwsx4177 power 0.654 0.5 -> 0.809 Inexact Rounded -pwsx4178 power 0.0654 0.5 -> 0.256 Inexact Rounded -pwsx4179 power 0.655 0.5 -> 0.809 Inexact Rounded -pwsx4180 power 0.0655 0.5 -> 0.256 Inexact Rounded -pwsx4181 power 0.656 0.5 -> 0.810 Inexact Rounded -pwsx4182 power 0.0656 0.5 -> 0.256 Inexact Rounded -pwsx4183 power 0.657 0.5 -> 0.811 Inexact Rounded -pwsx4184 power 0.0657 0.5 -> 0.256 Inexact Rounded -pwsx4185 power 0.658 0.5 -> 0.811 Inexact Rounded -pwsx4186 power 0.0658 0.5 -> 0.257 Inexact Rounded -pwsx4187 power 0.659 0.5 -> 0.812 Inexact Rounded -pwsx4188 power 0.0659 0.5 -> 0.257 Inexact Rounded -pwsx4189 power 0.661 0.5 -> 0.813 Inexact Rounded -pwsx4190 power 0.0661 0.5 -> 0.257 Inexact Rounded -pwsx4191 power 0.662 0.5 -> 0.814 Inexact Rounded -pwsx4192 power 0.0662 0.5 -> 0.257 Inexact Rounded -pwsx4193 power 0.663 0.5 -> 0.814 Inexact Rounded -pwsx4194 power 0.0663 0.5 -> 0.257 Inexact Rounded -pwsx4195 power 0.664 0.5 -> 0.815 Inexact Rounded -pwsx4196 power 0.0664 0.5 -> 0.258 Inexact Rounded -pwsx4197 power 0.665 0.5 -> 0.815 Inexact Rounded -pwsx4198 power 0.0665 0.5 -> 0.258 Inexact Rounded -pwsx4199 power 0.666 0.5 -> 0.816 Inexact Rounded -pwsx4200 power 0.0666 0.5 -> 0.258 Inexact Rounded -pwsx4201 power 0.667 0.5 -> 0.817 Inexact Rounded -pwsx4202 power 0.0667 0.5 -> 0.258 Inexact Rounded -pwsx4203 power 0.668 0.5 -> 0.817 Inexact Rounded -pwsx4204 power 0.0668 0.5 -> 0.258 Inexact Rounded -pwsx4205 power 0.669 0.5 -> 0.818 Inexact Rounded -pwsx4206 power 0.0669 0.5 -> 0.259 Inexact Rounded -pwsx4207 power 0.671 0.5 -> 0.819 Inexact Rounded -pwsx4208 power 0.0671 0.5 -> 0.259 Inexact Rounded -pwsx4209 power 0.672 0.5 -> 0.820 Inexact Rounded -pwsx4210 power 0.0672 0.5 -> 0.259 Inexact Rounded -pwsx4211 power 0.673 0.5 -> 0.820 Inexact Rounded -pwsx4212 power 0.0673 0.5 -> 0.259 Inexact Rounded -pwsx4213 power 0.674 0.5 -> 0.821 Inexact Rounded -pwsx4214 power 0.0674 0.5 -> 0.260 Inexact Rounded -pwsx4215 power 0.675 0.5 -> 0.822 Inexact Rounded -pwsx4216 power 0.0675 0.5 -> 0.260 Inexact Rounded -pwsx4217 power 0.676 0.5 -> 0.822 Inexact Rounded -pwsx4218 power 0.0676 0.5 -> 0.260 Inexact Rounded -pwsx4219 power 0.677 0.5 -> 0.823 Inexact Rounded -pwsx4220 power 0.0677 0.5 -> 0.260 Inexact Rounded -pwsx4221 power 0.678 0.5 -> 0.823 Inexact Rounded -pwsx4222 power 0.0678 0.5 -> 0.260 Inexact Rounded -pwsx4223 power 0.679 0.5 -> 0.824 Inexact Rounded -pwsx4224 power 0.0679 0.5 -> 0.261 Inexact Rounded -pwsx4225 power 0.681 0.5 -> 0.825 Inexact Rounded -pwsx4226 power 0.0681 0.5 -> 0.261 Inexact Rounded -pwsx4227 power 0.682 0.5 -> 0.826 Inexact Rounded -pwsx4228 power 0.0682 0.5 -> 0.261 Inexact Rounded -pwsx4229 power 0.683 0.5 -> 0.826 Inexact Rounded -pwsx4230 power 0.0683 0.5 -> 0.261 Inexact Rounded -pwsx4231 power 0.684 0.5 -> 0.827 Inexact Rounded -pwsx4232 power 0.0684 0.5 -> 0.262 Inexact Rounded -pwsx4233 power 0.685 0.5 -> 0.828 Inexact Rounded -pwsx4234 power 0.0685 0.5 -> 0.262 Inexact Rounded -pwsx4235 power 0.686 0.5 -> 0.828 Inexact Rounded -pwsx4236 power 0.0686 0.5 -> 0.262 Inexact Rounded -pwsx4237 power 0.687 0.5 -> 0.829 Inexact Rounded -pwsx4238 power 0.0687 0.5 -> 0.262 Inexact Rounded -pwsx4239 power 0.688 0.5 -> 0.829 Inexact Rounded -pwsx4240 power 0.0688 0.5 -> 0.262 Inexact Rounded -pwsx4241 power 0.689 0.5 -> 0.830 Inexact Rounded -pwsx4242 power 0.0689 0.5 -> 0.262 Inexact Rounded -pwsx4243 power 0.691 0.5 -> 0.831 Inexact Rounded -pwsx4244 power 0.0691 0.5 -> 0.263 Inexact Rounded -pwsx4245 power 0.692 0.5 -> 0.832 Inexact Rounded -pwsx4246 power 0.0692 0.5 -> 0.263 Inexact Rounded -pwsx4247 power 0.693 0.5 -> 0.832 Inexact Rounded -pwsx4248 power 0.0693 0.5 -> 0.263 Inexact Rounded -pwsx4249 power 0.694 0.5 -> 0.833 Inexact Rounded -pwsx4250 power 0.0694 0.5 -> 0.263 Inexact Rounded -pwsx4251 power 0.695 0.5 -> 0.834 Inexact Rounded -pwsx4252 power 0.0695 0.5 -> 0.264 Inexact Rounded -pwsx4253 power 0.696 0.5 -> 0.834 Inexact Rounded -pwsx4254 power 0.0696 0.5 -> 0.264 Inexact Rounded -pwsx4255 power 0.697 0.5 -> 0.835 Inexact Rounded -pwsx4256 power 0.0697 0.5 -> 0.264 Inexact Rounded -pwsx4257 power 0.698 0.5 -> 0.835 Inexact Rounded -pwsx4258 power 0.0698 0.5 -> 0.264 Inexact Rounded -pwsx4259 power 0.699 0.5 -> 0.836 Inexact Rounded -pwsx4260 power 0.0699 0.5 -> 0.264 Inexact Rounded -pwsx4261 power 0.701 0.5 -> 0.837 Inexact Rounded -pwsx4262 power 0.0701 0.5 -> 0.265 Inexact Rounded -pwsx4263 power 0.702 0.5 -> 0.838 Inexact Rounded -pwsx4264 power 0.0702 0.5 -> 0.265 Inexact Rounded -pwsx4265 power 0.703 0.5 -> 0.838 Inexact Rounded -pwsx4266 power 0.0703 0.5 -> 0.265 Inexact Rounded -pwsx4267 power 0.704 0.5 -> 0.839 Inexact Rounded -pwsx4268 power 0.0704 0.5 -> 0.265 Inexact Rounded -pwsx4269 power 0.705 0.5 -> 0.840 Inexact Rounded -pwsx4270 power 0.0705 0.5 -> 0.266 Inexact Rounded -pwsx4271 power 0.706 0.5 -> 0.840 Inexact Rounded -pwsx4272 power 0.0706 0.5 -> 0.266 Inexact Rounded -pwsx4273 power 0.707 0.5 -> 0.841 Inexact Rounded -pwsx4274 power 0.0707 0.5 -> 0.266 Inexact Rounded -pwsx4275 power 0.708 0.5 -> 0.841 Inexact Rounded -pwsx4276 power 0.0708 0.5 -> 0.266 Inexact Rounded -pwsx4277 power 0.709 0.5 -> 0.842 Inexact Rounded -pwsx4278 power 0.0709 0.5 -> 0.266 Inexact Rounded -pwsx4279 power 0.711 0.5 -> 0.843 Inexact Rounded -pwsx4280 power 0.0711 0.5 -> 0.267 Inexact Rounded -pwsx4281 power 0.712 0.5 -> 0.844 Inexact Rounded -pwsx4282 power 0.0712 0.5 -> 0.267 Inexact Rounded -pwsx4283 power 0.713 0.5 -> 0.844 Inexact Rounded -pwsx4284 power 0.0713 0.5 -> 0.267 Inexact Rounded -pwsx4285 power 0.714 0.5 -> 0.845 Inexact Rounded -pwsx4286 power 0.0714 0.5 -> 0.267 Inexact Rounded -pwsx4287 power 0.715 0.5 -> 0.846 Inexact Rounded -pwsx4288 power 0.0715 0.5 -> 0.267 Inexact Rounded -pwsx4289 power 0.716 0.5 -> 0.846 Inexact Rounded -pwsx4290 power 0.0716 0.5 -> 0.268 Inexact Rounded -pwsx4291 power 0.717 0.5 -> 0.847 Inexact Rounded -pwsx4292 power 0.0717 0.5 -> 0.268 Inexact Rounded -pwsx4293 power 0.718 0.5 -> 0.847 Inexact Rounded -pwsx4294 power 0.0718 0.5 -> 0.268 Inexact Rounded -pwsx4295 power 0.719 0.5 -> 0.848 Inexact Rounded -pwsx4296 power 0.0719 0.5 -> 0.268 Inexact Rounded -pwsx4297 power 0.721 0.5 -> 0.849 Inexact Rounded -pwsx4298 power 0.0721 0.5 -> 0.269 Inexact Rounded -pwsx4299 power 0.722 0.5 -> 0.850 Inexact Rounded -pwsx4300 power 0.0722 0.5 -> 0.269 Inexact Rounded -pwsx4301 power 0.723 0.5 -> 0.850 Inexact Rounded -pwsx4302 power 0.0723 0.5 -> 0.269 Inexact Rounded -pwsx4303 power 0.724 0.5 -> 0.851 Inexact Rounded -pwsx4304 power 0.0724 0.5 -> 0.269 Inexact Rounded -pwsx4305 power 0.725 0.5 -> 0.851 Inexact Rounded -pwsx4306 power 0.0725 0.5 -> 0.269 Inexact Rounded -pwsx4307 power 0.726 0.5 -> 0.852 Inexact Rounded -pwsx4308 power 0.0726 0.5 -> 0.269 Inexact Rounded -pwsx4309 power 0.727 0.5 -> 0.853 Inexact Rounded -pwsx4310 power 0.0727 0.5 -> 0.270 Inexact Rounded -pwsx4311 power 0.728 0.5 -> 0.853 Inexact Rounded -pwsx4312 power 0.0728 0.5 -> 0.270 Inexact Rounded -pwsx4313 power 0.729 0.5 -> 0.854 Inexact Rounded -pwsx4314 power 0.0729 0.5 -> 0.270 Inexact Rounded -pwsx4315 power 0.731 0.5 -> 0.855 Inexact Rounded -pwsx4316 power 0.0731 0.5 -> 0.270 Inexact Rounded -pwsx4317 power 0.732 0.5 -> 0.856 Inexact Rounded -pwsx4318 power 0.0732 0.5 -> 0.271 Inexact Rounded -pwsx4319 power 0.733 0.5 -> 0.856 Inexact Rounded -pwsx4320 power 0.0733 0.5 -> 0.271 Inexact Rounded -pwsx4321 power 0.734 0.5 -> 0.857 Inexact Rounded -pwsx4322 power 0.0734 0.5 -> 0.271 Inexact Rounded -pwsx4323 power 0.735 0.5 -> 0.857 Inexact Rounded -pwsx4324 power 0.0735 0.5 -> 0.271 Inexact Rounded -pwsx4325 power 0.736 0.5 -> 0.858 Inexact Rounded -pwsx4326 power 0.0736 0.5 -> 0.271 Inexact Rounded -pwsx4327 power 0.737 0.5 -> 0.858 Inexact Rounded -pwsx4328 power 0.0737 0.5 -> 0.271 Inexact Rounded -pwsx4329 power 0.738 0.5 -> 0.859 Inexact Rounded -pwsx4330 power 0.0738 0.5 -> 0.272 Inexact Rounded -pwsx4331 power 0.739 0.5 -> 0.860 Inexact Rounded -pwsx4332 power 0.0739 0.5 -> 0.272 Inexact Rounded -pwsx4333 power 0.741 0.5 -> 0.861 Inexact Rounded -pwsx4334 power 0.0741 0.5 -> 0.272 Inexact Rounded -pwsx4335 power 0.742 0.5 -> 0.861 Inexact Rounded -pwsx4336 power 0.0742 0.5 -> 0.272 Inexact Rounded -pwsx4337 power 0.743 0.5 -> 0.862 Inexact Rounded -pwsx4338 power 0.0743 0.5 -> 0.273 Inexact Rounded -pwsx4339 power 0.744 0.5 -> 0.863 Inexact Rounded -pwsx4340 power 0.0744 0.5 -> 0.273 Inexact Rounded -pwsx4341 power 0.745 0.5 -> 0.863 Inexact Rounded -pwsx4342 power 0.0745 0.5 -> 0.273 Inexact Rounded -pwsx4343 power 0.746 0.5 -> 0.864 Inexact Rounded -pwsx4344 power 0.0746 0.5 -> 0.273 Inexact Rounded -pwsx4345 power 0.747 0.5 -> 0.864 Inexact Rounded -pwsx4346 power 0.0747 0.5 -> 0.273 Inexact Rounded -pwsx4347 power 0.748 0.5 -> 0.865 Inexact Rounded -pwsx4348 power 0.0748 0.5 -> 0.273 Inexact Rounded -pwsx4349 power 0.749 0.5 -> 0.865 Inexact Rounded -pwsx4350 power 0.0749 0.5 -> 0.274 Inexact Rounded -pwsx4351 power 0.751 0.5 -> 0.867 Inexact Rounded -pwsx4352 power 0.0751 0.5 -> 0.274 Inexact Rounded -pwsx4353 power 0.752 0.5 -> 0.867 Inexact Rounded -pwsx4354 power 0.0752 0.5 -> 0.274 Inexact Rounded -pwsx4355 power 0.753 0.5 -> 0.868 Inexact Rounded -pwsx4356 power 0.0753 0.5 -> 0.274 Inexact Rounded -pwsx4357 power 0.754 0.5 -> 0.868 Inexact Rounded -pwsx4358 power 0.0754 0.5 -> 0.275 Inexact Rounded -pwsx4359 power 0.755 0.5 -> 0.869 Inexact Rounded -pwsx4360 power 0.0755 0.5 -> 0.275 Inexact Rounded -pwsx4361 power 0.756 0.5 -> 0.869 Inexact Rounded -pwsx4362 power 0.0756 0.5 -> 0.275 Inexact Rounded -pwsx4363 power 0.757 0.5 -> 0.870 Inexact Rounded -pwsx4364 power 0.0757 0.5 -> 0.275 Inexact Rounded -pwsx4365 power 0.758 0.5 -> 0.871 Inexact Rounded -pwsx4366 power 0.0758 0.5 -> 0.275 Inexact Rounded -pwsx4367 power 0.759 0.5 -> 0.871 Inexact Rounded -pwsx4368 power 0.0759 0.5 -> 0.275 Inexact Rounded -pwsx4369 power 0.761 0.5 -> 0.872 Inexact Rounded -pwsx4370 power 0.0761 0.5 -> 0.276 Inexact Rounded -pwsx4371 power 0.762 0.5 -> 0.873 Inexact Rounded -pwsx4372 power 0.0762 0.5 -> 0.276 Inexact Rounded -pwsx4373 power 0.763 0.5 -> 0.873 Inexact Rounded -pwsx4374 power 0.0763 0.5 -> 0.276 Inexact Rounded -pwsx4375 power 0.764 0.5 -> 0.874 Inexact Rounded -pwsx4376 power 0.0764 0.5 -> 0.276 Inexact Rounded -pwsx4377 power 0.765 0.5 -> 0.875 Inexact Rounded -pwsx4378 power 0.0765 0.5 -> 0.277 Inexact Rounded -pwsx4379 power 0.766 0.5 -> 0.875 Inexact Rounded -pwsx4380 power 0.0766 0.5 -> 0.277 Inexact Rounded -pwsx4381 power 0.767 0.5 -> 0.876 Inexact Rounded -pwsx4382 power 0.0767 0.5 -> 0.277 Inexact Rounded -pwsx4383 power 0.768 0.5 -> 0.876 Inexact Rounded -pwsx4384 power 0.0768 0.5 -> 0.277 Inexact Rounded -pwsx4385 power 0.769 0.5 -> 0.877 Inexact Rounded -pwsx4386 power 0.0769 0.5 -> 0.277 Inexact Rounded -pwsx4387 power 0.771 0.5 -> 0.878 Inexact Rounded -pwsx4388 power 0.0771 0.5 -> 0.278 Inexact Rounded -pwsx4389 power 0.772 0.5 -> 0.879 Inexact Rounded -pwsx4390 power 0.0772 0.5 -> 0.278 Inexact Rounded -pwsx4391 power 0.773 0.5 -> 0.879 Inexact Rounded -pwsx4392 power 0.0773 0.5 -> 0.278 Inexact Rounded -pwsx4393 power 0.774 0.5 -> 0.880 Inexact Rounded -pwsx4394 power 0.0774 0.5 -> 0.278 Inexact Rounded -pwsx4395 power 0.775 0.5 -> 0.880 Inexact Rounded -pwsx4396 power 0.0775 0.5 -> 0.278 Inexact Rounded -pwsx4397 power 0.776 0.5 -> 0.881 Inexact Rounded -pwsx4398 power 0.0776 0.5 -> 0.279 Inexact Rounded -pwsx4399 power 0.777 0.5 -> 0.881 Inexact Rounded -pwsx4400 power 0.0777 0.5 -> 0.279 Inexact Rounded -pwsx4401 power 0.778 0.5 -> 0.882 Inexact Rounded -pwsx4402 power 0.0778 0.5 -> 0.279 Inexact Rounded -pwsx4403 power 0.779 0.5 -> 0.883 Inexact Rounded -pwsx4404 power 0.0779 0.5 -> 0.279 Inexact Rounded -pwsx4405 power 0.781 0.5 -> 0.884 Inexact Rounded -pwsx4406 power 0.0781 0.5 -> 0.279 Inexact Rounded -pwsx4407 power 0.782 0.5 -> 0.884 Inexact Rounded -pwsx4408 power 0.0782 0.5 -> 0.280 Inexact Rounded -pwsx4409 power 0.783 0.5 -> 0.885 Inexact Rounded -pwsx4410 power 0.0783 0.5 -> 0.280 Inexact Rounded -pwsx4411 power 0.784 0.5 -> 0.885 Inexact Rounded -pwsx4412 power 0.0784 0.5 -> 0.280 Inexact Rounded -pwsx4413 power 0.785 0.5 -> 0.886 Inexact Rounded -pwsx4414 power 0.0785 0.5 -> 0.280 Inexact Rounded -pwsx4415 power 0.786 0.5 -> 0.887 Inexact Rounded -pwsx4416 power 0.0786 0.5 -> 0.280 Inexact Rounded -pwsx4417 power 0.787 0.5 -> 0.887 Inexact Rounded -pwsx4418 power 0.0787 0.5 -> 0.281 Inexact Rounded -pwsx4419 power 0.788 0.5 -> 0.888 Inexact Rounded -pwsx4420 power 0.0788 0.5 -> 0.281 Inexact Rounded -pwsx4421 power 0.789 0.5 -> 0.888 Inexact Rounded -pwsx4422 power 0.0789 0.5 -> 0.281 Inexact Rounded -pwsx4423 power 0.791 0.5 -> 0.889 Inexact Rounded -pwsx4424 power 0.0791 0.5 -> 0.281 Inexact Rounded -pwsx4425 power 0.792 0.5 -> 0.890 Inexact Rounded -pwsx4426 power 0.0792 0.5 -> 0.281 Inexact Rounded -pwsx4427 power 0.793 0.5 -> 0.891 Inexact Rounded -pwsx4428 power 0.0793 0.5 -> 0.282 Inexact Rounded -pwsx4429 power 0.794 0.5 -> 0.891 Inexact Rounded -pwsx4430 power 0.0794 0.5 -> 0.282 Inexact Rounded -pwsx4431 power 0.795 0.5 -> 0.892 Inexact Rounded -pwsx4432 power 0.0795 0.5 -> 0.282 Inexact Rounded -pwsx4433 power 0.796 0.5 -> 0.892 Inexact Rounded -pwsx4434 power 0.0796 0.5 -> 0.282 Inexact Rounded -pwsx4435 power 0.797 0.5 -> 0.893 Inexact Rounded -pwsx4436 power 0.0797 0.5 -> 0.282 Inexact Rounded -pwsx4437 power 0.798 0.5 -> 0.893 Inexact Rounded -pwsx4438 power 0.0798 0.5 -> 0.282 Inexact Rounded -pwsx4439 power 0.799 0.5 -> 0.894 Inexact Rounded -pwsx4440 power 0.0799 0.5 -> 0.283 Inexact Rounded -pwsx4441 power 0.801 0.5 -> 0.895 Inexact Rounded -pwsx4442 power 0.0801 0.5 -> 0.283 Inexact Rounded -pwsx4443 power 0.802 0.5 -> 0.896 Inexact Rounded -pwsx4444 power 0.0802 0.5 -> 0.283 Inexact Rounded -pwsx4445 power 0.803 0.5 -> 0.896 Inexact Rounded -pwsx4446 power 0.0803 0.5 -> 0.283 Inexact Rounded -pwsx4447 power 0.804 0.5 -> 0.897 Inexact Rounded -pwsx4448 power 0.0804 0.5 -> 0.284 Inexact Rounded -pwsx4449 power 0.805 0.5 -> 0.897 Inexact Rounded -pwsx4450 power 0.0805 0.5 -> 0.284 Inexact Rounded -pwsx4451 power 0.806 0.5 -> 0.898 Inexact Rounded -pwsx4452 power 0.0806 0.5 -> 0.284 Inexact Rounded -pwsx4453 power 0.807 0.5 -> 0.898 Inexact Rounded -pwsx4454 power 0.0807 0.5 -> 0.284 Inexact Rounded -pwsx4455 power 0.808 0.5 -> 0.899 Inexact Rounded -pwsx4456 power 0.0808 0.5 -> 0.284 Inexact Rounded -pwsx4457 power 0.809 0.5 -> 0.899 Inexact Rounded -pwsx4458 power 0.0809 0.5 -> 0.284 Inexact Rounded -pwsx4459 power 0.811 0.5 -> 0.901 Inexact Rounded -pwsx4460 power 0.0811 0.5 -> 0.285 Inexact Rounded -pwsx4461 power 0.812 0.5 -> 0.901 Inexact Rounded -pwsx4462 power 0.0812 0.5 -> 0.285 Inexact Rounded -pwsx4463 power 0.813 0.5 -> 0.902 Inexact Rounded -pwsx4464 power 0.0813 0.5 -> 0.285 Inexact Rounded -pwsx4465 power 0.814 0.5 -> 0.902 Inexact Rounded -pwsx4466 power 0.0814 0.5 -> 0.285 Inexact Rounded -pwsx4467 power 0.815 0.5 -> 0.903 Inexact Rounded -pwsx4468 power 0.0815 0.5 -> 0.285 Inexact Rounded -pwsx4469 power 0.816 0.5 -> 0.903 Inexact Rounded -pwsx4470 power 0.0816 0.5 -> 0.286 Inexact Rounded -pwsx4471 power 0.817 0.5 -> 0.904 Inexact Rounded -pwsx4472 power 0.0817 0.5 -> 0.286 Inexact Rounded -pwsx4473 power 0.818 0.5 -> 0.904 Inexact Rounded -pwsx4474 power 0.0818 0.5 -> 0.286 Inexact Rounded -pwsx4475 power 0.819 0.5 -> 0.905 Inexact Rounded -pwsx4476 power 0.0819 0.5 -> 0.286 Inexact Rounded -pwsx4477 power 0.821 0.5 -> 0.906 Inexact Rounded -pwsx4478 power 0.0821 0.5 -> 0.287 Inexact Rounded -pwsx4479 power 0.822 0.5 -> 0.907 Inexact Rounded -pwsx4480 power 0.0822 0.5 -> 0.287 Inexact Rounded -pwsx4481 power 0.823 0.5 -> 0.907 Inexact Rounded -pwsx4482 power 0.0823 0.5 -> 0.287 Inexact Rounded -pwsx4483 power 0.824 0.5 -> 0.908 Inexact Rounded -pwsx4484 power 0.0824 0.5 -> 0.287 Inexact Rounded -pwsx4485 power 0.825 0.5 -> 0.908 Inexact Rounded -pwsx4486 power 0.0825 0.5 -> 0.287 Inexact Rounded -pwsx4487 power 0.826 0.5 -> 0.909 Inexact Rounded -pwsx4488 power 0.0826 0.5 -> 0.287 Inexact Rounded -pwsx4489 power 0.827 0.5 -> 0.909 Inexact Rounded -pwsx4490 power 0.0827 0.5 -> 0.288 Inexact Rounded -pwsx4491 power 0.828 0.5 -> 0.910 Inexact Rounded -pwsx4492 power 0.0828 0.5 -> 0.288 Inexact Rounded -pwsx4493 power 0.829 0.5 -> 0.910 Inexact Rounded -pwsx4494 power 0.0829 0.5 -> 0.288 Inexact Rounded -pwsx4495 power 0.831 0.5 -> 0.912 Inexact Rounded -pwsx4496 power 0.0831 0.5 -> 0.288 Inexact Rounded -pwsx4497 power 0.832 0.5 -> 0.912 Inexact Rounded -pwsx4498 power 0.0832 0.5 -> 0.288 Inexact Rounded -pwsx4499 power 0.833 0.5 -> 0.913 Inexact Rounded -pwsx4500 power 0.0833 0.5 -> 0.289 Inexact Rounded -pwsx4501 power 0.834 0.5 -> 0.913 Inexact Rounded -pwsx4502 power 0.0834 0.5 -> 0.289 Inexact Rounded -pwsx4503 power 0.835 0.5 -> 0.914 Inexact Rounded -pwsx4504 power 0.0835 0.5 -> 0.289 Inexact Rounded -pwsx4505 power 0.836 0.5 -> 0.914 Inexact Rounded -pwsx4506 power 0.0836 0.5 -> 0.289 Inexact Rounded -pwsx4507 power 0.837 0.5 -> 0.915 Inexact Rounded -pwsx4508 power 0.0837 0.5 -> 0.289 Inexact Rounded -pwsx4509 power 0.838 0.5 -> 0.915 Inexact Rounded -pwsx4510 power 0.0838 0.5 -> 0.289 Inexact Rounded -pwsx4511 power 0.839 0.5 -> 0.916 Inexact Rounded -pwsx4512 power 0.0839 0.5 -> 0.290 Inexact Rounded -pwsx4513 power 0.841 0.5 -> 0.917 Inexact Rounded -pwsx4514 power 0.0841 0.5 -> 0.290 Inexact Rounded -pwsx4515 power 0.842 0.5 -> 0.918 Inexact Rounded -pwsx4516 power 0.0842 0.5 -> 0.290 Inexact Rounded -pwsx4517 power 0.843 0.5 -> 0.918 Inexact Rounded -pwsx4518 power 0.0843 0.5 -> 0.290 Inexact Rounded -pwsx4519 power 0.844 0.5 -> 0.919 Inexact Rounded -pwsx4520 power 0.0844 0.5 -> 0.291 Inexact Rounded -pwsx4521 power 0.845 0.5 -> 0.919 Inexact Rounded -pwsx4522 power 0.0845 0.5 -> 0.291 Inexact Rounded -pwsx4523 power 0.846 0.5 -> 0.920 Inexact Rounded -pwsx4524 power 0.0846 0.5 -> 0.291 Inexact Rounded -pwsx4525 power 0.847 0.5 -> 0.920 Inexact Rounded -pwsx4526 power 0.0847 0.5 -> 0.291 Inexact Rounded -pwsx4527 power 0.848 0.5 -> 0.921 Inexact Rounded -pwsx4528 power 0.0848 0.5 -> 0.291 Inexact Rounded -pwsx4529 power 0.849 0.5 -> 0.921 Inexact Rounded -pwsx4530 power 0.0849 0.5 -> 0.291 Inexact Rounded -pwsx4531 power 0.851 0.5 -> 0.922 Inexact Rounded -pwsx4532 power 0.0851 0.5 -> 0.292 Inexact Rounded -pwsx4533 power 0.852 0.5 -> 0.923 Inexact Rounded -pwsx4534 power 0.0852 0.5 -> 0.292 Inexact Rounded -pwsx4535 power 0.853 0.5 -> 0.924 Inexact Rounded -pwsx4536 power 0.0853 0.5 -> 0.292 Inexact Rounded -pwsx4537 power 0.854 0.5 -> 0.924 Inexact Rounded -pwsx4538 power 0.0854 0.5 -> 0.292 Inexact Rounded -pwsx4539 power 0.855 0.5 -> 0.925 Inexact Rounded -pwsx4540 power 0.0855 0.5 -> 0.292 Inexact Rounded -pwsx4541 power 0.856 0.5 -> 0.925 Inexact Rounded -pwsx4542 power 0.0856 0.5 -> 0.293 Inexact Rounded -pwsx4543 power 0.857 0.5 -> 0.926 Inexact Rounded -pwsx4544 power 0.0857 0.5 -> 0.293 Inexact Rounded -pwsx4545 power 0.858 0.5 -> 0.926 Inexact Rounded -pwsx4546 power 0.0858 0.5 -> 0.293 Inexact Rounded -pwsx4547 power 0.859 0.5 -> 0.927 Inexact Rounded -pwsx4548 power 0.0859 0.5 -> 0.293 Inexact Rounded -pwsx4549 power 0.861 0.5 -> 0.928 Inexact Rounded -pwsx4550 power 0.0861 0.5 -> 0.293 Inexact Rounded -pwsx4551 power 0.862 0.5 -> 0.928 Inexact Rounded -pwsx4552 power 0.0862 0.5 -> 0.294 Inexact Rounded -pwsx4553 power 0.863 0.5 -> 0.929 Inexact Rounded -pwsx4554 power 0.0863 0.5 -> 0.294 Inexact Rounded -pwsx4555 power 0.864 0.5 -> 0.930 Inexact Rounded -pwsx4556 power 0.0864 0.5 -> 0.294 Inexact Rounded -pwsx4557 power 0.865 0.5 -> 0.930 Inexact Rounded -pwsx4558 power 0.0865 0.5 -> 0.294 Inexact Rounded -pwsx4559 power 0.866 0.5 -> 0.931 Inexact Rounded -pwsx4560 power 0.0866 0.5 -> 0.294 Inexact Rounded -pwsx4561 power 0.867 0.5 -> 0.931 Inexact Rounded -pwsx4562 power 0.0867 0.5 -> 0.294 Inexact Rounded -pwsx4563 power 0.868 0.5 -> 0.932 Inexact Rounded -pwsx4564 power 0.0868 0.5 -> 0.295 Inexact Rounded -pwsx4565 power 0.869 0.5 -> 0.932 Inexact Rounded -pwsx4566 power 0.0869 0.5 -> 0.295 Inexact Rounded -pwsx4567 power 0.871 0.5 -> 0.933 Inexact Rounded -pwsx4568 power 0.0871 0.5 -> 0.295 Inexact Rounded -pwsx4569 power 0.872 0.5 -> 0.934 Inexact Rounded -pwsx4570 power 0.0872 0.5 -> 0.295 Inexact Rounded -pwsx4571 power 0.873 0.5 -> 0.934 Inexact Rounded -pwsx4572 power 0.0873 0.5 -> 0.295 Inexact Rounded -pwsx4573 power 0.874 0.5 -> 0.935 Inexact Rounded -pwsx4574 power 0.0874 0.5 -> 0.296 Inexact Rounded -pwsx4575 power 0.875 0.5 -> 0.935 Inexact Rounded -pwsx4576 power 0.0875 0.5 -> 0.296 Inexact Rounded -pwsx4577 power 0.876 0.5 -> 0.936 Inexact Rounded -pwsx4578 power 0.0876 0.5 -> 0.296 Inexact Rounded -pwsx4579 power 0.877 0.5 -> 0.936 Inexact Rounded -pwsx4580 power 0.0877 0.5 -> 0.296 Inexact Rounded -pwsx4581 power 0.878 0.5 -> 0.937 Inexact Rounded -pwsx4582 power 0.0878 0.5 -> 0.296 Inexact Rounded -pwsx4583 power 0.879 0.5 -> 0.938 Inexact Rounded -pwsx4584 power 0.0879 0.5 -> 0.296 Inexact Rounded -pwsx4585 power 0.881 0.5 -> 0.939 Inexact Rounded -pwsx4586 power 0.0881 0.5 -> 0.297 Inexact Rounded -pwsx4587 power 0.882 0.5 -> 0.939 Inexact Rounded -pwsx4588 power 0.0882 0.5 -> 0.297 Inexact Rounded -pwsx4589 power 0.883 0.5 -> 0.940 Inexact Rounded -pwsx4590 power 0.0883 0.5 -> 0.297 Inexact Rounded -pwsx4591 power 0.884 0.5 -> 0.940 Inexact Rounded -pwsx4592 power 0.0884 0.5 -> 0.297 Inexact Rounded -pwsx4593 power 0.885 0.5 -> 0.941 Inexact Rounded -pwsx4594 power 0.0885 0.5 -> 0.297 Inexact Rounded -pwsx4595 power 0.886 0.5 -> 0.941 Inexact Rounded -pwsx4596 power 0.0886 0.5 -> 0.298 Inexact Rounded -pwsx4597 power 0.887 0.5 -> 0.942 Inexact Rounded -pwsx4598 power 0.0887 0.5 -> 0.298 Inexact Rounded -pwsx4599 power 0.888 0.5 -> 0.942 Inexact Rounded -pwsx4600 power 0.0888 0.5 -> 0.298 Inexact Rounded -pwsx4601 power 0.889 0.5 -> 0.943 Inexact Rounded -pwsx4602 power 0.0889 0.5 -> 0.298 Inexact Rounded -pwsx4603 power 0.891 0.5 -> 0.944 Inexact Rounded -pwsx4604 power 0.0891 0.5 -> 0.298 Inexact Rounded -pwsx4605 power 0.892 0.5 -> 0.944 Inexact Rounded -pwsx4606 power 0.0892 0.5 -> 0.299 Inexact Rounded -pwsx4607 power 0.893 0.5 -> 0.945 Inexact Rounded -pwsx4608 power 0.0893 0.5 -> 0.299 Inexact Rounded -pwsx4609 power 0.894 0.5 -> 0.946 Inexact Rounded -pwsx4610 power 0.0894 0.5 -> 0.299 Inexact Rounded -pwsx4611 power 0.895 0.5 -> 0.946 Inexact Rounded -pwsx4612 power 0.0895 0.5 -> 0.299 Inexact Rounded -pwsx4613 power 0.896 0.5 -> 0.947 Inexact Rounded -pwsx4614 power 0.0896 0.5 -> 0.299 Inexact Rounded -pwsx4615 power 0.897 0.5 -> 0.947 Inexact Rounded -pwsx4616 power 0.0897 0.5 -> 0.299 Inexact Rounded -pwsx4617 power 0.898 0.5 -> 0.948 Inexact Rounded -pwsx4618 power 0.0898 0.5 -> 0.300 Inexact Rounded -pwsx4619 power 0.899 0.5 -> 0.948 Inexact Rounded -pwsx4620 power 0.0899 0.5 -> 0.300 Inexact Rounded -pwsx4621 power 0.901 0.5 -> 0.949 Inexact Rounded -pwsx4622 power 0.0901 0.5 -> 0.300 Inexact Rounded -pwsx4623 power 0.902 0.5 -> 0.950 Inexact Rounded -pwsx4624 power 0.0902 0.5 -> 0.300 Inexact Rounded -pwsx4625 power 0.903 0.5 -> 0.950 Inexact Rounded -pwsx4626 power 0.0903 0.5 -> 0.300 Inexact Rounded -pwsx4627 power 0.904 0.5 -> 0.951 Inexact Rounded -pwsx4628 power 0.0904 0.5 -> 0.301 Inexact Rounded -pwsx4629 power 0.905 0.5 -> 0.951 Inexact Rounded -pwsx4630 power 0.0905 0.5 -> 0.301 Inexact Rounded -pwsx4631 power 0.906 0.5 -> 0.952 Inexact Rounded -pwsx4632 power 0.0906 0.5 -> 0.301 Inexact Rounded -pwsx4633 power 0.907 0.5 -> 0.952 Inexact Rounded -pwsx4634 power 0.0907 0.5 -> 0.301 Inexact Rounded -pwsx4635 power 0.908 0.5 -> 0.953 Inexact Rounded -pwsx4636 power 0.0908 0.5 -> 0.301 Inexact Rounded -pwsx4637 power 0.909 0.5 -> 0.953 Inexact Rounded -pwsx4638 power 0.0909 0.5 -> 0.301 Inexact Rounded -pwsx4639 power 0.911 0.5 -> 0.954 Inexact Rounded -pwsx4640 power 0.0911 0.5 -> 0.302 Inexact Rounded -pwsx4641 power 0.912 0.5 -> 0.955 Inexact Rounded -pwsx4642 power 0.0912 0.5 -> 0.302 Inexact Rounded -pwsx4643 power 0.913 0.5 -> 0.956 Inexact Rounded -pwsx4644 power 0.0913 0.5 -> 0.302 Inexact Rounded -pwsx4645 power 0.914 0.5 -> 0.956 Inexact Rounded -pwsx4646 power 0.0914 0.5 -> 0.302 Inexact Rounded -pwsx4647 power 0.915 0.5 -> 0.957 Inexact Rounded -pwsx4648 power 0.0915 0.5 -> 0.302 Inexact Rounded -pwsx4649 power 0.916 0.5 -> 0.957 Inexact Rounded -pwsx4650 power 0.0916 0.5 -> 0.303 Inexact Rounded -pwsx4651 power 0.917 0.5 -> 0.958 Inexact Rounded -pwsx4652 power 0.0917 0.5 -> 0.303 Inexact Rounded -pwsx4653 power 0.918 0.5 -> 0.958 Inexact Rounded -pwsx4654 power 0.0918 0.5 -> 0.303 Inexact Rounded -pwsx4655 power 0.919 0.5 -> 0.959 Inexact Rounded -pwsx4656 power 0.0919 0.5 -> 0.303 Inexact Rounded -pwsx4657 power 0.921 0.5 -> 0.960 Inexact Rounded -pwsx4658 power 0.0921 0.5 -> 0.303 Inexact Rounded -pwsx4659 power 0.922 0.5 -> 0.960 Inexact Rounded -pwsx4660 power 0.0922 0.5 -> 0.304 Inexact Rounded -pwsx4661 power 0.923 0.5 -> 0.961 Inexact Rounded -pwsx4662 power 0.0923 0.5 -> 0.304 Inexact Rounded -pwsx4663 power 0.924 0.5 -> 0.961 Inexact Rounded -pwsx4664 power 0.0924 0.5 -> 0.304 Inexact Rounded -pwsx4665 power 0.925 0.5 -> 0.962 Inexact Rounded -pwsx4666 power 0.0925 0.5 -> 0.304 Inexact Rounded -pwsx4667 power 0.926 0.5 -> 0.962 Inexact Rounded -pwsx4668 power 0.0926 0.5 -> 0.304 Inexact Rounded -pwsx4669 power 0.927 0.5 -> 0.963 Inexact Rounded -pwsx4670 power 0.0927 0.5 -> 0.304 Inexact Rounded -pwsx4671 power 0.928 0.5 -> 0.963 Inexact Rounded -pwsx4672 power 0.0928 0.5 -> 0.305 Inexact Rounded -pwsx4673 power 0.929 0.5 -> 0.964 Inexact Rounded -pwsx4674 power 0.0929 0.5 -> 0.305 Inexact Rounded -pwsx4675 power 0.931 0.5 -> 0.965 Inexact Rounded -pwsx4676 power 0.0931 0.5 -> 0.305 Inexact Rounded -pwsx4677 power 0.932 0.5 -> 0.965 Inexact Rounded -pwsx4678 power 0.0932 0.5 -> 0.305 Inexact Rounded -pwsx4679 power 0.933 0.5 -> 0.966 Inexact Rounded -pwsx4680 power 0.0933 0.5 -> 0.305 Inexact Rounded -pwsx4681 power 0.934 0.5 -> 0.966 Inexact Rounded -pwsx4682 power 0.0934 0.5 -> 0.306 Inexact Rounded -pwsx4683 power 0.935 0.5 -> 0.967 Inexact Rounded -pwsx4684 power 0.0935 0.5 -> 0.306 Inexact Rounded -pwsx4685 power 0.936 0.5 -> 0.967 Inexact Rounded -pwsx4686 power 0.0936 0.5 -> 0.306 Inexact Rounded -pwsx4687 power 0.937 0.5 -> 0.968 Inexact Rounded -pwsx4688 power 0.0937 0.5 -> 0.306 Inexact Rounded -pwsx4689 power 0.938 0.5 -> 0.969 Inexact Rounded -pwsx4690 power 0.0938 0.5 -> 0.306 Inexact Rounded -pwsx4691 power 0.939 0.5 -> 0.969 Inexact Rounded -pwsx4692 power 0.0939 0.5 -> 0.306 Inexact Rounded -pwsx4693 power 0.941 0.5 -> 0.970 Inexact Rounded -pwsx4694 power 0.0941 0.5 -> 0.307 Inexact Rounded -pwsx4695 power 0.942 0.5 -> 0.971 Inexact Rounded -pwsx4696 power 0.0942 0.5 -> 0.307 Inexact Rounded -pwsx4697 power 0.943 0.5 -> 0.971 Inexact Rounded -pwsx4698 power 0.0943 0.5 -> 0.307 Inexact Rounded -pwsx4699 power 0.944 0.5 -> 0.972 Inexact Rounded -pwsx4700 power 0.0944 0.5 -> 0.307 Inexact Rounded -pwsx4701 power 0.945 0.5 -> 0.972 Inexact Rounded -pwsx4702 power 0.0945 0.5 -> 0.307 Inexact Rounded -pwsx4703 power 0.946 0.5 -> 0.973 Inexact Rounded -pwsx4704 power 0.0946 0.5 -> 0.308 Inexact Rounded -pwsx4705 power 0.947 0.5 -> 0.973 Inexact Rounded -pwsx4706 power 0.0947 0.5 -> 0.308 Inexact Rounded -pwsx4707 power 0.948 0.5 -> 0.974 Inexact Rounded -pwsx4708 power 0.0948 0.5 -> 0.308 Inexact Rounded -pwsx4709 power 0.949 0.5 -> 0.974 Inexact Rounded -pwsx4710 power 0.0949 0.5 -> 0.308 Inexact Rounded -pwsx4711 power 0.951 0.5 -> 0.975 Inexact Rounded -pwsx4712 power 0.0951 0.5 -> 0.308 Inexact Rounded -pwsx4713 power 0.952 0.5 -> 0.976 Inexact Rounded -pwsx4714 power 0.0952 0.5 -> 0.309 Inexact Rounded -pwsx4715 power 0.953 0.5 -> 0.976 Inexact Rounded -pwsx4716 power 0.0953 0.5 -> 0.309 Inexact Rounded -pwsx4717 power 0.954 0.5 -> 0.977 Inexact Rounded -pwsx4718 power 0.0954 0.5 -> 0.309 Inexact Rounded -pwsx4719 power 0.955 0.5 -> 0.977 Inexact Rounded -pwsx4720 power 0.0955 0.5 -> 0.309 Inexact Rounded -pwsx4721 power 0.956 0.5 -> 0.978 Inexact Rounded -pwsx4722 power 0.0956 0.5 -> 0.309 Inexact Rounded -pwsx4723 power 0.957 0.5 -> 0.978 Inexact Rounded -pwsx4724 power 0.0957 0.5 -> 0.309 Inexact Rounded -pwsx4725 power 0.958 0.5 -> 0.979 Inexact Rounded -pwsx4726 power 0.0958 0.5 -> 0.310 Inexact Rounded -pwsx4727 power 0.959 0.5 -> 0.979 Inexact Rounded -pwsx4728 power 0.0959 0.5 -> 0.310 Inexact Rounded -pwsx4729 power 0.961 0.5 -> 0.980 Inexact Rounded -pwsx4730 power 0.0961 0.5 -> 0.310 Inexact Rounded -pwsx4731 power 0.962 0.5 -> 0.981 Inexact Rounded -pwsx4732 power 0.0962 0.5 -> 0.310 Inexact Rounded -pwsx4733 power 0.963 0.5 -> 0.981 Inexact Rounded -pwsx4734 power 0.0963 0.5 -> 0.310 Inexact Rounded -pwsx4735 power 0.964 0.5 -> 0.982 Inexact Rounded -pwsx4736 power 0.0964 0.5 -> 0.310 Inexact Rounded -pwsx4737 power 0.965 0.5 -> 0.982 Inexact Rounded -pwsx4738 power 0.0965 0.5 -> 0.311 Inexact Rounded -pwsx4739 power 0.966 0.5 -> 0.983 Inexact Rounded -pwsx4740 power 0.0966 0.5 -> 0.311 Inexact Rounded -pwsx4741 power 0.967 0.5 -> 0.983 Inexact Rounded -pwsx4742 power 0.0967 0.5 -> 0.311 Inexact Rounded -pwsx4743 power 0.968 0.5 -> 0.984 Inexact Rounded -pwsx4744 power 0.0968 0.5 -> 0.311 Inexact Rounded -pwsx4745 power 0.969 0.5 -> 0.984 Inexact Rounded -pwsx4746 power 0.0969 0.5 -> 0.311 Inexact Rounded -pwsx4747 power 0.971 0.5 -> 0.985 Inexact Rounded -pwsx4748 power 0.0971 0.5 -> 0.312 Inexact Rounded -pwsx4749 power 0.972 0.5 -> 0.986 Inexact Rounded -pwsx4750 power 0.0972 0.5 -> 0.312 Inexact Rounded -pwsx4751 power 0.973 0.5 -> 0.986 Inexact Rounded -pwsx4752 power 0.0973 0.5 -> 0.312 Inexact Rounded -pwsx4753 power 0.974 0.5 -> 0.987 Inexact Rounded -pwsx4754 power 0.0974 0.5 -> 0.312 Inexact Rounded -pwsx4755 power 0.975 0.5 -> 0.987 Inexact Rounded -pwsx4756 power 0.0975 0.5 -> 0.312 Inexact Rounded -pwsx4757 power 0.976 0.5 -> 0.988 Inexact Rounded -pwsx4758 power 0.0976 0.5 -> 0.312 Inexact Rounded -pwsx4759 power 0.977 0.5 -> 0.988 Inexact Rounded -pwsx4760 power 0.0977 0.5 -> 0.313 Inexact Rounded -pwsx4761 power 0.978 0.5 -> 0.989 Inexact Rounded -pwsx4762 power 0.0978 0.5 -> 0.313 Inexact Rounded -pwsx4763 power 0.979 0.5 -> 0.989 Inexact Rounded -pwsx4764 power 0.0979 0.5 -> 0.313 Inexact Rounded -pwsx4765 power 0.981 0.5 -> 0.990 Inexact Rounded -pwsx4766 power 0.0981 0.5 -> 0.313 Inexact Rounded -pwsx4767 power 0.982 0.5 -> 0.991 Inexact Rounded -pwsx4768 power 0.0982 0.5 -> 0.313 Inexact Rounded -pwsx4769 power 0.983 0.5 -> 0.991 Inexact Rounded -pwsx4770 power 0.0983 0.5 -> 0.314 Inexact Rounded -pwsx4771 power 0.984 0.5 -> 0.992 Inexact Rounded -pwsx4772 power 0.0984 0.5 -> 0.314 Inexact Rounded -pwsx4773 power 0.985 0.5 -> 0.992 Inexact Rounded -pwsx4774 power 0.0985 0.5 -> 0.314 Inexact Rounded -pwsx4775 power 0.986 0.5 -> 0.993 Inexact Rounded -pwsx4776 power 0.0986 0.5 -> 0.314 Inexact Rounded -pwsx4777 power 0.987 0.5 -> 0.993 Inexact Rounded -pwsx4778 power 0.0987 0.5 -> 0.314 Inexact Rounded -pwsx4779 power 0.988 0.5 -> 0.994 Inexact Rounded -pwsx4780 power 0.0988 0.5 -> 0.314 Inexact Rounded -pwsx4781 power 0.989 0.5 -> 0.994 Inexact Rounded -pwsx4782 power 0.0989 0.5 -> 0.314 Inexact Rounded -pwsx4783 power 0.991 0.5 -> 0.995 Inexact Rounded -pwsx4784 power 0.0991 0.5 -> 0.315 Inexact Rounded -pwsx4785 power 0.992 0.5 -> 0.996 Inexact Rounded -pwsx4786 power 0.0992 0.5 -> 0.315 Inexact Rounded -pwsx4787 power 0.993 0.5 -> 0.996 Inexact Rounded -pwsx4788 power 0.0993 0.5 -> 0.315 Inexact Rounded -pwsx4789 power 0.994 0.5 -> 0.997 Inexact Rounded -pwsx4790 power 0.0994 0.5 -> 0.315 Inexact Rounded -pwsx4791 power 0.995 0.5 -> 0.997 Inexact Rounded -pwsx4792 power 0.0995 0.5 -> 0.315 Inexact Rounded -pwsx4793 power 0.996 0.5 -> 0.998 Inexact Rounded -pwsx4794 power 0.0996 0.5 -> 0.316 Inexact Rounded -pwsx4795 power 0.997 0.5 -> 0.998 Inexact Rounded -pwsx4796 power 0.0997 0.5 -> 0.316 Inexact Rounded -pwsx4797 power 0.998 0.5 -> 0.999 Inexact Rounded -pwsx4798 power 0.0998 0.5 -> 0.316 Inexact Rounded -pwsx4799 power 0.999 0.5 -> 0.999 Inexact Rounded -pwsx4800 power 0.0999 0.5 -> 0.316 Inexact Rounded - --- A group of precision 4 tests where Hull & Abrham adjustments are --- needed in some cases (both up and down) [see Hull1985b] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 4 -pwsx5001 power 0.0118 0.5 -> 0.1086 Inexact Rounded -pwsx5002 power 0.119 0.5 -> 0.3450 Inexact Rounded -pwsx5003 power 0.0119 0.5 -> 0.1091 Inexact Rounded -pwsx5004 power 0.121 0.5 -> 0.3479 Inexact Rounded -pwsx5005 power 0.0121 0.5 -> 0.1100 Inexact Rounded -pwsx5006 power 0.122 0.5 -> 0.3493 Inexact Rounded -pwsx5007 power 0.0122 0.5 -> 0.1105 Inexact Rounded -pwsx5008 power 0.123 0.5 -> 0.3507 Inexact Rounded -pwsx5009 power 0.494 0.5 -> 0.7029 Inexact Rounded -pwsx5010 power 0.0669 0.5 -> 0.2587 Inexact Rounded -pwsx5011 power 0.9558 0.5 -> 0.9777 Inexact Rounded -pwsx5012 power 0.9348 0.5 -> 0.9669 Inexact Rounded -pwsx5013 power 0.9345 0.5 -> 0.9667 Inexact Rounded -pwsx5014 power 0.09345 0.5 -> 0.3057 Inexact Rounded -pwsx5015 power 0.9346 0.5 -> 0.9667 Inexact Rounded -pwsx5016 power 0.09346 0.5 -> 0.3057 Inexact Rounded -pwsx5017 power 0.9347 0.5 -> 0.9668 Inexact Rounded - --- examples from decArith -precision: 9 -pwsx700 power 0 0.5 -> '0' -pwsx701 power -0 0.5 -> '0' -pwsx702 power 0.39 0.5 -> 0.624499800 Inexact Rounded -pwsx703 power 100 0.5 -> '10.0000000' Inexact Rounded -pwsx704 power 1.00 0.5 -> '1.00000000' Inexact Rounded -pwsx705 power 7 0.5 -> '2.64575131' Inexact Rounded -pwsx706 power 10 0.5 -> 3.16227766 Inexact Rounded - --- some one-offs -precision: 9 -pwsx711 power 0.1 0.5 -> 0.316227766 Inexact Rounded -pwsx712 power 0.2 0.5 -> 0.447213595 Inexact Rounded -pwsx713 power 0.3 0.5 -> 0.547722558 Inexact Rounded -pwsx714 power 0.4 0.5 -> 0.632455532 Inexact Rounded -pwsx715 power 0.5 0.5 -> 0.707106781 Inexact Rounded -pwsx716 power 0.6 0.5 -> 0.774596669 Inexact Rounded -pwsx717 power 0.7 0.5 -> 0.836660027 Inexact Rounded -pwsx718 power 0.8 0.5 -> 0.894427191 Inexact Rounded -pwsx719 power 0.9 0.5 -> 0.948683298 Inexact Rounded -precision: 10 -- note no normalizatoin here -pwsx720 power +0.1 0.5 -> 0.3162277660 Inexact Rounded -precision: 11 -pwsx721 power +0.1 0.5 -> 0.31622776602 Inexact Rounded -precision: 12 -pwsx722 power +0.1 0.5 -> 0.316227766017 Inexact Rounded -precision: 9 -pwsx723 power 0.39 0.5 -> 0.624499800 Inexact Rounded -precision: 15 -pwsx724 power 0.39 0.5 -> 0.624499799839840 Inexact Rounded - --- discussion cases -precision: 7 -pwsx731 power 9 0.5 -> 3.000000 Inexact Rounded -pwsx732 power 100 0.5 -> 10.00000 Inexact Rounded -pwsx733 power 123 0.5 -> 11.09054 Inexact Rounded -pwsx734 power 144 0.5 -> 12.00000 Inexact Rounded -pwsx735 power 156 0.5 -> 12.49000 Inexact Rounded -pwsx736 power 10000 0.5 -> 100.0000 Inexact Rounded - --- values close to overflow (if there were input rounding) -maxexponent: 99 -minexponent: -99 -precision: 5 -pwsx760 power 9.9997E+99 0.5 -> 9.9998E+49 Inexact Rounded -pwsx761 power 9.9998E+99 0.5 -> 9.9999E+49 Inexact Rounded -pwsx762 power 9.9999E+99 0.5 -> 9.9999E+49 Inexact Rounded -pwsx763 power 9.99991E+99 0.5 -> 1.0000E+50 Inexact Rounded -pwsx764 power 9.99994E+99 0.5 -> 1.0000E+50 Inexact Rounded -pwsx765 power 9.99995E+99 0.5 -> 1.0000E+50 Inexact Rounded -pwsx766 power 9.99999E+99 0.5 -> 1.0000E+50 Inexact Rounded -precision: 9 -pwsx770 power 9.9997E+99 0.5 -> 9.99985000E+49 Inexact Rounded -pwsx771 power 9.9998E+99 0.5 -> 9.99990000E+49 Inexact Rounded -pwsx772 power 9.9999E+99 0.5 -> 9.99995000E+49 Inexact Rounded -pwsx773 power 9.99991E+99 0.5 -> 9.99995500E+49 Inexact Rounded -pwsx774 power 9.99994E+99 0.5 -> 9.99997000E+49 Inexact Rounded -pwsx775 power 9.99995E+99 0.5 -> 9.99997500E+49 Inexact Rounded -pwsx776 power 9.99999E+99 0.5 -> 9.99999500E+49 Inexact Rounded -precision: 20 -pwsx780 power 9.9997E+99 0.5 -> '9.9998499988749831247E+49' Inexact Rounded -pwsx781 power 9.9998E+99 0.5 -> '9.9998999994999949999E+49' Inexact Rounded -pwsx782 power 9.9999E+99 0.5 -> '9.9999499998749993750E+49' Inexact Rounded -pwsx783 power 9.99991E+99 0.5 -> '9.9999549998987495444E+49' Inexact Rounded -pwsx784 power 9.99994E+99 0.5 -> '9.9999699999549998650E+49' Inexact Rounded -pwsx785 power 9.99995E+99 0.5 -> '9.9999749999687499219E+49' Inexact Rounded -pwsx786 power 9.99999E+99 0.5 -> '9.9999949999987499994E+49' Inexact Rounded - --- subnormals and underflows [these can only result when eMax is < digits+1] --- Etiny = -(Emax + (precision-1)) --- start with subnormal operands and normal results -maxexponent: 9 -minexponent: -9 -precision: 9 -- Etiny=-17 -pwsx800 power 1E-17 0.5 -> 3.16227766E-9 Inexact Rounded -pwsx801 power 10E-17 0.5 -> 1.00000000E-8 Inexact Rounded -precision: 10 -- Etiny=-18 -pwsx802 power 10E-18 0.5 -> 3.162277660E-9 Inexact Rounded -pwsx803 power 1E-18 0.5 -> 1.000000000E-9 Inexact Rounded - -precision: 11 -- Etiny=-19 -pwsx804 power 1E-19 0.5 -> 3.162277660E-10 Underflow Subnormal Inexact Rounded --- The next test should be skipped for decNumber -pwsx805 power 10E-19 0.5 -> 1.0000000000E-9 Inexact Rounded -precision: 12 -- Etiny=-20 -pwsx806 power 10E-20 0.5 -> 3.1622776602E-10 Underflow Subnormal Inexact Rounded -pwsx807 power 1E-20 0.5 -> 1.0000000000E-10 Underflow Subnormal Inexact Rounded - -precision: 13 -- Etiny=-21 -pwsx808 power 1E-21 0.5 -> 3.1622776602E-11 Underflow Subnormal Inexact Rounded -pwsx809 power 10E-21 0.5 -> 1.00000000000E-10 Underflow Subnormal Inexact Rounded -precision: 14 -- Etiny=-22 -pwsx810 power 1E-21 0.5 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded -pwsx811 power 10E-22 0.5 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded -pwsx812 power 1E-22 0.5 -> 1.00000000000E-11 Underflow Subnormal Inexact Rounded - - --- special values -maxexponent: 999 -minexponent: -999 -pwsx820 power Inf 0.5 -> Infinity -pwsx821 power -Inf 0.5 -> NaN Invalid_operation -pwsx822 power NaN 0.5 -> NaN -pwsx823 power sNaN 0.5 -> NaN Invalid_operation --- propagating NaNs -pwsx824 power sNaN123 0.5 -> NaN123 Invalid_operation -pwsx825 power -sNaN321 0.5 -> -NaN321 Invalid_operation -pwsx826 power NaN456 0.5 -> NaN456 -pwsx827 power -NaN654 0.5 -> -NaN654 -pwsx828 power NaN1 0.5 -> NaN1 - --- Null test -pwsx900 power # 0.5 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/quantize.decTest b/qdecimal/test/tc_full/quantize.decTest deleted file mode 100644 index 38b8f55..0000000 --- a/qdecimal/test/tc_full/quantize.decTest +++ /dev/null @@ -1,948 +0,0 @@ ------------------------------------------------------------------------- --- quantize.decTest -- decimal quantize operation -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Most of the tests here assume a "regular pattern", where the --- sign and coefficient are +1. --- 2004.03.15 Underflow for quantize is suppressed --- 2005.06.08 More extensive tests for 'does not fit' - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- sanity checks -quax001 quantize 0 1e0 -> 0 -quax002 quantize 1 1e0 -> 1 -quax003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded -quax005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded -quax006 quantize 0.1 1e0 -> 0 Inexact Rounded -quax007 quantize 0.1 1e-1 -> 0.1 -quax008 quantize 0.1 1e-2 -> 0.10 -quax009 quantize 0.1 1e-3 -> 0.100 -quax010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded -quax011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded -quax012 quantize 0.9 1e+0 -> 1 Inexact Rounded -quax013 quantize 0.9 1e-1 -> 0.9 -quax014 quantize 0.9 1e-2 -> 0.90 -quax015 quantize 0.9 1e-3 -> 0.900 --- negatives -quax021 quantize -0 1e0 -> -0 -quax022 quantize -1 1e0 -> -1 -quax023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded -quax025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded -quax026 quantize -0.1 1e0 -> -0 Inexact Rounded -quax027 quantize -0.1 1e-1 -> -0.1 -quax028 quantize -0.1 1e-2 -> -0.10 -quax029 quantize -0.1 1e-3 -> -0.100 -quax030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded -quax031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded -quax032 quantize -0.9 1e+0 -> -1 Inexact Rounded -quax033 quantize -0.9 1e-1 -> -0.9 -quax034 quantize -0.9 1e-2 -> -0.90 -quax035 quantize -0.9 1e-3 -> -0.900 -quax036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded -quax037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded -quax038 quantize -0.5 1e+0 -> -1 Inexact Rounded -quax039 quantize -0.5 1e-1 -> -0.5 -quax040 quantize -0.5 1e-2 -> -0.50 -quax041 quantize -0.5 1e-3 -> -0.500 -quax042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded -quax043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded -quax044 quantize -0.9 1e+0 -> -1 Inexact Rounded -quax045 quantize -0.9 1e-1 -> -0.9 -quax046 quantize -0.9 1e-2 -> -0.90 -quax047 quantize -0.9 1e-3 -> -0.900 - --- examples from Specification -quax060 quantize 2.17 0.001 -> 2.170 -quax061 quantize 2.17 0.01 -> 2.17 -quax062 quantize 2.17 0.1 -> 2.2 Inexact Rounded -quax063 quantize 2.17 1e+0 -> 2 Inexact Rounded -quax064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded -quax065 quantize -Inf Inf -> -Infinity -quax066 quantize 2 Inf -> NaN Invalid_operation -quax067 quantize -0.1 1 -> -0 Inexact Rounded -quax068 quantize -0 1e+5 -> -0E+5 -quax069 quantize +35236450.6 1e-2 -> NaN Invalid_operation -quax070 quantize -35236450.6 1e-2 -> NaN Invalid_operation -quax071 quantize 217 1e-1 -> 217.0 -quax072 quantize 217 1e+0 -> 217 -quax073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded -quax074 quantize 217 1e+2 -> 2E+2 Inexact Rounded - --- general tests .. -quax089 quantize 12 1e+4 -> 0E+4 Inexact Rounded -quax090 quantize 12 1e+3 -> 0E+3 Inexact Rounded -quax091 quantize 12 1e+2 -> 0E+2 Inexact Rounded -quax092 quantize 12 1e+1 -> 1E+1 Inexact Rounded -quax093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded -quax094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded -quax095 quantize 1.2345 1e-6 -> 1.234500 -quax096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded -quax097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded -quax098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded -quax099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded -quax100 quantize 92 1e+2 -> 1E+2 Inexact Rounded - -quax101 quantize -1 1e0 -> -1 -quax102 quantize -1 1e-1 -> -1.0 -quax103 quantize -1 1e-2 -> -1.00 -quax104 quantize 0 1e0 -> 0 -quax105 quantize 0 1e-1 -> 0.0 -quax106 quantize 0 1e-2 -> 0.00 -quax107 quantize 0.00 1e0 -> 0 -quax108 quantize 0 1e+1 -> 0E+1 -quax109 quantize 0 1e+2 -> 0E+2 -quax110 quantize +1 1e0 -> 1 -quax111 quantize +1 1e-1 -> 1.0 -quax112 quantize +1 1e-2 -> 1.00 - -quax120 quantize 1.04 1e-3 -> 1.040 -quax121 quantize 1.04 1e-2 -> 1.04 -quax122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded -quax123 quantize 1.04 1e0 -> 1 Inexact Rounded -quax124 quantize 1.05 1e-3 -> 1.050 -quax125 quantize 1.05 1e-2 -> 1.05 -quax126 quantize 1.05 1e-1 -> 1.1 Inexact Rounded -quax131 quantize 1.05 1e0 -> 1 Inexact Rounded -quax132 quantize 1.06 1e-3 -> 1.060 -quax133 quantize 1.06 1e-2 -> 1.06 -quax134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded -quax135 quantize 1.06 1e0 -> 1 Inexact Rounded - -quax140 quantize -10 1e-2 -> -10.00 -quax141 quantize +1 1e-2 -> 1.00 -quax142 quantize +10 1e-2 -> 10.00 -quax143 quantize 1E+10 1e-2 -> NaN Invalid_operation -quax144 quantize 1E-10 1e-2 -> 0.00 Inexact Rounded -quax145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded -quax146 quantize 1E-2 1e-2 -> 0.01 -quax147 quantize 1E-1 1e-2 -> 0.10 -quax148 quantize 0E-10 1e-2 -> 0.00 - -quax150 quantize 1.0600 1e-5 -> 1.06000 -quax151 quantize 1.0600 1e-4 -> 1.0600 -quax152 quantize 1.0600 1e-3 -> 1.060 Rounded -quax153 quantize 1.0600 1e-2 -> 1.06 Rounded -quax154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded -quax155 quantize 1.0600 1e0 -> 1 Inexact Rounded - --- base tests with non-1 coefficients -quax161 quantize 0 -9e0 -> 0 -quax162 quantize 1 -7e0 -> 1 -quax163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded -quax165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded -quax166 quantize 0.1 2e0 -> 0 Inexact Rounded -quax167 quantize 0.1 3e-1 -> 0.1 -quax168 quantize 0.1 44e-2 -> 0.10 -quax169 quantize 0.1 555e-3 -> 0.100 -quax170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded -quax171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded -quax172 quantize 0.9 -88e+0 -> 1 Inexact Rounded -quax173 quantize 0.9 -9e-1 -> 0.9 -quax174 quantize 0.9 0e-2 -> 0.90 -quax175 quantize 0.9 1.1e-3 -> 0.9000 --- negatives -quax181 quantize -0 1.1e0 -> -0.0 -quax182 quantize -1 -1e0 -> -1 -quax183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded -quax185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded -quax186 quantize -0.1 71e0 -> -0 Inexact Rounded -quax187 quantize -0.1 -91e-1 -> -0.1 -quax188 quantize -0.1 -.1e-2 -> -0.100 -quax189 quantize -0.1 -1e-3 -> -0.100 -quax190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded -quax191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded -quax192 quantize -0.9 -10e+0 -> -1 Inexact Rounded -quax193 quantize -0.9 100e-1 -> -0.9 -quax194 quantize -0.9 999e-2 -> -0.90 - --- +ve exponents .. -quax201 quantize -1 1e+0 -> -1 -quax202 quantize -1 1e+1 -> -0E+1 Inexact Rounded -quax203 quantize -1 1e+2 -> -0E+2 Inexact Rounded -quax204 quantize 0 1e+0 -> 0 -quax205 quantize 0 1e+1 -> 0E+1 -quax206 quantize 0 1e+2 -> 0E+2 -quax207 quantize +1 1e+0 -> 1 -quax208 quantize +1 1e+1 -> 0E+1 Inexact Rounded -quax209 quantize +1 1e+2 -> 0E+2 Inexact Rounded - -quax220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded -quax221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded -quax222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded -quax223 quantize 1.04 1e+0 -> 1 Inexact Rounded -quax224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -quax225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -quax226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -quax227 quantize 1.05 1e+0 -> 1 Inexact Rounded -quax228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -quax229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -quax230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -quax231 quantize 1.05 1e+0 -> 1 Inexact Rounded -quax232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded -quax233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded -quax234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded -quax235 quantize 1.06 1e+0 -> 1 Inexact Rounded - -quax240 quantize -10 1e+1 -> -1E+1 Rounded -quax241 quantize +1 1e+1 -> 0E+1 Inexact Rounded -quax242 quantize +10 1e+1 -> 1E+1 Rounded -quax243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1 -quax244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1 -quax245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1 -quax246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1 -quax247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1 -quax248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1 -quax249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1 -quax250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1 -quax251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1 --- next one tries to add 9 zeros -quax252 quantize 1E+10 1e+1 -> NaN Invalid_operation -quax253 quantize 1E-10 1e+1 -> 0E+1 Inexact Rounded -quax254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded -quax255 quantize 0E-10 1e+1 -> 0E+1 -quax256 quantize -0E-10 1e+1 -> -0E+1 -quax257 quantize -0E-1 1e+1 -> -0E+1 -quax258 quantize -0 1e+1 -> -0E+1 -quax259 quantize -0E+1 1e+1 -> -0E+1 - -quax260 quantize -10 1e+2 -> -0E+2 Inexact Rounded -quax261 quantize +1 1e+2 -> 0E+2 Inexact Rounded -quax262 quantize +10 1e+2 -> 0E+2 Inexact Rounded -quax263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded -quax264 quantize 1E+2 1e+2 -> 1E+2 -quax265 quantize 1E+3 1e+2 -> 1.0E+3 -quax266 quantize 1E+4 1e+2 -> 1.00E+4 -quax267 quantize 1E+5 1e+2 -> 1.000E+5 -quax268 quantize 1E+6 1e+2 -> 1.0000E+6 -quax269 quantize 1E+7 1e+2 -> 1.00000E+7 -quax270 quantize 1E+8 1e+2 -> 1.000000E+8 -quax271 quantize 1E+9 1e+2 -> 1.0000000E+9 -quax272 quantize 1E+10 1e+2 -> 1.00000000E+10 -quax273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded -quax274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded -quax275 quantize 0E-10 1e+2 -> 0E+2 - -quax280 quantize -10 1e+3 -> -0E+3 Inexact Rounded -quax281 quantize +1 1e+3 -> 0E+3 Inexact Rounded -quax282 quantize +10 1e+3 -> 0E+3 Inexact Rounded -quax283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded -quax284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded -quax285 quantize 1E+3 1e+3 -> 1E+3 -quax286 quantize 1E+4 1e+3 -> 1.0E+4 -quax287 quantize 1E+5 1e+3 -> 1.00E+5 -quax288 quantize 1E+6 1e+3 -> 1.000E+6 -quax289 quantize 1E+7 1e+3 -> 1.0000E+7 -quax290 quantize 1E+8 1e+3 -> 1.00000E+8 -quax291 quantize 1E+9 1e+3 -> 1.000000E+9 -quax292 quantize 1E+10 1e+3 -> 1.0000000E+10 -quax293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded -quax294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded -quax295 quantize 0E-10 1e+3 -> 0E+3 - --- round up from below [sign wrong in JIT compiler once] -quax300 quantize 0.0078 1e-5 -> 0.00780 -quax301 quantize 0.0078 1e-4 -> 0.0078 -quax302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded -quax303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded -quax304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded -quax305 quantize 0.0078 1e0 -> 0 Inexact Rounded -quax306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded -quax307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded - -quax310 quantize -0.0078 1e-5 -> -0.00780 -quax311 quantize -0.0078 1e-4 -> -0.0078 -quax312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded -quax313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded -quax314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded -quax315 quantize -0.0078 1e0 -> -0 Inexact Rounded -quax316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded -quax317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded - -quax320 quantize 0.078 1e-5 -> 0.07800 -quax321 quantize 0.078 1e-4 -> 0.0780 -quax322 quantize 0.078 1e-3 -> 0.078 -quax323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded -quax324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded -quax325 quantize 0.078 1e0 -> 0 Inexact Rounded -quax326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded -quax327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded - -quax330 quantize -0.078 1e-5 -> -0.07800 -quax331 quantize -0.078 1e-4 -> -0.0780 -quax332 quantize -0.078 1e-3 -> -0.078 -quax333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded -quax334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded -quax335 quantize -0.078 1e0 -> -0 Inexact Rounded -quax336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded -quax337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded - -quax340 quantize 0.78 1e-5 -> 0.78000 -quax341 quantize 0.78 1e-4 -> 0.7800 -quax342 quantize 0.78 1e-3 -> 0.780 -quax343 quantize 0.78 1e-2 -> 0.78 -quax344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded -quax345 quantize 0.78 1e0 -> 1 Inexact Rounded -quax346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded -quax347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded - -quax350 quantize -0.78 1e-5 -> -0.78000 -quax351 quantize -0.78 1e-4 -> -0.7800 -quax352 quantize -0.78 1e-3 -> -0.780 -quax353 quantize -0.78 1e-2 -> -0.78 -quax354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded -quax355 quantize -0.78 1e0 -> -1 Inexact Rounded -quax356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded -quax357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded - -quax360 quantize 7.8 1e-5 -> 7.80000 -quax361 quantize 7.8 1e-4 -> 7.8000 -quax362 quantize 7.8 1e-3 -> 7.800 -quax363 quantize 7.8 1e-2 -> 7.80 -quax364 quantize 7.8 1e-1 -> 7.8 -quax365 quantize 7.8 1e0 -> 8 Inexact Rounded -quax366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded -quax367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded -quax368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded - -quax370 quantize -7.8 1e-5 -> -7.80000 -quax371 quantize -7.8 1e-4 -> -7.8000 -quax372 quantize -7.8 1e-3 -> -7.800 -quax373 quantize -7.8 1e-2 -> -7.80 -quax374 quantize -7.8 1e-1 -> -7.8 -quax375 quantize -7.8 1e0 -> -8 Inexact Rounded -quax376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded -quax377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded -quax378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded - --- some individuals -precision: 9 -quax380 quantize 352364.506 1e-2 -> 352364.51 Inexact Rounded -quax381 quantize 3523645.06 1e-2 -> 3523645.06 -quax382 quantize 35236450.6 1e-2 -> NaN Invalid_operation -quax383 quantize 352364506 1e-2 -> NaN Invalid_operation -quax384 quantize -352364.506 1e-2 -> -352364.51 Inexact Rounded -quax385 quantize -3523645.06 1e-2 -> -3523645.06 -quax386 quantize -35236450.6 1e-2 -> NaN Invalid_operation -quax387 quantize -352364506 1e-2 -> NaN Invalid_operation - -rounding: down -quax389 quantize 35236450.6 1e-2 -> NaN Invalid_operation --- ? should that one instead have been: --- quax389 quantize 35236450.6 1e-2 -> NaN Invalid_operation -rounding: half_up - --- and a few more from e-mail discussions -precision: 7 -quax391 quantize 12.34567 1e-3 -> 12.346 Inexact Rounded -quax392 quantize 123.4567 1e-3 -> 123.457 Inexact Rounded -quax393 quantize 1234.567 1e-3 -> 1234.567 -quax394 quantize 12345.67 1e-3 -> NaN Invalid_operation -quax395 quantize 123456.7 1e-3 -> NaN Invalid_operation -quax396 quantize 1234567. 1e-3 -> NaN Invalid_operation - --- some 9999 round-up cases -precision: 9 -quax400 quantize 9.999 1e-5 -> 9.99900 -quax401 quantize 9.999 1e-4 -> 9.9990 -quax402 quantize 9.999 1e-3 -> 9.999 -quax403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded -quax404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded -quax405 quantize 9.999 1e0 -> 10 Inexact Rounded -quax406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded -quax407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded - -quax410 quantize 0.999 1e-5 -> 0.99900 -quax411 quantize 0.999 1e-4 -> 0.9990 -quax412 quantize 0.999 1e-3 -> 0.999 -quax413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded -quax414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded -quax415 quantize 0.999 1e0 -> 1 Inexact Rounded -quax416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded - -quax420 quantize 0.0999 1e-5 -> 0.09990 -quax421 quantize 0.0999 1e-4 -> 0.0999 -quax422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded -quax423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded -quax424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded -quax425 quantize 0.0999 1e0 -> 0 Inexact Rounded -quax426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded - -quax430 quantize 0.00999 1e-5 -> 0.00999 -quax431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded -quax432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded -quax433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded -quax434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded -quax435 quantize 0.00999 1e0 -> 0 Inexact Rounded -quax436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded - -quax440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded -quax441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded -quax442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded -quax443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded -quax444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded -quax445 quantize 0.000999 1e0 -> 0 Inexact Rounded -quax446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded - -precision: 8 -quax449 quantize 9.999E-15 1e-23 -> NaN Invalid_operation -quax450 quantize 9.999E-15 1e-22 -> 9.9990000E-15 -quax451 quantize 9.999E-15 1e-21 -> 9.999000E-15 -quax452 quantize 9.999E-15 1e-20 -> 9.99900E-15 -quax453 quantize 9.999E-15 1e-19 -> 9.9990E-15 -quax454 quantize 9.999E-15 1e-18 -> 9.999E-15 -quax455 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded -quax456 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded -quax457 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded -quax458 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded -quax459 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded -quax460 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded -quax461 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded -quax462 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded -quax463 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded -quax464 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded -quax465 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded -quax466 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded -quax467 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded -quax468 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded -quax469 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded -quax470 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded -quax471 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded -quax472 quantize 9.999E-15 1e0 -> 0 Inexact Rounded -quax473 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded - -precision: 7 -quax900 quantize 9.999E-15 1e-22 -> NaN Invalid_operation -quax901 quantize 9.999E-15 1e-21 -> 9.999000E-15 -quax902 quantize 9.999E-15 1e-20 -> 9.99900E-15 -quax903 quantize 9.999E-15 1e-19 -> 9.9990E-15 -quax904 quantize 9.999E-15 1e-18 -> 9.999E-15 -quax905 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded -quax906 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded -quax907 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded -quax908 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded -quax909 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded -quax910 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded -quax911 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded -quax912 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded -quax913 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded -quax914 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded -quax915 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded -quax916 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded -quax917 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded -quax918 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded -quax919 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded -quax920 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded -quax921 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded -quax922 quantize 9.999E-15 1e0 -> 0 Inexact Rounded -quax923 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded - -precision: 6 -quax930 quantize 9.999E-15 1e-22 -> NaN Invalid_operation -quax931 quantize 9.999E-15 1e-21 -> NaN Invalid_operation -quax932 quantize 9.999E-15 1e-20 -> 9.99900E-15 -quax933 quantize 9.999E-15 1e-19 -> 9.9990E-15 -quax934 quantize 9.999E-15 1e-18 -> 9.999E-15 -quax935 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded -quax936 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded -quax937 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded -quax938 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded -quax939 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded -quax940 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded -quax941 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded -quax942 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded -quax943 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded -quax944 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded -quax945 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded -quax946 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded -quax947 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded -quax948 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded -quax949 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded -quax950 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded -quax951 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded -quax952 quantize 9.999E-15 1e0 -> 0 Inexact Rounded -quax953 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded - -precision: 3 -quax960 quantize 9.999E-15 1e-22 -> NaN Invalid_operation -quax961 quantize 9.999E-15 1e-21 -> NaN Invalid_operation -quax962 quantize 9.999E-15 1e-20 -> NaN Invalid_operation -quax963 quantize 9.999E-15 1e-19 -> NaN Invalid_operation -quax964 quantize 9.999E-15 1e-18 -> NaN Invalid_operation -quax965 quantize 9.999E-15 1e-17 -> NaN Invalid_operation -quax966 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded -quax967 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded -quax968 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded -quax969 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded -quax970 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded -quax971 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded -quax972 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded -quax973 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded -quax974 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded -quax975 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded -quax976 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded -quax977 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded -quax978 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded -quax979 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded -quax980 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded -quax981 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded -quax982 quantize 9.999E-15 1e0 -> 0 Inexact Rounded -quax983 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded - --- Fung Lee's case & similar -precision: 3 -quax1001 quantize 0.000 0.001 -> 0.000 -quax1002 quantize 0.001 0.001 -> 0.001 -quax1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded -quax1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded -quax1005 quantize 0.501 0.001 -> 0.501 -quax1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded -quax1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded -quax1008 quantize 0.999 0.001 -> 0.999 -quax1009 quantize 0.9992 0.001 -> 0.999 Inexact Rounded -quax1010 quantize 0.9998 0.001 -> NaN Invalid_operation -quax1011 quantize 1.0001 0.001 -> NaN Invalid_operation -quax1012 quantize 1.0051 0.001 -> NaN Invalid_operation -quax1013 quantize 1.0551 0.001 -> NaN Invalid_operation -quax1014 quantize 1.5551 0.001 -> NaN Invalid_operation -quax1015 quantize 1.9999 0.001 -> NaN Invalid_operation - --- long operand checks [rhs checks removed] -maxexponent: 999 -minexponent: -999 -precision: 9 -quax481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -quax482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -quax483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -quax484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded -quax485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded -quax486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded --- a potential double-round -quax487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded -quax488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded - -precision: 15 -quax491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -quax492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -quax493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -quax494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded -quax495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded -quax496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded -quax497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded -quax498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded - --- Zeros -quax500 quantize 0 1e1 -> 0E+1 -quax501 quantize 0 1e0 -> 0 -quax502 quantize 0 1e-1 -> 0.0 -quax503 quantize 0.0 1e-1 -> 0.0 -quax504 quantize 0.0 1e0 -> 0 -quax505 quantize 0.0 1e+1 -> 0E+1 -quax506 quantize 0E+1 1e-1 -> 0.0 -quax507 quantize 0E+1 1e0 -> 0 -quax508 quantize 0E+1 1e+1 -> 0E+1 -quax509 quantize -0 1e1 -> -0E+1 -quax510 quantize -0 1e0 -> -0 -quax511 quantize -0 1e-1 -> -0.0 -quax512 quantize -0.0 1e-1 -> -0.0 -quax513 quantize -0.0 1e0 -> -0 -quax514 quantize -0.0 1e+1 -> -0E+1 -quax515 quantize -0E+1 1e-1 -> -0.0 -quax516 quantize -0E+1 1e0 -> -0 -quax517 quantize -0E+1 1e+1 -> -0E+1 - --- Suspicious RHS values -maxexponent: 999999999 -minexponent: -999999999 -precision: 15 -quax520 quantize 1.234 1e999999000 -> 0E+999999000 Inexact Rounded -quax521 quantize 123.456 1e999999000 -> 0E+999999000 Inexact Rounded -quax522 quantize 1.234 1e999999999 -> 0E+999999999 Inexact Rounded -quax523 quantize 123.456 1e999999999 -> 0E+999999999 Inexact Rounded -quax524 quantize 123.456 1e1000000000 -> NaN Invalid_operation -quax525 quantize 123.456 1e12345678903 -> NaN Invalid_operation --- next four are "won't fit" overflows -quax526 quantize 1.234 1e-999999000 -> NaN Invalid_operation -quax527 quantize 123.456 1e-999999000 -> NaN Invalid_operation -quax528 quantize 1.234 1e-999999999 -> NaN Invalid_operation -quax529 quantize 123.456 1e-999999999 -> NaN Invalid_operation -quax530 quantize 123.456 1e-1000000014 -> NaN Invalid_operation -quax531 quantize 123.456 1e-12345678903 -> NaN Invalid_operation - -maxexponent: 999 -minexponent: -999 -precision: 15 -quax532 quantize 1.234E+999 1e999 -> 1E+999 Inexact Rounded -quax533 quantize 1.234E+998 1e999 -> 0E+999 Inexact Rounded -quax534 quantize 1.234 1e999 -> 0E+999 Inexact Rounded -quax535 quantize 1.234 1e1000 -> NaN Invalid_operation -quax536 quantize 1.234 1e5000 -> NaN Invalid_operation -quax537 quantize 0 1e-999 -> 0E-999 --- next two are "won't fit" overflows -quax538 quantize 1.234 1e-999 -> NaN Invalid_operation -quax539 quantize 1.234 1e-1000 -> NaN Invalid_operation -quax540 quantize 1.234 1e-5000 -> NaN Invalid_operation --- [more below] - --- check bounds (lhs maybe out of range for destination, etc.) -precision: 7 -quax541 quantize 1E+999 1e+999 -> 1E+999 -quax542 quantize 1E+1000 1e+999 -> NaN Invalid_operation -quax543 quantize 1E+999 1e+1000 -> NaN Invalid_operation -quax544 quantize 1E-999 1e-999 -> 1E-999 -quax545 quantize 1E-1000 1e-999 -> 0E-999 Inexact Rounded -quax546 quantize 1E-999 1e-1000 -> 1.0E-999 -quax547 quantize 1E-1005 1e-999 -> 0E-999 Inexact Rounded -quax548 quantize 1E-1006 1e-999 -> 0E-999 Inexact Rounded -quax549 quantize 1E-1007 1e-999 -> 0E-999 Inexact Rounded -quax550 quantize 1E-998 1e-1005 -> NaN Invalid_operation -- won't fit -quax551 quantize 1E-999 1e-1005 -> 1.000000E-999 -quax552 quantize 1E-1000 1e-1005 -> 1.00000E-1000 Subnormal -quax553 quantize 1E-999 1e-1006 -> NaN Invalid_operation -quax554 quantize 1E-999 1e-1007 -> NaN Invalid_operation --- related subnormal rounding -quax555 quantize 1.666666E-999 1e-1005 -> 1.666666E-999 -quax556 quantize 1.666666E-1000 1e-1005 -> 1.66667E-1000 Subnormal Inexact Rounded -quax557 quantize 1.666666E-1001 1e-1005 -> 1.6667E-1001 Subnormal Inexact Rounded -quax558 quantize 1.666666E-1002 1e-1005 -> 1.667E-1002 Subnormal Inexact Rounded -quax559 quantize 1.666666E-1003 1e-1005 -> 1.67E-1003 Subnormal Inexact Rounded -quax560 quantize 1.666666E-1004 1e-1005 -> 1.7E-1004 Subnormal Inexact Rounded -quax561 quantize 1.666666E-1005 1e-1005 -> 2E-1005 Subnormal Inexact Rounded -quax562 quantize 1.666666E-1006 1e-1005 -> 0E-1005 Inexact Rounded -quax563 quantize 1.666666E-1007 1e-1005 -> 0E-1005 Inexact Rounded - --- Specials -quax580 quantize Inf -Inf -> Infinity -quax581 quantize Inf 1e-1000 -> NaN Invalid_operation -quax582 quantize Inf 1e-1 -> NaN Invalid_operation -quax583 quantize Inf 1e0 -> NaN Invalid_operation -quax584 quantize Inf 1e1 -> NaN Invalid_operation -quax585 quantize Inf 1e1000 -> NaN Invalid_operation -quax586 quantize Inf Inf -> Infinity -quax587 quantize -1000 Inf -> NaN Invalid_operation -quax588 quantize -Inf Inf -> -Infinity -quax589 quantize -1 Inf -> NaN Invalid_operation -quax590 quantize 0 Inf -> NaN Invalid_operation -quax591 quantize 1 Inf -> NaN Invalid_operation -quax592 quantize 1000 Inf -> NaN Invalid_operation -quax593 quantize Inf Inf -> Infinity -quax594 quantize Inf 1e-0 -> NaN Invalid_operation -quax595 quantize -0 Inf -> NaN Invalid_operation - -quax600 quantize -Inf -Inf -> -Infinity -quax601 quantize -Inf 1e-1000 -> NaN Invalid_operation -quax602 quantize -Inf 1e-1 -> NaN Invalid_operation -quax603 quantize -Inf 1e0 -> NaN Invalid_operation -quax604 quantize -Inf 1e1 -> NaN Invalid_operation -quax605 quantize -Inf 1e1000 -> NaN Invalid_operation -quax606 quantize -Inf Inf -> -Infinity -quax607 quantize -1000 Inf -> NaN Invalid_operation -quax608 quantize -Inf -Inf -> -Infinity -quax609 quantize -1 -Inf -> NaN Invalid_operation -quax610 quantize 0 -Inf -> NaN Invalid_operation -quax611 quantize 1 -Inf -> NaN Invalid_operation -quax612 quantize 1000 -Inf -> NaN Invalid_operation -quax613 quantize Inf -Inf -> Infinity -quax614 quantize -Inf 1e-0 -> NaN Invalid_operation -quax615 quantize -0 -Inf -> NaN Invalid_operation - -quax621 quantize NaN -Inf -> NaN -quax622 quantize NaN 1e-1000 -> NaN -quax623 quantize NaN 1e-1 -> NaN -quax624 quantize NaN 1e0 -> NaN -quax625 quantize NaN 1e1 -> NaN -quax626 quantize NaN 1e1000 -> NaN -quax627 quantize NaN Inf -> NaN -quax628 quantize NaN NaN -> NaN -quax629 quantize -Inf NaN -> NaN -quax630 quantize -1000 NaN -> NaN -quax631 quantize -1 NaN -> NaN -quax632 quantize 0 NaN -> NaN -quax633 quantize 1 NaN -> NaN -quax634 quantize 1000 NaN -> NaN -quax635 quantize Inf NaN -> NaN -quax636 quantize NaN 1e-0 -> NaN -quax637 quantize -0 NaN -> NaN - -quax641 quantize sNaN -Inf -> NaN Invalid_operation -quax642 quantize sNaN 1e-1000 -> NaN Invalid_operation -quax643 quantize sNaN 1e-1 -> NaN Invalid_operation -quax644 quantize sNaN 1e0 -> NaN Invalid_operation -quax645 quantize sNaN 1e1 -> NaN Invalid_operation -quax646 quantize sNaN 1e1000 -> NaN Invalid_operation -quax647 quantize sNaN NaN -> NaN Invalid_operation -quax648 quantize sNaN sNaN -> NaN Invalid_operation -quax649 quantize NaN sNaN -> NaN Invalid_operation -quax650 quantize -Inf sNaN -> NaN Invalid_operation -quax651 quantize -1000 sNaN -> NaN Invalid_operation -quax652 quantize -1 sNaN -> NaN Invalid_operation -quax653 quantize 0 sNaN -> NaN Invalid_operation -quax654 quantize 1 sNaN -> NaN Invalid_operation -quax655 quantize 1000 sNaN -> NaN Invalid_operation -quax656 quantize Inf sNaN -> NaN Invalid_operation -quax657 quantize NaN sNaN -> NaN Invalid_operation -quax658 quantize sNaN 1e-0 -> NaN Invalid_operation -quax659 quantize -0 sNaN -> NaN Invalid_operation - --- propagating NaNs -quax661 quantize NaN9 -Inf -> NaN9 -quax662 quantize NaN8 919 -> NaN8 -quax663 quantize NaN71 Inf -> NaN71 -quax664 quantize NaN6 NaN5 -> NaN6 -quax665 quantize -Inf NaN4 -> NaN4 -quax666 quantize -919 NaN31 -> NaN31 -quax667 quantize Inf NaN2 -> NaN2 - -quax671 quantize sNaN99 -Inf -> NaN99 Invalid_operation -quax672 quantize sNaN98 -11 -> NaN98 Invalid_operation -quax673 quantize sNaN97 NaN -> NaN97 Invalid_operation -quax674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation -quax675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation -quax676 quantize -Inf sNaN92 -> NaN92 Invalid_operation -quax677 quantize 088 sNaN91 -> NaN91 Invalid_operation -quax678 quantize Inf sNaN90 -> NaN90 Invalid_operation -quax679 quantize NaN sNaN88 -> NaN88 Invalid_operation - -quax681 quantize -NaN9 -Inf -> -NaN9 -quax682 quantize -NaN8 919 -> -NaN8 -quax683 quantize -NaN71 Inf -> -NaN71 -quax684 quantize -NaN6 -NaN5 -> -NaN6 -quax685 quantize -Inf -NaN4 -> -NaN4 -quax686 quantize -919 -NaN31 -> -NaN31 -quax687 quantize Inf -NaN2 -> -NaN2 - -quax691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation -quax692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation -quax693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation -quax694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation -quax695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation -quax696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation -quax697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation -quax698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation -quax699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation - --- subnormals and underflow -precision: 4 -maxexponent: 999 -minexponent: -999 -quax710 quantize 1.00E-999 1e-999 -> 1E-999 Rounded -quax711 quantize 0.1E-999 2e-1000 -> 1E-1000 Subnormal -quax712 quantize 0.10E-999 3e-1000 -> 1E-1000 Subnormal Rounded -quax713 quantize 0.100E-999 4e-1000 -> 1E-1000 Subnormal Rounded -quax714 quantize 0.01E-999 5e-1001 -> 1E-1001 Subnormal --- next is rounded to Emin -quax715 quantize 0.999E-999 1e-999 -> 1E-999 Inexact Rounded -quax716 quantize 0.099E-999 10e-1000 -> 1E-1000 Inexact Rounded Subnormal - -quax717 quantize 0.009E-999 1e-1001 -> 1E-1001 Inexact Rounded Subnormal -quax718 quantize 0.001E-999 1e-1001 -> 0E-1001 Inexact Rounded -quax719 quantize 0.0009E-999 1e-1001 -> 0E-1001 Inexact Rounded -quax720 quantize 0.0001E-999 1e-1001 -> 0E-1001 Inexact Rounded - -quax730 quantize -1.00E-999 1e-999 -> -1E-999 Rounded -quax731 quantize -0.1E-999 1e-999 -> -0E-999 Rounded Inexact -quax732 quantize -0.10E-999 1e-999 -> -0E-999 Rounded Inexact -quax733 quantize -0.100E-999 1e-999 -> -0E-999 Rounded Inexact -quax734 quantize -0.01E-999 1e-999 -> -0E-999 Inexact Rounded --- next is rounded to Emin -quax735 quantize -0.999E-999 90e-999 -> -1E-999 Inexact Rounded -quax736 quantize -0.099E-999 -1e-999 -> -0E-999 Inexact Rounded -quax737 quantize -0.009E-999 -1e-999 -> -0E-999 Inexact Rounded -quax738 quantize -0.001E-999 -0e-999 -> -0E-999 Inexact Rounded -quax739 quantize -0.0001E-999 0e-999 -> -0E-999 Inexact Rounded - -quax740 quantize -1.00E-999 1e-1000 -> -1.0E-999 Rounded -quax741 quantize -0.1E-999 1e-1000 -> -1E-1000 Subnormal -quax742 quantize -0.10E-999 1e-1000 -> -1E-1000 Subnormal Rounded -quax743 quantize -0.100E-999 1e-1000 -> -1E-1000 Subnormal Rounded -quax744 quantize -0.01E-999 1e-1000 -> -0E-1000 Inexact Rounded --- next is rounded to Emin -quax745 quantize -0.999E-999 1e-1000 -> -1.0E-999 Inexact Rounded -quax746 quantize -0.099E-999 1e-1000 -> -1E-1000 Inexact Rounded Subnormal -quax747 quantize -0.009E-999 1e-1000 -> -0E-1000 Inexact Rounded -quax748 quantize -0.001E-999 1e-1000 -> -0E-1000 Inexact Rounded -quax749 quantize -0.0001E-999 1e-1000 -> -0E-1000 Inexact Rounded - -quax750 quantize -1.00E-999 1e-1001 -> -1.00E-999 -quax751 quantize -0.1E-999 1e-1001 -> -1.0E-1000 Subnormal -quax752 quantize -0.10E-999 1e-1001 -> -1.0E-1000 Subnormal -quax753 quantize -0.100E-999 1e-1001 -> -1.0E-1000 Subnormal Rounded -quax754 quantize -0.01E-999 1e-1001 -> -1E-1001 Subnormal --- next is rounded to Emin -quax755 quantize -0.999E-999 1e-1001 -> -1.00E-999 Inexact Rounded -quax756 quantize -0.099E-999 1e-1001 -> -1.0E-1000 Inexact Rounded Subnormal -quax757 quantize -0.009E-999 1e-1001 -> -1E-1001 Inexact Rounded Subnormal -quax758 quantize -0.001E-999 1e-1001 -> -0E-1001 Inexact Rounded -quax759 quantize -0.0001E-999 1e-1001 -> -0E-1001 Inexact Rounded - -quax760 quantize -1.00E-999 1e-1002 -> -1.000E-999 -quax761 quantize -0.1E-999 1e-1002 -> -1.00E-1000 Subnormal -quax762 quantize -0.10E-999 1e-1002 -> -1.00E-1000 Subnormal -quax763 quantize -0.100E-999 1e-1002 -> -1.00E-1000 Subnormal -quax764 quantize -0.01E-999 1e-1002 -> -1.0E-1001 Subnormal -quax765 quantize -0.999E-999 1e-1002 -> -9.99E-1000 Subnormal -quax766 quantize -0.099E-999 1e-1002 -> -9.9E-1001 Subnormal -quax767 quantize -0.009E-999 1e-1002 -> -9E-1002 Subnormal -quax768 quantize -0.001E-999 1e-1002 -> -1E-1002 Subnormal -quax769 quantize -0.0001E-999 1e-1002 -> -0E-1002 Inexact Rounded - --- rhs must be no less than Etiny -quax770 quantize -1.00E-999 1e-1003 -> NaN Invalid_operation -quax771 quantize -0.1E-999 1e-1003 -> NaN Invalid_operation -quax772 quantize -0.10E-999 1e-1003 -> NaN Invalid_operation -quax773 quantize -0.100E-999 1e-1003 -> NaN Invalid_operation -quax774 quantize -0.01E-999 1e-1003 -> NaN Invalid_operation -quax775 quantize -0.999E-999 1e-1003 -> NaN Invalid_operation -quax776 quantize -0.099E-999 1e-1003 -> NaN Invalid_operation -quax777 quantize -0.009E-999 1e-1003 -> NaN Invalid_operation -quax778 quantize -0.001E-999 1e-1003 -> NaN Invalid_operation -quax779 quantize -0.0001E-999 1e-1003 -> NaN Invalid_operation -quax780 quantize -0.0001E-999 1e-1004 -> NaN Invalid_operation - -precision: 9 -maxExponent: 999999999 -minexponent: -999999999 - --- some extremes derived from Rescale testcases -quax801 quantize 0 1e1000000000 -> NaN Invalid_operation -quax802 quantize 0 1e-1000000000 -> 0E-1000000000 -quax803 quantize 0 1e2000000000 -> NaN Invalid_operation -quax804 quantize 0 1e-2000000000 -> NaN Invalid_operation -quax805 quantize 0 1e3000000000 -> NaN Invalid_operation -quax806 quantize 0 1e-3000000000 -> NaN Invalid_operation -quax807 quantize 0 1e4000000000 -> NaN Invalid_operation -quax808 quantize 0 1e-4000000000 -> NaN Invalid_operation -quax809 quantize 0 1e5000000000 -> NaN Invalid_operation -quax810 quantize 0 1e-5000000000 -> NaN Invalid_operation -quax811 quantize 0 1e6000000000 -> NaN Invalid_operation -quax812 quantize 0 1e-6000000000 -> NaN Invalid_operation -quax813 quantize 0 1e7000000000 -> NaN Invalid_operation -quax814 quantize 0 1e-7000000000 -> NaN Invalid_operation -quax815 quantize 0 1e8000000000 -> NaN Invalid_operation -quax816 quantize 0 1e-8000000000 -> NaN Invalid_operation -quax817 quantize 0 1e9000000000 -> NaN Invalid_operation -quax818 quantize 0 1e-9000000000 -> NaN Invalid_operation -quax819 quantize 0 1e9999999999 -> NaN Invalid_operation -quax820 quantize 0 1e-9999999999 -> NaN Invalid_operation -quax821 quantize 0 1e10000000000 -> NaN Invalid_operation -quax822 quantize 0 1e-10000000000 -> NaN Invalid_operation - -quax843 quantize 0 1e999999999 -> 0E+999999999 -quax844 quantize 0 1e1000000000 -> NaN Invalid_operation -quax845 quantize 0 1e-999999999 -> 0E-999999999 -quax846 quantize 0 1e-1000000000 -> 0E-1000000000 -quax847 quantize 0 1e-1000000001 -> 0E-1000000001 -quax848 quantize 0 1e-1000000002 -> 0E-1000000002 -quax849 quantize 0 1e-1000000003 -> 0E-1000000003 -quax850 quantize 0 1e-1000000004 -> 0E-1000000004 -quax851 quantize 0 1e-1000000005 -> 0E-1000000005 -quax852 quantize 0 1e-1000000006 -> 0E-1000000006 -quax853 quantize 0 1e-1000000007 -> 0E-1000000007 -quax854 quantize 0 1e-1000000008 -> NaN Invalid_operation - -quax861 quantize 1 1e+2147483649 -> NaN Invalid_operation -quax862 quantize 1 1e+2147483648 -> NaN Invalid_operation -quax863 quantize 1 1e+2147483647 -> NaN Invalid_operation -quax864 quantize 1 1e-2147483647 -> NaN Invalid_operation -quax865 quantize 1 1e-2147483648 -> NaN Invalid_operation -quax866 quantize 1 1e-2147483649 -> NaN Invalid_operation - --- More from Fung Lee -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 -quax1021 quantize 8.666666666666000E+384 1.000000000000000E+384 -> 8.666666666666000E+384 -quax1022 quantize 64#8.666666666666000E+384 64#1.000000000000000E+384 -> 8.666666666666000E+384 -quax1023 quantize 64#8.666666666666000E+384 128#1.000000000000000E+384 -> 8.666666666666000E+384 -quax1024 quantize 64#8.666666666666000E+384 64#1E+384 -> 8.666666666666000E+384 -quax1025 quantize 64#8.666666666666000E+384 64#1E+384 -> 64#8.666666666666000E+384 -quax1026 quantize 64#8.666666666666000E+384 128#1E+384 -> 64#9E+384 Inexact Rounded Clamped -quax1027 quantize 64#8.666666666666000E+323 64#1E+31 -> NaN Invalid_operation -quax1028 quantize 64#8.666666666666000E+323 128#1E+31 -> NaN Invalid_operation -quax1029 quantize 64#8.66666666E+3 128#1E+10 -> 64#0E10 Inexact Rounded -quax1030 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded - --- Int and uInt32 edge values for testing conversions -quax1040 quantize -2147483646 0 -> -2147483646 -quax1041 quantize -2147483647 0 -> -2147483647 -quax1042 quantize -2147483648 0 -> -2147483648 -quax1043 quantize -2147483649 0 -> -2147483649 -quax1044 quantize 2147483646 0 -> 2147483646 -quax1045 quantize 2147483647 0 -> 2147483647 -quax1046 quantize 2147483648 0 -> 2147483648 -quax1047 quantize 2147483649 0 -> 2147483649 -quax1048 quantize 4294967294 0 -> 4294967294 -quax1049 quantize 4294967295 0 -> 4294967295 -quax1050 quantize 4294967296 0 -> 4294967296 -quax1051 quantize 4294967297 0 -> 4294967297 --- and powers of ten for same -quax1101 quantize 5000000000 0 -> 5000000000 -quax1102 quantize 4000000000 0 -> 4000000000 -quax1103 quantize 2000000000 0 -> 2000000000 -quax1104 quantize 1000000000 0 -> 1000000000 -quax1105 quantize 0100000000 0 -> 100000000 -quax1106 quantize 0010000000 0 -> 10000000 -quax1107 quantize 0001000000 0 -> 1000000 -quax1108 quantize 0000100000 0 -> 100000 -quax1109 quantize 0000010000 0 -> 10000 -quax1110 quantize 0000001000 0 -> 1000 -quax1111 quantize 0000000100 0 -> 100 -quax1112 quantize 0000000010 0 -> 10 -quax1113 quantize 0000000001 0 -> 1 -quax1114 quantize 0000000000 0 -> 0 --- and powers of ten for same -quax1121 quantize -5000000000 0 -> -5000000000 -quax1122 quantize -4000000000 0 -> -4000000000 -quax1123 quantize -2000000000 0 -> -2000000000 -quax1124 quantize -1000000000 0 -> -1000000000 -quax1125 quantize -0100000000 0 -> -100000000 -quax1126 quantize -0010000000 0 -> -10000000 -quax1127 quantize -0001000000 0 -> -1000000 -quax1128 quantize -0000100000 0 -> -100000 -quax1129 quantize -0000010000 0 -> -10000 -quax1130 quantize -0000001000 0 -> -1000 -quax1131 quantize -0000000100 0 -> -100 -quax1132 quantize -0000000010 0 -> -10 -quax1133 quantize -0000000001 0 -> -1 -quax1134 quantize -0000000000 0 -> -0 - --- Some miscellany -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 --- 1 2 3 --- 1 234567890123456789012345678901234 -quax0a1 quantize 8.555555555555555555555555555555555E+6143 1E+6143 -> 9E+6143 Inexact Rounded -quax0a2 quantize 128#8.555555555555555555555555555555555E+6143 128#1E+6143 -> 8.55555555555555555555555555555556E+6143 Rounded Inexact -quax0a3 quantize 128#8.555555555555555555555555555555555E+6144 128#1E+6144 -> 8.555555555555555555555555555555555E+6144 - --- payload decapitate -precision: 5 -quax62100 quantize 11 -sNaN1234567890 -> -NaN67890 Invalid_operation - --- Null tests -quax998 quantize 10 # -> NaN Invalid_operation -quax999 quantize # 1e10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/randombound32.decTest b/qdecimal/test/tc_full/randombound32.decTest deleted file mode 100644 index 3750630..0000000 --- a/qdecimal/test/tc_full/randombound32.decTest +++ /dev/null @@ -1,2443 +0,0 @@ ------------------------------------------------------------------------- --- randomBound32.decTest -- decimal testcases -- boundaries near 32 -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- These testcases test calculations at precisions 31, 32, and 33, to --- exercise the boundaries around 2**5 - --- randomly generated testcases [26 Sep 2001] -extended: 1 -precision: 31 -rounding: half_up -maxExponent: 9999 -minexponent: -9999 - -addx3001 add 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 2.189320103965343717049307148600E+799 Inexact Rounded -comx3001 compare 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> -1 -divx3001 divide 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 2.262681764507965005284080800438E-787 Inexact Rounded -dvix3001 divideint 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 0 -mulx3001 multiply 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 1.084531091568672041923151632066E+812 Inexact Rounded -powx3001 power 4953734675913.065314738743322579 2 -> 24539487239343522246155890.99495 Inexact Rounded -remx3001 remainder 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 4953734675913.065314738743322579 -subx3001 subtract 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> -2.189320103965343717049307148600E+799 Inexact Rounded -addx3002 add 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> -7.886453204712287484430980636798E+944 Inexact Rounded -comx3002 compare 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> 1 -divx3002 divide 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> -1.222562801441069667849402782716E-1785 Inexact Rounded -dvix3002 divideint 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> -0 -mulx3002 multiply 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> -7.603869223099928141659831589905E+104 Inexact Rounded -powx3002 power 9641.684323386955881595490347910E-844 -8 -> 1.338988152067180337738955757587E+6720 Inexact Rounded -remx3002 remainder 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> 9.641684323386955881595490347910E-841 -subx3002 subtract 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> 7.886453204712287484430980636798E+944 Inexact Rounded -addx3003 add -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -1.028048571628326871054964307774E+529 Inexact Rounded -comx3003 compare -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -1 -divx3003 divide -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -2.089529249946971482861843692465E+515 Inexact Rounded -dvix3003 divideint -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> NaN Division_impossible -mulx3003 multiply -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -5.057999861231255549283737861207E+542 Inexact Rounded -powx3003 power -1.028048571628326871054964307774E+529 5 -> -1.148333858253704284232780819739E+2645 Inexact Rounded -remx3003 remainder -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> NaN Division_impossible -subx3003 subtract -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -1.028048571628326871054964307774E+529 Inexact Rounded -addx3004 add 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 84158050139.12535935915094076662 Inexact Rounded -comx3004 compare 479084.8561808930525417735205519 084157571054.2691784660983989931 -> -1 -divx3004 divide 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 0.000005692712493709617905493710207969 Inexact Rounded -dvix3004 divideint 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 0 -mulx3004 multiply 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 40318617825067837.47317700523687 Inexact Rounded -powx3004 power 479084.8561808930525417735205519 8 -> 2.775233598021235973545933045837E+45 Inexact Rounded -remx3004 remainder 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 479084.8561808930525417735205519 -subx3004 subtract 479084.8561808930525417735205519 084157571054.2691784660983989931 -> -84157091969.41299757304585721958 Inexact Rounded -addx3005 add -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -363753960.6547166697980414728370 Inexact Rounded -comx3005 compare -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -1 -divx3005 divide -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> 114672.6064337420167096295290890 Inexact Rounded -dvix3005 divideint -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> 114672 -mulx3005 multiply -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> 1153846941331.188583292239230818 Inexact Rounded -powx3005 power -0363750788.573782205664349562931 -3172 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3005 remainder -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -1923.656911066945656824381431488 -subx3005 subtract -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -363747616.4928477415306576530250 Inexact Rounded -addx3006 add 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 1381026551423669919010191878366 Inexact Rounded -comx3006 compare 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 1 -divx3006 divide 1381026551423669919010191878449 -82.66614775445371254999357800739 -> -16706071214613552377376639557.90 Inexact Rounded -dvix3006 divideint 1381026551423669919010191878449 -82.66614775445371254999357800739 -> -16706071214613552377376639557 -mulx3006 multiply 1381026551423669919010191878449 -82.66614775445371254999357800739 -> -1.141641449528127656560770057228E+32 Inexact Rounded -powx3006 power 1381026551423669919010191878449 -83 -> 2.307977908106564299925193011052E-2502 Inexact Rounded -remx3006 remainder 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 74.22115953553602036042168767377 -subx3006 subtract 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 1381026551423669919010191878532 Inexact Rounded -addx3007 add 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> -4410583128274.803057056669103177 Inexact Rounded -comx3007 compare 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> 1 -divx3007 divide 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> -1.049073743992404570569003129346E-9 Inexact Rounded -dvix3007 divideint 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> -0 -mulx3007 multiply 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> -20407887067124025.31576887565113 Inexact Rounded -powx3007 power 4627.026960423072127953556635585 -4 -> 2.181684167222334934221407781701E-15 Inexact Rounded -remx3007 remainder 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> 4627.026960423072127953556635585 -subx3007 subtract 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> 4410583137528.856977902813359085 Inexact Rounded -addx3008 add 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -8684111695095849922187690616727 Inexact Rounded -comx3008 compare 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 1 -divx3008 divide 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -8.677177026223536475531592432118E-21 Inexact Rounded -dvix3008 divideint 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -0 -mulx3008 multiply 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -6.543788575292743281456830701127E+41 Inexact Rounded -powx3008 power 75353574493.84484153484918212042 -9 -> 1.276630670287906925570645490707E-98 Inexact Rounded -remx3008 remainder 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 75353574493.84484153484918212042 -subx3008 subtract 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 8684111695095849922338397765715 Inexact Rounded -addx3009 add 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 6907061.073440802792400108035410 Inexact Rounded -comx3009 compare 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 1 -divx3009 divide 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 2417586.646146283856436864121104 Inexact Rounded -dvix3009 divideint 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 2417586 -mulx3009 multiply 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 19733502.94653326211623698034717 Inexact Rounded -powx3009 power 6907058.216435355874729592373011 3 -> 329518156646369505494.8971353240 Inexact Rounded -remx3009 remainder 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 1.846043452483451396449034189630 -subx3009 subtract 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 6907055.359429908957059076710612 Inexact Rounded -addx3010 add -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -38949530427253.24030680468677190 Inexact Rounded -comx3010 compare -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -1 -divx3010 divide -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -5.469149031100999700489221122509E+996 Inexact Rounded -dvix3010 divideint -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> NaN Division_impossible -mulx3010 multiply -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -2.773861000818483769292240109417E-970 Inexact Rounded -powx3010 power -38949530427253.24030680468677190 7 -> -1.359926959823071332599817363877E+95 Inexact Rounded -remx3010 remainder -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> NaN Division_impossible -subx3010 subtract -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -38949530427253.24030680468677190 Inexact Rounded -addx3011 add -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -1270911.495819550779479954702829 Inexact Rounded -comx3011 compare -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -1 -divx3011 divide -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> 1.258023449218665608349145394069 Inexact Rounded -dvix3011 divideint -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> 1 -mulx3011 multiply -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> 398531319444.8556128729086112205 Inexact Rounded -powx3011 power -0708069.025667471996378081482549 -562842 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3011 remainder -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -145226.5555153932132762082622686 -subx3011 subtract -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -145226.5555153932132762082622686 -addx3012 add 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> -4.318314692189767383476104084575E+224 Inexact Rounded -comx3012 compare 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> 1 -divx3012 divide 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> -9.390439409913307906923909630247E-219 Inexact Rounded -dvix3012 divideint 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> -0 -mulx3012 multiply 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> -1.751114283680833039197637874453E+231 Inexact Rounded -powx3012 power 4055087.246994644709729942673976 -4 -> 3.698274893849241116195795515302E-27 Inexact Rounded -remx3012 remainder 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> 4055087.246994644709729942673976 -subx3012 subtract 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> 4.318314692189767383476104084575E+224 Inexact Rounded -addx3013 add 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> -815.9047305921862348263521876034 Inexact Rounded -comx3013 compare 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> 1 -divx3013 divide 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> -5.518899111238367862234798433551E-503 Inexact Rounded -dvix3013 divideint 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> -0 -mulx3013 multiply 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> -3.673934060071516156604453756541E-497 Inexact Rounded -powx3013 power 4502895892520.396581348110906909E-512 -816 -> Infinity Overflow Inexact Rounded -remx3013 remainder 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> 4.502895892520396581348110906909E-500 -subx3013 subtract 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> 815.9047305921862348263521876034 Inexact Rounded -addx3014 add 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 465.6005787733070743275007572563 Inexact Rounded -comx3014 compare 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 1 -divx3014 divide 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> -225.7594380101027705997496045999 Inexact Rounded -dvix3014 divideint 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> -225 -mulx3014 multiply 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> -968.8065431314121523074875069807 Inexact Rounded -powx3014 power 467.6721295072628100260239179865 -2 -> 0.000004572113694193221810609836080931 Inexact Rounded -remx3014 remainder 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 1.57321436722227785831275368025 -subx3014 subtract 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 469.7436802412185457245470787168 Inexact Rounded -addx3015 add 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> -8677147.586389401682712180146855 Inexact Rounded -comx3015 compare 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> 1 -divx3015 divide 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> -2.485604044230163799604243529005E-578 Inexact Rounded -dvix3015 divideint 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> -0 -mulx3015 multiply 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> -1.871483124723381986272837942577E-564 Inexact Rounded -powx3015 power 2.156795313311150143949997552501E-571 -8677148 -> Infinity Overflow Inexact Rounded -remx3015 remainder 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> 2.156795313311150143949997552501E-571 -subx3015 subtract 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> 8677147.586389401682712180146855 Inexact Rounded -addx3016 add -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> -694070746.6469215276170700777068 Inexact Rounded -comx3016 compare -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 1 -divx3016 divide -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 0.001406664546942092941961075608769 Inexact Rounded -dvix3016 divideint -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 0 -mulx3016 multiply -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 675736017210596.9899587749991363 Inexact Rounded -powx3016 power -974953.2801637208368002585822457 -693095793 -> -0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3016 remainder -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> -974953.2801637208368002585822457 -subx3016 subtract -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 692120840.0865940859434695605424 Inexact Rounded -addx3017 add -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -7634680140009571846155654339781 Inexact Rounded -comx3017 compare -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -1 -divx3017 divide -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -2.536749610869326753741024659948E+508 Inexact Rounded -dvix3017 divideint -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> NaN Division_impossible -mulx3017 multiply -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -2.297756963892134373657544025107E-447 Inexact Rounded -powx3017 power -7634680140009571846155654339781 3 -> -4.450128382072157170207584847831E+92 Inexact Rounded -remx3017 remainder -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> NaN Division_impossible -subx3017 subtract -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -7634680140009571846155654339781 Inexact Rounded -addx3018 add 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 74177.21073338090843145838835480 Inexact Rounded -comx3018 compare 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> -1 -divx3018 divide 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 3.535762799545274329358292065343E-624 Inexact Rounded -dvix3018 divideint 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 0 -mulx3018 multiply 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 1.945468124372395349192665031675E-614 Inexact Rounded -powx3018 power 262273.0222851186523650889896428E-624 74177 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3018 remainder 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 2.622730222851186523650889896428E-619 -subx3018 subtract 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> -74177.21073338090843145838835480 Inexact Rounded -addx3019 add -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -8036052748815903177624783259089 Inexact Rounded -comx3019 compare -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -1 -divx3019 divide -8036052748815903177624716581732 -066677357.4438809548850966167573 -> 120521464210387351732732.6271469 Inexact Rounded -dvix3019 divideint -8036052748815903177624716581732 -066677357.4438809548850966167573 -> 120521464210387351732732 -mulx3019 multiply -8036052748815903177624716581732 -066677357.4438809548850966167573 -> 5.358227615706800711033262124598E+38 Inexact Rounded -powx3019 power -8036052748815903177624716581732 -66677357 -> -0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3019 remainder -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -41816499.5048993028288978900564 -subx3019 subtract -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -8036052748815903177624649904375 Inexact Rounded -addx3020 add 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> 8.834295928031498103637713570166E+770 Inexact Rounded -comx3020 compare 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> 1 -divx3020 divide 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> -2.008754492913739633208672455025E+766 Inexact Rounded -dvix3020 divideint 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> NaN Division_impossible -mulx3020 multiply 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> -3.885232606540600490321438191516E+775 Inexact Rounded -powx3020 power 883429.5928031498103637713570166E+765 -43979 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3020 remainder 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> NaN Division_impossible -subx3020 subtract 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> 8.834295928031498103637713570166E+770 Inexact Rounded -addx3021 add 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> -5588536565419.943265474528122494 Inexact Rounded -comx3021 compare 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> 1 -divx3021 divide 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> -0.004416506865458415275182120038399 Inexact Rounded -dvix3021 divideint 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> -0 -mulx3021 multiply 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> -139161701088530765925120.8408852 Inexact Rounded -powx3021 power 24791301060.37938360567775506973 -6 -> 4.307289712375673028996126249656E-63 Inexact Rounded -remx3021 remainder 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> 24791301060.37938360567775506973 -subx3021 subtract 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> 5638119167540.702032685883632634 Inexact Rounded -addx3022 add -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -930712184.3335760878938383398937 Inexact Rounded -comx3022 compare -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -1 -divx3022 divide -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> 1257062.290270583507131602958799 Inexact Rounded -dvix3022 divideint -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> 1257062 -mulx3022 multiply -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> 689085814282.3968746911100154133 Inexact Rounded -powx3022 power -930711443.9474781586162910776139 -740 -> 1.193603394165051899997226995178E-6637 Inexact Rounded -remx3022 remainder -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -214.9123046664996750639167712140 -subx3022 subtract -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -930710703.5613802293387438153341 Inexact Rounded -addx3023 add 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 2358276428979.423170691006252127 Inexact Rounded -comx3023 compare 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 1 -divx3023 divide 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 11001528525.07089502152736489473 Inexact Rounded -dvix3023 divideint 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 11001528525 -mulx3023 multiply 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 505517728904226.6233443209659001 Inexact Rounded -powx3023 power 2358276428765.064191082773385539 214 -> 5.435856480782850080741276939256E+2647 Inexact Rounded -remx3023 remainder 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 15.1969844739096415643561521775 -subx3023 subtract 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 2358276428550.705211474540518951 Inexact Rounded -addx3024 add -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -3.868744449795653651638308926987E+750 Inexact Rounded -comx3024 compare -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -1 -divx3024 divide -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -4.677779235812959233092739433453E+746 Inexact Rounded -dvix3024 divideint -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> NaN Division_impossible -mulx3024 multiply -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -3.199634455434813294426505526063E+754 Inexact Rounded -powx3024 power -3.868744449795653651638308926987E+750 8270 -> Infinity Overflow Inexact Rounded -remx3024 remainder -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> NaN Division_impossible -subx3024 subtract -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -3.868744449795653651638308926987E+750 Inexact Rounded -addx3025 add 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> -567195652586.2454217069003186487 Inexact Rounded -comx3025 compare 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> 1 -divx3025 divide 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> -2.475725421131866851190640203633E-451 Inexact Rounded -dvix3025 divideint 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> -0 -mulx3025 multiply 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> -7.964678739652657498503799559950E-428 Inexact Rounded -powx3025 power 140422069.5863246490180206814374E-447 -6 -> 1.304330899731988395473578425854E+2633 Inexact Rounded -remx3025 remainder 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> 1.404220695863246490180206814374E-439 -subx3025 subtract 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> 567195652586.2454217069003186487 Inexact Rounded -addx3026 add 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> -9.452601935038035195726041512900E+467 Inexact Rounded -comx3026 compare 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> 1 -divx3026 divide 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> -8.032613347885465805613265604973E-305 Inexact Rounded -dvix3026 divideint 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> -0 -mulx3026 multiply 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> -7.177275242712723733041569606882E+631 Inexact Rounded -powx3026 power 75929096475.63450425339472559646E+153 -9 -> 1.192136299657177324051477375561E-1475 Inexact Rounded -remx3026 remainder 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> 7.592909647563450425339472559646E+163 -subx3026 subtract 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> 9.452601935038035195726041512900E+467 Inexact Rounded -addx3027 add 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> -5.641317823202274083982487558514E+637 Inexact Rounded -comx3027 compare 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> 1 -divx3027 divide 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> -1.118943925332481944765809682502E-628 Inexact Rounded -dvix3027 divideint 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> -0 -mulx3027 multiply 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> -3.560979378308906043783023726787E+647 Inexact Rounded -powx3027 power 6312318309.142044953357460463732 -6 -> 1.580762611512787720076533747265E-59 Inexact Rounded -remx3027 remainder 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> 6312318309.142044953357460463732 -subx3027 subtract 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> 5.641317823202274083982487558514E+637 Inexact Rounded -addx3028 add 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 93793652428100.52105928239469937 Inexact Rounded -comx3028 compare 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 1 -divx3028 divide 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 1.022544815694674972559924997256E+723 Inexact Rounded -dvix3028 divideint 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> NaN Division_impossible -mulx3028 multiply 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 8.603289656137796526769786965341E-696 Inexact Rounded -powx3028 power 93793652428100.52105928239469937 9 -> 5.617732206663136654187263964365E+125 Inexact Rounded -remx3028 remainder 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> NaN Division_impossible -subx3028 subtract 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 93793652428100.52105928239469937 Inexact Rounded -addx3029 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337115 Inexact Rounded -comx3029 compare 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 1 -divx3029 divide 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> -4103968.106336710126241266685434 Inexact Rounded -dvix3029 divideint 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> -4103968 -mulx3029 multiply 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> -2362732023235112.375960528304974 Inexact Rounded -powx3029 power 98471198160.56524417578665886060 -23994 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3029 remainder 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 2551.45824316125588493249246784 -subx3029 subtract 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471222154.70837811518409435005 Inexact Rounded -addx3030 add 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 329324100.9201858301191681987940 Inexact Rounded -comx3030 compare 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 1 -divx3030 divide 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> -134358.6406732917173739187421978 Inexact Rounded -dvix3030 divideint 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> -134358 -mulx3030 multiply 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> -807212527028.0005401736893474430 Inexact Rounded -powx3030 power 329326552.0208398002250836592043 -2451 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3030 remainder 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 1570.35472430963565384668749322 -subx3030 subtract 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 329329003.1214937703309991196146 Inexact Rounded -addx3031 add -92980.68431371090354435763218439 -2282178507046019721925800997065 -> -2282178507046019721925801090046 Inexact Rounded -comx3031 compare -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 1 -divx3031 divide -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 4.074207342968196863070496994457E-26 Inexact Rounded -dvix3031 divideint -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 0 -mulx3031 multiply -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 2.121985193111820147170707717938E+35 Inexact Rounded -powx3031 power -92980.68431371090354435763218439 -2 -> 1.156683455371909793870207184337E-10 Inexact Rounded -remx3031 remainder -92980.68431371090354435763218439 -2282178507046019721925800997065 -> -92980.68431371090354435763218439 -subx3031 subtract -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 2282178507046019721925800904084 Inexact Rounded -addx3032 add 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.213581776227858606259822256987E+748 Inexact Rounded -comx3032 compare 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1 -divx3032 divide 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.233860374149945561886955398724E+1648 Inexact Rounded -dvix3032 divideint 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> NaN Division_impossible -mulx3032 multiply 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.193636458750059340733188876015E-152 Inexact Rounded -powx3032 power 12135817762.27858606259822256987E+738 10 -> 6.929317520577437720457517499936E+7480 Inexact Rounded -remx3032 remainder 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> NaN Division_impossible -subx3032 subtract 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.213581776227858606259822256987E+748 Inexact Rounded -addx3033 add 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> -392513.2044337156627881674596002 Inexact Rounded -comx3033 compare 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> 1 -divx3033 divide 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> -0.00009495486002714264641177211062199 Inexact Rounded -dvix3033 divideint 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> -0 -mulx3033 multiply 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> -14632152.58043001234518095997140 Inexact Rounded -powx3033 power 37.27457578793521166809739140081 -392550 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3033 remainder 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> 37.27457578793521166809739140081 -subx3033 subtract 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> 392587.7535852915332115036543830 Inexact Rounded -addx3034 add -2787.980590304199878755265273703 7117631179305319208210387565324 -> 7117631179305319208210387562536 Inexact Rounded -comx3034 compare -2787.980590304199878755265273703 7117631179305319208210387565324 -> -1 -divx3034 divide -2787.980590304199878755265273703 7117631179305319208210387565324 -> -3.917006262435063093475140250870E-28 Inexact Rounded -dvix3034 divideint -2787.980590304199878755265273703 7117631179305319208210387565324 -> -0 -mulx3034 multiply -2787.980590304199878755265273703 7117631179305319208210387565324 -> -1.984381757684722217801410305714E+34 Inexact Rounded -powx3034 power -2787.980590304199878755265273703 7 -> -1309266999233099220127139.440082 Inexact Rounded -remx3034 remainder -2787.980590304199878755265273703 7117631179305319208210387565324 -> -2787.980590304199878755265273703 -subx3034 subtract -2787.980590304199878755265273703 7117631179305319208210387565324 -> -7117631179305319208210387568112 Inexact Rounded -addx3035 add -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> -9.890633854609434943559831911276E+977 Inexact Rounded -comx3035 compare -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> -1 -divx3035 divide -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> 5.098302376420396260404821158158E+968 Inexact Rounded -dvix3035 divideint -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> NaN Division_impossible -mulx3035 multiply -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> 1.918768853302706825964087702307E+987 Inexact Rounded -powx3035 power -9890633.854609434943559831911276E+971 -2 -> 1.022237362667592867768511487814E-1956 Inexact Rounded -remx3035 remainder -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> NaN Division_impossible -subx3035 subtract -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> -9.890633854609434943559831911276E+977 Inexact Rounded -addx3036 add 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 3927209601.042340294247970850347 Inexact Rounded -comx3036 compare 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 1 -divx3036 divide 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> -227.2123393091837706827708196101 Inexact Rounded -dvix3036 divideint 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> -227 -mulx3036 multiply 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> -68480589931920481.56020043213767 Inexact Rounded -powx3036 power 3944570323.331121750661920475191 -17360722 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3036 remainder 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 3686363.77773114469535563568018 -subx3036 subtract 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 3961931045.619903207075870100035 Inexact Rounded -addx3037 add 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 1786717307.025364028452423865075 Inexact Rounded -comx3037 compare 19544.14018503427029002552872707 1786697762.885178994182133839546 -> -1 -divx3037 divide 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 0.00001093869404832867759234359871991 Inexact Rounded -dvix3037 divideint 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 0 -mulx3037 multiply 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 34919471546115.05897163496162290 Inexact Rounded -powx3037 power 19544.14018503427029002552872707 2 -> 381973415.5722714009298802557940 Inexact Rounded -remx3037 remainder 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 19544.14018503427029002552872707 -subx3037 subtract 19544.14018503427029002552872707 1786697762.885178994182133839546 -> -1786678218.744993959911843814017 Inexact Rounded -addx3038 add -05.75485957937617757983513662981 5564476875.989640431173694372083 -> 5564476870.234780851797516792248 Inexact Rounded -comx3038 compare -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -1 -divx3038 divide -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -1.034213944568271324841608825136E-9 Inexact Rounded -dvix3038 divideint -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -0 -mulx3038 multiply -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -32022783054.00620878436398990135 Inexact Rounded -powx3038 power -05.75485957937617757983513662981 6 -> 36325.23118223611421303238908472 Inexact Rounded -remx3038 remainder -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -5.75485957937617757983513662981 -subx3038 subtract -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -5564476881.744500010549871951918 Inexact Rounded -addx3039 add -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> 6.268877553774705678201112845462E+211 Inexact Rounded -comx3039 compare -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -1 -divx3039 divide -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -6.713834913211527184907421856434E-206 Inexact Rounded -dvix3039 divideint -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -0 -mulx3039 multiply -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -2.638458285983158789458925170267E+218 Inexact Rounded -powx3039 power -4208820.898718069194008526302746 6 -> 5.558564783291260359142223337994E+39 Inexact Rounded -remx3039 remainder -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -4208820.898718069194008526302746 -subx3039 subtract -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -6.268877553774705678201112845462E+211 Inexact Rounded -addx3040 add -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -7.007719547806630896979085821269E+562 Inexact Rounded -comx3040 compare -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -1 -divx3040 divide -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -1.521048673498997627360230078306E+559 Inexact Rounded -dvix3040 divideint -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> NaN Division_impossible -mulx3040 multiply -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -3.228570795682925509478191397878E+566 Inexact Rounded -powx3040 power -70077195478066.30896979085821269E+549 4607 -> -Infinity Overflow Inexact Rounded -remx3040 remainder -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> NaN Division_impossible -subx3040 subtract -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -7.007719547806630896979085821269E+562 Inexact Rounded -addx3041 add -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> -68569709.81053713470972973953995 Inexact Rounded -comx3041 compare -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 1 -divx3041 divide -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 0.006501728568934042143913111768557 Inexact Rounded -dvix3041 divideint -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 0 -mulx3041 multiply -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 30176190149574.84386395947593970 Inexact Rounded -powx3041 power -442941.7541811527940918244383454 -68126768 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3041 remainder -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> -442941.7541811527940918244383454 -subx3041 subtract -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 67683826.30217482912154609066325 Inexact Rounded -addx3042 add -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -40726479019.92472703575370611619 Inexact Rounded -comx3042 compare -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -1 -divx3042 divide -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -135895.4741975690872548233111888 Inexact Rounded -dvix3042 divideint -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -135895 -mulx3042 multiply -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -12205487445696816.02175665622242 Inexact Rounded -powx3042 power -040726778711.8677615616711676159 299692 -> Infinity Overflow Inexact Rounded -remx3042 remainder -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -142113.1908620082406650022240180 -subx3042 subtract -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -40727078403.81079608758862911561 Inexact Rounded -addx3043 add -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -1934197516.927615489663964685661 Inexact Rounded -comx3043 compare -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -1 -divx3043 divide -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -507563287.7312566071537233697473 Inexact Rounded -dvix3043 divideint -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -507563287 -mulx3043 multiply -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -7370745953.579062985130438309023 Inexact Rounded -powx3043 power -1934197520.738366912179143085955 4 -> 1.399597922275400947497855539475E+37 Inexact Rounded -remx3043 remainder -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -2.786637155934674312936704177047 -subx3043 subtract -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -1934197524.549118334694321486249 Inexact Rounded -addx3044 add 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> -303284009454.0558644298079356347 Inexact Rounded -comx3044 compare 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> 1 -divx3044 divide 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> -0.000002681514904267770294213381485108 Inexact Rounded -dvix3044 divideint 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> -0 -mulx3044 multiply 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> -246650255735392080.1357404280431 Inexact Rounded -powx3044 power 813262.7723533833038829559646830 -3 -> 1.859119568310997605545914895133E-18 Inexact Rounded -remx3044 remainder 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> 813262.7723533833038829559646830 -subx3044 subtract 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> 303285635979.6005711964157015467 Inexact Rounded -addx3045 add 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 36105954884.94621434979365589311 Inexact Rounded -comx3045 compare 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 1 -divx3045 divide 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 4.842808328786805821411674302686E+953 Inexact Rounded -dvix3045 divideint 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> NaN Division_impossible -mulx3045 multiply 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 2.691909094160561673391352743869E-933 Inexact Rounded -powx3045 power 36105954884.94621434979365589311 7 -> 7.999297449713301719582732447386E+73 Inexact Rounded -remx3045 remainder 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> NaN Division_impossible -subx3045 subtract 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 36105954884.94621434979365589311 Inexact Rounded -addx3046 add -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -48556402282.66602309736499370002 -comx3046 compare -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -1 -divx3046 divide -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -2.799666682029089956269018541649 Inexact Rounded -dvix3046 divideint -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -2 -mulx3046 multiply -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -2038051610593641947717.268652175 Inexact Rounded -powx3046 power -075537177538.1814516621962185490 3 -> -4.310049518987988084595264617727E+32 Inexact Rounded -remx3046 remainder -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -21575627027.15059453253376885104 -subx3046 subtract -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -102517952793.6968802270274433980 Inexact Rounded -addx3047 add -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> -4223765.415319564898840040697647 Inexact Rounded -comx3047 compare -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> -1 -divx3047 divide -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> 1.630425855588347356570076909053E+191 Inexact Rounded -dvix3047 divideint -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> NaN Division_impossible -mulx3047 multiply -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> 1.094204573762229308798604845395E-178 Inexact Rounded -powx3047 power -4223765.415319564898840040697647 -3 -> -1.327090775863616939309569791138E-20 Inexact Rounded -remx3047 remainder -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> NaN Division_impossible -subx3047 subtract -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> -4223765.415319564898840040697647 Inexact Rounded -addx3048 add -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> -7.877324314273694312164407794939E+270 Inexact Rounded -comx3048 compare -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 1 -divx3048 divide -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 8.212057140774706874666307246628E-268 Inexact Rounded -dvix3048 divideint -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 0 -mulx3048 multiply -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 5.095765270616284455922747530676E+274 Inexact Rounded -powx3048 power -6468.903738522951259063099946195 -8 -> 3.261027724982089298030362367616E-31 Inexact Rounded -remx3048 remainder -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> -6468.903738522951259063099946195 -subx3048 subtract -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 7.877324314273694312164407794939E+270 Inexact Rounded -addx3049 add -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> 1650.198961256061165362319471264 Inexact Rounded -comx3049 compare -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -1 -divx3049 divide -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -5.797616777301250711985729776957E-200 Inexact Rounded -dvix3049 divideint -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -0 -mulx3049 multiply -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -1.578781845938805737527304303976E-193 Inexact Rounded -powx3049 power -9567221.183663236817239254783372E-203 1650 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3049 remainder -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -9.567221183663236817239254783372E-197 -subx3049 subtract -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -1650.198961256061165362319471264 Inexact Rounded -addx3050 add 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 2.679017380163975186972720427030E+572 Inexact Rounded -comx3050 compare 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> -1 -divx3050 divide 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 3.289379965960065573444140749635E-988 Inexact Rounded -dvix3050 divideint 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 0 -mulx3050 multiply 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 2.360832119793036398127652187732E+157 Inexact Rounded -powx3050 power 8812306098770.200752139142033569E-428 3 -> 6.843349527476967274129043949969E-1246 Inexact Rounded -remx3050 remainder 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 8.812306098770200752139142033569E-416 -subx3050 subtract 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> -2.679017380163975186972720427030E+572 Inexact Rounded -addx3051 add 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> -706127147059.6372708438205200619 Inexact Rounded -comx3051 compare 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> 1 -divx3051 divide 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> -0.0001134341690057060105325397863996 Inexact Rounded -dvix3051 divideint 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> -0 -mulx3051 multiply 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> -56572874185674332398.36004114372 Inexact Rounded -powx3051 power 80108033.12724838718736922500904 -7 -> 4.723539145042336483008674060324E-56 Inexact Rounded -remx3051 remainder 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> 80108033.12724838718736922500904 -subx3051 subtract 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> 706287363125.8917676181952585119 Inexact Rounded -addx3052 add -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -37942846288.41047269183344038636 Inexact Rounded -comx3052 compare -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -1 -divx3052 divide -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> 6716194607.139224735032566328960 Inexact Rounded -dvix3052 divideint -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> 6716194607 -mulx3052 multiply -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> 214356442635.9672009449140933366 Inexact Rounded -powx3052 power -37942846282.76101663789059003505 -6 -> 3.351355986382646046773008753885E-64 Inexact Rounded -remx3052 remainder -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -0.786544022188321089603127981421 -subx3052 subtract -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -37942846277.11156058394773968374 Inexact Rounded -addx3053 add 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 92659632115305.13735437728445541 Inexact Rounded -comx3053 compare 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 1 -divx3053 divide 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 1.429174267919135710410529211791E+146 Inexact Rounded -dvix3053 divideint 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> NaN Division_impossible -mulx3053 multiply 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 6.007530093754446085819255987878E-119 Inexact Rounded -powx3053 power 92659632115305.13735437728445541 6 -> 6.329121451953461546696051563323E+83 Inexact Rounded -remx3053 remainder 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> NaN Division_impossible -subx3053 subtract 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 92659632115305.13735437728445541 Inexact Rounded -addx3054 add 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 569549865196.1367939656357237466 Inexact Rounded -comx3054 compare 2838948.589837595494152150647194 569547026247.5469563701415715960 -> -1 -divx3054 divide 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 0.000004984572755198057481907281080406 Inexact Rounded -dvix3054 divideint 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 0 -mulx3054 multiply 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 1616914727011669419.390959984273 Inexact Rounded -powx3054 power 2838948.589837595494152150647194 6 -> 5.235343334986059753096884080673E+38 Inexact Rounded -remx3054 remainder 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 2838948.589837595494152150647194 -subx3054 subtract 2838948.589837595494152150647194 569547026247.5469563701415715960 -> -569544187298.9571187746474194454 Inexact Rounded -addx3055 add 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 5.249952045236053307941775794287E+705 Inexact Rounded -comx3055 compare 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 1 -divx3055 divide 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 3.302685669286670708554753139233E+675 Inexact Rounded -dvix3055 divideint 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> NaN Division_impossible -mulx3055 multiply 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 8.345328389435009812933599889447E+735 Inexact Rounded -powx3055 power 524995204523.6053307941775794287E+694 2 -> 2.756199647727821911857160230849E+1411 Inexact Rounded -remx3055 remainder 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> NaN Division_impossible -subx3055 subtract 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 5.249952045236053307941775794287E+705 Inexact Rounded -addx3056 add -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -52461892246715.82764070853532913 Inexact Rounded -comx3056 compare -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -1 -divx3056 divide -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -12.23457628210057733643575143694 Inexact Rounded -dvix3056 divideint -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -12 -mulx3056 multiply -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -266786248710342647746063322.0544 Inexact Rounded -powx3056 power -57131573677452.15449921725097290 5 -> -6.086686503752679375430019503679E+68 Inexact Rounded -remx3056 remainder -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -1095396508616.232197112663247672 -subx3056 subtract -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -61801255108188.48135772596661667 Inexact Rounded -addx3057 add 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 90794821.08377791746707352380646 Inexact Rounded -comx3057 compare 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 1 -divx3057 divide 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> -16594131.20365054928428313232246 Inexact Rounded -dvix3057 divideint 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> -16594131 -mulx3057 multiply 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> -496784099.6333617958496589124964 Inexact Rounded -powx3057 power 90794826.55528018781830463383411 -5 -> 1.620669590532856523565742953997E-40 Inexact Rounded -remx3057 remainder 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 1.114274442767230442307896655232 -subx3057 subtract 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 90794832.02678245816953574386176 Inexact Rounded -addx3058 add 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 58461733862.10202881160156091690 Inexact Rounded -comx3058 compare 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 1 -divx3058 divide 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> -1243.257894477021678809337875304 Inexact Rounded -dvix3058 divideint 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> -1243 -mulx3058 multiply 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> -2753474621708672573.249029643967 Inexact Rounded -powx3058 power 58508794729.35191160840980489138 -47060867 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3058 remainder 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 12136737.74759517576254461832107 -subx3058 subtract 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 58555855596.60179440521804886586 Inexact Rounded -addx3059 add -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> 9.595418300613754556671852801667E+391 Inexact Rounded -comx3059 compare -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -1 -divx3059 divide -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -7.775628465932789700547872511745E-381 Inexact Rounded -dvix3059 divideint -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -0 -mulx3059 multiply -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -7.159180712764549711669939947084E+403 Inexact Rounded -powx3059 power -746104.0768078474426464219416332E+006 10 -> 5.345571346302582882805035996696E+118 Inexact Rounded -remx3059 remainder -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -746104076807.8474426464219416332 -subx3059 subtract -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -9.595418300613754556671852801667E+391 Inexact Rounded -addx3060 add 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> 5.599427632688387400403789659459E+120 Inexact Rounded -comx3060 compare 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> 1 -divx3060 divide 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> -6.105892851759828176655685111491E+119 Inexact Rounded -dvix3060 divideint 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> NaN Division_impossible -mulx3060 multiply 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> -5.134972161307679939281170944556E+121 Inexact Rounded -powx3060 power 55.99427632688387400403789659459E+119 -9 -> 1.848022584764384077672041056396E-1087 Inexact Rounded -remx3060 remainder 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> NaN Division_impossible -subx3060 subtract 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> 5.599427632688387400403789659459E+120 Inexact Rounded -addx3061 add -41214265628.83801241467317270595 1015336323798389903361978271354 -> 1015336323798389903320764005725 Inexact Rounded -comx3061 compare -41214265628.83801241467317270595 1015336323798389903361978271354 -> -1 -divx3061 divide -41214265628.83801241467317270595 1015336323798389903361978271354 -> -4.059173759750342247620706384027E-20 Inexact Rounded -dvix3061 divideint -41214265628.83801241467317270595 1015336323798389903361978271354 -> -0 -mulx3061 multiply -41214265628.83801241467317270595 1015336323798389903361978271354 -> -4.184634095163472384028549378392E+40 Inexact Rounded -powx3061 power -41214265628.83801241467317270595 1 -> -41214265628.83801241467317270595 -remx3061 remainder -41214265628.83801241467317270595 1015336323798389903361978271354 -> -41214265628.83801241467317270595 -subx3061 subtract -41214265628.83801241467317270595 1015336323798389903361978271354 -> -1015336323798389903403192536983 Inexact Rounded -addx3062 add 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 82351554300031.00628677123370689 Inexact Rounded -comx3062 compare 89937.39749201095570357557430822 82351554210093.60879476027800331 -> -1 -divx3062 divide 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 1.092115362662913415592930982129E-9 Inexact Rounded -dvix3062 divideint 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 0 -mulx3062 multiply 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 7406484465078077191.920015793662 Inexact Rounded -powx3062 power 89937.39749201095570357557430822 8 -> 4.280776267723913043050100934291E+39 Inexact Rounded -remx3062 remainder 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 89937.39749201095570357557430822 -subx3062 subtract 89937.39749201095570357557430822 82351554210093.60879476027800331 -> -82351554120156.21130274932229973 Inexact Rounded -addx3063 add 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 1.712661646770821562841254869430E+365 Inexact Rounded -comx3063 compare 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 1 -divx3063 divide 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 2.956290925475414185960999788848E+397 Inexact Rounded -dvix3063 divideint 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> NaN Division_impossible -mulx3063 multiply 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 9.921925785595813587655312307930E+332 Inexact Rounded -powx3063 power 01712661.64677082156284125486943E+359 6 -> 2.523651803323047711735501944959E+2191 Inexact Rounded -remx3063 remainder 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> NaN Division_impossible -subx3063 subtract 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 1.712661646770821562841254869430E+365 Inexact Rounded -addx3064 add -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> -658179152015.9868345843925715053 Inexact Rounded -comx3064 compare -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 1 -divx3064 divide -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 0.004038849497560303158639192895544 Inexact Rounded -dvix3064 divideint -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 0 -mulx3064 multiply -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 1735580967057433153120.099643641 Inexact Rounded -powx3064 power -2647593306.528617691373470059213 -7 -> -1.096581914005902583413810201571E-66 Inexact Rounded -remx3064 remainder -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> -2647593306.528617691373470059213 -subx3064 subtract -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 652883965402.9295992016456313869 Inexact Rounded -addx3065 add 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> -7.145586619176091599264717047885E+788 Inexact Rounded -comx3065 compare 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> 1 -divx3065 divide 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> -4.064157144036712325084472022316E-1088 Inexact Rounded -dvix3065 divideint 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> -0 -mulx3065 multiply 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> -2.075134583305571527962710017262E+490 Inexact Rounded -powx3065 power 2904078690665765116603253099668E-329 -7 -> 5.740389208842895561250128407803E+2089 Inexact Rounded -remx3065 remainder 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> 2.904078690665765116603253099668E-299 -subx3065 subtract 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> 7.145586619176091599264717047885E+788 Inexact Rounded -addx3066 add 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> 22094338972.39109726522477999515 Inexact Rounded -comx3066 compare 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> 1 -divx3066 divide 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> -5.390880808019174194010224736965E+497 Inexact Rounded -dvix3066 divideint 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> NaN Division_impossible -mulx3066 multiply 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> -9.055288588476315822113975426730E-478 Inexact Rounded -powx3066 power 22094338972.39109726522477999515 -4 -> 4.196391022354122686725315209967E-42 Inexact Rounded -remx3066 remainder 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> NaN Division_impossible -subx3066 subtract 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> 22094338972.39109726522477999515 Inexact Rounded -addx3067 add -3374988581607586061255542201048 82293895124.90045271504836568681 -> -3374988581607586061173248305923 Inexact Rounded -comx3067 compare -3374988581607586061255542201048 82293895124.90045271504836568681 -> -1 -divx3067 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.81310977038 Inexact Rounded -dvix3067 divideint -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797 -mulx3067 multiply -3374988581607586061255542201048 82293895124.90045271504836568681 -> -2.777409563825512202793336132310E+41 Inexact Rounded -powx3067 power -3374988581607586061255542201048 8 -> 1.683365657238878057620634207267E+244 Inexact Rounded -remx3067 remainder -3374988581607586061255542201048 82293895124.90045271504836568681 -> -66913970168.62046257175566384243 -subx3067 subtract -3374988581607586061255542201048 82293895124.90045271504836568681 -> -3374988581607586061337836096173 Inexact Rounded -addx3068 add -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -84172558171932.94780431960508260 Inexact Rounded -comx3068 compare -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -1 -divx3068 divide -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> 7467674426.467986736459678347587 Inexact Rounded -dvix3068 divideint -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> 7467674426 -mulx3068 multiply -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> 948758494638999235.1953022970755 Inexact Rounded -powx3068 power -84172558160661.35863831029352323 -11272 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3068 remainder -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -5274.95422851496534479122656860 -subx3068 subtract -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -84172558149389.76947230098196386 Inexact Rounded -addx3069 add -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -7.004693232461490596396237508541E-555 Inexact Rounded -comx3069 compare -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -1 -divx3069 divide -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -2.082768876995463487926920072359E+362 Inexact Rounded -dvix3069 divideint -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> NaN Division_impossible -mulx3069 multiply -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -2.355793185832144388285949021738E-1471 Inexact Rounded -powx3069 power -70046932324614.90596396237508541E-568 3 -> -3.436903678302639677280508409829E-1663 Inexact Rounded -remx3069 remainder -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> NaN Division_impossible -subx3069 subtract -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -7.004693232461490596396237508541E-555 Inexact Rounded -addx3070 add 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> 4125384407.053782660115680886000 Inexact Rounded -comx3070 compare 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> 1 -divx3070 divide 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> -1.053928941287132717250540955457E+649 Inexact Rounded -dvix3070 divideint 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> NaN Division_impossible -mulx3070 multiply 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> -1.614795442013190139080634449273E-630 Inexact Rounded -powx3070 power 0004125384407.053782660115680886 -4 -> 3.452568541597450106266555783362E-39 Inexact Rounded -remx3070 remainder 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> NaN Division_impossible -subx3070 subtract 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> 4125384407.053782660115680886000 Inexact Rounded -addx3071 add -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> 9.291391582947237200286427030028E+775 Inexact Rounded -comx3071 compare -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -1 -divx3071 divide -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -3.425012375468251447194400841658E-1209 Inexact Rounded -dvix3071 divideint -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -0 -mulx3071 multiply -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -2.956811729743937541973845029816E+343 Inexact Rounded -powx3071 power -31823131.15691583393820628480997E-440 9 -> -3.347234803487575870321338308655E-3893 Inexact Rounded -remx3071 remainder -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -3.182313115691583393820628480997E-433 -subx3071 subtract -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -9.291391582947237200286427030028E+775 Inexact Rounded -addx3072 add 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 55573868488.43891477926020011694 Inexact Rounded -comx3072 compare 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 1 -divx3072 divide 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 92696782.14318796763098335498657 Inexact Rounded -dvix3072 divideint 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 92696782 -mulx3072 multiply 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 33317820972080.24347717542221477 Inexact Rounded -powx3072 power 55573867888.91575330563698128150 600 -> 8.363240671070136278221965616973E+6446 Inexact Rounded -remx3072 remainder 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 85.8445030391099686478265169012 -subx3072 subtract 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 55573867289.39259183201376244606 Inexact Rounded -addx3073 add -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> 5.487207142687001607026665515349E-356 Inexact Rounded -comx3073 compare -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -1 -divx3073 divide -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -9.928051387110587327889009363069E-415 Inexact Rounded -dvix3073 divideint -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -0 -mulx3073 multiply -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -2.989280896644635352838087864373E-1125 Inexact Rounded -powx3073 power -5447727448431680878699555714796E-800 5 -> -4.798183553278543065204833300725E-3847 Inexact Rounded -remx3073 remainder -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -5.447727448431680878699555714796E-770 -subx3073 subtract -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -5.487207142687001607026665515349E-356 Inexact Rounded -addx3074 add 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 418359224750.4711631202083513795 Inexact Rounded -comx3074 compare 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 1 -divx3074 divide 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 42602.13713335803513874339309132 Inexact Rounded -dvix3074 divideint 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 42602 -mulx3074 multiply 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 4108155982352814348.343441299082 Inexact Rounded -powx3074 power 0418349404834.547110239542290134 9819916 -> Infinity Overflow Inexact Rounded -remx3074 remainder 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 1346638.04628810400110728063718 -subx3074 subtract 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 418339584918.6230573588762288885 Inexact Rounded -addx3075 add -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> -7.983992600094836304387324162042E+420 Inexact Rounded -comx3075 compare -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 1 -divx3075 divide -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 3.281838669494274896180376328433E-416 Inexact Rounded -dvix3075 divideint -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 0 -mulx3075 multiply -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 2.091979765115329268275803385534E+426 Inexact Rounded -powx3075 power -262021.7565194737396448014286436 -8 -> 4.500918721033033032706782304195E-44 Inexact Rounded -remx3075 remainder -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> -262021.7565194737396448014286436 -subx3075 subtract -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 7.983992600094836304387324162042E+420 Inexact Rounded -addx3076 add 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> -3.386875233985057267609967806187E+831 Inexact Rounded -comx3076 compare 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> 1 -divx3076 divide 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> -1.437786964892976582009952172420E-1326 Inexact Rounded -dvix3076 divideint 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> -0 -mulx3076 multiply 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> -1.649274478764579569246425611629E+337 Inexact Rounded -powx3076 power 48696050631.42565380301204592392E-505 -3 -> 8.660017688773759463020340778853E+1482 Inexact Rounded -remx3076 remainder 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> 4.869605063142565380301204592392E-495 -subx3076 subtract 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> 3.386875233985057267609967806187E+831 Inexact Rounded -addx3077 add 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 95256207.85635086953625240702318 Inexact Rounded -comx3077 compare 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 1 -divx3077 divide 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> -1567.937180706641856870286122623 Inexact Rounded -dvix3077 divideint 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> -1567 -mulx3077 multiply 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> -5794447919993.150493301061195714 Inexact Rounded -powx3077 power 95316999.19440144356471126680708 -60791 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3077 remainder 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 56972.46915194096967798542896355 -subx3077 subtract 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 95377790.53245201759317012659098 Inexact Rounded -addx3078 add -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> 8032459.450998820205916538543258 Inexact Rounded -comx3078 compare -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -1 -divx3078 divide -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -6.631471131473117487839243582873E-113 Inexact Rounded -dvix3078 divideint -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -0 -mulx3078 multiply -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -4.278652020339705265013632757349E-99 Inexact Rounded -powx3078 power -5326702296402708234722215224979E-136 8032459 -> -0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3078 remainder -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -5.326702296402708234722215224979E-106 -subx3078 subtract -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -8032459.450998820205916538543258 Inexact Rounded -addx3079 add 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 6.718750684079501575335482615780E-280 Inexact Rounded -comx3079 compare 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 1 -divx3079 divide 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 9.152153872187460598958616592442E+571 Inexact Rounded -dvix3079 divideint 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> NaN Division_impossible -mulx3079 multiply 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 4.932348317700372401849231767007E-1131 Inexact Rounded -powx3079 power 67.18750684079501575335482615780E-281 7 -> 6.180444071023111300817518409550E-1955 Inexact Rounded -remx3079 remainder 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> NaN Division_impossible -subx3079 subtract 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 6.718750684079501575335482615780E-280 Inexact Rounded -addx3080 add -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -8738791762039.358125211204773930 Inexact Rounded -comx3080 compare -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -1 -divx3080 divide -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -17216.56012577673731612130068130 Inexact Rounded -dvix3080 divideint -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -17216 -mulx3080 multiply -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -4436156407404759833857.580707024 Inexact Rounded -powx3080 power -8739299372114.092482914139281669 507610075 -> -Infinity Overflow Inexact Rounded -remx3080 remainder -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -284325487.3902691936540542102992 -subx3080 subtract -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -8739806982188.826840617073789408 Inexact Rounded -addx3081 add 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 2454.002078468928665008217727731 Inexact Rounded -comx3081 compare 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 1 -divx3081 divide 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 4.205327278123112611006652533618E+141 Inexact Rounded -dvix3081 divideint 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> NaN Division_impossible -mulx3081 multiply 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 1.432023194118096842806010293027E-135 Inexact Rounded -powx3081 power 2454.002078468928665008217727731 6 -> 218398452792293853786.9263054420 Inexact Rounded -remx3081 remainder 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> NaN Division_impossible -subx3081 subtract 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 2454.002078468928665008217727731 Inexact Rounded -addx3082 add 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 829181.6561975853393326976860680 Inexact Rounded -comx3082 compare 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 1 -divx3082 divide 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 11.83500633601553578851124281417 Inexact Rounded -dvix3082 divideint 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 11 -mulx3082 multiply 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 49394169921.82458094138096628957 Inexact Rounded -powx3082 power 764578.5204849936912066033177429 64603 -> Infinity Overflow Inexact Rounded -remx3082 remainder 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 53944.02764648556181956526616724 -subx3082 subtract 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 699975.3847724020430805089494178 Inexact Rounded -addx3083 add 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 846389013551.3654139910676568223 Inexact Rounded -comx3083 compare 079203.7330103777716903518367560 846388934347.6324036132959664705 -> -1 -divx3083 divide 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 9.357841270860339858146471876044E-8 Inexact Rounded -dvix3083 divideint 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 0 -mulx3083 multiply 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 67037163179008037.19983564789203 Inexact Rounded -powx3083 power 079203.7330103777716903518367560 8 -> 1.548692549503356788115682996756E+39 Inexact Rounded -remx3083 remainder 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 79203.7330103777716903518367560 -subx3083 subtract 079203.7330103777716903518367560 846388934347.6324036132959664705 -> -846388855143.8993932355242761187 Inexact Rounded -addx3084 add -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> 5.474973992953902631890208360829 Inexact Rounded -comx3084 compare -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -1 -divx3084 divide -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -7.814797878848469282033896969532E-327 Inexact Rounded -dvix3084 divideint -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -0 -mulx3084 multiply -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -2.342512251965378028433584538870E-325 Inexact Rounded -powx3084 power -4278.581514688669249247007127899E-329 5 -> -1.433834587801771244104676682986E-1627 Inexact Rounded -remx3084 remainder -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -4.278581514688669249247007127899E-326 -subx3084 subtract -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -5.474973992953902631890208360829 Inexact Rounded -addx3085 add 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 6.149612565404080501157093851895E+817 Inexact Rounded -comx3085 compare 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> -1 -divx3085 divide 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 9.897699923417617920996187420968E-160 Inexact Rounded -dvix3085 divideint 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 0 -mulx3085 multiply 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 3.743085898893072544197564013497E+1476 Inexact Rounded -powx3085 power 60867019.81764798845468445196869E+651 6 -> 5.085014897388871736767602086646E+3952 Inexact Rounded -remx3085 remainder 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 6.086701981764798845468445196869E+658 -subx3085 subtract 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> -6.149612565404080501157093851895E+817 Inexact Rounded -addx3086 add 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> -8.945059095290523784746184357820E+538 Inexact Rounded -comx3086 compare 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> 1 -divx3086 divide 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> -2.074264411286709228674841672954E-908 Inexact Rounded -dvix3086 divideint 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> -0 -mulx3086 multiply 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> -1.659703631470633700884136887614E+170 Inexact Rounded -powx3086 power 18554417738217.62218590965803605E-382 -9 -> 3.836842998295531899082688721531E+3318 Inexact Rounded -remx3086 remainder 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> 1.855441773821762218590965803605E-369 -subx3086 subtract 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> 8.945059095290523784746184357820E+538 Inexact Rounded -addx3087 add 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 9.977847825356104634823627327033E+127 Inexact Rounded -comx3087 compare 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> -1 -divx3087 divide 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 6.922670772910807388395384866884E-115 Inexact Rounded -dvix3087 divideint 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 0 -mulx3087 multiply 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 6.892034301367879802693422066425E+141 Inexact Rounded -powx3087 power 69073355517144.36356688642213839 10 -> 2.472324890841334302628435461516E+138 Inexact Rounded -remx3087 remainder 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 69073355517144.36356688642213839 -subx3087 subtract 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> -9.977847825356104634823627327033E+127 Inexact Rounded -addx3088 add 450282259072.8657099359104277477 -1791307965314309175477911369824 -> -1791307965314309175027629110751 Inexact Rounded -comx3088 compare 450282259072.8657099359104277477 -1791307965314309175477911369824 -> 1 -divx3088 divide 450282259072.8657099359104277477 -1791307965314309175477911369824 -> -2.513706564096350714213771006483E-19 Inexact Rounded -dvix3088 divideint 450282259072.8657099359104277477 -1791307965314309175477911369824 -> -0 -mulx3088 multiply 450282259072.8657099359104277477 -1791307965314309175477911369824 -> -8.065941973169457071650996861677E+41 Inexact Rounded -powx3088 power 450282259072.8657099359104277477 -2 -> 4.932082442194544671633570348838E-24 Inexact Rounded -remx3088 remainder 450282259072.8657099359104277477 -1791307965314309175477911369824 -> 450282259072.8657099359104277477 -subx3088 subtract 450282259072.8657099359104277477 -1791307965314309175477911369824 -> 1791307965314309175928193628897 Inexact Rounded -addx3089 add 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 954821400.4934353520984462184316 Inexact Rounded -comx3089 compare 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 1 -divx3089 divide 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 6676.599951968811589335427770046 Inexact Rounded -dvix3089 divideint 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 6676 -mulx3089 multiply 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 136508234203444.8694879431412375 Inexact Rounded -powx3089 power 954678411.7838149266455177850037 142989 -> Infinity Overflow Inexact Rounded -remx3089 remainder 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 85786.3578546028952962204808256 -subx3089 subtract 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 954535423.0741945011925893515758 Inexact Rounded -addx3090 add -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -9.244530976220812127155852389807E+566 Inexact Rounded -comx3090 compare -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -1 -divx3090 divide -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -1.708503207395591002370649848757E+561 Inexact Rounded -dvix3090 divideint -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> NaN Division_impossible -mulx3090 multiply -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -5.002118380601798392363043558941E+572 Inexact Rounded -powx3090 power -9244530976.220812127155852389807E+557 541089 -> -Infinity Overflow Inexact Rounded -remx3090 remainder -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> NaN Division_impossible -subx3090 subtract -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -9.244530976220812127155852389807E+566 Inexact Rounded -addx3091 add -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> -14760496803372.56259241638975169 Inexact Rounded -comx3091 compare -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 1 -divx3091 divide -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 0.000005114489797920668836278344635108 Inexact Rounded -dvix3091 divideint -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 0 -mulx3091 multiply -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 1114294082984662825831.464787487 Inexact Rounded -powx3091 power -75492024.20990197005974241975449 -1 -> -1.324643246046162082348970735576E-8 Inexact Rounded -remx3091 remainder -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> -75492024.20990197005974241975449 -subx3091 subtract -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 14760345819324.14278847627026685 Inexact Rounded -addx3092 add 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 2.475976333144824613591228097330E+99 Inexact Rounded -comx3092 compare 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> -1 -divx3092 divide 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 1.283322837007852247594216151634E-546 Inexact Rounded -dvix3092 divideint 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 0 -mulx3092 multiply 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 7.867357782318786860404997647513E-348 Inexact Rounded -powx3092 power 317747.6972215715434186596178036E-452 2 -> 1.009635990896115043331231496209E-893 Inexact Rounded -remx3092 remainder 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 3.177476972215715434186596178036E-447 -subx3092 subtract 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> -2.475976333144824613591228097330E+99 Inexact Rounded -addx3093 add -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> -17.87120645617324368279740020695 Inexact Rounded -comx3093 compare -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 1 -divx3093 divide -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 0.8390040956188859972044344532019 Inexact Rounded -dvix3093 divideint -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 0 -mulx3093 multiply -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 79.23306057789328578902960605222 Inexact Rounded -powx3093 power -8.153334430358647134334545353427 -10 -> 7.702778966876727056635952801162E-10 Inexact Rounded -remx3093 remainder -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> -8.153334430358647134334545353427 -subx3093 subtract -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 1.564537595455949414128309500095 -addx3094 add 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 5054015481833.263541189916208065 Inexact Rounded -comx3094 compare 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> -1 -divx3094 divide 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 1.437934890309606594895299558654E-490 Inexact Rounded -dvix3094 divideint 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 0 -mulx3094 multiply 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 3.672927513995607308048737751972E-465 Inexact Rounded -powx3094 power 7.267345197492967332320456062961E-478 5 -> 2.027117616846668568108096583897E-2386 Inexact Rounded -remx3094 remainder 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 7.267345197492967332320456062961E-478 -subx3094 subtract 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> -5054015481833.263541189916208065 Inexact Rounded -addx3095 add -1223354029.862567054230912271171 8135774223401322785475014855625 -> 8135774223401322785473791501595 Inexact Rounded -comx3095 compare -1223354029.862567054230912271171 8135774223401322785475014855625 -> -1 -divx3095 divide -1223354029.862567054230912271171 8135774223401322785475014855625 -> -1.503672540892020337688277553692E-22 Inexact Rounded -dvix3095 divideint -1223354029.862567054230912271171 8135774223401322785475014855625 -> -0 -mulx3095 multiply -1223354029.862567054230912271171 8135774223401322785475014855625 -> -9.952932182250005119307429060894E+39 Inexact Rounded -powx3095 power -1223354029.862567054230912271171 8 -> 5.016689887192830666848068841227E+72 Inexact Rounded -remx3095 remainder -1223354029.862567054230912271171 8135774223401322785475014855625 -> -1223354029.862567054230912271171 -subx3095 subtract -1223354029.862567054230912271171 8135774223401322785475014855625 -> -8135774223401322785476238209655 Inexact Rounded -addx3096 add 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> 2.853976441115655679961211349982E+656 Inexact Rounded -comx3096 compare 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> 1 -divx3096 divide 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> -1.151029280076495626421134733122E+626 Inexact Rounded -dvix3096 divideint 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> NaN Division_impossible -mulx3096 multiply 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> -7.076432952167704614138411740001E+686 Inexact Rounded -powx3096 power 285397644111.5655679961211349982E+645 -2 -> 1.227719722087860401233030479451E-1313 Inexact Rounded -remx3096 remainder 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> NaN Division_impossible -subx3096 subtract 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> 2.853976441115655679961211349982E+656 Inexact Rounded -addx3097 add -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -4676542.661845508839813784891890 Inexact Rounded -comx3097 compare -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -1 -divx3097 divide -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> 1362.424151323477505064686589716 Inexact Rounded -dvix3097 divideint -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> 1362 -mulx3097 multiply -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> 16028768973.31252639476148371361 Inexact Rounded -powx3097 power -4673112.663442366293812346653429 -3430 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3097 remainder -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -1454.838362218639853465869604204 -subx3097 subtract -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -4669682.665039223747810908414968 Inexact Rounded -addx3098 add 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 3.869394621006514751889096510923E+144 Inexact Rounded -comx3098 compare 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> -1 -divx3098 divide 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 2.299194926095985647821385937618E-143 Inexact Rounded -dvix3098 divideint 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 0 -mulx3098 multiply 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 3.442404014670364763780946297856E+146 Inexact Rounded -powx3098 power 88.96492479681278079861456051103 4 -> 62643391.73078290226474758858970 Inexact Rounded -remx3098 remainder 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 88.96492479681278079861456051103 -subx3098 subtract 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> -3.869394621006514751889096510923E+144 Inexact Rounded -addx3099 add 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 92.23649942010862087149015091350 Inexact Rounded -comx3099 compare 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> -1 -divx3099 divide 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 6.974120530708230229344349531719E-937 Inexact Rounded -dvix3099 divideint 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 0 -mulx3099 multiply 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 5.933283133313013755814405436342E-933 Inexact Rounded -powx3099 power 064326846.4286437304788069444326E-942 92 -> 0E-10029 Underflow Subnormal Inexact Rounded Clamped -remx3099 remainder 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 6.43268464286437304788069444326E-935 -subx3099 subtract 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> -92.23649942010862087149015091350 Inexact Rounded -addx3100 add 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 1109894.721947227977782971677146 Inexact Rounded -comx3100 compare 504507.0043949324433170405699360 605387.7175522955344659311072099 -> -1 -divx3100 divide 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 0.8333618105678718895216067463832 Inexact Rounded -dvix3100 divideint 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 0 -mulx3100 multiply 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 305422343879.7940838630401656585 Inexact Rounded -powx3100 power 504507.0043949324433170405699360 605388 -> Infinity Overflow Inexact Rounded -remx3100 remainder 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 504507.0043949324433170405699360 -subx3100 subtract 504507.0043949324433170405699360 605387.7175522955344659311072099 -> -100880.7131573630911488905372739 - --- randomly generated testcases [26 Sep 2001] -precision: 32 -rounding: half_up -maxExponent: 9999 - -addx3201 add 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> -0.1294608320983180201262861125848 -comx3201 compare 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> 1 -divx3201 divide 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> -0.92190879812324313630282980110280 Inexact Rounded -dvix3201 divideint 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> -0 -mulx3201 multiply 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> -2.5337311682687808926633910761614 Inexact Rounded -powx3201 power 1.5283550163839789319142430253644 -2 -> 0.42810618916584924451466691603128 Inexact Rounded -remx3201 remainder 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> 1.5283550163839789319142430253644 -subx3201 subtract 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> 3.1861708648662758839547721633136 -addx3202 add -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -616383641998.15356482333651785302 Inexact Rounded -comx3202 compare -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -1 -divx3202 divide -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -95.546234185785110491676894153510 Inexact Rounded -dvix3202 divideint -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -95 -mulx3202 multiply -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -4060946921076840449949.6988828486 Inexact Rounded -powx3202 power -622903030605.2867503937836507326 7 -> -3.6386736597702404352813308064300E+82 Inexact Rounded -remx3202 remainder -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -3561112927.6341212013060271723005 -subx3202 subtract -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -629422419212.41993596423078361218 Inexact Rounded -addx3203 add -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> 73908233965.134822146441861002895 Inexact Rounded -comx3203 compare -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -1 -divx3203 divide -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -0.000076790894376056827552388054657082 Inexact Rounded -dvix3203 divideint -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -0 -mulx3203 multiply -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -419529088021865067.23307352973589 Inexact Rounded -powx3203 power -5675915.2465457487632250245209054 7 -> -1.8978038060207777231389234721908E+47 Inexact Rounded -remx3203 remainder -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -5675915.2465457487632250245209054 -subx3203 subtract -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -73919585795.627913643968311051937 Inexact Rounded -addx3204 add 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 102.50941233130989977580658947572 Inexact Rounded -comx3204 compare 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 1 -divx3204 divide 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 20.083399916665466374741708949621 Inexact Rounded -dvix3204 divideint 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 20 -mulx3204 multiply 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 474.77017694916635398652276042175 Inexact Rounded -powx3204 power 97.647321172555144900685605318635 5 -> 8877724578.7935312939231828719842 Inexact Rounded -remx3204 remainder 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 0.4054979974600473982659221768650 -subx3204 subtract 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 92.785230013800390025564621161547 Inexact Rounded -addx3205 add -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> -2.6692539695193820424002013488480E+366 Inexact Rounded -comx3205 compare -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 1 -divx3205 divide -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 3.6404378818903462695633337631098E-354 Inexact Rounded -dvix3205 divideint -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 0 -mulx3205 multiply -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 2.5937816855830431899123217912144E+379 Inexact Rounded -powx3205 power -9717253267024.5380651435435603552 -3 -> -1.0898567880085337780041328661330E-39 Inexact Rounded -remx3205 remainder -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> -9717253267024.5380651435435603552 -subx3205 subtract -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 2.6692539695193820424002013488480E+366 Inexact Rounded -addx3206 add -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> 12772.807105920712660991033689206 Inexact Rounded -comx3206 compare -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -1 -divx3206 divide -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -3.1956477052150593175206769891434E-771 Inexact Rounded -dvix3206 divideint -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -0 -mulx3206 multiply -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -5.2135267097047531336100750110314E-763 Inexact Rounded -powx3206 power -4.0817391717190128506083001702335E-767 12773 -> -0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3206 remainder -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -4.0817391717190128506083001702335E-767 -subx3206 subtract -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -12772.807105920712660991033689206 Inexact Rounded -addx3207 add 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 68625322655934146845003028928587 Inexact Rounded -comx3207 compare 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 1 -divx3207 divide 68625322655934146845003028928647 -59.634169944840280159782488098700 -> -1150771826276954946844322988192.5 Inexact Rounded -dvix3207 divideint 68625322655934146845003028928647 -59.634169944840280159782488098700 -> -1150771826276954946844322988192 -mulx3207 multiply 68625322655934146845003028928647 -59.634169944840280159782488098700 -> -4.0924141537834748501140151997778E+33 Inexact Rounded -powx3207 power 68625322655934146845003028928647 -60 -> 6.4704731111943370171711131942603E-1911 Inexact Rounded -remx3207 remainder 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 28.201254004897257552939369449600 -subx3207 subtract 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 68625322655934146845003028928707 Inexact Rounded -addx3208 add 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> -92134479103305.554299334115573170 Inexact Rounded -comx3208 compare 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> 1 -divx3208 divide 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> -7.9505063318943846655593887991914E-9 Inexact Rounded -dvix3208 divideint 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> -0 -mulx3208 multiply 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> -67489959009342175728.710494356322 Inexact Rounded -powx3208 power 732515.76532049290815665856727641 -9 -> 1.6468241050443471359358016585877E-53 Inexact Rounded -remx3208 remainder 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> 732515.76532049290815665856727641 -subx3208 subtract 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> 92134480568337.084940319931886488 Inexact Rounded -addx3209 add -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> -5.0233720245976651023364304104030E+861 Inexact Rounded -comx3209 compare -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 1 -divx3209 divide -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 6.0632602550311410821483001305010E-861 Inexact Rounded -dvix3209 divideint -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 0 -mulx3209 multiply -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 1.5300192511921895929031818638961E+863 Inexact Rounded -powx3209 power -30.458011942978338421676454778733 -5 -> -3.8149797481405136042487643253109E-8 Inexact Rounded -remx3209 remainder -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> -30.458011942978338421676454778733 -subx3209 subtract -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 5.0233720245976651023364304104030E+861 Inexact Rounded -addx3210 add -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> -58703509398.895039317872169695760 Inexact Rounded -comx3210 compare -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 1 -divx3210 divide -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 0.0000015269995260536025237167199970238 Inexact Rounded -dvix3210 divideint -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 0 -mulx3210 multiply -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 5262180074071519.7018252171579753 Inexact Rounded -powx3210 power -89640.094149414644660480286430462 -6 -> 1.9274635591165405888724595165741E-30 Inexact Rounded -remx3210 remainder -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> -89640.094149414644660480286430462 -subx3210 subtract -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 58703330118.706740488582848735188 Inexact Rounded -addx3211 add 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 458653.15678700818100529177142590 Inexact Rounded -comx3211 compare 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 1 -divx3211 divide 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 2.4990492117594160215641311760498E+33 Inexact Rounded -dvix3211 divideint 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> NaN Division_impossible -mulx3211 multiply 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 8.4177101131428047497998594379593E-23 Inexact Rounded -powx3211 power 458653.1567870081810052917714259 2 -> 210362718230.68790865117452429990 Inexact Rounded -remx3211 remainder 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> NaN Division_impossible -subx3211 subtract 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 458653.15678700818100529177142590 Inexact Rounded -addx3212 add 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> -2.1051638816432817393202262710630E+439 Inexact Rounded -comx3212 compare 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> 1 -divx3212 divide 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> -4.3388138824102151127273259092613E-434 Inexact Rounded -dvix3212 divideint 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> -0 -mulx3212 multiply 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> -1.9228386428540135340600836707270E+445 Inexact Rounded -powx3212 power 913391.42744224458216174967853722 -2 -> 1.1986327439971532470297300128074E-12 Inexact Rounded -remx3212 remainder 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> 913391.42744224458216174967853722 -subx3212 subtract 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> 2.1051638816432817393202262710630E+439 Inexact Rounded -addx3213 add -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> -2.8892177726858026955513438843371E+739 Inexact Rounded -comx3213 compare -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 1 -divx3213 divide -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 3.1759165595057674196644927106447E-728 Inexact Rounded -dvix3213 divideint -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 0 -mulx3213 multiply -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 2.6511215451353541156703914721725E+751 Inexact Rounded -powx3213 power -917591456829.12109027484399536567 -3 -> -1.2943505591853739240003453341911E-36 Inexact Rounded -remx3213 remainder -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> -917591456829.12109027484399536567 -subx3213 subtract -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 2.8892177726858026955513438843371E+739 Inexact Rounded -addx3214 add 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 34938410840676.731620092461631064 Inexact Rounded -comx3214 compare 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1 -divx3214 divide 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1133693327999.7879503260098666966 Inexact Rounded -dvix3214 divideint 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1133693327999 -mulx3214 multiply 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1076739645476675.3318519289128961 Inexact Rounded -powx3214 power 34938410840645.913399699219228218 31 -> 6.9566085958798732786509909683267E+419 Inexact Rounded -remx3214 remainder 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 24.283226805899273551376371736548 -subx3214 subtract 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 34938410840615.095179305976825372 Inexact Rounded -addx3215 add 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 29771833428054709077850588904653 Inexact Rounded -comx3215 compare 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> -1 -divx3215 divide 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 2.0269955680376683526099444523691E-545 Inexact Rounded -dvix3215 divideint 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 0 -mulx3215 multiply 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 1.7966519787854159464382359411642E-482 Inexact Rounded -powx3215 power 6034.7374411022598081745006769023E-517 3 -> 2.1977340597301840681528507640032E-1540 Inexact Rounded -remx3215 remainder 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 6.0347374411022598081745006769023E-514 -subx3215 subtract 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> -29771833428054709077850588904653 Inexact Rounded -addx3216 add -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -5565747672224.4775959193681631431 Inexact Rounded -comx3216 compare -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -1 -divx3216 divide -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> 11351510433.365074871574519756245 Inexact Rounded -dvix3216 divideint -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> 11351510433 -mulx3216 multiply -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> 2728936147066663.4580064428639745 Inexact Rounded -powx3216 power -5565747671734.1686009705574503152 -490 -> 4.9371745297619526113991728953197E-6246 Inexact Rounded -remx3216 remainder -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -178.99949336276892685183308348801 -subx3216 subtract -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -5565747671243.8596060217467374873 Inexact Rounded -addx3217 add 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 3.1954551189203199952335879232538E+44 Inexact Rounded -comx3217 compare 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 1 -divx3217 divide 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> -108102711781422.68663084859902931 Inexact Rounded -dvix3217 divideint 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> -108102711781422 -mulx3217 multiply 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> -9.4455848967786959996525702197139E+74 Inexact Rounded -powx3217 power 319545511.89203495546689273564728E+036 -3 -> 3.0647978448946294457985223953472E-134 Inexact Rounded -remx3217 remainder 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 2029642017122316721531728309258 -subx3217 subtract 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 3.1954551189203791141042667896918E+44 Inexact Rounded -addx3218 add -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -42682764.676651465089307430325104 Rounded -comx3218 compare -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -1 -divx3218 divide -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> 6.3204380807318655475459047410160 Inexact Rounded -dvix3218 divideint -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> 6 -mulx3218 multiply -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> 214871156882133.34437417534873098 Inexact Rounded -powx3218 power -36852134.84194296250843579428931 -5830630 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3218 remainder -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -1868355.8336919470232059780745460 -subx3218 subtract -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -31021505.007234459927564158253516 Rounded -addx3219 add 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> -39505285344943.729681835377530908 Inexact Rounded -comx3219 compare 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> 1 -divx3219 divide 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> -2.1774783867700502002511486885272E-387 Inexact Rounded -dvix3219 divideint 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> -0 -mulx3219 multiply 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> -3.3983199030116951081865430362053E-360 Inexact Rounded -powx3219 power 8.6021905001798578659275880018221E-374 -4 -> 1.8262649155820433126240754123257E+1492 Inexact Rounded -remx3219 remainder 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> 8.6021905001798578659275880018221E-374 -subx3219 subtract 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> 39505285344943.729681835377530908 Inexact Rounded -addx3220 add -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -54862429.012326453703398777272191 Inexact Rounded -comx3220 compare -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -1 -divx3220 divide -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -74528.182826764384088602813142847 Inexact Rounded -dvix3220 divideint -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -74528 -mulx3220 multiply -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -40386962037.048345148338122539405 Inexact Rounded -powx3220 power -54863165.152174109720312887805017 736 -> 1.2903643981679111625370174573639E+5696 Inexact Rounded -remx3220 remainder -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -134.5860664811454830973740198416 -subx3220 subtract -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -54863901.292021765737226998337843 Inexact Rounded -addx3221 add -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -3263743464517851012531706353100.8 Inexact Rounded -comx3221 compare -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1 -divx3221 divide -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1328233422952076975055082.5768082 Inexact Rounded -dvix3221 divideint -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1328233422952076975055082 -mulx3221 multiply -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -8.0196908300261262548565838031943E+36 Inexact Rounded -powx3221 power -3263743464517851012531708810307 2457206 -> Infinity Overflow Inexact Rounded -remx3221 remainder -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1417336.7573398366062994535940062 -subx3221 subtract -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -3263743464517851012531711267513.2 Inexact Rounded -addx3222 add 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 9.5354563764657694835860339582821E+91 Inexact Rounded -comx3222 compare 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> -1 -divx3222 divide 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 2.9957525170007980008712828968300E-978 Inexact Rounded -dvix3222 divideint 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 0 -mulx3222 multiply 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 2.7238858283525541854826594343954E-794 Inexact Rounded -powx3222 power 2856586744.0548637797291151154902E-895 10 -> 3.6180466753307072256807593988336E-8856 Inexact Rounded -remx3222 remainder 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 2.8565867440548637797291151154902E-886 -subx3222 subtract 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> -9.5354563764657694835860339582821E+91 Inexact Rounded -addx3223 add 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 631722566499.28075196842125460014 Inexact Rounded -comx3223 compare 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> -1 -divx3223 divide 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 0.0089828645946207580492752544218316 Inexact Rounded -dvix3223 divideint 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 0 -mulx3223 multiply 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 3521275897257796938833.8975037909 Inexact Rounded -powx3223 power 5624157233.3433661009203529937625 6 -> 3.1647887196303262540158328459030E+58 Inexact Rounded -remx3223 remainder 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 5624157233.3433661009203529937625 -subx3223 subtract 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> -620474252032.59401976658054861262 Inexact Rounded -addx3224 add -213499362.91476998701834067092611 419272438.02555757699863022643444 -> 205773075.11078758998028955550833 -comx3224 compare -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -1 -divx3224 divide -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -0.50921392286166855779828061147786 Inexact Rounded -dvix3224 divideint -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -0 -mulx3224 multiply -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -89514398406178925.073260776410672 Inexact Rounded -powx3224 power -213499362.91476998701834067092611 419272438 -> Infinity Overflow Inexact Rounded -remx3224 remainder -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -213499362.91476998701834067092611 -subx3224 subtract -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -632771800.94032756401697089736055 -addx3225 add 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 30274.392356614101238316845401518 Inexact Rounded -comx3225 compare 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1 -divx3225 divide 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 6300.1252178837655359831527173832 Inexact Rounded -dvix3225 divideint 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 6300 -mulx3225 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651199283 Inexact Rounded -powx3225 power 30269.587755640502150977251770554 5 -> 25411630481547464128383.220368208 Inexact Rounded -remx3225 remainder 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 0.6016219662519115373766970119100 -subx3225 subtract 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 30264.783154666903063637658139590 Inexact Rounded -addx3226 add 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> 4.7525676459351505682005359699680E+705 Inexact Rounded -comx3226 compare 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> 1 -divx3226 divide 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> -8.1057651538555854520994438038537E+673 Inexact Rounded -dvix3226 divideint 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> NaN Division_impossible -mulx3226 multiply 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> -2.7865227773649353769876975366506E+737 Inexact Rounded -powx3226 power 47.525676459351505682005359699680E+704 -6 -> 8.6782100393941226535150385475464E-4235 Inexact Rounded -remx3226 remainder 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> NaN Division_impossible -subx3226 subtract 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> 4.7525676459351505682005359699680E+705 Inexact Rounded -addx3227 add -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -74396977890406.153948943614775470 Inexact Rounded -comx3227 compare -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -1 -divx3227 divide -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> 643479.03948459716424778005613112 Inexact Rounded -dvix3227 divideint -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> 643479 -mulx3227 multiply -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> 8601512678051025297297.7169654467 Inexact Rounded -powx3227 power -74396862273800.625679130772935550 -115616606 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3227 remainder -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -4565075.09478147646296920746797 -subx3227 subtract -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -74396746657195.097409317931095630 Inexact Rounded -addx3228 add 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 67586387.525464115583388327481014 Inexact Rounded -comx3228 compare 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 1 -divx3228 divide 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 81727.439437354248789852715586510 Inexact Rounded -dvix3228 divideint 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 81727 -mulx3228 multiply 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 55890751355.998983433895910295596 Inexact Rounded -powx3228 power 67585560.562561229497720955705979 827 -> 1.9462204583352191108781197788255E+6475 Inexact Rounded -remx3228 remainder 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 363.39839010616042789746007924349 -subx3228 subtract 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 67584733.599658343412053583930944 Inexact Rounded -addx3229 add 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 390.31542898606435093937697545510 Inexact Rounded -comx3229 compare 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> -1 -divx3229 divide 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 1.7620074325054038174571564409871E-225 Inexact Rounded -dvix3229 divideint 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 0 -mulx3229 multiply 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 2.6843502060572691408091663822732E-220 Inexact Rounded -powx3229 power 6877386868.9498051860742298735156E-232 390 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3229 remainder 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 6.8773868689498051860742298735156E-223 -subx3229 subtract 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> -390.31542898606435093937697545510 Inexact Rounded -addx3230 add -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> -186656471117.70574263160637723440 Inexact Rounded -comx3230 compare -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 1 -divx3230 divide -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 0.0000088255699357876233458660331146583 Inexact Rounded -dvix3230 divideint -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 0 -mulx3230 multiply -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 307483061680363807.48775619333285 Inexact Rounded -powx3230 power -1647335.201144609256134925838937 -2 -> 3.6849876990439502152784389237891E-13 Inexact Rounded -remx3230 remainder -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> -1647335.201144609256134925838937 -subx3230 subtract -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 186653176447.30345341309410738272 Inexact Rounded -addx3231 add 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> 41407818140948.866630923934138155 Inexact Rounded -comx3231 compare 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> 1 -divx3231 divide 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> -8.0298091128179204076796507697517E+972 Inexact Rounded -dvix3231 divideint 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> NaN Division_impossible -mulx3231 multiply 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> -2.1353028186646179369220834691156E-946 Inexact Rounded -powx3231 power 41407818140948.866630923934138155 -5 -> 8.2146348556648547525693528004081E-69 Inexact Rounded -remx3231 remainder 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> NaN Division_impossible -subx3231 subtract 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> 41407818140948.866630923934138155 Inexact Rounded -addx3232 add -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> -574454585586.71690214265053093061 Inexact Rounded -comx3232 compare -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 1 -divx3232 divide -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 1.1584453442097568745411568037078E-11 Inexact Rounded -dvix3232 divideint -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 0 -mulx3232 multiply -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 3822847288253.1035559206691532826 Inexact Rounded -powx3232 power -6.6547424012516834662011706165297 -6 -> 0.000011513636283388791488128239232906 Inexact Rounded -remx3232 remainder -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> -6.6547424012516834662011706165297 -subx3232 subtract -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 574454585573.40741734014716399821 Inexact Rounded -addx3233 add -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> -23385972217069.468331815025891947 Inexact Rounded -comx3233 compare -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 1 -divx3233 divide -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 1.1813816642548920194709898111624E-9 Inexact Rounded -dvix3233 divideint -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 0 -mulx3233 multiply -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 646101997676091306.41485393678655 Inexact Rounded -powx3233 power -27627.758745381267780885067447671 -2 -> 1.3101128009560812529198521922269E-9 Inexact Rounded -remx3233 remainder -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> -27627.758745381267780885067447671 -subx3233 subtract -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 23385972161813.950841052490330177 Inexact Rounded -addx3234 add 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> 2.0981974379099914752963711944307E-223 Inexact Rounded -comx3234 compare 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> 1 -divx3234 divide 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> -4.7661318949867060595545765053187E+731 Inexact Rounded -dvix3234 divideint 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> NaN Division_impossible -mulx3234 multiply 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> -9.2369086409102239573726316593648E-1178 Inexact Rounded -powx3234 power 209819.74379099914752963711944307E-228 -4 -> 5.1595828494111690910650919776705E+890 Inexact Rounded -remx3234 remainder 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> NaN Division_impossible -subx3234 subtract 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> 2.0981974379099914752963711944307E-223 Inexact Rounded -addx3235 add 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.3488457600415474270259330865184 Inexact Rounded -comx3235 compare 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 1 -divx3235 divide 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.5579771002708402753412266574941E+605 Inexact Rounded -dvix3235 divideint 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> NaN Division_impossible -mulx3235 multiply 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.1568122732142531556215204459407E-605 Inexact Rounded -powx3235 power 2.3488457600415474270259330865184 9 -> 2176.1583446147511579113022622255 Inexact Rounded -remx3235 remainder 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> NaN Division_impossible -subx3235 subtract 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.3488457600415474270259330865184 Inexact Rounded -addx3236 add -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -5107586300197.9703941034404557409 Inexact Rounded -comx3236 compare -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -1 -divx3236 divide -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -9.0225606358909877855326357402242E+775 Inexact Rounded -dvix3236 divideint -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> NaN Division_impossible -mulx3236 multiply -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -2.8913563307290346152596212593532E-751 Inexact Rounded -powx3236 power -5107586300197.9703941034404557409 6 -> 1.7753920894188022125919559565029E+76 Inexact Rounded -remx3236 remainder -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> NaN Division_impossible -subx3236 subtract -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -5107586300197.9703941034404557409 Inexact Rounded -addx3237 add -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -70454076296048.077427972135182788 Inexact Rounded -comx3237 compare -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -1 -divx3237 divide -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> 11363232.779549422490548997517194 Inexact Rounded -dvix3237 divideint -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> 11363232 -mulx3237 multiply -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> 436827801504436566945.76663687924 Inexact Rounded -powx3237 power -70454070095869.70717871212601390 -6200178 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3237 remainder -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -4833345.467866203920028883583808 -subx3237 subtract -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -70454063895691.336929452116845012 Inexact Rounded -addx3238 add 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 29119.220621511046558757900645228 Inexact Rounded -comx3238 compare 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 1 -divx3238 divide 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 8.2781197380089684063239752337467E+219 Inexact Rounded -dvix3238 divideint 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> NaN Division_impossible -mulx3238 multiply 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 1.0243014554512542440592768088600E-211 Inexact Rounded -powx3238 power 29119.220621511046558757900645228 4 -> 718983605328417461.32835984217255 Inexact Rounded -remx3238 remainder 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> NaN Division_impossible -subx3238 subtract 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 29119.220621511046558757900645228 Inexact Rounded -addx3239 add -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> -5695442.3185284567660037344669935 Inexact Rounded -comx3239 compare -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 1 -divx3239 divide -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 0.00090825526554639915580539316714451 Inexact Rounded -dvix3239 divideint -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 0 -mulx3239 multiply -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 29408596423.801454053855793898323 Inexact Rounded -powx3239 power -5168.2214111091132913776042214525 -5690274 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3239 remainder -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> -5168.2214111091132913776042214525 -subx3239 subtract -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 5685105.8757062385394209792585505 Inexact Rounded -addx3240 add 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 31712.980161250558571611312236423 Inexact Rounded -comx3240 compare 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 1 -divx3240 divide 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> -16.319683055519892881394358449220 Inexact Rounded -dvix3240 divideint 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> -16 -mulx3240 multiply 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> -69933662.130469766080574235843448 Inexact Rounded -powx3240 power 33783.060857197067391462144517964 -2070 -> 3.9181336001803008597293818984406E-9375 Inexact Rounded -remx3240 remainder 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 661.7697220529262738488280133144 -subx3240 subtract 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 35853.141553143576211312976799505 Inexact Rounded -addx3241 add 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 7.3330633078828216018536326743325E+986 Inexact Rounded -comx3241 compare 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> -1 -divx3241 divide 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 5.7557712676064206636178247554056E-1879 Inexact Rounded -dvix3241 divideint 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 0 -mulx3241 multiply 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 3.0950979358603075650592433398939E+95 Inexact Rounded -powx3241 power 42207435091050.840296353874733169E-905 7 -> 2.3862872940615283599573082966642E-6240 Inexact Rounded -remx3241 remainder 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 4.2207435091050840296353874733169E-892 -subx3241 subtract 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> -7.3330633078828216018536326743325E+986 Inexact Rounded -addx3242 add -71800.806700868784841045406679641 -39617456964250697902519150526701 -> -39617456964250697902519150598502 Inexact Rounded -comx3242 compare -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 1 -divx3242 divide -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 1.8123527405017220178579049964126E-27 Inexact Rounded -dvix3242 divideint -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 0 -mulx3242 multiply -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 2.8445653694701522164901827524538E+36 Inexact Rounded -powx3242 power -71800.806700868784841045406679641 -4 -> 3.7625536850895480882178599428774E-20 Inexact Rounded -remx3242 remainder -71800.806700868784841045406679641 -39617456964250697902519150526701 -> -71800.806700868784841045406679641 -subx3242 subtract -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 39617456964250697902519150454900 Inexact Rounded -addx3243 add 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 53627809061.200981502803149181991 Inexact Rounded -comx3243 compare 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 1 -divx3243 divide 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 163369.13159039717901500465109839 Inexact Rounded -dvix3243 divideint 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 163369 -mulx3243 multiply 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 17603733760058752.363123585224369 Inexact Rounded -powx3243 power 53627480801.631504892310016062160 328260 -> Infinity Overflow Inexact Rounded -remx3243 remainder 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 43195.80712523964536237599604393 -subx3243 subtract 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 53627152542.062028281816882942329 Inexact Rounded -addx3244 add -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -5150456970.7802587986281516264289 Inexact Rounded -comx3244 compare -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -1 -divx3244 divide -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> 51.633359351732432283879274192947 Inexact Rounded -dvix3244 divideint -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> 51 -mulx3244 multiply -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> 494424210127893893.12581512954787 Inexact Rounded -powx3244 power -5052601598.5559371338428368438728 -97855372 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3244 remainder -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -61977615.115532229791782933513536 -subx3244 subtract -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -4954746226.3316154690575220613167 Inexact Rounded -addx3245 add 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 4.2708691760149477598920960628392E+477 Inexact Rounded -comx3245 compare 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> -1 -divx3245 divide 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 9.8531098643021951048744078027283E-320 Inexact Rounded -dvix3245 divideint 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 0 -mulx3245 multiply 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 1.7972391158952189002169082753183E+636 Inexact Rounded -powx3245 power 4208134320733.7069742988228068191E+146 4 -> 3.1358723439830872127129821963857E+634 Inexact Rounded -remx3245 remainder 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 4.2081343207337069742988228068191E+158 -subx3245 subtract 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> -4.2708691760149477598920960628392E+477 Inexact Rounded -addx3246 add -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.5077009657942581515590471189084E+308 Inexact Rounded -comx3246 compare -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -1 -divx3246 divide -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.8143110457236089978070419047970E+548 Inexact Rounded -dvix3246 divideint -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> NaN Division_impossible -mulx3246 multiply -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.2117564660363596283732942091852E+68 Inexact Rounded -powx3246 power -8.5077009657942581515590471189084E+308 10 -> 1.9866536812573207868350640760678E+3089 Inexact Rounded -remx3246 remainder -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> NaN Division_impossible -subx3246 subtract -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.5077009657942581515590471189084E+308 Inexact Rounded -addx3247 add -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> -9.5049703032286960790904181078063E+622 Inexact Rounded -comx3247 compare -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> -1 -divx3247 divide -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> 1.1020772033225707125391212519421E+621 Inexact Rounded -dvix3247 divideint -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> NaN Division_impossible -mulx3247 multiply -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> 8.1976525957425311427858087117655E+624 Inexact Rounded -powx3247 power -9504.9703032286960790904181078063E+619 -86 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3247 remainder -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> NaN Division_impossible -subx3247 subtract -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> -9.5049703032286960790904181078063E+622 Inexact Rounded -addx3248 add -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -440323641.68311120898457496019108 Inexact Rounded -comx3248 compare -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -1 -divx3248 divide -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> 4285.4305022264473269770246126234 Inexact Rounded -dvix3248 divideint -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> 4285 -mulx3248 multiply -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> 45221700683419.655596771711603505 Inexact Rounded -powx3248 power -440220916.66716743026896931194749 -102725 -> -0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3248 remainder -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -44223.34807563389876658817398125 -subx3248 subtract -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -440118191.65122365155336366370390 Inexact Rounded -addx3249 add -46.250735086006350517943464758019 14656357555174.263295266074908024 -> 14656357555128.012560180068557506 Inexact Rounded -comx3249 compare -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -1 -divx3249 divide -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -3.1556773169523313932207725522866E-12 Inexact Rounded -dvix3249 divideint -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -0 -mulx3249 multiply -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -677867310610152.55569620459788530 Inexact Rounded -powx3249 power -46.250735086006350517943464758019 1 -> -46.250735086006350517943464758019 -remx3249 remainder -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -46.250735086006350517943464758019 -subx3249 subtract -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -14656357555220.514030352081258542 Inexact Rounded -addx3250 add -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> -6.1641121299391316420647102699627E+776 Inexact Rounded -comx3250 compare -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> -1 -divx3250 divide -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> 6.7076702065897819604716946852581E+291 Inexact Rounded -dvix3250 divideint -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> NaN Division_impossible -mulx3250 multiply -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> 5.6646014458394584921579417504939E+1261 Inexact Rounded -powx3250 power -61641121299391.316420647102699627E+763 -9 -> -7.7833261179975532508748150708605E-6992 Inexact Rounded -remx3250 remainder -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> NaN Division_impossible -subx3250 subtract -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> -6.1641121299391316420647102699627E+776 Inexact Rounded -addx3251 add 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> -1.9498732131365824921639467044927E-511 Inexact Rounded -comx3251 compare 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> 1 -divx3251 divide 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> -4.9576772044192514715453215933704E-314 Inexact Rounded -dvix3251 divideint 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> -0 -mulx3251 multiply 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> -1.8849116232962331617140676274611E-1335 Inexact Rounded -powx3251 power 96668419802749.555738010239087449E-838 -2 -> 1.0701157625268896323611633350003E+1648 Inexact Rounded -remx3251 remainder 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> 9.6668419802749555738010239087449E-825 -subx3251 subtract 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> 1.9498732131365824921639467044927E-511 Inexact Rounded -addx3252 add -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -8.5345439111979959060312457195190E+154 Inexact Rounded -comx3252 compare -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -1 -divx3252 divide -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -5.1764925822381062287959523371316E+141 Inexact Rounded -dvix3252 divideint -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> NaN Division_impossible -mulx3252 multiply -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -1.4071002443255581217471698731240E+168 Inexact Rounded -powx3252 power -8534543911197995906031245719519E+124 2 -> 7.2838439772166785429482995041337E+309 Inexact Rounded -remx3252 remainder -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> NaN Division_impossible -subx3252 subtract -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -8.5345439111979959060312457195190E+154 Inexact Rounded -addx3253 add -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> 9.2570938837239134052589184917186E+916 Inexact Rounded -comx3253 compare -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -1 -divx3253 divide -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -6.7692307720384142592597124956951E-907 Inexact Rounded -dvix3253 divideint -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -0 -mulx3253 multiply -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -5.8008102109774576654709018012876E+927 Inexact Rounded -powx3253 power -62663404777.352508979582846931050 9 -> -1.4897928814133059615670462753825E+97 Inexact Rounded -remx3253 remainder -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -62663404777.352508979582846931050 -subx3253 subtract -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -9.2570938837239134052589184917186E+916 Inexact Rounded -addx3254 add 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> -1.7353669504253419489494030651507E-630 Inexact Rounded -comx3254 compare 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> 1 -divx3254 divide 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> -1.0053212169604565230497117966004E-197 Inexact Rounded -dvix3254 divideint 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> -0 -mulx3254 multiply 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> -3.0275232892710668432895049546233E-1457 Inexact Rounded -powx3254 power 1.744601214474560992754529320172E-827 -2 -> 3.2855468099615282394992542515980E+1653 Inexact Rounded -remx3254 remainder 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> 1.744601214474560992754529320172E-827 -subx3254 subtract 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> 1.7353669504253419489494030651507E-630 Inexact Rounded -addx3255 add 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 4.4103206624152665337631438377420E+751 Inexact Rounded -comx3255 compare 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> -1 -divx3255 divide 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 8.3257335949720619093963917942525E-723 Inexact Rounded -dvix3255 divideint 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 0 -mulx3255 multiply 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 1.6194324757808363802947192054966E+781 Inexact Rounded -powx3255 power 0367191549036702224827734853471 4 -> 1.8179030119354318182493703269258E+118 Inexact Rounded -remx3255 remainder 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 367191549036702224827734853471 -subx3255 subtract 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> -4.4103206624152665337631438377420E+751 Inexact Rounded -addx3256 add 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 97607380.048316862763014969003011 Inexact Rounded -comx3256 compare 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 1 -divx3256 divide 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> -1010.0036335861757252324592571874 Inexact Rounded -dvix3256 divideint 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> -1010 -mulx3256 multiply 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> -9451544582305.1234805483449772252 Inexact Rounded -powx3256 power 097704116.4492566721965710365073 -96736 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3256 remainder 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 351.500049144304942857175263550 -subx3256 subtract 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 97800852.850196481630127104011589 Inexact Rounded -addx3257 add 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 19533298.147150158931958733807878 Inexact Rounded -comx3257 compare 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 1 -divx3257 divide 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 2.4373460837728485395672882395171E+646 Inexact Rounded -dvix3257 divideint 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> NaN Division_impossible -mulx3257 multiply 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 1.5654311016630284502459158971272E-632 Inexact Rounded -powx3257 power 19533298.147150158931958733807878 8 -> 2.1193595047638230427530063654613E+58 Inexact Rounded -remx3257 remainder 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> NaN Division_impossible -subx3257 subtract 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 19533298.147150158931958733807878 Inexact Rounded -addx3258 add -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> -23765003221220177430797028997378 Inexact Rounded -comx3258 compare -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> -1 -divx3258 divide -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> 1.5631405336020930064824135669541E+966 Inexact Rounded -dvix3258 divideint -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> NaN Division_impossible -mulx3258 multiply -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> 3.6130812678955994625210007005216E-904 Inexact Rounded -powx3258 power -23765003221220177430797028997378 -2 -> 1.7706154318483481190364979209436E-63 Inexact Rounded -remx3258 remainder -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> NaN Division_impossible -subx3258 subtract -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> -23765003221220177430797028997378 Inexact Rounded -addx3259 add 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> 1.2925541937932433359193338910552E+937 Inexact Rounded -comx3259 compare 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> 1 -divx3259 divide 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> -4.5956836453828213050223260551064E+928 Inexact Rounded -dvix3259 divideint 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> NaN Division_impossible -mulx3259 multiply 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> -3.6353597697504958096931088780367E+945 Inexact Rounded -powx3259 power 129255.41937932433359193338910552E+932 -281253953 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3259 remainder 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> NaN Division_impossible -subx3259 subtract 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> 1.2925541937932433359193338910552E+937 Inexact Rounded -addx3260 add -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -86331.770222938687407130786425993 Inexact Rounded -comx3260 compare -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -1 -divx3260 divide -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -163.42858201815891408475902229649 Inexact Rounded -dvix3260 divideint -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -163 -mulx3260 multiply -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -46168354.810498682140456143534524 Inexact Rounded -powx3260 power -86863.276249466008289214762980838 532 -> 2.8897579184173839519859710217510E+2627 Inexact Rounded -remx3260 remainder -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -227.79392551270450952658454114212 -subx3260 subtract -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -87394.782275993329171298739535683 Inexact Rounded -addx3261 add -40707.169006771111855573524157083 -68795521421321853333274411827749 -> -68795521421321853333274411868456 Inexact Rounded -comx3261 compare -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 1 -divx3261 divide -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 5.9171248601300236694386185513139E-28 Inexact Rounded -dvix3261 divideint -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 0 -mulx3261 multiply -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 2.8004709174066910577370895499575E+36 Inexact Rounded -powx3261 power -40707.169006771111855573524157083 -7 -> -5.3988802915897595722440392884051E-33 Inexact Rounded -remx3261 remainder -40707.169006771111855573524157083 -68795521421321853333274411827749 -> -40707.169006771111855573524157083 -subx3261 subtract -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 68795521421321853333274411787042 Inexact Rounded -addx3262 add -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> -9.0838752568673728630494658778003E+108 Inexact Rounded -comx3262 compare -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> -1 -divx3262 divide -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> 1.2308545518588430875268553851424E+106 Inexact Rounded -dvix3262 divideint -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> NaN Division_impossible -mulx3262 multiply -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> 6.7040244160213718891633678248127E+111 Inexact Rounded -powx3262 power -90838752568673.728630494658778003E+095 -738 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3262 remainder -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> NaN Division_impossible -subx3262 subtract -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> -9.0838752568673728630494658778003E+108 Inexact Rounded -addx3263 add -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> -3.1196062390425302071032035080570 Inexact Rounded -comx3263 compare -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 1 -divx3263 divide -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 1.3608643662980066356437236081969E-670 Inexact Rounded -dvix3263 divideint -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 0 -mulx3263 multiply -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 1.3243854561493627844105290415330E-669 Inexact Rounded -powx3263 power -4245360967593.9206771555839718158E-682 -3 -> -1.3069414504933253288042820429894E+2008 Inexact Rounded -remx3263 remainder -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> -4.2453609675939206771555839718158E-670 -subx3263 subtract -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 3.1196062390425302071032035080570 Inexact Rounded -addx3264 add -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> -60810.964656409685060465379447110 Inexact Rounded -comx3264 compare -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 1 -divx3264 divide -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 5.6275137635287882875914124742650E-16 Inexact Rounded -dvix3264 divideint -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 0 -mulx3264 multiply -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 0.0000020810396331962224323288744910607 Inexact Rounded -powx3264 power -3422145405774.0800213000547612240E-023 -60811 -> -Infinity Overflow Inexact Rounded -remx3264 remainder -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> -3.4221454057740800213000547612240E-11 -subx3264 subtract -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 60810.964656409616617557263965510 Inexact Rounded -addx3265 add -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> -94860846133404815410816234000694 Inexact Rounded -comx3265 compare -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 1 -divx3265 divide -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 2.5850297647576657819483988845904E-686 Inexact Rounded -dvix3265 divideint -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 0 -mulx3265 multiply -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 2.3261597474398006215017751785104E-622 Inexact Rounded -powx3265 power -24521811.07649485796598387627478E-661 -9 -> -3.1190843559949184618590264246586E+5882 Inexact Rounded -remx3265 remainder -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> -2.452181107649485796598387627478E-654 -subx3265 subtract -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 94860846133404815410816234000694 Inexact Rounded -addx3266 add -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -5038638032824.4395321279731805825 Inexact Rounded -comx3266 compare -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -1 -divx3266 divide -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -1295.6457979549894351378127413283 Inexact Rounded -dvix3266 divideint -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -1295 -mulx3266 multiply -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -19625045834830808256871.952659048 Inexact Rounded -powx3266 power -5042529937498.8944492248538951438 4 -> 6.4653782991800009492580180960839E+50 Inexact Rounded -remx3266 remainder -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -2513384079.7768087643285383187045 -subx3266 subtract -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -5046421842173.3493663217346097051 Inexact Rounded -addx3267 add -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> 2732988.5891363639325008206099712 Inexact Rounded -comx3267 compare -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -1 -divx3267 divide -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -1.9605795855687791246611683328346E-663 Inexact Rounded -dvix3267 divideint -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -0 -mulx3267 multiply -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -1.4644013247528895376254850705597E-650 Inexact Rounded -powx3267 power -535824163.54531747646293693868651E-665 2732989 -> -0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3267 remainder -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -5.3582416354531747646293693868651E-657 -subx3267 subtract -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -2732988.5891363639325008206099712 Inexact Rounded -addx3268 add 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 52864854.899420632375589206704068 Inexact Rounded -comx3268 compare 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> -1 -divx3268 divide 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 4.5460641203455697917573431961511E-513 Inexact Rounded -dvix3268 divideint 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 0 -mulx3268 multiply 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 1.2704853045231735885074945710576E-497 Inexact Rounded -powx3268 power 24032.702008553084252925140858134E-509 52864855 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3268 remainder 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 2.4032702008553084252925140858134E-505 -subx3268 subtract 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> -52864854.899420632375589206704068 Inexact Rounded -addx3269 add 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 754.44220417415325444943566016062 Inexact Rounded -comx3269 compare 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> -1 -divx3269 divide 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 9.4842547068617879794218050008353E-489 Inexact Rounded -dvix3269 divideint 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 0 -mulx3269 multiply 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 5.3982769208667021044675146787248E-483 Inexact Rounded -powx3269 power 71553220259.938950698030519906727E-496 754 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3269 remainder 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 7.1553220259938950698030519906727E-486 -subx3269 subtract 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> -754.44220417415325444943566016062 Inexact Rounded -addx3270 add 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 35572.960284795962697740953932508 Inexact Rounded -comx3270 compare 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 1 -divx3270 divide 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 6.8357605153869556504869061469852E+732 Inexact Rounded -dvix3270 divideint 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> NaN Division_impossible -mulx3270 multiply 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 1.8511992931514185102474609686066E-724 Inexact Rounded -powx3270 power 35572.960284795962697740953932508 5 -> 56963942247985404337401.149353169 Inexact Rounded -remx3270 remainder 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> NaN Division_impossible -subx3270 subtract 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 35572.960284795962697740953932508 Inexact Rounded -addx3271 add 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> 5.3035405018123760598334895413057E+849 Inexact Rounded -comx3271 compare 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> 1 -divx3271 divide 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> -5.5485278436266802470202487233285E+836 Inexact Rounded -dvix3271 divideint 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> NaN Division_impossible -mulx3271 multiply 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> -5.0693702270365259274203181894613E+862 Inexact Rounded -powx3271 power 53035405018123760598334895413057E+818 -10 -> 5.6799053935427267944455848135618E-8498 Inexact Rounded -remx3271 remainder 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> NaN Division_impossible -subx3271 subtract 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> 5.3035405018123760598334895413057E+849 Inexact Rounded -addx3272 add 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 9.8701498316307365714167410690192E+135 Inexact Rounded -comx3272 compare 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> -1 -divx3272 divide 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 9.6747012716293341927566515915016E-135 Inexact Rounded -dvix3272 divideint 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 0 -mulx3272 multiply 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 9.4250802116091862185764800227004E+137 Inexact Rounded -powx3272 power 95.490751127249945886828257312118 10 -> 63039548646186864162.847491534337 Inexact Rounded -remx3272 remainder 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 95.490751127249945886828257312118 -subx3272 subtract 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> -9.8701498316307365714167410690192E+135 Inexact Rounded -addx3273 add 69434850287.460788550936730296153 -35119136549015044241569827542264 -> -35119136549015044241500392691977 Inexact Rounded -comx3273 compare 69434850287.460788550936730296153 -35119136549015044241569827542264 -> 1 -divx3273 divide 69434850287.460788550936730296153 -35119136549015044241569827542264 -> -1.9771229338327273644129394734299E-21 Inexact Rounded -dvix3273 divideint 69434850287.460788550936730296153 -35119136549015044241569827542264 -> -0 -mulx3273 multiply 69434850287.460788550936730296153 -35119136549015044241569827542264 -> -2.4384919885057519302646522425980E+42 Inexact Rounded -powx3273 power 69434850287.460788550936730296153 -4 -> 4.3021939605842038995370443743844E-44 Inexact Rounded -remx3273 remainder 69434850287.460788550936730296153 -35119136549015044241569827542264 -> 69434850287.460788550936730296153 -subx3273 subtract 69434850287.460788550936730296153 -35119136549015044241569827542264 -> 35119136549015044241639262392551 Inexact Rounded -addx3274 add -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> -65551667.214560244414938327003123 Inexact Rounded -comx3274 compare -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 1 -divx3274 divide -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 0.0000059835205237890809449684317245033 Inexact Rounded -dvix3274 divideint -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 0 -mulx3274 multiply -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 25711006105.487929108329637701882 Inexact Rounded -powx3274 power -392.22739924621965621739098725407 -65551275 -> -0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3274 remainder -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> -392.22739924621965621739098725407 -subx3274 subtract -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 65550882.759761751975625892221149 Inexact Rounded -addx3275 add 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 6437779.6650608333186472347196668 Inexact Rounded -comx3275 compare 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 1 -divx3275 divide 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 261.61406460270241498757868681883 Inexact Rounded -dvix3275 divideint 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 261 -mulx3275 multiply 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 157216217318.36494525300694583138 Inexact Rounded -powx3275 power 6413265.4423561191792972085539457 24514 -> Infinity Overflow Inexact Rounded -remx3275 remainder 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 15053.316425728808940379300726594 -subx3275 subtract 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 6388751.2196514050399471823882246 Inexact Rounded -addx3276 add -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -6.9667706389122107760046184064057E+487 Inexact Rounded -comx3276 compare -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -1 -divx3276 divide -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -2.1498522911689997341347293419761E+486 Inexact Rounded -dvix3276 divideint -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> NaN Division_impossible -mulx3276 multiply -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -2.2576385054257595259511556258470E+489 Inexact Rounded -powx3276 power -6.9667706389122107760046184064057E+487 32 -> Infinity Overflow Inexact Rounded -remx3276 remainder -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> NaN Division_impossible -subx3276 subtract -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -6.9667706389122107760046184064057E+487 Inexact Rounded -addx3277 add 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 77986002255.07800973642274406015 -comx3277 compare 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 1 -divx3277 divide 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> -1.2597639604731753284599748820876 Inexact Rounded -dvix3277 divideint 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> -1 -mulx3277 multiply 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> -113544133799497082075557.21180430 Inexact Rounded -powx3277 power 378204716633.40024100602896057615 -3 -> 1.8484988212401886887562779996737E-35 Inexact Rounded -remx3277 remainder 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 77986002255.07800973642274406015 -subx3277 subtract 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 678423431011.72247227563517709215 -addx3278 add -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -4.4234512012457148027685282969235E+505 Inexact Rounded -comx3278 compare -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -1 -divx3278 divide -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -2.0742325477916347193181603963257E+499 Inexact Rounded -dvix3278 divideint -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> NaN Division_impossible -mulx3278 multiply -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -9.4333301975395170465982968019915E+511 Inexact Rounded -powx3278 power -44234.512012457148027685282969235E+501 2132572 -> Infinity Overflow Inexact Rounded -remx3278 remainder -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> NaN Division_impossible -subx3278 subtract -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -4.4234512012457148027685282969235E+505 Inexact Rounded -addx3279 add -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> 9.7520428746722497621936998533848E+519 Inexact Rounded -comx3279 compare -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -1 -divx3279 divide -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -3.6449692061227100572768330912162E-590 Inexact Rounded -dvix3279 divideint -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -0 -mulx3279 multiply -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -3.4664510156653491769901435777060E+450 Inexact Rounded -powx3279 power -3554.5895974968741465654022772100E-073 10 -> 3.2202875716019266933215387456197E-695 Inexact Rounded -remx3279 remainder -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -3.5545895974968741465654022772100E-70 -subx3279 subtract -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -9.7520428746722497621936998533848E+519 Inexact Rounded -addx3280 add 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 4633944440549.3093886865008969464 Inexact Rounded -comx3280 compare 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> -1 -divx3280 divide 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 0.00016191587157664541463871807382759 Inexact Rounded -dvix3280 divideint 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 0 -mulx3280 multiply 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 3475765273659325895012.7612107556 Inexact Rounded -powx3280 power 750187685.63632608923397234391668 5 -> 2.3760176068829529745152188798557E+44 Inexact Rounded -remx3280 remainder 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 750187685.63632608923397234391668 -subx3280 subtract 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> -4632444065178.0367365080329522586 Inexact Rounded -addx3281 add 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 8038885676320423832297608779.9751 Inexact Rounded -comx3281 compare 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> -1 -divx3281 divide 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 3.7554998862319807295903348960280E-43 Inexact Rounded -dvix3281 divideint 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 0 -mulx3281 multiply 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 24269423384249.611263728854793731 Inexact Rounded -powx3281 power 30190034242853.251165951457589386E-028 8 -> 6.9009494305612589578332690692113E-117 Inexact Rounded -remx3281 remainder 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 3.0190034242853251165951457589386E-15 -subx3281 subtract 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> -8038885676320423832297608779.9751 Inexact Rounded -addx3282 add 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 125946917326.41330773874663377538 Inexact Rounded -comx3282 compare 65.537942676774715953400768803539 125946917260.87536506197191782198 -> -1 -divx3282 divide 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 5.2036162616846894920389414735878E-10 Inexact Rounded -dvix3282 divideint 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 0 -mulx3282 multiply 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 8254301843759.7376990957355411370 Inexact Rounded -powx3282 power 65.537942676774715953400768803539 1 -> 65.537942676774715953400768803539 -remx3282 remainder 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 65.537942676774715953400768803539 -subx3282 subtract 65.537942676774715953400768803539 125946917260.87536506197191782198 -> -125946917195.33742238519720186858 Inexact Rounded -addx3283 add 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8015272349626.7792105333859739528 Inexact Rounded -comx3283 compare 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 1 -divx3283 divide 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8443970438.5560107978790084430110 Inexact Rounded -dvix3283 divideint 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8443970438 -mulx3283 multiply 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 7608339144595734.8984281431471741 Inexact Rounded -powx3283 power 8015272348677.5489394183881813700 949 -> Infinity Overflow Inexact Rounded -remx3283 remainder 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 527.78228041355742397895303690364 -subx3283 subtract 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8015272347728.3186683033903887872 Inexact Rounded -addx3284 add -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -32595333982.670686221204518042250 Inexact Rounded -comx3284 compare -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -1 -divx3284 divide -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -4.7150744038935574574681609457727E+867 Inexact Rounded -dvix3284 divideint -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> NaN Division_impossible -mulx3284 multiply -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -2.2533171407952851885446213697715E-847 Inexact Rounded -powx3284 power -32595333982.67068622120451804225 7 -> -3.9092014148031739666525606093306E+73 Inexact Rounded -remx3284 remainder -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> NaN Division_impossible -subx3284 subtract -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -32595333982.670686221204518042250 Inexact Rounded -addx3285 add -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> 292178000.06450804618299520094843 Inexact Rounded -comx3285 compare -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -1 -divx3285 divide -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -6.0046235559392715334668277026896E-533 Inexact Rounded -dvix3285 divideint -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -0 -mulx3285 multiply -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -5.1260260597833406461110136952456E-516 Inexact Rounded -powx3285 power -17544189017145.710117633021800426E-537 292178000 -> 0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3285 remainder -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -1.7544189017145710117633021800426E-524 -subx3285 subtract -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -292178000.06450804618299520094843 Inexact Rounded -addx3286 add -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -506639.97552899703974189156234893 Inexact Rounded -comx3286 compare -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -1 -divx3286 divide -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -45982.150707356329027698717189104 Inexact Rounded -dvix3286 divideint -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -45982 -mulx3286 multiply -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -5582497.2457419607392940234271222 Inexact Rounded -powx3286 power -506650.99395649907139204052441630 11 -> -5.6467412678809885333313818078829E+62 Inexact Rounded -remx3286 remainder -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -1.660558079734242466742739640844 -subx3286 subtract -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -506662.01238400110304218948648367 Inexact Rounded -addx3287 add 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> -84.001893040865864590122330800768 Inexact Rounded -comx3287 compare 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> 1 -divx3287 divide 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> -5.7699118247660357814641813260524E-234 Inexact Rounded -dvix3287 divideint 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> -0 -mulx3287 multiply 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> -4.0714332866277514481192856925775E-230 Inexact Rounded -powx3287 power 4846835159.5922372307656000769395E-241 -84 -> Infinity Overflow Inexact Rounded -remx3287 remainder 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> 4.8468351595922372307656000769395E-232 -subx3287 subtract 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> 84.001893040865864590122330800768 Inexact Rounded -addx3288 add -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> -3994308913.2287755451637127790293 Inexact Rounded -comx3288 compare -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 1 -divx3288 divide -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 8.7698052609323004543538163061774E-9 Inexact Rounded -dvix3288 divideint -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 0 -mulx3288 multiply -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 139917887979.72053637272961120639 Inexact Rounded -powx3288 power -35.029311013822259358116556164908 -4 -> 6.6416138040522124693495178218096E-7 Inexact Rounded -remx3288 remainder -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> -35.029311013822259358116556164908 -subx3288 subtract -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 3994308843.1701535175191940627961 Inexact Rounded -addx3289 add 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> -5.4918146394484565418284686127552E+374 Inexact Rounded -comx3289 compare 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> 1 -divx3289 divide 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> -1.3850911310869487895947733090204E-199 Inexact Rounded -dvix3289 divideint 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> -0 -mulx3289 multiply 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> -4.1774387343310777190917128006589E+550 Inexact Rounded -powx3289 power 7606663750.6735265233044420887018E+166 -5 -> 3.9267106978887346373957314818178E-880 Inexact Rounded -remx3289 remainder 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> 7.6066637506735265233044420887018E+175 -subx3289 subtract 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> 5.4918146394484565418284686127552E+374 Inexact Rounded -addx3290 add -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> -2.5677829660831741274207326697052E-159 Inexact Rounded -comx3290 compare -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> -1 -divx3290 divide -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> 2.7277550199853009708493167299838E+671 Inexact Rounded -dvix3290 divideint -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> NaN Division_impossible -mulx3290 multiply -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> 2.4171926410541199393728294762559E-989 Inexact Rounded -powx3290 power -25677.829660831741274207326697052E-163 -9 -> -2.0605121420682764897867221992174E+1427 Inexact Rounded -remx3290 remainder -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> NaN Division_impossible -subx3290 subtract -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> -2.5677829660831741274207326697052E-159 Inexact Rounded -addx3291 add 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> -1.5412563837540810793697955063295E+554 Inexact Rounded -comx3291 compare 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> 1 -divx3291 divide 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> -6.3111872313890646144473652645030E-544 Inexact Rounded -dvix3291 divideint 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> -0 -mulx3291 multiply 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> -1.4992043761340180288065959300090E+565 Inexact Rounded -powx3291 power 97271576094.456406729671729224827 -2 -> 1.0568858765852073181352309401343E-22 Inexact Rounded -remx3291 remainder 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> 97271576094.456406729671729224827 -subx3291 subtract 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> 1.5412563837540810793697955063295E+554 Inexact Rounded -addx3292 add 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 41139789894.401826915757391777544 Inexact Rounded -comx3292 compare 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 1 -divx3292 divide 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> -2196474369511625389289506461551.0 Inexact Rounded -dvix3292 divideint 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> -2196474369511625389289506461551 -mulx3292 multiply 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> -7.7054498611419776714291080928601E-10 Inexact Rounded -powx3292 power 41139789894.401826915757391777563 -2 -> 5.9084812442741091550891451069919E-22 Inexact Rounded -remx3292 remainder 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 6.98141022640544018935102953527E-22 -subx3292 subtract 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 41139789894.401826915757391777582 Inexact Rounded -addx3293 add -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> -83310831287241.777598696853498149 Inexact Rounded -comx3293 compare -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> -1 -divx3293 divide -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> 1.5202754978845438636605170857478E+333 Inexact Rounded -dvix3293 divideint -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> NaN Division_impossible -mulx3293 multiply -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> 4.5654189779610386760330527839588E-306 Inexact Rounded -powx3293 power -83310831287241.777598696853498149 -5 -> -2.4916822606682624827900581728387E-70 Inexact Rounded -remx3293 remainder -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> NaN Division_impossible -subx3293 subtract -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> -83310831287241.777598696853498149 Inexact Rounded -addx3294 add 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> 4506653461.4414974233678331771169 Inexact Rounded -comx3294 compare 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> 1 -divx3294 divide 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> -6.0124409901781490054438220048629E+888 Inexact Rounded -dvix3294 divideint 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> NaN Division_impossible -mulx3294 multiply 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> -3.3779833273541776470902903512949E-870 Inexact Rounded -powx3294 power 4506653461.4414974233678331771169 -7 -> 2.6486272911486461102735412463189E-68 Inexact Rounded -remx3294 remainder 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> NaN Division_impossible -subx3294 subtract 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> 4506653461.4414974233678331771169 Inexact Rounded -addx3295 add 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 744537.89692255653780778146167691 Inexact Rounded -comx3295 compare 23777.857951114967684767609401626 720760.03897144157012301385227528 -> -1 -divx3295 divide 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 0.032989978169498808275308039034795 Inexact Rounded -dvix3295 divideint 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 0 -mulx3295 multiply 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 17138129823.503025913034987537096 Inexact Rounded -powx3295 power 23777.857951114967684767609401626 720760 -> Infinity Overflow Inexact Rounded -remx3295 remainder 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 23777.857951114967684767609401626 -subx3295 subtract 23777.857951114967684767609401626 720760.03897144157012301385227528 -> -696982.18102032660243824624287365 Inexact Rounded -addx3296 add -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> 6.0802728403071490445256786982100E+541 Inexact Rounded -comx3296 compare -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -1 -divx3296 divide -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -3.5093578667274020123788514069885E-511 Inexact Rounded -dvix3296 divideint -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -0 -mulx3296 multiply -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -1.2973997003625843317417981902198E+573 Inexact Rounded -powx3296 power -21337853323980858055292469611948 6 -> 9.4385298321304970306180652097874E+187 Inexact Rounded -remx3296 remainder -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -21337853323980858055292469611948 -subx3296 subtract -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -6.0802728403071490445256786982100E+541 Inexact Rounded -addx3297 add -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -818408481.65082668425744179302401 Inexact Rounded -comx3297 compare -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -1 -divx3297 divide -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -1081991.4954690752676494129493403 Inexact Rounded -dvix3297 divideint -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -1081991 -mulx3297 multiply -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -619037842458.03980537370328252817 Inexact Rounded -powx3297 power -818409238.0423893439849743856947 756 -> 1.6058883946373232750995543573461E+6738 Inexact Rounded -remx3297 remainder -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -374.76862809126749803143314108840 -subx3297 subtract -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -818409994.43395200371250697836539 Inexact Rounded -addx3298 add 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 47567380385008.954845377769826287 Inexact Rounded -comx3298 compare 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 1 -divx3298 divide 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 730853388480.86247690474303493972 Inexact Rounded -dvix3298 divideint 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 730853388480 -mulx3298 multiply 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 3095909128079784.3348591472999468 Inexact Rounded -powx3298 power 47567380384943.87013600286155046 65 -> 1.0594982876763214301042437482634E+889 Inexact Rounded -remx3298 remainder 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 56.134058687770878126430844955520 -subx3298 subtract 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 47567380384878.785426627953274633 Inexact Rounded -addx3299 add -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -302031659.49048519905267279799984 Inexact Rounded -comx3299 compare -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -1 -divx3299 divide -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> 54.765366028496664530688259272591 Inexact Rounded -dvix3299 divideint -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> 54 -mulx3299 multiply -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> 1606504025402196.8484885386501478 Inexact Rounded -powx3299 power -296615544.05897984545127115290251 -5416115 -> -0E-10030 Underflow Subnormal Inexact Rounded Clamped -remx3299 remainder -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -4145310.7576907509755823176468844 -subx3299 subtract -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -291199428.62747449184986950780518 Inexact Rounded -addx3300 add 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> 6.1391705914046707180652185247584E+749 Inexact Rounded -comx3300 compare 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> 1 -divx3300 divide 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> -9.0818539468906248593699700040068E+737 Inexact Rounded -dvix3300 divideint 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> NaN Division_impossible -mulx3300 multiply 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> -4.1499693532587347944890300176290E+761 Inexact Rounded -powx3300 power 61391705914.046707180652185247584E+739 -7 -> 3.0425105291210947473420999890124E-5249 Inexact Rounded -remx3300 remainder 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> NaN Division_impossible -subx3300 subtract 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> 6.1391705914046707180652185247584E+749 Inexact Rounded - --- randomly generated testcases [26 Sep 2001] -precision: 33 -rounding: half_up -maxExponent: 9999 - -addx3401 add 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> -1364112374596.82605557115996067822 Inexact Rounded -comx3401 compare 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> 1 -divx3401 divide 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> -3.12789896373176963160811150593867E-11 Inexact Rounded -dvix3401 divideint 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> -0 -mulx3401 multiply 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> -58204024324286.5595453066065234923 Inexact Rounded -powx3401 power 042.668056830485571428877212944418 -1 -> 0.0234367363850869744523417227148909 Inexact Rounded -remx3401 remainder 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> 42.668056830485571428877212944418 -subx3401 subtract 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> 1364112374682.16216923213110353598 Inexact Rounded -addx3402 add -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -3.27179426341653256363531809227344E+455 Inexact Rounded -comx3402 compare -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -1 -divx3402 divide -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -4.31028129684803083255704680611589E+446 Inexact Rounded -dvix3402 divideint -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> NaN Division_impossible -mulx3402 multiply -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -2.48351255171055445110558613627379E+464 Inexact Rounded -powx3402 power -327.179426341653256363531809227344E+453 759067457 -> -Infinity Overflow Inexact Rounded -remx3402 remainder -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> NaN Division_impossible -subx3402 subtract -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -3.27179426341653256363531809227344E+455 Inexact Rounded -addx3403 add 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 900181194.826119246619069527471177 Inexact Rounded -comx3403 compare 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> -1 -divx3403 divide 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 0.0000907917210693679220610511319812826 Inexact Rounded -dvix3403 divideint 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 0 -mulx3403 multiply 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 73557551389502.7779979042453102926 Inexact Rounded -powx3403 power 81721.5803096185422787702538493471 900099473 -> Infinity Overflow Inexact Rounded -remx3403 remainder 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 81721.5803096185422787702538493471 -subx3403 subtract 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> -900017751.665500009534511986963479 Inexact Rounded -addx3404 add 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 72.3239822255871305731314565069132 Inexact Rounded -comx3404 compare 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> -1 -divx3404 divide 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 5.51900935695390664984598248115290E-806 Inexact Rounded -dvix3404 divideint 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 0 -mulx3404 multiply 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 2.88686045809784034794803928177854E-802 Inexact Rounded -powx3404 power 3991.56734635183403814636354392163E-807 72 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3404 remainder 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 3.99156734635183403814636354392163E-804 -subx3404 subtract 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> -72.3239822255871305731314565069132 Inexact Rounded -addx3405 add -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -61.2544651290911805069948520197050 Inexact Rounded -comx3405 compare -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -1 -divx3405 divide -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -13.0464272560079276694749924915850 Inexact Rounded -dvix3405 divideint -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -13 -mulx3405 multiply -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -337.326590072564290813539036280205 Inexact Rounded -powx3405 power -66.3393308595957726456416979163306 5 -> -1284858888.27285822259184896667990 Inexact Rounded -remx3405 remainder -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -0.23607636303607484323270126019793 -subx3405 subtract -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -71.4241965901003647842885438129562 Inexact Rounded -addx3406 add -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> -3.93606873703567753255097095208112E+116 Inexact Rounded -comx3406 compare -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> -1 -divx3406 divide -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> 1.85284350396137075010428736564737E+107 Inexact Rounded -dvix3406 divideint -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> NaN Division_impossible -mulx3406 multiply -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> 8.36154649302353269818801263275941E+125 Inexact Rounded -powx3406 power -393606.873703567753255097095208112E+111 -2 -> 6.45467904123103560528919747688443E-234 Inexact Rounded -remx3406 remainder -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> NaN Division_impossible -subx3406 subtract -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> -3.93606873703567753255097095208112E+116 Inexact Rounded -addx3407 add -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> -877573445.238180259264773343614397 -comx3407 compare -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 1 -divx3407 divide -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 0.0222888053076312565797460650311070 Inexact Rounded -dvix3407 divideint -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 0 -mulx3407 multiply -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 16425043456056213.7395191514029288 Inexact Rounded -powx3407 power -019133598.609812524622150421584346 -858439847 -> -0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3407 remainder -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> -19133598.609812524622150421584346 -subx3407 subtract -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 839306248.018555210020472500445705 -addx3408 add 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 240910.327926825971183391888394542 Inexact Rounded -comx3408 compare 465.351982159046525762715549761814 240444.975944666924657629172844780 -> -1 -divx3408 divide 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 0.00193537827243326122782974132829095 Inexact Rounded -dvix3408 divideint 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 0 -mulx3408 multiply 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 111891546.156035013780371395668674 Inexact Rounded -powx3408 power 465.351982159046525762715549761814 240445 -> Infinity Overflow Inexact Rounded -remx3408 remainder 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 465.351982159046525762715549761814 -subx3408 subtract 465.351982159046525762715549761814 240444.975944666924657629172844780 -> -239979.623962507878131866457295018 Inexact Rounded -addx3409 add 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 28066955004783.1076824222873384828 Inexact Rounded -comx3409 compare 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 1 -divx3409 divide 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 4.90938543219432390013656968123815E+722 Inexact Rounded -dvix3409 divideint 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> NaN Division_impossible -mulx3409 multiply 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 1.60458773123547770690452195569223E-696 Inexact Rounded -powx3409 power 28066955004783.1076824222873384828 6 -> 4.88845689938951583020171325568218E+80 Inexact Rounded -remx3409 remainder 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> NaN Division_impossible -subx3409 subtract 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 28066955004783.1076824222873384828 Inexact Rounded -addx3410 add 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 2.82120384825243127096613158419270E+429 Inexact Rounded -comx3410 compare 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> -1 -divx3410 divide 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 1.00224012330435927467559203688861E-416 Inexact Rounded -dvix3410 divideint 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 0 -mulx3410 multiply 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 7.97702072298089605706798770013561E+442 Inexact Rounded -powx3410 power 28275236927392.4960902824105246047 3 -> 2.26057415546622161347322061281516E+40 Inexact Rounded -remx3410 remainder 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 28275236927392.4960902824105246047 -subx3410 subtract 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> -2.82120384825243127096613158419270E+429 Inexact Rounded -addx3411 add 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 11783.4098484281593848173575655680 Inexact Rounded -comx3411 compare 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 1 -divx3411 divide 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> -1394.73214754836418731335761858151 Inexact Rounded -dvix3411 divideint 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> -1394 -mulx3411 multiply 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> -99695.1757167732926302533138186716 Inexact Rounded -powx3411 power 11791.8644211874630234271801789996 -8 -> 2.67510099318723516565332928253711E-33 Inexact Rounded -remx3411 remainder 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 6.18999471819080133445705535281046 -subx3411 subtract 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 11800.3189939467666620370027924312 Inexact Rounded -addx3412 add 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> -9292.34554725628103950730533220061 Inexact Rounded -comx3412 compare 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> 1 -divx3412 divide 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> -0.00478829121953512281527242631775613 Inexact Rounded -dvix3412 divideint 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> -0 -mulx3412 multiply 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> -417446.000545543168866158913077419 Inexact Rounded -powx3412 power 44.7085340739581668975502342787578 -9337 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3412 remainder 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> 44.7085340739581668975502342787578 -subx3412 subtract 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> 9381.76261540419737330240580075813 Inexact Rounded -addx3413 add 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> 9.33545274288045458053295581965867E+589 Inexact Rounded -comx3413 compare 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> 1 -divx3413 divide 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> -1.08992064752484400353231056271614E+578 Inexact Rounded -dvix3413 divideint 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> NaN Division_impossible -mulx3413 multiply 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> -7.99605715447900642683774360731254E+601 Inexact Rounded -powx3413 power 93354527428804.5458053295581965867E+576 -9 -> 1.85687015691763406448005521221518E-5310 Inexact Rounded -remx3413 remainder 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> NaN Division_impossible -subx3413 subtract 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> 9.33545274288045458053295581965867E+589 Inexact Rounded -addx3414 add -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -367399415798804503177950095289166 Inexact Rounded -comx3414 compare -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -1 -divx3414 divide -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> 6698784465980529140072174.30474769 Inexact Rounded -dvix3414 divideint -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> 6698784465980529140072174 -mulx3414 multiply -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> 2.01502722493617222018040789291414E+40 Inexact Rounded -powx3414 power -367399415798804503177950040443482 -54845684 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3414 remainder -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -16714095.6549657189177857892292804 -subx3414 subtract -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -367399415798804503177949985597798 Inexact Rounded -addx3415 add -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> 89529730127.7712289354674386343440 Inexact Rounded -comx3415 compare -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -1 -divx3415 divide -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -3.20738060264454013174835928754430E-11 Inexact Rounded -dvix3415 divideint -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -0 -mulx3415 multiply -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -257089920034.115975469931085527642 Inexact Rounded -powx3415 power -2.87155919781024108503670175443740 9 -> -13275.7774683251354527310820885737 Inexact Rounded -remx3415 remainder -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -2.87155919781024108503670175443740 -subx3415 subtract -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -89529730133.5143473310879208044174 Inexact Rounded -addx3416 add -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -1.06939343381794796521780572792040E+189 Inexact Rounded -comx3416 compare -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -1 -divx3416 divide -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -4.03774938598259547575707503087638E+184 Inexact Rounded -dvix3416 divideint -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> NaN Division_impossible -mulx3416 multiply -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -2.83227661494558963558481633880647E+193 Inexact Rounded -powx3416 power -010.693934338179479652178057279204E+188 26485 -> -Infinity Overflow Inexact Rounded -remx3416 remainder -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> NaN Division_impossible -subx3416 subtract -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -1.06939343381794796521780572792040E+189 Inexact Rounded -addx3417 add 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 621838312788.308537943268041906168 -comx3417 compare 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 1 -divx3417 divide 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 60.0678575886074367081836436812959 Inexact Rounded -dvix3417 divideint 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 60 -mulx3417 multiply 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 6228331603681663511826.60450280350 Inexact Rounded -powx3417 power 611655569568.832698912762075889186 1 -> 611655569568.832698912762075889186 -remx3417 remainder 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 690976400.282357082404114870266 -subx3417 subtract 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 601472826349.356859882256109872204 -addx3418 add 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 3457945.39110674985794181949638944 Inexact Rounded -comx3418 compare 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 1 -divx3418 divide 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> -1729387.11663991852426428263230475 Inexact Rounded -dvix3418 divideint 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> -1729387 -mulx3418 multiply 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> -6914241.49127918361259252956576654 Inexact Rounded -powx3418 power 3457947.39062863674882672518304442 -2 -> 8.36302195229701913376802373659526E-14 Inexact Rounded -remx3418 remainder 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 0.2332240699744359979851713353525 -subx3418 subtract 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 3457949.39015052363971163086969940 Inexact Rounded -addx3419 add -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> -53308666960535.7393391289364591513 Inexact Rounded -comx3419 compare -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> -1 -divx3419 divide -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> 8.16740037282731870883136714441204E+451 Inexact Rounded -dvix3419 divideint -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> NaN Division_impossible -mulx3419 multiply -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> 3.47945961185390084641156250100085E-425 Inexact Rounded -powx3419 power -53308666960535.7393391289364591513 -7 -> -8.17363502380497033342380498988958E-97 Inexact Rounded -remx3419 remainder -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> NaN Division_impossible -subx3419 subtract -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> -53308666960535.7393391289364591513 Inexact Rounded -addx3420 add -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> -413474500.320043571235254629529038 Inexact Rounded -comx3420 compare -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 1 -divx3420 divide -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 0.0136503290701197094953429018013146 Inexact Rounded -dvix3420 divideint -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 0 -mulx3420 multiply -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 2271246398971702.91169807728132089 Inexact Rounded -powx3420 power -5568057.17870139549478277980540034 -407906443 -> -0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3420 remainder -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> -5568057.17870139549478277980540034 -subx3420 subtract -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 402338385.962640780245689069918238 Inexact Rounded -addx3421 add 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 9804385357.63872821851861785530505 Inexact Rounded -comx3421 compare 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 1 -divx3421 divide 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 116519965.821719977402398190558439 Inexact Rounded -dvix3421 divideint 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 116519965 -mulx3421 multiply 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 824974242939.691780798621180901714 Inexact Rounded -powx3421 power 9804385273.49533524416415189990857 84 -> 1.90244010779692739037080418507909E+839 Inexact Rounded -remx3421 remainder 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 69.1423069734476624350435642749915 -subx3421 subtract 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 9804385189.35194226980968594451209 Inexact Rounded -addx3422 add -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> -5874220715892.91440069210512515154 Inexact Rounded -comx3422 compare -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 1 -divx3422 divide -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 8.91166886601477021757439826903776E-548 Inexact Rounded -dvix3422 divideint -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 0 -mulx3422 multiply -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 3.07510225632952455144944282925583E-522 Inexact Rounded -powx3422 power -5234910986592.18801727046580014273E-547 -6 -> 4.85896970703117149235935037271084E+3205 Inexact Rounded -remx3422 remainder -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> -5.23491098659218801727046580014273E-535 -subx3422 subtract -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 5874220715892.91440069210512515154 Inexact Rounded -addx3423 add 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 5.17546816784872628933218985216916E-259 Inexact Rounded -comx3423 compare 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> -1 -divx3423 divide 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 1.34947513442491971488363250398908E-204 Inexact Rounded -dvix3423 divideint 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 0 -mulx3423 multiply 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 3.61463267496484976064271305679796E-721 Inexact Rounded -powx3423 power 698416560151955285929747633786867E-495 5 -> 1.66177661007189430761396979787413E-2311 Inexact Rounded -remx3423 remainder 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 6.98416560151955285929747633786867E-463 -subx3423 subtract 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> -5.17546816784872628933218985216916E-259 Inexact Rounded -addx3424 add 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> 107635.497735316515080720330536027 Inexact Rounded -comx3424 compare 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> 1 -divx3424 divide 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> -2.70980469844599888443309571235597E+603 Inexact Rounded -dvix3424 divideint 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> NaN Division_impossible -mulx3424 multiply 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> -4.27536360069537352698066408021773E-594 Inexact Rounded -powx3424 power 107635.497735316515080720330536027 -4 -> 7.45037111502910487803432806334714E-21 Inexact Rounded -remx3424 remainder 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> NaN Division_impossible -subx3424 subtract 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> 107635.497735316515080720330536027 Inexact Rounded -addx3425 add -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> 7.95188637593855925052747867099091E+421 Inexact Rounded -comx3425 compare -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -1 -divx3425 divide -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -4.04612060894658007715621807881076E-409 Inexact Rounded -dvix3425 divideint -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -0 -mulx3425 multiply -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -2.55846309007242668513226814043593E+435 Inexact Rounded -powx3425 power -32174291345686.5371446616670961807 8 -> 1.14834377656109143210058690590666E+108 Inexact Rounded -remx3425 remainder -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -32174291345686.5371446616670961807 -subx3425 subtract -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -7.95188637593855925052747867099091E+421 Inexact Rounded -addx3426 add -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> -9.31730631474527142307644239919480E+904 Inexact Rounded -comx3426 compare -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 1 -divx3426 divide -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 8.74902060655796717043678441884283E-208 Inexact Rounded -dvix3426 divideint -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 0 -mulx3426 multiply -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 7.59521700128037149179751467730962E+1602 Inexact Rounded -powx3426 power -8151730494.53190523620899410544099E+688 -9 -> -6.29146352774842448375275282183700E-6282 Inexact Rounded -remx3426 remainder -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> -8.15173049453190523620899410544099E+697 -subx3426 subtract -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 9.31730631474527142307644239919480E+904 Inexact Rounded -addx3427 add 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> -5.66230530039528969825480755159562E+463 Inexact Rounded -comx3427 compare 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> 1 -divx3427 divide 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> -2.36034255052700900395787131334608E-464 Inexact Rounded -dvix3427 divideint 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> -0 -mulx3427 multiply 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> -7.56765978558098558928268129700052E+463 Inexact Rounded -powx3427 power 1.33649801345976199708341799505220 -6 -> 0.175464835912284900180305028965188 Inexact Rounded -remx3427 remainder 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> 1.33649801345976199708341799505220 -subx3427 subtract 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> 5.66230530039528969825480755159562E+463 Inexact Rounded -addx3428 add 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> 67762238162788.6551061476018185196 Inexact Rounded -comx3428 compare 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> 1 -divx3428 divide 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> -1.10348321777294157014941951870409E+832 Inexact Rounded -dvix3428 divideint 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> NaN Division_impossible -mulx3428 multiply 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> -4.16111531818085838717201828773857E-805 Inexact Rounded -powx3428 power 67762238162788.6551061476018185196 -6 -> 1.03293631708006509074972764670281E-83 Inexact Rounded -remx3428 remainder 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> NaN Division_impossible -subx3428 subtract 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> 67762238162788.6551061476018185196 Inexact Rounded -addx3429 add 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 6.28677291578497580015557979349893E+823 Inexact Rounded -comx3429 compare 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> -1 -divx3429 divide 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 6.81838333133660025740681459349372E-818 Inexact Rounded -dvix3429 divideint 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 0 -mulx3429 multiply 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 2.69486466971438542975159893306219E+830 Inexact Rounded -powx3429 power 4286562.76568866751577306056498271 6 -> 6.20376193064412081058181881805108E+39 Inexact Rounded -remx3429 remainder 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 4286562.76568866751577306056498271 -subx3429 subtract 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> -6.28677291578497580015557979349893E+823 Inexact Rounded -addx3430 add -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -765715.663995796739622174820554104 Inexact Rounded -comx3430 compare -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -1 -divx3430 divide -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -11401.7814363639478774761697650867 Inexact Rounded -dvix3430 divideint -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -11401 -mulx3430 multiply -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -51432606.5679912088468256122315944 Inexact Rounded -powx3430 power -765782.827432642697305644096365566 67 -> -1.71821200770749773595473594136582E+394 Inexact Rounded -remx3430 remainder -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -52.4839518791480724305698888408548 -subx3430 subtract -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -765849.990869488654989113372177028 Inexact Rounded -addx3431 add 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 105.582516975019937108929234216907 Inexact Rounded -comx3431 compare 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> -1 -divx3431 divide 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 0.780513207299722975882416995140701 Inexact Rounded -dvix3431 divideint 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 0 -mulx3431 multiply 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 2744.56726509164060561370653286614 Inexact Rounded -powx3431 power 46.2835931916106252756465724211276 59 -> 1.82052645780601002671007943923993E+98 Inexact Rounded -remx3431 remainder 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 46.2835931916106252756465724211276 -subx3431 subtract 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> -13.0153305917986865576360893746515 -addx3432 add -3029555.82298840234029474459694644 857535844655004737373089601128532 -> 857535844655004737373089598098976 Inexact Rounded -comx3432 compare -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -1 -divx3432 divide -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -3.53286202771759704502126811323937E-27 Inexact Rounded -dvix3432 divideint -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -0 -mulx3432 multiply -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -2.59795271159584761928986181925721E+39 Inexact Rounded -powx3432 power -3029555.82298840234029474459694644 9 -> -2.14986224790431302561340100746360E+58 Inexact Rounded -remx3432 remainder -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -3029555.82298840234029474459694644 -subx3432 subtract -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -857535844655004737373089604158088 Inexact Rounded -addx3433 add -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> 481026979918882487383654367924619 Inexact Rounded -comx3433 compare -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -1 -divx3433 divide -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -2.87856597038397207797777811199804E-970 Inexact Rounded -dvix3433 divideint -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -0 -mulx3433 multiply -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -6.66062615833636908683785283687416E-905 Inexact Rounded -powx3433 power -0138466789523.10694176543700501945E-948 5 -> -5.09012109092637525843636056746667E-4685 Inexact Rounded -remx3433 remainder -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -1.3846678952310694176543700501945E-937 -subx3433 subtract -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -481026979918882487383654367924619 Inexact Rounded -addx3434 add -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> -8.76320343474845477961976776833770E+779 Inexact Rounded -comx3434 compare -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 1 -divx3434 divide -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 1.09475564939253134070730299863765E-770 Inexact Rounded -dvix3434 divideint -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 0 -mulx3434 multiply -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 8.40703746148119867711463485065336E+789 Inexact Rounded -powx3434 power -9593566466.96690575714244442109870 -9 -> -1.45271091841882960010964421066745E-90 Inexact Rounded -remx3434 remainder -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> -9593566466.96690575714244442109870 -subx3434 subtract -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 8.76320343474845477961976776833770E+779 Inexact Rounded -addx3435 add -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> 5.65688889355241946154894311253202E-458 Inexact Rounded -comx3435 compare -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -1 -divx3435 divide -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -5.63791814686655486612569970629128E-438 Inexact Rounded -dvix3435 divideint -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -0 -mulx3435 multiply -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -1.80415590504280580443565448126548E-1352 Inexact Rounded -powx3435 power -3189.30765477670526823106100241863E-898 6 -> 1.05239431027683904514311527228736E-5367 Inexact Rounded -remx3435 remainder -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -3.18930765477670526823106100241863E-895 -subx3435 subtract -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -5.65688889355241946154894311253202E-458 Inexact Rounded -addx3436 add -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> -6.31925802672685034379197328370812E+538 Inexact Rounded -comx3436 compare -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 1 -divx3436 divide -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 2.70356936263934622050341328519534E-529 Inexact Rounded -dvix3436 divideint -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 0 -mulx3436 multiply -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 1.07961694859382462346866817306769E+549 Inexact Rounded -powx3436 power -17084552395.6714834680088150543965 -6 -> 4.02141014977177984123011868387622E-62 Inexact Rounded -remx3436 remainder -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> -17084552395.6714834680088150543965 -subx3436 subtract -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 6.31925802672685034379197328370812E+538 Inexact Rounded -addx3437 add 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> 34956830.3498233068159118874697600 Inexact Rounded -comx3437 compare 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> 1 -divx3437 divide 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> -5.67473494371787737607169979602343E+666 Inexact Rounded -dvix3437 divideint 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> NaN Division_impossible -mulx3437 multiply 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> -2.15336927667273841617128781173293E-652 Inexact Rounded -powx3437 power 034956830.349823306815911887469760 -6 -> 5.48034272566098493462169431762597E-46 Inexact Rounded -remx3437 remainder 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> NaN Division_impossible -subx3437 subtract 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> 34956830.3498233068159118874697600 Inexact Rounded -addx3438 add -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -743.513686646195531912469919819067 Inexact Rounded -comx3438 compare -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -1 -divx3438 divide -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -38.3130314835722766807703585435688 Inexact Rounded -dvix3438 divideint -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -38 -mulx3438 multiply -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -15212.5977643862002585039364868883 Inexact Rounded -powx3438 power -763.440067781256632695791981893608 20 -> 4.52375407727336769552481661250924E+57 Inexact Rounded -remx3438 remainder -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -6.2375846489348029295536230610386 -subx3438 subtract -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -783.366448916317733479114043968149 Inexact Rounded -addx3439 add -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -5.10472027868440667684575147556654E+821 Inexact Rounded -comx3439 compare -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -1 -divx3439 divide -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -6.11437198047603754107526874071737E+788 Inexact Rounded -dvix3439 divideint -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> NaN Division_impossible -mulx3439 multiply -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -4.26178996090176289115594057419892E+854 Inexact Rounded -powx3439 power -510472027868440667684575147556654E+789 8 -> 4.61079266619522147262600755274182E+6573 Inexact Rounded -remx3439 remainder -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> NaN Division_impossible -subx3439 subtract -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -5.10472027868440667684575147556654E+821 Inexact Rounded -addx3440 add 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> 7.03047615605170866769935030348280E-87 Inexact Rounded -comx3440 compare 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> 1 -divx3440 divide 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> -3.95554019499502537743883483402608E+670 Inexact Rounded -dvix3440 divideint 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> NaN Division_impossible -mulx3440 multiply 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> -1.24957888288817581538108991453732E-843 Inexact Rounded -powx3440 power 070304761.560517086676993503034828E-094 -2 -> 2.02316135427631488479902919959627E+172 Inexact Rounded -remx3440 remainder 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> NaN Division_impossible -subx3440 subtract 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> 7.03047615605170866769935030348280E-87 Inexact Rounded -addx3441 add -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -970725702203.695030010334183533769 Inexact Rounded -comx3441 compare -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -1 -divx3441 divide -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> 213749425.654447811698884007553614 Inexact Rounded -dvix3441 divideint -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> 213749425 -mulx3441 multiply -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> 4408472103336875.21161867891724392 Inexact Rounded -powx3441 power -0970725697662.27605454336231195463 -4541 -> -0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3441 remainder -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -2972.12171050214753770792631747550 -subx3441 subtract -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -970725693120.857079076390440375491 Inexact Rounded -addx3442 add -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -808178238631844268316111260157075 Inexact Rounded -comx3442 compare -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -1 -divx3442 divide -808178238631844268316111259558675 -598400.265108644514211244980426520 -> 1350564640015847635178945884.97836 Inexact Rounded -dvix3442 divideint -808178238631844268316111259558675 -598400.265108644514211244980426520 -> 1350564640015847635178945884 -mulx3442 multiply -808178238631844268316111259558675 -598400.265108644514211244980426520 -> 4.83614072252332979731348423145208E+38 Inexact Rounded -powx3442 power -808178238631844268316111259558675 -598400 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3442 remainder -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -585452.097764536570956813681556320 -subx3442 subtract -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -808178238631844268316111258960275 Inexact Rounded -addx3443 add -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> -41.5341827319983835079860474697980 Rounded -comx3443 compare -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 1 -divx3443 divide -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 0.313295770023233218639213140599856 Inexact Rounded -dvix3443 divideint -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 0 -mulx3443 multiply -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 313.357994403604968250936036978086 Inexact Rounded -powx3443 power -9.90826595069053564311371766315200 -32 -> 1.34299698259038003011439568004625E-32 Inexact Rounded -remx3443 remainder -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> -9.90826595069053564311371766315200 -subx3443 subtract -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 21.7176508306173122217586121434940 Rounded -addx3444 add -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -238194.467436351098567470879626885 Inexact Rounded -comx3444 compare -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -1 -divx3444 divide -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> 4.77175317088274715226553516820589 Inexact Rounded -dvix3444 divideint -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> 4 -mulx3444 multiply -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> 8126916733.40905487026003135987472 Inexact Rounded -powx3444 power -196925.469891897719160698483752907 -41269 -> -0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3444 remainder -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -31849.4797140842015336089002569958 -subx3444 subtract -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -155656.472347444339753926087878929 Inexact Rounded -addx3445 add 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 421071135212152225162086005824310 Inexact Rounded -comx3445 compare 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 1 -divx3445 divide 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 3.15333426537349744281860005497304E+627 Inexact Rounded -dvix3445 divideint 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> NaN Division_impossible -mulx3445 multiply 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 5.62264847262712040027311932121460E-563 Inexact Rounded -powx3445 power 421071135212152225162086005824310 1 -> 421071135212152225162086005824310 -remx3445 remainder 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> NaN Division_impossible -subx3445 subtract 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 421071135212152225162086005824310 Inexact Rounded -addx3446 add 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> 1249441.46421514282301182772247227 Inexact Rounded -comx3446 compare 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> 1 -divx3446 divide 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> -4.31066764178328992440635387255816E+676 Inexact Rounded -dvix3446 divideint 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> NaN Division_impossible -mulx3446 multiply 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> -3.62148999233506984566620611700349E-665 Inexact Rounded -powx3446 power 1249441.46421514282301182772247227 -3 -> 5.12686942572191282348415024932322E-19 Inexact Rounded -remx3446 remainder 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> NaN Division_impossible -subx3446 subtract 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> 1249441.46421514282301182772247227 Inexact Rounded -addx3447 add 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> -6.90425401708167622194241915195001E+923 Inexact Rounded -comx3447 compare 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> 1 -divx3447 divide 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> -1.08360729901578455109968388309079E-916 Inexact Rounded -dvix3447 divideint 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> -0 -mulx3447 multiply 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> -5.16541767544616308732028810026275E+931 Inexact Rounded -powx3447 power 74815000.4716875558358937279052903 -7 -> 7.62218032252683815537906972439985E-56 Inexact Rounded -remx3447 remainder 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> 74815000.4716875558358937279052903 -subx3447 subtract 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> 6.90425401708167622194241915195001E+923 Inexact Rounded -addx3448 add -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> -72394386611338.3523609383834372430 Inexact Rounded -comx3448 compare -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 1 -divx3448 divide -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 2.32613829621244113284301004158794E-8 Inexact Rounded -dvix3448 divideint -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 0 -mulx3448 multiply -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 121911674530293613615.441384822381 Inexact Rounded -powx3448 power -1683993.51210241555668790556759021 -7 -> -2.60385683509956889000676113860292E-44 Inexact Rounded -remx3448 remainder -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> -1683993.51210241555668790556759021 -subx3448 subtract -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 72394383243351.3281561072700614318 Inexact Rounded -addx3449 add -763.148530974741766171756970448158 517370.808956957601473642272664647 -> 516607.660425982859707470515694199 Inexact Rounded -comx3449 compare -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -1 -divx3449 divide -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -0.00147505139014951946381155525173867 Inexact Rounded -dvix3449 divideint -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -0 -mulx3449 multiply -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -394830772.824715962925351447322187 Inexact Rounded -powx3449 power -763.148530974741766171756970448158 517371 -> -Infinity Overflow Inexact Rounded -remx3449 remainder -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -763.148530974741766171756970448158 -subx3449 subtract -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -518133.957487932343239814029635095 Inexact Rounded -addx3450 add -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> -9.27540422641025050968830154578151E+532 Inexact Rounded -comx3450 compare -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 1 -divx3450 divide -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 8.36450164191471769978415758342237E-532 Inexact Rounded -dvix3450 divideint -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 0 -mulx3450 multiply -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 7.19624203304351070562409746475943E+534 Inexact Rounded -powx3450 power -77.5841338812312523460591226178754 -9 -> -9.81846856873938549466341693997829E-18 Inexact Rounded -remx3450 remainder -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> -77.5841338812312523460591226178754 -subx3450 subtract -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 9.27540422641025050968830154578151E+532 Inexact Rounded -addx3451 add 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 5176165576.79580866488385418967956 Inexact Rounded -comx3451 compare 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 1 -divx3451 divide 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> -39899.5720067736855444089432524094 Inexact Rounded -dvix3451 divideint 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> -39899 -mulx3451 multiply 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> -671536855852442.071887385512001794 Inexact Rounded -powx3451 power 5176295309.89943746236102209837813 -129733 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3451 remainder 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 74208.214046920838632934314641965 -subx3451 subtract 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 5176425043.00306625983819000707670 Inexact Rounded -addx3452 add 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 4.47163484116690197229286530307326E+184 Inexact Rounded -comx3452 compare 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 1 -divx3452 divide 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 1.41906636616314987705536737025932E+1129 Inexact Rounded -dvix3452 divideint 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> NaN Division_impossible -mulx3452 multiply 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 1.40906152309150441010046222214810E-760 Inexact Rounded -powx3452 power 4471634841166.90197229286530307326E+172 3 -> 8.94126556389673498386397569249516E+553 Inexact Rounded -remx3452 remainder 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> NaN Division_impossible -subx3452 subtract 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 4.47163484116690197229286530307326E+184 Inexact Rounded -addx3453 add -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -8189130.15945231049670285726774317 Inexact Rounded -comx3453 compare -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -1 -divx3453 divide -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -3.17515949922556778343526099830093E+372 Inexact Rounded -dvix3453 divideint -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> NaN Division_impossible -mulx3453 multiply -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -2.11207823685103185039979144161848E-359 Inexact Rounded -powx3453 power -8189130.15945231049670285726774317 3 -> -549178241054875982731.000937875885 Inexact Rounded -remx3453 remainder -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> NaN Division_impossible -subx3453 subtract -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -8189130.15945231049670285726774317 Inexact Rounded -addx3454 add -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -254346232981353293392888785644009 Inexact Rounded -comx3454 compare -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -1 -divx3454 divide -254346232981353293392888785643245 -764.416902486152093758287929678445 -> 332732350833857889204406356900.665 Inexact Rounded -dvix3454 divideint -254346232981353293392888785643245 -764.416902486152093758287929678445 -> 332732350833857889204406356900 -mulx3454 multiply -254346232981353293392888785643245 -764.416902486152093758287929678445 -> 1.94426559574627262006307326336289E+35 Inexact Rounded -powx3454 power -254346232981353293392888785643245 -764 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3454 remainder -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -508.299323962538610580669092979500 -subx3454 subtract -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -254346232981353293392888785642481 Inexact Rounded -addx3455 add -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> -16063.2166595009220002171676000611 Inexact Rounded -comx3455 compare -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 1 -divx3455 divide -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 0.218031569091122520391599541575615 Inexact Rounded -dvix3455 divideint -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 0 -mulx3455 multiply -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 37919912.4040225840727281633024665 Inexact Rounded -powx3455 power -2875.36745499544177964804277329726 -13188 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3455 remainder -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> -2875.36745499544177964804277329726 -subx3455 subtract -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 10312.4817495100384409210820534665 Inexact Rounded -addx3456 add -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -7.26927570984219944693602140223103 Inexact Rounded -comx3456 compare -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -1 -divx3456 divide -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -4.51836100553039917574557235275173E+427 Inexact Rounded -dvix3456 divideint -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> NaN Division_impossible -mulx3456 multiply -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -1.16950304061635681891361504442479E-426 Inexact Rounded -powx3456 power -7.26927570984219944693602140223103 2 -> 52.8423693457018126451998096211036 Inexact Rounded -remx3456 remainder -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> NaN Division_impossible -subx3456 subtract -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -7.26927570984219944693602140223103 Inexact Rounded -addx3457 add -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> -2.85671516868762752241056540028515E+505 Inexact Rounded -comx3457 compare -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> -1 -divx3457 divide -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> 6.39064071690455919792707589054106E+501 Inexact Rounded -dvix3457 divideint -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> NaN Division_impossible -mulx3457 multiply -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> 1.27699583132923253605397736797000E+509 Inexact Rounded -powx3457 power -28567151.6868762752241056540028515E+498 -4470 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3457 remainder -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> NaN Division_impossible -subx3457 subtract -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> -2.85671516868762752241056540028515E+505 Inexact Rounded -addx3458 add 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 7191835.18758398207642347765831492 Inexact Rounded -comx3458 compare 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 1 -divx3458 divide 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 88363.9812586188186733935569874100 Inexact Rounded -dvix3458 divideint 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 88363 -mulx3458 multiply 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 585321326.397904638863485891524555 Inexact Rounded -powx3458 power 7191753.79974136447257468282073718 81 -> 2.53290983138561482612557404148760E+555 Inexact Rounded -remx3458 remainder 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 79.8625220355815164499390351500273 -subx3458 subtract 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 7191672.41189874686872588798315944 Inexact Rounded -addx3459 add 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 502976488.859892968179149660674285 Inexact Rounded -comx3459 compare 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 1 -divx3459 divide 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 734496.390406706323899801641278933 Inexact Rounded -dvix3459 divideint 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 734496 -mulx3459 multiply 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 344432815169.648082754214631086270 Inexact Rounded -powx3459 power 502975804.069864536104621700404770 685 -> 3.62876716573623552761739177592677E+5960 Inexact Rounded -remx3459 remainder 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 267.346619523615915582548420925472 -subx3459 subtract 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 502975119.279836104030093740135255 Inexact Rounded -addx3460 add 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 1040125.74219736715313697451377660 Inexact Rounded -comx3460 compare 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 1 -divx3460 divide 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> -3.23566278503319947059213001405065 Inexact Rounded -dvix3460 divideint 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> -3 -mulx3460 multiply 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> -700361636056.225618266296899048765 Inexact Rounded -powx3460 power 1505368.42063731861590460453659570 -465243 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3460 remainder 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 109640.385317464227601714468138385 -subx3460 subtract 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 1970611.09907727007867223455941481 Inexact Rounded -addx3461 add 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 77809073.3514961963946898136677398 Inexact Rounded -comx3461 compare 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 1 -divx3461 divide 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 8.06437785764050431295652411163382 Inexact Rounded -dvix3461 divideint 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 8 -mulx3461 multiply 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 594231065731939.137329770485497261 Inexact Rounded -powx3461 power 69225023.2850142784063416137144829 8584050 -> Infinity Overflow Inexact Rounded -remx3461 remainder 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 552622.75315893449955601408842746 -subx3461 subtract 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 60640973.2185323604179934137612260 Inexact Rounded -addx3462 add -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -5.56695018537751006841940471339310E+624 Inexact Rounded -comx3462 compare -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -1 -divx3462 divide -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -9.06661464189378059067792554300676E+616 Inexact Rounded -dvix3462 divideint -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> NaN Division_impossible -mulx3462 multiply -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -3.41813737437080390787865389703565E+632 Inexact Rounded -powx3462 power -55669501853.7751006841940471339310E+614 61400538 -> Infinity Overflow Inexact Rounded -remx3462 remainder -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> NaN Division_impossible -subx3462 subtract -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -5.56695018537751006841940471339310E+624 Inexact Rounded -addx3463 add -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> -834662.599983953345718523807123972 Inexact Rounded -comx3463 compare -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 1 -divx3463 divide -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 6.32071595497552015656909892339226E-409 Inexact Rounded -dvix3463 divideint -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 0 -mulx3463 multiply -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 4.40340044311040151960763108019957E-397 Inexact Rounded -powx3463 power -527566.521273992424649346837337602E-408 -834663 -> -Infinity Overflow Inexact Rounded -remx3463 remainder -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> -5.27566521273992424649346837337602E-403 -subx3463 subtract -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 834662.599983953345718523807123972 Inexact Rounded -addx3464 add 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 69065510.0459653699418083455335366 Inexact Rounded -comx3464 compare 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 1 -divx3464 divide 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 9.93964810285396646889830919492683E+827 Inexact Rounded -dvix3464 divideint 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> NaN Division_impossible -mulx3464 multiply 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 4.79900759921241352562381181332720E-813 Inexact Rounded -powx3464 power 69065510.0459653699418083455335366 7 -> 7.49598249763416483824919118973567E+54 Inexact Rounded -remx3464 remainder 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> NaN Division_impossible -subx3464 subtract 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 69065510.0459653699418083455335366 Inexact Rounded -addx3465 add -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> -2921982.82411285505229122890041841 Inexact Rounded -comx3465 compare -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> -1 -divx3465 divide -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> 4.00300943792444663467732029501716E+764 Inexact Rounded -dvix3465 divideint -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> NaN Division_impossible -mulx3465 multiply -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> 2.13289120518223547921212412642411E-752 Inexact Rounded -powx3465 power -2921982.82411285505229122890041841 -7 -> -5.49865394870631248479668782154131E-46 Inexact Rounded -remx3465 remainder -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> NaN Division_impossible -subx3465 subtract -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> -2921982.82411285505229122890041841 Inexact Rounded -addx3466 add 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 3873389.71099271106554595739922987 Inexact Rounded -comx3466 compare 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> -1 -divx3466 divide 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 0.00000116465942888322776753062580106351 Inexact Rounded -dvix3466 divideint 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 0 -mulx3466 multiply 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 17473516.9087705701652062546164705 Inexact Rounded -powx3466 power 4.51117459466491451401835756593793 3873385 -> Infinity Overflow Inexact Rounded -remx3466 remainder 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 4.51117459466491451401835756593793 -subx3466 subtract 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> -3873380.68864352173571692936251473 Inexact Rounded -addx3467 add 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 3.61713861293896216593840817950781E+411 Inexact Rounded -comx3467 compare 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> -1 -divx3467 divide 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 1.36997137177543416190811827685231E-398 Inexact Rounded -dvix3467 divideint 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 0 -mulx3467 multiply 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 1.79242831280777466554271332425735E+425 Inexact Rounded -powx3467 power 49553763474698.8118661758811091120 4 -> 6.02985091099730236635954801474802E+54 Inexact Rounded -remx3467 remainder 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 49553763474698.8118661758811091120 -subx3467 subtract 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> -3.61713861293896216593840817950781E+411 Inexact Rounded -addx3468 add 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 7.55985583344379951506071499170749E+967 Inexact Rounded -comx3468 compare 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 1 -divx3468 divide 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 1.01213580367212873025671916758669E+935 Inexact Rounded -dvix3468 divideint 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> NaN Division_impossible -mulx3468 multiply 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 5.64661580146688255286933753616580E+1000 Inexact Rounded -powx3468 power 755985583344.379951506071499170749E+956 7 -> 1.41121958516547725677142981375469E+6775 Inexact Rounded -remx3468 remainder 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> NaN Division_impossible -subx3468 subtract 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 7.55985583344379951506071499170749E+967 Inexact Rounded -addx3469 add -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -20497230690.0922299809209551116556 Inexact Rounded -comx3469 compare -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -1 -divx3469 divide -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> 50.8179779735012053661447873666816 Inexact Rounded -dvix3469 divideint -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> 50 -mulx3469 multiply -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> 7951459193692715079.09328760016914 Inexact Rounded -powx3469 power -20101668541.7472260497594230105456 -395562148 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3469 remainder -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -323561124.497029491682817955047400 -subx3469 subtract -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -19706106393.4022221185978909094356 Inexact Rounded -addx3470 add 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 460874498597.269108074612032613370 Inexact Rounded -comx3470 compare 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> -1 -divx3470 divide 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 0.0000121160334374633240168068405467307 Inexact Rounded -dvix3470 divideint 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 0 -mulx3470 multiply 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 2573447398655758659.39475672905225 Inexact Rounded -powx3470 power 5583903.18072100716072011264668631 5 -> 5.42861943589418603298670454702901E+33 Inexact Rounded -remx3470 remainder 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 5583903.18072100716072011264668631 -subx3470 subtract 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> -460863330790.907666060290592388076 Inexact Rounded -addx3471 add -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> -5.08580148958769104511751975720470E+667 Inexact Rounded -comx3471 compare -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 1 -divx3471 divide -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 1.87903204624039476408191264564568E-615 Inexact Rounded -dvix3471 divideint -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 0 -mulx3471 multiply -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 4.86018718792967378985838739820108E+720 Inexact Rounded -powx3471 power -955638397975240685017992436116257E+020 -5 -> -1.25467730420304189161768408462414E-265 Inexact Rounded -remx3471 remainder -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> -9.55638397975240685017992436116257E+52 -subx3471 subtract -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 5.08580148958769104511751975720470E+667 Inexact Rounded -addx3472 add -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -1.36243796098020983814115584402407E+828 Inexact Rounded -comx3472 compare -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -1 -divx3472 divide -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -2.06771226638255600634939371365920E+818 Inexact Rounded -dvix3472 divideint -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> NaN Division_impossible -mulx3472 multiply -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -8.97725098263977535966921696143011E+837 Inexact Rounded -powx3472 power -136243796098020983814115584402407E+796 7 -> -8.71399185551742199752832286984005E+5796 Inexact Rounded -remx3472 remainder -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> NaN Division_impossible -subx3472 subtract -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -1.36243796098020983814115584402407E+828 Inexact Rounded -addx3473 add -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -8.08498482718304598213092937543934E+526 Inexact Rounded -comx3473 compare -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -1 -divx3473 divide -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -1.68419126177106468565397017107736E+522 Inexact Rounded -dvix3473 divideint -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> NaN Division_impossible -mulx3473 multiply -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -3.88120881158362912220132691803539E+531 Inexact Rounded -powx3473 power -808498.482718304598213092937543934E+521 48005 -> -Infinity Overflow Inexact Rounded -remx3473 remainder -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> NaN Division_impossible -subx3473 subtract -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -8.08498482718304598213092937543934E+526 Inexact Rounded -addx3474 add -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> -3.19563111559114001594257448970812E+989 Inexact Rounded -comx3474 compare -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 1 -divx3474 divide -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 2.54180257724779721448484781056040E-591 Inexact Rounded -dvix3474 divideint -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 0 -mulx3474 multiply -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 2.59570359202261082537505332325404E+1388 Inexact Rounded -powx3474 power -812.266340554281305985524813074211E+396 -3 -> -1.86596988030914616216741808216469E-1197 Inexact Rounded -remx3474 remainder -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> -8.12266340554281305985524813074211E+398 -subx3474 subtract -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 3.19563111559114001594257448970812E+989 Inexact Rounded -addx3475 add -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> -9.29889720905183397678866648217793E+139 Inexact Rounded -comx3475 compare -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> -1 -divx3475 divide -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> 3.31747801646964399331556971055197E+128 Inexact Rounded -dvix3475 divideint -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> NaN Division_impossible -mulx3475 multiply -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> 2.60648266168558079957349074609920E+151 Inexact Rounded -powx3475 power -929889.720905183397678866648217793E+134 -3 -> -1.24367143370300189518778505830181E-420 Inexact Rounded -remx3475 remainder -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> NaN Division_impossible -subx3475 subtract -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> -9.29889720905183397678866648217793E+139 Inexact Rounded -addx3476 add 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 492754319.251171861122327008214092 Inexact Rounded -comx3476 compare 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> -1 -divx3476 divide 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 0.000170389819117633485695890041185782 Inexact Rounded -dvix3476 divideint 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 0 -mulx3476 multiply 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 41357714926052.9282985560380064649 Inexact Rounded -powx3476 power 83946.0157801953636255078996185540 492670373 -> Infinity Overflow Inexact Rounded -remx3476 remainder 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 83946.0157801953636255078996185540 -subx3476 subtract 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> -492586427.219611470395075992414854 Inexact Rounded -addx3477 add 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 7812758113817.99135851825223122508 Inexact Rounded -comx3477 compare 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 1 -divx3477 divide 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 2.57210790001590171809512871857381E+163 Inexact Rounded -dvix3477 divideint 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> NaN Division_impossible -mulx3477 multiply 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 2.37311931372130583136091717093935E-138 Inexact Rounded -powx3477 power 7812758113817.99135851825223122508 3 -> 4.76884421816246896090414314934253E+38 Inexact Rounded -remx3477 remainder 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> NaN Division_impossible -subx3477 subtract 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 7812758113817.99135851825223122508 Inexact Rounded -addx3478 add 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 490328689.266902084767070133475071 Inexact Rounded -comx3478 compare 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 1 -divx3478 divide 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 430.269702657525223124148258641358 Inexact Rounded -dvix3478 divideint 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 430 -mulx3478 multiply 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 556182701222751.588454129518830550 Inexact Rounded -powx3478 power 489191747.148674326757767356626016 1136942 -> Infinity Overflow Inexact Rounded -remx3478 remainder 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 306636.3107383827575733115325810 -subx3478 subtract 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 488054805.030446568748464579776962 Inexact Rounded -addx3479 add -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> -5.99369540373174482335865567937853E+297 Inexact Rounded -comx3479 compare -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> -1 -divx3479 divide -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> 1.56540833065089684132688143737586E+287 Inexact Rounded -dvix3479 divideint -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> NaN Division_impossible -mulx3479 multiply -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> 2.29488906436173641324091638963715E+308 Inexact Rounded -powx3479 power -599369540.373174482335865567937853E+289 -4 -> 7.74856580646291366270329165540958E-1192 Inexact Rounded -remx3479 remainder -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> NaN Division_impossible -subx3479 subtract -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> -5.99369540373174482335865567937853E+297 Inexact Rounded -addx3480 add -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> -68624373320.5930758945974232604298 Inexact Rounded -comx3480 compare -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 1 -divx3480 divide -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 0.0517550008335747813596332404664731 Inexact Rounded -dvix3480 divideint -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 0 -mulx3480 multiply -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 220333194736887939420.719579906257 Inexact Rounded -powx3480 power -3376883870.85961692148022521960139 -7 -> -1.99704163718361153125735756179280E-67 Inexact Rounded -remx3480 remainder -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> -3376883870.85961692148022521960139 -subx3480 subtract -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 61870605578.8738420516369728212270 Inexact Rounded -addx3481 add 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 60.2702299236537409084931002396185 -comx3481 compare 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 1 -divx3481 divide 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 36.8450651616286048437498576613622 Inexact Rounded -dvix3481 divideint 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 36 -mulx3481 multiply 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 93.4472468622373769590900258060029 Inexact Rounded -powx3481 power 58.6776780370008364590621772421025 2 -> 3443.06989981393033632008313505230 Inexact Rounded -remx3481 remainder 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 1.3458101174962762795489493315265 -subx3481 subtract 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 57.0851261503479320096312542445865 -addx3482 add 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 4099616630.75768235660057557396732 Inexact Rounded -comx3482 compare 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 1 -divx3482 divide 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 14097951.1289920788134209002390834 Inexact Rounded -dvix3482 divideint 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 14097951 -mulx3482 multiply 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 1192148701687.90798437501397900174 Inexact Rounded -powx3482 power 4099616339.96249499552808575717579 291 -> 2.03364757877800497409765979877258E+2797 Inexact Rounded -remx3482 remainder 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 37.510275726642959858538282144855 -subx3482 subtract 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 4099616049.16730763445559594038426 Inexact Rounded -addx3483 add 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> -2140306990376.46573014981378406578 Inexact Rounded -comx3483 compare 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> 1 -divx3483 divide 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> -0.0000401191663393971853092748263233128 Inexact Rounded -dvix3483 divideint 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> -0 -mulx3483 multiply 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> -183797198561136797328.508878254848 Inexact Rounded -powx3483 power 85870777.2282833141709970713739108 -2 -> 1.35615463448707573424578785973269E-16 Inexact Rounded -remx3483 remainder 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> 85870777.2282833141709970713739108 -subx3483 subtract 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> 2140478731930.92229677815577820852 Inexact Rounded -addx3484 add 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 20862.2147613905641948547078989489 Inexact Rounded -comx3484 compare 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 1 -divx3484 divide 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> -539.315627388386430188627412639767 Inexact Rounded -dvix3484 divideint 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> -539 -mulx3484 multiply 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> -810009.016386974103738622793670566 Inexact Rounded -powx3484 power 20900.9693761555165742010339929779 -39 -> 3.26219014701526335296044439989665E-169 Inexact Rounded -remx3484 remainder 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 12.2320178461841065312693113692685 -subx3484 subtract 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 20939.7239909204689535473600870069 Inexact Rounded -addx3485 add 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 379130602.210390198240885543797232 Inexact Rounded -comx3485 compare 448.827596155587910947511170319456 379130153.382794042652974596286062 -> -1 -divx3485 divide 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 0.00000118383513458615061394140895596979 Inexact Rounded -dvix3485 divideint 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 0 -mulx3485 multiply 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 170164075372.898786469094460692097 Inexact Rounded -powx3485 power 448.827596155587910947511170319456 379130153 -> Infinity Overflow Inexact Rounded -remx3485 remainder 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 448.827596155587910947511170319456 -subx3485 subtract 448.827596155587910947511170319456 379130153.382794042652974596286062 -> -379129704.555197887065063648774892 Inexact Rounded -addx3486 add 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 3404725642.18381024654682525116780 Inexact Rounded -comx3486 compare 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> -1 -divx3486 divide 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 2.89049673833970863420201979291523E-8 Inexact Rounded -dvix3486 divideint 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 0 -mulx3486 multiply 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 335070891904.214504811798212040413 Inexact Rounded -powx3486 power 98.4134807921002817357000140482039 3 -> 953155.543384739667965055839894682 Inexact Rounded -remx3486 remainder 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 98.4134807921002817357000140482039 -subx3486 subtract 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> -3404725445.35684866234626177976778 Inexact Rounded -addx3487 add 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> -5.14995709970912830072802043560650E-425 Inexact Rounded -comx3487 compare 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> 1 -divx3487 divide 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> -1.05971064046375011086850722752614E-354 Inexact Rounded -dvix3487 divideint 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> -0 -mulx3487 multiply 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> -2.81057072061345688074304873033317E-1203 Inexact Rounded -powx3487 power 545746433.649359734136476718176330E-787 -5 -> 2.06559640092667166976186801348662E+3891 Inexact Rounded -remx3487 remainder 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> 5.45746433649359734136476718176330E-779 -subx3487 subtract 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> 5.14995709970912830072802043560650E-425 Inexact Rounded -addx3488 add 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 741304513547.273820525801608231737 Inexact Rounded -comx3488 compare 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 1 -divx3488 divide 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 1.87090281565101612623398174727653E+839 Inexact Rounded -dvix3488 divideint 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> NaN Division_impossible -mulx3488 multiply 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 2.93725776244737788947443361076095E-816 Inexact Rounded -powx3488 power 741304513547.273820525801608231737 4 -> 3.01985838652892073903194846668712E+47 Inexact Rounded -remx3488 remainder 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> NaN Division_impossible -subx3488 subtract 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 741304513547.273820525801608231737 Inexact Rounded -addx3489 add -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> 4033.67985686310526747345220908179 Inexact Rounded -comx3489 compare -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -1 -divx3489 divide -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -0.148981244172527671907534117771626 Inexact Rounded -dvix3489 divideint -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -0 -mulx3489 multiply -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -3347003.65129295988793454267973464 Inexact Rounded -powx3489 power -706.145005094292315613907254240553 4740 -> Infinity Overflow Inexact Rounded -remx3489 remainder -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -706.145005094292315613907254240553 -subx3489 subtract -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -5445.96986705168989870126671756289 Inexact Rounded -addx3490 add -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -769956988.821146059252782194757952 Inexact Rounded -comx3490 compare -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -1 -divx3490 divide -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> 24675.5283319978698932292028650803 Inexact Rounded -dvix3490 divideint -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> 24675 -mulx3490 multiply -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> 24023222896770.8161787236737395477 Inexact Rounded -powx3490 power -769925786.823099083228795187975893 -31202 -> 0E-10031 Underflow Subnormal Inexact Rounded Clamped -remx3490 remainder -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -16485.0139656913494028406582486750 -subx3490 subtract -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -769894584.825052107204808181193834 Inexact Rounded -addx3491 add 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 8.44386105460497256507419289692857E+919 Inexact Rounded -comx3491 compare 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 1 -divx3491 divide 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 1.60516736512701978695559003341922E+888 Inexact Rounded -dvix3491 divideint 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> NaN Division_impossible -mulx3491 multiply 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 4.44182899917309231779837668210610E+951 Inexact Rounded -powx3491 power 84438610546049.7256507419289692857E+906 5 -> 4.29245144719689283247342866988213E+4599 Inexact Rounded -remx3491 remainder 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> NaN Division_impossible -subx3491 subtract 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 8.44386105460497256507419289692857E+919 Inexact Rounded -addx3492 add 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 549926.071394341400088797374170467 Inexact Rounded -comx3492 compare 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 1 -divx3492 divide 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 3328.65471667062107598395714348089 Inexact Rounded -dvix3492 divideint 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 3328 -mulx3492 multiply 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 90798561.3782451425861113694732484 Inexact Rounded -powx3492 power 549760.911304725795164589619286514 165 -> 1.34488925442386544028875603347654E+947 Inexact Rounded -remx3492 remainder 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 108.133063992607401181365489319248 -subx3492 subtract 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 549595.751215110190240381864402561 Inexact Rounded -addx3493 add 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 11737235.5901860743933857728701908 Inexact Rounded -comx3493 compare 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> -1 -divx3493 divide 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 0.451420792712387250865423208234291 Inexact Rounded -dvix3493 divideint 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 0 -mulx3493 multiply 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 29520691206417.5831886752808745421 Inexact Rounded -powx3493 power 3650514.18649737956855828939662794 8086721 -> Infinity Overflow Inexact Rounded -remx3493 remainder 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 3650514.18649737956855828939662794 -subx3493 subtract 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> -4436207.21719131525626919407693496 -addx3494 add 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 55067723881941.2298810010885806451 Inexact Rounded -comx3494 compare 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 1 -divx3494 divide 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> -6184039198391.19853088419484117054 Inexact Rounded -dvix3494 divideint 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> -6184039198391 -mulx3494 multiply 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> -490367883555396.250365158593373279 Inexact Rounded -powx3494 power 55067723881950.1346958179604099594 -9 -> 2.14746386538529270173788457887121E-124 Inexact Rounded -remx3494 remainder 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 1.76788075918488693086347720461547 -subx3494 subtract 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 55067723881959.0395106348322392737 Inexact Rounded -addx3495 add 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 5.57966504537858308541154858567656E+140 Inexact Rounded -comx3495 compare 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> -1 -divx3495 divide 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 1.55609900657590706155251902725027E-113 Inexact Rounded -dvix3495 divideint 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 0 -mulx3495 multiply 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 4.84455044392374106106966779322483E+168 Inexact Rounded -powx3495 power 868251123.413992653362860637541060E+019 6 -> 4.28422354304291884802690733853227E+167 Inexact Rounded -remx3495 remainder 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 8682511234139926533628606375.41060 -subx3495 subtract 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> -5.57966504537858308541154858567656E+140 Inexact Rounded -addx3496 add -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> -646.464431574014407536004990059069 Inexact Rounded -comx3496 compare -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> -1 -divx3496 divide -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> 8.09416521887063886613527228353543E+36 Inexact Rounded -dvix3496 divideint -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> NaN Division_impossible -mulx3496 multiply -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> 5.16317927778381197995451363439626E-32 Inexact Rounded -powx3496 power -646.464431574014407536004990059069 -8 -> 3.27825641569860861774700548035691E-23 Inexact Rounded -remx3496 remainder -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> NaN Division_impossible -subx3496 subtract -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> -646.464431574014407536004990059069 Inexact Rounded -addx3497 add 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> 354.546679975219753598558273421556 Inexact Rounded -comx3497 compare 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> 1 -divx3497 divide 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> -5.03655799102477192579414523352028E+446 Inexact Rounded -dvix3497 divideint 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> NaN Division_impossible -mulx3497 multiply 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> -2.49581854324831161267369292071408E-442 Inexact Rounded -powx3497 power 354.546679975219753598558273421556 -7 -> 1.41999246365875617298270414304233E-18 Inexact Rounded -remx3497 remainder 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> NaN Division_impossible -subx3497 subtract 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> 354.546679975219753598558273421556 Inexact Rounded -addx3498 add 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> 91936087917435.5974889495278215874 Inexact Rounded -comx3498 compare 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> 1 -divx3498 divide 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> -1.37052712434303366569304688993783E+760 Inexact Rounded -dvix3498 divideint 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> NaN Division_impossible -mulx3498 multiply 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> -6.16714847260980448099292763939423E-733 Inexact Rounded -powx3498 power 91936087917435.5974889495278215874 -7 -> 1.80134899939035708719659065082630E-98 Inexact Rounded -remx3498 remainder 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> NaN Division_impossible -subx3498 subtract 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> 91936087917435.5974889495278215874 Inexact Rounded -addx3499 add -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -7.34564225185285561365214172598110E-597 Inexact Rounded -comx3499 compare -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -1 -divx3499 divide -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -1.78342822299163842247184303878022E+159 Inexact Rounded -dvix3499 divideint -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> NaN Division_impossible -mulx3499 multiply -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -3.02554705575380338274126867655676E-1352 Inexact Rounded -powx3499 power -07345.6422518528556136521417259811E-600 4 -> 2.91151541552217582082937236255996E-2385 Inexact Rounded -remx3499 remainder -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> NaN Division_impossible -subx3499 subtract -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -7.34564225185285561365214172598110E-597 Inexact Rounded -addx3500 add -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> 6.16988426425908872398170896375634E+401 Inexact Rounded -comx3500 compare -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -1 -divx3500 divide -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -4.10511306357337753351655511866170E-394 Inexact Rounded -dvix3500 divideint -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -0 -mulx3500 multiply -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -1.56271275924409657991913620522315E+410 Inexact Rounded -powx3500 power -253280724.939458021588167965038184 6 -> 2.64005420221406808782284459794424E+50 Inexact Rounded -remx3500 remainder -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -253280724.939458021588167965038184 -subx3500 subtract -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -6.16988426425908872398170896375634E+401 Inexact Rounded diff --git a/qdecimal/test/tc_full/randoms.decTest b/qdecimal/test/tc_full/randoms.decTest deleted file mode 100644 index ff0b0c8..0000000 --- a/qdecimal/test/tc_full/randoms.decTest +++ /dev/null @@ -1,4030 +0,0 @@ ------------------------------------------------------------------------- --- randoms.decTest -- decimal random testcases -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -rounding: half_up - --- Randomly generated testcases [31 Dec 2000, with results defined for --- all cases [27 Oct 2001], and no trim/finish [9 Jun 2002] -xadd001 add 905.67402 -202896611.E-780472620 -> 905.674020 Inexact Rounded -xcom001 compare 905.67402 -202896611.E-780472620 -> 1 -xdiv001 divide 905.67402 -202896611.E-780472620 -> -4.46372177E+780472614 Inexact Rounded -xdvi001 divideint 905.67402 -202896611.E-780472620 -> NaN Division_impossible -xmul001 multiply 905.67402 -202896611.E-780472620 -> -1.83758189E-780472609 Inexact Rounded -xpow001 power 905.67402 -2 -> 0.00000121914730 Inexact Rounded -xrem001 remainder 905.67402 -202896611.E-780472620 -> NaN Division_impossible -xsub001 subtract 905.67402 -202896611.E-780472620 -> 905.674020 Inexact Rounded -xadd002 add 3915134.7 -597164907. -> -593249772 Inexact Rounded -xcom002 compare 3915134.7 -597164907. -> 1 -xdiv002 divide 3915134.7 -597164907. -> -0.00655620358 Inexact Rounded -xdvi002 divideint 3915134.7 -597164907. -> -0 -xmul002 multiply 3915134.7 -597164907. -> -2.33798105E+15 Inexact Rounded -xpow002 power 3915134.7 -597164907 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem002 remainder 3915134.7 -597164907. -> 3915134.7 -xsub002 subtract 3915134.7 -597164907. -> 601080042 Inexact Rounded -xadd003 add 309759261 62663.487 -> 309821924 Inexact Rounded -xcom003 compare 309759261 62663.487 -> 1 -xdiv003 divide 309759261 62663.487 -> 4943.21775 Inexact Rounded -xdvi003 divideint 309759261 62663.487 -> 4943 -xmul003 multiply 309759261 62663.487 -> 1.94105954E+13 Inexact Rounded -xpow003 power 309759261 62663 -> 1.13679199E+532073 Inexact Rounded -xrem003 remainder 309759261 62663.487 -> 13644.759 -xsub003 subtract 309759261 62663.487 -> 309696598 Inexact Rounded -xadd004 add 3.93591888E-236595626 7242375.00 -> 7242375.00 Inexact Rounded -xcom004 compare 3.93591888E-236595626 7242375.00 -> -1 -xdiv004 divide 3.93591888E-236595626 7242375.00 -> 5.43456930E-236595633 Inexact Rounded -xdvi004 divideint 3.93591888E-236595626 7242375.00 -> 0 -xmul004 multiply 3.93591888E-236595626 7242375.00 -> 2.85054005E-236595619 Inexact Rounded -xpow004 power 3.93591888E-236595626 7242375 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem004 remainder 3.93591888E-236595626 7242375.00 -> 3.93591888E-236595626 -xsub004 subtract 3.93591888E-236595626 7242375.00 -> -7242375.00 Inexact Rounded -xadd005 add 323902.714 -608669.607E-657060568 -> 323902.714 Inexact Rounded -xcom005 compare 323902.714 -608669.607E-657060568 -> 1 -xdiv005 divide 323902.714 -608669.607E-657060568 -> -5.32148657E+657060567 Inexact Rounded -xdvi005 divideint 323902.714 -608669.607E-657060568 -> NaN Division_impossible -xmul005 multiply 323902.714 -608669.607E-657060568 -> -1.97149738E-657060557 Inexact Rounded -xpow005 power 323902.714 -6 -> 8.65989204E-34 Inexact Rounded -xrem005 remainder 323902.714 -608669.607E-657060568 -> NaN Division_impossible -xsub005 subtract 323902.714 -608669.607E-657060568 -> 323902.714 Inexact Rounded -xadd006 add 5.11970092 -8807.22036 -> -8802.10066 Inexact Rounded -xcom006 compare 5.11970092 -8807.22036 -> 1 -xdiv006 divide 5.11970092 -8807.22036 -> -0.000581307236 Inexact Rounded -xdvi006 divideint 5.11970092 -8807.22036 -> -0 -xmul006 multiply 5.11970092 -8807.22036 -> -45090.3342 Inexact Rounded -xpow006 power 5.11970092 -8807 -> 4.81819262E-6247 Inexact Rounded -xrem006 remainder 5.11970092 -8807.22036 -> 5.11970092 -xsub006 subtract 5.11970092 -8807.22036 -> 8812.34006 Inexact Rounded -xadd007 add -7.99874516 4561.83758 -> 4553.83883 Inexact Rounded -xcom007 compare -7.99874516 4561.83758 -> -1 -xdiv007 divide -7.99874516 4561.83758 -> -0.00175340420 Inexact Rounded -xdvi007 divideint -7.99874516 4561.83758 -> -0 -xmul007 multiply -7.99874516 4561.83758 -> -36488.9763 Inexact Rounded -xpow007 power -7.99874516 4562 -> 3.85236199E+4119 Inexact Rounded -xrem007 remainder -7.99874516 4561.83758 -> -7.99874516 -xsub007 subtract -7.99874516 4561.83758 -> -4569.83633 Inexact Rounded -xadd008 add 297802878 -927206.324 -> 296875672 Inexact Rounded -xcom008 compare 297802878 -927206.324 -> 1 -xdiv008 divide 297802878 -927206.324 -> -321.182967 Inexact Rounded -xdvi008 divideint 297802878 -927206.324 -> -321 -xmul008 multiply 297802878 -927206.324 -> -2.76124712E+14 Inexact Rounded -xpow008 power 297802878 -927206 -> 1.94602810E-7857078 Inexact Rounded -xrem008 remainder 297802878 -927206.324 -> 169647.996 -xsub008 subtract 297802878 -927206.324 -> 298730084 Inexact Rounded -xadd009 add -766.651824 31300.3619 -> 30533.7101 Inexact Rounded -xcom009 compare -766.651824 31300.3619 -> -1 -xdiv009 divide -766.651824 31300.3619 -> -0.0244933853 Inexact Rounded -xdvi009 divideint -766.651824 31300.3619 -> -0 -xmul009 multiply -766.651824 31300.3619 -> -23996479.5 Inexact Rounded -xpow009 power -766.651824 31300 -> 8.37189011E+90287 Inexact Rounded -xrem009 remainder -766.651824 31300.3619 -> -766.651824 -xsub009 subtract -766.651824 31300.3619 -> -32067.0137 Inexact Rounded -xadd010 add -56746.8689E+934981942 471002521. -> -5.67468689E+934981946 Inexact Rounded -xcom010 compare -56746.8689E+934981942 471002521. -> -1 -xdiv010 divide -56746.8689E+934981942 471002521. -> -1.20481030E+934981938 Inexact Rounded -xdvi010 divideint -56746.8689E+934981942 471002521. -> NaN Division_impossible -xmul010 multiply -56746.8689E+934981942 471002521. -> -2.67279183E+934981955 Inexact Rounded -xpow010 power -56746.8689E+934981942 471002521 -> -Infinity Overflow Inexact Rounded -xrem010 remainder -56746.8689E+934981942 471002521. -> NaN Division_impossible -xsub010 subtract -56746.8689E+934981942 471002521. -> -5.67468689E+934981946 Inexact Rounded -xadd011 add 456417160 -41346.1024 -> 456375814 Inexact Rounded -xcom011 compare 456417160 -41346.1024 -> 1 -xdiv011 divide 456417160 -41346.1024 -> -11038.9404 Inexact Rounded -xdvi011 divideint 456417160 -41346.1024 -> -11038 -xmul011 multiply 456417160 -41346.1024 -> -1.88710706E+13 Inexact Rounded -xpow011 power 456417160 -41346 -> 1.04766863E-358030 Inexact Rounded -xrem011 remainder 456417160 -41346.1024 -> 38881.7088 -xsub011 subtract 456417160 -41346.1024 -> 456458506 Inexact Rounded -xadd012 add 102895.722 -2.62214826 -> 102893.100 Inexact Rounded -xcom012 compare 102895.722 -2.62214826 -> 1 -xdiv012 divide 102895.722 -2.62214826 -> -39241.0008 Inexact Rounded -xdvi012 divideint 102895.722 -2.62214826 -> -39241 -xmul012 multiply 102895.722 -2.62214826 -> -269807.838 Inexact Rounded -xpow012 power 102895.722 -3 -> 9.17926786E-16 Inexact Rounded -xrem012 remainder 102895.722 -2.62214826 -> 0.00212934 -xsub012 subtract 102895.722 -2.62214826 -> 102898.344 Inexact Rounded -xadd013 add 61.3033331E+157644141 -567740.918E-893439456 -> 6.13033331E+157644142 Inexact Rounded -xcom013 compare 61.3033331E+157644141 -567740.918E-893439456 -> 1 -xdiv013 divide 61.3033331E+157644141 -567740.918E-893439456 -> -Infinity Inexact Overflow Rounded -xdvi013 divideint 61.3033331E+157644141 -567740.918E-893439456 -> NaN Division_impossible -xmul013 multiply 61.3033331E+157644141 -567740.918E-893439456 -> -3.48044106E-735795308 Inexact Rounded -xpow013 power 61.3033331E+157644141 -6 -> 1.88406322E-945864857 Inexact Rounded -xrem013 remainder 61.3033331E+157644141 -567740.918E-893439456 -> NaN Division_impossible -xsub013 subtract 61.3033331E+157644141 -567740.918E-893439456 -> 6.13033331E+157644142 Inexact Rounded -xadd014 add 80223.3897 73921.0383E-467772675 -> 80223.3897 Inexact Rounded -xcom014 compare 80223.3897 73921.0383E-467772675 -> 1 -xdiv014 divide 80223.3897 73921.0383E-467772675 -> 1.08525789E+467772675 Inexact Rounded -xdvi014 divideint 80223.3897 73921.0383E-467772675 -> NaN Division_impossible -xmul014 multiply 80223.3897 73921.0383E-467772675 -> 5.93019626E-467772666 Inexact Rounded -xpow014 power 80223.3897 7 -> 2.13848919E+34 Inexact Rounded -xrem014 remainder 80223.3897 73921.0383E-467772675 -> NaN Division_impossible -xsub014 subtract 80223.3897 73921.0383E-467772675 -> 80223.3897 Inexact Rounded -xadd015 add -654645.954 -9.12535752 -> -654655.079 Inexact Rounded -xcom015 compare -654645.954 -9.12535752 -> -1 -xdiv015 divide -654645.954 -9.12535752 -> 71739.2116 Inexact Rounded -xdvi015 divideint -654645.954 -9.12535752 -> 71739 -xmul015 multiply -654645.954 -9.12535752 -> 5973878.38 Inexact Rounded -xpow015 power -654645.954 -9 -> -4.52836690E-53 Inexact Rounded -xrem015 remainder -654645.954 -9.12535752 -> -1.93087272 -xsub015 subtract -654645.954 -9.12535752 -> -654636.829 Inexact Rounded -xadd016 add 63.1917772E-706014634 -7.56253257E-138579234 -> -7.56253257E-138579234 Inexact Rounded -xcom016 compare 63.1917772E-706014634 -7.56253257E-138579234 -> 1 -xdiv016 divide 63.1917772E-706014634 -7.56253257E-138579234 -> -8.35590149E-567435400 Inexact Rounded -xdvi016 divideint 63.1917772E-706014634 -7.56253257E-138579234 -> -0 -xmul016 multiply 63.1917772E-706014634 -7.56253257E-138579234 -> -4.77889873E-844593866 Inexact Rounded -xpow016 power 63.1917772E-706014634 -8 -> Infinity Overflow Inexact Rounded -xrem016 remainder 63.1917772E-706014634 -7.56253257E-138579234 -> 6.31917772E-706014633 -xsub016 subtract 63.1917772E-706014634 -7.56253257E-138579234 -> 7.56253257E-138579234 Inexact Rounded -xadd017 add -39674.7190 2490607.78 -> 2450933.06 Inexact Rounded -xcom017 compare -39674.7190 2490607.78 -> -1 -xdiv017 divide -39674.7190 2490607.78 -> -0.0159297338 Inexact Rounded -xdvi017 divideint -39674.7190 2490607.78 -> -0 -xmul017 multiply -39674.7190 2490607.78 -> -9.88141638E+10 Inexact Rounded -xpow017 power -39674.7190 2490608 -> 2.55032329E+11453095 Inexact Rounded -xrem017 remainder -39674.7190 2490607.78 -> -39674.7190 -xsub017 subtract -39674.7190 2490607.78 -> -2530282.50 Inexact Rounded -xadd018 add -3364.59737E-600363681 896487.451 -> 896487.451 Inexact Rounded -xcom018 compare -3364.59737E-600363681 896487.451 -> -1 -xdiv018 divide -3364.59737E-600363681 896487.451 -> -3.75308920E-600363684 Inexact Rounded -xdvi018 divideint -3364.59737E-600363681 896487.451 -> -0 -xmul018 multiply -3364.59737E-600363681 896487.451 -> -3.01631932E-600363672 Inexact Rounded -xpow018 power -3364.59737E-600363681 896487 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem018 remainder -3364.59737E-600363681 896487.451 -> -3.36459737E-600363678 -xsub018 subtract -3364.59737E-600363681 896487.451 -> -896487.451 Inexact Rounded -xadd019 add -64138.0578 31759011.3E+697488342 -> 3.17590113E+697488349 Inexact Rounded -xcom019 compare -64138.0578 31759011.3E+697488342 -> -1 -xdiv019 divide -64138.0578 31759011.3E+697488342 -> -2.01952313E-697488345 Inexact Rounded -xdvi019 divideint -64138.0578 31759011.3E+697488342 -> -0 -xmul019 multiply -64138.0578 31759011.3E+697488342 -> -2.03696130E+697488354 Inexact Rounded -xpow019 power -64138.0578 3 -> -2.63844116E+14 Inexact Rounded -xrem019 remainder -64138.0578 31759011.3E+697488342 -> -64138.0578 -xsub019 subtract -64138.0578 31759011.3E+697488342 -> -3.17590113E+697488349 Inexact Rounded -xadd020 add 61399.8527 -64344484.5 -> -64283084.6 Inexact Rounded -xcom020 compare 61399.8527 -64344484.5 -> 1 -xdiv020 divide 61399.8527 -64344484.5 -> -0.000954236454 Inexact Rounded -xdvi020 divideint 61399.8527 -64344484.5 -> -0 -xmul020 multiply 61399.8527 -64344484.5 -> -3.95074187E+12 Inexact Rounded -xpow020 power 61399.8527 -64344485 -> 1.27378842E-308092161 Inexact Rounded -xrem020 remainder 61399.8527 -64344484.5 -> 61399.8527 -xsub020 subtract 61399.8527 -64344484.5 -> 64405884.4 Inexact Rounded -xadd021 add -722960.204 -26154599.8 -> -26877560.0 Inexact Rounded -xcom021 compare -722960.204 -26154599.8 -> 1 -xdiv021 divide -722960.204 -26154599.8 -> 0.0276417995 Inexact Rounded -xdvi021 divideint -722960.204 -26154599.8 -> 0 -xmul021 multiply -722960.204 -26154599.8 -> 1.89087348E+13 Inexact Rounded -xpow021 power -722960.204 -26154600 -> 5.34236139E-153242794 Inexact Rounded -xrem021 remainder -722960.204 -26154599.8 -> -722960.204 -xsub021 subtract -722960.204 -26154599.8 -> 25431639.6 Inexact Rounded -xadd022 add 9.47109959E+230565093 73354723.2 -> 9.47109959E+230565093 Inexact Rounded -xcom022 compare 9.47109959E+230565093 73354723.2 -> 1 -xdiv022 divide 9.47109959E+230565093 73354723.2 -> 1.29113698E+230565086 Inexact Rounded -xdvi022 divideint 9.47109959E+230565093 73354723.2 -> NaN Division_impossible -xmul022 multiply 9.47109959E+230565093 73354723.2 -> 6.94749889E+230565101 Inexact Rounded -xpow022 power 9.47109959E+230565093 73354723 -> Infinity Overflow Inexact Rounded -xrem022 remainder 9.47109959E+230565093 73354723.2 -> NaN Division_impossible -xsub022 subtract 9.47109959E+230565093 73354723.2 -> 9.47109959E+230565093 Inexact Rounded -xadd023 add 43.7456245 547441956. -> 547442000 Inexact Rounded -xcom023 compare 43.7456245 547441956. -> -1 -xdiv023 divide 43.7456245 547441956. -> 7.99091557E-8 Inexact Rounded -xdvi023 divideint 43.7456245 547441956. -> 0 -xmul023 multiply 43.7456245 547441956. -> 2.39481902E+10 Inexact Rounded -xpow023 power 43.7456245 547441956 -> 2.91742391E+898316458 Inexact Rounded -xrem023 remainder 43.7456245 547441956. -> 43.7456245 -xsub023 subtract 43.7456245 547441956. -> -547441912 Inexact Rounded -xadd024 add -73150542E-242017390 -8.15869954 -> -8.15869954 Inexact Rounded -xcom024 compare -73150542E-242017390 -8.15869954 -> 1 -xdiv024 divide -73150542E-242017390 -8.15869954 -> 8.96595611E-242017384 Inexact Rounded -xdvi024 divideint -73150542E-242017390 -8.15869954 -> 0 -xmul024 multiply -73150542E-242017390 -8.15869954 -> 5.96813293E-242017382 Inexact Rounded -xpow024 power -73150542E-242017390 -8 -> Infinity Overflow Inexact Rounded -xrem024 remainder -73150542E-242017390 -8.15869954 -> -7.3150542E-242017383 -xsub024 subtract -73150542E-242017390 -8.15869954 -> 8.15869954 Inexact Rounded -xadd025 add 2015.62109E+299897596 -11788916.1 -> 2.01562109E+299897599 Inexact Rounded -xcom025 compare 2015.62109E+299897596 -11788916.1 -> 1 -xdiv025 divide 2015.62109E+299897596 -11788916.1 -> -1.70975947E+299897592 Inexact Rounded -xdvi025 divideint 2015.62109E+299897596 -11788916.1 -> NaN Division_impossible -xmul025 multiply 2015.62109E+299897596 -11788916.1 -> -2.37619879E+299897606 Inexact Rounded -xpow025 power 2015.62109E+299897596 -11788916 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem025 remainder 2015.62109E+299897596 -11788916.1 -> NaN Division_impossible -xsub025 subtract 2015.62109E+299897596 -11788916.1 -> 2.01562109E+299897599 Inexact Rounded -xadd026 add 29.498114 -26486451 -> -26486421.5 Inexact Rounded -xcom026 compare 29.498114 -26486451 -> 1 -xdiv026 divide 29.498114 -26486451 -> -0.00000111370580 Inexact Rounded -xdvi026 divideint 29.498114 -26486451 -> -0 -xmul026 multiply 29.498114 -26486451 -> -781300351 Inexact Rounded -xpow026 power 29.498114 -26486451 -> 4.22252513E-38929634 Inexact Rounded -xrem026 remainder 29.498114 -26486451 -> 29.498114 -xsub026 subtract 29.498114 -26486451 -> 26486480.5 Inexact Rounded -xadd027 add 244375043.E+130840878 -9.44522029 -> 2.44375043E+130840886 Inexact Rounded -xcom027 compare 244375043.E+130840878 -9.44522029 -> 1 -xdiv027 divide 244375043.E+130840878 -9.44522029 -> -2.58728791E+130840885 Inexact Rounded -xdvi027 divideint 244375043.E+130840878 -9.44522029 -> NaN Division_impossible -xmul027 multiply 244375043.E+130840878 -9.44522029 -> -2.30817611E+130840887 Inexact Rounded -xpow027 power 244375043.E+130840878 -9 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem027 remainder 244375043.E+130840878 -9.44522029 -> NaN Division_impossible -xsub027 subtract 244375043.E+130840878 -9.44522029 -> 2.44375043E+130840886 Inexact Rounded -xadd028 add -349388.759 -196215.776 -> -545604.535 -xcom028 compare -349388.759 -196215.776 -> -1 -xdiv028 divide -349388.759 -196215.776 -> 1.78063541 Inexact Rounded -xdvi028 divideint -349388.759 -196215.776 -> 1 -xmul028 multiply -349388.759 -196215.776 -> 6.85555865E+10 Inexact Rounded -xpow028 power -349388.759 -196216 -> 1.24551752E-1087686 Inexact Rounded -xrem028 remainder -349388.759 -196215.776 -> -153172.983 -xsub028 subtract -349388.759 -196215.776 -> -153172.983 -xadd029 add -70905112.4 -91353968.8 -> -162259081 Inexact Rounded -xcom029 compare -70905112.4 -91353968.8 -> 1 -xdiv029 divide -70905112.4 -91353968.8 -> 0.776157986 Inexact Rounded -xdvi029 divideint -70905112.4 -91353968.8 -> 0 -xmul029 multiply -70905112.4 -91353968.8 -> 6.47746343E+15 Inexact Rounded -xpow029 power -70905112.4 -91353969 -> -3.05944741E-717190554 Inexact Rounded -xrem029 remainder -70905112.4 -91353968.8 -> -70905112.4 -xsub029 subtract -70905112.4 -91353968.8 -> 20448856.4 -xadd030 add -225094.28 -88.7723542 -> -225183.052 Inexact Rounded -xcom030 compare -225094.28 -88.7723542 -> -1 -xdiv030 divide -225094.28 -88.7723542 -> 2535.63491 Inexact Rounded -xdvi030 divideint -225094.28 -88.7723542 -> 2535 -xmul030 multiply -225094.28 -88.7723542 -> 19982149.2 Inexact Rounded -xpow030 power -225094.28 -89 -> -4.36076965E-477 Inexact Rounded -xrem030 remainder -225094.28 -88.7723542 -> -56.3621030 -xsub030 subtract -225094.28 -88.7723542 -> -225005.508 Inexact Rounded -xadd031 add 50.4442340 82.7952169E+880120759 -> 8.27952169E+880120760 Inexact Rounded -xcom031 compare 50.4442340 82.7952169E+880120759 -> -1 -xdiv031 divide 50.4442340 82.7952169E+880120759 -> 6.09265075E-880120760 Inexact Rounded -xdvi031 divideint 50.4442340 82.7952169E+880120759 -> 0 -xmul031 multiply 50.4442340 82.7952169E+880120759 -> 4.17654130E+880120762 Inexact Rounded -xpow031 power 50.4442340 8 -> 4.19268518E+13 Inexact Rounded -xrem031 remainder 50.4442340 82.7952169E+880120759 -> 50.4442340 -xsub031 subtract 50.4442340 82.7952169E+880120759 -> -8.27952169E+880120760 Inexact Rounded -xadd032 add -32311.9037 8.36379449 -> -32303.5399 Inexact Rounded -xcom032 compare -32311.9037 8.36379449 -> -1 -xdiv032 divide -32311.9037 8.36379449 -> -3863.30675 Inexact Rounded -xdvi032 divideint -32311.9037 8.36379449 -> -3863 -xmul032 multiply -32311.9037 8.36379449 -> -270250.122 Inexact Rounded -xpow032 power -32311.9037 8 -> 1.18822960E+36 Inexact Rounded -xrem032 remainder -32311.9037 8.36379449 -> -2.56558513 -xsub032 subtract -32311.9037 8.36379449 -> -32320.2675 Inexact Rounded -xadd033 add 615396156.E+549895291 -29530247.4 -> 6.15396156E+549895299 Inexact Rounded -xcom033 compare 615396156.E+549895291 -29530247.4 -> 1 -xdiv033 divide 615396156.E+549895291 -29530247.4 -> -2.08395191E+549895292 Inexact Rounded -xdvi033 divideint 615396156.E+549895291 -29530247.4 -> NaN Division_impossible -xmul033 multiply 615396156.E+549895291 -29530247.4 -> -1.81728007E+549895307 Inexact Rounded -xpow033 power 615396156.E+549895291 -29530247 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem033 remainder 615396156.E+549895291 -29530247.4 -> NaN Division_impossible -xsub033 subtract 615396156.E+549895291 -29530247.4 -> 6.15396156E+549895299 Inexact Rounded -xadd034 add 592.142173E-419941416 -3.46079109E-844011845 -> 5.92142173E-419941414 Inexact Rounded -xcom034 compare 592.142173E-419941416 -3.46079109E-844011845 -> 1 -xdiv034 divide 592.142173E-419941416 -3.46079109E-844011845 -> -1.71100236E+424070431 Inexact Rounded -xdvi034 divideint 592.142173E-419941416 -3.46079109E-844011845 -> NaN Division_impossible -xmul034 multiply 592.142173E-419941416 -3.46079109E-844011845 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow034 power 592.142173E-419941416 -3 -> Infinity Overflow Inexact Rounded -xrem034 remainder 592.142173E-419941416 -3.46079109E-844011845 -> NaN Division_impossible -xsub034 subtract 592.142173E-419941416 -3.46079109E-844011845 -> 5.92142173E-419941414 Inexact Rounded -xadd035 add 849.515993E-878446473 -1039.08778 -> -1039.08778 Inexact Rounded -xcom035 compare 849.515993E-878446473 -1039.08778 -> 1 -xdiv035 divide 849.515993E-878446473 -1039.08778 -> -8.17559411E-878446474 Inexact Rounded -xdvi035 divideint 849.515993E-878446473 -1039.08778 -> -0 -xmul035 multiply 849.515993E-878446473 -1039.08778 -> -8.82721687E-878446468 Inexact Rounded -xpow035 power 849.515993E-878446473 -1039 -> Infinity Overflow Inexact Rounded -xrem035 remainder 849.515993E-878446473 -1039.08778 -> 8.49515993E-878446471 -xsub035 subtract 849.515993E-878446473 -1039.08778 -> 1039.08778 Inexact Rounded -xadd036 add 213361789 -599.644851 -> 213361189 Inexact Rounded -xcom036 compare 213361789 -599.644851 -> 1 -xdiv036 divide 213361789 -599.644851 -> -355813.593 Inexact Rounded -xdvi036 divideint 213361789 -599.644851 -> -355813 -xmul036 multiply 213361789 -599.644851 -> -1.27941298E+11 Inexact Rounded -xpow036 power 213361789 -600 -> 3.38854684E-4998 Inexact Rounded -xrem036 remainder 213361789 -599.644851 -> 355.631137 -xsub036 subtract 213361789 -599.644851 -> 213362389 Inexact Rounded -xadd037 add -795522555. -298.037702 -> -795522853 Inexact Rounded -xcom037 compare -795522555. -298.037702 -> -1 -xdiv037 divide -795522555. -298.037702 -> 2669201.08 Inexact Rounded -xdvi037 divideint -795522555. -298.037702 -> 2669201 -xmul037 multiply -795522555. -298.037702 -> 2.37095714E+11 Inexact Rounded -xpow037 power -795522555. -298 -> 4.03232712E-2653 Inexact Rounded -xrem037 remainder -795522555. -298.037702 -> -22.783898 -xsub037 subtract -795522555. -298.037702 -> -795522257 Inexact Rounded -xadd038 add -501260651. -8761893.0E-689281479 -> -501260651 Inexact Rounded -xcom038 compare -501260651. -8761893.0E-689281479 -> -1 -xdiv038 divide -501260651. -8761893.0E-689281479 -> 5.72091728E+689281480 Inexact Rounded -xdvi038 divideint -501260651. -8761893.0E-689281479 -> NaN Division_impossible -xmul038 multiply -501260651. -8761893.0E-689281479 -> 4.39199219E-689281464 Inexact Rounded -xpow038 power -501260651. -9 -> -5.00526961E-79 Inexact Rounded -xrem038 remainder -501260651. -8761893.0E-689281479 -> NaN Division_impossible -xsub038 subtract -501260651. -8761893.0E-689281479 -> -501260651 Inexact Rounded -xadd039 add -1.70781105E-848889023 36504769.4 -> 36504769.4 Inexact Rounded -xcom039 compare -1.70781105E-848889023 36504769.4 -> -1 -xdiv039 divide -1.70781105E-848889023 36504769.4 -> -4.67832307E-848889031 Inexact Rounded -xdvi039 divideint -1.70781105E-848889023 36504769.4 -> -0 -xmul039 multiply -1.70781105E-848889023 36504769.4 -> -6.23432486E-848889016 Inexact Rounded -xpow039 power -1.70781105E-848889023 36504769 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem039 remainder -1.70781105E-848889023 36504769.4 -> -1.70781105E-848889023 -xsub039 subtract -1.70781105E-848889023 36504769.4 -> -36504769.4 Inexact Rounded -xadd040 add -5290.54984E-490626676 842535254 -> 842535254 Inexact Rounded -xcom040 compare -5290.54984E-490626676 842535254 -> -1 -xdiv040 divide -5290.54984E-490626676 842535254 -> -6.27932162E-490626682 Inexact Rounded -xdvi040 divideint -5290.54984E-490626676 842535254 -> -0 -xmul040 multiply -5290.54984E-490626676 842535254 -> -4.45747475E-490626664 Inexact Rounded -xpow040 power -5290.54984E-490626676 842535254 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem040 remainder -5290.54984E-490626676 842535254 -> -5.29054984E-490626673 -xsub040 subtract -5290.54984E-490626676 842535254 -> -842535254 Inexact Rounded -xadd041 add 608.31825E+535268120 -59609.0993 -> 6.08318250E+535268122 Inexact Rounded -xcom041 compare 608.31825E+535268120 -59609.0993 -> 1 -xdiv041 divide 608.31825E+535268120 -59609.0993 -> -1.02051240E+535268118 Inexact Rounded -xdvi041 divideint 608.31825E+535268120 -59609.0993 -> NaN Division_impossible -xmul041 multiply 608.31825E+535268120 -59609.0993 -> -3.62613030E+535268127 Inexact Rounded -xpow041 power 608.31825E+535268120 -59609 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem041 remainder 608.31825E+535268120 -59609.0993 -> NaN Division_impossible -xsub041 subtract 608.31825E+535268120 -59609.0993 -> 6.08318250E+535268122 Inexact Rounded -xadd042 add -4629035.31 -167.884398 -> -4629203.19 Inexact Rounded -xcom042 compare -4629035.31 -167.884398 -> -1 -xdiv042 divide -4629035.31 -167.884398 -> 27572.7546 Inexact Rounded -xdvi042 divideint -4629035.31 -167.884398 -> 27572 -xmul042 multiply -4629035.31 -167.884398 -> 777142806 Inexact Rounded -xpow042 power -4629035.31 -168 -> 1.57614831E-1120 Inexact Rounded -xrem042 remainder -4629035.31 -167.884398 -> -126.688344 -xsub042 subtract -4629035.31 -167.884398 -> -4628867.43 Inexact Rounded -xadd043 add -66527378. -706400268. -> -772927646 -xcom043 compare -66527378. -706400268. -> 1 -xdiv043 divide -66527378. -706400268. -> 0.0941780192 Inexact Rounded -xdvi043 divideint -66527378. -706400268. -> 0 -xmul043 multiply -66527378. -706400268. -> 4.69949576E+16 Inexact Rounded -xpow043 power -66527378. -706400268 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem043 remainder -66527378. -706400268. -> -66527378 -xsub043 subtract -66527378. -706400268. -> 639872890 -xadd044 add -2510497.53 372882462. -> 370371964 Inexact Rounded -xcom044 compare -2510497.53 372882462. -> -1 -xdiv044 divide -2510497.53 372882462. -> -0.00673267795 Inexact Rounded -xdvi044 divideint -2510497.53 372882462. -> -0 -xmul044 multiply -2510497.53 372882462. -> -9.36120500E+14 Inexact Rounded -xpow044 power -2510497.53 372882462 -> Infinity Overflow Inexact Rounded -xrem044 remainder -2510497.53 372882462. -> -2510497.53 -xsub044 subtract -2510497.53 372882462. -> -375392960 Inexact Rounded -xadd045 add 136.255393E+53329961 -53494.7201E+720058060 -> -5.34947201E+720058064 Inexact Rounded -xcom045 compare 136.255393E+53329961 -53494.7201E+720058060 -> 1 -xdiv045 divide 136.255393E+53329961 -53494.7201E+720058060 -> -2.54708115E-666728102 Inexact Rounded -xdvi045 divideint 136.255393E+53329961 -53494.7201E+720058060 -> -0 -xmul045 multiply 136.255393E+53329961 -53494.7201E+720058060 -> -7.28894411E+773388027 Inexact Rounded -xpow045 power 136.255393E+53329961 -5 -> 2.12927373E-266649816 Inexact Rounded -xrem045 remainder 136.255393E+53329961 -53494.7201E+720058060 -> 1.36255393E+53329963 -xsub045 subtract 136.255393E+53329961 -53494.7201E+720058060 -> 5.34947201E+720058064 Inexact Rounded -xadd046 add -876673.100 -6150.92266 -> -882824.023 Inexact Rounded -xcom046 compare -876673.100 -6150.92266 -> -1 -xdiv046 divide -876673.100 -6150.92266 -> 142.527089 Inexact Rounded -xdvi046 divideint -876673.100 -6150.92266 -> 142 -xmul046 multiply -876673.100 -6150.92266 -> 5.39234844E+9 Inexact Rounded -xpow046 power -876673.100 -6151 -> -4.03111774E-36555 Inexact Rounded -xrem046 remainder -876673.100 -6150.92266 -> -3242.08228 -xsub046 subtract -876673.100 -6150.92266 -> -870522.177 Inexact Rounded -xadd047 add -2.45151797E+911306117 27235771 -> -2.45151797E+911306117 Inexact Rounded -xcom047 compare -2.45151797E+911306117 27235771 -> -1 -xdiv047 divide -2.45151797E+911306117 27235771 -> -9.00109628E+911306109 Inexact Rounded -xdvi047 divideint -2.45151797E+911306117 27235771 -> NaN Division_impossible -xmul047 multiply -2.45151797E+911306117 27235771 -> -6.67689820E+911306124 Inexact Rounded -xpow047 power -2.45151797E+911306117 27235771 -> -Infinity Overflow Inexact Rounded -xrem047 remainder -2.45151797E+911306117 27235771 -> NaN Division_impossible -xsub047 subtract -2.45151797E+911306117 27235771 -> -2.45151797E+911306117 Inexact Rounded -xadd048 add -9.15117551 -4.95100733E-314511326 -> -9.15117551 Inexact Rounded -xcom048 compare -9.15117551 -4.95100733E-314511326 -> -1 -xdiv048 divide -9.15117551 -4.95100733E-314511326 -> 1.84834618E+314511326 Inexact Rounded -xdvi048 divideint -9.15117551 -4.95100733E-314511326 -> NaN Division_impossible -xmul048 multiply -9.15117551 -4.95100733E-314511326 -> 4.53075370E-314511325 Inexact Rounded -xpow048 power -9.15117551 -5 -> -0.0000155817265 Inexact Rounded -xrem048 remainder -9.15117551 -4.95100733E-314511326 -> NaN Division_impossible -xsub048 subtract -9.15117551 -4.95100733E-314511326 -> -9.15117551 Inexact Rounded -xadd049 add 3.61890453E-985606128 30664416. -> 30664416.0 Inexact Rounded -xcom049 compare 3.61890453E-985606128 30664416. -> -1 -xdiv049 divide 3.61890453E-985606128 30664416. -> 1.18016418E-985606135 Inexact Rounded -xdvi049 divideint 3.61890453E-985606128 30664416. -> 0 -xmul049 multiply 3.61890453E-985606128 30664416. -> 1.10971594E-985606120 Inexact Rounded -xpow049 power 3.61890453E-985606128 30664416 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem049 remainder 3.61890453E-985606128 30664416. -> 3.61890453E-985606128 -xsub049 subtract 3.61890453E-985606128 30664416. -> -30664416.0 Inexact Rounded -xadd050 add -257674602E+216723382 -70820959.4 -> -2.57674602E+216723390 Inexact Rounded -xcom050 compare -257674602E+216723382 -70820959.4 -> -1 -xdiv050 divide -257674602E+216723382 -70820959.4 -> 3.63839468E+216723382 Inexact Rounded -xdvi050 divideint -257674602E+216723382 -70820959.4 -> NaN Division_impossible -xmul050 multiply -257674602E+216723382 -70820959.4 -> 1.82487625E+216723398 Inexact Rounded -xpow050 power -257674602E+216723382 -70820959 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem050 remainder -257674602E+216723382 -70820959.4 -> NaN Division_impossible -xsub050 subtract -257674602E+216723382 -70820959.4 -> -2.57674602E+216723390 Inexact Rounded -xadd051 add 218699.206 556944241. -> 557162940 Inexact Rounded -xcom051 compare 218699.206 556944241. -> -1 -xdiv051 divide 218699.206 556944241. -> 0.000392677022 Inexact Rounded -xdvi051 divideint 218699.206 556944241. -> 0 -xmul051 multiply 218699.206 556944241. -> 1.21803263E+14 Inexact Rounded -xpow051 power 218699.206 556944241 -> Infinity Overflow Inexact Rounded -xrem051 remainder 218699.206 556944241. -> 218699.206 -xsub051 subtract 218699.206 556944241. -> -556725542 Inexact Rounded -xadd052 add 106211716. -3456793.74 -> 102754922 Inexact Rounded -xcom052 compare 106211716. -3456793.74 -> 1 -xdiv052 divide 106211716. -3456793.74 -> -30.7255000 Inexact Rounded -xdvi052 divideint 106211716. -3456793.74 -> -30 -xmul052 multiply 106211716. -3456793.74 -> -3.67151995E+14 Inexact Rounded -xpow052 power 106211716. -3456794 -> 2.07225581E-27744825 Inexact Rounded -xrem052 remainder 106211716. -3456793.74 -> 2507903.80 -xsub052 subtract 106211716. -3456793.74 -> 109668510 Inexact Rounded -xadd053 add 1.25018078 399856.763E-726816740 -> 1.25018078 Inexact Rounded -xcom053 compare 1.25018078 399856.763E-726816740 -> 1 -xdiv053 divide 1.25018078 399856.763E-726816740 -> 3.12657155E+726816734 Inexact Rounded -xdvi053 divideint 1.25018078 399856.763E-726816740 -> NaN Division_impossible -xmul053 multiply 1.25018078 399856.763E-726816740 -> 4.99893240E-726816735 Inexact Rounded -xpow053 power 1.25018078 4 -> 2.44281890 Inexact Rounded -xrem053 remainder 1.25018078 399856.763E-726816740 -> NaN Division_impossible -xsub053 subtract 1.25018078 399856.763E-726816740 -> 1.25018078 Inexact Rounded -xadd054 add 364.99811 -46222.0505 -> -45857.0524 Inexact Rounded -xcom054 compare 364.99811 -46222.0505 -> 1 -xdiv054 divide 364.99811 -46222.0505 -> -0.00789662306 Inexact Rounded -xdvi054 divideint 364.99811 -46222.0505 -> -0 -xmul054 multiply 364.99811 -46222.0505 -> -16870961.1 Inexact Rounded -xpow054 power 364.99811 -46222 -> 6.35570856E-118435 Inexact Rounded -xrem054 remainder 364.99811 -46222.0505 -> 364.99811 -xsub054 subtract 364.99811 -46222.0505 -> 46587.0486 Inexact Rounded -xadd055 add -392217576. -958364096 -> -1.35058167E+9 Inexact Rounded -xcom055 compare -392217576. -958364096 -> 1 -xdiv055 divide -392217576. -958364096 -> 0.409257377 Inexact Rounded -xdvi055 divideint -392217576. -958364096 -> 0 -xmul055 multiply -392217576. -958364096 -> 3.75887243E+17 Inexact Rounded -xpow055 power -392217576. -958364096 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem055 remainder -392217576. -958364096 -> -392217576 -xsub055 subtract -392217576. -958364096 -> 566146520 -xadd056 add 169601285 714526.639 -> 170315812 Inexact Rounded -xcom056 compare 169601285 714526.639 -> 1 -xdiv056 divide 169601285 714526.639 -> 237.361738 Inexact Rounded -xdvi056 divideint 169601285 714526.639 -> 237 -xmul056 multiply 169601285 714526.639 -> 1.21184636E+14 Inexact Rounded -xpow056 power 169601285 714527 -> 2.06052444E+5880149 Inexact Rounded -xrem056 remainder 169601285 714526.639 -> 258471.557 -xsub056 subtract 169601285 714526.639 -> 168886758 Inexact Rounded -xadd057 add -674.094552E+586944319 6354.2668E+589657266 -> 6.35426680E+589657269 Inexact Rounded -xcom057 compare -674.094552E+586944319 6354.2668E+589657266 -> -1 -xdiv057 divide -674.094552E+586944319 6354.2668E+589657266 -> -1.06085340E-2712948 Inexact Rounded -xdvi057 divideint -674.094552E+586944319 6354.2668E+589657266 -> -0 -xmul057 multiply -674.094552E+586944319 6354.2668E+589657266 -> -Infinity Inexact Overflow Rounded -xpow057 power -674.094552E+586944319 6 -> Infinity Overflow Inexact Rounded -xrem057 remainder -674.094552E+586944319 6354.2668E+589657266 -> -6.74094552E+586944321 -xsub057 subtract -674.094552E+586944319 6354.2668E+589657266 -> -6.35426680E+589657269 Inexact Rounded -xadd058 add 151795163E-371727182 -488.09788E-738852245 -> 1.51795163E-371727174 Inexact Rounded -xcom058 compare 151795163E-371727182 -488.09788E-738852245 -> 1 -xdiv058 divide 151795163E-371727182 -488.09788E-738852245 -> -3.10993285E+367125068 Inexact Rounded -xdvi058 divideint 151795163E-371727182 -488.09788E-738852245 -> NaN Division_impossible -xmul058 multiply 151795163E-371727182 -488.09788E-738852245 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow058 power 151795163E-371727182 -5 -> Infinity Overflow Inexact Rounded -xrem058 remainder 151795163E-371727182 -488.09788E-738852245 -> NaN Division_impossible -xsub058 subtract 151795163E-371727182 -488.09788E-738852245 -> 1.51795163E-371727174 Inexact Rounded -xadd059 add -746.293386 927749.647 -> 927003.354 Inexact Rounded -xcom059 compare -746.293386 927749.647 -> -1 -xdiv059 divide -746.293386 927749.647 -> -0.000804412471 Inexact Rounded -xdvi059 divideint -746.293386 927749.647 -> -0 -xmul059 multiply -746.293386 927749.647 -> -692373425 Inexact Rounded -xpow059 power -746.293386 927750 -> 7.49278741E+2665341 Inexact Rounded -xrem059 remainder -746.293386 927749.647 -> -746.293386 -xsub059 subtract -746.293386 927749.647 -> -928495.940 Inexact Rounded -xadd060 add 888946471E+241331592 -235739.595 -> 8.88946471E+241331600 Inexact Rounded -xcom060 compare 888946471E+241331592 -235739.595 -> 1 -xdiv060 divide 888946471E+241331592 -235739.595 -> -3.77088317E+241331595 Inexact Rounded -xdvi060 divideint 888946471E+241331592 -235739.595 -> NaN Division_impossible -xmul060 multiply 888946471E+241331592 -235739.595 -> -2.09559881E+241331606 Inexact Rounded -xpow060 power 888946471E+241331592 -235740 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem060 remainder 888946471E+241331592 -235739.595 -> NaN Division_impossible -xsub060 subtract 888946471E+241331592 -235739.595 -> 8.88946471E+241331600 Inexact Rounded -xadd061 add 6.64377249 79161.1070E+619453776 -> 7.91611070E+619453780 Inexact Rounded -xcom061 compare 6.64377249 79161.1070E+619453776 -> -1 -xdiv061 divide 6.64377249 79161.1070E+619453776 -> 8.39272307E-619453781 Inexact Rounded -xdvi061 divideint 6.64377249 79161.1070E+619453776 -> 0 -xmul061 multiply 6.64377249 79161.1070E+619453776 -> 5.25928385E+619453781 Inexact Rounded -xpow061 power 6.64377249 8 -> 3795928.44 Inexact Rounded -xrem061 remainder 6.64377249 79161.1070E+619453776 -> 6.64377249 -xsub061 subtract 6.64377249 79161.1070E+619453776 -> -7.91611070E+619453780 Inexact Rounded -xadd062 add 3146.66571E-313373366 88.5282010 -> 88.5282010 Inexact Rounded -xcom062 compare 3146.66571E-313373366 88.5282010 -> -1 -xdiv062 divide 3146.66571E-313373366 88.5282010 -> 3.55442184E-313373365 Inexact Rounded -xdvi062 divideint 3146.66571E-313373366 88.5282010 -> 0 -xmul062 multiply 3146.66571E-313373366 88.5282010 -> 2.78568654E-313373361 Inexact Rounded -xpow062 power 3146.66571E-313373366 89 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem062 remainder 3146.66571E-313373366 88.5282010 -> 3.14666571E-313373363 -xsub062 subtract 3146.66571E-313373366 88.5282010 -> -88.5282010 Inexact Rounded -xadd063 add 6.44693097 -87195.8711 -> -87189.4242 Inexact Rounded -xcom063 compare 6.44693097 -87195.8711 -> 1 -xdiv063 divide 6.44693097 -87195.8711 -> -0.0000739361955 Inexact Rounded -xdvi063 divideint 6.44693097 -87195.8711 -> -0 -xmul063 multiply 6.44693097 -87195.8711 -> -562145.762 Inexact Rounded -xpow063 power 6.44693097 -87196 -> 4.50881730E-70573 Inexact Rounded -xrem063 remainder 6.44693097 -87195.8711 -> 6.44693097 -xsub063 subtract 6.44693097 -87195.8711 -> 87202.3180 Inexact Rounded -xadd064 add -2113132.56E+577957840 981125821 -> -2.11313256E+577957846 Inexact Rounded -xcom064 compare -2113132.56E+577957840 981125821 -> -1 -xdiv064 divide -2113132.56E+577957840 981125821 -> -2.15378345E+577957837 Inexact Rounded -xdvi064 divideint -2113132.56E+577957840 981125821 -> NaN Division_impossible -xmul064 multiply -2113132.56E+577957840 981125821 -> -2.07324892E+577957855 Inexact Rounded -xpow064 power -2113132.56E+577957840 981125821 -> -Infinity Overflow Inexact Rounded -xrem064 remainder -2113132.56E+577957840 981125821 -> NaN Division_impossible -xsub064 subtract -2113132.56E+577957840 981125821 -> -2.11313256E+577957846 Inexact Rounded -xadd065 add -7701.42814 72667.5181 -> 64966.0900 Inexact Rounded -xcom065 compare -7701.42814 72667.5181 -> -1 -xdiv065 divide -7701.42814 72667.5181 -> -0.105981714 Inexact Rounded -xdvi065 divideint -7701.42814 72667.5181 -> -0 -xmul065 multiply -7701.42814 72667.5181 -> -559643669 Inexact Rounded -xpow065 power -7701.42814 72668 -> 2.29543837E+282429 Inexact Rounded -xrem065 remainder -7701.42814 72667.5181 -> -7701.42814 -xsub065 subtract -7701.42814 72667.5181 -> -80368.9462 Inexact Rounded -xadd066 add -851.754789 -582659.149 -> -583510.904 Inexact Rounded -xcom066 compare -851.754789 -582659.149 -> 1 -xdiv066 divide -851.754789 -582659.149 -> 0.00146184058 Inexact Rounded -xdvi066 divideint -851.754789 -582659.149 -> 0 -xmul066 multiply -851.754789 -582659.149 -> 496282721 Inexact Rounded -xpow066 power -851.754789 -582659 -> -6.83532593E-1707375 Inexact Rounded -xrem066 remainder -851.754789 -582659.149 -> -851.754789 -xsub066 subtract -851.754789 -582659.149 -> 581807.394 Inexact Rounded -xadd067 add -5.01992943 7852.16531 -> 7847.14538 Inexact Rounded -xcom067 compare -5.01992943 7852.16531 -> -1 -xdiv067 divide -5.01992943 7852.16531 -> -0.000639305113 Inexact Rounded -xdvi067 divideint -5.01992943 7852.16531 -> -0 -xmul067 multiply -5.01992943 7852.16531 -> -39417.3157 Inexact Rounded -xpow067 power -5.01992943 7852 -> 7.54481448E+5501 Inexact Rounded -xrem067 remainder -5.01992943 7852.16531 -> -5.01992943 -xsub067 subtract -5.01992943 7852.16531 -> -7857.18524 Inexact Rounded -xadd068 add -12393257.2 76803689E+949125770 -> 7.68036890E+949125777 Inexact Rounded -xcom068 compare -12393257.2 76803689E+949125770 -> -1 -xdiv068 divide -12393257.2 76803689E+949125770 -> -1.61362786E-949125771 Inexact Rounded -xdvi068 divideint -12393257.2 76803689E+949125770 -> -0 -xmul068 multiply -12393257.2 76803689E+949125770 -> -9.51847872E+949125784 Inexact Rounded -xpow068 power -12393257.2 8 -> 5.56523749E+56 Inexact Rounded -xrem068 remainder -12393257.2 76803689E+949125770 -> -12393257.2 -xsub068 subtract -12393257.2 76803689E+949125770 -> -7.68036890E+949125777 Inexact Rounded -xadd069 add -754771634.E+716555026 -292336.311 -> -7.54771634E+716555034 Inexact Rounded -xcom069 compare -754771634.E+716555026 -292336.311 -> -1 -xdiv069 divide -754771634.E+716555026 -292336.311 -> 2.58186070E+716555029 Inexact Rounded -xdvi069 divideint -754771634.E+716555026 -292336.311 -> NaN Division_impossible -xmul069 multiply -754771634.E+716555026 -292336.311 -> 2.20647155E+716555040 Inexact Rounded -xpow069 power -754771634.E+716555026 -292336 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem069 remainder -754771634.E+716555026 -292336.311 -> NaN Division_impossible -xsub069 subtract -754771634.E+716555026 -292336.311 -> -7.54771634E+716555034 Inexact Rounded -xadd070 add -915006.171E+614548652 -314086965. -> -9.15006171E+614548657 Inexact Rounded -xcom070 compare -915006.171E+614548652 -314086965. -> -1 -xdiv070 divide -915006.171E+614548652 -314086965. -> 2.91322555E+614548649 Inexact Rounded -xdvi070 divideint -915006.171E+614548652 -314086965. -> NaN Division_impossible -xmul070 multiply -915006.171E+614548652 -314086965. -> 2.87391511E+614548666 Inexact Rounded -xpow070 power -915006.171E+614548652 -314086965 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem070 remainder -915006.171E+614548652 -314086965. -> NaN Division_impossible -xsub070 subtract -915006.171E+614548652 -314086965. -> -9.15006171E+614548657 Inexact Rounded -xadd071 add -296590035 -481734529 -> -778324564 -xcom071 compare -296590035 -481734529 -> 1 -xdiv071 divide -296590035 -481734529 -> 0.615671116 Inexact Rounded -xdvi071 divideint -296590035 -481734529 -> 0 -xmul071 multiply -296590035 -481734529 -> 1.42877661E+17 Inexact Rounded -xpow071 power -296590035 -481734529 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem071 remainder -296590035 -481734529 -> -296590035 -xsub071 subtract -296590035 -481734529 -> 185144494 -xadd072 add 8.27822605 9241557.19 -> 9241565.47 Inexact Rounded -xcom072 compare 8.27822605 9241557.19 -> -1 -xdiv072 divide 8.27822605 9241557.19 -> 8.95760950E-7 Inexact Rounded -xdvi072 divideint 8.27822605 9241557.19 -> 0 -xmul072 multiply 8.27822605 9241557.19 -> 76503699.5 Inexact Rounded -xpow072 power 8.27822605 9241557 -> 5.10219969E+8483169 Inexact Rounded -xrem072 remainder 8.27822605 9241557.19 -> 8.27822605 -xsub072 subtract 8.27822605 9241557.19 -> -9241548.91 Inexact Rounded -xadd073 add -1.43581098 7286313.54 -> 7286312.10 Inexact Rounded -xcom073 compare -1.43581098 7286313.54 -> -1 -xdiv073 divide -1.43581098 7286313.54 -> -1.97055887E-7 Inexact Rounded -xdvi073 divideint -1.43581098 7286313.54 -> -0 -xmul073 multiply -1.43581098 7286313.54 -> -10461769.0 Inexact Rounded -xpow073 power -1.43581098 7286314 -> 1.09389741E+1144660 Inexact Rounded -xrem073 remainder -1.43581098 7286313.54 -> -1.43581098 -xsub073 subtract -1.43581098 7286313.54 -> -7286314.98 Inexact Rounded -xadd074 add -699036193. 759263.509E+533543625 -> 7.59263509E+533543630 Inexact Rounded -xcom074 compare -699036193. 759263.509E+533543625 -> -1 -xdiv074 divide -699036193. 759263.509E+533543625 -> -9.20676662E-533543623 Inexact Rounded -xdvi074 divideint -699036193. 759263.509E+533543625 -> -0 -xmul074 multiply -699036193. 759263.509E+533543625 -> -5.30752673E+533543639 Inexact Rounded -xpow074 power -699036193. 8 -> 5.70160724E+70 Inexact Rounded -xrem074 remainder -699036193. 759263.509E+533543625 -> -699036193 -xsub074 subtract -699036193. 759263.509E+533543625 -> -7.59263509E+533543630 Inexact Rounded -xadd075 add -83.7273615E-305281957 -287779593.E+458777774 -> -2.87779593E+458777782 Inexact Rounded -xcom075 compare -83.7273615E-305281957 -287779593.E+458777774 -> 1 -xdiv075 divide -83.7273615E-305281957 -287779593.E+458777774 -> 2.90942664E-764059738 Inexact Rounded -xdvi075 divideint -83.7273615E-305281957 -287779593.E+458777774 -> 0 -xmul075 multiply -83.7273615E-305281957 -287779593.E+458777774 -> 2.40950260E+153495827 Inexact Rounded -xpow075 power -83.7273615E-305281957 -3 -> -1.70371828E+915845865 Inexact Rounded -xrem075 remainder -83.7273615E-305281957 -287779593.E+458777774 -> -8.37273615E-305281956 -xsub075 subtract -83.7273615E-305281957 -287779593.E+458777774 -> 2.87779593E+458777782 Inexact Rounded -xadd076 add 8.48503224 6522.03316 -> 6530.51819 Inexact Rounded -xcom076 compare 8.48503224 6522.03316 -> -1 -xdiv076 divide 8.48503224 6522.03316 -> 0.00130097962 Inexact Rounded -xdvi076 divideint 8.48503224 6522.03316 -> 0 -xmul076 multiply 8.48503224 6522.03316 -> 55339.6616 Inexact Rounded -xpow076 power 8.48503224 6522 -> 4.76547542E+6056 Inexact Rounded -xrem076 remainder 8.48503224 6522.03316 -> 8.48503224 -xsub076 subtract 8.48503224 6522.03316 -> -6513.54813 Inexact Rounded -xadd077 add 527916091 -809.054070 -> 527915282 Inexact Rounded -xcom077 compare 527916091 -809.054070 -> 1 -xdiv077 divide 527916091 -809.054070 -> -652510.272 Inexact Rounded -xdvi077 divideint 527916091 -809.054070 -> -652510 -xmul077 multiply 527916091 -809.054070 -> -4.27112662E+11 Inexact Rounded -xpow077 power 527916091 -809 -> 2.78609697E-7057 Inexact Rounded -xrem077 remainder 527916091 -809.054070 -> 219.784300 -xsub077 subtract 527916091 -809.054070 -> 527916900 Inexact Rounded -xadd078 add 3857058.60 5792997.58E+881077409 -> 5.79299758E+881077415 Inexact Rounded -xcom078 compare 3857058.60 5792997.58E+881077409 -> -1 -xdiv078 divide 3857058.60 5792997.58E+881077409 -> 6.65813950E-881077410 Inexact Rounded -xdvi078 divideint 3857058.60 5792997.58E+881077409 -> 0 -xmul078 multiply 3857058.60 5792997.58E+881077409 -> 2.23439311E+881077422 Inexact Rounded -xpow078 power 3857058.60 6 -> 3.29258824E+39 Inexact Rounded -xrem078 remainder 3857058.60 5792997.58E+881077409 -> 3857058.60 -xsub078 subtract 3857058.60 5792997.58E+881077409 -> -5.79299758E+881077415 Inexact Rounded -xadd079 add -66587363.E+556538173 -551902402E+357309146 -> -6.65873630E+556538180 Inexact Rounded -xcom079 compare -66587363.E+556538173 -551902402E+357309146 -> -1 -xdiv079 divide -66587363.E+556538173 -551902402E+357309146 -> 1.20650613E+199229026 Inexact Rounded -xdvi079 divideint -66587363.E+556538173 -551902402E+357309146 -> NaN Division_impossible -xmul079 multiply -66587363.E+556538173 -551902402E+357309146 -> 3.67497256E+913847335 Inexact Rounded -xpow079 power -66587363.E+556538173 -6 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem079 remainder -66587363.E+556538173 -551902402E+357309146 -> NaN Division_impossible -xsub079 subtract -66587363.E+556538173 -551902402E+357309146 -> -6.65873630E+556538180 Inexact Rounded -xadd080 add -580.502955 38125521.7 -> 38124941.2 Inexact Rounded -xcom080 compare -580.502955 38125521.7 -> -1 -xdiv080 divide -580.502955 38125521.7 -> -0.0000152260987 Inexact Rounded -xdvi080 divideint -580.502955 38125521.7 -> -0 -xmul080 multiply -580.502955 38125521.7 -> -2.21319780E+10 Inexact Rounded -xpow080 power -580.502955 38125522 -> 6.07262078E+105371486 Inexact Rounded -xrem080 remainder -580.502955 38125521.7 -> -580.502955 -xsub080 subtract -580.502955 38125521.7 -> -38126102.2 Inexact Rounded -xadd081 add -9627363.00 -80616885E-749891394 -> -9627363.00 Inexact Rounded -xcom081 compare -9627363.00 -80616885E-749891394 -> -1 -xdiv081 divide -9627363.00 -80616885E-749891394 -> 1.19421173E+749891393 Inexact Rounded -xdvi081 divideint -9627363.00 -80616885E-749891394 -> NaN Division_impossible -xmul081 multiply -9627363.00 -80616885E-749891394 -> 7.76128016E-749891380 Inexact Rounded -xpow081 power -9627363.00 -8 -> 1.35500601E-56 Inexact Rounded -xrem081 remainder -9627363.00 -80616885E-749891394 -> NaN Division_impossible -xsub081 subtract -9627363.00 -80616885E-749891394 -> -9627363.00 Inexact Rounded -xadd082 add -526.594855E+803110107 -64.5451639 -> -5.26594855E+803110109 Inexact Rounded -xcom082 compare -526.594855E+803110107 -64.5451639 -> -1 -xdiv082 divide -526.594855E+803110107 -64.5451639 -> 8.15854858E+803110107 Inexact Rounded -xdvi082 divideint -526.594855E+803110107 -64.5451639 -> NaN Division_impossible -xmul082 multiply -526.594855E+803110107 -64.5451639 -> 3.39891512E+803110111 Inexact Rounded -xpow082 power -526.594855E+803110107 -65 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem082 remainder -526.594855E+803110107 -64.5451639 -> NaN Division_impossible -xsub082 subtract -526.594855E+803110107 -64.5451639 -> -5.26594855E+803110109 Inexact Rounded -xadd083 add -8378.55499 760.131257 -> -7618.42373 Inexact Rounded -xcom083 compare -8378.55499 760.131257 -> -1 -xdiv083 divide -8378.55499 760.131257 -> -11.0225108 Inexact Rounded -xdvi083 divideint -8378.55499 760.131257 -> -11 -xmul083 multiply -8378.55499 760.131257 -> -6368801.54 Inexact Rounded -xpow083 power -8378.55499 760 -> 4.06007928E+2981 Inexact Rounded -xrem083 remainder -8378.55499 760.131257 -> -17.111163 -xsub083 subtract -8378.55499 760.131257 -> -9138.68625 Inexact Rounded -xadd084 add -717.697718 984304413 -> 984303695 Inexact Rounded -xcom084 compare -717.697718 984304413 -> -1 -xdiv084 divide -717.697718 984304413 -> -7.29142030E-7 Inexact Rounded -xdvi084 divideint -717.697718 984304413 -> -0 -xmul084 multiply -717.697718 984304413 -> -7.06433031E+11 Inexact Rounded -xpow084 power -717.697718 984304413 -> -Infinity Overflow Inexact Rounded -xrem084 remainder -717.697718 984304413 -> -717.697718 -xsub084 subtract -717.697718 984304413 -> -984305131 Inexact Rounded -xadd085 add -76762243.4E-741100094 -273.706674 -> -273.706674 Inexact Rounded -xcom085 compare -76762243.4E-741100094 -273.706674 -> 1 -xdiv085 divide -76762243.4E-741100094 -273.706674 -> 2.80454409E-741100089 Inexact Rounded -xdvi085 divideint -76762243.4E-741100094 -273.706674 -> 0 -xmul085 multiply -76762243.4E-741100094 -273.706674 -> 2.10103383E-741100084 Inexact Rounded -xpow085 power -76762243.4E-741100094 -274 -> Infinity Overflow Inexact Rounded -xrem085 remainder -76762243.4E-741100094 -273.706674 -> -7.67622434E-741100087 -xsub085 subtract -76762243.4E-741100094 -273.706674 -> 273.706674 Inexact Rounded -xadd086 add -701.518354E+786274918 8822750.68E+243052107 -> -7.01518354E+786274920 Inexact Rounded -xcom086 compare -701.518354E+786274918 8822750.68E+243052107 -> -1 -xdiv086 divide -701.518354E+786274918 8822750.68E+243052107 -> -7.95124309E+543222806 Inexact Rounded -xdvi086 divideint -701.518354E+786274918 8822750.68E+243052107 -> NaN Division_impossible -xmul086 multiply -701.518354E+786274918 8822750.68E+243052107 -> -Infinity Inexact Overflow Rounded -xpow086 power -701.518354E+786274918 9 -> -Infinity Overflow Inexact Rounded -xrem086 remainder -701.518354E+786274918 8822750.68E+243052107 -> NaN Division_impossible -xsub086 subtract -701.518354E+786274918 8822750.68E+243052107 -> -7.01518354E+786274920 Inexact Rounded -xadd087 add -359866845. -4.57434117 -> -359866850 Inexact Rounded -xcom087 compare -359866845. -4.57434117 -> -1 -xdiv087 divide -359866845. -4.57434117 -> 78670748.8 Inexact Rounded -xdvi087 divideint -359866845. -4.57434117 -> 78670748 -xmul087 multiply -359866845. -4.57434117 -> 1.64615372E+9 Inexact Rounded -xpow087 power -359866845. -5 -> -1.65687909E-43 Inexact Rounded -xrem087 remainder -359866845. -4.57434117 -> -3.54890484 -xsub087 subtract -359866845. -4.57434117 -> -359866840 Inexact Rounded -xadd088 add 779934536. -76562645.7 -> 703371890 Inexact Rounded -xcom088 compare 779934536. -76562645.7 -> 1 -xdiv088 divide 779934536. -76562645.7 -> -10.1868807 Inexact Rounded -xdvi088 divideint 779934536. -76562645.7 -> -10 -xmul088 multiply 779934536. -76562645.7 -> -5.97138515E+16 Inexact Rounded -xpow088 power 779934536. -76562646 -> 3.36739063E-680799501 Inexact Rounded -xrem088 remainder 779934536. -76562645.7 -> 14308079.0 -xsub088 subtract 779934536. -76562645.7 -> 856497182 Inexact Rounded -xadd089 add -4820.95451 3516234.99E+303303176 -> 3.51623499E+303303182 Inexact Rounded -xcom089 compare -4820.95451 3516234.99E+303303176 -> -1 -xdiv089 divide -4820.95451 3516234.99E+303303176 -> -1.37105584E-303303179 Inexact Rounded -xdvi089 divideint -4820.95451 3516234.99E+303303176 -> -0 -xmul089 multiply -4820.95451 3516234.99E+303303176 -> -1.69516089E+303303186 Inexact Rounded -xpow089 power -4820.95451 4 -> 5.40172082E+14 Inexact Rounded -xrem089 remainder -4820.95451 3516234.99E+303303176 -> -4820.95451 -xsub089 subtract -4820.95451 3516234.99E+303303176 -> -3.51623499E+303303182 Inexact Rounded -xadd090 add 69355976.9 -9.57838562E+758804984 -> -9.57838562E+758804984 Inexact Rounded -xcom090 compare 69355976.9 -9.57838562E+758804984 -> 1 -xdiv090 divide 69355976.9 -9.57838562E+758804984 -> -7.24088376E-758804978 Inexact Rounded -xdvi090 divideint 69355976.9 -9.57838562E+758804984 -> -0 -xmul090 multiply 69355976.9 -9.57838562E+758804984 -> -6.64318292E+758804992 Inexact Rounded -xpow090 power 69355976.9 -10 -> 3.88294346E-79 Inexact Rounded -xrem090 remainder 69355976.9 -9.57838562E+758804984 -> 69355976.9 -xsub090 subtract 69355976.9 -9.57838562E+758804984 -> 9.57838562E+758804984 Inexact Rounded -xadd091 add -12672093.1 8569.78255E-382866025 -> -12672093.1 Inexact Rounded -xcom091 compare -12672093.1 8569.78255E-382866025 -> -1 -xdiv091 divide -12672093.1 8569.78255E-382866025 -> -1.47869482E+382866028 Inexact Rounded -xdvi091 divideint -12672093.1 8569.78255E-382866025 -> NaN Division_impossible -xmul091 multiply -12672093.1 8569.78255E-382866025 -> -1.08597082E-382866014 Inexact Rounded -xpow091 power -12672093.1 9 -> -8.42626658E+63 Inexact Rounded -xrem091 remainder -12672093.1 8569.78255E-382866025 -> NaN Division_impossible -xsub091 subtract -12672093.1 8569.78255E-382866025 -> -12672093.1 Inexact Rounded -xadd092 add -5910750.2 66150383E-662459241 -> -5910750.20 Inexact Rounded -xcom092 compare -5910750.2 66150383E-662459241 -> -1 -xdiv092 divide -5910750.2 66150383E-662459241 -> -8.93532272E+662459239 Inexact Rounded -xdvi092 divideint -5910750.2 66150383E-662459241 -> NaN Division_impossible -xmul092 multiply -5910750.2 66150383E-662459241 -> -3.90998390E-662459227 Inexact Rounded -xpow092 power -5910750.2 7 -> -2.52056696E+47 Inexact Rounded -xrem092 remainder -5910750.2 66150383E-662459241 -> NaN Division_impossible -xsub092 subtract -5910750.2 66150383E-662459241 -> -5910750.20 Inexact Rounded -xadd093 add -532577268.E-163806629 -240650398E-650110558 -> -5.32577268E-163806621 Inexact Rounded -xcom093 compare -532577268.E-163806629 -240650398E-650110558 -> -1 -xdiv093 divide -532577268.E-163806629 -240650398E-650110558 -> 2.21307454E+486303929 Inexact Rounded -xdvi093 divideint -532577268.E-163806629 -240650398E-650110558 -> NaN Division_impossible -xmul093 multiply -532577268.E-163806629 -240650398E-650110558 -> 1.28164932E-813917170 Inexact Rounded -xpow093 power -532577268.E-163806629 -2 -> 3.52561389E+327613240 Inexact Rounded -xrem093 remainder -532577268.E-163806629 -240650398E-650110558 -> NaN Division_impossible -xsub093 subtract -532577268.E-163806629 -240650398E-650110558 -> -5.32577268E-163806621 Inexact Rounded -xadd094 add -671.507198E-908587890 3057429.32E-555230623 -> 3.05742932E-555230617 Inexact Rounded -xcom094 compare -671.507198E-908587890 3057429.32E-555230623 -> -1 -xdiv094 divide -671.507198E-908587890 3057429.32E-555230623 -> -2.19631307E-353357271 Inexact Rounded -xdvi094 divideint -671.507198E-908587890 3057429.32E-555230623 -> -0 -xmul094 multiply -671.507198E-908587890 3057429.32E-555230623 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow094 power -671.507198E-908587890 3 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem094 remainder -671.507198E-908587890 3057429.32E-555230623 -> -6.71507198E-908587888 -xsub094 subtract -671.507198E-908587890 3057429.32E-555230623 -> -3.05742932E-555230617 Inexact Rounded -xadd095 add -294.994352E+346452027 -6061853.0 -> -2.94994352E+346452029 Inexact Rounded -xcom095 compare -294.994352E+346452027 -6061853.0 -> -1 -xdiv095 divide -294.994352E+346452027 -6061853.0 -> 4.86640557E+346452022 Inexact Rounded -xdvi095 divideint -294.994352E+346452027 -6061853.0 -> NaN Division_impossible -xmul095 multiply -294.994352E+346452027 -6061853.0 -> 1.78821240E+346452036 Inexact Rounded -xpow095 power -294.994352E+346452027 -6061853 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem095 remainder -294.994352E+346452027 -6061853.0 -> NaN Division_impossible -xsub095 subtract -294.994352E+346452027 -6061853.0 -> -2.94994352E+346452029 Inexact Rounded -xadd096 add 329579114 146780548. -> 476359662 -xcom096 compare 329579114 146780548. -> 1 -xdiv096 divide 329579114 146780548. -> 2.24538686 Inexact Rounded -xdvi096 divideint 329579114 146780548. -> 2 -xmul096 multiply 329579114 146780548. -> 4.83758030E+16 Inexact Rounded -xpow096 power 329579114 146780548 -> Infinity Overflow Inexact Rounded -xrem096 remainder 329579114 146780548. -> 36018018 -xsub096 subtract 329579114 146780548. -> 182798566 -xadd097 add -789904.686E-217225000 -1991.07181E-84080059 -> -1.99107181E-84080056 Inexact Rounded -xcom097 compare -789904.686E-217225000 -1991.07181E-84080059 -> 1 -xdiv097 divide -789904.686E-217225000 -1991.07181E-84080059 -> 3.96723354E-133144939 Inexact Rounded -xdvi097 divideint -789904.686E-217225000 -1991.07181E-84080059 -> 0 -xmul097 multiply -789904.686E-217225000 -1991.07181E-84080059 -> 1.57275695E-301305050 Inexact Rounded -xpow097 power -789904.686E-217225000 -2 -> 1.60269403E+434449988 Inexact Rounded -xrem097 remainder -789904.686E-217225000 -1991.07181E-84080059 -> -7.89904686E-217224995 -xsub097 subtract -789904.686E-217225000 -1991.07181E-84080059 -> 1.99107181E-84080056 Inexact Rounded -xadd098 add 59893.3544 -408595868 -> -408535975 Inexact Rounded -xcom098 compare 59893.3544 -408595868 -> 1 -xdiv098 divide 59893.3544 -408595868 -> -0.000146583358 Inexact Rounded -xdvi098 divideint 59893.3544 -408595868 -> -0 -xmul098 multiply 59893.3544 -408595868 -> -2.44721771E+13 Inexact Rounded -xpow098 power 59893.3544 -408595868 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem098 remainder 59893.3544 -408595868 -> 59893.3544 -xsub098 subtract 59893.3544 -408595868 -> 408655761 Inexact Rounded -xadd099 add 129.878613 -54652.7288E-963564940 -> 129.878613 Inexact Rounded -xcom099 compare 129.878613 -54652.7288E-963564940 -> 1 -xdiv099 divide 129.878613 -54652.7288E-963564940 -> -2.37643418E+963564937 Inexact Rounded -xdvi099 divideint 129.878613 -54652.7288E-963564940 -> NaN Division_impossible -xmul099 multiply 129.878613 -54652.7288E-963564940 -> -7.09822061E-963564934 Inexact Rounded -xpow099 power 129.878613 -5 -> 2.70590029E-11 Inexact Rounded -xrem099 remainder 129.878613 -54652.7288E-963564940 -> NaN Division_impossible -xsub099 subtract 129.878613 -54652.7288E-963564940 -> 129.878613 Inexact Rounded -xadd100 add 9866.99208 708756501. -> 708766368 Inexact Rounded -xcom100 compare 9866.99208 708756501. -> -1 -xdiv100 divide 9866.99208 708756501. -> 0.0000139215543 Inexact Rounded -xdvi100 divideint 9866.99208 708756501. -> 0 -xmul100 multiply 9866.99208 708756501. -> 6.99329478E+12 Inexact Rounded -xpow100 power 9866.99208 708756501 -> Infinity Overflow Inexact Rounded -xrem100 remainder 9866.99208 708756501. -> 9866.99208 -xsub100 subtract 9866.99208 708756501. -> -708746634 Inexact Rounded -xadd101 add -78810.6297 -399884.68 -> -478695.310 Inexact Rounded -xcom101 compare -78810.6297 -399884.68 -> 1 -xdiv101 divide -78810.6297 -399884.68 -> 0.197083393 Inexact Rounded -xdvi101 divideint -78810.6297 -399884.68 -> 0 -xmul101 multiply -78810.6297 -399884.68 -> 3.15151634E+10 Inexact Rounded -xpow101 power -78810.6297 -399885 -> -1.54252408E-1958071 Inexact Rounded -xrem101 remainder -78810.6297 -399884.68 -> -78810.6297 -xsub101 subtract -78810.6297 -399884.68 -> 321074.050 Inexact Rounded -xadd102 add 409189761 -771.471460 -> 409188990 Inexact Rounded -xcom102 compare 409189761 -771.471460 -> 1 -xdiv102 divide 409189761 -771.471460 -> -530401.683 Inexact Rounded -xdvi102 divideint 409189761 -771.471460 -> -530401 -xmul102 multiply 409189761 -771.471460 -> -3.15678222E+11 Inexact Rounded -xpow102 power 409189761 -771 -> 1.60698414E-6640 Inexact Rounded -xrem102 remainder 409189761 -771.471460 -> 527.144540 -xsub102 subtract 409189761 -771.471460 -> 409190532 Inexact Rounded -xadd103 add -1.68748838 460.46924 -> 458.781752 Inexact Rounded -xcom103 compare -1.68748838 460.46924 -> -1 -xdiv103 divide -1.68748838 460.46924 -> -0.00366471467 Inexact Rounded -xdvi103 divideint -1.68748838 460.46924 -> -0 -xmul103 multiply -1.68748838 460.46924 -> -777.036492 Inexact Rounded -xpow103 power -1.68748838 460 -> 3.39440648E+104 Inexact Rounded -xrem103 remainder -1.68748838 460.46924 -> -1.68748838 -xsub103 subtract -1.68748838 460.46924 -> -462.156728 Inexact Rounded -xadd104 add 553527296. -7924.40185 -> 553519372 Inexact Rounded -xcom104 compare 553527296. -7924.40185 -> 1 -xdiv104 divide 553527296. -7924.40185 -> -69850.9877 Inexact Rounded -xdvi104 divideint 553527296. -7924.40185 -> -69850 -xmul104 multiply 553527296. -7924.40185 -> -4.38637273E+12 Inexact Rounded -xpow104 power 553527296. -7924 -> 2.32397214E-69281 Inexact Rounded -xrem104 remainder 553527296. -7924.40185 -> 7826.77750 -xsub104 subtract 553527296. -7924.40185 -> 553535220 Inexact Rounded -xadd105 add -38.7465207 64936.2942 -> 64897.5477 Inexact Rounded -xcom105 compare -38.7465207 64936.2942 -> -1 -xdiv105 divide -38.7465207 64936.2942 -> -0.000596685123 Inexact Rounded -xdvi105 divideint -38.7465207 64936.2942 -> -0 -xmul105 multiply -38.7465207 64936.2942 -> -2516055.47 Inexact Rounded -xpow105 power -38.7465207 64936 -> 3.01500762E+103133 Inexact Rounded -xrem105 remainder -38.7465207 64936.2942 -> -38.7465207 -xsub105 subtract -38.7465207 64936.2942 -> -64975.0407 Inexact Rounded -xadd106 add -201075.248 845.663928 -> -200229.584 Inexact Rounded -xcom106 compare -201075.248 845.663928 -> -1 -xdiv106 divide -201075.248 845.663928 -> -237.772053 Inexact Rounded -xdvi106 divideint -201075.248 845.663928 -> -237 -xmul106 multiply -201075.248 845.663928 -> -170042084 Inexact Rounded -xpow106 power -201075.248 846 -> 4.37911767E+4486 Inexact Rounded -xrem106 remainder -201075.248 845.663928 -> -652.897064 -xsub106 subtract -201075.248 845.663928 -> -201920.912 Inexact Rounded -xadd107 add 91048.4559 75953609.3 -> 76044657.8 Inexact Rounded -xcom107 compare 91048.4559 75953609.3 -> -1 -xdiv107 divide 91048.4559 75953609.3 -> 0.00119873771 Inexact Rounded -xdvi107 divideint 91048.4559 75953609.3 -> 0 -xmul107 multiply 91048.4559 75953609.3 -> 6.91545885E+12 Inexact Rounded -xpow107 power 91048.4559 75953609 -> 6.94467746E+376674650 Inexact Rounded -xrem107 remainder 91048.4559 75953609.3 -> 91048.4559 -xsub107 subtract 91048.4559 75953609.3 -> -75862560.8 Inexact Rounded -xadd108 add 6898273.86E-252097460 15.3456196 -> 15.3456196 Inexact Rounded -xcom108 compare 6898273.86E-252097460 15.3456196 -> -1 -xdiv108 divide 6898273.86E-252097460 15.3456196 -> 4.49527229E-252097455 Inexact Rounded -xdvi108 divideint 6898273.86E-252097460 15.3456196 -> 0 -xmul108 multiply 6898273.86E-252097460 15.3456196 -> 1.05858287E-252097452 Inexact Rounded -xpow108 power 6898273.86E-252097460 15 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem108 remainder 6898273.86E-252097460 15.3456196 -> 6.89827386E-252097454 -xsub108 subtract 6898273.86E-252097460 15.3456196 -> -15.3456196 Inexact Rounded -xadd109 add 88.4370343 -980709105E-869899289 -> 88.4370343 Inexact Rounded -xcom109 compare 88.4370343 -980709105E-869899289 -> 1 -xdiv109 divide 88.4370343 -980709105E-869899289 -> -9.01766220E+869899281 Inexact Rounded -xdvi109 divideint 88.4370343 -980709105E-869899289 -> NaN Division_impossible -xmul109 multiply 88.4370343 -980709105E-869899289 -> -8.67310048E-869899279 Inexact Rounded -xpow109 power 88.4370343 -10 -> 3.41710479E-20 Inexact Rounded -xrem109 remainder 88.4370343 -980709105E-869899289 -> NaN Division_impossible -xsub109 subtract 88.4370343 -980709105E-869899289 -> 88.4370343 Inexact Rounded -xadd110 add -17643.39 2.0352568E+304871331 -> 2.03525680E+304871331 Inexact Rounded -xcom110 compare -17643.39 2.0352568E+304871331 -> -1 -xdiv110 divide -17643.39 2.0352568E+304871331 -> -8.66887658E-304871328 Inexact Rounded -xdvi110 divideint -17643.39 2.0352568E+304871331 -> -0 -xmul110 multiply -17643.39 2.0352568E+304871331 -> -3.59088295E+304871335 Inexact Rounded -xpow110 power -17643.39 2 -> 311289211 Inexact Rounded -xrem110 remainder -17643.39 2.0352568E+304871331 -> -17643.39 -xsub110 subtract -17643.39 2.0352568E+304871331 -> -2.03525680E+304871331 Inexact Rounded -xadd111 add 4589785.16 7459.04237 -> 4597244.20 Inexact Rounded -xcom111 compare 4589785.16 7459.04237 -> 1 -xdiv111 divide 4589785.16 7459.04237 -> 615.331692 Inexact Rounded -xdvi111 divideint 4589785.16 7459.04237 -> 615 -xmul111 multiply 4589785.16 7459.04237 -> 3.42354020E+10 Inexact Rounded -xpow111 power 4589785.16 7459 -> 2.03795258E+49690 Inexact Rounded -xrem111 remainder 4589785.16 7459.04237 -> 2474.10245 -xsub111 subtract 4589785.16 7459.04237 -> 4582326.12 Inexact Rounded -xadd112 add -51.1632090E-753968082 8.96207471E-585797887 -> 8.96207471E-585797887 Inexact Rounded -xcom112 compare -51.1632090E-753968082 8.96207471E-585797887 -> -1 -xdiv112 divide -51.1632090E-753968082 8.96207471E-585797887 -> -5.70885768E-168170195 Inexact Rounded -xdvi112 divideint -51.1632090E-753968082 8.96207471E-585797887 -> -0 -xmul112 multiply -51.1632090E-753968082 8.96207471E-585797887 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow112 power -51.1632090E-753968082 9 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem112 remainder -51.1632090E-753968082 8.96207471E-585797887 -> -5.11632090E-753968081 -xsub112 subtract -51.1632090E-753968082 8.96207471E-585797887 -> -8.96207471E-585797887 Inexact Rounded -xadd113 add 982.217817 7224909.4E-45243816 -> 982.217817 Inexact Rounded -xcom113 compare 982.217817 7224909.4E-45243816 -> 1 -xdiv113 divide 982.217817 7224909.4E-45243816 -> 1.35948807E+45243812 Inexact Rounded -xdvi113 divideint 982.217817 7224909.4E-45243816 -> NaN Division_impossible -xmul113 multiply 982.217817 7224909.4E-45243816 -> 7.09643474E-45243807 Inexact Rounded -xpow113 power 982.217817 7 -> 8.81971709E+20 Inexact Rounded -xrem113 remainder 982.217817 7224909.4E-45243816 -> NaN Division_impossible -xsub113 subtract 982.217817 7224909.4E-45243816 -> 982.217817 Inexact Rounded -xadd114 add 503712056. -57490703.5E+924890183 -> -5.74907035E+924890190 Inexact Rounded -xcom114 compare 503712056. -57490703.5E+924890183 -> 1 -xdiv114 divide 503712056. -57490703.5E+924890183 -> -8.76162623E-924890183 Inexact Rounded -xdvi114 divideint 503712056. -57490703.5E+924890183 -> -0 -xmul114 multiply 503712056. -57490703.5E+924890183 -> -2.89587605E+924890199 Inexact Rounded -xpow114 power 503712056. -6 -> 6.12217764E-53 Inexact Rounded -xrem114 remainder 503712056. -57490703.5E+924890183 -> 503712056 -xsub114 subtract 503712056. -57490703.5E+924890183 -> 5.74907035E+924890190 Inexact Rounded -xadd115 add 883.849223 249259171 -> 249260055 Inexact Rounded -xcom115 compare 883.849223 249259171 -> -1 -xdiv115 divide 883.849223 249259171 -> 0.00000354590453 Inexact Rounded -xdvi115 divideint 883.849223 249259171 -> 0 -xmul115 multiply 883.849223 249259171 -> 2.20307525E+11 Inexact Rounded -xpow115 power 883.849223 249259171 -> 5.15642844E+734411783 Inexact Rounded -xrem115 remainder 883.849223 249259171 -> 883.849223 -xsub115 subtract 883.849223 249259171 -> -249258287 Inexact Rounded -xadd116 add 245.092853E+872642874 828195.152E+419771532 -> 2.45092853E+872642876 Inexact Rounded -xcom116 compare 245.092853E+872642874 828195.152E+419771532 -> 1 -xdiv116 divide 245.092853E+872642874 828195.152E+419771532 -> 2.95936112E+452871338 Inexact Rounded -xdvi116 divideint 245.092853E+872642874 828195.152E+419771532 -> NaN Division_impossible -xmul116 multiply 245.092853E+872642874 828195.152E+419771532 -> Infinity Inexact Overflow Rounded -xpow116 power 245.092853E+872642874 8 -> Infinity Overflow Inexact Rounded -xrem116 remainder 245.092853E+872642874 828195.152E+419771532 -> NaN Division_impossible -xsub116 subtract 245.092853E+872642874 828195.152E+419771532 -> 2.45092853E+872642876 Inexact Rounded -xadd117 add -83658638.6E+728551928 2952478.42 -> -8.36586386E+728551935 Inexact Rounded -xcom117 compare -83658638.6E+728551928 2952478.42 -> -1 -xdiv117 divide -83658638.6E+728551928 2952478.42 -> -2.83350551E+728551929 Inexact Rounded -xdvi117 divideint -83658638.6E+728551928 2952478.42 -> NaN Division_impossible -xmul117 multiply -83658638.6E+728551928 2952478.42 -> -2.47000325E+728551942 Inexact Rounded -xpow117 power -83658638.6E+728551928 2952478 -> Infinity Overflow Inexact Rounded -xrem117 remainder -83658638.6E+728551928 2952478.42 -> NaN Division_impossible -xsub117 subtract -83658638.6E+728551928 2952478.42 -> -8.36586386E+728551935 Inexact Rounded -xadd118 add -6291780.97 269967.394E-22000817 -> -6291780.97 Inexact Rounded -xcom118 compare -6291780.97 269967.394E-22000817 -> -1 -xdiv118 divide -6291780.97 269967.394E-22000817 -> -2.33057069E+22000818 Inexact Rounded -xdvi118 divideint -6291780.97 269967.394E-22000817 -> NaN Division_impossible -xmul118 multiply -6291780.97 269967.394E-22000817 -> -1.69857571E-22000805 Inexact Rounded -xpow118 power -6291780.97 3 -> -2.49069636E+20 Inexact Rounded -xrem118 remainder -6291780.97 269967.394E-22000817 -> NaN Division_impossible -xsub118 subtract -6291780.97 269967.394E-22000817 -> -6291780.97 Inexact Rounded -xadd119 add 978571348.E+222382547 6006.19370 -> 9.78571348E+222382555 Inexact Rounded -xcom119 compare 978571348.E+222382547 6006.19370 -> 1 -xdiv119 divide 978571348.E+222382547 6006.19370 -> 1.62927038E+222382552 Inexact Rounded -xdvi119 divideint 978571348.E+222382547 6006.19370 -> NaN Division_impossible -xmul119 multiply 978571348.E+222382547 6006.19370 -> 5.87748907E+222382559 Inexact Rounded -xpow119 power 978571348.E+222382547 6006 -> Infinity Overflow Inexact Rounded -xrem119 remainder 978571348.E+222382547 6006.19370 -> NaN Division_impossible -xsub119 subtract 978571348.E+222382547 6006.19370 -> 9.78571348E+222382555 Inexact Rounded -xadd120 add 14239029. -36527.2221 -> 14202501.8 Inexact Rounded -xcom120 compare 14239029. -36527.2221 -> 1 -xdiv120 divide 14239029. -36527.2221 -> -389.819652 Inexact Rounded -xdvi120 divideint 14239029. -36527.2221 -> -389 -xmul120 multiply 14239029. -36527.2221 -> -5.20112175E+11 Inexact Rounded -xpow120 power 14239029. -36527 -> 6.64292731E-261296 Inexact Rounded -xrem120 remainder 14239029. -36527.2221 -> 29939.6031 -xsub120 subtract 14239029. -36527.2221 -> 14275556.2 Inexact Rounded -xadd121 add 72333.2654E-544425548 -690.664836E+662155120 -> -6.90664836E+662155122 Inexact Rounded -xcom121 compare 72333.2654E-544425548 -690.664836E+662155120 -> 1 -xdiv121 divide 72333.2654E-544425548 -690.664836E+662155120 -> -0E-1000000007 Inexact Rounded Underflow Subnormal Clamped -xdvi121 divideint 72333.2654E-544425548 -690.664836E+662155120 -> -0 -xmul121 multiply 72333.2654E-544425548 -690.664836E+662155120 -> -4.99580429E+117729579 Inexact Rounded -xpow121 power 72333.2654E-544425548 -7 -> Infinity Overflow Inexact Rounded -xrem121 remainder 72333.2654E-544425548 -690.664836E+662155120 -> 7.23332654E-544425544 -xsub121 subtract 72333.2654E-544425548 -690.664836E+662155120 -> 6.90664836E+662155122 Inexact Rounded -xadd122 add -37721.1567E-115787341 -828949864E-76251747 -> -8.28949864E-76251739 Inexact Rounded -xcom122 compare -37721.1567E-115787341 -828949864E-76251747 -> 1 -xdiv122 divide -37721.1567E-115787341 -828949864E-76251747 -> 4.55047505E-39535599 Inexact Rounded -xdvi122 divideint -37721.1567E-115787341 -828949864E-76251747 -> 0 -xmul122 multiply -37721.1567E-115787341 -828949864E-76251747 -> 3.12689477E-192039075 Inexact Rounded -xpow122 power -37721.1567E-115787341 -8 -> 2.43960765E+926298691 Inexact Rounded -xrem122 remainder -37721.1567E-115787341 -828949864E-76251747 -> -3.77211567E-115787337 -xsub122 subtract -37721.1567E-115787341 -828949864E-76251747 -> 8.28949864E-76251739 Inexact Rounded -xadd123 add -2078852.83E-647080089 -119779858.E+734665461 -> -1.19779858E+734665469 Inexact Rounded -xcom123 compare -2078852.83E-647080089 -119779858.E+734665461 -> 1 -xdiv123 divide -2078852.83E-647080089 -119779858.E+734665461 -> 0E-1000000007 Inexact Rounded Underflow Subnormal Clamped -xdvi123 divideint -2078852.83E-647080089 -119779858.E+734665461 -> 0 -xmul123 multiply -2078852.83E-647080089 -119779858.E+734665461 -> 2.49004697E+87585386 Inexact Rounded -xpow123 power -2078852.83E-647080089 -1 -> -4.81034533E+647080082 Inexact Rounded -xrem123 remainder -2078852.83E-647080089 -119779858.E+734665461 -> -2.07885283E-647080083 -xsub123 subtract -2078852.83E-647080089 -119779858.E+734665461 -> 1.19779858E+734665469 Inexact Rounded -xadd124 add -79145.3625 -7718.57307 -> -86863.9356 Inexact Rounded -xcom124 compare -79145.3625 -7718.57307 -> -1 -xdiv124 divide -79145.3625 -7718.57307 -> 10.2538852 Inexact Rounded -xdvi124 divideint -79145.3625 -7718.57307 -> 10 -xmul124 multiply -79145.3625 -7718.57307 -> 610889264 Inexact Rounded -xpow124 power -79145.3625 -7719 -> -1.13181941E-37811 Inexact Rounded -xrem124 remainder -79145.3625 -7718.57307 -> -1959.63180 -xsub124 subtract -79145.3625 -7718.57307 -> -71426.7894 Inexact Rounded -xadd125 add 2103890.49E+959247237 20024.3017 -> 2.10389049E+959247243 Inexact Rounded -xcom125 compare 2103890.49E+959247237 20024.3017 -> 1 -xdiv125 divide 2103890.49E+959247237 20024.3017 -> 1.05066859E+959247239 Inexact Rounded -xdvi125 divideint 2103890.49E+959247237 20024.3017 -> NaN Division_impossible -xmul125 multiply 2103890.49E+959247237 20024.3017 -> 4.21289379E+959247247 Inexact Rounded -xpow125 power 2103890.49E+959247237 20024 -> Infinity Overflow Inexact Rounded -xrem125 remainder 2103890.49E+959247237 20024.3017 -> NaN Division_impossible -xsub125 subtract 2103890.49E+959247237 20024.3017 -> 2.10389049E+959247243 Inexact Rounded -xadd126 add 911249557 79810804.9 -> 991060362 Inexact Rounded -xcom126 compare 911249557 79810804.9 -> 1 -xdiv126 divide 911249557 79810804.9 -> 11.4176214 Inexact Rounded -xdvi126 divideint 911249557 79810804.9 -> 11 -xmul126 multiply 911249557 79810804.9 -> 7.27275606E+16 Inexact Rounded -xpow126 power 911249557 79810805 -> 6.77595741E+715075867 Inexact Rounded -xrem126 remainder 911249557 79810804.9 -> 33330703.1 -xsub126 subtract 911249557 79810804.9 -> 831438752 Inexact Rounded -xadd127 add 341134.994 3.37486292 -> 341138.369 Inexact Rounded -xcom127 compare 341134.994 3.37486292 -> 1 -xdiv127 divide 341134.994 3.37486292 -> 101081.141 Inexact Rounded -xdvi127 divideint 341134.994 3.37486292 -> 101081 -xmul127 multiply 341134.994 3.37486292 -> 1151283.84 Inexact Rounded -xpow127 power 341134.994 3 -> 3.96989314E+16 Inexact Rounded -xrem127 remainder 341134.994 3.37486292 -> 0.47518348 -xsub127 subtract 341134.994 3.37486292 -> 341131.619 Inexact Rounded -xadd128 add 244.23634 512706190E-341459836 -> 244.236340 Inexact Rounded -xcom128 compare 244.23634 512706190E-341459836 -> 1 -xdiv128 divide 244.23634 512706190E-341459836 -> 4.76367059E+341459829 Inexact Rounded -xdvi128 divideint 244.23634 512706190E-341459836 -> NaN Division_impossible -xmul128 multiply 244.23634 512706190E-341459836 -> 1.25221483E-341459825 Inexact Rounded -xpow128 power 244.23634 5 -> 8.69063312E+11 Inexact Rounded -xrem128 remainder 244.23634 512706190E-341459836 -> NaN Division_impossible -xsub128 subtract 244.23634 512706190E-341459836 -> 244.236340 Inexact Rounded -xadd129 add -9.22783849E+171585954 -99.0946800 -> -9.22783849E+171585954 Inexact Rounded -xcom129 compare -9.22783849E+171585954 -99.0946800 -> -1 -xdiv129 divide -9.22783849E+171585954 -99.0946800 -> 9.31214318E+171585952 Inexact Rounded -xdvi129 divideint -9.22783849E+171585954 -99.0946800 -> NaN Division_impossible -xmul129 multiply -9.22783849E+171585954 -99.0946800 -> 9.14429702E+171585956 Inexact Rounded -xpow129 power -9.22783849E+171585954 -99 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem129 remainder -9.22783849E+171585954 -99.0946800 -> NaN Division_impossible -xsub129 subtract -9.22783849E+171585954 -99.0946800 -> -9.22783849E+171585954 Inexact Rounded -xadd130 add 699631.893 -226.423958 -> 699405.469 Inexact Rounded -xcom130 compare 699631.893 -226.423958 -> 1 -xdiv130 divide 699631.893 -226.423958 -> -3089.91990 Inexact Rounded -xdvi130 divideint 699631.893 -226.423958 -> -3089 -xmul130 multiply 699631.893 -226.423958 -> -158413422 Inexact Rounded -xpow130 power 699631.893 -226 -> 1.14675511E-1321 Inexact Rounded -xrem130 remainder 699631.893 -226.423958 -> 208.286738 -xsub130 subtract 699631.893 -226.423958 -> 699858.317 Inexact Rounded -xadd131 add -249350139.E-571793673 775732428. -> 775732428 Inexact Rounded -xcom131 compare -249350139.E-571793673 775732428. -> -1 -xdiv131 divide -249350139.E-571793673 775732428. -> -3.21438334E-571793674 Inexact Rounded -xdvi131 divideint -249350139.E-571793673 775732428. -> -0 -xmul131 multiply -249350139.E-571793673 775732428. -> -1.93428989E-571793656 Inexact Rounded -xpow131 power -249350139.E-571793673 775732428 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem131 remainder -249350139.E-571793673 775732428. -> -2.49350139E-571793665 -xsub131 subtract -249350139.E-571793673 775732428. -> -775732428 Inexact Rounded -xadd132 add 5.11629020 -480.53194 -> -475.415650 Inexact Rounded -xcom132 compare 5.11629020 -480.53194 -> 1 -xdiv132 divide 5.11629020 -480.53194 -> -0.0106471387 Inexact Rounded -xdvi132 divideint 5.11629020 -480.53194 -> -0 -xmul132 multiply 5.11629020 -480.53194 -> -2458.54086 Inexact Rounded -xpow132 power 5.11629020 -481 -> 9.83021951E-342 Inexact Rounded -xrem132 remainder 5.11629020 -480.53194 -> 5.11629020 -xsub132 subtract 5.11629020 -480.53194 -> 485.648230 Inexact Rounded -xadd133 add -8.23352673E-446723147 -530710.866 -> -530710.866 Inexact Rounded -xcom133 compare -8.23352673E-446723147 -530710.866 -> 1 -xdiv133 divide -8.23352673E-446723147 -530710.866 -> 1.55141476E-446723152 Inexact Rounded -xdvi133 divideint -8.23352673E-446723147 -530710.866 -> 0 -xmul133 multiply -8.23352673E-446723147 -530710.866 -> 4.36962210E-446723141 Inexact Rounded -xpow133 power -8.23352673E-446723147 -530711 -> -Infinity Overflow Inexact Rounded -xrem133 remainder -8.23352673E-446723147 -530710.866 -> -8.23352673E-446723147 -xsub133 subtract -8.23352673E-446723147 -530710.866 -> 530710.866 Inexact Rounded -xadd134 add 7.0598608 -95908.35 -> -95901.2901 Inexact Rounded -xcom134 compare 7.0598608 -95908.35 -> 1 -xdiv134 divide 7.0598608 -95908.35 -> -0.0000736104917 Inexact Rounded -xdvi134 divideint 7.0598608 -95908.35 -> -0 -xmul134 multiply 7.0598608 -95908.35 -> -677099.601 Inexact Rounded -xpow134 power 7.0598608 -95908 -> 4.57073877E-81407 Inexact Rounded -xrem134 remainder 7.0598608 -95908.35 -> 7.0598608 -xsub134 subtract 7.0598608 -95908.35 -> 95915.4099 Inexact Rounded -xadd135 add -7.91189845E+207202706 1532.71847E+509944335 -> 1.53271847E+509944338 Inexact Rounded -xcom135 compare -7.91189845E+207202706 1532.71847E+509944335 -> -1 -xdiv135 divide -7.91189845E+207202706 1532.71847E+509944335 -> -5.16200372E-302741632 Inexact Rounded -xdvi135 divideint -7.91189845E+207202706 1532.71847E+509944335 -> -0 -xmul135 multiply -7.91189845E+207202706 1532.71847E+509944335 -> -1.21267129E+717147045 Inexact Rounded -xpow135 power -7.91189845E+207202706 2 -> 6.25981371E+414405413 Inexact Rounded -xrem135 remainder -7.91189845E+207202706 1532.71847E+509944335 -> -7.91189845E+207202706 -xsub135 subtract -7.91189845E+207202706 1532.71847E+509944335 -> -1.53271847E+509944338 Inexact Rounded -xadd136 add 208839370.E-215147432 -75.9420559 -> -75.9420559 Inexact Rounded -xcom136 compare 208839370.E-215147432 -75.9420559 -> 1 -xdiv136 divide 208839370.E-215147432 -75.9420559 -> -2.74998310E-215147426 Inexact Rounded -xdvi136 divideint 208839370.E-215147432 -75.9420559 -> -0 -xmul136 multiply 208839370.E-215147432 -75.9420559 -> -1.58596911E-215147422 Inexact Rounded -xpow136 power 208839370.E-215147432 -76 -> Infinity Overflow Inexact Rounded -xrem136 remainder 208839370.E-215147432 -75.9420559 -> 2.08839370E-215147424 -xsub136 subtract 208839370.E-215147432 -75.9420559 -> 75.9420559 Inexact Rounded -xadd137 add 427.754244E-353328369 4705.0796 -> 4705.07960 Inexact Rounded -xcom137 compare 427.754244E-353328369 4705.0796 -> -1 -xdiv137 divide 427.754244E-353328369 4705.0796 -> 9.09132853E-353328371 Inexact Rounded -xdvi137 divideint 427.754244E-353328369 4705.0796 -> 0 -xmul137 multiply 427.754244E-353328369 4705.0796 -> 2.01261777E-353328363 Inexact Rounded -xpow137 power 427.754244E-353328369 4705 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem137 remainder 427.754244E-353328369 4705.0796 -> 4.27754244E-353328367 -xsub137 subtract 427.754244E-353328369 4705.0796 -> -4705.07960 Inexact Rounded -xadd138 add 44911.089 -95.1733605E-313081848 -> 44911.0890 Inexact Rounded -xcom138 compare 44911.089 -95.1733605E-313081848 -> 1 -xdiv138 divide 44911.089 -95.1733605E-313081848 -> -4.71887183E+313081850 Inexact Rounded -xdvi138 divideint 44911.089 -95.1733605E-313081848 -> NaN Division_impossible -xmul138 multiply 44911.089 -95.1733605E-313081848 -> -4.27433926E-313081842 Inexact Rounded -xpow138 power 44911.089 -10 -> 2.99546425E-47 Inexact Rounded -xrem138 remainder 44911.089 -95.1733605E-313081848 -> NaN Division_impossible -xsub138 subtract 44911.089 -95.1733605E-313081848 -> 44911.0890 Inexact Rounded -xadd139 add 452371821. -4109709.19 -> 448262112 Inexact Rounded -xcom139 compare 452371821. -4109709.19 -> 1 -xdiv139 divide 452371821. -4109709.19 -> -110.073925 Inexact Rounded -xdvi139 divideint 452371821. -4109709.19 -> -110 -xmul139 multiply 452371821. -4109709.19 -> -1.85911663E+15 Inexact Rounded -xpow139 power 452371821. -4109709 -> 1.15528807E-35571568 Inexact Rounded -xrem139 remainder 452371821. -4109709.19 -> 303810.10 -xsub139 subtract 452371821. -4109709.19 -> 456481530 Inexact Rounded -xadd140 add 94007.4392 -9467725.5E+681898234 -> -9.46772550E+681898240 Inexact Rounded -xcom140 compare 94007.4392 -9467725.5E+681898234 -> 1 -xdiv140 divide 94007.4392 -9467725.5E+681898234 -> -9.92925272E-681898237 Inexact Rounded -xdvi140 divideint 94007.4392 -9467725.5E+681898234 -> -0 -xmul140 multiply 94007.4392 -9467725.5E+681898234 -> -8.90036629E+681898245 Inexact Rounded -xpow140 power 94007.4392 -9 -> 1.74397397E-45 Inexact Rounded -xrem140 remainder 94007.4392 -9467725.5E+681898234 -> 94007.4392 -xsub140 subtract 94007.4392 -9467725.5E+681898234 -> 9.46772550E+681898240 Inexact Rounded -xadd141 add 99147554.0E-751410586 38313.6423 -> 38313.6423 Inexact Rounded -xcom141 compare 99147554.0E-751410586 38313.6423 -> -1 -xdiv141 divide 99147554.0E-751410586 38313.6423 -> 2.58778722E-751410583 Inexact Rounded -xdvi141 divideint 99147554.0E-751410586 38313.6423 -> 0 -xmul141 multiply 99147554.0E-751410586 38313.6423 -> 3.79870392E-751410574 Inexact Rounded -xpow141 power 99147554.0E-751410586 38314 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem141 remainder 99147554.0E-751410586 38313.6423 -> 9.91475540E-751410579 -xsub141 subtract 99147554.0E-751410586 38313.6423 -> -38313.6423 Inexact Rounded -xadd142 add -7919.30254 -669.607854 -> -8588.91039 Inexact Rounded -xcom142 compare -7919.30254 -669.607854 -> -1 -xdiv142 divide -7919.30254 -669.607854 -> 11.8267767 Inexact Rounded -xdvi142 divideint -7919.30254 -669.607854 -> 11 -xmul142 multiply -7919.30254 -669.607854 -> 5302827.18 Inexact Rounded -xpow142 power -7919.30254 -670 -> 7.58147724E-2613 Inexact Rounded -xrem142 remainder -7919.30254 -669.607854 -> -553.616146 -xsub142 subtract -7919.30254 -669.607854 -> -7249.69469 Inexact Rounded -xadd143 add 461.58280E+136110821 710666052.E-383754231 -> 4.61582800E+136110823 Inexact Rounded -xcom143 compare 461.58280E+136110821 710666052.E-383754231 -> 1 -xdiv143 divide 461.58280E+136110821 710666052.E-383754231 -> 6.49507316E+519865045 Inexact Rounded -xdvi143 divideint 461.58280E+136110821 710666052.E-383754231 -> NaN Division_impossible -xmul143 multiply 461.58280E+136110821 710666052.E-383754231 -> 3.28031226E-247643399 Inexact Rounded -xpow143 power 461.58280E+136110821 7 -> 4.46423781E+952775765 Inexact Rounded -xrem143 remainder 461.58280E+136110821 710666052.E-383754231 -> NaN Division_impossible -xsub143 subtract 461.58280E+136110821 710666052.E-383754231 -> 4.61582800E+136110823 Inexact Rounded -xadd144 add 3455755.47E-112465506 771.674306 -> 771.674306 Inexact Rounded -xcom144 compare 3455755.47E-112465506 771.674306 -> -1 -xdiv144 divide 3455755.47E-112465506 771.674306 -> 4.47825649E-112465503 Inexact Rounded -xdvi144 divideint 3455755.47E-112465506 771.674306 -> 0 -xmul144 multiply 3455755.47E-112465506 771.674306 -> 2.66671770E-112465497 Inexact Rounded -xpow144 power 3455755.47E-112465506 772 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem144 remainder 3455755.47E-112465506 771.674306 -> 3.45575547E-112465500 -xsub144 subtract 3455755.47E-112465506 771.674306 -> -771.674306 Inexact Rounded -xadd145 add -477067757.E-961684940 7.70122608E-741072245 -> 7.70122608E-741072245 Inexact Rounded -xcom145 compare -477067757.E-961684940 7.70122608E-741072245 -> -1 -xdiv145 divide -477067757.E-961684940 7.70122608E-741072245 -> -6.19469877E-220612688 Inexact Rounded -xdvi145 divideint -477067757.E-961684940 7.70122608E-741072245 -> -0 -xmul145 multiply -477067757.E-961684940 7.70122608E-741072245 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow145 power -477067757.E-961684940 8 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem145 remainder -477067757.E-961684940 7.70122608E-741072245 -> -4.77067757E-961684932 -xsub145 subtract -477067757.E-961684940 7.70122608E-741072245 -> -7.70122608E-741072245 Inexact Rounded -xadd146 add 76482.352 8237806.8 -> 8314289.15 Inexact Rounded -xcom146 compare 76482.352 8237806.8 -> -1 -xdiv146 divide 76482.352 8237806.8 -> 0.00928430999 Inexact Rounded -xdvi146 divideint 76482.352 8237806.8 -> 0 -xmul146 multiply 76482.352 8237806.8 -> 6.30046839E+11 Inexact Rounded -xpow146 power 76482.352 8237807 -> 8.44216559E+40229834 Inexact Rounded -xrem146 remainder 76482.352 8237806.8 -> 76482.352 -xsub146 subtract 76482.352 8237806.8 -> -8161324.45 Inexact Rounded -xadd147 add 1.21505164E-565556504 9.26146573 -> 9.26146573 Inexact Rounded -xcom147 compare 1.21505164E-565556504 9.26146573 -> -1 -xdiv147 divide 1.21505164E-565556504 9.26146573 -> 1.31194314E-565556505 Inexact Rounded -xdvi147 divideint 1.21505164E-565556504 9.26146573 -> 0 -xmul147 multiply 1.21505164E-565556504 9.26146573 -> 1.12531591E-565556503 Inexact Rounded -xpow147 power 1.21505164E-565556504 9 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem147 remainder 1.21505164E-565556504 9.26146573 -> 1.21505164E-565556504 -xsub147 subtract 1.21505164E-565556504 9.26146573 -> -9.26146573 Inexact Rounded -xadd148 add -8303060.25E-169894883 901561.985 -> 901561.985 Inexact Rounded -xcom148 compare -8303060.25E-169894883 901561.985 -> -1 -xdiv148 divide -8303060.25E-169894883 901561.985 -> -9.20963881E-169894883 Inexact Rounded -xdvi148 divideint -8303060.25E-169894883 901561.985 -> -0 -xmul148 multiply -8303060.25E-169894883 901561.985 -> -7.48572348E-169894871 Inexact Rounded -xpow148 power -8303060.25E-169894883 901562 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem148 remainder -8303060.25E-169894883 901561.985 -> -8.30306025E-169894877 -xsub148 subtract -8303060.25E-169894883 901561.985 -> -901561.985 Inexact Rounded -xadd149 add -592464.92 71445510.7 -> 70853045.8 Inexact Rounded -xcom149 compare -592464.92 71445510.7 -> -1 -xdiv149 divide -592464.92 71445510.7 -> -0.00829254231 Inexact Rounded -xdvi149 divideint -592464.92 71445510.7 -> -0 -xmul149 multiply -592464.92 71445510.7 -> -4.23289588E+13 Inexact Rounded -xpow149 power -592464.92 71445511 -> -1.58269108E+412430832 Inexact Rounded -xrem149 remainder -592464.92 71445510.7 -> -592464.92 -xsub149 subtract -592464.92 71445510.7 -> -72037975.6 Inexact Rounded -xadd150 add -73774.4165 -39.8243027 -> -73814.2408 Inexact Rounded -xcom150 compare -73774.4165 -39.8243027 -> -1 -xdiv150 divide -73774.4165 -39.8243027 -> 1852.49738 Inexact Rounded -xdvi150 divideint -73774.4165 -39.8243027 -> 1852 -xmul150 multiply -73774.4165 -39.8243027 -> 2938014.69 Inexact Rounded -xpow150 power -73774.4165 -40 -> 1.92206765E-195 Inexact Rounded -xrem150 remainder -73774.4165 -39.8243027 -> -19.8078996 -xsub150 subtract -73774.4165 -39.8243027 -> -73734.5922 Inexact Rounded -xadd151 add -524724715. -55763.7937 -> -524780479 Inexact Rounded -xcom151 compare -524724715. -55763.7937 -> -1 -xdiv151 divide -524724715. -55763.7937 -> 9409.77434 Inexact Rounded -xdvi151 divideint -524724715. -55763.7937 -> 9409 -xmul151 multiply -524724715. -55763.7937 -> 2.92606408E+13 Inexact Rounded -xpow151 power -524724715. -55764 -> 5.47898351E-486259 Inexact Rounded -xrem151 remainder -524724715. -55763.7937 -> -43180.0767 -xsub151 subtract -524724715. -55763.7937 -> -524668951 Inexact Rounded -xadd152 add 7.53800427 784873768E-9981146 -> 7.53800427 Inexact Rounded -xcom152 compare 7.53800427 784873768E-9981146 -> 1 -xdiv152 divide 7.53800427 784873768E-9981146 -> 9.60409760E+9981137 Inexact Rounded -xdvi152 divideint 7.53800427 784873768E-9981146 -> NaN Division_impossible -xmul152 multiply 7.53800427 784873768E-9981146 -> 5.91638181E-9981137 Inexact Rounded -xpow152 power 7.53800427 8 -> 10424399.2 Inexact Rounded -xrem152 remainder 7.53800427 784873768E-9981146 -> NaN Division_impossible -xsub152 subtract 7.53800427 784873768E-9981146 -> 7.53800427 Inexact Rounded -xadd153 add 37.6027452 7.22454233 -> 44.8272875 Inexact Rounded -xcom153 compare 37.6027452 7.22454233 -> 1 -xdiv153 divide 37.6027452 7.22454233 -> 5.20486191 Inexact Rounded -xdvi153 divideint 37.6027452 7.22454233 -> 5 -xmul153 multiply 37.6027452 7.22454233 -> 271.662624 Inexact Rounded -xpow153 power 37.6027452 7 -> 1.06300881E+11 Inexact Rounded -xrem153 remainder 37.6027452 7.22454233 -> 1.48003355 -xsub153 subtract 37.6027452 7.22454233 -> 30.3782029 Inexact Rounded -xadd154 add 2447660.39 -36981.4253 -> 2410678.96 Inexact Rounded -xcom154 compare 2447660.39 -36981.4253 -> 1 -xdiv154 divide 2447660.39 -36981.4253 -> -66.1862102 Inexact Rounded -xdvi154 divideint 2447660.39 -36981.4253 -> -66 -xmul154 multiply 2447660.39 -36981.4253 -> -9.05179699E+10 Inexact Rounded -xpow154 power 2447660.39 -36981 -> 3.92066064E-236263 Inexact Rounded -xrem154 remainder 2447660.39 -36981.4253 -> 6886.3202 -xsub154 subtract 2447660.39 -36981.4253 -> 2484641.82 Inexact Rounded -xadd155 add 2160.36419 1418.33574E+656265382 -> 1.41833574E+656265385 Inexact Rounded -xcom155 compare 2160.36419 1418.33574E+656265382 -> -1 -xdiv155 divide 2160.36419 1418.33574E+656265382 -> 1.52316841E-656265382 Inexact Rounded -xdvi155 divideint 2160.36419 1418.33574E+656265382 -> 0 -xmul155 multiply 2160.36419 1418.33574E+656265382 -> 3.06412174E+656265388 Inexact Rounded -xpow155 power 2160.36419 1 -> 2160.36419 -xrem155 remainder 2160.36419 1418.33574E+656265382 -> 2160.36419 -xsub155 subtract 2160.36419 1418.33574E+656265382 -> -1.41833574E+656265385 Inexact Rounded -xadd156 add 8926.44939 54.9430027 -> 8981.39239 Inexact Rounded -xcom156 compare 8926.44939 54.9430027 -> 1 -xdiv156 divide 8926.44939 54.9430027 -> 162.467447 Inexact Rounded -xdvi156 divideint 8926.44939 54.9430027 -> 162 -xmul156 multiply 8926.44939 54.9430027 -> 490445.933 Inexact Rounded -xpow156 power 8926.44939 55 -> 1.93789877E+217 Inexact Rounded -xrem156 remainder 8926.44939 54.9430027 -> 25.6829526 -xsub156 subtract 8926.44939 54.9430027 -> 8871.50639 Inexact Rounded -xadd157 add 861588029 -41657398E+77955925 -> -4.16573980E+77955932 Inexact Rounded -xcom157 compare 861588029 -41657398E+77955925 -> 1 -xdiv157 divide 861588029 -41657398E+77955925 -> -2.06827135E-77955924 Inexact Rounded -xdvi157 divideint 861588029 -41657398E+77955925 -> -0 -xmul157 multiply 861588029 -41657398E+77955925 -> -3.58915154E+77955941 Inexact Rounded -xpow157 power 861588029 -4 -> 1.81468553E-36 Inexact Rounded -xrem157 remainder 861588029 -41657398E+77955925 -> 861588029 -xsub157 subtract 861588029 -41657398E+77955925 -> 4.16573980E+77955932 Inexact Rounded -xadd158 add -34.5253062 52.6722019 -> 18.1468957 -xcom158 compare -34.5253062 52.6722019 -> -1 -xdiv158 divide -34.5253062 52.6722019 -> -0.655474899 Inexact Rounded -xdvi158 divideint -34.5253062 52.6722019 -> -0 -xmul158 multiply -34.5253062 52.6722019 -> -1818.52390 Inexact Rounded -xpow158 power -34.5253062 53 -> -3.32115821E+81 Inexact Rounded -xrem158 remainder -34.5253062 52.6722019 -> -34.5253062 -xsub158 subtract -34.5253062 52.6722019 -> -87.1975081 -xadd159 add -18861647. 99794586.7 -> 80932939.7 -xcom159 compare -18861647. 99794586.7 -> -1 -xdiv159 divide -18861647. 99794586.7 -> -0.189004711 Inexact Rounded -xdvi159 divideint -18861647. 99794586.7 -> -0 -xmul159 multiply -18861647. 99794586.7 -> -1.88229027E+15 Inexact Rounded -xpow159 power -18861647. 99794587 -> -4.28957459E+726063462 Inexact Rounded -xrem159 remainder -18861647. 99794586.7 -> -18861647.0 -xsub159 subtract -18861647. 99794586.7 -> -118656234 Inexact Rounded -xadd160 add 322192.407 461.67044 -> 322654.077 Inexact Rounded -xcom160 compare 322192.407 461.67044 -> 1 -xdiv160 divide 322192.407 461.67044 -> 697.883986 Inexact Rounded -xdvi160 divideint 322192.407 461.67044 -> 697 -xmul160 multiply 322192.407 461.67044 -> 148746710 Inexact Rounded -xpow160 power 322192.407 462 -> 5.61395873E+2544 Inexact Rounded -xrem160 remainder 322192.407 461.67044 -> 408.11032 -xsub160 subtract 322192.407 461.67044 -> 321730.737 Inexact Rounded -xadd161 add -896298518E+61412314 78873.8049 -> -8.96298518E+61412322 Inexact Rounded -xcom161 compare -896298518E+61412314 78873.8049 -> -1 -xdiv161 divide -896298518E+61412314 78873.8049 -> -1.13637033E+61412318 Inexact Rounded -xdvi161 divideint -896298518E+61412314 78873.8049 -> NaN Division_impossible -xmul161 multiply -896298518E+61412314 78873.8049 -> -7.06944744E+61412327 Inexact Rounded -xpow161 power -896298518E+61412314 78874 -> Infinity Overflow Inexact Rounded -xrem161 remainder -896298518E+61412314 78873.8049 -> NaN Division_impossible -xsub161 subtract -896298518E+61412314 78873.8049 -> -8.96298518E+61412322 Inexact Rounded -xadd162 add 293.773732 479899052E+789950177 -> 4.79899052E+789950185 Inexact Rounded -xcom162 compare 293.773732 479899052E+789950177 -> -1 -xdiv162 divide 293.773732 479899052E+789950177 -> 6.12157350E-789950184 Inexact Rounded -xdvi162 divideint 293.773732 479899052E+789950177 -> 0 -xmul162 multiply 293.773732 479899052E+789950177 -> 1.40981735E+789950188 Inexact Rounded -xpow162 power 293.773732 5 -> 2.18808809E+12 Inexact Rounded -xrem162 remainder 293.773732 479899052E+789950177 -> 293.773732 -xsub162 subtract 293.773732 479899052E+789950177 -> -4.79899052E+789950185 Inexact Rounded -xadd163 add -103519362 51897955.3 -> -51621406.7 -xcom163 compare -103519362 51897955.3 -> -1 -xdiv163 divide -103519362 51897955.3 -> -1.99467130 Inexact Rounded -xdvi163 divideint -103519362 51897955.3 -> -1 -xmul163 multiply -103519362 51897955.3 -> -5.37244322E+15 Inexact Rounded -xpow163 power -103519362 51897955 -> -4.28858229E+415963229 Inexact Rounded -xrem163 remainder -103519362 51897955.3 -> -51621406.7 -xsub163 subtract -103519362 51897955.3 -> -155417317 Inexact Rounded -xadd164 add 37380.7802 -277719788. -> -277682407 Inexact Rounded -xcom164 compare 37380.7802 -277719788. -> 1 -xdiv164 divide 37380.7802 -277719788. -> -0.000134598908 Inexact Rounded -xdvi164 divideint 37380.7802 -277719788. -> -0 -xmul164 multiply 37380.7802 -277719788. -> -1.03813824E+13 Inexact Rounded -xpow164 power 37380.7802 -277719788 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem164 remainder 37380.7802 -277719788. -> 37380.7802 -xsub164 subtract 37380.7802 -277719788. -> 277757169 Inexact Rounded -xadd165 add 320133844. -977517477 -> -657383633 -xcom165 compare 320133844. -977517477 -> 1 -xdiv165 divide 320133844. -977517477 -> -0.327496798 Inexact Rounded -xdvi165 divideint 320133844. -977517477 -> -0 -xmul165 multiply 320133844. -977517477 -> -3.12936427E+17 Inexact Rounded -xpow165 power 320133844. -977517477 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem165 remainder 320133844. -977517477 -> 320133844 -xsub165 subtract 320133844. -977517477 -> 1.29765132E+9 Inexact Rounded -xadd166 add 721776701E+933646161 -5689279.64E+669903645 -> 7.21776701E+933646169 Inexact Rounded -xcom166 compare 721776701E+933646161 -5689279.64E+669903645 -> 1 -xdiv166 divide 721776701E+933646161 -5689279.64E+669903645 -> -1.26866097E+263742518 Inexact Rounded -xdvi166 divideint 721776701E+933646161 -5689279.64E+669903645 -> NaN Division_impossible -xmul166 multiply 721776701E+933646161 -5689279.64E+669903645 -> -Infinity Inexact Overflow Rounded -xpow166 power 721776701E+933646161 -6 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem166 remainder 721776701E+933646161 -5689279.64E+669903645 -> NaN Division_impossible -xsub166 subtract 721776701E+933646161 -5689279.64E+669903645 -> 7.21776701E+933646169 Inexact Rounded -xadd167 add -5409.00482 -2.16149386 -> -5411.16631 Inexact Rounded -xcom167 compare -5409.00482 -2.16149386 -> -1 -xdiv167 divide -5409.00482 -2.16149386 -> 2502.43821 Inexact Rounded -xdvi167 divideint -5409.00482 -2.16149386 -> 2502 -xmul167 multiply -5409.00482 -2.16149386 -> 11691.5307 Inexact Rounded -xpow167 power -5409.00482 -2 -> 3.41794652E-8 Inexact Rounded -xrem167 remainder -5409.00482 -2.16149386 -> -0.94718228 -xsub167 subtract -5409.00482 -2.16149386 -> -5406.84333 Inexact Rounded -xadd168 add -957960.367 322.858170 -> -957637.509 Inexact Rounded -xcom168 compare -957960.367 322.858170 -> -1 -xdiv168 divide -957960.367 322.858170 -> -2967.12444 Inexact Rounded -xdvi168 divideint -957960.367 322.858170 -> -2967 -xmul168 multiply -957960.367 322.858170 -> -309285331 Inexact Rounded -xpow168 power -957960.367 323 -> -9.44617460E+1931 Inexact Rounded -xrem168 remainder -957960.367 322.858170 -> -40.176610 -xsub168 subtract -957960.367 322.858170 -> -958283.225 Inexact Rounded -xadd169 add -11817.8754E+613893442 -3.84735082E+888333249 -> -3.84735082E+888333249 Inexact Rounded -xcom169 compare -11817.8754E+613893442 -3.84735082E+888333249 -> 1 -xdiv169 divide -11817.8754E+613893442 -3.84735082E+888333249 -> 3.07169165E-274439804 Inexact Rounded -xdvi169 divideint -11817.8754E+613893442 -3.84735082E+888333249 -> 0 -xmul169 multiply -11817.8754E+613893442 -3.84735082E+888333249 -> Infinity Inexact Overflow Rounded -xpow169 power -11817.8754E+613893442 -4 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem169 remainder -11817.8754E+613893442 -3.84735082E+888333249 -> -1.18178754E+613893446 -xsub169 subtract -11817.8754E+613893442 -3.84735082E+888333249 -> 3.84735082E+888333249 Inexact Rounded -xadd170 add 840258203 58363.980E-906584723 -> 840258203 Inexact Rounded -xcom170 compare 840258203 58363.980E-906584723 -> 1 -xdiv170 divide 840258203 58363.980E-906584723 -> 1.43968626E+906584727 Inexact Rounded -xdvi170 divideint 840258203 58363.980E-906584723 -> NaN Division_impossible -xmul170 multiply 840258203 58363.980E-906584723 -> 4.90408130E-906584710 Inexact Rounded -xpow170 power 840258203 6 -> 3.51946431E+53 Inexact Rounded -xrem170 remainder 840258203 58363.980E-906584723 -> NaN Division_impossible -xsub170 subtract 840258203 58363.980E-906584723 -> 840258203 Inexact Rounded -xadd171 add -205842096. -191342.721 -> -206033439 Inexact Rounded -xcom171 compare -205842096. -191342.721 -> -1 -xdiv171 divide -205842096. -191342.721 -> 1075.77699 Inexact Rounded -xdvi171 divideint -205842096. -191342.721 -> 1075 -xmul171 multiply -205842096. -191342.721 -> 3.93863867E+13 Inexact Rounded -xpow171 power -205842096. -191343 -> -2.66955553E-1590737 Inexact Rounded -xrem171 remainder -205842096. -191342.721 -> -148670.925 -xsub171 subtract -205842096. -191342.721 -> -205650753 Inexact Rounded -xadd172 add 42501124. 884.938498E+123341480 -> 8.84938498E+123341482 Inexact Rounded -xcom172 compare 42501124. 884.938498E+123341480 -> -1 -xdiv172 divide 42501124. 884.938498E+123341480 -> 4.80272065E-123341476 Inexact Rounded -xdvi172 divideint 42501124. 884.938498E+123341480 -> 0 -xmul172 multiply 42501124. 884.938498E+123341480 -> 3.76108808E+123341490 Inexact Rounded -xpow172 power 42501124. 9 -> 4.52484536E+68 Inexact Rounded -xrem172 remainder 42501124. 884.938498E+123341480 -> 42501124 -xsub172 subtract 42501124. 884.938498E+123341480 -> -8.84938498E+123341482 Inexact Rounded -xadd173 add -57809452. -620380746 -> -678190198 -xcom173 compare -57809452. -620380746 -> 1 -xdiv173 divide -57809452. -620380746 -> 0.0931838268 Inexact Rounded -xdvi173 divideint -57809452. -620380746 -> 0 -xmul173 multiply -57809452. -620380746 -> 3.58638710E+16 Inexact Rounded -xpow173 power -57809452. -620380746 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem173 remainder -57809452. -620380746 -> -57809452 -xsub173 subtract -57809452. -620380746 -> 562571294 -xadd174 add -8022370.31 9858581.6 -> 1836211.29 -xcom174 compare -8022370.31 9858581.6 -> -1 -xdiv174 divide -8022370.31 9858581.6 -> -0.813744881 Inexact Rounded -xdvi174 divideint -8022370.31 9858581.6 -> -0 -xmul174 multiply -8022370.31 9858581.6 -> -7.90891923E+13 Inexact Rounded -xpow174 power -8022370.31 9858582 -> 2.34458249E+68066634 Inexact Rounded -xrem174 remainder -8022370.31 9858581.6 -> -8022370.31 -xsub174 subtract -8022370.31 9858581.6 -> -17880951.9 Inexact Rounded -xadd175 add 2.49065060E+592139141 -5432.72014E-419965357 -> 2.49065060E+592139141 Inexact Rounded -xcom175 compare 2.49065060E+592139141 -5432.72014E-419965357 -> 1 -xdiv175 divide 2.49065060E+592139141 -5432.72014E-419965357 -> -Infinity Inexact Overflow Rounded -xdvi175 divideint 2.49065060E+592139141 -5432.72014E-419965357 -> NaN Division_impossible -xmul175 multiply 2.49065060E+592139141 -5432.72014E-419965357 -> -1.35310077E+172173788 Inexact Rounded -xpow175 power 2.49065060E+592139141 -5 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem175 remainder 2.49065060E+592139141 -5432.72014E-419965357 -> NaN Division_impossible -xsub175 subtract 2.49065060E+592139141 -5432.72014E-419965357 -> 2.49065060E+592139141 Inexact Rounded -xadd176 add -697273715E-242824870 -3.81757506 -> -3.81757506 Inexact Rounded -xcom176 compare -697273715E-242824870 -3.81757506 -> 1 -xdiv176 divide -697273715E-242824870 -3.81757506 -> 1.82648331E-242824862 Inexact Rounded -xdvi176 divideint -697273715E-242824870 -3.81757506 -> 0 -xmul176 multiply -697273715E-242824870 -3.81757506 -> 2.66189474E-242824861 Inexact Rounded -xpow176 power -697273715E-242824870 -4 -> 4.23045251E+971299444 Inexact Rounded -xrem176 remainder -697273715E-242824870 -3.81757506 -> -6.97273715E-242824862 -xsub176 subtract -697273715E-242824870 -3.81757506 -> 3.81757506 Inexact Rounded -xadd177 add -7.42204403E-315716280 -8156111.67E+283261636 -> -8.15611167E+283261642 Inexact Rounded -xcom177 compare -7.42204403E-315716280 -8156111.67E+283261636 -> 1 -xdiv177 divide -7.42204403E-315716280 -8156111.67E+283261636 -> 9.09997843E-598977923 Inexact Rounded -xdvi177 divideint -7.42204403E-315716280 -8156111.67E+283261636 -> 0 -xmul177 multiply -7.42204403E-315716280 -8156111.67E+283261636 -> 6.05350199E-32454637 Inexact Rounded -xpow177 power -7.42204403E-315716280 -8 -> Infinity Overflow Inexact Rounded -xrem177 remainder -7.42204403E-315716280 -8156111.67E+283261636 -> -7.42204403E-315716280 -xsub177 subtract -7.42204403E-315716280 -8156111.67E+283261636 -> 8.15611167E+283261642 Inexact Rounded -xadd178 add 738063892 89900467.8 -> 827964360 Inexact Rounded -xcom178 compare 738063892 89900467.8 -> 1 -xdiv178 divide 738063892 89900467.8 -> 8.20978923 Inexact Rounded -xdvi178 divideint 738063892 89900467.8 -> 8 -xmul178 multiply 738063892 89900467.8 -> 6.63522892E+16 Inexact Rounded -xpow178 power 738063892 89900468 -> 1.53166723E+797245797 Inexact Rounded -xrem178 remainder 738063892 89900467.8 -> 18860149.6 -xsub178 subtract 738063892 89900467.8 -> 648163424 Inexact Rounded -xadd179 add -630309366 -884783.338E-21595410 -> -630309366 Inexact Rounded -xcom179 compare -630309366 -884783.338E-21595410 -> -1 -xdiv179 divide -630309366 -884783.338E-21595410 -> 7.12388377E+21595412 Inexact Rounded -xdvi179 divideint -630309366 -884783.338E-21595410 -> NaN Division_impossible -xmul179 multiply -630309366 -884783.338E-21595410 -> 5.57687225E-21595396 Inexact Rounded -xpow179 power -630309366 -9 -> -6.36819210E-80 Inexact Rounded -xrem179 remainder -630309366 -884783.338E-21595410 -> NaN Division_impossible -xsub179 subtract -630309366 -884783.338E-21595410 -> -630309366 Inexact Rounded -xadd180 add 613.207774 -3007.78608 -> -2394.57831 Inexact Rounded -xcom180 compare 613.207774 -3007.78608 -> 1 -xdiv180 divide 613.207774 -3007.78608 -> -0.203873466 Inexact Rounded -xdvi180 divideint 613.207774 -3007.78608 -> -0 -xmul180 multiply 613.207774 -3007.78608 -> -1844397.81 Inexact Rounded -xpow180 power 613.207774 -3008 -> 7.51939160E-8386 Inexact Rounded -xrem180 remainder 613.207774 -3007.78608 -> 613.207774 -xsub180 subtract 613.207774 -3007.78608 -> 3620.99385 Inexact Rounded -xadd181 add -93006222.3 -3.08964619 -> -93006225.4 Inexact Rounded -xcom181 compare -93006222.3 -3.08964619 -> -1 -xdiv181 divide -93006222.3 -3.08964619 -> 30102547.9 Inexact Rounded -xdvi181 divideint -93006222.3 -3.08964619 -> 30102547 -xmul181 multiply -93006222.3 -3.08964619 -> 287356320 Inexact Rounded -xpow181 power -93006222.3 -3 -> -1.24297956E-24 Inexact Rounded -xrem181 remainder -93006222.3 -3.08964619 -> -2.65215407 -xsub181 subtract -93006222.3 -3.08964619 -> -93006219.2 Inexact Rounded -xadd182 add -18116.0621 34096.306E-270347092 -> -18116.0621 Inexact Rounded -xcom182 compare -18116.0621 34096.306E-270347092 -> -1 -xdiv182 divide -18116.0621 34096.306E-270347092 -> -5.31320375E+270347091 Inexact Rounded -xdvi182 divideint -18116.0621 34096.306E-270347092 -> NaN Division_impossible -xmul182 multiply -18116.0621 34096.306E-270347092 -> -6.17690797E-270347084 Inexact Rounded -xpow182 power -18116.0621 3 -> -5.94554133E+12 Inexact Rounded -xrem182 remainder -18116.0621 34096.306E-270347092 -> NaN Division_impossible -xsub182 subtract -18116.0621 34096.306E-270347092 -> -18116.0621 Inexact Rounded -xadd183 add 19272386.9 -410442379. -> -391169992 Inexact Rounded -xcom183 compare 19272386.9 -410442379. -> 1 -xdiv183 divide 19272386.9 -410442379. -> -0.0469551584 Inexact Rounded -xdvi183 divideint 19272386.9 -410442379. -> -0 -xmul183 multiply 19272386.9 -410442379. -> -7.91020433E+15 Inexact Rounded -xpow183 power 19272386.9 -410442379 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem183 remainder 19272386.9 -410442379. -> 19272386.9 -xsub183 subtract 19272386.9 -410442379. -> 429714766 Inexact Rounded -xadd184 add 4180.30821 -1.6439543E-624759104 -> 4180.30821 Inexact Rounded -xcom184 compare 4180.30821 -1.6439543E-624759104 -> 1 -xdiv184 divide 4180.30821 -1.6439543E-624759104 -> -2.54283724E+624759107 Inexact Rounded -xdvi184 divideint 4180.30821 -1.6439543E-624759104 -> NaN Division_impossible -xmul184 multiply 4180.30821 -1.6439543E-624759104 -> -6.87223566E-624759101 Inexact Rounded -xpow184 power 4180.30821 -2 -> 5.72246828E-8 Inexact Rounded -xrem184 remainder 4180.30821 -1.6439543E-624759104 -> NaN Division_impossible -xsub184 subtract 4180.30821 -1.6439543E-624759104 -> 4180.30821 Inexact Rounded -xadd185 add 571.536725 389.899220 -> 961.435945 -xcom185 compare 571.536725 389.899220 -> 1 -xdiv185 divide 571.536725 389.899220 -> 1.46585757 Inexact Rounded -xdvi185 divideint 571.536725 389.899220 -> 1 -xmul185 multiply 571.536725 389.899220 -> 222841.723 Inexact Rounded -xpow185 power 571.536725 390 -> 1.76691373E+1075 Inexact Rounded -xrem185 remainder 571.536725 389.899220 -> 181.637505 -xsub185 subtract 571.536725 389.899220 -> 181.637505 -xadd186 add -622007306.E+159924886 -126.971745 -> -6.22007306E+159924894 Inexact Rounded -xcom186 compare -622007306.E+159924886 -126.971745 -> -1 -xdiv186 divide -622007306.E+159924886 -126.971745 -> 4.89878521E+159924892 Inexact Rounded -xdvi186 divideint -622007306.E+159924886 -126.971745 -> NaN Division_impossible -xmul186 multiply -622007306.E+159924886 -126.971745 -> 7.89773530E+159924896 Inexact Rounded -xpow186 power -622007306.E+159924886 -127 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem186 remainder -622007306.E+159924886 -126.971745 -> NaN Division_impossible -xsub186 subtract -622007306.E+159924886 -126.971745 -> -6.22007306E+159924894 Inexact Rounded -xadd187 add -29.356551E-282816139 37141748E-903397821 -> -2.93565510E-282816138 Inexact Rounded -xcom187 compare -29.356551E-282816139 37141748E-903397821 -> -1 -xdiv187 divide -29.356551E-282816139 37141748E-903397821 -> -7.90392283E+620581675 Inexact Rounded -xdvi187 divideint -29.356551E-282816139 37141748E-903397821 -> NaN Division_impossible -xmul187 multiply -29.356551E-282816139 37141748E-903397821 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow187 power -29.356551E-282816139 4 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem187 remainder -29.356551E-282816139 37141748E-903397821 -> NaN Division_impossible -xsub187 subtract -29.356551E-282816139 37141748E-903397821 -> -2.93565510E-282816138 Inexact Rounded -xadd188 add 92427442.4 674334898. -> 766762340 Inexact Rounded -xcom188 compare 92427442.4 674334898. -> -1 -xdiv188 divide 92427442.4 674334898. -> 0.137064599 Inexact Rounded -xdvi188 divideint 92427442.4 674334898. -> 0 -xmul188 multiply 92427442.4 674334898. -> 6.23270499E+16 Inexact Rounded -xpow188 power 92427442.4 674334898 -> Infinity Overflow Inexact Rounded -xrem188 remainder 92427442.4 674334898. -> 92427442.4 -xsub188 subtract 92427442.4 674334898. -> -581907456 Inexact Rounded -xadd189 add 44651895.7 -910508.438 -> 43741387.3 Inexact Rounded -xcom189 compare 44651895.7 -910508.438 -> 1 -xdiv189 divide 44651895.7 -910508.438 -> -49.0406171 Inexact Rounded -xdvi189 divideint 44651895.7 -910508.438 -> -49 -xmul189 multiply 44651895.7 -910508.438 -> -4.06559278E+13 Inexact Rounded -xpow189 power 44651895.7 -910508 -> 3.72264277E-6965241 Inexact Rounded -xrem189 remainder 44651895.7 -910508.438 -> 36982.238 -xsub189 subtract 44651895.7 -910508.438 -> 45562404.1 Inexact Rounded -xadd190 add 647897872.E+374021790 -467.423029 -> 6.47897872E+374021798 Inexact Rounded -xcom190 compare 647897872.E+374021790 -467.423029 -> 1 -xdiv190 divide 647897872.E+374021790 -467.423029 -> -1.38610601E+374021796 Inexact Rounded -xdvi190 divideint 647897872.E+374021790 -467.423029 -> NaN Division_impossible -xmul190 multiply 647897872.E+374021790 -467.423029 -> -3.02842386E+374021801 Inexact Rounded -xpow190 power 647897872.E+374021790 -467 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem190 remainder 647897872.E+374021790 -467.423029 -> NaN Division_impossible -xsub190 subtract 647897872.E+374021790 -467.423029 -> 6.47897872E+374021798 Inexact Rounded -xadd191 add 25.2592149 59.0436981 -> 84.3029130 -xcom191 compare 25.2592149 59.0436981 -> -1 -xdiv191 divide 25.2592149 59.0436981 -> 0.427805434 Inexact Rounded -xdvi191 divideint 25.2592149 59.0436981 -> 0 -xmul191 multiply 25.2592149 59.0436981 -> 1491.39746 Inexact Rounded -xpow191 power 25.2592149 59 -> 5.53058435E+82 Inexact Rounded -xrem191 remainder 25.2592149 59.0436981 -> 25.2592149 -xsub191 subtract 25.2592149 59.0436981 -> -33.7844832 -xadd192 add -6.850835 -1273.48240 -> -1280.33324 Inexact Rounded -xcom192 compare -6.850835 -1273.48240 -> 1 -xdiv192 divide -6.850835 -1273.48240 -> 0.00537960713 Inexact Rounded -xdvi192 divideint -6.850835 -1273.48240 -> 0 -xmul192 multiply -6.850835 -1273.48240 -> 8724.41780 Inexact Rounded -xpow192 power -6.850835 -1273 -> -1.25462678E-1064 Inexact Rounded -xrem192 remainder -6.850835 -1273.48240 -> -6.850835 -xsub192 subtract -6.850835 -1273.48240 -> 1266.63157 Inexact Rounded -xadd193 add 174.272325 5638.16229 -> 5812.43462 Inexact Rounded -xcom193 compare 174.272325 5638.16229 -> -1 -xdiv193 divide 174.272325 5638.16229 -> 0.0309094198 Inexact Rounded -xdvi193 divideint 174.272325 5638.16229 -> 0 -xmul193 multiply 174.272325 5638.16229 -> 982575.651 Inexact Rounded -xpow193 power 174.272325 5638 -> 1.11137724E+12636 Inexact Rounded -xrem193 remainder 174.272325 5638.16229 -> 174.272325 -xsub193 subtract 174.272325 5638.16229 -> -5463.88997 Inexact Rounded -xadd194 add 3455629.76 -8.27332322 -> 3455621.49 Inexact Rounded -xcom194 compare 3455629.76 -8.27332322 -> 1 -xdiv194 divide 3455629.76 -8.27332322 -> -417683.399 Inexact Rounded -xdvi194 divideint 3455629.76 -8.27332322 -> -417683 -xmul194 multiply 3455629.76 -8.27332322 -> -28589541.9 Inexact Rounded -xpow194 power 3455629.76 -8 -> 4.91793015E-53 Inexact Rounded -xrem194 remainder 3455629.76 -8.27332322 -> 3.29750074 -xsub194 subtract 3455629.76 -8.27332322 -> 3455638.03 Inexact Rounded -xadd195 add -924337723E-640771235 86639377.1 -> 86639377.1 Inexact Rounded -xcom195 compare -924337723E-640771235 86639377.1 -> -1 -xdiv195 divide -924337723E-640771235 86639377.1 -> -1.06687947E-640771234 Inexact Rounded -xdvi195 divideint -924337723E-640771235 86639377.1 -> -0 -xmul195 multiply -924337723E-640771235 86639377.1 -> -8.00840446E-640771219 Inexact Rounded -xpow195 power -924337723E-640771235 86639377 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem195 remainder -924337723E-640771235 86639377.1 -> -9.24337723E-640771227 -xsub195 subtract -924337723E-640771235 86639377.1 -> -86639377.1 Inexact Rounded -xadd196 add -620236932.E+656823969 3364722.73 -> -6.20236932E+656823977 Inexact Rounded -xcom196 compare -620236932.E+656823969 3364722.73 -> -1 -xdiv196 divide -620236932.E+656823969 3364722.73 -> -1.84335228E+656823971 Inexact Rounded -xdvi196 divideint -620236932.E+656823969 3364722.73 -> NaN Division_impossible -xmul196 multiply -620236932.E+656823969 3364722.73 -> -2.08692530E+656823984 Inexact Rounded -xpow196 power -620236932.E+656823969 3364723 -> -Infinity Overflow Inexact Rounded -xrem196 remainder -620236932.E+656823969 3364722.73 -> NaN Division_impossible -xsub196 subtract -620236932.E+656823969 3364722.73 -> -6.20236932E+656823977 Inexact Rounded -xadd197 add 9.10025079 702777882E-8192234 -> 9.10025079 Inexact Rounded -xcom197 compare 9.10025079 702777882E-8192234 -> 1 -xdiv197 divide 9.10025079 702777882E-8192234 -> 1.29489715E+8192226 Inexact Rounded -xdvi197 divideint 9.10025079 702777882E-8192234 -> NaN Division_impossible -xmul197 multiply 9.10025079 702777882E-8192234 -> 6.39545498E-8192225 Inexact Rounded -xpow197 power 9.10025079 7 -> 5168607.19 Inexact Rounded -xrem197 remainder 9.10025079 702777882E-8192234 -> NaN Division_impossible -xsub197 subtract 9.10025079 702777882E-8192234 -> 9.10025079 Inexact Rounded -xadd198 add -18857539.9 813013129. -> 794155589 Inexact Rounded -xcom198 compare -18857539.9 813013129. -> -1 -xdiv198 divide -18857539.9 813013129. -> -0.0231946315 Inexact Rounded -xdvi198 divideint -18857539.9 813013129. -> -0 -xmul198 multiply -18857539.9 813013129. -> -1.53314275E+16 Inexact Rounded -xpow198 power -18857539.9 813013129 -> -Infinity Overflow Inexact Rounded -xrem198 remainder -18857539.9 813013129. -> -18857539.9 -xsub198 subtract -18857539.9 813013129. -> -831870669 Inexact Rounded -xadd199 add -8.29530327 3243419.57E+35688332 -> 3.24341957E+35688338 Inexact Rounded -xcom199 compare -8.29530327 3243419.57E+35688332 -> -1 -xdiv199 divide -8.29530327 3243419.57E+35688332 -> -2.55757946E-35688338 Inexact Rounded -xdvi199 divideint -8.29530327 3243419.57E+35688332 -> -0 -xmul199 multiply -8.29530327 3243419.57E+35688332 -> -2.69051490E+35688339 Inexact Rounded -xpow199 power -8.29530327 3 -> -570.816876 Inexact Rounded -xrem199 remainder -8.29530327 3243419.57E+35688332 -> -8.29530327 -xsub199 subtract -8.29530327 3243419.57E+35688332 -> -3.24341957E+35688338 Inexact Rounded -xadd200 add -57101683.5 763551341E+991491712 -> 7.63551341E+991491720 Inexact Rounded -xcom200 compare -57101683.5 763551341E+991491712 -> -1 -xdiv200 divide -57101683.5 763551341E+991491712 -> -7.47843405E-991491714 Inexact Rounded -xdvi200 divideint -57101683.5 763551341E+991491712 -> -0 -xmul200 multiply -57101683.5 763551341E+991491712 -> -4.36000670E+991491728 Inexact Rounded -xpow200 power -57101683.5 8 -> 1.13029368E+62 Inexact Rounded -xrem200 remainder -57101683.5 763551341E+991491712 -> -57101683.5 -xsub200 subtract -57101683.5 763551341E+991491712 -> -7.63551341E+991491720 Inexact Rounded -xadd201 add -603326.740 1710.95183 -> -601615.788 Inexact Rounded -xcom201 compare -603326.740 1710.95183 -> -1 -xdiv201 divide -603326.740 1710.95183 -> -352.626374 Inexact Rounded -xdvi201 divideint -603326.740 1710.95183 -> -352 -xmul201 multiply -603326.740 1710.95183 -> -1.03226299E+9 Inexact Rounded -xpow201 power -603326.740 1711 -> -3.35315976E+9890 Inexact Rounded -xrem201 remainder -603326.740 1710.95183 -> -1071.69584 -xsub201 subtract -603326.740 1710.95183 -> -605037.692 Inexact Rounded -xadd202 add -48142763.3 -943434114 -> -991576877 Inexact Rounded -xcom202 compare -48142763.3 -943434114 -> 1 -xdiv202 divide -48142763.3 -943434114 -> 0.0510292797 Inexact Rounded -xdvi202 divideint -48142763.3 -943434114 -> 0 -xmul202 multiply -48142763.3 -943434114 -> 4.54195252E+16 Inexact Rounded -xpow202 power -48142763.3 -943434114 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem202 remainder -48142763.3 -943434114 -> -48142763.3 -xsub202 subtract -48142763.3 -943434114 -> 895291351 Inexact Rounded -xadd203 add -204.586767 -235.531847 -> -440.118614 -xcom203 compare -204.586767 -235.531847 -> 1 -xdiv203 divide -204.586767 -235.531847 -> 0.868616154 Inexact Rounded -xdvi203 divideint -204.586767 -235.531847 -> 0 -xmul203 multiply -204.586767 -235.531847 -> 48186.6991 Inexact Rounded -xpow203 power -204.586767 -236 -> 4.29438222E-546 Inexact Rounded -xrem203 remainder -204.586767 -235.531847 -> -204.586767 -xsub203 subtract -204.586767 -235.531847 -> 30.945080 -xadd204 add -70.3805581 830137.913 -> 830067.532 Inexact Rounded -xcom204 compare -70.3805581 830137.913 -> -1 -xdiv204 divide -70.3805581 830137.913 -> -0.0000847817658 Inexact Rounded -xdvi204 divideint -70.3805581 830137.913 -> -0 -xmul204 multiply -70.3805581 830137.913 -> -58425569.6 Inexact Rounded -xpow204 power -70.3805581 830138 -> 4.95165841E+1533640 Inexact Rounded -xrem204 remainder -70.3805581 830137.913 -> -70.3805581 -xsub204 subtract -70.3805581 830137.913 -> -830208.294 Inexact Rounded -xadd205 add -8818.47606 -60766.4571 -> -69584.9332 Inexact Rounded -xcom205 compare -8818.47606 -60766.4571 -> 1 -xdiv205 divide -8818.47606 -60766.4571 -> 0.145120787 Inexact Rounded -xdvi205 divideint -8818.47606 -60766.4571 -> 0 -xmul205 multiply -8818.47606 -60766.4571 -> 535867547 Inexact Rounded -xpow205 power -8818.47606 -60766 -> 1.64487755E-239746 Inexact Rounded -xrem205 remainder -8818.47606 -60766.4571 -> -8818.47606 -xsub205 subtract -8818.47606 -60766.4571 -> 51947.9810 Inexact Rounded -xadd206 add 37060929.3E-168439509 -79576717.1 -> -79576717.1 Inexact Rounded -xcom206 compare 37060929.3E-168439509 -79576717.1 -> 1 -xdiv206 divide 37060929.3E-168439509 -79576717.1 -> -4.65725788E-168439510 Inexact Rounded -xdvi206 divideint 37060929.3E-168439509 -79576717.1 -> -0 -xmul206 multiply 37060929.3E-168439509 -79576717.1 -> -2.94918709E-168439494 Inexact Rounded -xpow206 power 37060929.3E-168439509 -79576717 -> Infinity Overflow Inexact Rounded -xrem206 remainder 37060929.3E-168439509 -79576717.1 -> 3.70609293E-168439502 -xsub206 subtract 37060929.3E-168439509 -79576717.1 -> 79576717.1 Inexact Rounded -xadd207 add -656285310. -107221462. -> -763506772 -xcom207 compare -656285310. -107221462. -> -1 -xdiv207 divide -656285310. -107221462. -> 6.12083904 Inexact Rounded -xdvi207 divideint -656285310. -107221462. -> 6 -xmul207 multiply -656285310. -107221462. -> 7.03678704E+16 Inexact Rounded -xpow207 power -656285310. -107221462 -> 8.05338080E-945381569 Inexact Rounded -xrem207 remainder -656285310. -107221462. -> -12956538 -xsub207 subtract -656285310. -107221462. -> -549063848 -xadd208 add 653397.125 7195.30990 -> 660592.435 Inexact Rounded -xcom208 compare 653397.125 7195.30990 -> 1 -xdiv208 divide 653397.125 7195.30990 -> 90.8087538 Inexact Rounded -xdvi208 divideint 653397.125 7195.30990 -> 90 -xmul208 multiply 653397.125 7195.30990 -> 4.70139480E+9 Inexact Rounded -xpow208 power 653397.125 7195 -> 1.58522983E+41840 Inexact Rounded -xrem208 remainder 653397.125 7195.30990 -> 5819.23400 -xsub208 subtract 653397.125 7195.30990 -> 646201.815 Inexact Rounded -xadd209 add 56221910.0E+857909374 -58.7247929 -> 5.62219100E+857909381 Inexact Rounded -xcom209 compare 56221910.0E+857909374 -58.7247929 -> 1 -xdiv209 divide 56221910.0E+857909374 -58.7247929 -> -9.57379451E+857909379 Inexact Rounded -xdvi209 divideint 56221910.0E+857909374 -58.7247929 -> NaN Division_impossible -xmul209 multiply 56221910.0E+857909374 -58.7247929 -> -3.30162002E+857909383 Inexact Rounded -xpow209 power 56221910.0E+857909374 -59 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem209 remainder 56221910.0E+857909374 -58.7247929 -> NaN Division_impossible -xsub209 subtract 56221910.0E+857909374 -58.7247929 -> 5.62219100E+857909381 Inexact Rounded -xadd210 add 809862859E+643769974 -5.06784016 -> 8.09862859E+643769982 Inexact Rounded -xcom210 compare 809862859E+643769974 -5.06784016 -> 1 -xdiv210 divide 809862859E+643769974 -5.06784016 -> -1.59804341E+643769982 Inexact Rounded -xdvi210 divideint 809862859E+643769974 -5.06784016 -> NaN Division_impossible -xmul210 multiply 809862859E+643769974 -5.06784016 -> -4.10425552E+643769983 Inexact Rounded -xpow210 power 809862859E+643769974 -5 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem210 remainder 809862859E+643769974 -5.06784016 -> NaN Division_impossible -xsub210 subtract 809862859E+643769974 -5.06784016 -> 8.09862859E+643769982 Inexact Rounded -xadd211 add -62011.4563E-117563240 -57.1731586E+115657204 -> -5.71731586E+115657205 Inexact Rounded -xcom211 compare -62011.4563E-117563240 -57.1731586E+115657204 -> 1 -xdiv211 divide -62011.4563E-117563240 -57.1731586E+115657204 -> 1.08462534E-233220441 Inexact Rounded -xdvi211 divideint -62011.4563E-117563240 -57.1731586E+115657204 -> 0 -xmul211 multiply -62011.4563E-117563240 -57.1731586E+115657204 -> 3.54539083E-1906030 Inexact Rounded -xpow211 power -62011.4563E-117563240 -6 -> 1.75860546E+705379411 Inexact Rounded -xrem211 remainder -62011.4563E-117563240 -57.1731586E+115657204 -> -6.20114563E-117563236 -xsub211 subtract -62011.4563E-117563240 -57.1731586E+115657204 -> 5.71731586E+115657205 Inexact Rounded -xadd212 add 315.33351 91588.837E-536020149 -> 315.333510 Inexact Rounded -xcom212 compare 315.33351 91588.837E-536020149 -> 1 -xdiv212 divide 315.33351 91588.837E-536020149 -> 3.44292515E+536020146 Inexact Rounded -xdvi212 divideint 315.33351 91588.837E-536020149 -> NaN Division_impossible -xmul212 multiply 315.33351 91588.837E-536020149 -> 2.88810294E-536020142 Inexact Rounded -xpow212 power 315.33351 9 -> 3.08269902E+22 Inexact Rounded -xrem212 remainder 315.33351 91588.837E-536020149 -> NaN Division_impossible -xsub212 subtract 315.33351 91588.837E-536020149 -> 315.333510 Inexact Rounded -xadd213 add 739.944710 202949.175 -> 203689.120 Inexact Rounded -xcom213 compare 739.944710 202949.175 -> -1 -xdiv213 divide 739.944710 202949.175 -> 0.00364596067 Inexact Rounded -xdvi213 divideint 739.944710 202949.175 -> 0 -xmul213 multiply 739.944710 202949.175 -> 150171168 Inexact Rounded -xpow213 power 739.944710 202949 -> 1.32611729E+582301 Inexact Rounded -xrem213 remainder 739.944710 202949.175 -> 739.944710 -xsub213 subtract 739.944710 202949.175 -> -202209.230 Inexact Rounded -xadd214 add 87686.8016 4204890.40 -> 4292577.20 Inexact Rounded -xcom214 compare 87686.8016 4204890.40 -> -1 -xdiv214 divide 87686.8016 4204890.40 -> 0.0208535285 Inexact Rounded -xdvi214 divideint 87686.8016 4204890.40 -> 0 -xmul214 multiply 87686.8016 4204890.40 -> 3.68713390E+11 Inexact Rounded -xpow214 power 87686.8016 4204890 -> 5.14846981E+20784494 Inexact Rounded -xrem214 remainder 87686.8016 4204890.40 -> 87686.8016 -xsub214 subtract 87686.8016 4204890.40 -> -4117203.60 Inexact Rounded -xadd215 add 987126721.E-725794834 4874166.23 -> 4874166.23 Inexact Rounded -xcom215 compare 987126721.E-725794834 4874166.23 -> -1 -xdiv215 divide 987126721.E-725794834 4874166.23 -> 2.02522170E-725794832 Inexact Rounded -xdvi215 divideint 987126721.E-725794834 4874166.23 -> 0 -xmul215 multiply 987126721.E-725794834 4874166.23 -> 4.81141973E-725794819 Inexact Rounded -xpow215 power 987126721.E-725794834 4874166 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem215 remainder 987126721.E-725794834 4874166.23 -> 9.87126721E-725794826 -xsub215 subtract 987126721.E-725794834 4874166.23 -> -4874166.23 Inexact Rounded -xadd216 add 728148726.E-661695938 32798.5202 -> 32798.5202 Inexact Rounded -xcom216 compare 728148726.E-661695938 32798.5202 -> -1 -xdiv216 divide 728148726.E-661695938 32798.5202 -> 2.22006579E-661695934 Inexact Rounded -xdvi216 divideint 728148726.E-661695938 32798.5202 -> 0 -xmul216 multiply 728148726.E-661695938 32798.5202 -> 2.38822007E-661695925 Inexact Rounded -xpow216 power 728148726.E-661695938 32799 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem216 remainder 728148726.E-661695938 32798.5202 -> 7.28148726E-661695930 -xsub216 subtract 728148726.E-661695938 32798.5202 -> -32798.5202 Inexact Rounded -xadd217 add 7428219.97 667.326760 -> 7428887.30 Inexact Rounded -xcom217 compare 7428219.97 667.326760 -> 1 -xdiv217 divide 7428219.97 667.326760 -> 11131.3084 Inexact Rounded -xdvi217 divideint 7428219.97 667.326760 -> 11131 -xmul217 multiply 7428219.97 667.326760 -> 4.95704997E+9 Inexact Rounded -xpow217 power 7428219.97 667 -> 7.58808509E+4582 Inexact Rounded -xrem217 remainder 7428219.97 667.326760 -> 205.804440 -xsub217 subtract 7428219.97 667.326760 -> 7427552.64 Inexact Rounded -xadd218 add -7291.19212 209.64966E-588526476 -> -7291.19212 Inexact Rounded -xcom218 compare -7291.19212 209.64966E-588526476 -> -1 -xdiv218 divide -7291.19212 209.64966E-588526476 -> -3.47779821E+588526477 Inexact Rounded -xdvi218 divideint -7291.19212 209.64966E-588526476 -> NaN Division_impossible -xmul218 multiply -7291.19212 209.64966E-588526476 -> -1.52859595E-588526470 Inexact Rounded -xpow218 power -7291.19212 2 -> 53161482.5 Inexact Rounded -xrem218 remainder -7291.19212 209.64966E-588526476 -> NaN Division_impossible -xsub218 subtract -7291.19212 209.64966E-588526476 -> -7291.19212 Inexact Rounded -xadd219 add -358.24550 -4447.78675E+601402509 -> -4.44778675E+601402512 Inexact Rounded -xcom219 compare -358.24550 -4447.78675E+601402509 -> 1 -xdiv219 divide -358.24550 -4447.78675E+601402509 -> 8.05446664E-601402511 Inexact Rounded -xdvi219 divideint -358.24550 -4447.78675E+601402509 -> 0 -xmul219 multiply -358.24550 -4447.78675E+601402509 -> 1.59339959E+601402515 Inexact Rounded -xpow219 power -358.24550 -4 -> 6.07123474E-11 Inexact Rounded -xrem219 remainder -358.24550 -4447.78675E+601402509 -> -358.24550 -xsub219 subtract -358.24550 -4447.78675E+601402509 -> 4.44778675E+601402512 Inexact Rounded -xadd220 add 118.621826 -2.72010038 -> 115.901726 Inexact Rounded -xcom220 compare 118.621826 -2.72010038 -> 1 -xdiv220 divide 118.621826 -2.72010038 -> -43.6093561 Inexact Rounded -xdvi220 divideint 118.621826 -2.72010038 -> -43 -xmul220 multiply 118.621826 -2.72010038 -> -322.663274 Inexact Rounded -xpow220 power 118.621826 -3 -> 5.99109471E-7 Inexact Rounded -xrem220 remainder 118.621826 -2.72010038 -> 1.65750966 -xsub220 subtract 118.621826 -2.72010038 -> 121.341926 Inexact Rounded -xadd221 add 8071961.94 -135533740.E-102451543 -> 8071961.94 Inexact Rounded -xcom221 compare 8071961.94 -135533740.E-102451543 -> 1 -xdiv221 divide 8071961.94 -135533740.E-102451543 -> -5.95568450E+102451541 Inexact Rounded -xdvi221 divideint 8071961.94 -135533740.E-102451543 -> NaN Division_impossible -xmul221 multiply 8071961.94 -135533740.E-102451543 -> -1.09402319E-102451528 Inexact Rounded -xpow221 power 8071961.94 -1 -> 1.23885619E-7 Inexact Rounded -xrem221 remainder 8071961.94 -135533740.E-102451543 -> NaN Division_impossible -xsub221 subtract 8071961.94 -135533740.E-102451543 -> 8071961.94 Inexact Rounded -xadd222 add 64262528.5E+812118682 -8692.94447E-732186947 -> 6.42625285E+812118689 Inexact Rounded -xcom222 compare 64262528.5E+812118682 -8692.94447E-732186947 -> 1 -xdiv222 divide 64262528.5E+812118682 -8692.94447E-732186947 -> -Infinity Inexact Overflow Rounded -xdvi222 divideint 64262528.5E+812118682 -8692.94447E-732186947 -> NaN Division_impossible -xmul222 multiply 64262528.5E+812118682 -8692.94447E-732186947 -> -5.58630592E+79931746 Inexact Rounded -xpow222 power 64262528.5E+812118682 -9 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem222 remainder 64262528.5E+812118682 -8692.94447E-732186947 -> NaN Division_impossible -xsub222 subtract 64262528.5E+812118682 -8692.94447E-732186947 -> 6.42625285E+812118689 Inexact Rounded -xadd223 add -35544.4029 -567830.130 -> -603374.533 Inexact Rounded -xcom223 compare -35544.4029 -567830.130 -> 1 -xdiv223 divide -35544.4029 -567830.130 -> 0.0625968948 Inexact Rounded -xdvi223 divideint -35544.4029 -567830.130 -> 0 -xmul223 multiply -35544.4029 -567830.130 -> 2.01831829E+10 Inexact Rounded -xpow223 power -35544.4029 -567830 -> 3.77069368E-2584065 Inexact Rounded -xrem223 remainder -35544.4029 -567830.130 -> -35544.4029 -xsub223 subtract -35544.4029 -567830.130 -> 532285.727 Inexact Rounded -xadd224 add -7.16513047E+59297103 87767.8211 -> -7.16513047E+59297103 Inexact Rounded -xcom224 compare -7.16513047E+59297103 87767.8211 -> -1 -xdiv224 divide -7.16513047E+59297103 87767.8211 -> -8.16373288E+59297098 Inexact Rounded -xdvi224 divideint -7.16513047E+59297103 87767.8211 -> NaN Division_impossible -xmul224 multiply -7.16513047E+59297103 87767.8211 -> -6.28867889E+59297108 Inexact Rounded -xpow224 power -7.16513047E+59297103 87768 -> Infinity Overflow Inexact Rounded -xrem224 remainder -7.16513047E+59297103 87767.8211 -> NaN Division_impossible -xsub224 subtract -7.16513047E+59297103 87767.8211 -> -7.16513047E+59297103 Inexact Rounded -xadd225 add -509.483395 -147242915. -> -147243424 Inexact Rounded -xcom225 compare -509.483395 -147242915. -> 1 -xdiv225 divide -509.483395 -147242915. -> 0.00000346015559 Inexact Rounded -xdvi225 divideint -509.483395 -147242915. -> 0 -xmul225 multiply -509.483395 -147242915. -> 7.50178202E+10 Inexact Rounded -xpow225 power -509.483395 -147242915 -> -3.10760519E-398605718 Inexact Rounded -xrem225 remainder -509.483395 -147242915. -> -509.483395 -xsub225 subtract -509.483395 -147242915. -> 147242406 Inexact Rounded -xadd226 add -7919047.28E+956041629 -367667329 -> -7.91904728E+956041635 Inexact Rounded -xcom226 compare -7919047.28E+956041629 -367667329 -> -1 -xdiv226 divide -7919047.28E+956041629 -367667329 -> 2.15386211E+956041627 Inexact Rounded -xdvi226 divideint -7919047.28E+956041629 -367667329 -> NaN Division_impossible -xmul226 multiply -7919047.28E+956041629 -367667329 -> 2.91157496E+956041644 Inexact Rounded -xpow226 power -7919047.28E+956041629 -367667329 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem226 remainder -7919047.28E+956041629 -367667329 -> NaN Division_impossible -xsub226 subtract -7919047.28E+956041629 -367667329 -> -7.91904728E+956041635 Inexact Rounded -xadd227 add 895612630. -36.4104040 -> 895612594 Inexact Rounded -xcom227 compare 895612630. -36.4104040 -> 1 -xdiv227 divide 895612630. -36.4104040 -> -24597712.0 Inexact Rounded -xdvi227 divideint 895612630. -36.4104040 -> -24597711 -xmul227 multiply 895612630. -36.4104040 -> -3.26096177E+10 Inexact Rounded -xpow227 power 895612630. -36 -> 5.29264130E-323 Inexact Rounded -xrem227 remainder 895612630. -36.4104040 -> 35.0147560 -xsub227 subtract 895612630. -36.4104040 -> 895612666 Inexact Rounded -xadd228 add 25455.4973 2955.00006E+528196218 -> 2.95500006E+528196221 Inexact Rounded -xcom228 compare 25455.4973 2955.00006E+528196218 -> -1 -xdiv228 divide 25455.4973 2955.00006E+528196218 -> 8.61438131E-528196218 Inexact Rounded -xdvi228 divideint 25455.4973 2955.00006E+528196218 -> 0 -xmul228 multiply 25455.4973 2955.00006E+528196218 -> 7.52209960E+528196225 Inexact Rounded -xpow228 power 25455.4973 3 -> 1.64947128E+13 Inexact Rounded -xrem228 remainder 25455.4973 2955.00006E+528196218 -> 25455.4973 -xsub228 subtract 25455.4973 2955.00006E+528196218 -> -2.95500006E+528196221 Inexact Rounded -xadd229 add -112.294144E+273414172 -71448007.7 -> -1.12294144E+273414174 Inexact Rounded -xcom229 compare -112.294144E+273414172 -71448007.7 -> -1 -xdiv229 divide -112.294144E+273414172 -71448007.7 -> 1.57169035E+273414166 Inexact Rounded -xdvi229 divideint -112.294144E+273414172 -71448007.7 -> NaN Division_impossible -xmul229 multiply -112.294144E+273414172 -71448007.7 -> 8.02319287E+273414181 Inexact Rounded -xpow229 power -112.294144E+273414172 -71448008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem229 remainder -112.294144E+273414172 -71448007.7 -> NaN Division_impossible -xsub229 subtract -112.294144E+273414172 -71448007.7 -> -1.12294144E+273414174 Inexact Rounded -xadd230 add 62871.2202 2484.0382E+211662557 -> 2.48403820E+211662560 Inexact Rounded -xcom230 compare 62871.2202 2484.0382E+211662557 -> -1 -xdiv230 divide 62871.2202 2484.0382E+211662557 -> 2.53100859E-211662556 Inexact Rounded -xdvi230 divideint 62871.2202 2484.0382E+211662557 -> 0 -xmul230 multiply 62871.2202 2484.0382E+211662557 -> 1.56174513E+211662565 Inexact Rounded -xpow230 power 62871.2202 2 -> 3.95279033E+9 Inexact Rounded -xrem230 remainder 62871.2202 2484.0382E+211662557 -> 62871.2202 -xsub230 subtract 62871.2202 2484.0382E+211662557 -> -2.48403820E+211662560 Inexact Rounded -xadd231 add 71.9281575 -9810012.5 -> -9809940.57 Inexact Rounded -xcom231 compare 71.9281575 -9810012.5 -> 1 -xdiv231 divide 71.9281575 -9810012.5 -> -0.00000733211680 Inexact Rounded -xdvi231 divideint 71.9281575 -9810012.5 -> -0 -xmul231 multiply 71.9281575 -9810012.5 -> -705616124 Inexact Rounded -xpow231 power 71.9281575 -9810013 -> 2.00363798E-18216203 Inexact Rounded -xrem231 remainder 71.9281575 -9810012.5 -> 71.9281575 -xsub231 subtract 71.9281575 -9810012.5 -> 9810084.43 Inexact Rounded -xadd232 add -6388022. -88.042967 -> -6388110.04 Inexact Rounded -xcom232 compare -6388022. -88.042967 -> -1 -xdiv232 divide -6388022. -88.042967 -> 72555.7329 Inexact Rounded -xdvi232 divideint -6388022. -88.042967 -> 72555 -xmul232 multiply -6388022. -88.042967 -> 562420410 Inexact Rounded -xpow232 power -6388022. -88 -> 1.34201238E-599 Inexact Rounded -xrem232 remainder -6388022. -88.042967 -> -64.529315 -xsub232 subtract -6388022. -88.042967 -> -6387933.96 Inexact Rounded -xadd233 add 372567445. 96.0992141 -> 372567541 Inexact Rounded -xcom233 compare 372567445. 96.0992141 -> 1 -xdiv233 divide 372567445. 96.0992141 -> 3876904.18 Inexact Rounded -xdvi233 divideint 372567445. 96.0992141 -> 3876904 -xmul233 multiply 372567445. 96.0992141 -> 3.58034387E+10 Inexact Rounded -xpow233 power 372567445. 96 -> 6.84968715E+822 Inexact Rounded -xrem233 remainder 372567445. 96.0992141 -> 17.4588536 -xsub233 subtract 372567445. 96.0992141 -> 372567349 Inexact Rounded -xadd234 add 802.156517 -174409310.E-255338020 -> 802.156517 Inexact Rounded -xcom234 compare 802.156517 -174409310.E-255338020 -> 1 -xdiv234 divide 802.156517 -174409310.E-255338020 -> -4.59927579E+255338014 Inexact Rounded -xdvi234 divideint 802.156517 -174409310.E-255338020 -> NaN Division_impossible -xmul234 multiply 802.156517 -174409310.E-255338020 -> -1.39903565E-255338009 Inexact Rounded -xpow234 power 802.156517 -2 -> 0.00000155411005 Inexact Rounded -xrem234 remainder 802.156517 -174409310.E-255338020 -> NaN Division_impossible -xsub234 subtract 802.156517 -174409310.E-255338020 -> 802.156517 Inexact Rounded -xadd235 add -3.65207541 74501982.0 -> 74501978.3 Inexact Rounded -xcom235 compare -3.65207541 74501982.0 -> -1 -xdiv235 divide -3.65207541 74501982.0 -> -4.90198423E-8 Inexact Rounded -xdvi235 divideint -3.65207541 74501982.0 -> -0 -xmul235 multiply -3.65207541 74501982.0 -> -272086856 Inexact Rounded -xpow235 power -3.65207541 74501982 -> 2.10339452E+41910325 Inexact Rounded -xrem235 remainder -3.65207541 74501982.0 -> -3.65207541 -xsub235 subtract -3.65207541 74501982.0 -> -74501985.7 Inexact Rounded -xadd236 add -5297.76981 -859.719404 -> -6157.48921 Inexact Rounded -xcom236 compare -5297.76981 -859.719404 -> -1 -xdiv236 divide -5297.76981 -859.719404 -> 6.16220802 Inexact Rounded -xdvi236 divideint -5297.76981 -859.719404 -> 6 -xmul236 multiply -5297.76981 -859.719404 -> 4554595.50 Inexact Rounded -xpow236 power -5297.76981 -860 -> 1.90523108E-3203 Inexact Rounded -xrem236 remainder -5297.76981 -859.719404 -> -139.453386 -xsub236 subtract -5297.76981 -859.719404 -> -4438.05041 Inexact Rounded -xadd237 add -684172.592 766.448597E+288361959 -> 7.66448597E+288361961 Inexact Rounded -xcom237 compare -684172.592 766.448597E+288361959 -> -1 -xdiv237 divide -684172.592 766.448597E+288361959 -> -8.92652938E-288361957 Inexact Rounded -xdvi237 divideint -684172.592 766.448597E+288361959 -> -0 -xmul237 multiply -684172.592 766.448597E+288361959 -> -5.24383123E+288361967 Inexact Rounded -xpow237 power -684172.592 8 -> 4.80093005E+46 Inexact Rounded -xrem237 remainder -684172.592 766.448597E+288361959 -> -684172.592 -xsub237 subtract -684172.592 766.448597E+288361959 -> -7.66448597E+288361961 Inexact Rounded -xadd238 add 626919.219 57469.8727E+13188610 -> 5.74698727E+13188614 Inexact Rounded -xcom238 compare 626919.219 57469.8727E+13188610 -> -1 -xdiv238 divide 626919.219 57469.8727E+13188610 -> 1.09086586E-13188609 Inexact Rounded -xdvi238 divideint 626919.219 57469.8727E+13188610 -> 0 -xmul238 multiply 626919.219 57469.8727E+13188610 -> 3.60289677E+13188620 Inexact Rounded -xpow238 power 626919.219 6 -> 6.07112959E+34 Inexact Rounded -xrem238 remainder 626919.219 57469.8727E+13188610 -> 626919.219 -xsub238 subtract 626919.219 57469.8727E+13188610 -> -5.74698727E+13188614 Inexact Rounded -xadd239 add -77480.5840 893265.594E+287982552 -> 8.93265594E+287982557 Inexact Rounded -xcom239 compare -77480.5840 893265.594E+287982552 -> -1 -xdiv239 divide -77480.5840 893265.594E+287982552 -> -8.67385742E-287982554 Inexact Rounded -xdvi239 divideint -77480.5840 893265.594E+287982552 -> -0 -xmul239 multiply -77480.5840 893265.594E+287982552 -> -6.92107399E+287982562 Inexact Rounded -xpow239 power -77480.5840 9 -> -1.00631969E+44 Inexact Rounded -xrem239 remainder -77480.5840 893265.594E+287982552 -> -77480.5840 -xsub239 subtract -77480.5840 893265.594E+287982552 -> -8.93265594E+287982557 Inexact Rounded -xadd240 add -7177620.29 7786343.83 -> 608723.54 -xcom240 compare -7177620.29 7786343.83 -> -1 -xdiv240 divide -7177620.29 7786343.83 -> -0.921821647 Inexact Rounded -xdvi240 divideint -7177620.29 7786343.83 -> -0 -xmul240 multiply -7177620.29 7786343.83 -> -5.58874195E+13 Inexact Rounded -xpow240 power -7177620.29 7786344 -> 2.96037074E+53383022 Inexact Rounded -xrem240 remainder -7177620.29 7786343.83 -> -7177620.29 -xsub240 subtract -7177620.29 7786343.83 -> -14963964.1 Inexact Rounded -xadd241 add 9.6224130 4.50355112 -> 14.1259641 Inexact Rounded -xcom241 compare 9.6224130 4.50355112 -> 1 -xdiv241 divide 9.6224130 4.50355112 -> 2.13662791 Inexact Rounded -xdvi241 divideint 9.6224130 4.50355112 -> 2 -xmul241 multiply 9.6224130 4.50355112 -> 43.3350288 Inexact Rounded -xpow241 power 9.6224130 5 -> 82493.5448 Inexact Rounded -xrem241 remainder 9.6224130 4.50355112 -> 0.61531076 -xsub241 subtract 9.6224130 4.50355112 -> 5.11886188 -xadd242 add -66.6337347E-597410086 -818812885 -> -818812885 Inexact Rounded -xcom242 compare -66.6337347E-597410086 -818812885 -> 1 -xdiv242 divide -66.6337347E-597410086 -818812885 -> 8.13784638E-597410094 Inexact Rounded -xdvi242 divideint -66.6337347E-597410086 -818812885 -> 0 -xmul242 multiply -66.6337347E-597410086 -818812885 -> 5.45605605E-597410076 Inexact Rounded -xpow242 power -66.6337347E-597410086 -818812885 -> -Infinity Overflow Inexact Rounded -xrem242 remainder -66.6337347E-597410086 -818812885 -> -6.66337347E-597410085 -xsub242 subtract -66.6337347E-597410086 -818812885 -> 818812885 Inexact Rounded -xadd243 add 65587553.7 600574.736 -> 66188128.4 Inexact Rounded -xcom243 compare 65587553.7 600574.736 -> 1 -xdiv243 divide 65587553.7 600574.736 -> 109.207980 Inexact Rounded -xdvi243 divideint 65587553.7 600574.736 -> 109 -xmul243 multiply 65587553.7 600574.736 -> 3.93902277E+13 Inexact Rounded -xpow243 power 65587553.7 600575 -> 3.40404817E+4694587 Inexact Rounded -xrem243 remainder 65587553.7 600574.736 -> 124907.476 -xsub243 subtract 65587553.7 600574.736 -> 64986979.0 Inexact Rounded -xadd244 add -32401.939 -585200217. -> -585232619 Inexact Rounded -xcom244 compare -32401.939 -585200217. -> 1 -xdiv244 divide -32401.939 -585200217. -> 0.0000553689798 Inexact Rounded -xdvi244 divideint -32401.939 -585200217. -> 0 -xmul244 multiply -32401.939 -585200217. -> 1.89616217E+13 Inexact Rounded -xpow244 power -32401.939 -585200217 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem244 remainder -32401.939 -585200217. -> -32401.939 -xsub244 subtract -32401.939 -585200217. -> 585167815 Inexact Rounded -xadd245 add 69573.988 -9.77003465E+740933668 -> -9.77003465E+740933668 Inexact Rounded -xcom245 compare 69573.988 -9.77003465E+740933668 -> 1 -xdiv245 divide 69573.988 -9.77003465E+740933668 -> -7.12116082E-740933665 Inexact Rounded -xdvi245 divideint 69573.988 -9.77003465E+740933668 -> -0 -xmul245 multiply 69573.988 -9.77003465E+740933668 -> -6.79740273E+740933673 Inexact Rounded -xpow245 power 69573.988 -10 -> 3.76297229E-49 Inexact Rounded -xrem245 remainder 69573.988 -9.77003465E+740933668 -> 69573.988 -xsub245 subtract 69573.988 -9.77003465E+740933668 -> 9.77003465E+740933668 Inexact Rounded -xadd246 add 2362.06251 -433149546.E-152643629 -> 2362.06251 Inexact Rounded -xcom246 compare 2362.06251 -433149546.E-152643629 -> 1 -xdiv246 divide 2362.06251 -433149546.E-152643629 -> -5.45322633E+152643623 Inexact Rounded -xdvi246 divideint 2362.06251 -433149546.E-152643629 -> NaN Division_impossible -xmul246 multiply 2362.06251 -433149546.E-152643629 -> -1.02312630E-152643617 Inexact Rounded -xpow246 power 2362.06251 -4 -> 3.21243577E-14 Inexact Rounded -xrem246 remainder 2362.06251 -433149546.E-152643629 -> NaN Division_impossible -xsub246 subtract 2362.06251 -433149546.E-152643629 -> 2362.06251 Inexact Rounded -xadd247 add -615.23488E+249953452 -21437483.7 -> -6.15234880E+249953454 Inexact Rounded -xcom247 compare -615.23488E+249953452 -21437483.7 -> -1 -xdiv247 divide -615.23488E+249953452 -21437483.7 -> 2.86990250E+249953447 Inexact Rounded -xdvi247 divideint -615.23488E+249953452 -21437483.7 -> NaN Division_impossible -xmul247 multiply -615.23488E+249953452 -21437483.7 -> 1.31890877E+249953462 Inexact Rounded -xpow247 power -615.23488E+249953452 -21437484 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem247 remainder -615.23488E+249953452 -21437483.7 -> NaN Division_impossible -xsub247 subtract -615.23488E+249953452 -21437483.7 -> -6.15234880E+249953454 Inexact Rounded -xadd248 add 216741082. 250290244 -> 467031326 -xcom248 compare 216741082. 250290244 -> -1 -xdiv248 divide 216741082. 250290244 -> 0.865958970 Inexact Rounded -xdvi248 divideint 216741082. 250290244 -> 0 -xmul248 multiply 216741082. 250290244 -> 5.42481783E+16 Inexact Rounded -xpow248 power 216741082. 250290244 -> Infinity Overflow Inexact Rounded -xrem248 remainder 216741082. 250290244 -> 216741082 -xsub248 subtract 216741082. 250290244 -> -33549162 -xadd249 add -6364720.49 5539245.64 -> -825474.85 -xcom249 compare -6364720.49 5539245.64 -> -1 -xdiv249 divide -6364720.49 5539245.64 -> -1.14902297 Inexact Rounded -xdvi249 divideint -6364720.49 5539245.64 -> -1 -xmul249 multiply -6364720.49 5539245.64 -> -3.52557502E+13 Inexact Rounded -xpow249 power -6364720.49 5539246 -> 2.96894641E+37687807 Inexact Rounded -xrem249 remainder -6364720.49 5539245.64 -> -825474.85 -xsub249 subtract -6364720.49 5539245.64 -> -11903966.1 Inexact Rounded -xadd250 add -814599.475 -14.5431191 -> -814614.018 Inexact Rounded -xcom250 compare -814599.475 -14.5431191 -> -1 -xdiv250 divide -814599.475 -14.5431191 -> 56012.7074 Inexact Rounded -xdvi250 divideint -814599.475 -14.5431191 -> 56012 -xmul250 multiply -814599.475 -14.5431191 -> 11846817.2 Inexact Rounded -xpow250 power -814599.475 -15 -> -2.16689622E-89 Inexact Rounded -xrem250 remainder -814599.475 -14.5431191 -> -10.2879708 -xsub250 subtract -814599.475 -14.5431191 -> -814584.932 Inexact Rounded -xadd251 add -877498.755 507408724E-168628106 -> -877498.755 Inexact Rounded -xcom251 compare -877498.755 507408724E-168628106 -> -1 -xdiv251 divide -877498.755 507408724E-168628106 -> -1.72937262E+168628103 Inexact Rounded -xdvi251 divideint -877498.755 507408724E-168628106 -> NaN Division_impossible -xmul251 multiply -877498.755 507408724E-168628106 -> -4.45250524E-168628092 Inexact Rounded -xpow251 power -877498.755 5 -> -5.20274505E+29 Inexact Rounded -xrem251 remainder -877498.755 507408724E-168628106 -> NaN Division_impossible -xsub251 subtract -877498.755 507408724E-168628106 -> -877498.755 Inexact Rounded -xadd252 add 10634446.5E+475783861 50.7213056E+17807809 -> 1.06344465E+475783868 Inexact Rounded -xcom252 compare 10634446.5E+475783861 50.7213056E+17807809 -> 1 -xdiv252 divide 10634446.5E+475783861 50.7213056E+17807809 -> 2.09664289E+457976057 Inexact Rounded -xdvi252 divideint 10634446.5E+475783861 50.7213056E+17807809 -> NaN Division_impossible -xmul252 multiply 10634446.5E+475783861 50.7213056E+17807809 -> 5.39393011E+493591678 Inexact Rounded -xpow252 power 10634446.5E+475783861 5 -> Infinity Overflow Inexact Rounded -xrem252 remainder 10634446.5E+475783861 50.7213056E+17807809 -> NaN Division_impossible -xsub252 subtract 10634446.5E+475783861 50.7213056E+17807809 -> 1.06344465E+475783868 Inexact Rounded -xadd253 add -162726.257E-597285918 -4391.54799 -> -4391.54799 Inexact Rounded -xcom253 compare -162726.257E-597285918 -4391.54799 -> 1 -xdiv253 divide -162726.257E-597285918 -4391.54799 -> 3.70544185E-597285917 Inexact Rounded -xdvi253 divideint -162726.257E-597285918 -4391.54799 -> 0 -xmul253 multiply -162726.257E-597285918 -4391.54799 -> 7.14620167E-597285910 Inexact Rounded -xpow253 power -162726.257E-597285918 -4392 -> Infinity Overflow Inexact Rounded -xrem253 remainder -162726.257E-597285918 -4391.54799 -> -1.62726257E-597285913 -xsub253 subtract -162726.257E-597285918 -4391.54799 -> 4391.54799 Inexact Rounded -xadd254 add 700354586.E-99856707 7198.0493E+436250299 -> 7.19804930E+436250302 Inexact Rounded -xcom254 compare 700354586.E-99856707 7198.0493E+436250299 -> -1 -xdiv254 divide 700354586.E-99856707 7198.0493E+436250299 -> 9.72978312E-536107002 Inexact Rounded -xdvi254 divideint 700354586.E-99856707 7198.0493E+436250299 -> 0 -xmul254 multiply 700354586.E-99856707 7198.0493E+436250299 -> 5.04118684E+336393604 Inexact Rounded -xpow254 power 700354586.E-99856707 7 -> 8.26467610E-698996888 Inexact Rounded -xrem254 remainder 700354586.E-99856707 7198.0493E+436250299 -> 7.00354586E-99856699 -xsub254 subtract 700354586.E-99856707 7198.0493E+436250299 -> -7.19804930E+436250302 Inexact Rounded -xadd255 add 39617663E-463704664 -895.290346 -> -895.290346 Inexact Rounded -xcom255 compare 39617663E-463704664 -895.290346 -> 1 -xdiv255 divide 39617663E-463704664 -895.290346 -> -4.42511898E-463704660 Inexact Rounded -xdvi255 divideint 39617663E-463704664 -895.290346 -> -0 -xmul255 multiply 39617663E-463704664 -895.290346 -> -3.54693112E-463704654 Inexact Rounded -xpow255 power 39617663E-463704664 -895 -> Infinity Overflow Inexact Rounded -xrem255 remainder 39617663E-463704664 -895.290346 -> 3.9617663E-463704657 -xsub255 subtract 39617663E-463704664 -895.290346 -> 895.290346 Inexact Rounded -xadd256 add 5350882.59 -36329829 -> -30978946.4 Inexact Rounded -xcom256 compare 5350882.59 -36329829 -> 1 -xdiv256 divide 5350882.59 -36329829 -> -0.147286204 Inexact Rounded -xdvi256 divideint 5350882.59 -36329829 -> -0 -xmul256 multiply 5350882.59 -36329829 -> -1.94396649E+14 Inexact Rounded -xpow256 power 5350882.59 -36329829 -> 9.77006107E-244442546 Inexact Rounded -xrem256 remainder 5350882.59 -36329829 -> 5350882.59 -xsub256 subtract 5350882.59 -36329829 -> 41680711.6 Inexact Rounded -xadd257 add 91966.4084E+210382952 166740.46E-42001390 -> 9.19664084E+210382956 Inexact Rounded -xcom257 compare 91966.4084E+210382952 166740.46E-42001390 -> 1 -xdiv257 divide 91966.4084E+210382952 166740.46E-42001390 -> 5.51554244E+252384341 Inexact Rounded -xdvi257 divideint 91966.4084E+210382952 166740.46E-42001390 -> NaN Division_impossible -xmul257 multiply 91966.4084E+210382952 166740.46E-42001390 -> 1.53345212E+168381572 Inexact Rounded -xpow257 power 91966.4084E+210382952 2 -> 8.45782027E+420765913 Inexact Rounded -xrem257 remainder 91966.4084E+210382952 166740.46E-42001390 -> NaN Division_impossible -xsub257 subtract 91966.4084E+210382952 166740.46E-42001390 -> 9.19664084E+210382956 Inexact Rounded -xadd258 add 231899031.E-481759076 726.337100 -> 726.337100 Inexact Rounded -xcom258 compare 231899031.E-481759076 726.337100 -> -1 -xdiv258 divide 231899031.E-481759076 726.337100 -> 3.19271907E-481759071 Inexact Rounded -xdvi258 divideint 231899031.E-481759076 726.337100 -> 0 -xmul258 multiply 231899031.E-481759076 726.337100 -> 1.68436870E-481759065 Inexact Rounded -xpow258 power 231899031.E-481759076 726 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem258 remainder 231899031.E-481759076 726.337100 -> 2.31899031E-481759068 -xsub258 subtract 231899031.E-481759076 726.337100 -> -726.337100 Inexact Rounded -xadd259 add -9611312.33 22109735.9 -> 12498423.6 Inexact Rounded -xcom259 compare -9611312.33 22109735.9 -> -1 -xdiv259 divide -9611312.33 22109735.9 -> -0.434709504 Inexact Rounded -xdvi259 divideint -9611312.33 22109735.9 -> -0 -xmul259 multiply -9611312.33 22109735.9 -> -2.12503577E+14 Inexact Rounded -xpow259 power -9611312.33 22109736 -> 6.74530828E+154387481 Inexact Rounded -xrem259 remainder -9611312.33 22109735.9 -> -9611312.33 -xsub259 subtract -9611312.33 22109735.9 -> -31721048.2 Inexact Rounded -xadd260 add -5604938.15E-36812542 735937577. -> 735937577 Inexact Rounded -xcom260 compare -5604938.15E-36812542 735937577. -> -1 -xdiv260 divide -5604938.15E-36812542 735937577. -> -7.61605104E-36812545 Inexact Rounded -xdvi260 divideint -5604938.15E-36812542 735937577. -> -0 -xmul260 multiply -5604938.15E-36812542 735937577. -> -4.12488460E-36812527 Inexact Rounded -xpow260 power -5604938.15E-36812542 735937577 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem260 remainder -5604938.15E-36812542 735937577. -> -5.60493815E-36812536 -xsub260 subtract -5604938.15E-36812542 735937577. -> -735937577 Inexact Rounded -xadd261 add 693881413. 260547224E-480281418 -> 693881413 Inexact Rounded -xcom261 compare 693881413. 260547224E-480281418 -> 1 -xdiv261 divide 693881413. 260547224E-480281418 -> 2.66316947E+480281418 Inexact Rounded -xdvi261 divideint 693881413. 260547224E-480281418 -> NaN Division_impossible -xmul261 multiply 693881413. 260547224E-480281418 -> 1.80788876E-480281401 Inexact Rounded -xpow261 power 693881413. 3 -> 3.34084066E+26 Inexact Rounded -xrem261 remainder 693881413. 260547224E-480281418 -> NaN Division_impossible -xsub261 subtract 693881413. 260547224E-480281418 -> 693881413 Inexact Rounded -xadd262 add -34865.7378E-368768024 2297117.88 -> 2297117.88 Inexact Rounded -xcom262 compare -34865.7378E-368768024 2297117.88 -> -1 -xdiv262 divide -34865.7378E-368768024 2297117.88 -> -1.51780360E-368768026 Inexact Rounded -xdvi262 divideint -34865.7378E-368768024 2297117.88 -> -0 -xmul262 multiply -34865.7378E-368768024 2297117.88 -> -8.00907097E-368768014 Inexact Rounded -xpow262 power -34865.7378E-368768024 2297118 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem262 remainder -34865.7378E-368768024 2297117.88 -> -3.48657378E-368768020 -xsub262 subtract -34865.7378E-368768024 2297117.88 -> -2297117.88 Inexact Rounded -xadd263 add 1123.32456 7.86747918E+930888796 -> 7.86747918E+930888796 Inexact Rounded -xcom263 compare 1123.32456 7.86747918E+930888796 -> -1 -xdiv263 divide 1123.32456 7.86747918E+930888796 -> 1.42780748E-930888794 Inexact Rounded -xdvi263 divideint 1123.32456 7.86747918E+930888796 -> 0 -xmul263 multiply 1123.32456 7.86747918E+930888796 -> 8.83773259E+930888799 Inexact Rounded -xpow263 power 1123.32456 8 -> 2.53537401E+24 Inexact Rounded -xrem263 remainder 1123.32456 7.86747918E+930888796 -> 1123.32456 -xsub263 subtract 1123.32456 7.86747918E+930888796 -> -7.86747918E+930888796 Inexact Rounded -xadd264 add 56.6607465E+467812565 909552512E+764516200 -> 9.09552512E+764516208 Inexact Rounded -xcom264 compare 56.6607465E+467812565 909552512E+764516200 -> -1 -xdiv264 divide 56.6607465E+467812565 909552512E+764516200 -> 6.22951899E-296703643 Inexact Rounded -xdvi264 divideint 56.6607465E+467812565 909552512E+764516200 -> 0 -xmul264 multiply 56.6607465E+467812565 909552512E+764516200 -> Infinity Inexact Overflow Rounded -xpow264 power 56.6607465E+467812565 9 -> Infinity Overflow Inexact Rounded -xrem264 remainder 56.6607465E+467812565 909552512E+764516200 -> 5.66607465E+467812566 -xsub264 subtract 56.6607465E+467812565 909552512E+764516200 -> -9.09552512E+764516208 Inexact Rounded -xadd265 add -1.85771840E+365552540 -73028339.7 -> -1.85771840E+365552540 Inexact Rounded -xcom265 compare -1.85771840E+365552540 -73028339.7 -> -1 -xdiv265 divide -1.85771840E+365552540 -73028339.7 -> 2.54383217E+365552532 Inexact Rounded -xdvi265 divideint -1.85771840E+365552540 -73028339.7 -> NaN Division_impossible -xmul265 multiply -1.85771840E+365552540 -73028339.7 -> 1.35666090E+365552548 Inexact Rounded -xpow265 power -1.85771840E+365552540 -73028340 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem265 remainder -1.85771840E+365552540 -73028339.7 -> NaN Division_impossible -xsub265 subtract -1.85771840E+365552540 -73028339.7 -> -1.85771840E+365552540 Inexact Rounded -xadd266 add 34.1935525 -40767.6450 -> -40733.4514 Inexact Rounded -xcom266 compare 34.1935525 -40767.6450 -> 1 -xdiv266 divide 34.1935525 -40767.6450 -> -0.000838742402 Inexact Rounded -xdvi266 divideint 34.1935525 -40767.6450 -> -0 -xmul266 multiply 34.1935525 -40767.6450 -> -1393990.61 Inexact Rounded -xpow266 power 34.1935525 -40768 -> 1.45174210E-62536 Inexact Rounded -xrem266 remainder 34.1935525 -40767.6450 -> 34.1935525 -xsub266 subtract 34.1935525 -40767.6450 -> 40801.8386 Inexact Rounded -xadd267 add 26.0009168E+751618294 -304019.929 -> 2.60009168E+751618295 Inexact Rounded -xcom267 compare 26.0009168E+751618294 -304019.929 -> 1 -xdiv267 divide 26.0009168E+751618294 -304019.929 -> -8.55237250E+751618289 Inexact Rounded -xdvi267 divideint 26.0009168E+751618294 -304019.929 -> NaN Division_impossible -xmul267 multiply 26.0009168E+751618294 -304019.929 -> -7.90479688E+751618300 Inexact Rounded -xpow267 power 26.0009168E+751618294 -304020 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem267 remainder 26.0009168E+751618294 -304019.929 -> NaN Division_impossible -xsub267 subtract 26.0009168E+751618294 -304019.929 -> 2.60009168E+751618295 Inexact Rounded -xadd268 add -58.4853072E+588540055 -4647.3205 -> -5.84853072E+588540056 Inexact Rounded -xcom268 compare -58.4853072E+588540055 -4647.3205 -> -1 -xdiv268 divide -58.4853072E+588540055 -4647.3205 -> 1.25847372E+588540053 Inexact Rounded -xdvi268 divideint -58.4853072E+588540055 -4647.3205 -> NaN Division_impossible -xmul268 multiply -58.4853072E+588540055 -4647.3205 -> 2.71799967E+588540060 Inexact Rounded -xpow268 power -58.4853072E+588540055 -4647 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem268 remainder -58.4853072E+588540055 -4647.3205 -> NaN Division_impossible -xsub268 subtract -58.4853072E+588540055 -4647.3205 -> -5.84853072E+588540056 Inexact Rounded -xadd269 add 51.025101 -4467691.57 -> -4467640.54 Inexact Rounded -xcom269 compare 51.025101 -4467691.57 -> 1 -xdiv269 divide 51.025101 -4467691.57 -> -0.0000114209095 Inexact Rounded -xdvi269 divideint 51.025101 -4467691.57 -> -0 -xmul269 multiply 51.025101 -4467691.57 -> -227964414 Inexact Rounded -xpow269 power 51.025101 -4467692 -> 4.49462589E-7629853 Inexact Rounded -xrem269 remainder 51.025101 -4467691.57 -> 51.025101 -xsub269 subtract 51.025101 -4467691.57 -> 4467742.60 Inexact Rounded -xadd270 add -2214.76582 379785372E+223117572 -> 3.79785372E+223117580 Inexact Rounded -xcom270 compare -2214.76582 379785372E+223117572 -> -1 -xdiv270 divide -2214.76582 379785372E+223117572 -> -5.83162487E-223117578 Inexact Rounded -xdvi270 divideint -2214.76582 379785372E+223117572 -> -0 -xmul270 multiply -2214.76582 379785372E+223117572 -> -8.41135661E+223117583 Inexact Rounded -xpow270 power -2214.76582 4 -> 2.40608658E+13 Inexact Rounded -xrem270 remainder -2214.76582 379785372E+223117572 -> -2214.76582 -xsub270 subtract -2214.76582 379785372E+223117572 -> -3.79785372E+223117580 Inexact Rounded -xadd271 add -2564.75207E-841443929 -653498187 -> -653498187 Inexact Rounded -xcom271 compare -2564.75207E-841443929 -653498187 -> 1 -xdiv271 divide -2564.75207E-841443929 -653498187 -> 3.92465063E-841443935 Inexact Rounded -xdvi271 divideint -2564.75207E-841443929 -653498187 -> 0 -xmul271 multiply -2564.75207E-841443929 -653498187 -> 1.67606083E-841443917 Inexact Rounded -xpow271 power -2564.75207E-841443929 -653498187 -> -Infinity Overflow Inexact Rounded -xrem271 remainder -2564.75207E-841443929 -653498187 -> -2.56475207E-841443926 -xsub271 subtract -2564.75207E-841443929 -653498187 -> 653498187 Inexact Rounded -xadd272 add 513115529. 27775075.6E+217133352 -> 2.77750756E+217133359 Inexact Rounded -xcom272 compare 513115529. 27775075.6E+217133352 -> -1 -xdiv272 divide 513115529. 27775075.6E+217133352 -> 1.84739562E-217133351 Inexact Rounded -xdvi272 divideint 513115529. 27775075.6E+217133352 -> 0 -xmul272 multiply 513115529. 27775075.6E+217133352 -> 1.42518226E+217133368 Inexact Rounded -xpow272 power 513115529. 3 -> 1.35096928E+26 Inexact Rounded -xrem272 remainder 513115529. 27775075.6E+217133352 -> 513115529 -xsub272 subtract 513115529. 27775075.6E+217133352 -> -2.77750756E+217133359 Inexact Rounded -xadd273 add -247157.208 -532990.453 -> -780147.661 -xcom273 compare -247157.208 -532990.453 -> 1 -xdiv273 divide -247157.208 -532990.453 -> 0.463717890 Inexact Rounded -xdvi273 divideint -247157.208 -532990.453 -> 0 -xmul273 multiply -247157.208 -532990.453 -> 1.31732432E+11 Inexact Rounded -xpow273 power -247157.208 -532990 -> 1.48314033E-2874401 Inexact Rounded -xrem273 remainder -247157.208 -532990.453 -> -247157.208 -xsub273 subtract -247157.208 -532990.453 -> 285833.245 -xadd274 add 40.2490764E-339482253 7626.85442E+594264540 -> 7.62685442E+594264543 Inexact Rounded -xcom274 compare 40.2490764E-339482253 7626.85442E+594264540 -> -1 -xdiv274 divide 40.2490764E-339482253 7626.85442E+594264540 -> 5.27728395E-933746796 Inexact Rounded -xdvi274 divideint 40.2490764E-339482253 7626.85442E+594264540 -> 0 -xmul274 multiply 40.2490764E-339482253 7626.85442E+594264540 -> 3.06973846E+254782292 Inexact Rounded -xpow274 power 40.2490764E-339482253 8 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem274 remainder 40.2490764E-339482253 7626.85442E+594264540 -> 4.02490764E-339482252 -xsub274 subtract 40.2490764E-339482253 7626.85442E+594264540 -> -7.62685442E+594264543 Inexact Rounded -xadd275 add -1156008.8 -8870382.36 -> -10026391.2 Inexact Rounded -xcom275 compare -1156008.8 -8870382.36 -> 1 -xdiv275 divide -1156008.8 -8870382.36 -> 0.130322319 Inexact Rounded -xdvi275 divideint -1156008.8 -8870382.36 -> 0 -xmul275 multiply -1156008.8 -8870382.36 -> 1.02542401E+13 Inexact Rounded -xpow275 power -1156008.8 -8870382 -> 4.32494996E-53780782 Inexact Rounded -xrem275 remainder -1156008.8 -8870382.36 -> -1156008.80 -xsub275 subtract -1156008.8 -8870382.36 -> 7714373.56 -xadd276 add 880097928. -52455011.1E+204538218 -> -5.24550111E+204538225 Inexact Rounded -xcom276 compare 880097928. -52455011.1E+204538218 -> 1 -xdiv276 divide 880097928. -52455011.1E+204538218 -> -1.67781478E-204538217 Inexact Rounded -xdvi276 divideint 880097928. -52455011.1E+204538218 -> -0 -xmul276 multiply 880097928. -52455011.1E+204538218 -> -4.61655466E+204538234 Inexact Rounded -xpow276 power 880097928. -5 -> 1.89384751E-45 Inexact Rounded -xrem276 remainder 880097928. -52455011.1E+204538218 -> 880097928 -xsub276 subtract 880097928. -52455011.1E+204538218 -> 5.24550111E+204538225 Inexact Rounded -xadd277 add 5796.2524 34458329.7E+832129426 -> 3.44583297E+832129433 Inexact Rounded -xcom277 compare 5796.2524 34458329.7E+832129426 -> -1 -xdiv277 divide 5796.2524 34458329.7E+832129426 -> 1.68210486E-832129430 Inexact Rounded -xdvi277 divideint 5796.2524 34458329.7E+832129426 -> 0 -xmul277 multiply 5796.2524 34458329.7E+832129426 -> 1.99729176E+832129437 Inexact Rounded -xpow277 power 5796.2524 3 -> 1.94734037E+11 Inexact Rounded -xrem277 remainder 5796.2524 34458329.7E+832129426 -> 5796.2524 -xsub277 subtract 5796.2524 34458329.7E+832129426 -> -3.44583297E+832129433 Inexact Rounded -xadd278 add 27.1000923E-218032223 -45.0198341 -> -45.0198341 Inexact Rounded -xcom278 compare 27.1000923E-218032223 -45.0198341 -> 1 -xdiv278 divide 27.1000923E-218032223 -45.0198341 -> -6.01958955E-218032224 Inexact Rounded -xdvi278 divideint 27.1000923E-218032223 -45.0198341 -> -0 -xmul278 multiply 27.1000923E-218032223 -45.0198341 -> -1.22004166E-218032220 Inexact Rounded -xpow278 power 27.1000923E-218032223 -45 -> Infinity Overflow Inexact Rounded -xrem278 remainder 27.1000923E-218032223 -45.0198341 -> 2.71000923E-218032222 -xsub278 subtract 27.1000923E-218032223 -45.0198341 -> 45.0198341 Inexact Rounded -xadd279 add 42643477.8 26118465E-730390549 -> 42643477.8 Inexact Rounded -xcom279 compare 42643477.8 26118465E-730390549 -> 1 -xdiv279 divide 42643477.8 26118465E-730390549 -> 1.63269464E+730390549 Inexact Rounded -xdvi279 divideint 42643477.8 26118465E-730390549 -> NaN Division_impossible -xmul279 multiply 42643477.8 26118465E-730390549 -> 1.11378218E-730390534 Inexact Rounded -xpow279 power 42643477.8 3 -> 7.75457230E+22 Inexact Rounded -xrem279 remainder 42643477.8 26118465E-730390549 -> NaN Division_impossible -xsub279 subtract 42643477.8 26118465E-730390549 -> 42643477.8 Inexact Rounded -xadd280 add -31918.9176E-163031657 -21.5422824E-807317258 -> -3.19189176E-163031653 Inexact Rounded -xcom280 compare -31918.9176E-163031657 -21.5422824E-807317258 -> -1 -xdiv280 divide -31918.9176E-163031657 -21.5422824E-807317258 -> 1.48168690E+644285604 Inexact Rounded -xdvi280 divideint -31918.9176E-163031657 -21.5422824E-807317258 -> NaN Division_impossible -xmul280 multiply -31918.9176E-163031657 -21.5422824E-807317258 -> 6.87606337E-970348910 Inexact Rounded -xpow280 power -31918.9176E-163031657 -2 -> 9.81530250E+326063304 Inexact Rounded -xrem280 remainder -31918.9176E-163031657 -21.5422824E-807317258 -> NaN Division_impossible -xsub280 subtract -31918.9176E-163031657 -21.5422824E-807317258 -> -3.19189176E-163031653 Inexact Rounded -xadd281 add 84224841.0 2.62548255E+647087608 -> 2.62548255E+647087608 Inexact Rounded -xcom281 compare 84224841.0 2.62548255E+647087608 -> -1 -xdiv281 divide 84224841.0 2.62548255E+647087608 -> 3.20797565E-647087601 Inexact Rounded -xdvi281 divideint 84224841.0 2.62548255E+647087608 -> 0 -xmul281 multiply 84224841.0 2.62548255E+647087608 -> 2.21130850E+647087616 Inexact Rounded -xpow281 power 84224841.0 3 -> 5.97476185E+23 Inexact Rounded -xrem281 remainder 84224841.0 2.62548255E+647087608 -> 84224841.0 -xsub281 subtract 84224841.0 2.62548255E+647087608 -> -2.62548255E+647087608 Inexact Rounded -xadd282 add -64413698.9 -6674.1055E-701047852 -> -64413698.9 Inexact Rounded -xcom282 compare -64413698.9 -6674.1055E-701047852 -> -1 -xdiv282 divide -64413698.9 -6674.1055E-701047852 -> 9.65128569E+701047855 Inexact Rounded -xdvi282 divideint -64413698.9 -6674.1055E-701047852 -> NaN Division_impossible -xmul282 multiply -64413698.9 -6674.1055E-701047852 -> 4.29903822E-701047841 Inexact Rounded -xpow282 power -64413698.9 -7 -> -2.17346338E-55 Inexact Rounded -xrem282 remainder -64413698.9 -6674.1055E-701047852 -> NaN Division_impossible -xsub282 subtract -64413698.9 -6674.1055E-701047852 -> -64413698.9 Inexact Rounded -xadd283 add -62.5059208 9.5795779E-898350012 -> -62.5059208 Inexact Rounded -xcom283 compare -62.5059208 9.5795779E-898350012 -> -1 -xdiv283 divide -62.5059208 9.5795779E-898350012 -> -6.52491388E+898350012 Inexact Rounded -xdvi283 divideint -62.5059208 9.5795779E-898350012 -> NaN Division_impossible -xmul283 multiply -62.5059208 9.5795779E-898350012 -> -5.98780338E-898350010 Inexact Rounded -xpow283 power -62.5059208 10 -> 9.10356659E+17 Inexact Rounded -xrem283 remainder -62.5059208 9.5795779E-898350012 -> NaN Division_impossible -xsub283 subtract -62.5059208 9.5795779E-898350012 -> -62.5059208 Inexact Rounded -xadd284 add 9090950.80 436.400932 -> 9091387.20 Inexact Rounded -xcom284 compare 9090950.80 436.400932 -> 1 -xdiv284 divide 9090950.80 436.400932 -> 20831.6485 Inexact Rounded -xdvi284 divideint 9090950.80 436.400932 -> 20831 -xmul284 multiply 9090950.80 436.400932 -> 3.96729940E+9 Inexact Rounded -xpow284 power 9090950.80 436 -> 8.98789557E+3033 Inexact Rounded -xrem284 remainder 9090950.80 436.400932 -> 282.985508 -xsub284 subtract 9090950.80 436.400932 -> 9090514.40 Inexact Rounded -xadd285 add -89833825.7E+329205393 -779430.194 -> -8.98338257E+329205400 Inexact Rounded -xcom285 compare -89833825.7E+329205393 -779430.194 -> -1 -xdiv285 divide -89833825.7E+329205393 -779430.194 -> 1.15255768E+329205395 Inexact Rounded -xdvi285 divideint -89833825.7E+329205393 -779430.194 -> NaN Division_impossible -xmul285 multiply -89833825.7E+329205393 -779430.194 -> 7.00191962E+329205406 Inexact Rounded -xpow285 power -89833825.7E+329205393 -779430 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem285 remainder -89833825.7E+329205393 -779430.194 -> NaN Division_impossible -xsub285 subtract -89833825.7E+329205393 -779430.194 -> -8.98338257E+329205400 Inexact Rounded -xadd286 add -714562.019E+750205688 704079764 -> -7.14562019E+750205693 Inexact Rounded -xcom286 compare -714562.019E+750205688 704079764 -> -1 -xdiv286 divide -714562.019E+750205688 704079764 -> -1.01488788E+750205685 Inexact Rounded -xdvi286 divideint -714562.019E+750205688 704079764 -> NaN Division_impossible -xmul286 multiply -714562.019E+750205688 704079764 -> -5.03108658E+750205702 Inexact Rounded -xpow286 power -714562.019E+750205688 704079764 -> Infinity Overflow Inexact Rounded -xrem286 remainder -714562.019E+750205688 704079764 -> NaN Division_impossible -xsub286 subtract -714562.019E+750205688 704079764 -> -7.14562019E+750205693 Inexact Rounded -xadd287 add -584537670. 31139.7737E-146687560 -> -584537670 Inexact Rounded -xcom287 compare -584537670. 31139.7737E-146687560 -> -1 -xdiv287 divide -584537670. 31139.7737E-146687560 -> -1.87714168E+146687564 Inexact Rounded -xdvi287 divideint -584537670. 31139.7737E-146687560 -> NaN Division_impossible -xmul287 multiply -584537670. 31139.7737E-146687560 -> -1.82023708E-146687547 Inexact Rounded -xpow287 power -584537670. 3 -> -1.99727337E+26 Inexact Rounded -xrem287 remainder -584537670. 31139.7737E-146687560 -> NaN Division_impossible -xsub287 subtract -584537670. 31139.7737E-146687560 -> -584537670 Inexact Rounded -xadd288 add -4.18074650E-858746879 571035.277E-279409165 -> 5.71035277E-279409160 Inexact Rounded -xcom288 compare -4.18074650E-858746879 571035.277E-279409165 -> -1 -xdiv288 divide -4.18074650E-858746879 571035.277E-279409165 -> -7.32134540E-579337720 Inexact Rounded -xdvi288 divideint -4.18074650E-858746879 571035.277E-279409165 -> -0 -xmul288 multiply -4.18074650E-858746879 571035.277E-279409165 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow288 power -4.18074650E-858746879 6 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem288 remainder -4.18074650E-858746879 571035.277E-279409165 -> -4.18074650E-858746879 -xsub288 subtract -4.18074650E-858746879 571035.277E-279409165 -> -5.71035277E-279409160 Inexact Rounded -xadd289 add 5.15309635 -695649.219E+451948183 -> -6.95649219E+451948188 Inexact Rounded -xcom289 compare 5.15309635 -695649.219E+451948183 -> 1 -xdiv289 divide 5.15309635 -695649.219E+451948183 -> -7.40760747E-451948189 Inexact Rounded -xdvi289 divideint 5.15309635 -695649.219E+451948183 -> -0 -xmul289 multiply 5.15309635 -695649.219E+451948183 -> -3.58474745E+451948189 Inexact Rounded -xpow289 power 5.15309635 -7 -> 0.0000103638749 Inexact Rounded -xrem289 remainder 5.15309635 -695649.219E+451948183 -> 5.15309635 -xsub289 subtract 5.15309635 -695649.219E+451948183 -> 6.95649219E+451948188 Inexact Rounded -xadd290 add -940030153.E+83797657 -4.11510193 -> -9.40030153E+83797665 Inexact Rounded -xcom290 compare -940030153.E+83797657 -4.11510193 -> -1 -xdiv290 divide -940030153.E+83797657 -4.11510193 -> 2.28434233E+83797665 Inexact Rounded -xdvi290 divideint -940030153.E+83797657 -4.11510193 -> NaN Division_impossible -xmul290 multiply -940030153.E+83797657 -4.11510193 -> 3.86831990E+83797666 Inexact Rounded -xpow290 power -940030153.E+83797657 -4 -> 1.28065710E-335190664 Inexact Rounded -xrem290 remainder -940030153.E+83797657 -4.11510193 -> NaN Division_impossible -xsub290 subtract -940030153.E+83797657 -4.11510193 -> -9.40030153E+83797665 Inexact Rounded -xadd291 add 89088.9683E+587739290 1.31932110 -> 8.90889683E+587739294 Inexact Rounded -xcom291 compare 89088.9683E+587739290 1.31932110 -> 1 -xdiv291 divide 89088.9683E+587739290 1.31932110 -> 6.75263727E+587739294 Inexact Rounded -xdvi291 divideint 89088.9683E+587739290 1.31932110 -> NaN Division_impossible -xmul291 multiply 89088.9683E+587739290 1.31932110 -> 1.17536956E+587739295 Inexact Rounded -xpow291 power 89088.9683E+587739290 1 -> 8.90889683E+587739294 -xrem291 remainder 89088.9683E+587739290 1.31932110 -> NaN Division_impossible -xsub291 subtract 89088.9683E+587739290 1.31932110 -> 8.90889683E+587739294 Inexact Rounded -xadd292 add 3336750 6.47961126 -> 3336756.48 Inexact Rounded -xcom292 compare 3336750 6.47961126 -> 1 -xdiv292 divide 3336750 6.47961126 -> 514961.448 Inexact Rounded -xdvi292 divideint 3336750 6.47961126 -> 514961 -xmul292 multiply 3336750 6.47961126 -> 21620842.9 Inexact Rounded -xpow292 power 3336750 6 -> 1.38019997E+39 Inexact Rounded -xrem292 remainder 3336750 6.47961126 -> 2.90593914 -xsub292 subtract 3336750 6.47961126 -> 3336743.52 Inexact Rounded -xadd293 add 904654622. 692065270.E+329081915 -> 6.92065270E+329081923 Inexact Rounded -xcom293 compare 904654622. 692065270.E+329081915 -> -1 -xdiv293 divide 904654622. 692065270.E+329081915 -> 1.30718107E-329081915 Inexact Rounded -xdvi293 divideint 904654622. 692065270.E+329081915 -> 0 -xmul293 multiply 904654622. 692065270.E+329081915 -> 6.26080045E+329081932 Inexact Rounded -xpow293 power 904654622. 7 -> 4.95883485E+62 Inexact Rounded -xrem293 remainder 904654622. 692065270.E+329081915 -> 904654622 -xsub293 subtract 904654622. 692065270.E+329081915 -> -6.92065270E+329081923 Inexact Rounded -xadd294 add 304804380 -4681.23698 -> 304799699 Inexact Rounded -xcom294 compare 304804380 -4681.23698 -> 1 -xdiv294 divide 304804380 -4681.23698 -> -65111.9312 Inexact Rounded -xdvi294 divideint 304804380 -4681.23698 -> -65111 -xmul294 multiply 304804380 -4681.23698 -> -1.42686154E+12 Inexact Rounded -xpow294 power 304804380 -4681 -> 1.98037102E-39714 Inexact Rounded -xrem294 remainder 304804380 -4681.23698 -> 4358.99522 -xsub294 subtract 304804380 -4681.23698 -> 304809061 Inexact Rounded -xadd295 add 674.55569 -82981.2684E+852890752 -> -8.29812684E+852890756 Inexact Rounded -xcom295 compare 674.55569 -82981.2684E+852890752 -> 1 -xdiv295 divide 674.55569 -82981.2684E+852890752 -> -8.12901156E-852890755 Inexact Rounded -xdvi295 divideint 674.55569 -82981.2684E+852890752 -> -0 -xmul295 multiply 674.55569 -82981.2684E+852890752 -> -5.59754868E+852890759 Inexact Rounded -xpow295 power 674.55569 -8 -> 2.33269265E-23 Inexact Rounded -xrem295 remainder 674.55569 -82981.2684E+852890752 -> 674.55569 -xsub295 subtract 674.55569 -82981.2684E+852890752 -> 8.29812684E+852890756 Inexact Rounded -xadd296 add -5111.51025E-108006096 5448870.4E+279212255 -> 5.44887040E+279212261 Inexact Rounded -xcom296 compare -5111.51025E-108006096 5448870.4E+279212255 -> -1 -xdiv296 divide -5111.51025E-108006096 5448870.4E+279212255 -> -9.38086222E-387218355 Inexact Rounded -xdvi296 divideint -5111.51025E-108006096 5448870.4E+279212255 -> -0 -xmul296 multiply -5111.51025E-108006096 5448870.4E+279212255 -> -2.78519569E+171206169 Inexact Rounded -xpow296 power -5111.51025E-108006096 5 -> -3.48936323E-540030462 Inexact Rounded -xrem296 remainder -5111.51025E-108006096 5448870.4E+279212255 -> -5.11151025E-108006093 -xsub296 subtract -5111.51025E-108006096 5448870.4E+279212255 -> -5.44887040E+279212261 Inexact Rounded -xadd297 add -2623.45068 -466463938. -> -466466561 Inexact Rounded -xcom297 compare -2623.45068 -466463938. -> 1 -xdiv297 divide -2623.45068 -466463938. -> 0.00000562412325 Inexact Rounded -xdvi297 divideint -2623.45068 -466463938. -> 0 -xmul297 multiply -2623.45068 -466463938. -> 1.22374514E+12 Inexact Rounded -xpow297 power -2623.45068 -466463938 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem297 remainder -2623.45068 -466463938. -> -2623.45068 -xsub297 subtract -2623.45068 -466463938. -> 466461315 Inexact Rounded -xadd298 add 299350.435 3373.33551 -> 302723.771 Inexact Rounded -xcom298 compare 299350.435 3373.33551 -> 1 -xdiv298 divide 299350.435 3373.33551 -> 88.7401903 Inexact Rounded -xdvi298 divideint 299350.435 3373.33551 -> 88 -xmul298 multiply 299350.435 3373.33551 -> 1.00980945E+9 Inexact Rounded -xpow298 power 299350.435 3373 -> 1.42817370E+18471 Inexact Rounded -xrem298 remainder 299350.435 3373.33551 -> 2496.91012 -xsub298 subtract 299350.435 3373.33551 -> 295977.099 Inexact Rounded -xadd299 add -6589947.80 -2448.75933E-591549734 -> -6589947.80 Inexact Rounded -xcom299 compare -6589947.80 -2448.75933E-591549734 -> -1 -xdiv299 divide -6589947.80 -2448.75933E-591549734 -> 2.69113739E+591549737 Inexact Rounded -xdvi299 divideint -6589947.80 -2448.75933E-591549734 -> NaN Division_impossible -xmul299 multiply -6589947.80 -2448.75933E-591549734 -> 1.61371962E-591549724 Inexact Rounded -xpow299 power -6589947.80 -2 -> 2.30269305E-14 Inexact Rounded -xrem299 remainder -6589947.80 -2448.75933E-591549734 -> NaN Division_impossible -xsub299 subtract -6589947.80 -2448.75933E-591549734 -> -6589947.80 Inexact Rounded -xadd300 add 3774.5358E-491090520 173.060090 -> 173.060090 Inexact Rounded -xcom300 compare 3774.5358E-491090520 173.060090 -> -1 -xdiv300 divide 3774.5358E-491090520 173.060090 -> 2.18105503E-491090519 Inexact Rounded -xdvi300 divideint 3774.5358E-491090520 173.060090 -> 0 -xmul300 multiply 3774.5358E-491090520 173.060090 -> 6.53221505E-491090515 Inexact Rounded -xpow300 power 3774.5358E-491090520 173 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem300 remainder 3774.5358E-491090520 173.060090 -> 3.7745358E-491090517 -xsub300 subtract 3774.5358E-491090520 173.060090 -> -173.060090 Inexact Rounded -xadd301 add -13.6783690 -453.610117 -> -467.288486 Rounded -xcom301 compare -13.6783690 -453.610117 -> 1 -xdiv301 divide -13.6783690 -453.610117 -> 0.0301544619 Inexact Rounded -xdvi301 divideint -13.6783690 -453.610117 -> 0 -xmul301 multiply -13.6783690 -453.610117 -> 6204.64656 Inexact Rounded -xpow301 power -13.6783690 -454 -> 1.73948535E-516 Inexact Rounded -xrem301 remainder -13.6783690 -453.610117 -> -13.6783690 -xsub301 subtract -13.6783690 -453.610117 -> 439.931748 Rounded -xadd302 add -990100927.E-615244634 223801.421E+247632618 -> 2.23801421E+247632623 Inexact Rounded -xcom302 compare -990100927.E-615244634 223801.421E+247632618 -> -1 -xdiv302 divide -990100927.E-615244634 223801.421E+247632618 -> -4.42401537E-862877249 Inexact Rounded -xdvi302 divideint -990100927.E-615244634 223801.421E+247632618 -> -0 -xmul302 multiply -990100927.E-615244634 223801.421E+247632618 -> -2.21585994E-367612002 Inexact Rounded -xpow302 power -990100927.E-615244634 2 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem302 remainder -990100927.E-615244634 223801.421E+247632618 -> -9.90100927E-615244626 -xsub302 subtract -990100927.E-615244634 223801.421E+247632618 -> -2.23801421E+247632623 Inexact Rounded -xadd303 add 1275.10292 -667965353 -> -667964078 Inexact Rounded -xcom303 compare 1275.10292 -667965353 -> 1 -xdiv303 divide 1275.10292 -667965353 -> -0.00000190893572 Inexact Rounded -xdvi303 divideint 1275.10292 -667965353 -> -0 -xmul303 multiply 1275.10292 -667965353 -> -8.51724572E+11 Inexact Rounded -xpow303 power 1275.10292 -667965353 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem303 remainder 1275.10292 -667965353 -> 1275.10292 -xsub303 subtract 1275.10292 -667965353 -> 667966628 Inexact Rounded -xadd304 add -8.76375480E-596792197 992.077361 -> 992.077361 Inexact Rounded -xcom304 compare -8.76375480E-596792197 992.077361 -> -1 -xdiv304 divide -8.76375480E-596792197 992.077361 -> -8.83374134E-596792200 Inexact Rounded -xdvi304 divideint -8.76375480E-596792197 992.077361 -> -0 -xmul304 multiply -8.76375480E-596792197 992.077361 -> -8.69432273E-596792194 Inexact Rounded -xpow304 power -8.76375480E-596792197 992 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem304 remainder -8.76375480E-596792197 992.077361 -> -8.76375480E-596792197 -xsub304 subtract -8.76375480E-596792197 992.077361 -> -992.077361 Inexact Rounded -xadd305 add 953.976935E+385444720 96503.3378 -> 9.53976935E+385444722 Inexact Rounded -xcom305 compare 953.976935E+385444720 96503.3378 -> 1 -xdiv305 divide 953.976935E+385444720 96503.3378 -> 9.88542942E+385444717 Inexact Rounded -xdvi305 divideint 953.976935E+385444720 96503.3378 -> NaN Division_impossible -xmul305 multiply 953.976935E+385444720 96503.3378 -> 9.20619584E+385444727 Inexact Rounded -xpow305 power 953.976935E+385444720 96503 -> Infinity Overflow Inexact Rounded -xrem305 remainder 953.976935E+385444720 96503.3378 -> NaN Division_impossible -xsub305 subtract 953.976935E+385444720 96503.3378 -> 9.53976935E+385444722 Inexact Rounded -xadd306 add 213577152 -986710073E+31900046 -> -9.86710073E+31900054 Inexact Rounded -xcom306 compare 213577152 -986710073E+31900046 -> 1 -xdiv306 divide 213577152 -986710073E+31900046 -> -2.16453807E-31900047 Inexact Rounded -xdvi306 divideint 213577152 -986710073E+31900046 -> -0 -xmul306 multiply 213577152 -986710073E+31900046 -> -2.10738727E+31900063 Inexact Rounded -xpow306 power 213577152 -10 -> 5.06351487E-84 Inexact Rounded -xrem306 remainder 213577152 -986710073E+31900046 -> 213577152 -xsub306 subtract 213577152 -986710073E+31900046 -> 9.86710073E+31900054 Inexact Rounded -xadd307 add 91393.9398E-323439228 -135.701000 -> -135.701000 Inexact Rounded -xcom307 compare 91393.9398E-323439228 -135.701000 -> 1 -xdiv307 divide 91393.9398E-323439228 -135.701000 -> -6.73494962E-323439226 Inexact Rounded -xdvi307 divideint 91393.9398E-323439228 -135.701000 -> -0 -xmul307 multiply 91393.9398E-323439228 -135.701000 -> -1.24022490E-323439221 Inexact Rounded -xpow307 power 91393.9398E-323439228 -136 -> Infinity Overflow Inexact Rounded -xrem307 remainder 91393.9398E-323439228 -135.701000 -> 9.13939398E-323439224 -xsub307 subtract 91393.9398E-323439228 -135.701000 -> 135.701000 Inexact Rounded -xadd308 add -396.503557 45757264.E-254363788 -> -396.503557 Inexact Rounded -xcom308 compare -396.503557 45757264.E-254363788 -> -1 -xdiv308 divide -396.503557 45757264.E-254363788 -> -8.66536856E+254363782 Inexact Rounded -xdvi308 divideint -396.503557 45757264.E-254363788 -> NaN Division_impossible -xmul308 multiply -396.503557 45757264.E-254363788 -> -1.81429179E-254363778 Inexact Rounded -xpow308 power -396.503557 5 -> -9.80021128E+12 Inexact Rounded -xrem308 remainder -396.503557 45757264.E-254363788 -> NaN Division_impossible -xsub308 subtract -396.503557 45757264.E-254363788 -> -396.503557 Inexact Rounded -xadd309 add 59807846.1 1.53345254 -> 59807847.6 Inexact Rounded -xcom309 compare 59807846.1 1.53345254 -> 1 -xdiv309 divide 59807846.1 1.53345254 -> 39002084.9 Inexact Rounded -xdvi309 divideint 59807846.1 1.53345254 -> 39002084 -xmul309 multiply 59807846.1 1.53345254 -> 91712493.5 Inexact Rounded -xpow309 power 59807846.1 2 -> 3.57697846E+15 Inexact Rounded -xrem309 remainder 59807846.1 1.53345254 -> 1.32490664 -xsub309 subtract 59807846.1 1.53345254 -> 59807844.6 Inexact Rounded -xadd310 add -8046158.45 8.3635397 -> -8046150.09 Inexact Rounded -xcom310 compare -8046158.45 8.3635397 -> -1 -xdiv310 divide -8046158.45 8.3635397 -> -962051.803 Inexact Rounded -xdvi310 divideint -8046158.45 8.3635397 -> -962051 -xmul310 multiply -8046158.45 8.3635397 -> -67294365.6 Inexact Rounded -xpow310 power -8046158.45 8 -> 1.75674467E+55 Inexact Rounded -xrem310 remainder -8046158.45 8.3635397 -> -6.7180753 -xsub310 subtract -8046158.45 8.3635397 -> -8046166.81 Inexact Rounded -xadd311 add 55.1123381E+50627250 -94.0355047E-162540316 -> 5.51123381E+50627251 Inexact Rounded -xcom311 compare 55.1123381E+50627250 -94.0355047E-162540316 -> 1 -xdiv311 divide 55.1123381E+50627250 -94.0355047E-162540316 -> -5.86080101E+213167565 Inexact Rounded -xdvi311 divideint 55.1123381E+50627250 -94.0355047E-162540316 -> NaN Division_impossible -xmul311 multiply 55.1123381E+50627250 -94.0355047E-162540316 -> -5.18251653E-111913063 Inexact Rounded -xpow311 power 55.1123381E+50627250 -9 -> 2.13186881E-455645266 Inexact Rounded -xrem311 remainder 55.1123381E+50627250 -94.0355047E-162540316 -> NaN Division_impossible -xsub311 subtract 55.1123381E+50627250 -94.0355047E-162540316 -> 5.51123381E+50627251 Inexact Rounded -xadd312 add -948.038054 3580.84510 -> 2632.80705 Inexact Rounded -xcom312 compare -948.038054 3580.84510 -> -1 -xdiv312 divide -948.038054 3580.84510 -> -0.264752601 Inexact Rounded -xdvi312 divideint -948.038054 3580.84510 -> -0 -xmul312 multiply -948.038054 3580.84510 -> -3394777.42 Inexact Rounded -xpow312 power -948.038054 3581 -> -1.03058288E+10660 Inexact Rounded -xrem312 remainder -948.038054 3580.84510 -> -948.038054 -xsub312 subtract -948.038054 3580.84510 -> -4528.88315 Inexact Rounded -xadd313 add -6026.42752 -14.2286406E-334921364 -> -6026.42752 Inexact Rounded -xcom313 compare -6026.42752 -14.2286406E-334921364 -> -1 -xdiv313 divide -6026.42752 -14.2286406E-334921364 -> 4.23542044E+334921366 Inexact Rounded -xdvi313 divideint -6026.42752 -14.2286406E-334921364 -> NaN Division_impossible -xmul313 multiply -6026.42752 -14.2286406E-334921364 -> 8.57478713E-334921360 Inexact Rounded -xpow313 power -6026.42752 -1 -> -0.000165935788 Inexact Rounded -xrem313 remainder -6026.42752 -14.2286406E-334921364 -> NaN Division_impossible -xsub313 subtract -6026.42752 -14.2286406E-334921364 -> -6026.42752 Inexact Rounded -xadd314 add 79551.5014 -538.186229 -> 79013.3152 Inexact Rounded -xcom314 compare 79551.5014 -538.186229 -> 1 -xdiv314 divide 79551.5014 -538.186229 -> -147.814078 Inexact Rounded -xdvi314 divideint 79551.5014 -538.186229 -> -147 -xmul314 multiply 79551.5014 -538.186229 -> -42813522.5 Inexact Rounded -xpow314 power 79551.5014 -538 -> 2.82599389E-2637 Inexact Rounded -xrem314 remainder 79551.5014 -538.186229 -> 438.125737 -xsub314 subtract 79551.5014 -538.186229 -> 80089.6876 Inexact Rounded -xadd315 add 42706056.E+623578292 -690.327745 -> 4.27060560E+623578299 Inexact Rounded -xcom315 compare 42706056.E+623578292 -690.327745 -> 1 -xdiv315 divide 42706056.E+623578292 -690.327745 -> -6.18634501E+623578296 Inexact Rounded -xdvi315 divideint 42706056.E+623578292 -690.327745 -> NaN Division_impossible -xmul315 multiply 42706056.E+623578292 -690.327745 -> -2.94811753E+623578302 Inexact Rounded -xpow315 power 42706056.E+623578292 -690 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem315 remainder 42706056.E+623578292 -690.327745 -> NaN Division_impossible -xsub315 subtract 42706056.E+623578292 -690.327745 -> 4.27060560E+623578299 Inexact Rounded -xadd316 add 2454136.08E+502374077 856268.795E-356664934 -> 2.45413608E+502374083 Inexact Rounded -xcom316 compare 2454136.08E+502374077 856268.795E-356664934 -> 1 -xdiv316 divide 2454136.08E+502374077 856268.795E-356664934 -> 2.86608142E+859039011 Inexact Rounded -xdvi316 divideint 2454136.08E+502374077 856268.795E-356664934 -> NaN Division_impossible -xmul316 multiply 2454136.08E+502374077 856268.795E-356664934 -> 2.10140014E+145709155 Inexact Rounded -xpow316 power 2454136.08E+502374077 9 -> Infinity Overflow Inexact Rounded -xrem316 remainder 2454136.08E+502374077 856268.795E-356664934 -> NaN Division_impossible -xsub316 subtract 2454136.08E+502374077 856268.795E-356664934 -> 2.45413608E+502374083 Inexact Rounded -xadd317 add -3264204.54 -42704.501 -> -3306909.04 Inexact Rounded -xcom317 compare -3264204.54 -42704.501 -> -1 -xdiv317 divide -3264204.54 -42704.501 -> 76.4370140 Inexact Rounded -xdvi317 divideint -3264204.54 -42704.501 -> 76 -xmul317 multiply -3264204.54 -42704.501 -> 1.39396226E+11 Inexact Rounded -xpow317 power -3264204.54 -42705 -> -1.37293410E-278171 Inexact Rounded -xrem317 remainder -3264204.54 -42704.501 -> -18662.464 -xsub317 subtract -3264204.54 -42704.501 -> -3221500.04 Inexact Rounded -xadd318 add 1.21265492 44102.6073 -> 44103.8200 Inexact Rounded -xcom318 compare 1.21265492 44102.6073 -> -1 -xdiv318 divide 1.21265492 44102.6073 -> 0.0000274962183 Inexact Rounded -xdvi318 divideint 1.21265492 44102.6073 -> 0 -xmul318 multiply 1.21265492 44102.6073 -> 53481.2437 Inexact Rounded -xpow318 power 1.21265492 44103 -> 1.15662573E+3693 Inexact Rounded -xrem318 remainder 1.21265492 44102.6073 -> 1.21265492 -xsub318 subtract 1.21265492 44102.6073 -> -44101.3946 Inexact Rounded -xadd319 add -19.054711E+975514652 -22144.0822 -> -1.90547110E+975514653 Inexact Rounded -xcom319 compare -19.054711E+975514652 -22144.0822 -> -1 -xdiv319 divide -19.054711E+975514652 -22144.0822 -> 8.60487729E+975514648 Inexact Rounded -xdvi319 divideint -19.054711E+975514652 -22144.0822 -> NaN Division_impossible -xmul319 multiply -19.054711E+975514652 -22144.0822 -> 4.21949087E+975514657 Inexact Rounded -xpow319 power -19.054711E+975514652 -22144 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem319 remainder -19.054711E+975514652 -22144.0822 -> NaN Division_impossible -xsub319 subtract -19.054711E+975514652 -22144.0822 -> -1.90547110E+975514653 Inexact Rounded -xadd320 add 745.78452 -1922.00670E+375923302 -> -1.92200670E+375923305 Inexact Rounded -xcom320 compare 745.78452 -1922.00670E+375923302 -> 1 -xdiv320 divide 745.78452 -1922.00670E+375923302 -> -3.88023892E-375923303 Inexact Rounded -xdvi320 divideint 745.78452 -1922.00670E+375923302 -> -0 -xmul320 multiply 745.78452 -1922.00670E+375923302 -> -1.43340284E+375923308 Inexact Rounded -xpow320 power 745.78452 -2 -> 0.00000179793204 Inexact Rounded -xrem320 remainder 745.78452 -1922.00670E+375923302 -> 745.78452 -xsub320 subtract 745.78452 -1922.00670E+375923302 -> 1.92200670E+375923305 Inexact Rounded -xadd321 add -963717836 -823989308 -> -1.78770714E+9 Inexact Rounded -xcom321 compare -963717836 -823989308 -> -1 -xdiv321 divide -963717836 -823989308 -> 1.16957566 Inexact Rounded -xdvi321 divideint -963717836 -823989308 -> 1 -xmul321 multiply -963717836 -823989308 -> 7.94093193E+17 Inexact Rounded -xpow321 power -963717836 -823989308 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem321 remainder -963717836 -823989308 -> -139728528 -xsub321 subtract -963717836 -823989308 -> -139728528 -xadd322 add 82.4185291E-321919303 -215747737.E-995147400 -> 8.24185291E-321919302 Inexact Rounded -xcom322 compare 82.4185291E-321919303 -215747737.E-995147400 -> 1 -xdiv322 divide 82.4185291E-321919303 -215747737.E-995147400 -> -3.82013412E+673228090 Inexact Rounded -xdvi322 divideint 82.4185291E-321919303 -215747737.E-995147400 -> NaN Division_impossible -xmul322 multiply 82.4185291E-321919303 -215747737.E-995147400 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow322 power 82.4185291E-321919303 -2 -> 1.47214396E+643838602 Inexact Rounded -xrem322 remainder 82.4185291E-321919303 -215747737.E-995147400 -> NaN Division_impossible -xsub322 subtract 82.4185291E-321919303 -215747737.E-995147400 -> 8.24185291E-321919302 Inexact Rounded -xadd323 add -808328.607E-790810342 53075.7082 -> 53075.7082 Inexact Rounded -xcom323 compare -808328.607E-790810342 53075.7082 -> -1 -xdiv323 divide -808328.607E-790810342 53075.7082 -> -1.52297281E-790810341 Inexact Rounded -xdvi323 divideint -808328.607E-790810342 53075.7082 -> -0 -xmul323 multiply -808328.607E-790810342 53075.7082 -> -4.29026133E-790810332 Inexact Rounded -xpow323 power -808328.607E-790810342 53076 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem323 remainder -808328.607E-790810342 53075.7082 -> -8.08328607E-790810337 -xsub323 subtract -808328.607E-790810342 53075.7082 -> -53075.7082 Inexact Rounded -xadd324 add 700592.720 -698485.085 -> 2107.635 -xcom324 compare 700592.720 -698485.085 -> 1 -xdiv324 divide 700592.720 -698485.085 -> -1.00301744 Inexact Rounded -xdvi324 divideint 700592.720 -698485.085 -> -1 -xmul324 multiply 700592.720 -698485.085 -> -4.89353566E+11 Inexact Rounded -xpow324 power 700592.720 -698485 -> 8.83690000E-4082971 Inexact Rounded -xrem324 remainder 700592.720 -698485.085 -> 2107.635 -xsub324 subtract 700592.720 -698485.085 -> 1399077.81 Inexact Rounded -xadd325 add -80273928.0 661346.239 -> -79612581.8 Inexact Rounded -xcom325 compare -80273928.0 661346.239 -> -1 -xdiv325 divide -80273928.0 661346.239 -> -121.379579 Inexact Rounded -xdvi325 divideint -80273928.0 661346.239 -> -121 -xmul325 multiply -80273928.0 661346.239 -> -5.30888604E+13 Inexact Rounded -xpow325 power -80273928.0 661346 -> 5.45664856E+5227658 Inexact Rounded -xrem325 remainder -80273928.0 661346.239 -> -251033.081 -xsub325 subtract -80273928.0 661346.239 -> -80935274.2 Inexact Rounded -xadd326 add -24018251.0E+819786764 59141.9600E-167165065 -> -2.40182510E+819786771 Inexact Rounded -xcom326 compare -24018251.0E+819786764 59141.9600E-167165065 -> -1 -xdiv326 divide -24018251.0E+819786764 59141.9600E-167165065 -> -4.06111854E+986951831 Inexact Rounded -xdvi326 divideint -24018251.0E+819786764 59141.9600E-167165065 -> NaN Division_impossible -xmul326 multiply -24018251.0E+819786764 59141.9600E-167165065 -> -1.42048644E+652621711 Inexact Rounded -xpow326 power -24018251.0E+819786764 6 -> Infinity Overflow Inexact Rounded -xrem326 remainder -24018251.0E+819786764 59141.9600E-167165065 -> NaN Division_impossible -xsub326 subtract -24018251.0E+819786764 59141.9600E-167165065 -> -2.40182510E+819786771 Inexact Rounded -xadd327 add 2512953.3 -3769170.35E-993621645 -> 2512953.30 Inexact Rounded -xcom327 compare 2512953.3 -3769170.35E-993621645 -> 1 -xdiv327 divide 2512953.3 -3769170.35E-993621645 -> -6.66712583E+993621644 Inexact Rounded -xdvi327 divideint 2512953.3 -3769170.35E-993621645 -> NaN Division_impossible -xmul327 multiply 2512953.3 -3769170.35E-993621645 -> -9.47174907E-993621633 Inexact Rounded -xpow327 power 2512953.3 -4 -> 2.50762348E-26 Inexact Rounded -xrem327 remainder 2512953.3 -3769170.35E-993621645 -> NaN Division_impossible -xsub327 subtract 2512953.3 -3769170.35E-993621645 -> 2512953.30 Inexact Rounded -xadd328 add -682.796370 71131.0224 -> 70448.2260 Inexact Rounded -xcom328 compare -682.796370 71131.0224 -> -1 -xdiv328 divide -682.796370 71131.0224 -> -0.00959913617 Inexact Rounded -xdvi328 divideint -682.796370 71131.0224 -> -0 -xmul328 multiply -682.796370 71131.0224 -> -48568003.9 Inexact Rounded -xpow328 power -682.796370 71131 -> -9.28114741E+201605 Inexact Rounded -xrem328 remainder -682.796370 71131.0224 -> -682.796370 -xsub328 subtract -682.796370 71131.0224 -> -71813.8188 Inexact Rounded -xadd329 add 89.9997490 -4993.69831 -> -4903.69856 Inexact Rounded -xcom329 compare 89.9997490 -4993.69831 -> 1 -xdiv329 divide 89.9997490 -4993.69831 -> -0.0180226644 Inexact Rounded -xdvi329 divideint 89.9997490 -4993.69831 -> -0 -xmul329 multiply 89.9997490 -4993.69831 -> -449431.594 Inexact Rounded -xpow329 power 89.9997490 -4994 -> 3.30336525E-9760 Inexact Rounded -xrem329 remainder 89.9997490 -4993.69831 -> 89.9997490 -xsub329 subtract 89.9997490 -4993.69831 -> 5083.69806 Inexact Rounded -xadd330 add 76563354.6E-112338836 278271.585E-511481095 -> 7.65633546E-112338829 Inexact Rounded -xcom330 compare 76563354.6E-112338836 278271.585E-511481095 -> 1 -xdiv330 divide 76563354.6E-112338836 278271.585E-511481095 -> 2.75138960E+399142261 Inexact Rounded -xdvi330 divideint 76563354.6E-112338836 278271.585E-511481095 -> NaN Division_impossible -xmul330 multiply 76563354.6E-112338836 278271.585E-511481095 -> 2.13054060E-623819918 Inexact Rounded -xpow330 power 76563354.6E-112338836 3 -> 4.48810347E-337016485 Inexact Rounded -xrem330 remainder 76563354.6E-112338836 278271.585E-511481095 -> NaN Division_impossible -xsub330 subtract 76563354.6E-112338836 278271.585E-511481095 -> 7.65633546E-112338829 Inexact Rounded -xadd331 add -932499.010 873.377701E-502190452 -> -932499.010 Inexact Rounded -xcom331 compare -932499.010 873.377701E-502190452 -> -1 -xdiv331 divide -932499.010 873.377701E-502190452 -> -1.06769272E+502190455 Inexact Rounded -xdvi331 divideint -932499.010 873.377701E-502190452 -> NaN Division_impossible -xmul331 multiply -932499.010 873.377701E-502190452 -> -8.14423842E-502190444 Inexact Rounded -xpow331 power -932499.010 9 -> -5.33132815E+53 Inexact Rounded -xrem331 remainder -932499.010 873.377701E-502190452 -> NaN Division_impossible -xsub331 subtract -932499.010 873.377701E-502190452 -> -932499.010 Inexact Rounded -xadd332 add -7735918.21E+799514797 -7748.78023 -> -7.73591821E+799514803 Inexact Rounded -xcom332 compare -7735918.21E+799514797 -7748.78023 -> -1 -xdiv332 divide -7735918.21E+799514797 -7748.78023 -> 9.98340123E+799514799 Inexact Rounded -xdvi332 divideint -7735918.21E+799514797 -7748.78023 -> NaN Division_impossible -xmul332 multiply -7735918.21E+799514797 -7748.78023 -> 5.99439301E+799514807 Inexact Rounded -xpow332 power -7735918.21E+799514797 -7749 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem332 remainder -7735918.21E+799514797 -7748.78023 -> NaN Division_impossible -xsub332 subtract -7735918.21E+799514797 -7748.78023 -> -7.73591821E+799514803 Inexact Rounded -xadd333 add -3708780.75E+445232787 980.006567E-780728623 -> -3.70878075E+445232793 Inexact Rounded -xcom333 compare -3708780.75E+445232787 980.006567E-780728623 -> -1 -xdiv333 divide -3708780.75E+445232787 980.006567E-780728623 -> -Infinity Inexact Overflow Rounded -xdvi333 divideint -3708780.75E+445232787 980.006567E-780728623 -> NaN Division_impossible -xmul333 multiply -3708780.75E+445232787 980.006567E-780728623 -> -3.63462949E-335495827 Inexact Rounded -xpow333 power -3708780.75E+445232787 10 -> Infinity Overflow Inexact Rounded -xrem333 remainder -3708780.75E+445232787 980.006567E-780728623 -> NaN Division_impossible -xsub333 subtract -3708780.75E+445232787 980.006567E-780728623 -> -3.70878075E+445232793 Inexact Rounded -xadd334 add -5205124.44E-140588661 -495394029.E-620856313 -> -5.20512444E-140588655 Inexact Rounded -xcom334 compare -5205124.44E-140588661 -495394029.E-620856313 -> -1 -xdiv334 divide -5205124.44E-140588661 -495394029.E-620856313 -> 1.05070391E+480267650 Inexact Rounded -xdvi334 divideint -5205124.44E-140588661 -495394029.E-620856313 -> NaN Division_impossible -xmul334 multiply -5205124.44E-140588661 -495394029.E-620856313 -> 2.57858757E-761444959 Inexact Rounded -xpow334 power -5205124.44E-140588661 -5 -> -2.61724523E+702943271 Inexact Rounded -xrem334 remainder -5205124.44E-140588661 -495394029.E-620856313 -> NaN Division_impossible -xsub334 subtract -5205124.44E-140588661 -495394029.E-620856313 -> -5.20512444E-140588655 Inexact Rounded -xadd335 add -8868.72074 5592399.93 -> 5583531.21 Inexact Rounded -xcom335 compare -8868.72074 5592399.93 -> -1 -xdiv335 divide -8868.72074 5592399.93 -> -0.00158585238 Inexact Rounded -xdvi335 divideint -8868.72074 5592399.93 -> -0 -xmul335 multiply -8868.72074 5592399.93 -> -4.95974332E+10 Inexact Rounded -xpow335 power -8868.72074 5592400 -> 5.55074142E+22078017 Inexact Rounded -xrem335 remainder -8868.72074 5592399.93 -> -8868.72074 -xsub335 subtract -8868.72074 5592399.93 -> -5601268.65 Inexact Rounded -xadd336 add -74.7852037E-175205809 4.14316542 -> 4.14316542 Inexact Rounded -xcom336 compare -74.7852037E-175205809 4.14316542 -> -1 -xdiv336 divide -74.7852037E-175205809 4.14316542 -> -1.80502577E-175205808 Inexact Rounded -xdvi336 divideint -74.7852037E-175205809 4.14316542 -> -0 -xmul336 multiply -74.7852037E-175205809 4.14316542 -> -3.09847470E-175205807 Inexact Rounded -xpow336 power -74.7852037E-175205809 4 -> 3.12797104E-700823229 Inexact Rounded -xrem336 remainder -74.7852037E-175205809 4.14316542 -> -7.47852037E-175205808 -xsub336 subtract -74.7852037E-175205809 4.14316542 -> -4.14316542 Inexact Rounded -xadd337 add 84196.1091E+242628748 8.07523036E-288231467 -> 8.41961091E+242628752 Inexact Rounded -xcom337 compare 84196.1091E+242628748 8.07523036E-288231467 -> 1 -xdiv337 divide 84196.1091E+242628748 8.07523036E-288231467 -> 1.04264653E+530860219 Inexact Rounded -xdvi337 divideint 84196.1091E+242628748 8.07523036E-288231467 -> NaN Division_impossible -xmul337 multiply 84196.1091E+242628748 8.07523036E-288231467 -> 6.79902976E-45602714 Inexact Rounded -xpow337 power 84196.1091E+242628748 8 -> Infinity Overflow Inexact Rounded -xrem337 remainder 84196.1091E+242628748 8.07523036E-288231467 -> NaN Division_impossible -xsub337 subtract 84196.1091E+242628748 8.07523036E-288231467 -> 8.41961091E+242628752 Inexact Rounded -xadd338 add 38660103.1 -6671.73085E+900998477 -> -6.67173085E+900998480 Inexact Rounded -xcom338 compare 38660103.1 -6671.73085E+900998477 -> 1 -xdiv338 divide 38660103.1 -6671.73085E+900998477 -> -5.79461372E-900998474 Inexact Rounded -xdvi338 divideint 38660103.1 -6671.73085E+900998477 -> -0 -xmul338 multiply 38660103.1 -6671.73085E+900998477 -> -2.57929803E+900998488 Inexact Rounded -xpow338 power 38660103.1 -7 -> 7.74745290E-54 Inexact Rounded -xrem338 remainder 38660103.1 -6671.73085E+900998477 -> 38660103.1 -xsub338 subtract 38660103.1 -6671.73085E+900998477 -> 6.67173085E+900998480 Inexact Rounded -xadd339 add -52.2659460 -296404199E+372050476 -> -2.96404199E+372050484 Inexact Rounded -xcom339 compare -52.2659460 -296404199E+372050476 -> 1 -xdiv339 divide -52.2659460 -296404199E+372050476 -> 1.76333352E-372050483 Inexact Rounded -xdvi339 divideint -52.2659460 -296404199E+372050476 -> 0 -xmul339 multiply -52.2659460 -296404199E+372050476 -> 1.54918459E+372050486 Inexact Rounded -xpow339 power -52.2659460 -3 -> -0.00000700395833 Inexact Rounded -xrem339 remainder -52.2659460 -296404199E+372050476 -> -52.2659460 -xsub339 subtract -52.2659460 -296404199E+372050476 -> 2.96404199E+372050484 Inexact Rounded -xadd340 add 6.06625013 -276.359186 -> -270.292936 Inexact Rounded -xcom340 compare 6.06625013 -276.359186 -> 1 -xdiv340 divide 6.06625013 -276.359186 -> -0.0219506007 Inexact Rounded -xdvi340 divideint 6.06625013 -276.359186 -> -0 -xmul340 multiply 6.06625013 -276.359186 -> -1676.46395 Inexact Rounded -xpow340 power 6.06625013 -276 -> 8.20339149E-217 Inexact Rounded -xrem340 remainder 6.06625013 -276.359186 -> 6.06625013 -xsub340 subtract 6.06625013 -276.359186 -> 282.425436 Inexact Rounded -xadd341 add -62971617.5E-241444744 46266799.3 -> 46266799.3 Inexact Rounded -xcom341 compare -62971617.5E-241444744 46266799.3 -> -1 -xdiv341 divide -62971617.5E-241444744 46266799.3 -> -1.36105411E-241444744 Inexact Rounded -xdvi341 divideint -62971617.5E-241444744 46266799.3 -> -0 -xmul341 multiply -62971617.5E-241444744 46266799.3 -> -2.91349519E-241444729 Inexact Rounded -xpow341 power -62971617.5E-241444744 46266799 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem341 remainder -62971617.5E-241444744 46266799.3 -> -6.29716175E-241444737 -xsub341 subtract -62971617.5E-241444744 46266799.3 -> -46266799.3 Inexact Rounded -xadd342 add -5.36917800 -311124593.E-976066491 -> -5.36917800 Inexact Rounded -xcom342 compare -5.36917800 -311124593.E-976066491 -> -1 -xdiv342 divide -5.36917800 -311124593.E-976066491 -> 1.72573243E+976066483 Inexact Rounded -xdvi342 divideint -5.36917800 -311124593.E-976066491 -> NaN Division_impossible -xmul342 multiply -5.36917800 -311124593.E-976066491 -> 1.67048332E-976066482 Inexact Rounded -xpow342 power -5.36917800 -3 -> -0.00646065565 Inexact Rounded -xrem342 remainder -5.36917800 -311124593.E-976066491 -> NaN Division_impossible -xsub342 subtract -5.36917800 -311124593.E-976066491 -> -5.36917800 Inexact Rounded -xadd343 add 2467915.01 -92.5558322 -> 2467822.45 Inexact Rounded -xcom343 compare 2467915.01 -92.5558322 -> 1 -xdiv343 divide 2467915.01 -92.5558322 -> -26664.0681 Inexact Rounded -xdvi343 divideint 2467915.01 -92.5558322 -> -26664 -xmul343 multiply 2467915.01 -92.5558322 -> -228419928 Inexact Rounded -xpow343 power 2467915.01 -93 -> 3.26055444E-595 Inexact Rounded -xrem343 remainder 2467915.01 -92.5558322 -> 6.3002192 -xsub343 subtract 2467915.01 -92.5558322 -> 2468007.57 Inexact Rounded -xadd344 add 187.232671 -840.469347 -> -653.236676 -xcom344 compare 187.232671 -840.469347 -> 1 -xdiv344 divide 187.232671 -840.469347 -> -0.222771564 Inexact Rounded -xdvi344 divideint 187.232671 -840.469347 -> -0 -xmul344 multiply 187.232671 -840.469347 -> -157363.321 Inexact Rounded -xpow344 power 187.232671 -840 -> 1.58280862E-1909 Inexact Rounded -xrem344 remainder 187.232671 -840.469347 -> 187.232671 -xsub344 subtract 187.232671 -840.469347 -> 1027.70202 Inexact Rounded -xadd345 add 81233.6823 -5192.21666E+309315093 -> -5.19221666E+309315096 Inexact Rounded -xcom345 compare 81233.6823 -5192.21666E+309315093 -> 1 -xdiv345 divide 81233.6823 -5192.21666E+309315093 -> -1.56452798E-309315092 Inexact Rounded -xdvi345 divideint 81233.6823 -5192.21666E+309315093 -> -0 -xmul345 multiply 81233.6823 -5192.21666E+309315093 -> -4.21782879E+309315101 Inexact Rounded -xpow345 power 81233.6823 -5 -> 2.82695763E-25 Inexact Rounded -xrem345 remainder 81233.6823 -5192.21666E+309315093 -> 81233.6823 -xsub345 subtract 81233.6823 -5192.21666E+309315093 -> 5.19221666E+309315096 Inexact Rounded -xadd346 add -854.586113 -79.8715762E-853065103 -> -854.586113 Inexact Rounded -xcom346 compare -854.586113 -79.8715762E-853065103 -> -1 -xdiv346 divide -854.586113 -79.8715762E-853065103 -> 1.06995023E+853065104 Inexact Rounded -xdvi346 divideint -854.586113 -79.8715762E-853065103 -> NaN Division_impossible -xmul346 multiply -854.586113 -79.8715762E-853065103 -> 6.82571398E-853065099 Inexact Rounded -xpow346 power -854.586113 -8 -> 3.51522679E-24 Inexact Rounded -xrem346 remainder -854.586113 -79.8715762E-853065103 -> NaN Division_impossible -xsub346 subtract -854.586113 -79.8715762E-853065103 -> -854.586113 Inexact Rounded -xadd347 add 78872665.3 172.102119 -> 78872837.4 Inexact Rounded -xcom347 compare 78872665.3 172.102119 -> 1 -xdiv347 divide 78872665.3 172.102119 -> 458289.914 Inexact Rounded -xdvi347 divideint 78872665.3 172.102119 -> 458289 -xmul347 multiply 78872665.3 172.102119 -> 1.35741528E+10 Inexact Rounded -xpow347 power 78872665.3 172 -> 1.86793137E+1358 Inexact Rounded -xrem347 remainder 78872665.3 172.102119 -> 157.285609 -xsub347 subtract 78872665.3 172.102119 -> 78872493.2 Inexact Rounded -xadd348 add 328268.1E-436315617 -204.522245 -> -204.522245 Inexact Rounded -xcom348 compare 328268.1E-436315617 -204.522245 -> 1 -xdiv348 divide 328268.1E-436315617 -204.522245 -> -1.60504839E-436315614 Inexact Rounded -xdvi348 divideint 328268.1E-436315617 -204.522245 -> -0 -xmul348 multiply 328268.1E-436315617 -204.522245 -> -6.71381288E-436315610 Inexact Rounded -xpow348 power 328268.1E-436315617 -205 -> Infinity Overflow Inexact Rounded -xrem348 remainder 328268.1E-436315617 -204.522245 -> 3.282681E-436315612 -xsub348 subtract 328268.1E-436315617 -204.522245 -> 204.522245 Inexact Rounded -xadd349 add -4037911.02E+641367645 29.5713010 -> -4.03791102E+641367651 Inexact Rounded -xcom349 compare -4037911.02E+641367645 29.5713010 -> -1 -xdiv349 divide -4037911.02E+641367645 29.5713010 -> -1.36548305E+641367650 Inexact Rounded -xdvi349 divideint -4037911.02E+641367645 29.5713010 -> NaN Division_impossible -xmul349 multiply -4037911.02E+641367645 29.5713010 -> -1.19406282E+641367653 Inexact Rounded -xpow349 power -4037911.02E+641367645 30 -> Infinity Overflow Inexact Rounded -xrem349 remainder -4037911.02E+641367645 29.5713010 -> NaN Division_impossible -xsub349 subtract -4037911.02E+641367645 29.5713010 -> -4.03791102E+641367651 Inexact Rounded -xadd350 add -688755561.E-95301699 978.275312E+913812609 -> 9.78275312E+913812611 Inexact Rounded -xcom350 compare -688755561.E-95301699 978.275312E+913812609 -> -1 -xdiv350 divide -688755561.E-95301699 978.275312E+913812609 -> -0E-1000000007 Inexact Rounded Underflow Subnormal Clamped -xdvi350 divideint -688755561.E-95301699 978.275312E+913812609 -> -0 -xmul350 multiply -688755561.E-95301699 978.275312E+913812609 -> -6.73792561E+818510921 Inexact Rounded -xpow350 power -688755561.E-95301699 10 -> 2.40243244E-953016902 Inexact Rounded -xrem350 remainder -688755561.E-95301699 978.275312E+913812609 -> -6.88755561E-95301691 -xsub350 subtract -688755561.E-95301699 978.275312E+913812609 -> -9.78275312E+913812611 Inexact Rounded -xadd351 add -5.47345502 59818.7580 -> 59813.2845 Inexact Rounded -xcom351 compare -5.47345502 59818.7580 -> -1 -xdiv351 divide -5.47345502 59818.7580 -> -0.0000915006463 Inexact Rounded -xdvi351 divideint -5.47345502 59818.7580 -> -0 -xmul351 multiply -5.47345502 59818.7580 -> -327415.281 Inexact Rounded -xpow351 power -5.47345502 59819 -> -1.16914146E+44162 Inexact Rounded -xrem351 remainder -5.47345502 59818.7580 -> -5.47345502 -xsub351 subtract -5.47345502 59818.7580 -> -59824.2315 Inexact Rounded -xadd352 add 563891620E-361354567 -845900362. -> -845900362 Inexact Rounded -xcom352 compare 563891620E-361354567 -845900362. -> 1 -xdiv352 divide 563891620E-361354567 -845900362. -> -6.66617069E-361354568 Inexact Rounded -xdvi352 divideint 563891620E-361354567 -845900362. -> -0 -xmul352 multiply 563891620E-361354567 -845900362. -> -4.76996125E-361354550 Inexact Rounded -xpow352 power 563891620E-361354567 -845900362 -> Infinity Overflow Inexact Rounded -xrem352 remainder 563891620E-361354567 -845900362. -> 5.63891620E-361354559 -xsub352 subtract 563891620E-361354567 -845900362. -> 845900362 Inexact Rounded -xadd353 add -69.7231286 85773.7504 -> 85704.0273 Inexact Rounded -xcom353 compare -69.7231286 85773.7504 -> -1 -xdiv353 divide -69.7231286 85773.7504 -> -0.000812872566 Inexact Rounded -xdvi353 divideint -69.7231286 85773.7504 -> -0 -xmul353 multiply -69.7231286 85773.7504 -> -5980414.23 Inexact Rounded -xpow353 power -69.7231286 85774 -> 6.41714261E+158113 Inexact Rounded -xrem353 remainder -69.7231286 85773.7504 -> -69.7231286 -xsub353 subtract -69.7231286 85773.7504 -> -85843.4735 Inexact Rounded -xadd354 add 5125.51188 73814638.4E-500934741 -> 5125.51188 Inexact Rounded -xcom354 compare 5125.51188 73814638.4E-500934741 -> 1 -xdiv354 divide 5125.51188 73814638.4E-500934741 -> 6.94376074E+500934736 Inexact Rounded -xdvi354 divideint 5125.51188 73814638.4E-500934741 -> NaN Division_impossible -xmul354 multiply 5125.51188 73814638.4E-500934741 -> 3.78337806E-500934730 Inexact Rounded -xpow354 power 5125.51188 7 -> 9.29310216E+25 Inexact Rounded -xrem354 remainder 5125.51188 73814638.4E-500934741 -> NaN Division_impossible -xsub354 subtract 5125.51188 73814638.4E-500934741 -> 5125.51188 Inexact Rounded -xadd355 add -54.6254096 -332921899. -> -332921954 Inexact Rounded -xcom355 compare -54.6254096 -332921899. -> 1 -xdiv355 divide -54.6254096 -332921899. -> 1.64078752E-7 Inexact Rounded -xdvi355 divideint -54.6254096 -332921899. -> 0 -xmul355 multiply -54.6254096 -332921899. -> 1.81859951E+10 Inexact Rounded -xpow355 power -54.6254096 -332921899 -> -1.01482569E-578416745 Inexact Rounded -xrem355 remainder -54.6254096 -332921899. -> -54.6254096 -xsub355 subtract -54.6254096 -332921899. -> 332921844 Inexact Rounded -xadd356 add -9.04778095E-591874079 8719.40286 -> 8719.40286 Inexact Rounded -xcom356 compare -9.04778095E-591874079 8719.40286 -> -1 -xdiv356 divide -9.04778095E-591874079 8719.40286 -> -1.03766062E-591874082 Inexact Rounded -xdvi356 divideint -9.04778095E-591874079 8719.40286 -> -0 -xmul356 multiply -9.04778095E-591874079 8719.40286 -> -7.88912471E-591874075 Inexact Rounded -xpow356 power -9.04778095E-591874079 8719 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem356 remainder -9.04778095E-591874079 8719.40286 -> -9.04778095E-591874079 -xsub356 subtract -9.04778095E-591874079 8719.40286 -> -8719.40286 Inexact Rounded -xadd357 add -21006.1733E+884684431 -48872.9175 -> -2.10061733E+884684435 Inexact Rounded -xcom357 compare -21006.1733E+884684431 -48872.9175 -> -1 -xdiv357 divide -21006.1733E+884684431 -48872.9175 -> 4.29812141E+884684430 Inexact Rounded -xdvi357 divideint -21006.1733E+884684431 -48872.9175 -> NaN Division_impossible -xmul357 multiply -21006.1733E+884684431 -48872.9175 -> 1.02663297E+884684440 Inexact Rounded -xpow357 power -21006.1733E+884684431 -48873 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem357 remainder -21006.1733E+884684431 -48872.9175 -> NaN Division_impossible -xsub357 subtract -21006.1733E+884684431 -48872.9175 -> -2.10061733E+884684435 Inexact Rounded -xadd358 add -1546783 -51935370.4 -> -53482153.4 -xcom358 compare -1546783 -51935370.4 -> 1 -xdiv358 divide -1546783 -51935370.4 -> 0.0297828433 Inexact Rounded -xdvi358 divideint -1546783 -51935370.4 -> 0 -xmul358 multiply -1546783 -51935370.4 -> 8.03327480E+13 Inexact Rounded -xpow358 power -1546783 -51935370 -> 3.36022461E-321450306 Inexact Rounded -xrem358 remainder -1546783 -51935370.4 -> -1546783.0 -xsub358 subtract -1546783 -51935370.4 -> 50388587.4 -xadd359 add 61302486.8 205.490417 -> 61302692.3 Inexact Rounded -xcom359 compare 61302486.8 205.490417 -> 1 -xdiv359 divide 61302486.8 205.490417 -> 298322.850 Inexact Rounded -xdvi359 divideint 61302486.8 205.490417 -> 298322 -xmul359 multiply 61302486.8 205.490417 -> 1.25970736E+10 Inexact Rounded -xpow359 power 61302486.8 205 -> 2.71024755E+1596 Inexact Rounded -xrem359 remainder 61302486.8 205.490417 -> 174.619726 -xsub359 subtract 61302486.8 205.490417 -> 61302281.3 Inexact Rounded -xadd360 add -318180109. -54008744.6E-170931002 -> -318180109 Inexact Rounded -xcom360 compare -318180109. -54008744.6E-170931002 -> -1 -xdiv360 divide -318180109. -54008744.6E-170931002 -> 5.89127023E+170931002 Inexact Rounded -xdvi360 divideint -318180109. -54008744.6E-170931002 -> NaN Division_impossible -xmul360 multiply -318180109. -54008744.6E-170931002 -> 1.71845082E-170930986 Inexact Rounded -xpow360 power -318180109. -5 -> -3.06644280E-43 Inexact Rounded -xrem360 remainder -318180109. -54008744.6E-170931002 -> NaN Division_impossible -xsub360 subtract -318180109. -54008744.6E-170931002 -> -318180109 Inexact Rounded -xadd361 add -28486137.1E+901441714 -42454.940 -> -2.84861371E+901441721 Inexact Rounded -xcom361 compare -28486137.1E+901441714 -42454.940 -> -1 -xdiv361 divide -28486137.1E+901441714 -42454.940 -> 6.70973439E+901441716 Inexact Rounded -xdvi361 divideint -28486137.1E+901441714 -42454.940 -> NaN Division_impossible -xmul361 multiply -28486137.1E+901441714 -42454.940 -> 1.20937724E+901441726 Inexact Rounded -xpow361 power -28486137.1E+901441714 -42455 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem361 remainder -28486137.1E+901441714 -42454.940 -> NaN Division_impossible -xsub361 subtract -28486137.1E+901441714 -42454.940 -> -2.84861371E+901441721 Inexact Rounded -xadd362 add -546398328. -27.9149712 -> -546398356 Inexact Rounded -xcom362 compare -546398328. -27.9149712 -> -1 -xdiv362 divide -546398328. -27.9149712 -> 19573666.2 Inexact Rounded -xdvi362 divideint -546398328. -27.9149712 -> 19573666 -xmul362 multiply -546398328. -27.9149712 -> 1.52526936E+10 Inexact Rounded -xpow362 power -546398328. -28 -> 2.23737032E-245 Inexact Rounded -xrem362 remainder -546398328. -27.9149712 -> -5.3315808 -xsub362 subtract -546398328. -27.9149712 -> -546398300 Inexact Rounded -xadd363 add 5402066.1E-284978216 622.751128 -> 622.751128 Inexact Rounded -xcom363 compare 5402066.1E-284978216 622.751128 -> -1 -xdiv363 divide 5402066.1E-284978216 622.751128 -> 8.67451837E-284978213 Inexact Rounded -xdvi363 divideint 5402066.1E-284978216 622.751128 -> 0 -xmul363 multiply 5402066.1E-284978216 622.751128 -> 3.36414276E-284978207 Inexact Rounded -xpow363 power 5402066.1E-284978216 623 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem363 remainder 5402066.1E-284978216 622.751128 -> 5.4020661E-284978210 -xsub363 subtract 5402066.1E-284978216 622.751128 -> -622.751128 Inexact Rounded -xadd364 add 18845620 3129.43753 -> 18848749.4 Inexact Rounded -xcom364 compare 18845620 3129.43753 -> 1 -xdiv364 divide 18845620 3129.43753 -> 6022.04704 Inexact Rounded -xdvi364 divideint 18845620 3129.43753 -> 6022 -xmul364 multiply 18845620 3129.43753 -> 5.89761905E+10 Inexact Rounded -xpow364 power 18845620 3129 -> 1.35967443E+22764 Inexact Rounded -xrem364 remainder 18845620 3129.43753 -> 147.19434 -xsub364 subtract 18845620 3129.43753 -> 18842490.6 Inexact Rounded -xadd365 add 50707.1412E+912475670 -198098.186E+701407524 -> 5.07071412E+912475674 Inexact Rounded -xcom365 compare 50707.1412E+912475670 -198098.186E+701407524 -> 1 -xdiv365 divide 50707.1412E+912475670 -198098.186E+701407524 -> -2.55969740E+211068145 Inexact Rounded -xdvi365 divideint 50707.1412E+912475670 -198098.186E+701407524 -> NaN Division_impossible -xmul365 multiply 50707.1412E+912475670 -198098.186E+701407524 -> -Infinity Inexact Overflow Rounded -xpow365 power 50707.1412E+912475670 -2 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem365 remainder 50707.1412E+912475670 -198098.186E+701407524 -> NaN Division_impossible -xsub365 subtract 50707.1412E+912475670 -198098.186E+701407524 -> 5.07071412E+912475674 Inexact Rounded -xadd366 add 55.8245006E+928885991 99170843.9E-47402167 -> 5.58245006E+928885992 Inexact Rounded -xcom366 compare 55.8245006E+928885991 99170843.9E-47402167 -> 1 -xdiv366 divide 55.8245006E+928885991 99170843.9E-47402167 -> 5.62912429E+976288151 Inexact Rounded -xdvi366 divideint 55.8245006E+928885991 99170843.9E-47402167 -> NaN Division_impossible -xmul366 multiply 55.8245006E+928885991 99170843.9E-47402167 -> 5.53616283E+881483833 Inexact Rounded -xpow366 power 55.8245006E+928885991 10 -> Infinity Overflow Inexact Rounded -xrem366 remainder 55.8245006E+928885991 99170843.9E-47402167 -> NaN Division_impossible -xsub366 subtract 55.8245006E+928885991 99170843.9E-47402167 -> 5.58245006E+928885992 Inexact Rounded -xadd367 add 13.8003883E-386224921 -84126481.9E-296378341 -> -8.41264819E-296378334 Inexact Rounded -xcom367 compare 13.8003883E-386224921 -84126481.9E-296378341 -> 1 -xdiv367 divide 13.8003883E-386224921 -84126481.9E-296378341 -> -1.64043331E-89846587 Inexact Rounded -xdvi367 divideint 13.8003883E-386224921 -84126481.9E-296378341 -> -0 -xmul367 multiply 13.8003883E-386224921 -84126481.9E-296378341 -> -1.16097812E-682603253 Inexact Rounded -xpow367 power 13.8003883E-386224921 -8 -> Infinity Overflow Inexact Rounded -xrem367 remainder 13.8003883E-386224921 -84126481.9E-296378341 -> 1.38003883E-386224920 -xsub367 subtract 13.8003883E-386224921 -84126481.9E-296378341 -> 8.41264819E-296378334 Inexact Rounded -xadd368 add 9820.90457 46671.5915 -> 56492.4961 Inexact Rounded -xcom368 compare 9820.90457 46671.5915 -> -1 -xdiv368 divide 9820.90457 46671.5915 -> 0.210425748 Inexact Rounded -xdvi368 divideint 9820.90457 46671.5915 -> 0 -xmul368 multiply 9820.90457 46671.5915 -> 458357246 Inexact Rounded -xpow368 power 9820.90457 46672 -> 4.94753070E+186321 Inexact Rounded -xrem368 remainder 9820.90457 46671.5915 -> 9820.90457 -xsub368 subtract 9820.90457 46671.5915 -> -36850.6869 Inexact Rounded -xadd369 add 7.22436006E+831949153 -11168830E+322331045 -> 7.22436006E+831949153 Inexact Rounded -xcom369 compare 7.22436006E+831949153 -11168830E+322331045 -> 1 -xdiv369 divide 7.22436006E+831949153 -11168830E+322331045 -> -6.46832306E+509618101 Inexact Rounded -xdvi369 divideint 7.22436006E+831949153 -11168830E+322331045 -> NaN Division_impossible -xmul369 multiply 7.22436006E+831949153 -11168830E+322331045 -> -Infinity Inexact Overflow Rounded -xpow369 power 7.22436006E+831949153 -1 -> 1.38420565E-831949154 Inexact Rounded -xrem369 remainder 7.22436006E+831949153 -11168830E+322331045 -> NaN Division_impossible -xsub369 subtract 7.22436006E+831949153 -11168830E+322331045 -> 7.22436006E+831949153 Inexact Rounded -xadd370 add 472648900 -207.784153 -> 472648692 Inexact Rounded -xcom370 compare 472648900 -207.784153 -> 1 -xdiv370 divide 472648900 -207.784153 -> -2274711.01 Inexact Rounded -xdvi370 divideint 472648900 -207.784153 -> -2274711 -xmul370 multiply 472648900 -207.784153 -> -9.82089514E+10 Inexact Rounded -xpow370 power 472648900 -208 -> 4.96547145E-1805 Inexact Rounded -xrem370 remainder 472648900 -207.784153 -> 1.545217 -xsub370 subtract 472648900 -207.784153 -> 472649108 Inexact Rounded -xadd371 add -8754.49306 -818.165153E+631475457 -> -8.18165153E+631475459 Inexact Rounded -xcom371 compare -8754.49306 -818.165153E+631475457 -> 1 -xdiv371 divide -8754.49306 -818.165153E+631475457 -> 1.07001539E-631475456 Inexact Rounded -xdvi371 divideint -8754.49306 -818.165153E+631475457 -> 0 -xmul371 multiply -8754.49306 -818.165153E+631475457 -> 7.16262115E+631475463 Inexact Rounded -xpow371 power -8754.49306 -8 -> 2.89835767E-32 Inexact Rounded -xrem371 remainder -8754.49306 -818.165153E+631475457 -> -8754.49306 -xsub371 subtract -8754.49306 -818.165153E+631475457 -> 8.18165153E+631475459 Inexact Rounded -xadd372 add 98750864 191380.551 -> 98942244.6 Inexact Rounded -xcom372 compare 98750864 191380.551 -> 1 -xdiv372 divide 98750864 191380.551 -> 515.992161 Inexact Rounded -xdvi372 divideint 98750864 191380.551 -> 515 -xmul372 multiply 98750864 191380.551 -> 1.88989948E+13 Inexact Rounded -xpow372 power 98750864 191381 -> 1.70908809E+1530003 Inexact Rounded -xrem372 remainder 98750864 191380.551 -> 189880.235 -xsub372 subtract 98750864 191380.551 -> 98559483.4 Inexact Rounded -xadd373 add 725292561. -768963606.E+340762986 -> -7.68963606E+340762994 Inexact Rounded -xcom373 compare 725292561. -768963606.E+340762986 -> 1 -xdiv373 divide 725292561. -768963606.E+340762986 -> -9.43207917E-340762987 Inexact Rounded -xdvi373 divideint 725292561. -768963606.E+340762986 -> -0 -xmul373 multiply 725292561. -768963606.E+340762986 -> -5.57723583E+340763003 Inexact Rounded -xpow373 power 725292561. -8 -> 1.30585277E-71 Inexact Rounded -xrem373 remainder 725292561. -768963606.E+340762986 -> 725292561 -xsub373 subtract 725292561. -768963606.E+340762986 -> 7.68963606E+340762994 Inexact Rounded -xadd374 add 1862.80445 648254483. -> 648256346 Inexact Rounded -xcom374 compare 1862.80445 648254483. -> -1 -xdiv374 divide 1862.80445 648254483. -> 0.00000287356972 Inexact Rounded -xdvi374 divideint 1862.80445 648254483. -> 0 -xmul374 multiply 1862.80445 648254483. -> 1.20757134E+12 Inexact Rounded -xpow374 power 1862.80445 648254483 -> Infinity Overflow Inexact Rounded -xrem374 remainder 1862.80445 648254483. -> 1862.80445 -xsub374 subtract 1862.80445 648254483. -> -648252620 Inexact Rounded -xadd375 add -5549320.1 -93580684.1 -> -99130004.2 -xcom375 compare -5549320.1 -93580684.1 -> 1 -xdiv375 divide -5549320.1 -93580684.1 -> 0.0592998454 Inexact Rounded -xdvi375 divideint -5549320.1 -93580684.1 -> 0 -xmul375 multiply -5549320.1 -93580684.1 -> 5.19309171E+14 Inexact Rounded -xpow375 power -5549320.1 -93580684 -> 4.20662079E-631130572 Inexact Rounded -xrem375 remainder -5549320.1 -93580684.1 -> -5549320.1 -xsub375 subtract -5549320.1 -93580684.1 -> 88031364.0 -xadd376 add -14677053.1 -25784.7358 -> -14702837.8 Inexact Rounded -xcom376 compare -14677053.1 -25784.7358 -> -1 -xdiv376 divide -14677053.1 -25784.7358 -> 569.214795 Inexact Rounded -xdvi376 divideint -14677053.1 -25784.7358 -> 569 -xmul376 multiply -14677053.1 -25784.7358 -> 3.78443937E+11 Inexact Rounded -xpow376 power -14677053.1 -25785 -> -1.64760831E-184792 Inexact Rounded -xrem376 remainder -14677053.1 -25784.7358 -> -5538.4298 -xsub376 subtract -14677053.1 -25784.7358 -> -14651268.4 Inexact Rounded -xadd377 add 547402.308E+571687617 -7835797.01E+500067364 -> 5.47402308E+571687622 Inexact Rounded -xcom377 compare 547402.308E+571687617 -7835797.01E+500067364 -> 1 -xdiv377 divide 547402.308E+571687617 -7835797.01E+500067364 -> -6.98591742E+71620251 Inexact Rounded -xdvi377 divideint 547402.308E+571687617 -7835797.01E+500067364 -> NaN Division_impossible -xmul377 multiply 547402.308E+571687617 -7835797.01E+500067364 -> -Infinity Inexact Overflow Rounded -xpow377 power 547402.308E+571687617 -8 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem377 remainder 547402.308E+571687617 -7835797.01E+500067364 -> NaN Division_impossible -xsub377 subtract 547402.308E+571687617 -7835797.01E+500067364 -> 5.47402308E+571687622 Inexact Rounded -xadd378 add -4131738.09 7579.07566 -> -4124159.01 Inexact Rounded -xcom378 compare -4131738.09 7579.07566 -> -1 -xdiv378 divide -4131738.09 7579.07566 -> -545.150659 Inexact Rounded -xdvi378 divideint -4131738.09 7579.07566 -> -545 -xmul378 multiply -4131738.09 7579.07566 -> -3.13147556E+10 Inexact Rounded -xpow378 power -4131738.09 7579 -> -4.68132794E+50143 Inexact Rounded -xrem378 remainder -4131738.09 7579.07566 -> -1141.85530 -xsub378 subtract -4131738.09 7579.07566 -> -4139317.17 Inexact Rounded -xadd379 add 504544.648 -7678.96133E-662143268 -> 504544.648 Inexact Rounded -xcom379 compare 504544.648 -7678.96133E-662143268 -> 1 -xdiv379 divide 504544.648 -7678.96133E-662143268 -> -6.57048039E+662143269 Inexact Rounded -xdvi379 divideint 504544.648 -7678.96133E-662143268 -> NaN Division_impossible -xmul379 multiply 504544.648 -7678.96133E-662143268 -> -3.87437884E-662143259 Inexact Rounded -xpow379 power 504544.648 -8 -> 2.38124001E-46 Inexact Rounded -xrem379 remainder 504544.648 -7678.96133E-662143268 -> NaN Division_impossible -xsub379 subtract 504544.648 -7678.96133E-662143268 -> 504544.648 Inexact Rounded -xadd380 add 829898241 8912.99114E+929228149 -> 8.91299114E+929228152 Inexact Rounded -xcom380 compare 829898241 8912.99114E+929228149 -> -1 -xdiv380 divide 829898241 8912.99114E+929228149 -> 9.31110811E-929228145 Inexact Rounded -xdvi380 divideint 829898241 8912.99114E+929228149 -> 0 -xmul380 multiply 829898241 8912.99114E+929228149 -> 7.39687567E+929228161 Inexact Rounded -xpow380 power 829898241 9 -> 1.86734084E+80 Inexact Rounded -xrem380 remainder 829898241 8912.99114E+929228149 -> 829898241 -xsub380 subtract 829898241 8912.99114E+929228149 -> -8.91299114E+929228152 Inexact Rounded -xadd381 add 53.6891691 -11.2371140 -> 42.4520551 -xcom381 compare 53.6891691 -11.2371140 -> 1 -xdiv381 divide 53.6891691 -11.2371140 -> -4.77784323 Inexact Rounded -xdvi381 divideint 53.6891691 -11.2371140 -> -4 -xmul381 multiply 53.6891691 -11.2371140 -> -603.311314 Inexact Rounded -xpow381 power 53.6891691 -11 -> 9.35936725E-20 Inexact Rounded -xrem381 remainder 53.6891691 -11.2371140 -> 8.7407131 -xsub381 subtract 53.6891691 -11.2371140 -> 64.9262831 -xadd382 add -93951823.4 -25317.8645 -> -93977141.3 Inexact Rounded -xcom382 compare -93951823.4 -25317.8645 -> -1 -xdiv382 divide -93951823.4 -25317.8645 -> 3710.89052 Inexact Rounded -xdvi382 divideint -93951823.4 -25317.8645 -> 3710 -xmul382 multiply -93951823.4 -25317.8645 -> 2.37865953E+12 Inexact Rounded -xpow382 power -93951823.4 -25318 -> 9.67857714E-201859 Inexact Rounded -xrem382 remainder -93951823.4 -25317.8645 -> -22546.1050 -xsub382 subtract -93951823.4 -25317.8645 -> -93926505.5 Inexact Rounded -xadd383 add 446919.123 951338490. -> 951785409 Inexact Rounded -xcom383 compare 446919.123 951338490. -> -1 -xdiv383 divide 446919.123 951338490. -> 0.000469779293 Inexact Rounded -xdvi383 divideint 446919.123 951338490. -> 0 -xmul383 multiply 446919.123 951338490. -> 4.25171364E+14 Inexact Rounded -xpow383 power 446919.123 951338490 -> Infinity Overflow Inexact Rounded -xrem383 remainder 446919.123 951338490. -> 446919.123 -xsub383 subtract 446919.123 951338490. -> -950891571 Inexact Rounded -xadd384 add -8.01787748 -88.3076852 -> -96.3255627 Inexact Rounded -xcom384 compare -8.01787748 -88.3076852 -> 1 -xdiv384 divide -8.01787748 -88.3076852 -> 0.0907947871 Inexact Rounded -xdvi384 divideint -8.01787748 -88.3076852 -> 0 -xmul384 multiply -8.01787748 -88.3076852 -> 708.040200 Inexact Rounded -xpow384 power -8.01787748 -88 -> 2.77186088E-80 Inexact Rounded -xrem384 remainder -8.01787748 -88.3076852 -> -8.01787748 -xsub384 subtract -8.01787748 -88.3076852 -> 80.2898077 Inexact Rounded -xadd385 add 517458139 -999731.548 -> 516458407 Inexact Rounded -xcom385 compare 517458139 -999731.548 -> 1 -xdiv385 divide 517458139 -999731.548 -> -517.597089 Inexact Rounded -xdvi385 divideint 517458139 -999731.548 -> -517 -xmul385 multiply 517458139 -999731.548 -> -5.17319226E+14 Inexact Rounded -xpow385 power 517458139 -999732 -> 1.24821346E-8711540 Inexact Rounded -xrem385 remainder 517458139 -999731.548 -> 596928.684 -xsub385 subtract 517458139 -999731.548 -> 518457871 Inexact Rounded -xadd386 add -405543440 -4013.18295 -> -405547453 Inexact Rounded -xcom386 compare -405543440 -4013.18295 -> -1 -xdiv386 divide -405543440 -4013.18295 -> 101052.816 Inexact Rounded -xdvi386 divideint -405543440 -4013.18295 -> 101052 -xmul386 multiply -405543440 -4013.18295 -> 1.62752002E+12 Inexact Rounded -xpow386 power -405543440 -4013 -> -8.83061932E-34545 Inexact Rounded -xrem386 remainder -405543440 -4013.18295 -> -3276.53660 -xsub386 subtract -405543440 -4013.18295 -> -405539427 Inexact Rounded -xadd387 add -49245250.1E+682760825 -848776.637 -> -4.92452501E+682760832 Inexact Rounded -xcom387 compare -49245250.1E+682760825 -848776.637 -> -1 -xdiv387 divide -49245250.1E+682760825 -848776.637 -> 5.80190924E+682760826 Inexact Rounded -xdvi387 divideint -49245250.1E+682760825 -848776.637 -> NaN Division_impossible -xmul387 multiply -49245250.1E+682760825 -848776.637 -> 4.17982178E+682760838 Inexact Rounded -xpow387 power -49245250.1E+682760825 -848777 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem387 remainder -49245250.1E+682760825 -848776.637 -> NaN Division_impossible -xsub387 subtract -49245250.1E+682760825 -848776.637 -> -4.92452501E+682760832 Inexact Rounded -xadd388 add -151144455 -170371.29 -> -151314826 Inexact Rounded -xcom388 compare -151144455 -170371.29 -> -1 -xdiv388 divide -151144455 -170371.29 -> 887.147447 Inexact Rounded -xdvi388 divideint -151144455 -170371.29 -> 887 -xmul388 multiply -151144455 -170371.29 -> 2.57506758E+13 Inexact Rounded -xpow388 power -151144455 -170371 -> -5.86496369E-1393532 Inexact Rounded -xrem388 remainder -151144455 -170371.29 -> -25120.77 -xsub388 subtract -151144455 -170371.29 -> -150974084 Inexact Rounded -xadd389 add -729236746.E+662737067 9.10823602 -> -7.29236746E+662737075 Inexact Rounded -xcom389 compare -729236746.E+662737067 9.10823602 -> -1 -xdiv389 divide -729236746.E+662737067 9.10823602 -> -8.00634442E+662737074 Inexact Rounded -xdvi389 divideint -729236746.E+662737067 9.10823602 -> NaN Division_impossible -xmul389 multiply -729236746.E+662737067 9.10823602 -> -6.64206040E+662737076 Inexact Rounded -xpow389 power -729236746.E+662737067 9 -> -Infinity Overflow Inexact Rounded -xrem389 remainder -729236746.E+662737067 9.10823602 -> NaN Division_impossible -xsub389 subtract -729236746.E+662737067 9.10823602 -> -7.29236746E+662737075 Inexact Rounded -xadd390 add 534.394729 -2369839.37 -> -2369304.98 Inexact Rounded -xcom390 compare 534.394729 -2369839.37 -> 1 -xdiv390 divide 534.394729 -2369839.37 -> -0.000225498291 Inexact Rounded -xdvi390 divideint 534.394729 -2369839.37 -> -0 -xmul390 multiply 534.394729 -2369839.37 -> -1.26642967E+9 Inexact Rounded -xpow390 power 534.394729 -2369839 -> 7.12522896E-6464595 Inexact Rounded -xrem390 remainder 534.394729 -2369839.37 -> 534.394729 -xsub390 subtract 534.394729 -2369839.37 -> 2370373.76 Inexact Rounded -xadd391 add 89100.1797 224.370309 -> 89324.5500 Inexact Rounded -xcom391 compare 89100.1797 224.370309 -> 1 -xdiv391 divide 89100.1797 224.370309 -> 397.112167 Inexact Rounded -xdvi391 divideint 89100.1797 224.370309 -> 397 -xmul391 multiply 89100.1797 224.370309 -> 19991434.9 Inexact Rounded -xpow391 power 89100.1797 224 -> 5.92654936E+1108 Inexact Rounded -xrem391 remainder 89100.1797 224.370309 -> 25.167027 -xsub391 subtract 89100.1797 224.370309 -> 88875.8094 Inexact Rounded -xadd392 add -821377.777 38.552821 -> -821339.224 Inexact Rounded -xcom392 compare -821377.777 38.552821 -> -1 -xdiv392 divide -821377.777 38.552821 -> -21305.2575 Inexact Rounded -xdvi392 divideint -821377.777 38.552821 -> -21305 -xmul392 multiply -821377.777 38.552821 -> -31666430.4 Inexact Rounded -xpow392 power -821377.777 39 -> -4.64702482E+230 Inexact Rounded -xrem392 remainder -821377.777 38.552821 -> -9.925595 -xsub392 subtract -821377.777 38.552821 -> -821416.330 Inexact Rounded -xadd393 add -392640.782 -2571619.5E+113237865 -> -2.57161950E+113237871 Inexact Rounded -xcom393 compare -392640.782 -2571619.5E+113237865 -> 1 -xdiv393 divide -392640.782 -2571619.5E+113237865 -> 1.52682301E-113237866 Inexact Rounded -xdvi393 divideint -392640.782 -2571619.5E+113237865 -> 0 -xmul393 multiply -392640.782 -2571619.5E+113237865 -> 1.00972269E+113237877 Inexact Rounded -xpow393 power -392640.782 -3 -> -1.65201422E-17 Inexact Rounded -xrem393 remainder -392640.782 -2571619.5E+113237865 -> -392640.782 -xsub393 subtract -392640.782 -2571619.5E+113237865 -> 2.57161950E+113237871 Inexact Rounded -xadd394 add -651397.712 -723.59673 -> -652121.309 Inexact Rounded -xcom394 compare -651397.712 -723.59673 -> -1 -xdiv394 divide -651397.712 -723.59673 -> 900.222023 Inexact Rounded -xdvi394 divideint -651397.712 -723.59673 -> 900 -xmul394 multiply -651397.712 -723.59673 -> 471349254 Inexact Rounded -xpow394 power -651397.712 -724 -> 5.96115415E-4210 Inexact Rounded -xrem394 remainder -651397.712 -723.59673 -> -160.65500 -xsub394 subtract -651397.712 -723.59673 -> -650674.115 Inexact Rounded -xadd395 add 86.6890892 940380864 -> 940380951 Inexact Rounded -xcom395 compare 86.6890892 940380864 -> -1 -xdiv395 divide 86.6890892 940380864 -> 9.21850843E-8 Inexact Rounded -xdvi395 divideint 86.6890892 940380864 -> 0 -xmul395 multiply 86.6890892 940380864 -> 8.15207606E+10 Inexact Rounded -xpow395 power 86.6890892 940380864 -> Infinity Overflow Inexact Rounded -xrem395 remainder 86.6890892 940380864 -> 86.6890892 -xsub395 subtract 86.6890892 940380864 -> -940380777 Inexact Rounded -xadd396 add 4880.06442E-382222621 -115627239E-912834031 -> 4.88006442E-382222618 Inexact Rounded -xcom396 compare 4880.06442E-382222621 -115627239E-912834031 -> 1 -xdiv396 divide 4880.06442E-382222621 -115627239E-912834031 -> -4.22051453E+530611405 Inexact Rounded -xdvi396 divideint 4880.06442E-382222621 -115627239E-912834031 -> NaN Division_impossible -xmul396 multiply 4880.06442E-382222621 -115627239E-912834031 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow396 power 4880.06442E-382222621 -1 -> 2.04915328E+382222617 Inexact Rounded -xrem396 remainder 4880.06442E-382222621 -115627239E-912834031 -> NaN Division_impossible -xsub396 subtract 4880.06442E-382222621 -115627239E-912834031 -> 4.88006442E-382222618 Inexact Rounded -xadd397 add 173398265E-532383158 3462.51450E+80986915 -> 3.46251450E+80986918 Inexact Rounded -xcom397 compare 173398265E-532383158 3462.51450E+80986915 -> -1 -xdiv397 divide 173398265E-532383158 3462.51450E+80986915 -> 5.00787116E-613370069 Inexact Rounded -xdvi397 divideint 173398265E-532383158 3462.51450E+80986915 -> 0 -xmul397 multiply 173398265E-532383158 3462.51450E+80986915 -> 6.00394007E-451396232 Inexact Rounded -xpow397 power 173398265E-532383158 3 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem397 remainder 173398265E-532383158 3462.51450E+80986915 -> 1.73398265E-532383150 -xsub397 subtract 173398265E-532383158 3462.51450E+80986915 -> -3.46251450E+80986918 Inexact Rounded -xadd398 add -1522176.78 -6631061.77 -> -8153238.55 -xcom398 compare -1522176.78 -6631061.77 -> 1 -xdiv398 divide -1522176.78 -6631061.77 -> 0.229552496 Inexact Rounded -xdvi398 divideint -1522176.78 -6631061.77 -> 0 -xmul398 multiply -1522176.78 -6631061.77 -> 1.00936483E+13 Inexact Rounded -xpow398 power -1522176.78 -6631062 -> 4.54268854E-40996310 Inexact Rounded -xrem398 remainder -1522176.78 -6631061.77 -> -1522176.78 -xsub398 subtract -1522176.78 -6631061.77 -> 5108884.99 -xadd399 add 538.10453 522934310 -> 522934848 Inexact Rounded -xcom399 compare 538.10453 522934310 -> -1 -xdiv399 divide 538.10453 522934310 -> 0.00000102900980 Inexact Rounded -xdvi399 divideint 538.10453 522934310 -> 0 -xmul399 multiply 538.10453 522934310 -> 2.81393321E+11 Inexact Rounded -xpow399 power 538.10453 522934310 -> Infinity Overflow Inexact Rounded -xrem399 remainder 538.10453 522934310 -> 538.10453 -xsub399 subtract 538.10453 522934310 -> -522933772 Inexact Rounded -xadd400 add 880243.444E-750940977 -354.601578E-204943740 -> -3.54601578E-204943738 Inexact Rounded -xcom400 compare 880243.444E-750940977 -354.601578E-204943740 -> 1 -xdiv400 divide 880243.444E-750940977 -354.601578E-204943740 -> -2.48234497E-545997234 Inexact Rounded -xdvi400 divideint 880243.444E-750940977 -354.601578E-204943740 -> -0 -xmul400 multiply 880243.444E-750940977 -354.601578E-204943740 -> -3.12135714E-955884709 Inexact Rounded -xpow400 power 880243.444E-750940977 -4 -> Infinity Overflow Inexact Rounded -xrem400 remainder 880243.444E-750940977 -354.601578E-204943740 -> 8.80243444E-750940972 -xsub400 subtract 880243.444E-750940977 -354.601578E-204943740 -> 3.54601578E-204943738 Inexact Rounded -xadd401 add 968370.780 6677268.73 -> 7645639.51 Rounded -xcom401 compare 968370.780 6677268.73 -> -1 -xdiv401 divide 968370.780 6677268.73 -> 0.145024982 Inexact Rounded -xdvi401 divideint 968370.780 6677268.73 -> 0 -xmul401 multiply 968370.780 6677268.73 -> 6.46607193E+12 Inexact Rounded -xpow401 power 968370.780 6677269 -> 3.29990931E+39970410 Inexact Rounded -xrem401 remainder 968370.780 6677268.73 -> 968370.780 -xsub401 subtract 968370.780 6677268.73 -> -5708897.95 Rounded -xadd402 add -97.7474945 31248241.5 -> 31248143.8 Inexact Rounded -xcom402 compare -97.7474945 31248241.5 -> -1 -xdiv402 divide -97.7474945 31248241.5 -> -0.00000312809585 Inexact Rounded -xdvi402 divideint -97.7474945 31248241.5 -> -0 -xmul402 multiply -97.7474945 31248241.5 -> -3.05443731E+9 Inexact Rounded -xpow402 power -97.7474945 31248242 -> 2.90714257E+62187302 Inexact Rounded -xrem402 remainder -97.7474945 31248241.5 -> -97.7474945 -xsub402 subtract -97.7474945 31248241.5 -> -31248339.2 Inexact Rounded -xadd403 add -187582786.E+369916952 957840435E+744365567 -> 9.57840435E+744365575 Inexact Rounded -xcom403 compare -187582786.E+369916952 957840435E+744365567 -> -1 -xdiv403 divide -187582786.E+369916952 957840435E+744365567 -> -1.95839285E-374448616 Inexact Rounded -xdvi403 divideint -187582786.E+369916952 957840435E+744365567 -> -0 -xmul403 multiply -187582786.E+369916952 957840435E+744365567 -> -Infinity Inexact Overflow Rounded -xpow403 power -187582786.E+369916952 10 -> Infinity Overflow Inexact Rounded -xrem403 remainder -187582786.E+369916952 957840435E+744365567 -> -1.87582786E+369916960 -xsub403 subtract -187582786.E+369916952 957840435E+744365567 -> -9.57840435E+744365575 Inexact Rounded -xadd404 add -328026144. -125499735. -> -453525879 -xcom404 compare -328026144. -125499735. -> -1 -xdiv404 divide -328026144. -125499735. -> 2.61375965 Inexact Rounded -xdvi404 divideint -328026144. -125499735. -> 2 -xmul404 multiply -328026144. -125499735. -> 4.11671941E+16 Inexact Rounded -xpow404 power -328026144. -125499735 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem404 remainder -328026144. -125499735. -> -77026674 -xsub404 subtract -328026144. -125499735. -> -202526409 -xadd405 add -99424150.2E-523662102 3712.35030 -> 3712.35030 Inexact Rounded -xcom405 compare -99424150.2E-523662102 3712.35030 -> -1 -xdiv405 divide -99424150.2E-523662102 3712.35030 -> -2.67819958E-523662098 Inexact Rounded -xdvi405 divideint -99424150.2E-523662102 3712.35030 -> -0 -xmul405 multiply -99424150.2E-523662102 3712.35030 -> -3.69097274E-523662091 Inexact Rounded -xpow405 power -99424150.2E-523662102 3712 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem405 remainder -99424150.2E-523662102 3712.35030 -> -9.94241502E-523662095 -xsub405 subtract -99424150.2E-523662102 3712.35030 -> -3712.35030 Inexact Rounded -xadd406 add 14838.0718 9489893.28E+830631266 -> 9.48989328E+830631272 Inexact Rounded -xcom406 compare 14838.0718 9489893.28E+830631266 -> -1 -xdiv406 divide 14838.0718 9489893.28E+830631266 -> 1.56356572E-830631269 Inexact Rounded -xdvi406 divideint 14838.0718 9489893.28E+830631266 -> 0 -xmul406 multiply 14838.0718 9489893.28E+830631266 -> 1.40811718E+830631277 Inexact Rounded -xpow406 power 14838.0718 9 -> 3.48656057E+37 Inexact Rounded -xrem406 remainder 14838.0718 9489893.28E+830631266 -> 14838.0718 -xsub406 subtract 14838.0718 9489893.28E+830631266 -> -9.48989328E+830631272 Inexact Rounded -xadd407 add 71207472.8 -31835.0809 -> 71175637.7 Inexact Rounded -xcom407 compare 71207472.8 -31835.0809 -> 1 -xdiv407 divide 71207472.8 -31835.0809 -> -2236.76117 Inexact Rounded -xdvi407 divideint 71207472.8 -31835.0809 -> -2236 -xmul407 multiply 71207472.8 -31835.0809 -> -2.26689566E+12 Inexact Rounded -xpow407 power 71207472.8 -31835 -> 7.05333953E-249986 Inexact Rounded -xrem407 remainder 71207472.8 -31835.0809 -> 24231.9076 -xsub407 subtract 71207472.8 -31835.0809 -> 71239307.9 Inexact Rounded -xadd408 add -20440.4394 -44.4064328E+511085806 -> -4.44064328E+511085807 Inexact Rounded -xcom408 compare -20440.4394 -44.4064328E+511085806 -> 1 -xdiv408 divide -20440.4394 -44.4064328E+511085806 -> 4.60303567E-511085804 Inexact Rounded -xdvi408 divideint -20440.4394 -44.4064328E+511085806 -> 0 -xmul408 multiply -20440.4394 -44.4064328E+511085806 -> 9.07686999E+511085811 Inexact Rounded -xpow408 power -20440.4394 -4 -> 5.72847590E-18 Inexact Rounded -xrem408 remainder -20440.4394 -44.4064328E+511085806 -> -20440.4394 -xsub408 subtract -20440.4394 -44.4064328E+511085806 -> 4.44064328E+511085807 Inexact Rounded -xadd409 add -54.3684171E-807210192 1.04592973E-984041807 -> -5.43684171E-807210191 Inexact Rounded -xcom409 compare -54.3684171E-807210192 1.04592973E-984041807 -> -1 -xdiv409 divide -54.3684171E-807210192 1.04592973E-984041807 -> -5.19809463E+176831616 Inexact Rounded -xdvi409 divideint -54.3684171E-807210192 1.04592973E-984041807 -> NaN Division_impossible -xmul409 multiply -54.3684171E-807210192 1.04592973E-984041807 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow409 power -54.3684171E-807210192 1 -> -5.43684171E-807210191 -xrem409 remainder -54.3684171E-807210192 1.04592973E-984041807 -> NaN Division_impossible -xsub409 subtract -54.3684171E-807210192 1.04592973E-984041807 -> -5.43684171E-807210191 Inexact Rounded -xadd410 add 54310060.5E+948159739 274320701.E+205880484 -> 5.43100605E+948159746 Inexact Rounded -xcom410 compare 54310060.5E+948159739 274320701.E+205880484 -> 1 -xdiv410 divide 54310060.5E+948159739 274320701.E+205880484 -> 1.97980175E+742279254 Inexact Rounded -xdvi410 divideint 54310060.5E+948159739 274320701.E+205880484 -> NaN Division_impossible -xmul410 multiply 54310060.5E+948159739 274320701.E+205880484 -> Infinity Inexact Overflow Rounded -xpow410 power 54310060.5E+948159739 3 -> Infinity Overflow Inexact Rounded -xrem410 remainder 54310060.5E+948159739 274320701.E+205880484 -> NaN Division_impossible -xsub410 subtract 54310060.5E+948159739 274320701.E+205880484 -> 5.43100605E+948159746 Inexact Rounded -xadd411 add -657.186702 426844.39 -> 426187.203 Inexact Rounded -xcom411 compare -657.186702 426844.39 -> -1 -xdiv411 divide -657.186702 426844.39 -> -0.00153964001 Inexact Rounded -xdvi411 divideint -657.186702 426844.39 -> -0 -xmul411 multiply -657.186702 426844.39 -> -280516457 Inexact Rounded -xpow411 power -657.186702 426844 -> 3.50000575E+1202713 Inexact Rounded -xrem411 remainder -657.186702 426844.39 -> -657.186702 -xsub411 subtract -657.186702 426844.39 -> -427501.577 Inexact Rounded -xadd412 add -41593077.0 -688607.564 -> -42281684.6 Inexact Rounded -xcom412 compare -41593077.0 -688607.564 -> -1 -xdiv412 divide -41593077.0 -688607.564 -> 60.4017138 Inexact Rounded -xdvi412 divideint -41593077.0 -688607.564 -> 60 -xmul412 multiply -41593077.0 -688607.564 -> 2.86413074E+13 Inexact Rounded -xpow412 power -41593077.0 -688608 -> 1.42150750E-5246519 Inexact Rounded -xrem412 remainder -41593077.0 -688607.564 -> -276623.160 -xsub412 subtract -41593077.0 -688607.564 -> -40904469.4 Inexact Rounded -xadd413 add -5786.38132 190556652.E+177045877 -> 1.90556652E+177045885 Inexact Rounded -xcom413 compare -5786.38132 190556652.E+177045877 -> -1 -xdiv413 divide -5786.38132 190556652.E+177045877 -> -3.03656748E-177045882 Inexact Rounded -xdvi413 divideint -5786.38132 190556652.E+177045877 -> -0 -xmul413 multiply -5786.38132 190556652.E+177045877 -> -1.10263345E+177045889 Inexact Rounded -xpow413 power -5786.38132 2 -> 33482208.8 Inexact Rounded -xrem413 remainder -5786.38132 190556652.E+177045877 -> -5786.38132 -xsub413 subtract -5786.38132 190556652.E+177045877 -> -1.90556652E+177045885 Inexact Rounded -xadd414 add 737622.974 -241560693E+249506565 -> -2.41560693E+249506573 Inexact Rounded -xcom414 compare 737622.974 -241560693E+249506565 -> 1 -xdiv414 divide 737622.974 -241560693E+249506565 -> -3.05357202E-249506568 Inexact Rounded -xdvi414 divideint 737622.974 -241560693E+249506565 -> -0 -xmul414 multiply 737622.974 -241560693E+249506565 -> -1.78180717E+249506579 Inexact Rounded -xpow414 power 737622.974 -2 -> 1.83793916E-12 Inexact Rounded -xrem414 remainder 737622.974 -241560693E+249506565 -> 737622.974 -xsub414 subtract 737622.974 -241560693E+249506565 -> 2.41560693E+249506573 Inexact Rounded -xadd415 add 5615373.52 -7.27583808E-949781048 -> 5615373.52 Inexact Rounded -xcom415 compare 5615373.52 -7.27583808E-949781048 -> 1 -xdiv415 divide 5615373.52 -7.27583808E-949781048 -> -7.71783739E+949781053 Inexact Rounded -xdvi415 divideint 5615373.52 -7.27583808E-949781048 -> NaN Division_impossible -xmul415 multiply 5615373.52 -7.27583808E-949781048 -> -4.08565485E-949781041 Inexact Rounded -xpow415 power 5615373.52 -7 -> 5.68001460E-48 Inexact Rounded -xrem415 remainder 5615373.52 -7.27583808E-949781048 -> NaN Division_impossible -xsub415 subtract 5615373.52 -7.27583808E-949781048 -> 5615373.52 Inexact Rounded -xadd416 add 644136.179 -835708.103 -> -191571.924 -xcom416 compare 644136.179 -835708.103 -> 1 -xdiv416 divide 644136.179 -835708.103 -> -0.770766942 Inexact Rounded -xdvi416 divideint 644136.179 -835708.103 -> -0 -xmul416 multiply 644136.179 -835708.103 -> -5.38309824E+11 Inexact Rounded -xpow416 power 644136.179 -835708 -> 7.41936858E-4854610 Inexact Rounded -xrem416 remainder 644136.179 -835708.103 -> 644136.179 -xsub416 subtract 644136.179 -835708.103 -> 1479844.28 Inexact Rounded -xadd417 add -307.419521E+466861843 -738689976.E-199032711 -> -3.07419521E+466861845 Inexact Rounded -xcom417 compare -307.419521E+466861843 -738689976.E-199032711 -> -1 -xdiv417 divide -307.419521E+466861843 -738689976.E-199032711 -> 4.16168529E+665894547 Inexact Rounded -xdvi417 divideint -307.419521E+466861843 -738689976.E-199032711 -> NaN Division_impossible -xmul417 multiply -307.419521E+466861843 -738689976.E-199032711 -> 2.27087719E+267829143 Inexact Rounded -xpow417 power -307.419521E+466861843 -7 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem417 remainder -307.419521E+466861843 -738689976.E-199032711 -> NaN Division_impossible -xsub417 subtract -307.419521E+466861843 -738689976.E-199032711 -> -3.07419521E+466861845 Inexact Rounded -xadd418 add -619642.130 -226740537.E-902590153 -> -619642.130 Inexact Rounded -xcom418 compare -619642.130 -226740537.E-902590153 -> -1 -xdiv418 divide -619642.130 -226740537.E-902590153 -> 2.73282466E+902590150 Inexact Rounded -xdvi418 divideint -619642.130 -226740537.E-902590153 -> NaN Division_impossible -xmul418 multiply -619642.130 -226740537.E-902590153 -> 1.40497989E-902590139 Inexact Rounded -xpow418 power -619642.130 -2 -> 2.60446259E-12 Inexact Rounded -xrem418 remainder -619642.130 -226740537.E-902590153 -> NaN Division_impossible -xsub418 subtract -619642.130 -226740537.E-902590153 -> -619642.130 Inexact Rounded -xadd419 add -31068.7549 -3.41495042E+86001379 -> -3.41495042E+86001379 Inexact Rounded -xcom419 compare -31068.7549 -3.41495042E+86001379 -> 1 -xdiv419 divide -31068.7549 -3.41495042E+86001379 -> 9.09786412E-86001376 Inexact Rounded -xdvi419 divideint -31068.7549 -3.41495042E+86001379 -> 0 -xmul419 multiply -31068.7549 -3.41495042E+86001379 -> 1.06098258E+86001384 Inexact Rounded -xpow419 power -31068.7549 -3 -> -3.33448258E-14 Inexact Rounded -xrem419 remainder -31068.7549 -3.41495042E+86001379 -> -31068.7549 -xsub419 subtract -31068.7549 -3.41495042E+86001379 -> 3.41495042E+86001379 Inexact Rounded -xadd420 add -68951173. -211804977.E-97318126 -> -68951173.0 Inexact Rounded -xcom420 compare -68951173. -211804977.E-97318126 -> -1 -xdiv420 divide -68951173. -211804977.E-97318126 -> 3.25540854E+97318125 Inexact Rounded -xdvi420 divideint -68951173. -211804977.E-97318126 -> NaN Division_impossible -xmul420 multiply -68951173. -211804977.E-97318126 -> 1.46042016E-97318110 Inexact Rounded -xpow420 power -68951173. -2 -> 2.10337488E-16 Inexact Rounded -xrem420 remainder -68951173. -211804977.E-97318126 -> NaN Division_impossible -xsub420 subtract -68951173. -211804977.E-97318126 -> -68951173.0 Inexact Rounded -xadd421 add -4.09492571E-301749490 434.20199E-749390952 -> -4.09492571E-301749490 Inexact Rounded -xcom421 compare -4.09492571E-301749490 434.20199E-749390952 -> -1 -xdiv421 divide -4.09492571E-301749490 434.20199E-749390952 -> -9.43092341E+447641459 Inexact Rounded -xdvi421 divideint -4.09492571E-301749490 434.20199E-749390952 -> NaN Division_impossible -xmul421 multiply -4.09492571E-301749490 434.20199E-749390952 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow421 power -4.09492571E-301749490 4 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem421 remainder -4.09492571E-301749490 434.20199E-749390952 -> NaN Division_impossible -xsub421 subtract -4.09492571E-301749490 434.20199E-749390952 -> -4.09492571E-301749490 Inexact Rounded -xadd422 add 3898.03188 -82572.615 -> -78674.5831 Inexact Rounded -xcom422 compare 3898.03188 -82572.615 -> 1 -xdiv422 divide 3898.03188 -82572.615 -> -0.0472073202 Inexact Rounded -xdvi422 divideint 3898.03188 -82572.615 -> -0 -xmul422 multiply 3898.03188 -82572.615 -> -321870686 Inexact Rounded -xpow422 power 3898.03188 -82573 -> 1.33010737E-296507 Inexact Rounded -xrem422 remainder 3898.03188 -82572.615 -> 3898.03188 -xsub422 subtract 3898.03188 -82572.615 -> 86470.6469 Inexact Rounded -xadd423 add -1.7619356 -2546.64043 -> -2548.40237 Inexact Rounded -xcom423 compare -1.7619356 -2546.64043 -> 1 -xdiv423 divide -1.7619356 -2546.64043 -> 0.000691866657 Inexact Rounded -xdvi423 divideint -1.7619356 -2546.64043 -> 0 -xmul423 multiply -1.7619356 -2546.64043 -> 4487.01643 Inexact Rounded -xpow423 power -1.7619356 -2547 -> -2.90664557E-627 Inexact Rounded -xrem423 remainder -1.7619356 -2546.64043 -> -1.7619356 -xsub423 subtract -1.7619356 -2546.64043 -> 2544.87849 Inexact Rounded -xadd424 add 59714.1968 29734388.6E-564525525 -> 59714.1968 Inexact Rounded -xcom424 compare 59714.1968 29734388.6E-564525525 -> 1 -xdiv424 divide 59714.1968 29734388.6E-564525525 -> 2.00825373E+564525522 Inexact Rounded -xdvi424 divideint 59714.1968 29734388.6E-564525525 -> NaN Division_impossible -xmul424 multiply 59714.1968 29734388.6E-564525525 -> 1.77556513E-564525513 Inexact Rounded -xpow424 power 59714.1968 3 -> 2.12928005E+14 Inexact Rounded -xrem424 remainder 59714.1968 29734388.6E-564525525 -> NaN Division_impossible -xsub424 subtract 59714.1968 29734388.6E-564525525 -> 59714.1968 Inexact Rounded -xadd425 add 6.88891136E-935467395 -785049.562E-741671442 -> -7.85049562E-741671437 Inexact Rounded -xcom425 compare 6.88891136E-935467395 -785049.562E-741671442 -> 1 -xdiv425 divide 6.88891136E-935467395 -785049.562E-741671442 -> -8.77512923E-193795959 Inexact Rounded -xdvi425 divideint 6.88891136E-935467395 -785049.562E-741671442 -> -0 -xmul425 multiply 6.88891136E-935467395 -785049.562E-741671442 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow425 power 6.88891136E-935467395 -8 -> Infinity Overflow Inexact Rounded -xrem425 remainder 6.88891136E-935467395 -785049.562E-741671442 -> 6.88891136E-935467395 -xsub425 subtract 6.88891136E-935467395 -785049.562E-741671442 -> 7.85049562E-741671437 Inexact Rounded -xadd426 add 975566251 -519.858530 -> 975565731 Inexact Rounded -xcom426 compare 975566251 -519.858530 -> 1 -xdiv426 divide 975566251 -519.858530 -> -1876599.49 Inexact Rounded -xdvi426 divideint 975566251 -519.858530 -> -1876599 -xmul426 multiply 975566251 -519.858530 -> -5.07156437E+11 Inexact Rounded -xpow426 power 975566251 -520 -> 3.85905300E-4675 Inexact Rounded -xrem426 remainder 975566251 -519.858530 -> 253.460530 -xsub426 subtract 975566251 -519.858530 -> 975566771 Inexact Rounded -xadd427 add 307401954 -231481582. -> 75920372 -xcom427 compare 307401954 -231481582. -> 1 -xdiv427 divide 307401954 -231481582. -> -1.32797586 Inexact Rounded -xdvi427 divideint 307401954 -231481582. -> -1 -xmul427 multiply 307401954 -231481582. -> -7.11578906E+16 Inexact Rounded -xpow427 power 307401954 -231481582 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem427 remainder 307401954 -231481582. -> 75920372 -xsub427 subtract 307401954 -231481582. -> 538883536 -xadd428 add 2237645.48E+992947388 -60618055.3E-857316706 -> 2.23764548E+992947394 Inexact Rounded -xcom428 compare 2237645.48E+992947388 -60618055.3E-857316706 -> 1 -xdiv428 divide 2237645.48E+992947388 -60618055.3E-857316706 -> -Infinity Inexact Overflow Rounded -xdvi428 divideint 2237645.48E+992947388 -60618055.3E-857316706 -> NaN Division_impossible -xmul428 multiply 2237645.48E+992947388 -60618055.3E-857316706 -> -1.35641717E+135630696 Inexact Rounded -xpow428 power 2237645.48E+992947388 -6 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem428 remainder 2237645.48E+992947388 -60618055.3E-857316706 -> NaN Division_impossible -xsub428 subtract 2237645.48E+992947388 -60618055.3E-857316706 -> 2.23764548E+992947394 Inexact Rounded -xadd429 add -403903.851 35.5049687E-72095155 -> -403903.851 Inexact Rounded -xcom429 compare -403903.851 35.5049687E-72095155 -> -1 -xdiv429 divide -403903.851 35.5049687E-72095155 -> -1.13759810E+72095159 Inexact Rounded -xdvi429 divideint -403903.851 35.5049687E-72095155 -> NaN Division_impossible -xmul429 multiply -403903.851 35.5049687E-72095155 -> -1.43405936E-72095148 Inexact Rounded -xpow429 power -403903.851 4 -> 2.66141117E+22 Inexact Rounded -xrem429 remainder -403903.851 35.5049687E-72095155 -> NaN Division_impossible -xsub429 subtract -403903.851 35.5049687E-72095155 -> -403903.851 Inexact Rounded -xadd430 add 6.48674979 -621732.532E+422575800 -> -6.21732532E+422575805 Inexact Rounded -xcom430 compare 6.48674979 -621732.532E+422575800 -> 1 -xdiv430 divide 6.48674979 -621732.532E+422575800 -> -1.04333447E-422575805 Inexact Rounded -xdvi430 divideint 6.48674979 -621732.532E+422575800 -> -0 -xmul430 multiply 6.48674979 -621732.532E+422575800 -> -4.03302337E+422575806 Inexact Rounded -xpow430 power 6.48674979 -6 -> 0.0000134226146 Inexact Rounded -xrem430 remainder 6.48674979 -621732.532E+422575800 -> 6.48674979 -xsub430 subtract 6.48674979 -621732.532E+422575800 -> 6.21732532E+422575805 Inexact Rounded -xadd431 add -31401.9418 36.3960679 -> -31365.5457 Inexact Rounded -xcom431 compare -31401.9418 36.3960679 -> -1 -xdiv431 divide -31401.9418 36.3960679 -> -862.783911 Inexact Rounded -xdvi431 divideint -31401.9418 36.3960679 -> -862 -xmul431 multiply -31401.9418 36.3960679 -> -1142907.21 Inexact Rounded -xpow431 power -31401.9418 36 -> 7.77023505E+161 Inexact Rounded -xrem431 remainder -31401.9418 36.3960679 -> -28.5312702 -xsub431 subtract -31401.9418 36.3960679 -> -31438.3379 Inexact Rounded -xadd432 add 31345321.1 51.5482191 -> 31345372.6 Inexact Rounded -xcom432 compare 31345321.1 51.5482191 -> 1 -xdiv432 divide 31345321.1 51.5482191 -> 608077.673 Inexact Rounded -xdvi432 divideint 31345321.1 51.5482191 -> 608077 -xmul432 multiply 31345321.1 51.5482191 -> 1.61579548E+9 Inexact Rounded -xpow432 power 31345321.1 52 -> 6.32385059E+389 Inexact Rounded -xrem432 remainder 31345321.1 51.5482191 -> 34.6743293 -xsub432 subtract 31345321.1 51.5482191 -> 31345269.6 Inexact Rounded -xadd433 add -64.172844 -28506227.2E-767965800 -> -64.1728440 Inexact Rounded -xcom433 compare -64.172844 -28506227.2E-767965800 -> -1 -xdiv433 divide -64.172844 -28506227.2E-767965800 -> 2.25118686E+767965794 Inexact Rounded -xdvi433 divideint -64.172844 -28506227.2E-767965800 -> NaN Division_impossible -xmul433 multiply -64.172844 -28506227.2E-767965800 -> 1.82932567E-767965791 Inexact Rounded -xpow433 power -64.172844 -3 -> -0.00000378395654 Inexact Rounded -xrem433 remainder -64.172844 -28506227.2E-767965800 -> NaN Division_impossible -xsub433 subtract -64.172844 -28506227.2E-767965800 -> -64.1728440 Inexact Rounded -xadd434 add 70437.1551 -62916.1233 -> 7521.0318 -xcom434 compare 70437.1551 -62916.1233 -> 1 -xdiv434 divide 70437.1551 -62916.1233 -> -1.11954061 Inexact Rounded -xdvi434 divideint 70437.1551 -62916.1233 -> -1 -xmul434 multiply 70437.1551 -62916.1233 -> -4.43163274E+9 Inexact Rounded -xpow434 power 70437.1551 -62916 -> 5.02945060E-305005 Inexact Rounded -xrem434 remainder 70437.1551 -62916.1233 -> 7521.0318 -xsub434 subtract 70437.1551 -62916.1233 -> 133353.278 Inexact Rounded -xadd435 add 916260164 -58.4017325 -> 916260106 Inexact Rounded -xcom435 compare 916260164 -58.4017325 -> 1 -xdiv435 divide 916260164 -58.4017325 -> -15688920.9 Inexact Rounded -xdvi435 divideint 916260164 -58.4017325 -> -15688920 -xmul435 multiply 916260164 -58.4017325 -> -5.35111810E+10 Inexact Rounded -xpow435 power 916260164 -58 -> 1.59554587E-520 Inexact Rounded -xrem435 remainder 916260164 -58.4017325 -> 54.9461000 -xsub435 subtract 916260164 -58.4017325 -> 916260222 Inexact Rounded -xadd436 add 19889085.3E-46816480 1581683.94 -> 1581683.94 Inexact Rounded -xcom436 compare 19889085.3E-46816480 1581683.94 -> -1 -xdiv436 divide 19889085.3E-46816480 1581683.94 -> 1.25746268E-46816479 Inexact Rounded -xdvi436 divideint 19889085.3E-46816480 1581683.94 -> 0 -xmul436 multiply 19889085.3E-46816480 1581683.94 -> 3.14582468E-46816467 Inexact Rounded -xpow436 power 19889085.3E-46816480 1581684 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem436 remainder 19889085.3E-46816480 1581683.94 -> 1.98890853E-46816473 -xsub436 subtract 19889085.3E-46816480 1581683.94 -> -1581683.94 Inexact Rounded -xadd437 add -56312.3383 789.466064 -> -55522.8722 Inexact Rounded -xcom437 compare -56312.3383 789.466064 -> -1 -xdiv437 divide -56312.3383 789.466064 -> -71.3296503 Inexact Rounded -xdvi437 divideint -56312.3383 789.466064 -> -71 -xmul437 multiply -56312.3383 789.466064 -> -44456680.1 Inexact Rounded -xpow437 power -56312.3383 789 -> -1.68348724E+3748 Inexact Rounded -xrem437 remainder -56312.3383 789.466064 -> -260.247756 -xsub437 subtract -56312.3383 789.466064 -> -57101.8044 Inexact Rounded -xadd438 add 183442.849 -925876106 -> -925692663 Inexact Rounded -xcom438 compare 183442.849 -925876106 -> 1 -xdiv438 divide 183442.849 -925876106 -> -0.000198128937 Inexact Rounded -xdvi438 divideint 183442.849 -925876106 -> -0 -xmul438 multiply 183442.849 -925876106 -> -1.69845351E+14 Inexact Rounded -xpow438 power 183442.849 -925876106 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem438 remainder 183442.849 -925876106 -> 183442.849 -xsub438 subtract 183442.849 -925876106 -> 926059549 Inexact Rounded -xadd439 add 971113.655E-695540249 -419351120E-977743823 -> 9.71113655E-695540244 Inexact Rounded -xcom439 compare 971113.655E-695540249 -419351120E-977743823 -> 1 -xdiv439 divide 971113.655E-695540249 -419351120E-977743823 -> -2.31575310E+282203571 Inexact Rounded -xdvi439 divideint 971113.655E-695540249 -419351120E-977743823 -> NaN Division_impossible -xmul439 multiply 971113.655E-695540249 -419351120E-977743823 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xpow439 power 971113.655E-695540249 -4 -> Infinity Overflow Inexact Rounded -xrem439 remainder 971113.655E-695540249 -419351120E-977743823 -> NaN Division_impossible -xsub439 subtract 971113.655E-695540249 -419351120E-977743823 -> 9.71113655E-695540244 Inexact Rounded -xadd440 add 859658551. 72338.2054 -> 859730889 Inexact Rounded -xcom440 compare 859658551. 72338.2054 -> 1 -xdiv440 divide 859658551. 72338.2054 -> 11883.8800 Inexact Rounded -xdvi440 divideint 859658551. 72338.2054 -> 11883 -xmul440 multiply 859658551. 72338.2054 -> 6.21861568E+13 Inexact Rounded -xpow440 power 859658551. 72338 -> 1.87620450E+646291 Inexact Rounded -xrem440 remainder 859658551. 72338.2054 -> 63656.2318 -xsub440 subtract 859658551. 72338.2054 -> 859586213 Inexact Rounded -xadd441 add -3.86446630E+426816068 -664.534737 -> -3.86446630E+426816068 Inexact Rounded -xcom441 compare -3.86446630E+426816068 -664.534737 -> -1 -xdiv441 divide -3.86446630E+426816068 -664.534737 -> 5.81529615E+426816065 Inexact Rounded -xdvi441 divideint -3.86446630E+426816068 -664.534737 -> NaN Division_impossible -xmul441 multiply -3.86446630E+426816068 -664.534737 -> 2.56807210E+426816071 Inexact Rounded -xpow441 power -3.86446630E+426816068 -665 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem441 remainder -3.86446630E+426816068 -664.534737 -> NaN Division_impossible -xsub441 subtract -3.86446630E+426816068 -664.534737 -> -3.86446630E+426816068 Inexact Rounded -xadd442 add -969.881818 31170.8555 -> 30200.9737 Inexact Rounded -xcom442 compare -969.881818 31170.8555 -> -1 -xdiv442 divide -969.881818 31170.8555 -> -0.0311150208 Inexact Rounded -xdvi442 divideint -969.881818 31170.8555 -> -0 -xmul442 multiply -969.881818 31170.8555 -> -30232046.0 Inexact Rounded -xpow442 power -969.881818 31171 -> -1.02865894E+93099 Inexact Rounded -xrem442 remainder -969.881818 31170.8555 -> -969.881818 -xsub442 subtract -969.881818 31170.8555 -> -32140.7373 Inexact Rounded -xadd443 add 7980537.27 85.4040512 -> 7980622.67 Inexact Rounded -xcom443 compare 7980537.27 85.4040512 -> 1 -xdiv443 divide 7980537.27 85.4040512 -> 93444.4814 Inexact Rounded -xdvi443 divideint 7980537.27 85.4040512 -> 93444 -xmul443 multiply 7980537.27 85.4040512 -> 681570214 Inexact Rounded -xpow443 power 7980537.27 85 -> 4.70685763E+586 Inexact Rounded -xrem443 remainder 7980537.27 85.4040512 -> 41.1096672 -xsub443 subtract 7980537.27 85.4040512 -> 7980451.87 Inexact Rounded -xadd444 add -114609916. 7525.14981 -> -114602391 Inexact Rounded -xcom444 compare -114609916. 7525.14981 -> -1 -xdiv444 divide -114609916. 7525.14981 -> -15230.2504 Inexact Rounded -xdvi444 divideint -114609916. 7525.14981 -> -15230 -xmul444 multiply -114609916. 7525.14981 -> -8.62456788E+11 Inexact Rounded -xpow444 power -114609916. 7525 -> -4.43620445E+60645 Inexact Rounded -xrem444 remainder -114609916. 7525.14981 -> -1884.39370 -xsub444 subtract -114609916. 7525.14981 -> -114617441 Inexact Rounded -xadd445 add 8.43404682E-500572568 474526719 -> 474526719 Inexact Rounded -xcom445 compare 8.43404682E-500572568 474526719 -> -1 -xdiv445 divide 8.43404682E-500572568 474526719 -> 1.77735973E-500572576 Inexact Rounded -xdvi445 divideint 8.43404682E-500572568 474526719 -> 0 -xmul445 multiply 8.43404682E-500572568 474526719 -> 4.00218057E-500572559 Inexact Rounded -xpow445 power 8.43404682E-500572568 474526719 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem445 remainder 8.43404682E-500572568 474526719 -> 8.43404682E-500572568 -xsub445 subtract 8.43404682E-500572568 474526719 -> -474526719 Inexact Rounded -xadd446 add 188006433 2260.17037E-978192525 -> 188006433 Inexact Rounded -xcom446 compare 188006433 2260.17037E-978192525 -> 1 -xdiv446 divide 188006433 2260.17037E-978192525 -> 8.31824165E+978192529 Inexact Rounded -xdvi446 divideint 188006433 2260.17037E-978192525 -> NaN Division_impossible -xmul446 multiply 188006433 2260.17037E-978192525 -> 4.24926569E-978192514 Inexact Rounded -xpow446 power 188006433 2 -> 3.53464188E+16 Inexact Rounded -xrem446 remainder 188006433 2260.17037E-978192525 -> NaN Division_impossible -xsub446 subtract 188006433 2260.17037E-978192525 -> 188006433 Inexact Rounded -xadd447 add -9.95836312 -866466703 -> -866466713 Inexact Rounded -xcom447 compare -9.95836312 -866466703 -> 1 -xdiv447 divide -9.95836312 -866466703 -> 1.14930707E-8 Inexact Rounded -xdvi447 divideint -9.95836312 -866466703 -> 0 -xmul447 multiply -9.95836312 -866466703 -> 8.62859006E+9 Inexact Rounded -xpow447 power -9.95836312 -866466703 -> -6.71744369E-864896630 Inexact Rounded -xrem447 remainder -9.95836312 -866466703 -> -9.95836312 -xsub447 subtract -9.95836312 -866466703 -> 866466693 Inexact Rounded -xadd448 add 80919339.2E-967231586 219.824266 -> 219.824266 Inexact Rounded -xcom448 compare 80919339.2E-967231586 219.824266 -> -1 -xdiv448 divide 80919339.2E-967231586 219.824266 -> 3.68109220E-967231581 Inexact Rounded -xdvi448 divideint 80919339.2E-967231586 219.824266 -> 0 -xmul448 multiply 80919339.2E-967231586 219.824266 -> 1.77880343E-967231576 Inexact Rounded -xpow448 power 80919339.2E-967231586 220 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem448 remainder 80919339.2E-967231586 219.824266 -> 8.09193392E-967231579 -xsub448 subtract 80919339.2E-967231586 219.824266 -> -219.824266 Inexact Rounded -xadd449 add 159579.444 -89827.5229 -> 69751.9211 -xcom449 compare 159579.444 -89827.5229 -> 1 -xdiv449 divide 159579.444 -89827.5229 -> -1.77650946 Inexact Rounded -xdvi449 divideint 159579.444 -89827.5229 -> -1 -xmul449 multiply 159579.444 -89827.5229 -> -1.43346262E+10 Inexact Rounded -xpow449 power 159579.444 -89828 -> 9.69955850E-467374 Inexact Rounded -xrem449 remainder 159579.444 -89827.5229 -> 69751.9211 -xsub449 subtract 159579.444 -89827.5229 -> 249406.967 Inexact Rounded -xadd450 add -4.54000153 6966333.74 -> 6966329.20 Inexact Rounded -xcom450 compare -4.54000153 6966333.74 -> -1 -xdiv450 divide -4.54000153 6966333.74 -> -6.51706005E-7 Inexact Rounded -xdvi450 divideint -4.54000153 6966333.74 -> -0 -xmul450 multiply -4.54000153 6966333.74 -> -31627165.8 Inexact Rounded -xpow450 power -4.54000153 6966334 -> 3.52568913E+4577271 Inexact Rounded -xrem450 remainder -4.54000153 6966333.74 -> -4.54000153 -xsub450 subtract -4.54000153 6966333.74 -> -6966338.28 Inexact Rounded -xadd451 add 28701538.7E-391015649 -920999192. -> -920999192 Inexact Rounded -xcom451 compare 28701538.7E-391015649 -920999192. -> 1 -xdiv451 divide 28701538.7E-391015649 -920999192. -> -3.11634787E-391015651 Inexact Rounded -xdvi451 divideint 28701538.7E-391015649 -920999192. -> -0 -xmul451 multiply 28701538.7E-391015649 -920999192. -> -2.64340940E-391015633 Inexact Rounded -xpow451 power 28701538.7E-391015649 -920999192 -> Infinity Overflow Inexact Rounded -xrem451 remainder 28701538.7E-391015649 -920999192. -> 2.87015387E-391015642 -xsub451 subtract 28701538.7E-391015649 -920999192. -> 920999192 Inexact Rounded -xadd452 add -361382575. -7976.15286E+898491169 -> -7.97615286E+898491172 Inexact Rounded -xcom452 compare -361382575. -7976.15286E+898491169 -> 1 -xdiv452 divide -361382575. -7976.15286E+898491169 -> 4.53078798E-898491165 Inexact Rounded -xdvi452 divideint -361382575. -7976.15286E+898491169 -> 0 -xmul452 multiply -361382575. -7976.15286E+898491169 -> 2.88244266E+898491181 Inexact Rounded -xpow452 power -361382575. -8 -> 3.43765537E-69 Inexact Rounded -xrem452 remainder -361382575. -7976.15286E+898491169 -> -361382575 -xsub452 subtract -361382575. -7976.15286E+898491169 -> 7.97615286E+898491172 Inexact Rounded -xadd453 add 7021805.61 1222952.83 -> 8244758.44 -xcom453 compare 7021805.61 1222952.83 -> 1 -xdiv453 divide 7021805.61 1222952.83 -> 5.74168148 Inexact Rounded -xdvi453 divideint 7021805.61 1222952.83 -> 5 -xmul453 multiply 7021805.61 1222952.83 -> 8.58733704E+12 Inexact Rounded -xpow453 power 7021805.61 1222953 -> 1.26540553E+8372885 Inexact Rounded -xrem453 remainder 7021805.61 1222952.83 -> 907041.46 -xsub453 subtract 7021805.61 1222952.83 -> 5798852.78 -xadd454 add -40.4811667 -79655.5635 -> -79696.0447 Inexact Rounded -xcom454 compare -40.4811667 -79655.5635 -> 1 -xdiv454 divide -40.4811667 -79655.5635 -> 0.000508202628 Inexact Rounded -xdvi454 divideint -40.4811667 -79655.5635 -> 0 -xmul454 multiply -40.4811667 -79655.5635 -> 3224550.14 Inexact Rounded -xpow454 power -40.4811667 -79656 -> 4.50174275E-128028 Inexact Rounded -xrem454 remainder -40.4811667 -79655.5635 -> -40.4811667 -xsub454 subtract -40.4811667 -79655.5635 -> 79615.0823 Inexact Rounded -xadd455 add -8755674.38E+117168177 148.903404 -> -8.75567438E+117168183 Inexact Rounded -xcom455 compare -8755674.38E+117168177 148.903404 -> -1 -xdiv455 divide -8755674.38E+117168177 148.903404 -> -5.88010357E+117168181 Inexact Rounded -xdvi455 divideint -8755674.38E+117168177 148.903404 -> NaN Division_impossible -xmul455 multiply -8755674.38E+117168177 148.903404 -> -1.30374972E+117168186 Inexact Rounded -xpow455 power -8755674.38E+117168177 149 -> -Infinity Overflow Inexact Rounded -xrem455 remainder -8755674.38E+117168177 148.903404 -> NaN Division_impossible -xsub455 subtract -8755674.38E+117168177 148.903404 -> -8.75567438E+117168183 Inexact Rounded -xadd456 add 34.5329781E+382829392 -45.2177309 -> 3.45329781E+382829393 Inexact Rounded -xcom456 compare 34.5329781E+382829392 -45.2177309 -> 1 -xdiv456 divide 34.5329781E+382829392 -45.2177309 -> -7.63704357E+382829391 Inexact Rounded -xdvi456 divideint 34.5329781E+382829392 -45.2177309 -> NaN Division_impossible -xmul456 multiply 34.5329781E+382829392 -45.2177309 -> -1.56150291E+382829395 Inexact Rounded -xpow456 power 34.5329781E+382829392 -45 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem456 remainder 34.5329781E+382829392 -45.2177309 -> NaN Division_impossible -xsub456 subtract 34.5329781E+382829392 -45.2177309 -> 3.45329781E+382829393 Inexact Rounded -xadd457 add -37958476.0 584367.935 -> -37374108.1 Inexact Rounded -xcom457 compare -37958476.0 584367.935 -> -1 -xdiv457 divide -37958476.0 584367.935 -> -64.9564662 Inexact Rounded -xdvi457 divideint -37958476.0 584367.935 -> -64 -xmul457 multiply -37958476.0 584367.935 -> -2.21817162E+13 Inexact Rounded -xpow457 power -37958476.0 584368 -> 3.20538268E+4429105 Inexact Rounded -xrem457 remainder -37958476.0 584367.935 -> -558928.160 -xsub457 subtract -37958476.0 584367.935 -> -38542843.9 Inexact Rounded -xadd458 add 495233.553E-414152215 62352759.2 -> 62352759.2 Inexact Rounded -xcom458 compare 495233.553E-414152215 62352759.2 -> -1 -xdiv458 divide 495233.553E-414152215 62352759.2 -> 7.94244809E-414152218 Inexact Rounded -xdvi458 divideint 495233.553E-414152215 62352759.2 -> 0 -xmul458 multiply 495233.553E-414152215 62352759.2 -> 3.08791785E-414152202 Inexact Rounded -xpow458 power 495233.553E-414152215 62352759 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem458 remainder 495233.553E-414152215 62352759.2 -> 4.95233553E-414152210 -xsub458 subtract 495233.553E-414152215 62352759.2 -> -62352759.2 Inexact Rounded -xadd459 add -502343060 -96828.994 -> -502439889 Inexact Rounded -xcom459 compare -502343060 -96828.994 -> -1 -xdiv459 divide -502343060 -96828.994 -> 5187.94050 Inexact Rounded -xdvi459 divideint -502343060 -96828.994 -> 5187 -xmul459 multiply -502343060 -96828.994 -> 4.86413731E+13 Inexact Rounded -xpow459 power -502343060 -96829 -> -6.78602119E-842510 Inexact Rounded -xrem459 remainder -502343060 -96828.994 -> -91068.122 -xsub459 subtract -502343060 -96828.994 -> -502246231 Inexact Rounded -xadd460 add -22.439639E+916362878 -39.4037681 -> -2.24396390E+916362879 Inexact Rounded -xcom460 compare -22.439639E+916362878 -39.4037681 -> -1 -xdiv460 divide -22.439639E+916362878 -39.4037681 -> 5.69479521E+916362877 Inexact Rounded -xdvi460 divideint -22.439639E+916362878 -39.4037681 -> NaN Division_impossible -xmul460 multiply -22.439639E+916362878 -39.4037681 -> 8.84206331E+916362880 Inexact Rounded -xpow460 power -22.439639E+916362878 -39 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem460 remainder -22.439639E+916362878 -39.4037681 -> NaN Division_impossible -xsub460 subtract -22.439639E+916362878 -39.4037681 -> -2.24396390E+916362879 Inexact Rounded -xadd461 add 718180.587E-957473722 1.66223443 -> 1.66223443 Inexact Rounded -xcom461 compare 718180.587E-957473722 1.66223443 -> -1 -xdiv461 divide 718180.587E-957473722 1.66223443 -> 4.32057340E-957473717 Inexact Rounded -xdvi461 divideint 718180.587E-957473722 1.66223443 -> 0 -xmul461 multiply 718180.587E-957473722 1.66223443 -> 1.19378450E-957473716 Inexact Rounded -xpow461 power 718180.587E-957473722 2 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem461 remainder 718180.587E-957473722 1.66223443 -> 7.18180587E-957473717 -xsub461 subtract 718180.587E-957473722 1.66223443 -> -1.66223443 Inexact Rounded -xadd462 add -51592.2698 -713885.741 -> -765478.011 Inexact Rounded -xcom462 compare -51592.2698 -713885.741 -> 1 -xdiv462 divide -51592.2698 -713885.741 -> 0.0722696460 Inexact Rounded -xdvi462 divideint -51592.2698 -713885.741 -> 0 -xmul462 multiply -51592.2698 -713885.741 -> 3.68309858E+10 Inexact Rounded -xpow462 power -51592.2698 -713886 -> 6.38576920E-3364249 Inexact Rounded -xrem462 remainder -51592.2698 -713885.741 -> -51592.2698 -xsub462 subtract -51592.2698 -713885.741 -> 662293.471 Inexact Rounded -xadd463 add 51.2279848E+80439745 207.55925E+865165070 -> 2.07559250E+865165072 Inexact Rounded -xcom463 compare 51.2279848E+80439745 207.55925E+865165070 -> -1 -xdiv463 divide 51.2279848E+80439745 207.55925E+865165070 -> 2.46811379E-784725326 Inexact Rounded -xdvi463 divideint 51.2279848E+80439745 207.55925E+865165070 -> 0 -xmul463 multiply 51.2279848E+80439745 207.55925E+865165070 -> 1.06328421E+945604819 Inexact Rounded -xpow463 power 51.2279848E+80439745 2 -> 2.62430643E+160879493 Inexact Rounded -xrem463 remainder 51.2279848E+80439745 207.55925E+865165070 -> 5.12279848E+80439746 -xsub463 subtract 51.2279848E+80439745 207.55925E+865165070 -> -2.07559250E+865165072 Inexact Rounded -xadd464 add -5983.23468 -39.9544513 -> -6023.18913 Inexact Rounded -xcom464 compare -5983.23468 -39.9544513 -> -1 -xdiv464 divide -5983.23468 -39.9544513 -> 149.751392 Inexact Rounded -xdvi464 divideint -5983.23468 -39.9544513 -> 149 -xmul464 multiply -5983.23468 -39.9544513 -> 239056.859 Inexact Rounded -xpow464 power -5983.23468 -40 -> 8.36678291E-152 Inexact Rounded -xrem464 remainder -5983.23468 -39.9544513 -> -30.0214363 -xsub464 subtract -5983.23468 -39.9544513 -> -5943.28023 Inexact Rounded -xadd465 add 921639332.E-917542963 287325.891 -> 287325.891 Inexact Rounded -xcom465 compare 921639332.E-917542963 287325.891 -> -1 -xdiv465 divide 921639332.E-917542963 287325.891 -> 3.20764456E-917542960 Inexact Rounded -xdvi465 divideint 921639332.E-917542963 287325.891 -> 0 -xmul465 multiply 921639332.E-917542963 287325.891 -> 2.64810842E-917542949 Inexact Rounded -xpow465 power 921639332.E-917542963 287326 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem465 remainder 921639332.E-917542963 287325.891 -> 9.21639332E-917542955 -xsub465 subtract 921639332.E-917542963 287325.891 -> -287325.891 Inexact Rounded -xadd466 add 91095916.8E-787312969 -58643.418E+58189880 -> -5.86434180E+58189884 Inexact Rounded -xcom466 compare 91095916.8E-787312969 -58643.418E+58189880 -> 1 -xdiv466 divide 91095916.8E-787312969 -58643.418E+58189880 -> -1.55338689E-845502846 Inexact Rounded -xdvi466 divideint 91095916.8E-787312969 -58643.418E+58189880 -> -0 -xmul466 multiply 91095916.8E-787312969 -58643.418E+58189880 -> -5.34217593E-729123077 Inexact Rounded -xpow466 power 91095916.8E-787312969 -6 -> Infinity Overflow Inexact Rounded -xrem466 remainder 91095916.8E-787312969 -58643.418E+58189880 -> 9.10959168E-787312962 -xsub466 subtract 91095916.8E-787312969 -58643.418E+58189880 -> 5.86434180E+58189884 Inexact Rounded -xadd467 add -6410.5555 -234964259 -> -234970670 Inexact Rounded -xcom467 compare -6410.5555 -234964259 -> 1 -xdiv467 divide -6410.5555 -234964259 -> 0.0000272831090 Inexact Rounded -xdvi467 divideint -6410.5555 -234964259 -> 0 -xmul467 multiply -6410.5555 -234964259 -> 1.50625142E+12 Inexact Rounded -xpow467 power -6410.5555 -234964259 -> -1.27064467E-894484419 Inexact Rounded -xrem467 remainder -6410.5555 -234964259 -> -6410.5555 -xsub467 subtract -6410.5555 -234964259 -> 234957848 Inexact Rounded -xadd468 add -5.32711606 -8447286.21 -> -8447291.54 Inexact Rounded -xcom468 compare -5.32711606 -8447286.21 -> 1 -xdiv468 divide -5.32711606 -8447286.21 -> 6.30630468E-7 Inexact Rounded -xdvi468 divideint -5.32711606 -8447286.21 -> 0 -xmul468 multiply -5.32711606 -8447286.21 -> 44999674.0 Inexact Rounded -xpow468 power -5.32711606 -8447286 -> 9.09138728E-6136888 Inexact Rounded -xrem468 remainder -5.32711606 -8447286.21 -> -5.32711606 -xsub468 subtract -5.32711606 -8447286.21 -> 8447280.88 Inexact Rounded -xadd469 add -82272171.8 -776.238587E-372690416 -> -82272171.8 Inexact Rounded -xcom469 compare -82272171.8 -776.238587E-372690416 -> -1 -xdiv469 divide -82272171.8 -776.238587E-372690416 -> 1.05988253E+372690421 Inexact Rounded -xdvi469 divideint -82272171.8 -776.238587E-372690416 -> NaN Division_impossible -xmul469 multiply -82272171.8 -776.238587E-372690416 -> 6.38628344E-372690406 Inexact Rounded -xpow469 power -82272171.8 -8 -> 4.76404994E-64 Inexact Rounded -xrem469 remainder -82272171.8 -776.238587E-372690416 -> NaN Division_impossible -xsub469 subtract -82272171.8 -776.238587E-372690416 -> -82272171.8 Inexact Rounded -xadd470 add 412411244.E-774339264 866452.465 -> 866452.465 Inexact Rounded -xcom470 compare 412411244.E-774339264 866452.465 -> -1 -xdiv470 divide 412411244.E-774339264 866452.465 -> 4.75976768E-774339262 Inexact Rounded -xdvi470 divideint 412411244.E-774339264 866452.465 -> 0 -xmul470 multiply 412411244.E-774339264 866452.465 -> 3.57334739E-774339250 Inexact Rounded -xpow470 power 412411244.E-774339264 866452 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem470 remainder 412411244.E-774339264 866452.465 -> 4.12411244E-774339256 -xsub470 subtract 412411244.E-774339264 866452.465 -> -866452.465 Inexact Rounded -xadd471 add -103.474598 -3.01660661E-446661257 -> -103.474598 Inexact Rounded -xcom471 compare -103.474598 -3.01660661E-446661257 -> -1 -xdiv471 divide -103.474598 -3.01660661E-446661257 -> 3.43016546E+446661258 Inexact Rounded -xdvi471 divideint -103.474598 -3.01660661E-446661257 -> NaN Division_impossible -xmul471 multiply -103.474598 -3.01660661E-446661257 -> 3.12142156E-446661255 Inexact Rounded -xpow471 power -103.474598 -3 -> -9.02607123E-7 Inexact Rounded -xrem471 remainder -103.474598 -3.01660661E-446661257 -> NaN Division_impossible -xsub471 subtract -103.474598 -3.01660661E-446661257 -> -103.474598 Inexact Rounded -xadd472 add -31027.8323 -475378186. -> -475409214 Inexact Rounded -xcom472 compare -31027.8323 -475378186. -> 1 -xdiv472 divide -31027.8323 -475378186. -> 0.0000652697856 Inexact Rounded -xdvi472 divideint -31027.8323 -475378186. -> 0 -xmul472 multiply -31027.8323 -475378186. -> 1.47499546E+13 Inexact Rounded -xpow472 power -31027.8323 -475378186 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem472 remainder -31027.8323 -475378186. -> -31027.8323 -xsub472 subtract -31027.8323 -475378186. -> 475347158 Inexact Rounded -xadd473 add -1199339.72 -5.73068392E+53774632 -> -5.73068392E+53774632 Inexact Rounded -xcom473 compare -1199339.72 -5.73068392E+53774632 -> 1 -xdiv473 divide -1199339.72 -5.73068392E+53774632 -> 2.09283872E-53774627 Inexact Rounded -xdvi473 divideint -1199339.72 -5.73068392E+53774632 -> 0 -xmul473 multiply -1199339.72 -5.73068392E+53774632 -> 6.87303685E+53774638 Inexact Rounded -xpow473 power -1199339.72 -6 -> 3.36005741E-37 Inexact Rounded -xrem473 remainder -1199339.72 -5.73068392E+53774632 -> -1199339.72 -xsub473 subtract -1199339.72 -5.73068392E+53774632 -> 5.73068392E+53774632 Inexact Rounded -xadd474 add -732908.930E+364345433 -3486146.26 -> -7.32908930E+364345438 Inexact Rounded -xcom474 compare -732908.930E+364345433 -3486146.26 -> -1 -xdiv474 divide -732908.930E+364345433 -3486146.26 -> 2.10234705E+364345432 Inexact Rounded -xdvi474 divideint -732908.930E+364345433 -3486146.26 -> NaN Division_impossible -xmul474 multiply -732908.930E+364345433 -3486146.26 -> 2.55502773E+364345445 Inexact Rounded -xpow474 power -732908.930E+364345433 -3486146 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem474 remainder -732908.930E+364345433 -3486146.26 -> NaN Division_impossible -xsub474 subtract -732908.930E+364345433 -3486146.26 -> -7.32908930E+364345438 Inexact Rounded -xadd475 add -2376150.83 -46777583.3 -> -49153734.1 Inexact Rounded -xcom475 compare -2376150.83 -46777583.3 -> 1 -xdiv475 divide -2376150.83 -46777583.3 -> 0.0507967847 Inexact Rounded -xdvi475 divideint -2376150.83 -46777583.3 -> 0 -xmul475 multiply -2376150.83 -46777583.3 -> 1.11150593E+14 Inexact Rounded -xpow475 power -2376150.83 -46777583 -> -3.51886193E-298247976 Inexact Rounded -xrem475 remainder -2376150.83 -46777583.3 -> -2376150.83 -xsub475 subtract -2376150.83 -46777583.3 -> 44401432.5 Inexact Rounded -xadd476 add 6.3664211 -140854908. -> -140854902 Inexact Rounded -xcom476 compare 6.3664211 -140854908. -> 1 -xdiv476 divide 6.3664211 -140854908. -> -4.51984328E-8 Inexact Rounded -xdvi476 divideint 6.3664211 -140854908. -> -0 -xmul476 multiply 6.3664211 -140854908. -> -896741658 Inexact Rounded -xpow476 power 6.3664211 -140854908 -> 7.25432803E-113232608 Inexact Rounded -xrem476 remainder 6.3664211 -140854908. -> 6.3664211 -xsub476 subtract 6.3664211 -140854908. -> 140854914 Inexact Rounded -xadd477 add -15.791522 1902.30210E+90741844 -> 1.90230210E+90741847 Inexact Rounded -xcom477 compare -15.791522 1902.30210E+90741844 -> -1 -xdiv477 divide -15.791522 1902.30210E+90741844 -> -8.30126929E-90741847 Inexact Rounded -xdvi477 divideint -15.791522 1902.30210E+90741844 -> -0 -xmul477 multiply -15.791522 1902.30210E+90741844 -> -3.00402455E+90741848 Inexact Rounded -xpow477 power -15.791522 2 -> 249.372167 Inexact Rounded -xrem477 remainder -15.791522 1902.30210E+90741844 -> -15.791522 -xsub477 subtract -15.791522 1902.30210E+90741844 -> -1.90230210E+90741847 Inexact Rounded -xadd478 add 15356.1505E+373950429 2.88020400 -> 1.53561505E+373950433 Inexact Rounded -xcom478 compare 15356.1505E+373950429 2.88020400 -> 1 -xdiv478 divide 15356.1505E+373950429 2.88020400 -> 5.33161905E+373950432 Inexact Rounded -xdvi478 divideint 15356.1505E+373950429 2.88020400 -> NaN Division_impossible -xmul478 multiply 15356.1505E+373950429 2.88020400 -> 4.42288461E+373950433 Inexact Rounded -xpow478 power 15356.1505E+373950429 3 -> Infinity Overflow Inexact Rounded -xrem478 remainder 15356.1505E+373950429 2.88020400 -> NaN Division_impossible -xsub478 subtract 15356.1505E+373950429 2.88020400 -> 1.53561505E+373950433 Inexact Rounded -xadd479 add -3.12001326E+318884762 9567.21595 -> -3.12001326E+318884762 Inexact Rounded -xcom479 compare -3.12001326E+318884762 9567.21595 -> -1 -xdiv479 divide -3.12001326E+318884762 9567.21595 -> -3.26115066E+318884758 Inexact Rounded -xdvi479 divideint -3.12001326E+318884762 9567.21595 -> NaN Division_impossible -xmul479 multiply -3.12001326E+318884762 9567.21595 -> -2.98498406E+318884766 Inexact Rounded -xpow479 power -3.12001326E+318884762 9567 -> -Infinity Overflow Inexact Rounded -xrem479 remainder -3.12001326E+318884762 9567.21595 -> NaN Division_impossible -xsub479 subtract -3.12001326E+318884762 9567.21595 -> -3.12001326E+318884762 Inexact Rounded -xadd480 add 49436.6528 751.919517 -> 50188.5723 Inexact Rounded -xcom480 compare 49436.6528 751.919517 -> 1 -xdiv480 divide 49436.6528 751.919517 -> 65.7472664 Inexact Rounded -xdvi480 divideint 49436.6528 751.919517 -> 65 -xmul480 multiply 49436.6528 751.919517 -> 37172384.1 Inexact Rounded -xpow480 power 49436.6528 752 -> 8.41185718E+3529 Inexact Rounded -xrem480 remainder 49436.6528 751.919517 -> 561.884195 -xsub480 subtract 49436.6528 751.919517 -> 48684.7333 Inexact Rounded -xadd481 add 552.669453 8.3725760E+16223526 -> 8.37257600E+16223526 Inexact Rounded -xcom481 compare 552.669453 8.3725760E+16223526 -> -1 -xdiv481 divide 552.669453 8.3725760E+16223526 -> 6.60094878E-16223525 Inexact Rounded -xdvi481 divideint 552.669453 8.3725760E+16223526 -> 0 -xmul481 multiply 552.669453 8.3725760E+16223526 -> 4.62726700E+16223529 Inexact Rounded -xpow481 power 552.669453 8 -> 8.70409632E+21 Inexact Rounded -xrem481 remainder 552.669453 8.3725760E+16223526 -> 552.669453 -xsub481 subtract 552.669453 8.3725760E+16223526 -> -8.37257600E+16223526 Inexact Rounded -xadd482 add -3266303 453741.520 -> -2812561.48 Rounded -xcom482 compare -3266303 453741.520 -> -1 -xdiv482 divide -3266303 453741.520 -> -7.19859844 Inexact Rounded -xdvi482 divideint -3266303 453741.520 -> -7 -xmul482 multiply -3266303 453741.520 -> -1.48205729E+12 Inexact Rounded -xpow482 power -3266303 453742 -> 1.02497315E+2955701 Inexact Rounded -xrem482 remainder -3266303 453741.520 -> -90112.360 -xsub482 subtract -3266303 453741.520 -> -3720044.52 Rounded -xadd483 add 12302757.4 542922.487E+414443353 -> 5.42922487E+414443358 Inexact Rounded -xcom483 compare 12302757.4 542922.487E+414443353 -> -1 -xdiv483 divide 12302757.4 542922.487E+414443353 -> 2.26602465E-414443352 Inexact Rounded -xdvi483 divideint 12302757.4 542922.487E+414443353 -> 0 -xmul483 multiply 12302757.4 542922.487E+414443353 -> 6.67944364E+414443365 Inexact Rounded -xpow483 power 12302757.4 5 -> 2.81846276E+35 Inexact Rounded -xrem483 remainder 12302757.4 542922.487E+414443353 -> 12302757.4 -xsub483 subtract 12302757.4 542922.487E+414443353 -> -5.42922487E+414443358 Inexact Rounded -xadd484 add -5670757.79E-784754984 128144.503 -> 128144.503 Inexact Rounded -xcom484 compare -5670757.79E-784754984 128144.503 -> -1 -xdiv484 divide -5670757.79E-784754984 128144.503 -> -4.42528369E-784754983 Inexact Rounded -xdvi484 divideint -5670757.79E-784754984 128144.503 -> -0 -xmul484 multiply -5670757.79E-784754984 128144.503 -> -7.26676439E-784754973 Inexact Rounded -xpow484 power -5670757.79E-784754984 128145 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem484 remainder -5670757.79E-784754984 128144.503 -> -5.67075779E-784754978 -xsub484 subtract -5670757.79E-784754984 128144.503 -> -128144.503 Inexact Rounded -xadd485 add 22.7721968E+842530698 5223.70462 -> 2.27721968E+842530699 Inexact Rounded -xcom485 compare 22.7721968E+842530698 5223.70462 -> 1 -xdiv485 divide 22.7721968E+842530698 5223.70462 -> 4.35939596E+842530695 Inexact Rounded -xdvi485 divideint 22.7721968E+842530698 5223.70462 -> NaN Division_impossible -xmul485 multiply 22.7721968E+842530698 5223.70462 -> 1.18955230E+842530703 Inexact Rounded -xpow485 power 22.7721968E+842530698 5224 -> Infinity Overflow Inexact Rounded -xrem485 remainder 22.7721968E+842530698 5223.70462 -> NaN Division_impossible -xsub485 subtract 22.7721968E+842530698 5223.70462 -> 2.27721968E+842530699 Inexact Rounded -xadd486 add 88.5158199E-980164357 325846116 -> 325846116 Inexact Rounded -xcom486 compare 88.5158199E-980164357 325846116 -> -1 -xdiv486 divide 88.5158199E-980164357 325846116 -> 2.71649148E-980164364 Inexact Rounded -xdvi486 divideint 88.5158199E-980164357 325846116 -> 0 -xmul486 multiply 88.5158199E-980164357 325846116 -> 2.88425361E-980164347 Inexact Rounded -xpow486 power 88.5158199E-980164357 325846116 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem486 remainder 88.5158199E-980164357 325846116 -> 8.85158199E-980164356 -xsub486 subtract 88.5158199E-980164357 325846116 -> -325846116 Inexact Rounded -xadd487 add -22881.0408 5.63661562 -> -22875.4042 Inexact Rounded -xcom487 compare -22881.0408 5.63661562 -> -1 -xdiv487 divide -22881.0408 5.63661562 -> -4059.35802 Inexact Rounded -xdvi487 divideint -22881.0408 5.63661562 -> -4059 -xmul487 multiply -22881.0408 5.63661562 -> -128971.632 Inexact Rounded -xpow487 power -22881.0408 6 -> 1.43500909E+26 Inexact Rounded -xrem487 remainder -22881.0408 5.63661562 -> -2.01799842 -xsub487 subtract -22881.0408 5.63661562 -> -22886.6774 Inexact Rounded -xadd488 add -7157.57449 -76.4455519E-85647047 -> -7157.57449 Inexact Rounded -xcom488 compare -7157.57449 -76.4455519E-85647047 -> -1 -xdiv488 divide -7157.57449 -76.4455519E-85647047 -> 9.36297052E+85647048 Inexact Rounded -xdvi488 divideint -7157.57449 -76.4455519E-85647047 -> NaN Division_impossible -xmul488 multiply -7157.57449 -76.4455519E-85647047 -> 5.47164732E-85647042 Inexact Rounded -xpow488 power -7157.57449 -8 -> 1.45168700E-31 Inexact Rounded -xrem488 remainder -7157.57449 -76.4455519E-85647047 -> NaN Division_impossible -xsub488 subtract -7157.57449 -76.4455519E-85647047 -> -7157.57449 Inexact Rounded -xadd489 add -503113.801 -9715149.82E-612184422 -> -503113.801 Inexact Rounded -xcom489 compare -503113.801 -9715149.82E-612184422 -> -1 -xdiv489 divide -503113.801 -9715149.82E-612184422 -> 5.17865201E+612184420 Inexact Rounded -xdvi489 divideint -503113.801 -9715149.82E-612184422 -> NaN Division_impossible -xmul489 multiply -503113.801 -9715149.82E-612184422 -> 4.88782595E-612184410 Inexact Rounded -xpow489 power -503113.801 -10 -> 9.62360287E-58 Inexact Rounded -xrem489 remainder -503113.801 -9715149.82E-612184422 -> NaN Division_impossible -xsub489 subtract -503113.801 -9715149.82E-612184422 -> -503113.801 Inexact Rounded -xadd490 add -3066962.41 -55.3096879 -> -3067017.72 Inexact Rounded -xcom490 compare -3066962.41 -55.3096879 -> -1 -xdiv490 divide -3066962.41 -55.3096879 -> 55450.7271 Inexact Rounded -xdvi490 divideint -3066962.41 -55.3096879 -> 55450 -xmul490 multiply -3066962.41 -55.3096879 -> 169632734 Inexact Rounded -xpow490 power -3066962.41 -55 -> -1.70229600E-357 Inexact Rounded -xrem490 remainder -3066962.41 -55.3096879 -> -40.2159450 -xsub490 subtract -3066962.41 -55.3096879 -> -3066907.10 Inexact Rounded -xadd491 add -53311.5738E+156608936 -7.45890666 -> -5.33115738E+156608940 Inexact Rounded -xcom491 compare -53311.5738E+156608936 -7.45890666 -> -1 -xdiv491 divide -53311.5738E+156608936 -7.45890666 -> 7.14737109E+156608939 Inexact Rounded -xdvi491 divideint -53311.5738E+156608936 -7.45890666 -> NaN Division_impossible -xmul491 multiply -53311.5738E+156608936 -7.45890666 -> 3.97646053E+156608941 Inexact Rounded -xpow491 power -53311.5738E+156608936 -7 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem491 remainder -53311.5738E+156608936 -7.45890666 -> NaN Division_impossible -xsub491 subtract -53311.5738E+156608936 -7.45890666 -> -5.33115738E+156608940 Inexact Rounded -xadd492 add 998890068. -92.057879 -> 998889976 Inexact Rounded -xcom492 compare 998890068. -92.057879 -> 1 -xdiv492 divide 998890068. -92.057879 -> -10850674.4 Inexact Rounded -xdvi492 divideint 998890068. -92.057879 -> -10850674 -xmul492 multiply 998890068. -92.057879 -> -9.19557010E+10 Inexact Rounded -xpow492 power 998890068. -92 -> 1.10757225E-828 Inexact Rounded -xrem492 remainder 998890068. -92.057879 -> 33.839554 -xsub492 subtract 998890068. -92.057879 -> 998890160 Inexact Rounded -xadd493 add 122.495591 -407836028. -> -407835906 Inexact Rounded -xcom493 compare 122.495591 -407836028. -> 1 -xdiv493 divide 122.495591 -407836028. -> -3.00355002E-7 Inexact Rounded -xdvi493 divideint 122.495591 -407836028. -> -0 -xmul493 multiply 122.495591 -407836028. -> -4.99581153E+10 Inexact Rounded -xpow493 power 122.495591 -407836028 -> 4.82463773E-851610754 Inexact Rounded -xrem493 remainder 122.495591 -407836028. -> 122.495591 -xsub493 subtract 122.495591 -407836028. -> 407836150 Inexact Rounded -xadd494 add 187098.488 6220.05584E-236541249 -> 187098.488 Inexact Rounded -xcom494 compare 187098.488 6220.05584E-236541249 -> 1 -xdiv494 divide 187098.488 6220.05584E-236541249 -> 3.00798727E+236541250 Inexact Rounded -xdvi494 divideint 187098.488 6220.05584E-236541249 -> NaN Division_impossible -xmul494 multiply 187098.488 6220.05584E-236541249 -> 1.16376304E-236541240 Inexact Rounded -xpow494 power 187098.488 6 -> 4.28964811E+31 Inexact Rounded -xrem494 remainder 187098.488 6220.05584E-236541249 -> NaN Division_impossible -xsub494 subtract 187098.488 6220.05584E-236541249 -> 187098.488 Inexact Rounded -xadd495 add 4819899.21E+432982550 -727441917 -> 4.81989921E+432982556 Inexact Rounded -xcom495 compare 4819899.21E+432982550 -727441917 -> 1 -xdiv495 divide 4819899.21E+432982550 -727441917 -> -6.62582001E+432982547 Inexact Rounded -xdvi495 divideint 4819899.21E+432982550 -727441917 -> NaN Division_impossible -xmul495 multiply 4819899.21E+432982550 -727441917 -> -3.50619672E+432982565 Inexact Rounded -xpow495 power 4819899.21E+432982550 -727441917 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem495 remainder 4819899.21E+432982550 -727441917 -> NaN Division_impossible -xsub495 subtract 4819899.21E+432982550 -727441917 -> 4.81989921E+432982556 Inexact Rounded -xadd496 add 5770.01020E+507459752 -4208339.33E-129766680 -> 5.77001020E+507459755 Inexact Rounded -xcom496 compare 5770.01020E+507459752 -4208339.33E-129766680 -> 1 -xdiv496 divide 5770.01020E+507459752 -4208339.33E-129766680 -> -1.37108958E+637226429 Inexact Rounded -xdvi496 divideint 5770.01020E+507459752 -4208339.33E-129766680 -> NaN Division_impossible -xmul496 multiply 5770.01020E+507459752 -4208339.33E-129766680 -> -2.42821609E+377693082 Inexact Rounded -xpow496 power 5770.01020E+507459752 -4 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -xrem496 remainder 5770.01020E+507459752 -4208339.33E-129766680 -> NaN Division_impossible -xsub496 subtract 5770.01020E+507459752 -4208339.33E-129766680 -> 5.77001020E+507459755 Inexact Rounded -xadd497 add -286.371320 710319152 -> 710318866 Inexact Rounded -xcom497 compare -286.371320 710319152 -> -1 -xdiv497 divide -286.371320 710319152 -> -4.03158664E-7 Inexact Rounded -xdvi497 divideint -286.371320 710319152 -> -0 -xmul497 multiply -286.371320 710319152 -> -2.03415033E+11 Inexact Rounded -xpow497 power -286.371320 710319152 -> Infinity Overflow Inexact Rounded -xrem497 remainder -286.371320 710319152 -> -286.371320 -xsub497 subtract -286.371320 710319152 -> -710319438 Inexact Rounded -xadd498 add -7.27403536 -481469656E-835183700 -> -7.27403536 Inexact Rounded -xcom498 compare -7.27403536 -481469656E-835183700 -> -1 -xdiv498 divide -7.27403536 -481469656E-835183700 -> 1.51079830E+835183692 Inexact Rounded -xdvi498 divideint -7.27403536 -481469656E-835183700 -> NaN Division_impossible -xmul498 multiply -7.27403536 -481469656E-835183700 -> 3.50222730E-835183691 Inexact Rounded -xpow498 power -7.27403536 -5 -> -0.0000491046885 Inexact Rounded -xrem498 remainder -7.27403536 -481469656E-835183700 -> NaN Division_impossible -xsub498 subtract -7.27403536 -481469656E-835183700 -> -7.27403536 Inexact Rounded -xadd499 add -6157.74292 -94075286.2E+92555877 -> -9.40752862E+92555884 Inexact Rounded -xcom499 compare -6157.74292 -94075286.2E+92555877 -> 1 -xdiv499 divide -6157.74292 -94075286.2E+92555877 -> 6.54554790E-92555882 Inexact Rounded -xdvi499 divideint -6157.74292 -94075286.2E+92555877 -> 0 -xmul499 multiply -6157.74292 -94075286.2E+92555877 -> 5.79291428E+92555888 Inexact Rounded -xpow499 power -6157.74292 -9 -> -7.85608218E-35 Inexact Rounded -xrem499 remainder -6157.74292 -94075286.2E+92555877 -> -6157.74292 -xsub499 subtract -6157.74292 -94075286.2E+92555877 -> 9.40752862E+92555884 Inexact Rounded -xadd500 add -525445087.E+231529167 188227460 -> -5.25445087E+231529175 Inexact Rounded -xcom500 compare -525445087.E+231529167 188227460 -> -1 -xdiv500 divide -525445087.E+231529167 188227460 -> -2.79154321E+231529167 Inexact Rounded -xdvi500 divideint -525445087.E+231529167 188227460 -> NaN Division_impossible -xmul500 multiply -525445087.E+231529167 188227460 -> -9.89031941E+231529183 Inexact Rounded -xpow500 power -525445087.E+231529167 188227460 -> Infinity Overflow Inexact Rounded -xrem500 remainder -525445087.E+231529167 188227460 -> NaN Division_impossible -xsub500 subtract -525445087.E+231529167 188227460 -> -5.25445087E+231529175 Inexact Rounded - diff --git a/qdecimal/test/tc_full/reduce.decTest b/qdecimal/test/tc_full/reduce.decTest deleted file mode 100644 index 1182f63..0000000 --- a/qdecimal/test/tc_full/reduce.decTest +++ /dev/null @@ -1,234 +0,0 @@ ------------------------------------------------------------------------- --- reduce.decTest -- remove trailing zeros -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- --- [This used to be called normalize.] - -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -redx001 reduce '1' -> '1' -redx002 reduce '-1' -> '-1' -redx003 reduce '1.00' -> '1' -redx004 reduce '-1.00' -> '-1' -redx005 reduce '0' -> '0' -redx006 reduce '0.00' -> '0' -redx007 reduce '00.0' -> '0' -redx008 reduce '00.00' -> '0' -redx009 reduce '00' -> '0' -redx010 reduce '0E+1' -> '0' -redx011 reduce '0E+5' -> '0' - -redx012 reduce '-2' -> '-2' -redx013 reduce '2' -> '2' -redx014 reduce '-2.00' -> '-2' -redx015 reduce '2.00' -> '2' -redx016 reduce '-0' -> '-0' -redx017 reduce '-0.00' -> '-0' -redx018 reduce '-00.0' -> '-0' -redx019 reduce '-00.00' -> '-0' -redx020 reduce '-00' -> '-0' -redx021 reduce '-0E+5' -> '-0' -redx022 reduce '-0E+1' -> '-0' - -redx030 reduce '+0.1' -> '0.1' -redx031 reduce '-0.1' -> '-0.1' -redx032 reduce '+0.01' -> '0.01' -redx033 reduce '-0.01' -> '-0.01' -redx034 reduce '+0.001' -> '0.001' -redx035 reduce '-0.001' -> '-0.001' -redx036 reduce '+0.000001' -> '0.000001' -redx037 reduce '-0.000001' -> '-0.000001' -redx038 reduce '+0.000000000001' -> '1E-12' -redx039 reduce '-0.000000000001' -> '-1E-12' - -redx041 reduce 1.1 -> 1.1 -redx042 reduce 1.10 -> 1.1 -redx043 reduce 1.100 -> 1.1 -redx044 reduce 1.110 -> 1.11 -redx045 reduce -1.1 -> -1.1 -redx046 reduce -1.10 -> -1.1 -redx047 reduce -1.100 -> -1.1 -redx048 reduce -1.110 -> -1.11 -redx049 reduce 9.9 -> 9.9 -redx050 reduce 9.90 -> 9.9 -redx051 reduce 9.900 -> 9.9 -redx052 reduce 9.990 -> 9.99 -redx053 reduce -9.9 -> -9.9 -redx054 reduce -9.90 -> -9.9 -redx055 reduce -9.900 -> -9.9 -redx056 reduce -9.990 -> -9.99 - --- some trailing fractional zeros with zeros in units -redx060 reduce 10.0 -> 1E+1 -redx061 reduce 10.00 -> 1E+1 -redx062 reduce 100.0 -> 1E+2 -redx063 reduce 100.00 -> 1E+2 -redx064 reduce 1.1000E+3 -> 1.1E+3 -redx065 reduce 1.10000E+3 -> 1.1E+3 -redx066 reduce -10.0 -> -1E+1 -redx067 reduce -10.00 -> -1E+1 -redx068 reduce -100.0 -> -1E+2 -redx069 reduce -100.00 -> -1E+2 -redx070 reduce -1.1000E+3 -> -1.1E+3 -redx071 reduce -1.10000E+3 -> -1.1E+3 - --- some insignificant trailing zeros with positive exponent -redx080 reduce 10E+1 -> 1E+2 -redx081 reduce 100E+1 -> 1E+3 -redx082 reduce 1.0E+2 -> 1E+2 -redx083 reduce 1.0E+3 -> 1E+3 -redx084 reduce 1.1E+3 -> 1.1E+3 -redx085 reduce 1.00E+3 -> 1E+3 -redx086 reduce 1.10E+3 -> 1.1E+3 -redx087 reduce -10E+1 -> -1E+2 -redx088 reduce -100E+1 -> -1E+3 -redx089 reduce -1.0E+2 -> -1E+2 -redx090 reduce -1.0E+3 -> -1E+3 -redx091 reduce -1.1E+3 -> -1.1E+3 -redx092 reduce -1.00E+3 -> -1E+3 -redx093 reduce -1.10E+3 -> -1.1E+3 - --- some significant trailing zeros, were we to be trimming -redx100 reduce 11 -> 11 -redx101 reduce 10 -> 1E+1 -redx102 reduce 10. -> 1E+1 -redx103 reduce 1.1E+1 -> 11 -redx104 reduce 1.0E+1 -> 1E+1 -redx105 reduce 1.10E+2 -> 1.1E+2 -redx106 reduce 1.00E+2 -> 1E+2 -redx107 reduce 1.100E+3 -> 1.1E+3 -redx108 reduce 1.000E+3 -> 1E+3 -redx109 reduce 1.000000E+6 -> 1E+6 -redx110 reduce -11 -> -11 -redx111 reduce -10 -> -1E+1 -redx112 reduce -10. -> -1E+1 -redx113 reduce -1.1E+1 -> -11 -redx114 reduce -1.0E+1 -> -1E+1 -redx115 reduce -1.10E+2 -> -1.1E+2 -redx116 reduce -1.00E+2 -> -1E+2 -redx117 reduce -1.100E+3 -> -1.1E+3 -redx118 reduce -1.000E+3 -> -1E+3 -redx119 reduce -1.00000E+5 -> -1E+5 -redx120 reduce -1.000000E+6 -> -1E+6 -redx121 reduce -10.00000E+6 -> -1E+7 -redx122 reduce -100.0000E+6 -> -1E+8 -redx123 reduce -1000.000E+6 -> -1E+9 -redx124 reduce -10000.00E+6 -> -1E+10 -redx125 reduce -100000.0E+6 -> -1E+11 -redx126 reduce -1000000.E+6 -> -1E+12 - --- examples from decArith -redx140 reduce '2.1' -> '2.1' -redx141 reduce '-2.0' -> '-2' -redx142 reduce '1.200' -> '1.2' -redx143 reduce '-120' -> '-1.2E+2' -redx144 reduce '120.00' -> '1.2E+2' -redx145 reduce '0.00' -> '0' - --- overflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -redx160 reduce 9.999E+999999999 -> Infinity Inexact Overflow Rounded -redx161 reduce -9.999E+999999999 -> -Infinity Inexact Overflow Rounded - --- subnormals and underflow -precision: 3 -maxexponent: 999 -minexponent: -999 -redx210 reduce 1.00E-999 -> 1E-999 -redx211 reduce 0.1E-999 -> 1E-1000 Subnormal -redx212 reduce 0.10E-999 -> 1E-1000 Subnormal -redx213 reduce 0.100E-999 -> 1E-1000 Subnormal Rounded -redx214 reduce 0.01E-999 -> 1E-1001 Subnormal --- next is rounded to Emin -redx215 reduce 0.999E-999 -> 1E-999 Inexact Rounded Subnormal Underflow -redx216 reduce 0.099E-999 -> 1E-1000 Inexact Rounded Subnormal Underflow -redx217 reduce 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow -redx218 reduce 0.001E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped -redx219 reduce 0.0009E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped -redx220 reduce 0.0001E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped - -redx230 reduce -1.00E-999 -> -1E-999 -redx231 reduce -0.1E-999 -> -1E-1000 Subnormal -redx232 reduce -0.10E-999 -> -1E-1000 Subnormal -redx233 reduce -0.100E-999 -> -1E-1000 Subnormal Rounded -redx234 reduce -0.01E-999 -> -1E-1001 Subnormal --- next is rounded to Emin -redx235 reduce -0.999E-999 -> -1E-999 Inexact Rounded Subnormal Underflow -redx236 reduce -0.099E-999 -> -1E-1000 Inexact Rounded Subnormal Underflow -redx237 reduce -0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow -redx238 reduce -0.001E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped -redx239 reduce -0.0009E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped -redx240 reduce -0.0001E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped - --- more reshaping -precision: 9 -redx260 reduce '56260E-10' -> '0.000005626' -redx261 reduce '56260E-5' -> '0.5626' -redx262 reduce '56260E-2' -> '562.6' -redx263 reduce '56260E-1' -> '5626' -redx265 reduce '56260E-0' -> '5.626E+4' -redx266 reduce '56260E+0' -> '5.626E+4' -redx267 reduce '56260E+1' -> '5.626E+5' -redx268 reduce '56260E+2' -> '5.626E+6' -redx269 reduce '56260E+3' -> '5.626E+7' -redx270 reduce '56260E+4' -> '5.626E+8' -redx271 reduce '56260E+5' -> '5.626E+9' -redx272 reduce '56260E+6' -> '5.626E+10' -redx280 reduce '-56260E-10' -> '-0.000005626' -redx281 reduce '-56260E-5' -> '-0.5626' -redx282 reduce '-56260E-2' -> '-562.6' -redx283 reduce '-56260E-1' -> '-5626' -redx285 reduce '-56260E-0' -> '-5.626E+4' -redx286 reduce '-56260E+0' -> '-5.626E+4' -redx287 reduce '-56260E+1' -> '-5.626E+5' -redx288 reduce '-56260E+2' -> '-5.626E+6' -redx289 reduce '-56260E+3' -> '-5.626E+7' -redx290 reduce '-56260E+4' -> '-5.626E+8' -redx291 reduce '-56260E+5' -> '-5.626E+9' -redx292 reduce '-56260E+6' -> '-5.626E+10' - --- FL test -precision: 40 -redx295 reduce 9892345673.0123456780000000000 -> 9892345673.012345678 - --- specials -redx820 reduce 'Inf' -> 'Infinity' -redx821 reduce '-Inf' -> '-Infinity' -redx822 reduce NaN -> NaN -redx823 reduce sNaN -> NaN Invalid_operation -redx824 reduce NaN101 -> NaN101 -redx825 reduce sNaN010 -> NaN10 Invalid_operation -redx827 reduce -NaN -> -NaN -redx828 reduce -sNaN -> -NaN Invalid_operation -redx829 reduce -NaN101 -> -NaN101 -redx830 reduce -sNaN010 -> -NaN10 Invalid_operation - --- payload decapitate -precision: 5 -redx62100 reduce sNaN1234567890 -> NaN67890 Invalid_operation - --- Null test -redx900 reduce # -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/remainder.decTest b/qdecimal/test/tc_full/remainder.decTest deleted file mode 100644 index acac4e6..0000000 --- a/qdecimal/test/tc_full/remainder.decTest +++ /dev/null @@ -1,640 +0,0 @@ ------------------------------------------------------------------------- --- remainder.decTest -- decimal remainder -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- sanity checks (as base, above) -remx001 remainder 1 1 -> 0 -remx002 remainder 2 1 -> 0 -remx003 remainder 1 2 -> 1 -remx004 remainder 2 2 -> 0 -remx005 remainder 0 1 -> 0 -remx006 remainder 0 2 -> 0 -remx007 remainder 1 3 -> 1 -remx008 remainder 2 3 -> 2 -remx009 remainder 3 3 -> 0 - -remx010 remainder 2.4 1 -> 0.4 -remx011 remainder 2.4 -1 -> 0.4 -remx012 remainder -2.4 1 -> -0.4 -remx013 remainder -2.4 -1 -> -0.4 -remx014 remainder 2.40 1 -> 0.40 -remx015 remainder 2.400 1 -> 0.400 -remx016 remainder 2.4 2 -> 0.4 -remx017 remainder 2.400 2 -> 0.400 -remx018 remainder 2. 2 -> 0 -remx019 remainder 20 20 -> 0 - -remx020 remainder 187 187 -> 0 -remx021 remainder 5 2 -> 1 -remx022 remainder 5 2.0 -> 1.0 -remx023 remainder 5 2.000 -> 1.000 -remx024 remainder 5 0.200 -> 0.000 -remx025 remainder 5 0.200 -> 0.000 - -remx030 remainder 1 2 -> 1 -remx031 remainder 1 4 -> 1 -remx032 remainder 1 8 -> 1 - -remx033 remainder 1 16 -> 1 -remx034 remainder 1 32 -> 1 -remx035 remainder 1 64 -> 1 -remx040 remainder 1 -2 -> 1 -remx041 remainder 1 -4 -> 1 -remx042 remainder 1 -8 -> 1 -remx043 remainder 1 -16 -> 1 -remx044 remainder 1 -32 -> 1 -remx045 remainder 1 -64 -> 1 -remx050 remainder -1 2 -> -1 -remx051 remainder -1 4 -> -1 -remx052 remainder -1 8 -> -1 -remx053 remainder -1 16 -> -1 -remx054 remainder -1 32 -> -1 -remx055 remainder -1 64 -> -1 -remx060 remainder -1 -2 -> -1 -remx061 remainder -1 -4 -> -1 -remx062 remainder -1 -8 -> -1 -remx063 remainder -1 -16 -> -1 -remx064 remainder -1 -32 -> -1 -remx065 remainder -1 -64 -> -1 - -remx066 remainder 999999999 1 -> 0 -remx067 remainder 999999999.4 1 -> 0.4 -remx068 remainder 999999999.5 1 -> 0.5 -remx069 remainder 999999999.9 1 -> 0.9 -remx070 remainder 999999999.999 1 -> 0.999 -precision: 6 -remx071 remainder 999999999 1 -> NaN Division_impossible -remx072 remainder 99999999 1 -> NaN Division_impossible -remx073 remainder 9999999 1 -> NaN Division_impossible -remx074 remainder 999999 1 -> 0 -remx075 remainder 99999 1 -> 0 -remx076 remainder 9999 1 -> 0 -remx077 remainder 999 1 -> 0 -remx078 remainder 99 1 -> 0 -remx079 remainder 9 1 -> 0 - -precision: 9 -remx080 remainder 0. 1 -> 0 -remx081 remainder .0 1 -> 0.0 -remx082 remainder 0.00 1 -> 0.00 -remx083 remainder 0.00E+9 1 -> 0 -remx084 remainder 0.00E+3 1 -> 0 -remx085 remainder 0.00E+2 1 -> 0 -remx086 remainder 0.00E+1 1 -> 0.0 -remx087 remainder 0.00E+0 1 -> 0.00 -remx088 remainder 0.00E-0 1 -> 0.00 -remx089 remainder 0.00E-1 1 -> 0.000 -remx090 remainder 0.00E-2 1 -> 0.0000 -remx091 remainder 0.00E-3 1 -> 0.00000 -remx092 remainder 0.00E-4 1 -> 0.000000 -remx093 remainder 0.00E-5 1 -> 0E-7 -remx094 remainder 0.00E-6 1 -> 0E-8 -remx095 remainder 0.0000E-50 1 -> 0E-54 - --- Various flavours of remainder by 0 -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -remx101 remainder 0 0 -> NaN Division_undefined -remx102 remainder 0 -0 -> NaN Division_undefined -remx103 remainder -0 0 -> NaN Division_undefined -remx104 remainder -0 -0 -> NaN Division_undefined -remx105 remainder 0.0E5 0 -> NaN Division_undefined -remx106 remainder 0.000 0 -> NaN Division_undefined --- [Some think this next group should be Division_by_zero exception, but --- IEEE 854 is explicit that it is Invalid operation .. for --- remainder-near, anyway] -remx107 remainder 0.0001 0 -> NaN Invalid_operation -remx108 remainder 0.01 0 -> NaN Invalid_operation -remx109 remainder 0.1 0 -> NaN Invalid_operation -remx110 remainder 1 0 -> NaN Invalid_operation -remx111 remainder 1 0.0 -> NaN Invalid_operation -remx112 remainder 10 0.0 -> NaN Invalid_operation -remx113 remainder 1E+100 0.0 -> NaN Invalid_operation -remx114 remainder 1E+1000 0 -> NaN Invalid_operation -remx115 remainder 0.0001 -0 -> NaN Invalid_operation -remx116 remainder 0.01 -0 -> NaN Invalid_operation -remx119 remainder 0.1 -0 -> NaN Invalid_operation -remx120 remainder 1 -0 -> NaN Invalid_operation -remx121 remainder 1 -0.0 -> NaN Invalid_operation -remx122 remainder 10 -0.0 -> NaN Invalid_operation -remx123 remainder 1E+100 -0.0 -> NaN Invalid_operation -remx124 remainder 1E+1000 -0 -> NaN Invalid_operation --- and zeros on left -remx130 remainder 0 1 -> 0 -remx131 remainder 0 -1 -> 0 -remx132 remainder 0.0 1 -> 0.0 -remx133 remainder 0.0 -1 -> 0.0 -remx134 remainder -0 1 -> -0 -remx135 remainder -0 -1 -> -0 -remx136 remainder -0.0 1 -> -0.0 -remx137 remainder -0.0 -1 -> -0.0 - --- 0.5ers -remx143 remainder 0.5 2 -> 0.5 -remx144 remainder 0.5 2.1 -> 0.5 -remx145 remainder 0.5 2.01 -> 0.50 -remx146 remainder 0.5 2.001 -> 0.500 -remx147 remainder 0.50 2 -> 0.50 -remx148 remainder 0.50 2.01 -> 0.50 -remx149 remainder 0.50 2.001 -> 0.500 - --- steadies -remx150 remainder 1 1 -> 0 -remx151 remainder 1 2 -> 1 -remx152 remainder 1 3 -> 1 -remx153 remainder 1 4 -> 1 -remx154 remainder 1 5 -> 1 -remx155 remainder 1 6 -> 1 -remx156 remainder 1 7 -> 1 -remx157 remainder 1 8 -> 1 -remx158 remainder 1 9 -> 1 -remx159 remainder 1 10 -> 1 -remx160 remainder 1 1 -> 0 -remx161 remainder 2 1 -> 0 -remx162 remainder 3 1 -> 0 -remx163 remainder 4 1 -> 0 -remx164 remainder 5 1 -> 0 -remx165 remainder 6 1 -> 0 -remx166 remainder 7 1 -> 0 -remx167 remainder 8 1 -> 0 -remx168 remainder 9 1 -> 0 -remx169 remainder 10 1 -> 0 - --- some differences from remainderNear -remx171 remainder 0.4 1.020 -> 0.400 -remx172 remainder 0.50 1.020 -> 0.500 -remx173 remainder 0.51 1.020 -> 0.510 -remx174 remainder 0.52 1.020 -> 0.520 -remx175 remainder 0.6 1.020 -> 0.600 - - --- More flavours of remainder by 0 -maxexponent: 999999999 -minexponent: -999999999 -remx201 remainder 0 0 -> NaN Division_undefined -remx202 remainder 0.0E5 0 -> NaN Division_undefined -remx203 remainder 0.000 0 -> NaN Division_undefined -remx204 remainder 0.0001 0 -> NaN Invalid_operation -remx205 remainder 0.01 0 -> NaN Invalid_operation -remx206 remainder 0.1 0 -> NaN Invalid_operation -remx207 remainder 1 0 -> NaN Invalid_operation -remx208 remainder 1 0.0 -> NaN Invalid_operation -remx209 remainder 10 0.0 -> NaN Invalid_operation -remx210 remainder 1E+100 0.0 -> NaN Invalid_operation -remx211 remainder 1E+1000 0 -> NaN Invalid_operation - --- some differences from remainderNear -remx231 remainder -0.4 1.020 -> -0.400 -remx232 remainder -0.50 1.020 -> -0.500 -remx233 remainder -0.51 1.020 -> -0.510 -remx234 remainder -0.52 1.020 -> -0.520 -remx235 remainder -0.6 1.020 -> -0.600 - --- high Xs -remx240 remainder 1E+2 1.00 -> 0.00 - - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -remx270 remainder 1 1e999999999 -> 1 -remx271 remainder 1 0.9e999999999 -> 1 -remx272 remainder 1 0.99e999999999 -> 1 -remx273 remainder 1 0.999999999e999999999 -> 1 -remx274 remainder 9e999999999 1 -> NaN Division_impossible -remx275 remainder 9.9e999999999 1 -> NaN Division_impossible -remx276 remainder 9.99e999999999 1 -> NaN Division_impossible -remx277 remainder 9.99999999e999999999 1 -> NaN Division_impossible - -remx280 remainder 0.1 9e-999999999 -> NaN Division_impossible -remx281 remainder 0.1 99e-999999999 -> NaN Division_impossible -remx282 remainder 0.1 999e-999999999 -> NaN Division_impossible - -remx283 remainder 0.1 9e-999999998 -> NaN Division_impossible -remx284 remainder 0.1 99e-999999998 -> NaN Division_impossible -remx285 remainder 0.1 999e-999999998 -> NaN Division_impossible -remx286 remainder 0.1 999e-999999997 -> NaN Division_impossible -remx287 remainder 0.1 9999e-999999997 -> NaN Division_impossible -remx288 remainder 0.1 99999e-999999997 -> NaN Division_impossible - --- remx3xx are from DiagBigDecimal -remx301 remainder 1 3 -> 1 -remx302 remainder 5 5 -> 0 -remx303 remainder 13 10 -> 3 -remx304 remainder 13 50 -> 13 -remx305 remainder 13 100 -> 13 -remx306 remainder 13 1000 -> 13 -remx307 remainder .13 1 -> 0.13 -remx308 remainder 0.133 1 -> 0.133 -remx309 remainder 0.1033 1 -> 0.1033 -remx310 remainder 1.033 1 -> 0.033 -remx311 remainder 10.33 1 -> 0.33 -remx312 remainder 10.33 10 -> 0.33 -remx313 remainder 103.3 1 -> 0.3 -remx314 remainder 133 10 -> 3 -remx315 remainder 1033 10 -> 3 -remx316 remainder 1033 50 -> 33 -remx317 remainder 101.0 3 -> 2.0 -remx318 remainder 102.0 3 -> 0.0 -remx319 remainder 103.0 3 -> 1.0 -remx320 remainder 2.40 1 -> 0.40 -remx321 remainder 2.400 1 -> 0.400 -remx322 remainder 2.4 1 -> 0.4 -remx323 remainder 2.4 2 -> 0.4 -remx324 remainder 2.400 2 -> 0.400 -remx325 remainder 1 0.3 -> 0.1 -remx326 remainder 1 0.30 -> 0.10 -remx327 remainder 1 0.300 -> 0.100 -remx328 remainder 1 0.3000 -> 0.1000 -remx329 remainder 1.0 0.3 -> 0.1 -remx330 remainder 1.00 0.3 -> 0.10 -remx331 remainder 1.000 0.3 -> 0.100 -remx332 remainder 1.0000 0.3 -> 0.1000 -remx333 remainder 0.5 2 -> 0.5 -remx334 remainder 0.5 2.1 -> 0.5 -remx335 remainder 0.5 2.01 -> 0.50 -remx336 remainder 0.5 2.001 -> 0.500 -remx337 remainder 0.50 2 -> 0.50 -remx338 remainder 0.50 2.01 -> 0.50 -remx339 remainder 0.50 2.001 -> 0.500 - -remx340 remainder 0.5 0.5000001 -> 0.5000000 -remx341 remainder 0.5 0.50000001 -> 0.50000000 -remx342 remainder 0.5 0.500000001 -> 0.500000000 -remx343 remainder 0.5 0.5000000001 -> 0.500000000 Rounded -remx344 remainder 0.5 0.50000000001 -> 0.500000000 Rounded -remx345 remainder 0.5 0.4999999 -> 1E-7 -remx346 remainder 0.5 0.49999999 -> 1E-8 -remx347 remainder 0.5 0.499999999 -> 1E-9 -remx348 remainder 0.5 0.4999999999 -> 1E-10 -remx349 remainder 0.5 0.49999999999 -> 1E-11 -remx350 remainder 0.5 0.499999999999 -> 1E-12 - -remx351 remainder 0.03 7 -> 0.03 -remx352 remainder 5 2 -> 1 -remx353 remainder 4.1 2 -> 0.1 -remx354 remainder 4.01 2 -> 0.01 -remx355 remainder 4.001 2 -> 0.001 -remx356 remainder 4.0001 2 -> 0.0001 -remx357 remainder 4.00001 2 -> 0.00001 -remx358 remainder 4.000001 2 -> 0.000001 -remx359 remainder 4.0000001 2 -> 1E-7 - -remx360 remainder 1.2 0.7345 -> 0.4655 -remx361 remainder 0.8 12 -> 0.8 -remx362 remainder 0.8 0.2 -> 0.0 -remx363 remainder 0.8 0.3 -> 0.2 -remx364 remainder 0.800 12 -> 0.800 -remx365 remainder 0.800 1.7 -> 0.800 -remx366 remainder 2.400 2 -> 0.400 - -precision: 6 -remx371 remainder 2.400 2 -> 0.400 -precision: 3 --- long operand, rounded, case -remx372 remainder 12345678900000 12e+12 -> 3.46E+11 Inexact Rounded --- 12000000000000 - -precision: 5 -remx381 remainder 12345 1 -> 0 -remx382 remainder 12345 1.0001 -> 0.7657 -remx383 remainder 12345 1.001 -> 0.668 -remx384 remainder 12345 1.01 -> 0.78 -remx385 remainder 12345 1.1 -> 0.8 -remx386 remainder 12355 4 -> 3 -remx387 remainder 12345 4 -> 1 -remx388 remainder 12355 4.0001 -> 2.6912 -remx389 remainder 12345 4.0001 -> 0.6914 -remx390 remainder 12345 4.9 -> 1.9 -remx391 remainder 12345 4.99 -> 4.73 -remx392 remainder 12345 4.999 -> 2.469 -remx393 remainder 12345 4.9999 -> 0.2469 -remx394 remainder 12345 5 -> 0 -remx395 remainder 12345 5.0001 -> 4.7532 -remx396 remainder 12345 5.001 -> 2.532 -remx397 remainder 12345 5.01 -> 0.36 -remx398 remainder 12345 5.1 -> 3.0 - -precision: 9 --- the nasty division-by-1 cases -remx401 remainder 0.5 1 -> 0.5 -remx402 remainder 0.55 1 -> 0.55 -remx403 remainder 0.555 1 -> 0.555 -remx404 remainder 0.5555 1 -> 0.5555 -remx405 remainder 0.55555 1 -> 0.55555 -remx406 remainder 0.555555 1 -> 0.555555 -remx407 remainder 0.5555555 1 -> 0.5555555 -remx408 remainder 0.55555555 1 -> 0.55555555 -remx409 remainder 0.555555555 1 -> 0.555555555 - --- zero signs -remx650 remainder 1 1 -> 0 -remx651 remainder -1 1 -> -0 -remx652 remainder 1 -1 -> 0 -remx653 remainder -1 -1 -> -0 -remx654 remainder 0 1 -> 0 -remx655 remainder -0 1 -> -0 -remx656 remainder 0 -1 -> 0 -remx657 remainder -0 -1 -> -0 -remx658 remainder 0.00 1 -> 0.00 -remx659 remainder -0.00 1 -> -0.00 - --- Specials -remx680 remainder Inf -Inf -> NaN Invalid_operation -remx681 remainder Inf -1000 -> NaN Invalid_operation -remx682 remainder Inf -1 -> NaN Invalid_operation -remx683 remainder Inf 0 -> NaN Invalid_operation -remx684 remainder Inf -0 -> NaN Invalid_operation -remx685 remainder Inf 1 -> NaN Invalid_operation -remx686 remainder Inf 1000 -> NaN Invalid_operation -remx687 remainder Inf Inf -> NaN Invalid_operation -remx688 remainder -1000 Inf -> -1000 -remx689 remainder -Inf Inf -> NaN Invalid_operation -remx691 remainder -1 Inf -> -1 -remx692 remainder 0 Inf -> 0 -remx693 remainder -0 Inf -> -0 -remx694 remainder 1 Inf -> 1 -remx695 remainder 1000 Inf -> 1000 -remx696 remainder Inf Inf -> NaN Invalid_operation - -remx700 remainder -Inf -Inf -> NaN Invalid_operation -remx701 remainder -Inf -1000 -> NaN Invalid_operation -remx702 remainder -Inf -1 -> NaN Invalid_operation -remx703 remainder -Inf -0 -> NaN Invalid_operation -remx704 remainder -Inf 0 -> NaN Invalid_operation -remx705 remainder -Inf 1 -> NaN Invalid_operation -remx706 remainder -Inf 1000 -> NaN Invalid_operation -remx707 remainder -Inf Inf -> NaN Invalid_operation -remx708 remainder -Inf -Inf -> NaN Invalid_operation -remx709 remainder -1000 Inf -> -1000 -remx710 remainder -1 -Inf -> -1 -remx711 remainder -0 -Inf -> -0 -remx712 remainder 0 -Inf -> 0 -remx713 remainder 1 -Inf -> 1 -remx714 remainder 1000 -Inf -> 1000 -remx715 remainder Inf -Inf -> NaN Invalid_operation - -remx721 remainder NaN -Inf -> NaN -remx722 remainder NaN -1000 -> NaN -remx723 remainder NaN -1 -> NaN -remx724 remainder NaN -0 -> NaN -remx725 remainder -NaN 0 -> -NaN -remx726 remainder NaN 1 -> NaN -remx727 remainder NaN 1000 -> NaN -remx728 remainder NaN Inf -> NaN -remx729 remainder NaN -NaN -> NaN -remx730 remainder -Inf NaN -> NaN -remx731 remainder -1000 NaN -> NaN -remx732 remainder -1 NaN -> NaN -remx733 remainder -0 -NaN -> -NaN -remx734 remainder 0 NaN -> NaN -remx735 remainder 1 -NaN -> -NaN -remx736 remainder 1000 NaN -> NaN -remx737 remainder Inf NaN -> NaN - -remx741 remainder sNaN -Inf -> NaN Invalid_operation -remx742 remainder sNaN -1000 -> NaN Invalid_operation -remx743 remainder -sNaN -1 -> -NaN Invalid_operation -remx744 remainder sNaN -0 -> NaN Invalid_operation -remx745 remainder sNaN 0 -> NaN Invalid_operation -remx746 remainder sNaN 1 -> NaN Invalid_operation -remx747 remainder sNaN 1000 -> NaN Invalid_operation -remx749 remainder sNaN NaN -> NaN Invalid_operation -remx750 remainder sNaN sNaN -> NaN Invalid_operation -remx751 remainder NaN sNaN -> NaN Invalid_operation -remx752 remainder -Inf sNaN -> NaN Invalid_operation -remx753 remainder -1000 sNaN -> NaN Invalid_operation -remx754 remainder -1 sNaN -> NaN Invalid_operation -remx755 remainder -0 sNaN -> NaN Invalid_operation -remx756 remainder 0 sNaN -> NaN Invalid_operation -remx757 remainder 1 sNaN -> NaN Invalid_operation -remx758 remainder 1000 sNaN -> NaN Invalid_operation -remx759 remainder Inf -sNaN -> -NaN Invalid_operation - --- propaging NaNs -remx760 remainder NaN1 NaN7 -> NaN1 -remx761 remainder sNaN2 NaN8 -> NaN2 Invalid_operation -remx762 remainder NaN3 sNaN9 -> NaN9 Invalid_operation -remx763 remainder sNaN4 sNaN10 -> NaN4 Invalid_operation -remx764 remainder 15 NaN11 -> NaN11 -remx765 remainder NaN6 NaN12 -> NaN6 -remx766 remainder Inf NaN13 -> NaN13 -remx767 remainder NaN14 -Inf -> NaN14 -remx768 remainder 0 NaN15 -> NaN15 -remx769 remainder NaN16 -0 -> NaN16 - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -remx770 remainder 1 1e999999999 -> 1 -remx771 remainder 1 0.9e999999999 -> 1 -remx772 remainder 1 0.99e999999999 -> 1 -remx773 remainder 1 0.999999999e999999999 -> 1 -remx774 remainder 9e999999999 1 -> NaN Division_impossible -remx775 remainder 9.9e999999999 1 -> NaN Division_impossible -remx776 remainder 9.99e999999999 1 -> NaN Division_impossible -remx777 remainder 9.99999999e999999999 1 -> NaN Division_impossible - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -remx801 remainder 12345678000 100 -> 0 -remx802 remainder 1 12345678000 -> 1 -remx803 remainder 1234567800 10 -> 0 -remx804 remainder 1 1234567800 -> 1 -remx805 remainder 1234567890 10 -> 0 -remx806 remainder 1 1234567890 -> 1 -remx807 remainder 1234567891 10 -> 1 -remx808 remainder 1 1234567891 -> 1 -remx809 remainder 12345678901 100 -> 1 -remx810 remainder 1 12345678901 -> 1 -remx811 remainder 1234567896 10 -> 6 -remx812 remainder 1 1234567896 -> 1 - -precision: 15 -remx821 remainder 12345678000 100 -> 0 -remx822 remainder 1 12345678000 -> 1 -remx823 remainder 1234567800 10 -> 0 -remx824 remainder 1 1234567800 -> 1 -remx825 remainder 1234567890 10 -> 0 -remx826 remainder 1 1234567890 -> 1 -remx827 remainder 1234567891 10 -> 1 -remx828 remainder 1 1234567891 -> 1 -remx829 remainder 12345678901 100 -> 1 -remx830 remainder 1 12345678901 -> 1 -remx831 remainder 1234567896 10 -> 6 -remx832 remainder 1 1234567896 -> 1 - --- worries from divideint -precision: 8 -remx840 remainder 100000000.0 1 -> NaN Division_impossible -remx841 remainder 100000000.4 1 -> NaN Division_impossible -remx842 remainder 100000000.5 1 -> NaN Division_impossible -remx843 remainder 100000000.9 1 -> NaN Division_impossible -remx844 remainder 100000000.999 1 -> NaN Division_impossible -precision: 6 -remx850 remainder 100000003 5 -> NaN Division_impossible -remx851 remainder 10000003 5 -> NaN Division_impossible -remx852 remainder 1000003 5 -> 3 -remx853 remainder 100003 5 -> 3 -remx854 remainder 10003 5 -> 3 -remx855 remainder 1003 5 -> 3 -remx856 remainder 103 5 -> 3 -remx857 remainder 13 5 -> 3 -remx858 remainder 1 5 -> 1 - --- Vladimir's cases -remx860 remainder 123.0e1 10000000000000000 -> 1230 -remx861 remainder 1230 10000000000000000 -> 1230 -remx862 remainder 12.3e2 10000000000000000 -> 1230 -remx863 remainder 1.23e3 10000000000000000 -> 1230 -remx864 remainder 123e1 10000000000000000 -> 1230 -remx870 remainder 123e1 1000000000000000 -> 1230 -remx871 remainder 123e1 100000000000000 -> 1230 -remx872 remainder 123e1 10000000000000 -> 1230 -remx873 remainder 123e1 1000000000000 -> 1230 -remx874 remainder 123e1 100000000000 -> 1230 -remx875 remainder 123e1 10000000000 -> 1230 -remx876 remainder 123e1 1000000000 -> 1230 -remx877 remainder 123e1 100000000 -> 1230 -remx878 remainder 1230 100000000 -> 1230 -remx879 remainder 123e1 10000000 -> 1230 -remx880 remainder 123e1 1000000 -> 1230 -remx881 remainder 123e1 100000 -> 1230 -remx882 remainder 123e1 10000 -> 1230 -remx883 remainder 123e1 1000 -> 230 -remx884 remainder 123e1 100 -> 30 -remx885 remainder 123e1 10 -> 0 -remx886 remainder 123e1 1 -> 0 - -remx889 remainder 123e1 20000000000000000 -> 1230 -remx890 remainder 123e1 2000000000000000 -> 1230 -remx891 remainder 123e1 200000000000000 -> 1230 -remx892 remainder 123e1 20000000000000 -> 1230 -remx893 remainder 123e1 2000000000000 -> 1230 -remx894 remainder 123e1 200000000000 -> 1230 -remx895 remainder 123e1 20000000000 -> 1230 -remx896 remainder 123e1 2000000000 -> 1230 -remx897 remainder 123e1 200000000 -> 1230 -remx899 remainder 123e1 20000000 -> 1230 -remx900 remainder 123e1 2000000 -> 1230 -remx901 remainder 123e1 200000 -> 1230 -remx902 remainder 123e1 20000 -> 1230 -remx903 remainder 123e1 2000 -> 1230 -remx904 remainder 123e1 200 -> 30 -remx905 remainder 123e1 20 -> 10 -remx906 remainder 123e1 2 -> 0 - -remx909 remainder 123e1 50000000000000000 -> 1230 -remx910 remainder 123e1 5000000000000000 -> 1230 -remx911 remainder 123e1 500000000000000 -> 1230 -remx912 remainder 123e1 50000000000000 -> 1230 -remx913 remainder 123e1 5000000000000 -> 1230 -remx914 remainder 123e1 500000000000 -> 1230 -remx915 remainder 123e1 50000000000 -> 1230 -remx916 remainder 123e1 5000000000 -> 1230 -remx917 remainder 123e1 500000000 -> 1230 -remx919 remainder 123e1 50000000 -> 1230 -remx920 remainder 123e1 5000000 -> 1230 -remx921 remainder 123e1 500000 -> 1230 -remx922 remainder 123e1 50000 -> 1230 -remx923 remainder 123e1 5000 -> 1230 -remx924 remainder 123e1 500 -> 230 -remx925 remainder 123e1 50 -> 30 -remx926 remainder 123e1 5 -> 0 - -remx929 remainder 123e1 90000000000000000 -> 1230 -remx930 remainder 123e1 9000000000000000 -> 1230 -remx931 remainder 123e1 900000000000000 -> 1230 -remx932 remainder 123e1 90000000000000 -> 1230 -remx933 remainder 123e1 9000000000000 -> 1230 -remx934 remainder 123e1 900000000000 -> 1230 -remx935 remainder 123e1 90000000000 -> 1230 -remx936 remainder 123e1 9000000000 -> 1230 -remx937 remainder 123e1 900000000 -> 1230 -remx939 remainder 123e1 90000000 -> 1230 -remx940 remainder 123e1 9000000 -> 1230 -remx941 remainder 123e1 900000 -> 1230 -remx942 remainder 123e1 90000 -> 1230 -remx943 remainder 123e1 9000 -> 1230 -remx944 remainder 123e1 900 -> 330 -remx945 remainder 123e1 90 -> 60 -remx946 remainder 123e1 9 -> 6 - -remx950 remainder 123e1 10000000000000000 -> 1230 -remx951 remainder 123e1 100000000000000000 -> 1230 -remx952 remainder 123e1 1000000000000000000 -> 1230 -remx953 remainder 123e1 10000000000000000000 -> 1230 -remx954 remainder 123e1 100000000000000000000 -> 1230 -remx955 remainder 123e1 1000000000000000000000 -> 1230 -remx956 remainder 123e1 10000000000000000000000 -> 1230 -remx957 remainder 123e1 100000000000000000000000 -> 1230 -remx958 remainder 123e1 1000000000000000000000000 -> 1230 -remx959 remainder 123e1 10000000000000000000000000 -> 1230 - -remx960 remainder 123e1 19999999999999999 -> 1230 -remx961 remainder 123e1 199999999999999990 -> 1230 -remx962 remainder 123e1 1999999999999999999 -> 1230 -remx963 remainder 123e1 19999999999999999990 -> 1230 -remx964 remainder 123e1 199999999999999999999 -> 1230 -remx965 remainder 123e1 1999999999999999999990 -> 1230 -remx966 remainder 123e1 19999999999999999999999 -> 1230 -remx967 remainder 123e1 199999999999999999999990 -> 1230 -remx968 remainder 123e1 1999999999999999999999999 -> 1230 -remx969 remainder 123e1 19999999999999999999999990 -> 1230 - -remx970 remainder 1e1 10000000000000000 -> 10 -remx971 remainder 1e1 100000000000000000 -> 10 -remx972 remainder 1e1 1000000000000000000 -> 10 -remx973 remainder 1e1 10000000000000000000 -> 10 -remx974 remainder 1e1 100000000000000000000 -> 10 -remx975 remainder 1e1 1000000000000000000000 -> 10 -remx976 remainder 1e1 10000000000000000000000 -> 10 -remx977 remainder 1e1 100000000000000000000000 -> 10 -remx978 remainder 1e1 1000000000000000000000000 -> 10 -remx979 remainder 1e1 10000000000000000000000000 -> 10 - -remx980 remainder 123e1 1000E999999 -> 1.23E+3 -- 123E+1 internally - --- overflow and underflow tests [from divide] -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -remx990 remainder +1.23456789012345E-0 9E+999999999 -> 1.23456789 Inexact Rounded -remx991 remainder 9E+999999999 +0.23456789012345E-0 -> NaN Division_impossible -remx992 remainder +0.100 9E+999999999 -> 0.100 -remx993 remainder 9E-999999999 +9.100 -> 9E-999999999 -remx995 remainder -1.23456789012345E-0 9E+999999999 -> -1.23456789 Inexact Rounded -remx996 remainder 9E+999999999 -0.83456789012345E-0 -> NaN Division_impossible -remx997 remainder -0.100 9E+999999999 -> -0.100 -remx998 remainder 9E-999999999 -9.100 -> 9E-999999999 - --- Null tests -remx1000 remainder 10 # -> NaN Invalid_operation -remx1001 remainder # 10 -> NaN Invalid_operation - diff --git a/qdecimal/test/tc_full/remaindernear.decTest b/qdecimal/test/tc_full/remaindernear.decTest deleted file mode 100644 index 18396bd..0000000 --- a/qdecimal/test/tc_full/remaindernear.decTest +++ /dev/null @@ -1,572 +0,0 @@ ------------------------------------------------------------------------- --- remainderNear.decTest -- decimal remainder-near (IEEE remainder) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -rmnx001 remaindernear 1 1 -> 0 -rmnx002 remaindernear 2 1 -> 0 -rmnx003 remaindernear 1 2 -> 1 -rmnx004 remaindernear 2 2 -> 0 -rmnx005 remaindernear 0 1 -> 0 -rmnx006 remaindernear 0 2 -> 0 -rmnx007 remaindernear 1 3 -> 1 -rmnx008 remaindernear 2 3 -> -1 -rmnx009 remaindernear 3 3 -> 0 - -rmnx010 remaindernear 2.4 1 -> 0.4 -rmnx011 remaindernear 2.4 -1 -> 0.4 -rmnx012 remaindernear -2.4 1 -> -0.4 -rmnx013 remaindernear -2.4 -1 -> -0.4 -rmnx014 remaindernear 2.40 1 -> 0.40 -rmnx015 remaindernear 2.400 1 -> 0.400 -rmnx016 remaindernear 2.4 2 -> 0.4 -rmnx017 remaindernear 2.400 2 -> 0.400 -rmnx018 remaindernear 2. 2 -> 0 -rmnx019 remaindernear 20 20 -> 0 - -rmnx020 remaindernear 187 187 -> 0 -rmnx021 remaindernear 5 2 -> 1 -rmnx022 remaindernear 5 2.0 -> 1.0 -rmnx023 remaindernear 5 2.000 -> 1.000 -rmnx024 remaindernear 5 0.200 -> 0.000 -rmnx025 remaindernear 5 0.200 -> 0.000 - -rmnx030 remaindernear 1 2 -> 1 -rmnx031 remaindernear 1 4 -> 1 -rmnx032 remaindernear 1 8 -> 1 -rmnx033 remaindernear 1 16 -> 1 -rmnx034 remaindernear 1 32 -> 1 -rmnx035 remaindernear 1 64 -> 1 -rmnx040 remaindernear 1 -2 -> 1 -rmnx041 remaindernear 1 -4 -> 1 -rmnx042 remaindernear 1 -8 -> 1 -rmnx043 remaindernear 1 -16 -> 1 -rmnx044 remaindernear 1 -32 -> 1 -rmnx045 remaindernear 1 -64 -> 1 -rmnx050 remaindernear -1 2 -> -1 -rmnx051 remaindernear -1 4 -> -1 -rmnx052 remaindernear -1 8 -> -1 -rmnx053 remaindernear -1 16 -> -1 -rmnx054 remaindernear -1 32 -> -1 -rmnx055 remaindernear -1 64 -> -1 -rmnx060 remaindernear -1 -2 -> -1 -rmnx061 remaindernear -1 -4 -> -1 -rmnx062 remaindernear -1 -8 -> -1 -rmnx063 remaindernear -1 -16 -> -1 -rmnx064 remaindernear -1 -32 -> -1 -rmnx065 remaindernear -1 -64 -> -1 - -rmnx066 remaindernear 999999997 1 -> 0 -rmnx067 remaindernear 999999997.4 1 -> 0.4 -rmnx068 remaindernear 999999997.5 1 -> -0.5 -rmnx069 remaindernear 999999997.9 1 -> -0.1 -rmnx070 remaindernear 999999997.999 1 -> -0.001 - -rmnx071 remaindernear 999999998 1 -> 0 -rmnx072 remaindernear 999999998.4 1 -> 0.4 -rmnx073 remaindernear 999999998.5 1 -> 0.5 -rmnx074 remaindernear 999999998.9 1 -> -0.1 -rmnx075 remaindernear 999999998.999 1 -> -0.001 - -rmnx076 remaindernear 999999999 1 -> 0 -rmnx077 remaindernear 999999999.4 1 -> 0.4 -rmnx078 remaindernear 999999999.5 1 -> NaN Division_impossible -rmnx079 remaindernear 999999999.9 1 -> NaN Division_impossible -rmnx080 remaindernear 999999999.999 1 -> NaN Division_impossible - -precision: 6 -rmnx081 remaindernear 999999999 1 -> NaN Division_impossible -rmnx082 remaindernear 99999999 1 -> NaN Division_impossible -rmnx083 remaindernear 9999999 1 -> NaN Division_impossible -rmnx084 remaindernear 999999 1 -> 0 -rmnx085 remaindernear 99999 1 -> 0 -rmnx086 remaindernear 9999 1 -> 0 -rmnx087 remaindernear 999 1 -> 0 -rmnx088 remaindernear 99 1 -> 0 -rmnx089 remaindernear 9 1 -> 0 - -precision: 9 -rmnx090 remaindernear 0. 1 -> 0 -rmnx091 remaindernear .0 1 -> 0.0 -rmnx092 remaindernear 0.00 1 -> 0.00 -rmnx093 remaindernear 0.00E+9 1 -> 0 -rmnx094 remaindernear 0.0000E-50 1 -> 0E-54 - - --- Various flavours of remaindernear by 0 -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -rmnx101 remaindernear 0 0 -> NaN Division_undefined -rmnx102 remaindernear 0 -0 -> NaN Division_undefined -rmnx103 remaindernear -0 0 -> NaN Division_undefined -rmnx104 remaindernear -0 -0 -> NaN Division_undefined -rmnx105 remaindernear 0.0E5 0 -> NaN Division_undefined -rmnx106 remaindernear 0.000 0 -> NaN Division_undefined --- [Some think this next group should be Division_by_zero exception, --- but IEEE 854 is explicit that it is Invalid operation .. for --- remaindernear-near, anyway] -rmnx107 remaindernear 0.0001 0 -> NaN Invalid_operation -rmnx108 remaindernear 0.01 0 -> NaN Invalid_operation -rmnx109 remaindernear 0.1 0 -> NaN Invalid_operation -rmnx110 remaindernear 1 0 -> NaN Invalid_operation -rmnx111 remaindernear 1 0.0 -> NaN Invalid_operation -rmnx112 remaindernear 10 0.0 -> NaN Invalid_operation -rmnx113 remaindernear 1E+100 0.0 -> NaN Invalid_operation -rmnx114 remaindernear 1E+1000 0 -> NaN Invalid_operation -rmnx115 remaindernear 0.0001 -0 -> NaN Invalid_operation -rmnx116 remaindernear 0.01 -0 -> NaN Invalid_operation -rmnx119 remaindernear 0.1 -0 -> NaN Invalid_operation -rmnx120 remaindernear 1 -0 -> NaN Invalid_operation -rmnx121 remaindernear 1 -0.0 -> NaN Invalid_operation -rmnx122 remaindernear 10 -0.0 -> NaN Invalid_operation -rmnx123 remaindernear 1E+100 -0.0 -> NaN Invalid_operation -rmnx124 remaindernear 1E+1000 -0 -> NaN Invalid_operation --- and zeros on left -rmnx130 remaindernear 0 1 -> 0 -rmnx131 remaindernear 0 -1 -> 0 -rmnx132 remaindernear 0.0 1 -> 0.0 -rmnx133 remaindernear 0.0 -1 -> 0.0 -rmnx134 remaindernear -0 1 -> -0 -rmnx135 remaindernear -0 -1 -> -0 -rmnx136 remaindernear -0.0 1 -> -0.0 -rmnx137 remaindernear -0.0 -1 -> -0.0 - --- 0.5ers -rmmx143 remaindernear 0.5 2 -> 0.5 -rmmx144 remaindernear 0.5 2.1 -> 0.5 -rmmx145 remaindernear 0.5 2.01 -> 0.50 -rmmx146 remaindernear 0.5 2.001 -> 0.500 -rmmx147 remaindernear 0.50 2 -> 0.50 -rmmx148 remaindernear 0.50 2.01 -> 0.50 -rmmx149 remaindernear 0.50 2.001 -> 0.500 - --- some differences from remainder -rmnx150 remaindernear 0.4 1.020 -> 0.400 -rmnx151 remaindernear 0.50 1.020 -> 0.500 -rmnx152 remaindernear 0.51 1.020 -> 0.510 -rmnx153 remaindernear 0.52 1.020 -> -0.500 -rmnx154 remaindernear 0.6 1.020 -> -0.420 -rmnx155 remaindernear 0.49 1 -> 0.49 -rmnx156 remaindernear 0.50 1 -> 0.50 -rmnx157 remaindernear 1.50 1 -> -0.50 -rmnx158 remaindernear 2.50 1 -> 0.50 -rmnx159 remaindernear 9.50 1 -> -0.50 -rmnx160 remaindernear 0.51 1 -> -0.49 - --- the nasty division-by-1 cases -rmnx161 remaindernear 0.4 1 -> 0.4 -rmnx162 remaindernear 0.45 1 -> 0.45 -rmnx163 remaindernear 0.455 1 -> 0.455 -rmnx164 remaindernear 0.4555 1 -> 0.4555 -rmnx165 remaindernear 0.45555 1 -> 0.45555 -rmnx166 remaindernear 0.455555 1 -> 0.455555 -rmnx167 remaindernear 0.4555555 1 -> 0.4555555 -rmnx168 remaindernear 0.45555555 1 -> 0.45555555 -rmnx169 remaindernear 0.455555555 1 -> 0.455555555 --- with spill... -rmnx171 remaindernear 0.5 1 -> 0.5 -rmnx172 remaindernear 0.55 1 -> -0.45 -rmnx173 remaindernear 0.555 1 -> -0.445 -rmnx174 remaindernear 0.5555 1 -> -0.4445 -rmnx175 remaindernear 0.55555 1 -> -0.44445 -rmnx176 remaindernear 0.555555 1 -> -0.444445 -rmnx177 remaindernear 0.5555555 1 -> -0.4444445 -rmnx178 remaindernear 0.55555555 1 -> -0.44444445 -rmnx179 remaindernear 0.555555555 1 -> -0.444444445 - --- progression -rmnx180 remaindernear 1 1 -> 0 -rmnx181 remaindernear 1 2 -> 1 -rmnx182 remaindernear 1 3 -> 1 -rmnx183 remaindernear 1 4 -> 1 -rmnx184 remaindernear 1 5 -> 1 -rmnx185 remaindernear 1 6 -> 1 -rmnx186 remaindernear 1 7 -> 1 -rmnx187 remaindernear 1 8 -> 1 -rmnx188 remaindernear 1 9 -> 1 -rmnx189 remaindernear 1 10 -> 1 -rmnx190 remaindernear 1 1 -> 0 -rmnx191 remaindernear 2 1 -> 0 -rmnx192 remaindernear 3 1 -> 0 -rmnx193 remaindernear 4 1 -> 0 -rmnx194 remaindernear 5 1 -> 0 -rmnx195 remaindernear 6 1 -> 0 -rmnx196 remaindernear 7 1 -> 0 -rmnx197 remaindernear 8 1 -> 0 -rmnx198 remaindernear 9 1 -> 0 -rmnx199 remaindernear 10 1 -> 0 - - --- Various flavours of remaindernear by 0 -maxexponent: 999999999 -minexponent: -999999999 -rmnx201 remaindernear 0 0 -> NaN Division_undefined -rmnx202 remaindernear 0.0E5 0 -> NaN Division_undefined -rmnx203 remaindernear 0.000 0 -> NaN Division_undefined -rmnx204 remaindernear 0.0001 0 -> NaN Invalid_operation -rmnx205 remaindernear 0.01 0 -> NaN Invalid_operation -rmnx206 remaindernear 0.1 0 -> NaN Invalid_operation -rmnx207 remaindernear 1 0 -> NaN Invalid_operation -rmnx208 remaindernear 1 0.0 -> NaN Invalid_operation -rmnx209 remaindernear 10 0.0 -> NaN Invalid_operation -rmnx210 remaindernear 1E+100 0.0 -> NaN Invalid_operation -rmnx211 remaindernear 1E+1000 0 -> NaN Invalid_operation - --- tests from the extended specification -rmnx221 remaindernear 2.1 3 -> -0.9 -rmnx222 remaindernear 10 6 -> -2 -rmnx223 remaindernear 10 3 -> 1 -rmnx224 remaindernear -10 3 -> -1 -rmnx225 remaindernear 10.2 1 -> 0.2 -rmnx226 remaindernear 10 0.3 -> 0.1 -rmnx227 remaindernear 3.6 1.3 -> -0.3 - --- some differences from remainder -rmnx231 remaindernear 0.4 1.020 -> 0.400 -rmnx232 remaindernear 0.50 1.020 -> 0.500 -rmnx233 remaindernear 0.51 1.020 -> 0.510 -rmnx234 remaindernear 0.52 1.020 -> -0.500 -rmnx235 remaindernear 0.6 1.020 -> -0.420 - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -rmnx270 remaindernear 1 1e999999999 -> 1 -rmnx271 remaindernear 1 0.9e999999999 -> 1 -rmnx272 remaindernear 1 0.99e999999999 -> 1 -rmnx273 remaindernear 1 0.999999999e999999999 -> 1 -rmnx274 remaindernear 9e999999999 1 -> NaN Division_impossible -rmnx275 remaindernear 9.9e999999999 1 -> NaN Division_impossible -rmnx276 remaindernear 9.99e999999999 1 -> NaN Division_impossible -rmnx277 remaindernear 9.99999999e999999999 1 -> NaN Division_impossible - -rmnx280 remaindernear 0.1 9e-999999999 -> NaN Division_impossible -rmnx281 remaindernear 0.1 99e-999999999 -> NaN Division_impossible -rmnx282 remaindernear 0.1 999e-999999999 -> NaN Division_impossible - -rmnx283 remaindernear 0.1 9e-999999998 -> NaN Division_impossible -rmnx284 remaindernear 0.1 99e-999999998 -> NaN Division_impossible -rmnx285 remaindernear 0.1 999e-999999998 -> NaN Division_impossible -rmnx286 remaindernear 0.1 999e-999999997 -> NaN Division_impossible -rmnx287 remaindernear 0.1 9999e-999999997 -> NaN Division_impossible -rmnx288 remaindernear 0.1 99999e-999999997 -> NaN Division_impossible - --- rmnx3xx are from DiagBigDecimal -rmnx301 remaindernear 1 3 -> 1 -rmnx302 remaindernear 5 5 -> 0 -rmnx303 remaindernear 13 10 -> 3 -rmnx304 remaindernear 13 50 -> 13 -rmnx305 remaindernear 13 100 -> 13 -rmnx306 remaindernear 13 1000 -> 13 -rmnx307 remaindernear .13 1 -> 0.13 -rmnx308 remaindernear 0.133 1 -> 0.133 -rmnx309 remaindernear 0.1033 1 -> 0.1033 -rmnx310 remaindernear 1.033 1 -> 0.033 -rmnx311 remaindernear 10.33 1 -> 0.33 -rmnx312 remaindernear 10.33 10 -> 0.33 -rmnx313 remaindernear 103.3 1 -> 0.3 -rmnx314 remaindernear 133 10 -> 3 -rmnx315 remaindernear 1033 10 -> 3 -rmnx316 remaindernear 1033 50 -> -17 -rmnx317 remaindernear 101.0 3 -> -1.0 -rmnx318 remaindernear 102.0 3 -> 0.0 -rmnx319 remaindernear 103.0 3 -> 1.0 -rmnx320 remaindernear 2.40 1 -> 0.40 -rmnx321 remaindernear 2.400 1 -> 0.400 -rmnx322 remaindernear 2.4 1 -> 0.4 -rmnx323 remaindernear 2.4 2 -> 0.4 -rmnx324 remaindernear 2.400 2 -> 0.400 -rmnx325 remaindernear 1 0.3 -> 0.1 -rmnx326 remaindernear 1 0.30 -> 0.10 -rmnx327 remaindernear 1 0.300 -> 0.100 -rmnx328 remaindernear 1 0.3000 -> 0.1000 -rmnx329 remaindernear 1.0 0.3 -> 0.1 -rmnx330 remaindernear 1.00 0.3 -> 0.10 -rmnx331 remaindernear 1.000 0.3 -> 0.100 -rmnx332 remaindernear 1.0000 0.3 -> 0.1000 -rmnx333 remaindernear 0.5 2 -> 0.5 -rmnx334 remaindernear 0.5 2.1 -> 0.5 -rmnx335 remaindernear 0.5 2.01 -> 0.50 -rmnx336 remaindernear 0.5 2.001 -> 0.500 -rmnx337 remaindernear 0.50 2 -> 0.50 -rmnx338 remaindernear 0.50 2.01 -> 0.50 -rmnx339 remaindernear 0.50 2.001 -> 0.500 - -rmnx340 remaindernear 0.5 0.5000001 -> -1E-7 -rmnx341 remaindernear 0.5 0.50000001 -> -1E-8 -rmnx342 remaindernear 0.5 0.500000001 -> -1E-9 -rmnx343 remaindernear 0.5 0.5000000001 -> -1E-10 -rmnx344 remaindernear 0.5 0.50000000001 -> -1E-11 -rmnx345 remaindernear 0.5 0.4999999 -> 1E-7 -rmnx346 remaindernear 0.5 0.49999999 -> 1E-8 -rmnx347 remaindernear 0.5 0.499999999 -> 1E-9 -rmnx348 remaindernear 0.5 0.4999999999 -> 1E-10 -rmnx349 remaindernear 0.5 0.49999999999 -> 1E-11 - -rmnx350 remaindernear 0.03 7 -> 0.03 -rmnx351 remaindernear 5 2 -> 1 -rmnx352 remaindernear 4.1 2 -> 0.1 -rmnx353 remaindernear 4.01 2 -> 0.01 -rmnx354 remaindernear 4.001 2 -> 0.001 -rmnx355 remaindernear 4.0001 2 -> 0.0001 -rmnx356 remaindernear 4.00001 2 -> 0.00001 -rmnx357 remaindernear 4.000001 2 -> 0.000001 -rmnx358 remaindernear 4.0000001 2 -> 1E-7 - -rmnx360 remaindernear 1.2 0.7345 -> -0.2690 -rmnx361 remaindernear 0.8 12 -> 0.8 -rmnx362 remaindernear 0.8 0.2 -> 0.0 -rmnx363 remaindernear 0.8 0.3 -> -0.1 -rmnx364 remaindernear 0.800 12 -> 0.800 -rmnx365 remaindernear 0.800 1.7 -> 0.800 -rmnx366 remaindernear 2.400 2 -> 0.400 - -precision: 6 -rmnx371 remaindernear 2.400 2 -> 0.400 -precision: 3 -rmnx372 remaindernear 12345678900000 12e+12 -> 3.46E+11 Inexact Rounded - -precision: 5 -rmnx381 remaindernear 12345 1 -> 0 -rmnx382 remaindernear 12345 1.0001 -> -0.2344 -rmnx383 remaindernear 12345 1.001 -> -0.333 -rmnx384 remaindernear 12345 1.01 -> -0.23 -rmnx385 remaindernear 12345 1.1 -> -0.3 -rmnx386 remaindernear 12355 4 -> -1 -rmnx387 remaindernear 12345 4 -> 1 -rmnx388 remaindernear 12355 4.0001 -> -1.3089 -rmnx389 remaindernear 12345 4.0001 -> 0.6914 -rmnx390 remaindernear 12345 4.9 -> 1.9 -rmnx391 remaindernear 12345 4.99 -> -0.26 -rmnx392 remaindernear 12345 4.999 -> 2.469 -rmnx393 remaindernear 12345 4.9999 -> 0.2469 -rmnx394 remaindernear 12345 5 -> 0 -rmnx395 remaindernear 12345 5.0001 -> -0.2469 -rmnx396 remaindernear 12345 5.001 -> -2.469 -rmnx397 remaindernear 12345 5.01 -> 0.36 -rmnx398 remaindernear 12345 5.1 -> -2.1 - -precision: 9 --- some nasty division-by-1 cases [some similar above] -rmnx401 remaindernear 0.4 1 -> 0.4 -rmnx402 remaindernear 0.45 1 -> 0.45 -rmnx403 remaindernear 0.455 1 -> 0.455 -rmnx404 remaindernear 0.4555 1 -> 0.4555 -rmnx405 remaindernear 0.45555 1 -> 0.45555 -rmnx406 remaindernear 0.455555 1 -> 0.455555 -rmnx407 remaindernear 0.4555555 1 -> 0.4555555 -rmnx408 remaindernear 0.45555555 1 -> 0.45555555 -rmnx409 remaindernear 0.455555555 1 -> 0.455555555 - --- some tricky LHSs -rmnx420 remaindernear 99999999.999999999 1E+8 -> -1E-9 -rmnx421 remaindernear 999999999.999999999 1E+9 -> -1E-9 -precision: 9 -rmnx430 remaindernear 0.455555555 1 -> 0.455555555 -precision: 8 -rmnx431 remaindernear 0.455555555 1 -> 0.45555556 Inexact Rounded -precision: 7 -rmnx432 remaindernear 0.455555555 1 -> 0.4555556 Inexact Rounded -precision: 6 -rmnx433 remaindernear 0.455555555 1 -> 0.455556 Inexact Rounded -precision: 5 -rmnx434 remaindernear 0.455555555 1 -> 0.45556 Inexact Rounded -precision: 4 -rmnx435 remaindernear 0.455555555 1 -> 0.4556 Inexact Rounded -precision: 3 -rmnx436 remaindernear 0.455555555 1 -> 0.456 Inexact Rounded -precision: 2 -rmnx437 remaindernear 0.455555555 1 -> 0.46 Inexact Rounded -precision: 1 -rmnx438 remaindernear 0.455555555 1 -> 0.5 Inexact Rounded - --- early tests; from text descriptions -precision: 9 -rmnx601 remaindernear 10 6 -> -2 -rmnx602 remaindernear -10 6 -> 2 -rmnx603 remaindernear 11 3 -> -1 -rmnx604 remaindernear 11 5 -> 1 -rmnx605 remaindernear 7.7 8 -> -0.3 -rmnx606 remaindernear 31.5 3 -> 1.5 -- i=10 -rmnx607 remaindernear 34.5 3 -> -1.5 -- i=11 - --- zero signs -rmnx650 remaindernear 1 1 -> 0 -rmnx651 remaindernear -1 1 -> -0 -rmnx652 remaindernear 1 -1 -> 0 -rmnx653 remaindernear -1 -1 -> -0 -rmnx654 remaindernear 0 1 -> 0 -rmnx655 remaindernear -0 1 -> -0 -rmnx656 remaindernear 0 -1 -> 0 -rmnx657 remaindernear -0 -1 -> -0 -rmnx658 remaindernear 0.00 1 -> 0.00 -rmnx659 remaindernear -0.00 1 -> -0.00 - --- Specials -rmnx680 remaindernear Inf -Inf -> NaN Invalid_operation -rmnx681 remaindernear Inf -1000 -> NaN Invalid_operation -rmnx682 remaindernear Inf -1 -> NaN Invalid_operation -rmnx683 remaindernear Inf 0 -> NaN Invalid_operation -rmnx684 remaindernear Inf -0 -> NaN Invalid_operation -rmnx685 remaindernear Inf 1 -> NaN Invalid_operation -rmnx686 remaindernear Inf 1000 -> NaN Invalid_operation -rmnx687 remaindernear Inf Inf -> NaN Invalid_operation -rmnx688 remaindernear -1000 Inf -> -1000 -rmnx689 remaindernear -Inf Inf -> NaN Invalid_operation -rmnx691 remaindernear -1 Inf -> -1 -rmnx692 remaindernear 0 Inf -> 0 -rmnx693 remaindernear -0 Inf -> -0 -rmnx694 remaindernear 1 Inf -> 1 -rmnx695 remaindernear 1000 Inf -> 1000 -rmnx696 remaindernear Inf Inf -> NaN Invalid_operation - -rmnx700 remaindernear -Inf -Inf -> NaN Invalid_operation -rmnx701 remaindernear -Inf -1000 -> NaN Invalid_operation -rmnx702 remaindernear -Inf -1 -> NaN Invalid_operation -rmnx703 remaindernear -Inf -0 -> NaN Invalid_operation -rmnx704 remaindernear -Inf 0 -> NaN Invalid_operation -rmnx705 remaindernear -Inf 1 -> NaN Invalid_operation -rmnx706 remaindernear -Inf 1000 -> NaN Invalid_operation -rmnx707 remaindernear -Inf Inf -> NaN Invalid_operation -rmnx708 remaindernear -Inf -Inf -> NaN Invalid_operation -rmnx709 remaindernear -1000 Inf -> -1000 -rmnx710 remaindernear -1 -Inf -> -1 -rmnx711 remaindernear -0 -Inf -> -0 -rmnx712 remaindernear 0 -Inf -> 0 -rmnx713 remaindernear 1 -Inf -> 1 -rmnx714 remaindernear 1000 -Inf -> 1000 -rmnx715 remaindernear Inf -Inf -> NaN Invalid_operation - -rmnx721 remaindernear NaN -Inf -> NaN -rmnx722 remaindernear NaN -1000 -> NaN -rmnx723 remaindernear NaN -1 -> NaN -rmnx724 remaindernear NaN -0 -> NaN -rmnx725 remaindernear NaN 0 -> NaN -rmnx726 remaindernear NaN 1 -> NaN -rmnx727 remaindernear NaN 1000 -> NaN -rmnx728 remaindernear NaN Inf -> NaN -rmnx729 remaindernear NaN NaN -> NaN -rmnx730 remaindernear -Inf NaN -> NaN -rmnx731 remaindernear -1000 NaN -> NaN -rmnx732 remaindernear -1 -NaN -> -NaN -rmnx733 remaindernear -0 NaN -> NaN -rmnx734 remaindernear 0 NaN -> NaN -rmnx735 remaindernear 1 NaN -> NaN -rmnx736 remaindernear 1000 NaN -> NaN -rmnx737 remaindernear Inf NaN -> NaN - -rmnx741 remaindernear sNaN -Inf -> NaN Invalid_operation -rmnx742 remaindernear sNaN -1000 -> NaN Invalid_operation -rmnx743 remaindernear -sNaN -1 -> -NaN Invalid_operation -rmnx744 remaindernear sNaN -0 -> NaN Invalid_operation -rmnx745 remaindernear sNaN 0 -> NaN Invalid_operation -rmnx746 remaindernear sNaN 1 -> NaN Invalid_operation -rmnx747 remaindernear sNaN 1000 -> NaN Invalid_operation -rmnx749 remaindernear sNaN NaN -> NaN Invalid_operation -rmnx750 remaindernear sNaN sNaN -> NaN Invalid_operation -rmnx751 remaindernear NaN sNaN -> NaN Invalid_operation -rmnx752 remaindernear -Inf sNaN -> NaN Invalid_operation -rmnx753 remaindernear -1000 sNaN -> NaN Invalid_operation -rmnx754 remaindernear -1 sNaN -> NaN Invalid_operation -rmnx755 remaindernear -0 -sNaN -> -NaN Invalid_operation -rmnx756 remaindernear 0 sNaN -> NaN Invalid_operation -rmnx757 remaindernear 1 sNaN -> NaN Invalid_operation -rmnx758 remaindernear 1000 sNaN -> NaN Invalid_operation -rmnx759 remaindernear Inf sNaN -> NaN Invalid_operation -rmnx760 remaindernear NaN sNaN -> NaN Invalid_operation - --- propaging NaNs -rmnx761 remaindernear NaN1 NaN7 -> NaN1 -rmnx762 remaindernear sNaN2 NaN8 -> NaN2 Invalid_operation -rmnx763 remaindernear NaN3 -sNaN9 -> -NaN9 Invalid_operation -rmnx764 remaindernear sNaN4 sNaN10 -> NaN4 Invalid_operation -rmnx765 remaindernear 15 NaN11 -> NaN11 -rmnx766 remaindernear NaN6 NaN12 -> NaN6 -rmnx767 remaindernear Inf -NaN13 -> -NaN13 -rmnx768 remaindernear NaN14 -Inf -> NaN14 -rmnx769 remaindernear 0 NaN15 -> NaN15 -rmnx770 remaindernear -NaN16 -0 -> -NaN16 - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -rmnx780 remaindernear 1 1e999999999 -> 1 -rmnx781 remaindernear 1 0.9e999999999 -> 1 -rmnx782 remaindernear 1 0.99e999999999 -> 1 -rmnx783 remaindernear 1 0.999999999e999999999 -> 1 -rmnx784 remaindernear 9e999999999 1 -> NaN Division_impossible -rmnx785 remaindernear 9.9e999999999 1 -> NaN Division_impossible -rmnx786 remaindernear 9.99e999999999 1 -> NaN Division_impossible -rmnx787 remaindernear 9.99999999e999999999 1 -> NaN Division_impossible - - --- overflow and underflow tests [from divide] -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -rmnx790 remaindernear +1.23456789012345E-0 9E+999999999 -> 1.23456789 Inexact Rounded -rmnx791 remaindernear 9E+999999999 +0.23456789012345E-0 -> NaN Division_impossible -rmnx792 remaindernear +0.100 9E+999999999 -> 0.100 -rmnx793 remaindernear 9E-999999999 +9.100 -> 9E-999999999 -rmnx795 remaindernear -1.23456789012345E-0 9E+999999999 -> -1.23456789 Inexact Rounded -rmnx796 remaindernear 9E+999999999 -0.83456789012345E-0 -> NaN Division_impossible -rmnx797 remaindernear -0.100 9E+999999999 -> -0.100 -rmnx798 remaindernear 9E-999999999 -9.100 -> 9E-999999999 - --- long operands checks -maxexponent: 999 -minexponent: -999 -precision: 9 -rmnx801 remaindernear 12345678000 100 -> 0 -rmnx802 remaindernear 1 12345678000 -> 1 -rmnx803 remaindernear 1234567800 10 -> 0 -rmnx804 remaindernear 1 1234567800 -> 1 -rmnx805 remaindernear 1234567890 10 -> 0 -rmnx806 remaindernear 1 1234567890 -> 1 -rmnx807 remaindernear 1234567891 10 -> 1 -rmnx808 remaindernear 1 1234567891 -> 1 -rmnx809 remaindernear 12345678901 100 -> 1 -rmnx810 remaindernear 1 12345678901 -> 1 -rmnx811 remaindernear 1234567896 10 -> -4 -rmnx812 remaindernear 1 1234567896 -> 1 - -precision: 15 -rmnx841 remaindernear 12345678000 100 -> 0 -rmnx842 remaindernear 1 12345678000 -> 1 -rmnx843 remaindernear 1234567800 10 -> 0 -rmnx844 remaindernear 1 1234567800 -> 1 -rmnx845 remaindernear 1234567890 10 -> 0 -rmnx846 remaindernear 1 1234567890 -> 1 -rmnx847 remaindernear 1234567891 10 -> 1 -rmnx848 remaindernear 1 1234567891 -> 1 -rmnx849 remaindernear 12345678901 100 -> 1 -rmnx850 remaindernear 1 12345678901 -> 1 -rmnx851 remaindernear 1234567896 10 -> -4 -rmnx852 remaindernear 1 1234567896 -> 1 - --- Null tests -rmnx900 remaindernear 10 # -> NaN Invalid_operation -rmnx901 remaindernear # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/rescale.decTest b/qdecimal/test/tc_full/rescale.decTest deleted file mode 100644 index 58cdb9b..0000000 --- a/qdecimal/test/tc_full/rescale.decTest +++ /dev/null @@ -1,764 +0,0 @@ ------------------------------------------------------------------------- --- rescale.decTest -- decimal rescale operation -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- [obsolete] Quantize.decTest has the improved version - --- 2004.03.15 Underflow for quantize is suppressed - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- sanity checks - -resx001 rescale 0 0 -> 0 -resx002 rescale 1 0 -> 1 -resx003 rescale 0.1 +2 -> 0E+2 Inexact Rounded -resx005 rescale 0.1 +1 -> 0E+1 Inexact Rounded -resx006 rescale 0.1 0 -> 0 Inexact Rounded -resx007 rescale 0.1 -1 -> 0.1 -resx008 rescale 0.1 -2 -> 0.10 -resx009 rescale 0.1 -3 -> 0.100 -resx010 rescale 0.9 +2 -> 0E+2 Inexact Rounded -resx011 rescale 0.9 +1 -> 0E+1 Inexact Rounded -resx012 rescale 0.9 +0 -> 1 Inexact Rounded -resx013 rescale 0.9 -1 -> 0.9 -resx014 rescale 0.9 -2 -> 0.90 -resx015 rescale 0.9 -3 -> 0.900 --- negatives -resx021 rescale -0 0 -> -0 -resx022 rescale -1 0 -> -1 -resx023 rescale -0.1 +2 -> -0E+2 Inexact Rounded -resx025 rescale -0.1 +1 -> -0E+1 Inexact Rounded -resx026 rescale -0.1 0 -> -0 Inexact Rounded -resx027 rescale -0.1 -1 -> -0.1 -resx028 rescale -0.1 -2 -> -0.10 -resx029 rescale -0.1 -3 -> -0.100 -resx030 rescale -0.9 +2 -> -0E+2 Inexact Rounded -resx031 rescale -0.9 +1 -> -0E+1 Inexact Rounded -resx032 rescale -0.9 +0 -> -1 Inexact Rounded -resx033 rescale -0.9 -1 -> -0.9 -resx034 rescale -0.9 -2 -> -0.90 -resx035 rescale -0.9 -3 -> -0.900 -resx036 rescale -0.5 +2 -> -0E+2 Inexact Rounded -resx037 rescale -0.5 +1 -> -0E+1 Inexact Rounded -resx038 rescale -0.5 +0 -> -1 Inexact Rounded -resx039 rescale -0.5 -1 -> -0.5 -resx040 rescale -0.5 -2 -> -0.50 -resx041 rescale -0.5 -3 -> -0.500 -resx042 rescale -0.9 +2 -> -0E+2 Inexact Rounded -resx043 rescale -0.9 +1 -> -0E+1 Inexact Rounded -resx044 rescale -0.9 +0 -> -1 Inexact Rounded -resx045 rescale -0.9 -1 -> -0.9 -resx046 rescale -0.9 -2 -> -0.90 -resx047 rescale -0.9 -3 -> -0.900 - --- examples from Specification -resx060 rescale 2.17 -3 -> 2.170 -resx061 rescale 2.17 -2 -> 2.17 -resx062 rescale 2.17 -1 -> 2.2 Inexact Rounded -resx063 rescale 2.17 0 -> 2 Inexact Rounded -resx064 rescale 2.17 +1 -> 0E+1 Inexact Rounded -resx065 rescale 2 Inf -> NaN Invalid_operation -resx066 rescale -0.1 0 -> -0 Inexact Rounded -resx067 rescale -0 5 -> -0E+5 -resx068 rescale +35236450.6 -2 -> NaN Invalid_operation -resx069 rescale -35236450.6 -2 -> NaN Invalid_operation -resx070 rescale 217 -1 -> 217.0 -resx071 rescale 217 0 -> 217 -resx072 rescale 217 +1 -> 2.2E+2 Inexact Rounded -resx073 rescale 217 +2 -> 2E+2 Inexact Rounded - --- general tests .. -resx089 rescale 12 +4 -> 0E+4 Inexact Rounded -resx090 rescale 12 +3 -> 0E+3 Inexact Rounded -resx091 rescale 12 +2 -> 0E+2 Inexact Rounded -resx092 rescale 12 +1 -> 1E+1 Inexact Rounded -resx093 rescale 1.2345 -2 -> 1.23 Inexact Rounded -resx094 rescale 1.2355 -2 -> 1.24 Inexact Rounded -resx095 rescale 1.2345 -6 -> 1.234500 -resx096 rescale 9.9999 -2 -> 10.00 Inexact Rounded -resx097 rescale 0.0001 -2 -> 0.00 Inexact Rounded -resx098 rescale 0.001 -2 -> 0.00 Inexact Rounded -resx099 rescale 0.009 -2 -> 0.01 Inexact Rounded -resx100 rescale 92 +2 -> 1E+2 Inexact Rounded - -resx101 rescale -1 0 -> -1 -resx102 rescale -1 -1 -> -1.0 -resx103 rescale -1 -2 -> -1.00 -resx104 rescale 0 0 -> 0 -resx105 rescale 0 -1 -> 0.0 -resx106 rescale 0 -2 -> 0.00 -resx107 rescale 0.00 0 -> 0 -resx108 rescale 0 +1 -> 0E+1 -resx109 rescale 0 +2 -> 0E+2 -resx110 rescale +1 0 -> 1 -resx111 rescale +1 -1 -> 1.0 -resx112 rescale +1 -2 -> 1.00 - -resx120 rescale 1.04 -3 -> 1.040 -resx121 rescale 1.04 -2 -> 1.04 -resx122 rescale 1.04 -1 -> 1.0 Inexact Rounded -resx123 rescale 1.04 0 -> 1 Inexact Rounded -resx124 rescale 1.05 -3 -> 1.050 -resx125 rescale 1.05 -2 -> 1.05 -resx126 rescale 1.05 -1 -> 1.1 Inexact Rounded -resx127 rescale 1.05 0 -> 1 Inexact Rounded -resx128 rescale 1.05 -3 -> 1.050 -resx129 rescale 1.05 -2 -> 1.05 -resx130 rescale 1.05 -1 -> 1.1 Inexact Rounded -resx131 rescale 1.05 0 -> 1 Inexact Rounded -resx132 rescale 1.06 -3 -> 1.060 -resx133 rescale 1.06 -2 -> 1.06 -resx134 rescale 1.06 -1 -> 1.1 Inexact Rounded -resx135 rescale 1.06 0 -> 1 Inexact Rounded - -resx140 rescale -10 -2 -> -10.00 -resx141 rescale +1 -2 -> 1.00 -resx142 rescale +10 -2 -> 10.00 -resx143 rescale 1E+10 -2 -> NaN Invalid_operation -resx144 rescale 1E-10 -2 -> 0.00 Inexact Rounded -resx145 rescale 1E-3 -2 -> 0.00 Inexact Rounded -resx146 rescale 1E-2 -2 -> 0.01 -resx147 rescale 1E-1 -2 -> 0.10 -resx148 rescale 0E-10 -2 -> 0.00 - -resx150 rescale 1.0600 -5 -> 1.06000 -resx151 rescale 1.0600 -4 -> 1.0600 -resx152 rescale 1.0600 -3 -> 1.060 Rounded -resx153 rescale 1.0600 -2 -> 1.06 Rounded -resx154 rescale 1.0600 -1 -> 1.1 Inexact Rounded -resx155 rescale 1.0600 0 -> 1 Inexact Rounded - --- +ve exponents .. -resx201 rescale -1 +0 -> -1 -resx202 rescale -1 +1 -> -0E+1 Inexact Rounded -resx203 rescale -1 +2 -> -0E+2 Inexact Rounded -resx204 rescale 0 +0 -> 0 -resx205 rescale 0 +1 -> 0E+1 -resx206 rescale 0 +2 -> 0E+2 -resx207 rescale +1 +0 -> 1 -resx208 rescale +1 +1 -> 0E+1 Inexact Rounded -resx209 rescale +1 +2 -> 0E+2 Inexact Rounded - -resx220 rescale 1.04 +3 -> 0E+3 Inexact Rounded -resx221 rescale 1.04 +2 -> 0E+2 Inexact Rounded -resx222 rescale 1.04 +1 -> 0E+1 Inexact Rounded -resx223 rescale 1.04 +0 -> 1 Inexact Rounded -resx224 rescale 1.05 +3 -> 0E+3 Inexact Rounded -resx225 rescale 1.05 +2 -> 0E+2 Inexact Rounded -resx226 rescale 1.05 +1 -> 0E+1 Inexact Rounded -resx227 rescale 1.05 +0 -> 1 Inexact Rounded -resx228 rescale 1.05 +3 -> 0E+3 Inexact Rounded -resx229 rescale 1.05 +2 -> 0E+2 Inexact Rounded -resx230 rescale 1.05 +1 -> 0E+1 Inexact Rounded -resx231 rescale 1.05 +0 -> 1 Inexact Rounded -resx232 rescale 1.06 +3 -> 0E+3 Inexact Rounded -resx233 rescale 1.06 +2 -> 0E+2 Inexact Rounded -resx234 rescale 1.06 +1 -> 0E+1 Inexact Rounded -resx235 rescale 1.06 +0 -> 1 Inexact Rounded - -resx240 rescale -10 +1 -> -1E+1 Rounded -resx241 rescale +1 +1 -> 0E+1 Inexact Rounded -resx242 rescale +10 +1 -> 1E+1 Rounded -resx243 rescale 1E+1 +1 -> 1E+1 -- underneath this is E+1 -resx244 rescale 1E+2 +1 -> 1.0E+2 -- underneath this is E+1 -resx245 rescale 1E+3 +1 -> 1.00E+3 -- underneath this is E+1 -resx246 rescale 1E+4 +1 -> 1.000E+4 -- underneath this is E+1 -resx247 rescale 1E+5 +1 -> 1.0000E+5 -- underneath this is E+1 -resx248 rescale 1E+6 +1 -> 1.00000E+6 -- underneath this is E+1 -resx249 rescale 1E+7 +1 -> 1.000000E+7 -- underneath this is E+1 -resx250 rescale 1E+8 +1 -> 1.0000000E+8 -- underneath this is E+1 -resx251 rescale 1E+9 +1 -> 1.00000000E+9 -- underneath this is E+1 --- next one tries to add 9 zeros -resx252 rescale 1E+10 +1 -> NaN Invalid_operation -resx253 rescale 1E-10 +1 -> 0E+1 Inexact Rounded -resx254 rescale 1E-2 +1 -> 0E+1 Inexact Rounded -resx255 rescale 0E-10 +1 -> 0E+1 -resx256 rescale -0E-10 +1 -> -0E+1 -resx257 rescale -0E-1 +1 -> -0E+1 -resx258 rescale -0 +1 -> -0E+1 -resx259 rescale -0E+1 +1 -> -0E+1 - -resx260 rescale -10 +2 -> -0E+2 Inexact Rounded -resx261 rescale +1 +2 -> 0E+2 Inexact Rounded -resx262 rescale +10 +2 -> 0E+2 Inexact Rounded -resx263 rescale 1E+1 +2 -> 0E+2 Inexact Rounded -resx264 rescale 1E+2 +2 -> 1E+2 -resx265 rescale 1E+3 +2 -> 1.0E+3 -resx266 rescale 1E+4 +2 -> 1.00E+4 -resx267 rescale 1E+5 +2 -> 1.000E+5 -resx268 rescale 1E+6 +2 -> 1.0000E+6 -resx269 rescale 1E+7 +2 -> 1.00000E+7 -resx270 rescale 1E+8 +2 -> 1.000000E+8 -resx271 rescale 1E+9 +2 -> 1.0000000E+9 -resx272 rescale 1E+10 +2 -> 1.00000000E+10 -resx273 rescale 1E-10 +2 -> 0E+2 Inexact Rounded -resx274 rescale 1E-2 +2 -> 0E+2 Inexact Rounded -resx275 rescale 0E-10 +2 -> 0E+2 - -resx280 rescale -10 +3 -> -0E+3 Inexact Rounded -resx281 rescale +1 +3 -> 0E+3 Inexact Rounded -resx282 rescale +10 +3 -> 0E+3 Inexact Rounded -resx283 rescale 1E+1 +3 -> 0E+3 Inexact Rounded -resx284 rescale 1E+2 +3 -> 0E+3 Inexact Rounded -resx285 rescale 1E+3 +3 -> 1E+3 -resx286 rescale 1E+4 +3 -> 1.0E+4 -resx287 rescale 1E+5 +3 -> 1.00E+5 -resx288 rescale 1E+6 +3 -> 1.000E+6 -resx289 rescale 1E+7 +3 -> 1.0000E+7 -resx290 rescale 1E+8 +3 -> 1.00000E+8 -resx291 rescale 1E+9 +3 -> 1.000000E+9 -resx292 rescale 1E+10 +3 -> 1.0000000E+10 -resx293 rescale 1E-10 +3 -> 0E+3 Inexact Rounded -resx294 rescale 1E-2 +3 -> 0E+3 Inexact Rounded -resx295 rescale 0E-10 +3 -> 0E+3 - --- round up from below [sign wrong in JIT compiler once] -resx300 rescale 0.0078 -5 -> 0.00780 -resx301 rescale 0.0078 -4 -> 0.0078 -resx302 rescale 0.0078 -3 -> 0.008 Inexact Rounded -resx303 rescale 0.0078 -2 -> 0.01 Inexact Rounded -resx304 rescale 0.0078 -1 -> 0.0 Inexact Rounded -resx305 rescale 0.0078 0 -> 0 Inexact Rounded -resx306 rescale 0.0078 +1 -> 0E+1 Inexact Rounded -resx307 rescale 0.0078 +2 -> 0E+2 Inexact Rounded - -resx310 rescale -0.0078 -5 -> -0.00780 -resx311 rescale -0.0078 -4 -> -0.0078 -resx312 rescale -0.0078 -3 -> -0.008 Inexact Rounded -resx313 rescale -0.0078 -2 -> -0.01 Inexact Rounded -resx314 rescale -0.0078 -1 -> -0.0 Inexact Rounded -resx315 rescale -0.0078 0 -> -0 Inexact Rounded -resx316 rescale -0.0078 +1 -> -0E+1 Inexact Rounded -resx317 rescale -0.0078 +2 -> -0E+2 Inexact Rounded - -resx320 rescale 0.078 -5 -> 0.07800 -resx321 rescale 0.078 -4 -> 0.0780 -resx322 rescale 0.078 -3 -> 0.078 -resx323 rescale 0.078 -2 -> 0.08 Inexact Rounded -resx324 rescale 0.078 -1 -> 0.1 Inexact Rounded -resx325 rescale 0.078 0 -> 0 Inexact Rounded -resx326 rescale 0.078 +1 -> 0E+1 Inexact Rounded -resx327 rescale 0.078 +2 -> 0E+2 Inexact Rounded - -resx330 rescale -0.078 -5 -> -0.07800 -resx331 rescale -0.078 -4 -> -0.0780 -resx332 rescale -0.078 -3 -> -0.078 -resx333 rescale -0.078 -2 -> -0.08 Inexact Rounded -resx334 rescale -0.078 -1 -> -0.1 Inexact Rounded -resx335 rescale -0.078 0 -> -0 Inexact Rounded -resx336 rescale -0.078 +1 -> -0E+1 Inexact Rounded -resx337 rescale -0.078 +2 -> -0E+2 Inexact Rounded - -resx340 rescale 0.78 -5 -> 0.78000 -resx341 rescale 0.78 -4 -> 0.7800 -resx342 rescale 0.78 -3 -> 0.780 -resx343 rescale 0.78 -2 -> 0.78 -resx344 rescale 0.78 -1 -> 0.8 Inexact Rounded -resx345 rescale 0.78 0 -> 1 Inexact Rounded -resx346 rescale 0.78 +1 -> 0E+1 Inexact Rounded -resx347 rescale 0.78 +2 -> 0E+2 Inexact Rounded - -resx350 rescale -0.78 -5 -> -0.78000 -resx351 rescale -0.78 -4 -> -0.7800 -resx352 rescale -0.78 -3 -> -0.780 -resx353 rescale -0.78 -2 -> -0.78 -resx354 rescale -0.78 -1 -> -0.8 Inexact Rounded -resx355 rescale -0.78 0 -> -1 Inexact Rounded -resx356 rescale -0.78 +1 -> -0E+1 Inexact Rounded -resx357 rescale -0.78 +2 -> -0E+2 Inexact Rounded - -resx360 rescale 7.8 -5 -> 7.80000 -resx361 rescale 7.8 -4 -> 7.8000 -resx362 rescale 7.8 -3 -> 7.800 -resx363 rescale 7.8 -2 -> 7.80 -resx364 rescale 7.8 -1 -> 7.8 -resx365 rescale 7.8 0 -> 8 Inexact Rounded -resx366 rescale 7.8 +1 -> 1E+1 Inexact Rounded -resx367 rescale 7.8 +2 -> 0E+2 Inexact Rounded -resx368 rescale 7.8 +3 -> 0E+3 Inexact Rounded - -resx370 rescale -7.8 -5 -> -7.80000 -resx371 rescale -7.8 -4 -> -7.8000 -resx372 rescale -7.8 -3 -> -7.800 -resx373 rescale -7.8 -2 -> -7.80 -resx374 rescale -7.8 -1 -> -7.8 -resx375 rescale -7.8 0 -> -8 Inexact Rounded -resx376 rescale -7.8 +1 -> -1E+1 Inexact Rounded -resx377 rescale -7.8 +2 -> -0E+2 Inexact Rounded -resx378 rescale -7.8 +3 -> -0E+3 Inexact Rounded - --- some individuals -precision: 9 -resx380 rescale 352364.506 -2 -> 352364.51 Inexact Rounded -resx381 rescale 3523645.06 -2 -> 3523645.06 -resx382 rescale 35236450.6 -2 -> NaN Invalid_operation -resx383 rescale 352364506 -2 -> NaN Invalid_operation -resx384 rescale -352364.506 -2 -> -352364.51 Inexact Rounded -resx385 rescale -3523645.06 -2 -> -3523645.06 -resx386 rescale -35236450.6 -2 -> NaN Invalid_operation -resx387 rescale -352364506 -2 -> NaN Invalid_operation - -rounding: down -resx389 rescale 35236450.6 -2 -> NaN Invalid_operation --- ? should that one instead have been: --- resx389 rescale 35236450.6 -2 -> NaN Invalid_operation -rounding: half_up - --- and a few more from e-mail discussions -precision: 7 -resx391 rescale 12.34567 -3 -> 12.346 Inexact Rounded -resx392 rescale 123.4567 -3 -> 123.457 Inexact Rounded -resx393 rescale 1234.567 -3 -> 1234.567 -resx394 rescale 12345.67 -3 -> NaN Invalid_operation -resx395 rescale 123456.7 -3 -> NaN Invalid_operation -resx396 rescale 1234567. -3 -> NaN Invalid_operation - --- some 9999 round-up cases -precision: 9 -resx400 rescale 9.999 -5 -> 9.99900 -resx401 rescale 9.999 -4 -> 9.9990 -resx402 rescale 9.999 -3 -> 9.999 -resx403 rescale 9.999 -2 -> 10.00 Inexact Rounded -resx404 rescale 9.999 -1 -> 10.0 Inexact Rounded -resx405 rescale 9.999 0 -> 10 Inexact Rounded -resx406 rescale 9.999 1 -> 1E+1 Inexact Rounded -resx407 rescale 9.999 2 -> 0E+2 Inexact Rounded - -resx410 rescale 0.999 -5 -> 0.99900 -resx411 rescale 0.999 -4 -> 0.9990 -resx412 rescale 0.999 -3 -> 0.999 -resx413 rescale 0.999 -2 -> 1.00 Inexact Rounded -resx414 rescale 0.999 -1 -> 1.0 Inexact Rounded -resx415 rescale 0.999 0 -> 1 Inexact Rounded -resx416 rescale 0.999 1 -> 0E+1 Inexact Rounded - -resx420 rescale 0.0999 -5 -> 0.09990 -resx421 rescale 0.0999 -4 -> 0.0999 -resx422 rescale 0.0999 -3 -> 0.100 Inexact Rounded -resx423 rescale 0.0999 -2 -> 0.10 Inexact Rounded -resx424 rescale 0.0999 -1 -> 0.1 Inexact Rounded -resx425 rescale 0.0999 0 -> 0 Inexact Rounded -resx426 rescale 0.0999 1 -> 0E+1 Inexact Rounded - -resx430 rescale 0.00999 -5 -> 0.00999 -resx431 rescale 0.00999 -4 -> 0.0100 Inexact Rounded -resx432 rescale 0.00999 -3 -> 0.010 Inexact Rounded -resx433 rescale 0.00999 -2 -> 0.01 Inexact Rounded -resx434 rescale 0.00999 -1 -> 0.0 Inexact Rounded -resx435 rescale 0.00999 0 -> 0 Inexact Rounded -resx436 rescale 0.00999 1 -> 0E+1 Inexact Rounded - -resx440 rescale 0.000999 -5 -> 0.00100 Inexact Rounded -resx441 rescale 0.000999 -4 -> 0.0010 Inexact Rounded -resx442 rescale 0.000999 -3 -> 0.001 Inexact Rounded -resx443 rescale 0.000999 -2 -> 0.00 Inexact Rounded -resx444 rescale 0.000999 -1 -> 0.0 Inexact Rounded -resx445 rescale 0.000999 0 -> 0 Inexact Rounded -resx446 rescale 0.000999 1 -> 0E+1 Inexact Rounded - -precision: 8 -resx449 rescale 9.999E-15 -23 -> NaN Invalid_operation -resx450 rescale 9.999E-15 -22 -> 9.9990000E-15 -resx451 rescale 9.999E-15 -21 -> 9.999000E-15 -resx452 rescale 9.999E-15 -20 -> 9.99900E-15 -resx453 rescale 9.999E-15 -19 -> 9.9990E-15 -resx454 rescale 9.999E-15 -18 -> 9.999E-15 -resx455 rescale 9.999E-15 -17 -> 1.000E-14 Inexact Rounded -resx456 rescale 9.999E-15 -16 -> 1.00E-14 Inexact Rounded -resx457 rescale 9.999E-15 -15 -> 1.0E-14 Inexact Rounded -resx458 rescale 9.999E-15 -14 -> 1E-14 Inexact Rounded -resx459 rescale 9.999E-15 -13 -> 0E-13 Inexact Rounded -resx460 rescale 9.999E-15 -12 -> 0E-12 Inexact Rounded -resx461 rescale 9.999E-15 -11 -> 0E-11 Inexact Rounded -resx462 rescale 9.999E-15 -10 -> 0E-10 Inexact Rounded -resx463 rescale 9.999E-15 -9 -> 0E-9 Inexact Rounded -resx464 rescale 9.999E-15 -8 -> 0E-8 Inexact Rounded -resx465 rescale 9.999E-15 -7 -> 0E-7 Inexact Rounded -resx466 rescale 9.999E-15 -6 -> 0.000000 Inexact Rounded -resx467 rescale 9.999E-15 -5 -> 0.00000 Inexact Rounded -resx468 rescale 9.999E-15 -4 -> 0.0000 Inexact Rounded -resx469 rescale 9.999E-15 -3 -> 0.000 Inexact Rounded -resx470 rescale 9.999E-15 -2 -> 0.00 Inexact Rounded -resx471 rescale 9.999E-15 -1 -> 0.0 Inexact Rounded -resx472 rescale 9.999E-15 0 -> 0 Inexact Rounded -resx473 rescale 9.999E-15 1 -> 0E+1 Inexact Rounded - --- [additional tests for "don't fit" edge cases are in --- quantize.decTest. Here's a critical one.] -precision: 3 -resx480 rescale 0.9999 -3 -> NaN Invalid_operation - - --- long operand checks [rhs checks removed] -maxexponent: 999 -minexponent: -999 -precision: 9 -resx481 rescale 12345678000 +3 -> 1.2345678E+10 Rounded -resx482 rescale 1234567800 +1 -> 1.23456780E+9 Rounded -resx483 rescale 1234567890 +1 -> 1.23456789E+9 Rounded -resx484 rescale 1234567891 +1 -> 1.23456789E+9 Inexact Rounded -resx485 rescale 12345678901 +2 -> 1.23456789E+10 Inexact Rounded -resx486 rescale 1234567896 +1 -> 1.23456790E+9 Inexact Rounded --- a potential double-round -resx487 rescale 1234.987643 -4 -> 1234.9876 Inexact Rounded -resx488 rescale 1234.987647 -4 -> 1234.9876 Inexact Rounded - -precision: 15 -resx491 rescale 12345678000 +3 -> 1.2345678E+10 Rounded -resx492 rescale 1234567800 +1 -> 1.23456780E+9 Rounded -resx493 rescale 1234567890 +1 -> 1.23456789E+9 Rounded -resx494 rescale 1234567891 +1 -> 1.23456789E+9 Inexact Rounded -resx495 rescale 12345678901 +2 -> 1.23456789E+10 Inexact Rounded -resx496 rescale 1234567896 +1 -> 1.23456790E+9 Inexact Rounded -resx497 rescale 1234.987643 -4 -> 1234.9876 Inexact Rounded -resx498 rescale 1234.987647 -4 -> 1234.9876 Inexact Rounded - --- Zeros -resx500 rescale 0 1 -> 0E+1 -resx501 rescale 0 0 -> 0 -resx502 rescale 0 -1 -> 0.0 -resx503 rescale 0.0 -1 -> 0.0 -resx504 rescale 0.0 0 -> 0 -resx505 rescale 0.0 +1 -> 0E+1 -resx506 rescale 0E+1 -1 -> 0.0 -resx507 rescale 0E+1 0 -> 0 -resx508 rescale 0E+1 +1 -> 0E+1 -resx509 rescale -0 1 -> -0E+1 -resx510 rescale -0 0 -> -0 -resx511 rescale -0 -1 -> -0.0 -resx512 rescale -0.0 -1 -> -0.0 -resx513 rescale -0.0 0 -> -0 -resx514 rescale -0.0 +1 -> -0E+1 -resx515 rescale -0E+1 -1 -> -0.0 -resx516 rescale -0E+1 0 -> -0 -resx517 rescale -0E+1 +1 -> -0E+1 - --- Suspicious RHS values -maxexponent: 999999999 -minexponent: -999999999 -precision: 15 -resx520 rescale 1.234 999999E+3 -> 0E+999999000 Inexact Rounded -resx521 rescale 123.456 999999E+3 -> 0E+999999000 Inexact Rounded -resx522 rescale 1.234 999999999 -> 0E+999999999 Inexact Rounded -resx523 rescale 123.456 999999999 -> 0E+999999999 Inexact Rounded -resx524 rescale 123.456 1000000000 -> NaN Invalid_operation -resx525 rescale 123.456 12345678903 -> NaN Invalid_operation --- next four are "won't fit" overflows -resx526 rescale 1.234 -999999E+3 -> NaN Invalid_operation -resx527 rescale 123.456 -999999E+3 -> NaN Invalid_operation -resx528 rescale 1.234 -999999999 -> NaN Invalid_operation -resx529 rescale 123.456 -999999999 -> NaN Invalid_operation -resx530 rescale 123.456 -1000000014 -> NaN Invalid_operation -resx531 rescale 123.456 -12345678903 -> NaN Invalid_operation - -maxexponent: 999 -minexponent: -999 -precision: 15 -resx532 rescale 1.234E+999 999 -> 1E+999 Inexact Rounded -resx533 rescale 1.234E+998 999 -> 0E+999 Inexact Rounded -resx534 rescale 1.234 999 -> 0E+999 Inexact Rounded -resx535 rescale 1.234 1000 -> NaN Invalid_operation -resx536 rescale 1.234 5000 -> NaN Invalid_operation -resx537 rescale 0 -999 -> 0E-999 --- next two are "won't fit" overflows -resx538 rescale 1.234 -999 -> NaN Invalid_operation -resx539 rescale 1.234 -1000 -> NaN Invalid_operation -resx540 rescale 1.234 -5000 -> NaN Invalid_operation --- [more below] - --- check bounds (lhs maybe out of range for destination, etc.) -precision: 7 -resx541 rescale 1E+999 +999 -> 1E+999 -resx542 rescale 1E+1000 +999 -> NaN Invalid_operation -resx543 rescale 1E+999 +1000 -> NaN Invalid_operation -resx544 rescale 1E-999 -999 -> 1E-999 -resx545 rescale 1E-1000 -999 -> 0E-999 Inexact Rounded -resx546 rescale 1E-999 -1000 -> 1.0E-999 -resx547 rescale 1E-1005 -999 -> 0E-999 Inexact Rounded -resx548 rescale 1E-1006 -999 -> 0E-999 Inexact Rounded -resx549 rescale 1E-1007 -999 -> 0E-999 Inexact Rounded -resx550 rescale 1E-998 -1005 -> NaN Invalid_operation -- won't fit -resx551 rescale 1E-999 -1005 -> 1.000000E-999 -resx552 rescale 1E-1000 -1005 -> 1.00000E-1000 Subnormal -resx553 rescale 1E-999 -1006 -> NaN Invalid_operation -resx554 rescale 1E-999 -1007 -> NaN Invalid_operation --- related subnormal rounding -resx555 rescale 1.666666E-999 -1005 -> 1.666666E-999 -resx556 rescale 1.666666E-1000 -1005 -> 1.66667E-1000 Subnormal Inexact Rounded -resx557 rescale 1.666666E-1001 -1005 -> 1.6667E-1001 Subnormal Inexact Rounded -resx558 rescale 1.666666E-1002 -1005 -> 1.667E-1002 Subnormal Inexact Rounded -resx559 rescale 1.666666E-1003 -1005 -> 1.67E-1003 Subnormal Inexact Rounded -resx560 rescale 1.666666E-1004 -1005 -> 1.7E-1004 Subnormal Inexact Rounded -resx561 rescale 1.666666E-1005 -1005 -> 2E-1005 Subnormal Inexact Rounded -resx562 rescale 1.666666E-1006 -1005 -> 0E-1005 Inexact Rounded -resx563 rescale 1.666666E-1007 -1005 -> 0E-1005 Inexact Rounded - --- fractional RHS, some good and some bad -precision: 9 -resx564 rescale 222 +2.0 -> 2E+2 Inexact Rounded -resx565 rescale 222 +2.00000000 -> 2E+2 Inexact Rounded -resx566 rescale 222 +2.00100000000 -> NaN Invalid_operation -resx567 rescale 222 +2.000001 -> NaN Invalid_operation -resx568 rescale 222 +2.000000001 -> NaN Invalid_operation -resx569 rescale 222 +2.0000000001 -> NaN Invalid_operation -resx570 rescale 222 +2.00000000001 -> NaN Invalid_operation -resx571 rescale 222 +2.99999999999 -> NaN Invalid_operation -resx572 rescale 222 -2.00000000 -> 222.00 -resx573 rescale 222 -2.00100000000 -> NaN Invalid_operation -resx574 rescale 222 -2.0000001000 -> NaN Invalid_operation -resx575 rescale 222 -2.00000000001 -> NaN Invalid_operation -resx576 rescale 222 -2.99999999999 -> NaN Invalid_operation - --- Specials -resx580 rescale Inf -Inf -> Infinity -resx581 rescale Inf -1000 -> NaN Invalid_operation -resx582 rescale Inf -1 -> NaN Invalid_operation -resx583 rescale Inf 0 -> NaN Invalid_operation -resx584 rescale Inf 1 -> NaN Invalid_operation -resx585 rescale Inf 1000 -> NaN Invalid_operation -resx586 rescale Inf Inf -> Infinity -resx587 rescale -1000 Inf -> NaN Invalid_operation -resx588 rescale -Inf Inf -> -Infinity -resx589 rescale -1 Inf -> NaN Invalid_operation -resx590 rescale 0 Inf -> NaN Invalid_operation -resx591 rescale 1 Inf -> NaN Invalid_operation -resx592 rescale 1000 Inf -> NaN Invalid_operation -resx593 rescale Inf Inf -> Infinity -resx594 rescale Inf -0 -> NaN Invalid_operation -resx595 rescale -0 Inf -> NaN Invalid_operation - -resx600 rescale -Inf -Inf -> -Infinity -resx601 rescale -Inf -1000 -> NaN Invalid_operation -resx602 rescale -Inf -1 -> NaN Invalid_operation -resx603 rescale -Inf 0 -> NaN Invalid_operation -resx604 rescale -Inf 1 -> NaN Invalid_operation -resx605 rescale -Inf 1000 -> NaN Invalid_operation -resx606 rescale -Inf Inf -> -Infinity -resx607 rescale -1000 Inf -> NaN Invalid_operation -resx608 rescale -Inf -Inf -> -Infinity -resx609 rescale -1 -Inf -> NaN Invalid_operation -resx610 rescale 0 -Inf -> NaN Invalid_operation -resx611 rescale 1 -Inf -> NaN Invalid_operation -resx612 rescale 1000 -Inf -> NaN Invalid_operation -resx613 rescale Inf -Inf -> Infinity -resx614 rescale -Inf -0 -> NaN Invalid_operation -resx615 rescale -0 -Inf -> NaN Invalid_operation - -resx621 rescale NaN -Inf -> NaN -resx622 rescale NaN -1000 -> NaN -resx623 rescale NaN -1 -> NaN -resx624 rescale NaN 0 -> NaN -resx625 rescale NaN 1 -> NaN -resx626 rescale NaN 1000 -> NaN -resx627 rescale NaN Inf -> NaN -resx628 rescale NaN NaN -> NaN -resx629 rescale -Inf NaN -> NaN -resx630 rescale -1000 NaN -> NaN -resx631 rescale -1 NaN -> NaN -resx632 rescale 0 NaN -> NaN -resx633 rescale 1 -NaN -> -NaN -resx634 rescale 1000 NaN -> NaN -resx635 rescale Inf NaN -> NaN -resx636 rescale NaN -0 -> NaN -resx637 rescale -0 NaN -> NaN - -resx641 rescale sNaN -Inf -> NaN Invalid_operation -resx642 rescale sNaN -1000 -> NaN Invalid_operation -resx643 rescale sNaN -1 -> NaN Invalid_operation -resx644 rescale sNaN 0 -> NaN Invalid_operation -resx645 rescale sNaN 1 -> NaN Invalid_operation -resx646 rescale sNaN 1000 -> NaN Invalid_operation -resx647 rescale -sNaN NaN -> -NaN Invalid_operation -resx648 rescale sNaN -sNaN -> NaN Invalid_operation -resx649 rescale NaN sNaN -> NaN Invalid_operation -resx650 rescale -Inf sNaN -> NaN Invalid_operation -resx651 rescale -1000 sNaN -> NaN Invalid_operation -resx652 rescale -1 sNaN -> NaN Invalid_operation -resx653 rescale 0 sNaN -> NaN Invalid_operation -resx654 rescale 1 -sNaN -> -NaN Invalid_operation -resx655 rescale 1000 sNaN -> NaN Invalid_operation -resx656 rescale Inf sNaN -> NaN Invalid_operation -resx657 rescale NaN sNaN -> NaN Invalid_operation -resx658 rescale sNaN -0 -> NaN Invalid_operation -resx659 rescale -0 sNaN -> NaN Invalid_operation - --- propagating NaNs -resx661 rescale NaN9 -Inf -> NaN9 -resx662 rescale NaN81 919 -> NaN81 -resx663 rescale NaN72 Inf -> NaN72 -resx664 rescale -NaN66 NaN5 -> -NaN66 -resx665 rescale -Inf NaN4 -> NaN4 -resx666 rescale -919 NaN32 -> NaN32 -resx667 rescale Inf NaN2 -> NaN2 - -resx671 rescale sNaN99 -Inf -> NaN99 Invalid_operation -resx672 rescale -sNaN98 -11 -> -NaN98 Invalid_operation -resx673 rescale sNaN97 NaN -> NaN97 Invalid_operation -resx674 rescale sNaN16 sNaN94 -> NaN16 Invalid_operation -resx675 rescale NaN95 sNaN93 -> NaN93 Invalid_operation -resx676 rescale -Inf sNaN92 -> NaN92 Invalid_operation -resx677 rescale 088 -sNaN91 -> -NaN91 Invalid_operation -resx678 rescale Inf -sNaN90 -> -NaN90 Invalid_operation -resx679 rescale NaN sNaN87 -> NaN87 Invalid_operation - --- subnormals and underflow -precision: 4 -maxexponent: 999 -minexponent: -999 -resx710 rescale 1.00E-999 -999 -> 1E-999 Rounded -resx711 rescale 0.1E-999 -1000 -> 1E-1000 Subnormal -resx712 rescale 0.10E-999 -1000 -> 1E-1000 Subnormal Rounded -resx713 rescale 0.100E-999 -1000 -> 1E-1000 Subnormal Rounded -resx714 rescale 0.01E-999 -1001 -> 1E-1001 Subnormal --- next is rounded to Emin -resx715 rescale 0.999E-999 -999 -> 1E-999 Inexact Rounded -resx716 rescale 0.099E-999 -1000 -> 1E-1000 Inexact Rounded Subnormal - -resx717 rescale 0.009E-999 -1001 -> 1E-1001 Inexact Rounded Subnormal -resx718 rescale 0.001E-999 -1001 -> 0E-1001 Inexact Rounded -resx719 rescale 0.0009E-999 -1001 -> 0E-1001 Inexact Rounded -resx720 rescale 0.0001E-999 -1001 -> 0E-1001 Inexact Rounded - -resx730 rescale -1.00E-999 -999 -> -1E-999 Rounded -resx731 rescale -0.1E-999 -999 -> -0E-999 Rounded Inexact -resx732 rescale -0.10E-999 -999 -> -0E-999 Rounded Inexact -resx733 rescale -0.100E-999 -999 -> -0E-999 Rounded Inexact -resx734 rescale -0.01E-999 -999 -> -0E-999 Inexact Rounded --- next is rounded to Emin -resx735 rescale -0.999E-999 -999 -> -1E-999 Inexact Rounded -resx736 rescale -0.099E-999 -999 -> -0E-999 Inexact Rounded -resx737 rescale -0.009E-999 -999 -> -0E-999 Inexact Rounded -resx738 rescale -0.001E-999 -999 -> -0E-999 Inexact Rounded -resx739 rescale -0.0001E-999 -999 -> -0E-999 Inexact Rounded - -resx740 rescale -1.00E-999 -1000 -> -1.0E-999 Rounded -resx741 rescale -0.1E-999 -1000 -> -1E-1000 Subnormal -resx742 rescale -0.10E-999 -1000 -> -1E-1000 Subnormal Rounded -resx743 rescale -0.100E-999 -1000 -> -1E-1000 Subnormal Rounded -resx744 rescale -0.01E-999 -1000 -> -0E-1000 Inexact Rounded --- next is rounded to Emin -resx745 rescale -0.999E-999 -1000 -> -1.0E-999 Inexact Rounded -resx746 rescale -0.099E-999 -1000 -> -1E-1000 Inexact Rounded Subnormal -resx747 rescale -0.009E-999 -1000 -> -0E-1000 Inexact Rounded -resx748 rescale -0.001E-999 -1000 -> -0E-1000 Inexact Rounded -resx749 rescale -0.0001E-999 -1000 -> -0E-1000 Inexact Rounded - -resx750 rescale -1.00E-999 -1001 -> -1.00E-999 -resx751 rescale -0.1E-999 -1001 -> -1.0E-1000 Subnormal -resx752 rescale -0.10E-999 -1001 -> -1.0E-1000 Subnormal -resx753 rescale -0.100E-999 -1001 -> -1.0E-1000 Subnormal Rounded -resx754 rescale -0.01E-999 -1001 -> -1E-1001 Subnormal --- next is rounded to Emin -resx755 rescale -0.999E-999 -1001 -> -1.00E-999 Inexact Rounded -resx756 rescale -0.099E-999 -1001 -> -1.0E-1000 Inexact Rounded Subnormal -resx757 rescale -0.009E-999 -1001 -> -1E-1001 Inexact Rounded Subnormal -resx758 rescale -0.001E-999 -1001 -> -0E-1001 Inexact Rounded -resx759 rescale -0.0001E-999 -1001 -> -0E-1001 Inexact Rounded - -resx760 rescale -1.00E-999 -1002 -> -1.000E-999 -resx761 rescale -0.1E-999 -1002 -> -1.00E-1000 Subnormal -resx762 rescale -0.10E-999 -1002 -> -1.00E-1000 Subnormal -resx763 rescale -0.100E-999 -1002 -> -1.00E-1000 Subnormal -resx764 rescale -0.01E-999 -1002 -> -1.0E-1001 Subnormal -resx765 rescale -0.999E-999 -1002 -> -9.99E-1000 Subnormal -resx766 rescale -0.099E-999 -1002 -> -9.9E-1001 Subnormal -resx767 rescale -0.009E-999 -1002 -> -9E-1002 Subnormal -resx768 rescale -0.001E-999 -1002 -> -1E-1002 Subnormal -resx769 rescale -0.0001E-999 -1002 -> -0E-1002 Inexact Rounded - --- rhs must be no less than Etiny -resx770 rescale -1.00E-999 -1003 -> NaN Invalid_operation -resx771 rescale -0.1E-999 -1003 -> NaN Invalid_operation -resx772 rescale -0.10E-999 -1003 -> NaN Invalid_operation -resx773 rescale -0.100E-999 -1003 -> NaN Invalid_operation -resx774 rescale -0.01E-999 -1003 -> NaN Invalid_operation -resx775 rescale -0.999E-999 -1003 -> NaN Invalid_operation -resx776 rescale -0.099E-999 -1003 -> NaN Invalid_operation -resx777 rescale -0.009E-999 -1003 -> NaN Invalid_operation -resx778 rescale -0.001E-999 -1003 -> NaN Invalid_operation -resx779 rescale -0.0001E-999 -1003 -> NaN Invalid_operation - -precision: 9 -maxExponent: 999999999 -minexponent: -999999999 - --- getInt worries -resx801 rescale 0 1000000000 -> NaN Invalid_operation -resx802 rescale 0 -1000000000 -> 0E-1000000000 -resx803 rescale 0 2000000000 -> NaN Invalid_operation -resx804 rescale 0 -2000000000 -> NaN Invalid_operation -resx805 rescale 0 3000000000 -> NaN Invalid_operation -resx806 rescale 0 -3000000000 -> NaN Invalid_operation -resx807 rescale 0 4000000000 -> NaN Invalid_operation -resx808 rescale 0 -4000000000 -> NaN Invalid_operation -resx809 rescale 0 5000000000 -> NaN Invalid_operation -resx810 rescale 0 -5000000000 -> NaN Invalid_operation -resx811 rescale 0 6000000000 -> NaN Invalid_operation -resx812 rescale 0 -6000000000 -> NaN Invalid_operation -resx813 rescale 0 7000000000 -> NaN Invalid_operation -resx814 rescale 0 -7000000000 -> NaN Invalid_operation -resx815 rescale 0 8000000000 -> NaN Invalid_operation -resx816 rescale 0 -8000000000 -> NaN Invalid_operation -resx817 rescale 0 9000000000 -> NaN Invalid_operation -resx818 rescale 0 -9000000000 -> NaN Invalid_operation -resx819 rescale 0 9999999999 -> NaN Invalid_operation -resx820 rescale 0 -9999999999 -> NaN Invalid_operation -resx821 rescale 0 10000000000 -> NaN Invalid_operation -resx822 rescale 0 -10000000000 -> NaN Invalid_operation - -resx831 rescale 1 0E-1 -> 1 -resx832 rescale 1 0E-2 -> 1 -resx833 rescale 1 0E-3 -> 1 -resx834 rescale 1 0E-4 -> 1 -resx835 rescale 1 0E-100 -> 1 -resx836 rescale 1 0E-100000 -> 1 -resx837 rescale 1 0E+100 -> 1 -resx838 rescale 1 0E+100000 -> 1 - -resx841 rescale 0 5E-1000000 -> NaN Invalid_operation -resx842 rescale 0 5E-1000000 -> NaN Invalid_operation -resx843 rescale 0 999999999 -> 0E+999999999 -resx844 rescale 0 1000000000 -> NaN Invalid_operation -resx845 rescale 0 -999999999 -> 0E-999999999 -resx846 rescale 0 -1000000000 -> 0E-1000000000 -resx847 rescale 0 -1000000001 -> 0E-1000000001 -resx848 rescale 0 -1000000002 -> 0E-1000000002 -resx849 rescale 0 -1000000003 -> 0E-1000000003 -resx850 rescale 0 -1000000004 -> 0E-1000000004 -resx851 rescale 0 -1000000005 -> 0E-1000000005 -resx852 rescale 0 -1000000006 -> 0E-1000000006 -resx853 rescale 0 -1000000007 -> 0E-1000000007 -resx854 rescale 0 -1000000008 -> NaN Invalid_operation - -resx861 rescale 1 +2147483649 -> NaN Invalid_operation -resx862 rescale 1 +2147483648 -> NaN Invalid_operation -resx863 rescale 1 +2147483647 -> NaN Invalid_operation -resx864 rescale 1 -2147483647 -> NaN Invalid_operation -resx865 rescale 1 -2147483648 -> NaN Invalid_operation -resx866 rescale 1 -2147483649 -> NaN Invalid_operation - --- Null tests -res900 rescale 10 # -> NaN Invalid_operation -res901 rescale # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/rotate.decTest b/qdecimal/test/tc_full/rotate.decTest deleted file mode 100644 index 0f35e3b..0000000 --- a/qdecimal/test/tc_full/rotate.decTest +++ /dev/null @@ -1,247 +0,0 @@ ------------------------------------------------------------------------- --- rotate.decTest -- rotate coefficient left or right -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check -rotx001 rotate 0 0 -> 0 -rotx002 rotate 0 2 -> 0 -rotx003 rotate 1 2 -> 100 -rotx004 rotate 34 8 -> 400000003 -rotx005 rotate 1 9 -> 1 -rotx006 rotate 1 -1 -> 100000000 -rotx007 rotate 123456789 -1 -> 912345678 -rotx008 rotate 123456789 -8 -> 234567891 -rotx009 rotate 123456789 -9 -> 123456789 -rotx010 rotate 0 -2 -> 0 - --- rhs must be an integer -rotx011 rotate 1 1.5 -> NaN Invalid_operation -rotx012 rotate 1 1.0 -> NaN Invalid_operation -rotx013 rotate 1 0.1 -> NaN Invalid_operation -rotx014 rotate 1 0.0 -> NaN Invalid_operation -rotx015 rotate 1 1E+1 -> NaN Invalid_operation -rotx016 rotate 1 1E+99 -> NaN Invalid_operation -rotx017 rotate 1 Inf -> NaN Invalid_operation -rotx018 rotate 1 -Inf -> NaN Invalid_operation --- and |rhs| <= precision -rotx020 rotate 1 -1000 -> NaN Invalid_operation -rotx021 rotate 1 -10 -> NaN Invalid_operation -rotx022 rotate 1 10 -> NaN Invalid_operation -rotx023 rotate 1 1000 -> NaN Invalid_operation - --- full pattern -rotx030 rotate 123456789 -9 -> 123456789 -rotx031 rotate 123456789 -8 -> 234567891 -rotx032 rotate 123456789 -7 -> 345678912 -rotx033 rotate 123456789 -6 -> 456789123 -rotx034 rotate 123456789 -5 -> 567891234 -rotx035 rotate 123456789 -4 -> 678912345 -rotx036 rotate 123456789 -3 -> 789123456 -rotx037 rotate 123456789 -2 -> 891234567 -rotx038 rotate 123456789 -1 -> 912345678 -rotx039 rotate 123456789 -0 -> 123456789 -rotx040 rotate 123456789 +0 -> 123456789 -rotx041 rotate 123456789 +1 -> 234567891 -rotx042 rotate 123456789 +2 -> 345678912 -rotx043 rotate 123456789 +3 -> 456789123 -rotx044 rotate 123456789 +4 -> 567891234 -rotx045 rotate 123456789 +5 -> 678912345 -rotx046 rotate 123456789 +6 -> 789123456 -rotx047 rotate 123456789 +7 -> 891234567 -rotx048 rotate 123456789 +8 -> 912345678 -rotx049 rotate 123456789 +9 -> 123456789 - --- zeros -rotx060 rotate 0E-10 +9 -> 0E-10 -rotx061 rotate 0E-10 -9 -> 0E-10 -rotx062 rotate 0.000 +9 -> 0.000 -rotx063 rotate 0.000 -9 -> 0.000 -rotx064 rotate 0E+10 +9 -> 0E+10 -rotx065 rotate 0E+10 -9 -> 0E+10 -rotx066 rotate -0E-10 +9 -> -0E-10 -rotx067 rotate -0E-10 -9 -> -0E-10 -rotx068 rotate -0.000 +9 -> -0.000 -rotx069 rotate -0.000 -9 -> -0.000 -rotx070 rotate -0E+10 +9 -> -0E+10 -rotx071 rotate -0E+10 -9 -> -0E+10 - --- Nmax, Nmin, Ntiny -rotx141 rotate 9.99999999E+999 -1 -> 9.99999999E+999 -rotx142 rotate 9.99999999E+999 -8 -> 9.99999999E+999 -rotx143 rotate 9.99999999E+999 1 -> 9.99999999E+999 -rotx144 rotate 9.99999999E+999 8 -> 9.99999999E+999 -rotx145 rotate 1E-999 -1 -> 1.00000000E-991 -rotx146 rotate 1E-999 -8 -> 1.0E-998 -rotx147 rotate 1E-999 1 -> 1.0E-998 -rotx148 rotate 1E-999 8 -> 1.00000000E-991 -rotx151 rotate 1.00000000E-999 -1 -> 1.0000000E-1000 -rotx152 rotate 1.00000000E-999 -8 -> 1E-1007 -rotx153 rotate 1.00000000E-999 1 -> 1E-1007 -rotx154 rotate 1.00000000E-999 8 -> 1.0000000E-1000 -rotx155 rotate 9.00000000E-999 -1 -> 9.0000000E-1000 -rotx156 rotate 9.00000000E-999 -8 -> 9E-1007 -rotx157 rotate 9.00000000E-999 1 -> 9E-1007 -rotx158 rotate 9.00000000E-999 8 -> 9.0000000E-1000 -rotx160 rotate 1E-1007 -1 -> 1.00000000E-999 -rotx161 rotate 1E-1007 -8 -> 1.0E-1006 -rotx162 rotate 1E-1007 1 -> 1.0E-1006 -rotx163 rotate 1E-1007 8 -> 1.00000000E-999 --- negatives -rotx171 rotate -9.99999999E+999 -1 -> -9.99999999E+999 -rotx172 rotate -9.99999999E+999 -8 -> -9.99999999E+999 -rotx173 rotate -9.99999999E+999 1 -> -9.99999999E+999 -rotx174 rotate -9.99999999E+999 8 -> -9.99999999E+999 -rotx175 rotate -1E-999 -1 -> -1.00000000E-991 -rotx176 rotate -1E-999 -8 -> -1.0E-998 -rotx177 rotate -1E-999 1 -> -1.0E-998 -rotx178 rotate -1E-999 8 -> -1.00000000E-991 -rotx181 rotate -1.00000000E-999 -1 -> -1.0000000E-1000 -rotx182 rotate -1.00000000E-999 -8 -> -1E-1007 -rotx183 rotate -1.00000000E-999 1 -> -1E-1007 -rotx184 rotate -1.00000000E-999 8 -> -1.0000000E-1000 -rotx185 rotate -9.00000000E-999 -1 -> -9.0000000E-1000 -rotx186 rotate -9.00000000E-999 -8 -> -9E-1007 -rotx187 rotate -9.00000000E-999 1 -> -9E-1007 -rotx188 rotate -9.00000000E-999 8 -> -9.0000000E-1000 -rotx190 rotate -1E-1007 -1 -> -1.00000000E-999 -rotx191 rotate -1E-1007 -8 -> -1.0E-1006 -rotx192 rotate -1E-1007 1 -> -1.0E-1006 -rotx193 rotate -1E-1007 8 -> -1.00000000E-999 - --- more negatives (of sanities) -rotx201 rotate -0 0 -> -0 -rotx202 rotate -0 2 -> -0 -rotx203 rotate -1 2 -> -100 -rotx204 rotate -1 8 -> -100000000 -rotx205 rotate -1 9 -> -1 -rotx206 rotate -1 -1 -> -100000000 -rotx207 rotate -123456789 -1 -> -912345678 -rotx208 rotate -123456789 -8 -> -234567891 -rotx209 rotate -123456789 -9 -> -123456789 -rotx210 rotate -0 -2 -> -0 - --- Specials; NaNs are handled as usual -rotx781 rotate -Inf -8 -> -Infinity -rotx782 rotate -Inf -1 -> -Infinity -rotx783 rotate -Inf -0 -> -Infinity -rotx784 rotate -Inf 0 -> -Infinity -rotx785 rotate -Inf 1 -> -Infinity -rotx786 rotate -Inf 8 -> -Infinity -rotx787 rotate -1000 -Inf -> NaN Invalid_operation -rotx788 rotate -Inf -Inf -> NaN Invalid_operation -rotx789 rotate -1 -Inf -> NaN Invalid_operation -rotx790 rotate -0 -Inf -> NaN Invalid_operation -rotx791 rotate 0 -Inf -> NaN Invalid_operation -rotx792 rotate 1 -Inf -> NaN Invalid_operation -rotx793 rotate 1000 -Inf -> NaN Invalid_operation -rotx794 rotate Inf -Inf -> NaN Invalid_operation - -rotx800 rotate Inf -Inf -> NaN Invalid_operation -rotx801 rotate Inf -8 -> Infinity -rotx802 rotate Inf -1 -> Infinity -rotx803 rotate Inf -0 -> Infinity -rotx804 rotate Inf 0 -> Infinity -rotx805 rotate Inf 1 -> Infinity -rotx806 rotate Inf 8 -> Infinity -rotx807 rotate Inf Inf -> NaN Invalid_operation -rotx808 rotate -1000 Inf -> NaN Invalid_operation -rotx809 rotate -Inf Inf -> NaN Invalid_operation -rotx810 rotate -1 Inf -> NaN Invalid_operation -rotx811 rotate -0 Inf -> NaN Invalid_operation -rotx812 rotate 0 Inf -> NaN Invalid_operation -rotx813 rotate 1 Inf -> NaN Invalid_operation -rotx814 rotate 1000 Inf -> NaN Invalid_operation -rotx815 rotate Inf Inf -> NaN Invalid_operation - -rotx821 rotate NaN -Inf -> NaN -rotx822 rotate NaN -1000 -> NaN -rotx823 rotate NaN -1 -> NaN -rotx824 rotate NaN -0 -> NaN -rotx825 rotate NaN 0 -> NaN -rotx826 rotate NaN 1 -> NaN -rotx827 rotate NaN 1000 -> NaN -rotx828 rotate NaN Inf -> NaN -rotx829 rotate NaN NaN -> NaN -rotx830 rotate -Inf NaN -> NaN -rotx831 rotate -1000 NaN -> NaN -rotx832 rotate -1 NaN -> NaN -rotx833 rotate -0 NaN -> NaN -rotx834 rotate 0 NaN -> NaN -rotx835 rotate 1 NaN -> NaN -rotx836 rotate 1000 NaN -> NaN -rotx837 rotate Inf NaN -> NaN - - - -rotx841 rotate sNaN -Inf -> NaN Invalid_operation -rotx842 rotate sNaN -1000 -> NaN Invalid_operation -rotx843 rotate sNaN -1 -> NaN Invalid_operation -rotx844 rotate sNaN -0 -> NaN Invalid_operation -rotx845 rotate sNaN 0 -> NaN Invalid_operation -rotx846 rotate sNaN 1 -> NaN Invalid_operation -rotx847 rotate sNaN 1000 -> NaN Invalid_operation -rotx848 rotate sNaN NaN -> NaN Invalid_operation -rotx849 rotate sNaN sNaN -> NaN Invalid_operation -rotx850 rotate NaN sNaN -> NaN Invalid_operation -rotx851 rotate -Inf sNaN -> NaN Invalid_operation -rotx852 rotate -1000 sNaN -> NaN Invalid_operation -rotx853 rotate -1 sNaN -> NaN Invalid_operation -rotx854 rotate -0 sNaN -> NaN Invalid_operation -rotx855 rotate 0 sNaN -> NaN Invalid_operation -rotx856 rotate 1 sNaN -> NaN Invalid_operation -rotx857 rotate 1000 sNaN -> NaN Invalid_operation -rotx858 rotate Inf sNaN -> NaN Invalid_operation -rotx859 rotate NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -rotx861 rotate NaN1 -Inf -> NaN1 -rotx862 rotate +NaN2 -1000 -> NaN2 -rotx863 rotate NaN3 1000 -> NaN3 -rotx864 rotate NaN4 Inf -> NaN4 -rotx865 rotate NaN5 +NaN6 -> NaN5 -rotx866 rotate -Inf NaN7 -> NaN7 -rotx867 rotate -1000 NaN8 -> NaN8 -rotx868 rotate 1000 NaN9 -> NaN9 -rotx869 rotate Inf +NaN10 -> NaN10 -rotx871 rotate sNaN11 -Inf -> NaN11 Invalid_operation -rotx872 rotate sNaN12 -1000 -> NaN12 Invalid_operation -rotx873 rotate sNaN13 1000 -> NaN13 Invalid_operation -rotx874 rotate sNaN14 NaN17 -> NaN14 Invalid_operation -rotx875 rotate sNaN15 sNaN18 -> NaN15 Invalid_operation -rotx876 rotate NaN16 sNaN19 -> NaN19 Invalid_operation -rotx877 rotate -Inf +sNaN20 -> NaN20 Invalid_operation -rotx878 rotate -1000 sNaN21 -> NaN21 Invalid_operation -rotx879 rotate 1000 sNaN22 -> NaN22 Invalid_operation -rotx880 rotate Inf sNaN23 -> NaN23 Invalid_operation -rotx881 rotate +NaN25 +sNaN24 -> NaN24 Invalid_operation -rotx882 rotate -NaN26 NaN28 -> -NaN26 -rotx883 rotate -sNaN27 sNaN29 -> -NaN27 Invalid_operation -rotx884 rotate 1000 -NaN30 -> -NaN30 -rotx885 rotate 1000 -sNaN31 -> -NaN31 Invalid_operation - --- payload decapitate -precision: 5 -rotx886 rotate 11 -sNaN1234567890 -> -NaN67890 Invalid_operation diff --git a/qdecimal/test/tc_full/rounding.decTest b/qdecimal/test/tc_full/rounding.decTest deleted file mode 100644 index c7d22ab..0000000 --- a/qdecimal/test/tc_full/rounding.decTest +++ /dev/null @@ -1,1303 +0,0 @@ ------------------------------------------------------------------------- --- rounding.decTest -- decimal rounding modes testcases -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- These tests require that implementations take account of residues in --- order to get correct results for some rounding modes. Rather than --- single rounding tests we therefore need tests for most operators. --- [We do assume add/minus/plus/subtract are common paths, however, as --- is rounding of negatives (if the latter works for addition, assume it --- works for the others, too).] --- --- Round-for-reround (05UP) is tested as a separate block, mostly for --- 'historical' reasons. --- --- Underflow Subnormal and overflow behaviours are tested under the --- individual operators. - -extended: 1 -precision: 5 -- for easier visual inspection -maxExponent: 999 -minexponent: -999 - --- Addition operators ------------------------------------------------- -rounding: down - -radx100 add 12345 -0.1 -> 12344 Inexact Rounded -radx101 add 12345 -0.01 -> 12344 Inexact Rounded -radx102 add 12345 -0.001 -> 12344 Inexact Rounded -radx103 add 12345 -0.00001 -> 12344 Inexact Rounded -radx104 add 12345 -0.000001 -> 12344 Inexact Rounded -radx105 add 12345 -0.0000001 -> 12344 Inexact Rounded -radx106 add 12345 0 -> 12345 -radx107 add 12345 0.0000001 -> 12345 Inexact Rounded -radx108 add 12345 0.000001 -> 12345 Inexact Rounded -radx109 add 12345 0.00001 -> 12345 Inexact Rounded -radx110 add 12345 0.0001 -> 12345 Inexact Rounded -radx111 add 12345 0.001 -> 12345 Inexact Rounded -radx112 add 12345 0.01 -> 12345 Inexact Rounded -radx113 add 12345 0.1 -> 12345 Inexact Rounded - -radx115 add 12346 0.49999 -> 12346 Inexact Rounded -radx116 add 12346 0.5 -> 12346 Inexact Rounded -radx117 add 12346 0.50001 -> 12346 Inexact Rounded - -radx120 add 12345 0.4 -> 12345 Inexact Rounded -radx121 add 12345 0.49 -> 12345 Inexact Rounded -radx122 add 12345 0.499 -> 12345 Inexact Rounded -radx123 add 12345 0.49999 -> 12345 Inexact Rounded -radx124 add 12345 0.5 -> 12345 Inexact Rounded -radx125 add 12345 0.50001 -> 12345 Inexact Rounded -radx126 add 12345 0.5001 -> 12345 Inexact Rounded -radx127 add 12345 0.501 -> 12345 Inexact Rounded -radx128 add 12345 0.51 -> 12345 Inexact Rounded -radx129 add 12345 0.6 -> 12345 Inexact Rounded - -rounding: half_down - -radx140 add 12345 -0.1 -> 12345 Inexact Rounded -radx141 add 12345 -0.01 -> 12345 Inexact Rounded -radx142 add 12345 -0.001 -> 12345 Inexact Rounded -radx143 add 12345 -0.00001 -> 12345 Inexact Rounded -radx144 add 12345 -0.000001 -> 12345 Inexact Rounded -radx145 add 12345 -0.0000001 -> 12345 Inexact Rounded -radx146 add 12345 0 -> 12345 -radx147 add 12345 0.0000001 -> 12345 Inexact Rounded -radx148 add 12345 0.000001 -> 12345 Inexact Rounded -radx149 add 12345 0.00001 -> 12345 Inexact Rounded -radx150 add 12345 0.0001 -> 12345 Inexact Rounded -radx151 add 12345 0.001 -> 12345 Inexact Rounded -radx152 add 12345 0.01 -> 12345 Inexact Rounded -radx153 add 12345 0.1 -> 12345 Inexact Rounded - -radx155 add 12346 0.49999 -> 12346 Inexact Rounded -radx156 add 12346 0.5 -> 12346 Inexact Rounded -radx157 add 12346 0.50001 -> 12347 Inexact Rounded - -radx160 add 12345 0.4 -> 12345 Inexact Rounded -radx161 add 12345 0.49 -> 12345 Inexact Rounded -radx162 add 12345 0.499 -> 12345 Inexact Rounded -radx163 add 12345 0.49999 -> 12345 Inexact Rounded -radx164 add 12345 0.5 -> 12345 Inexact Rounded -radx165 add 12345 0.50001 -> 12346 Inexact Rounded -radx166 add 12345 0.5001 -> 12346 Inexact Rounded -radx167 add 12345 0.501 -> 12346 Inexact Rounded -radx168 add 12345 0.51 -> 12346 Inexact Rounded -radx169 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: half_even - -radx170 add 12345 -0.1 -> 12345 Inexact Rounded -radx171 add 12345 -0.01 -> 12345 Inexact Rounded -radx172 add 12345 -0.001 -> 12345 Inexact Rounded -radx173 add 12345 -0.00001 -> 12345 Inexact Rounded -radx174 add 12345 -0.000001 -> 12345 Inexact Rounded -radx175 add 12345 -0.0000001 -> 12345 Inexact Rounded -radx176 add 12345 0 -> 12345 -radx177 add 12345 0.0000001 -> 12345 Inexact Rounded -radx178 add 12345 0.000001 -> 12345 Inexact Rounded -radx179 add 12345 0.00001 -> 12345 Inexact Rounded -radx180 add 12345 0.0001 -> 12345 Inexact Rounded -radx181 add 12345 0.001 -> 12345 Inexact Rounded -radx182 add 12345 0.01 -> 12345 Inexact Rounded -radx183 add 12345 0.1 -> 12345 Inexact Rounded - -radx185 add 12346 0.49999 -> 12346 Inexact Rounded -radx186 add 12346 0.5 -> 12346 Inexact Rounded -radx187 add 12346 0.50001 -> 12347 Inexact Rounded - -radx190 add 12345 0.4 -> 12345 Inexact Rounded -radx191 add 12345 0.49 -> 12345 Inexact Rounded -radx192 add 12345 0.499 -> 12345 Inexact Rounded -radx193 add 12345 0.49999 -> 12345 Inexact Rounded -radx194 add 12345 0.5 -> 12346 Inexact Rounded -radx195 add 12345 0.50001 -> 12346 Inexact Rounded -radx196 add 12345 0.5001 -> 12346 Inexact Rounded -radx197 add 12345 0.501 -> 12346 Inexact Rounded -radx198 add 12345 0.51 -> 12346 Inexact Rounded -radx199 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: half_up - -radx200 add 12345 -0.1 -> 12345 Inexact Rounded -radx201 add 12345 -0.01 -> 12345 Inexact Rounded -radx202 add 12345 -0.001 -> 12345 Inexact Rounded -radx203 add 12345 -0.00001 -> 12345 Inexact Rounded -radx204 add 12345 -0.000001 -> 12345 Inexact Rounded -radx205 add 12345 -0.0000001 -> 12345 Inexact Rounded -radx206 add 12345 0 -> 12345 -radx207 add 12345 0.0000001 -> 12345 Inexact Rounded -radx208 add 12345 0.000001 -> 12345 Inexact Rounded -radx209 add 12345 0.00001 -> 12345 Inexact Rounded -radx210 add 12345 0.0001 -> 12345 Inexact Rounded -radx211 add 12345 0.001 -> 12345 Inexact Rounded -radx212 add 12345 0.01 -> 12345 Inexact Rounded -radx213 add 12345 0.1 -> 12345 Inexact Rounded - -radx215 add 12346 0.49999 -> 12346 Inexact Rounded -radx216 add 12346 0.5 -> 12347 Inexact Rounded -radx217 add 12346 0.50001 -> 12347 Inexact Rounded - -radx220 add 12345 0.4 -> 12345 Inexact Rounded -radx221 add 12345 0.49 -> 12345 Inexact Rounded -radx222 add 12345 0.499 -> 12345 Inexact Rounded -radx223 add 12345 0.49999 -> 12345 Inexact Rounded -radx224 add 12345 0.5 -> 12346 Inexact Rounded -radx225 add 12345 0.50001 -> 12346 Inexact Rounded -radx226 add 12345 0.5001 -> 12346 Inexact Rounded -radx227 add 12345 0.501 -> 12346 Inexact Rounded -radx228 add 12345 0.51 -> 12346 Inexact Rounded -radx229 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: up - -radx230 add 12345 -0.1 -> 12345 Inexact Rounded -radx231 add 12345 -0.01 -> 12345 Inexact Rounded -radx232 add 12345 -0.001 -> 12345 Inexact Rounded -radx233 add 12345 -0.00001 -> 12345 Inexact Rounded -radx234 add 12345 -0.000001 -> 12345 Inexact Rounded -radx235 add 12345 -0.0000001 -> 12345 Inexact Rounded -radx236 add 12345 0 -> 12345 -radx237 add 12345 0.0000001 -> 12346 Inexact Rounded -radx238 add 12345 0.000001 -> 12346 Inexact Rounded -radx239 add 12345 0.00001 -> 12346 Inexact Rounded -radx240 add 12345 0.0001 -> 12346 Inexact Rounded -radx241 add 12345 0.001 -> 12346 Inexact Rounded -radx242 add 12345 0.01 -> 12346 Inexact Rounded -radx243 add 12345 0.1 -> 12346 Inexact Rounded - -radx245 add 12346 0.49999 -> 12347 Inexact Rounded -radx246 add 12346 0.5 -> 12347 Inexact Rounded -radx247 add 12346 0.50001 -> 12347 Inexact Rounded - -radx250 add 12345 0.4 -> 12346 Inexact Rounded -radx251 add 12345 0.49 -> 12346 Inexact Rounded -radx252 add 12345 0.499 -> 12346 Inexact Rounded -radx253 add 12345 0.49999 -> 12346 Inexact Rounded -radx254 add 12345 0.5 -> 12346 Inexact Rounded -radx255 add 12345 0.50001 -> 12346 Inexact Rounded -radx256 add 12345 0.5001 -> 12346 Inexact Rounded -radx257 add 12345 0.501 -> 12346 Inexact Rounded -radx258 add 12345 0.51 -> 12346 Inexact Rounded -radx259 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: floor - -radx300 add 12345 -0.1 -> 12344 Inexact Rounded -radx301 add 12345 -0.01 -> 12344 Inexact Rounded -radx302 add 12345 -0.001 -> 12344 Inexact Rounded -radx303 add 12345 -0.00001 -> 12344 Inexact Rounded -radx304 add 12345 -0.000001 -> 12344 Inexact Rounded -radx305 add 12345 -0.0000001 -> 12344 Inexact Rounded -radx306 add 12345 0 -> 12345 -radx307 add 12345 0.0000001 -> 12345 Inexact Rounded -radx308 add 12345 0.000001 -> 12345 Inexact Rounded -radx309 add 12345 0.00001 -> 12345 Inexact Rounded -radx310 add 12345 0.0001 -> 12345 Inexact Rounded -radx311 add 12345 0.001 -> 12345 Inexact Rounded -radx312 add 12345 0.01 -> 12345 Inexact Rounded -radx313 add 12345 0.1 -> 12345 Inexact Rounded - -radx315 add 12346 0.49999 -> 12346 Inexact Rounded -radx316 add 12346 0.5 -> 12346 Inexact Rounded -radx317 add 12346 0.50001 -> 12346 Inexact Rounded - -radx320 add 12345 0.4 -> 12345 Inexact Rounded -radx321 add 12345 0.49 -> 12345 Inexact Rounded -radx322 add 12345 0.499 -> 12345 Inexact Rounded -radx323 add 12345 0.49999 -> 12345 Inexact Rounded -radx324 add 12345 0.5 -> 12345 Inexact Rounded -radx325 add 12345 0.50001 -> 12345 Inexact Rounded -radx326 add 12345 0.5001 -> 12345 Inexact Rounded -radx327 add 12345 0.501 -> 12345 Inexact Rounded -radx328 add 12345 0.51 -> 12345 Inexact Rounded -radx329 add 12345 0.6 -> 12345 Inexact Rounded - -rounding: ceiling - -radx330 add 12345 -0.1 -> 12345 Inexact Rounded -radx331 add 12345 -0.01 -> 12345 Inexact Rounded -radx332 add 12345 -0.001 -> 12345 Inexact Rounded -radx333 add 12345 -0.00001 -> 12345 Inexact Rounded -radx334 add 12345 -0.000001 -> 12345 Inexact Rounded -radx335 add 12345 -0.0000001 -> 12345 Inexact Rounded -radx336 add 12345 0 -> 12345 -radx337 add 12345 0.0000001 -> 12346 Inexact Rounded -radx338 add 12345 0.000001 -> 12346 Inexact Rounded -radx339 add 12345 0.00001 -> 12346 Inexact Rounded -radx340 add 12345 0.0001 -> 12346 Inexact Rounded -radx341 add 12345 0.001 -> 12346 Inexact Rounded -radx342 add 12345 0.01 -> 12346 Inexact Rounded -radx343 add 12345 0.1 -> 12346 Inexact Rounded - -radx345 add 12346 0.49999 -> 12347 Inexact Rounded -radx346 add 12346 0.5 -> 12347 Inexact Rounded -radx347 add 12346 0.50001 -> 12347 Inexact Rounded - -radx350 add 12345 0.4 -> 12346 Inexact Rounded -radx351 add 12345 0.49 -> 12346 Inexact Rounded -radx352 add 12345 0.499 -> 12346 Inexact Rounded -radx353 add 12345 0.49999 -> 12346 Inexact Rounded -radx354 add 12345 0.5 -> 12346 Inexact Rounded -radx355 add 12345 0.50001 -> 12346 Inexact Rounded -radx356 add 12345 0.5001 -> 12346 Inexact Rounded -radx357 add 12345 0.501 -> 12346 Inexact Rounded -radx358 add 12345 0.51 -> 12346 Inexact Rounded -radx359 add 12345 0.6 -> 12346 Inexact Rounded - --- negatives... - -rounding: down - -rsux100 add -12345 -0.1 -> -12345 Inexact Rounded -rsux101 add -12345 -0.01 -> -12345 Inexact Rounded -rsux102 add -12345 -0.001 -> -12345 Inexact Rounded -rsux103 add -12345 -0.00001 -> -12345 Inexact Rounded -rsux104 add -12345 -0.000001 -> -12345 Inexact Rounded -rsux105 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsux106 add -12345 0 -> -12345 -rsux107 add -12345 0.0000001 -> -12344 Inexact Rounded -rsux108 add -12345 0.000001 -> -12344 Inexact Rounded -rsux109 add -12345 0.00001 -> -12344 Inexact Rounded -rsux110 add -12345 0.0001 -> -12344 Inexact Rounded -rsux111 add -12345 0.001 -> -12344 Inexact Rounded -rsux112 add -12345 0.01 -> -12344 Inexact Rounded -rsux113 add -12345 0.1 -> -12344 Inexact Rounded - -rsux115 add -12346 0.49999 -> -12345 Inexact Rounded -rsux116 add -12346 0.5 -> -12345 Inexact Rounded -rsux117 add -12346 0.50001 -> -12345 Inexact Rounded - -rsux120 add -12345 0.4 -> -12344 Inexact Rounded -rsux121 add -12345 0.49 -> -12344 Inexact Rounded -rsux122 add -12345 0.499 -> -12344 Inexact Rounded -rsux123 add -12345 0.49999 -> -12344 Inexact Rounded -rsux124 add -12345 0.5 -> -12344 Inexact Rounded -rsux125 add -12345 0.50001 -> -12344 Inexact Rounded -rsux126 add -12345 0.5001 -> -12344 Inexact Rounded -rsux127 add -12345 0.501 -> -12344 Inexact Rounded -rsux128 add -12345 0.51 -> -12344 Inexact Rounded -rsux129 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: half_down - -rsux140 add -12345 -0.1 -> -12345 Inexact Rounded -rsux141 add -12345 -0.01 -> -12345 Inexact Rounded -rsux142 add -12345 -0.001 -> -12345 Inexact Rounded -rsux143 add -12345 -0.00001 -> -12345 Inexact Rounded -rsux144 add -12345 -0.000001 -> -12345 Inexact Rounded -rsux145 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsux146 add -12345 0 -> -12345 -rsux147 add -12345 0.0000001 -> -12345 Inexact Rounded -rsux148 add -12345 0.000001 -> -12345 Inexact Rounded -rsux149 add -12345 0.00001 -> -12345 Inexact Rounded -rsux150 add -12345 0.0001 -> -12345 Inexact Rounded -rsux151 add -12345 0.001 -> -12345 Inexact Rounded -rsux152 add -12345 0.01 -> -12345 Inexact Rounded -rsux153 add -12345 0.1 -> -12345 Inexact Rounded - -rsux155 add -12346 0.49999 -> -12346 Inexact Rounded -rsux156 add -12346 0.5 -> -12345 Inexact Rounded -rsux157 add -12346 0.50001 -> -12345 Inexact Rounded - -rsux160 add -12345 0.4 -> -12345 Inexact Rounded -rsux161 add -12345 0.49 -> -12345 Inexact Rounded -rsux162 add -12345 0.499 -> -12345 Inexact Rounded -rsux163 add -12345 0.49999 -> -12345 Inexact Rounded -rsux164 add -12345 0.5 -> -12344 Inexact Rounded -rsux165 add -12345 0.50001 -> -12344 Inexact Rounded -rsux166 add -12345 0.5001 -> -12344 Inexact Rounded -rsux167 add -12345 0.501 -> -12344 Inexact Rounded -rsux168 add -12345 0.51 -> -12344 Inexact Rounded -rsux169 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: half_even - -rsux170 add -12345 -0.1 -> -12345 Inexact Rounded -rsux171 add -12345 -0.01 -> -12345 Inexact Rounded -rsux172 add -12345 -0.001 -> -12345 Inexact Rounded -rsux173 add -12345 -0.00001 -> -12345 Inexact Rounded -rsux174 add -12345 -0.000001 -> -12345 Inexact Rounded -rsux175 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsux176 add -12345 0 -> -12345 -rsux177 add -12345 0.0000001 -> -12345 Inexact Rounded -rsux178 add -12345 0.000001 -> -12345 Inexact Rounded -rsux179 add -12345 0.00001 -> -12345 Inexact Rounded -rsux180 add -12345 0.0001 -> -12345 Inexact Rounded -rsux181 add -12345 0.001 -> -12345 Inexact Rounded -rsux182 add -12345 0.01 -> -12345 Inexact Rounded -rsux183 add -12345 0.1 -> -12345 Inexact Rounded - -rsux185 add -12346 0.49999 -> -12346 Inexact Rounded -rsux186 add -12346 0.5 -> -12346 Inexact Rounded -rsux187 add -12346 0.50001 -> -12345 Inexact Rounded - -rsux190 add -12345 0.4 -> -12345 Inexact Rounded -rsux191 add -12345 0.49 -> -12345 Inexact Rounded -rsux192 add -12345 0.499 -> -12345 Inexact Rounded -rsux193 add -12345 0.49999 -> -12345 Inexact Rounded -rsux194 add -12345 0.5 -> -12344 Inexact Rounded -rsux195 add -12345 0.50001 -> -12344 Inexact Rounded -rsux196 add -12345 0.5001 -> -12344 Inexact Rounded -rsux197 add -12345 0.501 -> -12344 Inexact Rounded -rsux198 add -12345 0.51 -> -12344 Inexact Rounded -rsux199 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: half_up - -rsux200 add -12345 -0.1 -> -12345 Inexact Rounded -rsux201 add -12345 -0.01 -> -12345 Inexact Rounded -rsux202 add -12345 -0.001 -> -12345 Inexact Rounded -rsux203 add -12345 -0.00001 -> -12345 Inexact Rounded -rsux204 add -12345 -0.000001 -> -12345 Inexact Rounded -rsux205 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsux206 add -12345 0 -> -12345 -rsux207 add -12345 0.0000001 -> -12345 Inexact Rounded -rsux208 add -12345 0.000001 -> -12345 Inexact Rounded -rsux209 add -12345 0.00001 -> -12345 Inexact Rounded -rsux210 add -12345 0.0001 -> -12345 Inexact Rounded -rsux211 add -12345 0.001 -> -12345 Inexact Rounded -rsux212 add -12345 0.01 -> -12345 Inexact Rounded -rsux213 add -12345 0.1 -> -12345 Inexact Rounded - -rsux215 add -12346 0.49999 -> -12346 Inexact Rounded -rsux216 add -12346 0.5 -> -12346 Inexact Rounded -rsux217 add -12346 0.50001 -> -12345 Inexact Rounded - -rsux220 add -12345 0.4 -> -12345 Inexact Rounded -rsux221 add -12345 0.49 -> -12345 Inexact Rounded -rsux222 add -12345 0.499 -> -12345 Inexact Rounded -rsux223 add -12345 0.49999 -> -12345 Inexact Rounded -rsux224 add -12345 0.5 -> -12345 Inexact Rounded -rsux225 add -12345 0.50001 -> -12344 Inexact Rounded -rsux226 add -12345 0.5001 -> -12344 Inexact Rounded -rsux227 add -12345 0.501 -> -12344 Inexact Rounded -rsux228 add -12345 0.51 -> -12344 Inexact Rounded -rsux229 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: up - -rsux230 add -12345 -0.1 -> -12346 Inexact Rounded -rsux231 add -12345 -0.01 -> -12346 Inexact Rounded -rsux232 add -12345 -0.001 -> -12346 Inexact Rounded -rsux233 add -12345 -0.00001 -> -12346 Inexact Rounded -rsux234 add -12345 -0.000001 -> -12346 Inexact Rounded -rsux235 add -12345 -0.0000001 -> -12346 Inexact Rounded -rsux236 add -12345 0 -> -12345 -rsux237 add -12345 0.0000001 -> -12345 Inexact Rounded -rsux238 add -12345 0.000001 -> -12345 Inexact Rounded -rsux239 add -12345 0.00001 -> -12345 Inexact Rounded -rsux240 add -12345 0.0001 -> -12345 Inexact Rounded -rsux241 add -12345 0.001 -> -12345 Inexact Rounded -rsux242 add -12345 0.01 -> -12345 Inexact Rounded -rsux243 add -12345 0.1 -> -12345 Inexact Rounded - -rsux245 add -12346 0.49999 -> -12346 Inexact Rounded -rsux246 add -12346 0.5 -> -12346 Inexact Rounded -rsux247 add -12346 0.50001 -> -12346 Inexact Rounded - -rsux250 add -12345 0.4 -> -12345 Inexact Rounded -rsux251 add -12345 0.49 -> -12345 Inexact Rounded -rsux252 add -12345 0.499 -> -12345 Inexact Rounded -rsux253 add -12345 0.49999 -> -12345 Inexact Rounded -rsux254 add -12345 0.5 -> -12345 Inexact Rounded -rsux255 add -12345 0.50001 -> -12345 Inexact Rounded -rsux256 add -12345 0.5001 -> -12345 Inexact Rounded -rsux257 add -12345 0.501 -> -12345 Inexact Rounded -rsux258 add -12345 0.51 -> -12345 Inexact Rounded -rsux259 add -12345 0.6 -> -12345 Inexact Rounded - -rounding: floor - -rsux300 add -12345 -0.1 -> -12346 Inexact Rounded -rsux301 add -12345 -0.01 -> -12346 Inexact Rounded -rsux302 add -12345 -0.001 -> -12346 Inexact Rounded -rsux303 add -12345 -0.00001 -> -12346 Inexact Rounded -rsux304 add -12345 -0.000001 -> -12346 Inexact Rounded -rsux305 add -12345 -0.0000001 -> -12346 Inexact Rounded -rsux306 add -12345 0 -> -12345 -rsux307 add -12345 0.0000001 -> -12345 Inexact Rounded -rsux308 add -12345 0.000001 -> -12345 Inexact Rounded -rsux309 add -12345 0.00001 -> -12345 Inexact Rounded -rsux310 add -12345 0.0001 -> -12345 Inexact Rounded -rsux311 add -12345 0.001 -> -12345 Inexact Rounded -rsux312 add -12345 0.01 -> -12345 Inexact Rounded -rsux313 add -12345 0.1 -> -12345 Inexact Rounded - -rsux315 add -12346 0.49999 -> -12346 Inexact Rounded -rsux316 add -12346 0.5 -> -12346 Inexact Rounded -rsux317 add -12346 0.50001 -> -12346 Inexact Rounded - -rsux320 add -12345 0.4 -> -12345 Inexact Rounded -rsux321 add -12345 0.49 -> -12345 Inexact Rounded -rsux322 add -12345 0.499 -> -12345 Inexact Rounded -rsux323 add -12345 0.49999 -> -12345 Inexact Rounded -rsux324 add -12345 0.5 -> -12345 Inexact Rounded -rsux325 add -12345 0.50001 -> -12345 Inexact Rounded -rsux326 add -12345 0.5001 -> -12345 Inexact Rounded -rsux327 add -12345 0.501 -> -12345 Inexact Rounded -rsux328 add -12345 0.51 -> -12345 Inexact Rounded -rsux329 add -12345 0.6 -> -12345 Inexact Rounded - -rounding: ceiling - -rsux330 add -12345 -0.1 -> -12345 Inexact Rounded -rsux331 add -12345 -0.01 -> -12345 Inexact Rounded -rsux332 add -12345 -0.001 -> -12345 Inexact Rounded -rsux333 add -12345 -0.00001 -> -12345 Inexact Rounded -rsux334 add -12345 -0.000001 -> -12345 Inexact Rounded -rsux335 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsux336 add -12345 0 -> -12345 -rsux337 add -12345 0.0000001 -> -12344 Inexact Rounded -rsux338 add -12345 0.000001 -> -12344 Inexact Rounded -rsux339 add -12345 0.00001 -> -12344 Inexact Rounded -rsux340 add -12345 0.0001 -> -12344 Inexact Rounded -rsux341 add -12345 0.001 -> -12344 Inexact Rounded -rsux342 add -12345 0.01 -> -12344 Inexact Rounded -rsux343 add -12345 0.1 -> -12344 Inexact Rounded - -rsux345 add -12346 0.49999 -> -12345 Inexact Rounded -rsux346 add -12346 0.5 -> -12345 Inexact Rounded -rsux347 add -12346 0.50001 -> -12345 Inexact Rounded - -rsux350 add -12345 0.4 -> -12344 Inexact Rounded -rsux351 add -12345 0.49 -> -12344 Inexact Rounded -rsux352 add -12345 0.499 -> -12344 Inexact Rounded -rsux353 add -12345 0.49999 -> -12344 Inexact Rounded -rsux354 add -12345 0.5 -> -12344 Inexact Rounded -rsux355 add -12345 0.50001 -> -12344 Inexact Rounded -rsux356 add -12345 0.5001 -> -12344 Inexact Rounded -rsux357 add -12345 0.501 -> -12344 Inexact Rounded -rsux358 add -12345 0.51 -> -12344 Inexact Rounded -rsux359 add -12345 0.6 -> -12344 Inexact Rounded - --- Check cancellation subtractions --- (The IEEE 854 'curious rule' in $6.3) - -rounding: down -rzex001 add 0 0 -> 0 -rzex002 add 0 -0 -> 0 -rzex003 add -0 0 -> 0 -rzex004 add -0 -0 -> -0 -rzex005 add 1 -1 -> 0 -rzex006 add -1 1 -> 0 -rzex007 add 1.5 -1.5 -> 0.0 -rzex008 add -1.5 1.5 -> 0.0 -rzex009 add 2 -2 -> 0 -rzex010 add -2 2 -> 0 - -rounding: up -rzex011 add 0 0 -> 0 -rzex012 add 0 -0 -> 0 -rzex013 add -0 0 -> 0 -rzex014 add -0 -0 -> -0 -rzex015 add 1 -1 -> 0 -rzex016 add -1 1 -> 0 -rzex017 add 1.5 -1.5 -> 0.0 -rzex018 add -1.5 1.5 -> 0.0 -rzex019 add 2 -2 -> 0 -rzex020 add -2 2 -> 0 - -rounding: half_up -rzex021 add 0 0 -> 0 -rzex022 add 0 -0 -> 0 -rzex023 add -0 0 -> 0 -rzex024 add -0 -0 -> -0 -rzex025 add 1 -1 -> 0 -rzex026 add -1 1 -> 0 -rzex027 add 1.5 -1.5 -> 0.0 -rzex028 add -1.5 1.5 -> 0.0 -rzex029 add 2 -2 -> 0 -rzex030 add -2 2 -> 0 - -rounding: half_down -rzex031 add 0 0 -> 0 -rzex032 add 0 -0 -> 0 -rzex033 add -0 0 -> 0 -rzex034 add -0 -0 -> -0 -rzex035 add 1 -1 -> 0 -rzex036 add -1 1 -> 0 -rzex037 add 1.5 -1.5 -> 0.0 -rzex038 add -1.5 1.5 -> 0.0 -rzex039 add 2 -2 -> 0 -rzex040 add -2 2 -> 0 - -rounding: half_even -rzex041 add 0 0 -> 0 -rzex042 add 0 -0 -> 0 -rzex043 add -0 0 -> 0 -rzex044 add -0 -0 -> -0 -rzex045 add 1 -1 -> 0 -rzex046 add -1 1 -> 0 -rzex047 add 1.5 -1.5 -> 0.0 -rzex048 add -1.5 1.5 -> 0.0 -rzex049 add 2 -2 -> 0 -rzex050 add -2 2 -> 0 - -rounding: floor -rzex051 add 0 0 -> 0 -rzex052 add 0 -0 -> -0 -- here are two 'curious' -rzex053 add -0 0 -> -0 -- -rzex054 add -0 -0 -> -0 -rzex055 add 1 -1 -> -0 -- here are the rest -rzex056 add -1 1 -> -0 -- .. -rzex057 add 1.5 -1.5 -> -0.0 -- .. -rzex058 add -1.5 1.5 -> -0.0 -- .. -rzex059 add 2 -2 -> -0 -- .. -rzex060 add -2 2 -> -0 -- .. - -rounding: ceiling -rzex061 add 0 0 -> 0 -rzex062 add 0 -0 -> 0 -rzex063 add -0 0 -> 0 -rzex064 add -0 -0 -> -0 -rzex065 add 1 -1 -> 0 -rzex066 add -1 1 -> 0 -rzex067 add 1.5 -1.5 -> 0.0 -rzex068 add -1.5 1.5 -> 0.0 -rzex069 add 2 -2 -> 0 -rzex070 add -2 2 -> 0 - - --- Division operators ------------------------------------------------- - -rounding: down -rdvx101 divide 12345 1 -> 12345 -rdvx102 divide 12345 1.0001 -> 12343 Inexact Rounded -rdvx103 divide 12345 1.001 -> 12332 Inexact Rounded -rdvx104 divide 12345 1.01 -> 12222 Inexact Rounded -rdvx105 divide 12345 1.1 -> 11222 Inexact Rounded -rdvx106 divide 12355 4 -> 3088.7 Inexact Rounded -rdvx107 divide 12345 4 -> 3086.2 Inexact Rounded -rdvx108 divide 12355 4.0001 -> 3088.6 Inexact Rounded -rdvx109 divide 12345 4.0001 -> 3086.1 Inexact Rounded -rdvx110 divide 12345 4.9 -> 2519.3 Inexact Rounded -rdvx111 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdvx112 divide 12345 4.999 -> 2469.4 Inexact Rounded -rdvx113 divide 12345 4.9999 -> 2469.0 Inexact Rounded -rdvx114 divide 12345 5 -> 2469 -rdvx115 divide 12345 5.0001 -> 2468.9 Inexact Rounded -rdvx116 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdvx117 divide 12345 5.01 -> 2464.0 Inexact Rounded -rdvx118 divide 12345 5.1 -> 2420.5 Inexact Rounded - -rounding: half_down -rdvx201 divide 12345 1 -> 12345 -rdvx202 divide 12345 1.0001 -> 12344 Inexact Rounded -rdvx203 divide 12345 1.001 -> 12333 Inexact Rounded -rdvx204 divide 12345 1.01 -> 12223 Inexact Rounded -rdvx205 divide 12345 1.1 -> 11223 Inexact Rounded -rdvx206 divide 12355 4 -> 3088.7 Inexact Rounded -rdvx207 divide 12345 4 -> 3086.2 Inexact Rounded -rdvx208 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdvx209 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdvx210 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdvx211 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdvx212 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdvx213 divide 12345 4.9999 -> 2469.0 Inexact Rounded -rdvx214 divide 12345 5 -> 2469 -rdvx215 divide 12345 5.0001 -> 2469.0 Inexact Rounded -rdvx216 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdvx217 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdvx218 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: half_even -rdvx301 divide 12345 1 -> 12345 -rdvx302 divide 12345 1.0001 -> 12344 Inexact Rounded -rdvx303 divide 12345 1.001 -> 12333 Inexact Rounded -rdvx304 divide 12345 1.01 -> 12223 Inexact Rounded -rdvx305 divide 12345 1.1 -> 11223 Inexact Rounded -rdvx306 divide 12355 4 -> 3088.8 Inexact Rounded -rdvx307 divide 12345 4 -> 3086.2 Inexact Rounded -rdvx308 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdvx309 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdvx310 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdvx311 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdvx312 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdvx313 divide 12345 4.9999 -> 2469.0 Inexact Rounded -rdvx314 divide 12345 5 -> 2469 -rdvx315 divide 12345 5.0001 -> 2469.0 Inexact Rounded -rdvx316 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdvx317 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdvx318 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: half_up -rdvx401 divide 12345 1 -> 12345 -rdvx402 divide 12345 1.0001 -> 12344 Inexact Rounded -rdvx403 divide 12345 1.001 -> 12333 Inexact Rounded -rdvx404 divide 12345 1.01 -> 12223 Inexact Rounded -rdvx405 divide 12345 1.1 -> 11223 Inexact Rounded -rdvx406 divide 12355 4 -> 3088.8 Inexact Rounded -rdvx407 divide 12345 4 -> 3086.3 Inexact Rounded -rdvx408 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdvx409 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdvx410 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdvx411 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdvx412 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdvx413 divide 12345 4.9999 -> 2469.0 Inexact Rounded -rdvx414 divide 12345 5 -> 2469 -rdvx415 divide 12345 5.0001 -> 2469.0 Inexact Rounded -rdvx416 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdvx417 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdvx418 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: up -rdvx501 divide 12345 1 -> 12345 -rdvx502 divide 12345 1.0001 -> 12344 Inexact Rounded -rdvx503 divide 12345 1.001 -> 12333 Inexact Rounded -rdvx504 divide 12345 1.01 -> 12223 Inexact Rounded -rdvx505 divide 12345 1.1 -> 11223 Inexact Rounded -rdvx506 divide 12355 4 -> 3088.8 Inexact Rounded -rdvx507 divide 12345 4 -> 3086.3 Inexact Rounded -rdvx508 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdvx509 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdvx510 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdvx511 divide 12345 4.99 -> 2474.0 Inexact Rounded -rdvx512 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdvx513 divide 12345 4.9999 -> 2469.1 Inexact Rounded -rdvx514 divide 12345 5 -> 2469 -rdvx515 divide 12345 5.0001 -> 2469.0 Inexact Rounded -rdvx516 divide 12345 5.001 -> 2468.6 Inexact Rounded -rdvx517 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdvx518 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: floor -rdvx601 divide 12345 1 -> 12345 -rdvx602 divide 12345 1.0001 -> 12343 Inexact Rounded -rdvx603 divide 12345 1.001 -> 12332 Inexact Rounded -rdvx604 divide 12345 1.01 -> 12222 Inexact Rounded -rdvx605 divide 12345 1.1 -> 11222 Inexact Rounded -rdvx606 divide 12355 4 -> 3088.7 Inexact Rounded -rdvx607 divide 12345 4 -> 3086.2 Inexact Rounded -rdvx608 divide 12355 4.0001 -> 3088.6 Inexact Rounded -rdvx609 divide 12345 4.0001 -> 3086.1 Inexact Rounded -rdvx610 divide 12345 4.9 -> 2519.3 Inexact Rounded -rdvx611 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdvx612 divide 12345 4.999 -> 2469.4 Inexact Rounded -rdvx613 divide 12345 4.9999 -> 2469.0 Inexact Rounded -rdvx614 divide 12345 5 -> 2469 -rdvx615 divide 12345 5.0001 -> 2468.9 Inexact Rounded -rdvx616 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdvx617 divide 12345 5.01 -> 2464.0 Inexact Rounded -rdvx618 divide 12345 5.1 -> 2420.5 Inexact Rounded - -rounding: ceiling -rdvx701 divide 12345 1 -> 12345 -rdvx702 divide 12345 1.0001 -> 12344 Inexact Rounded -rdvx703 divide 12345 1.001 -> 12333 Inexact Rounded -rdvx704 divide 12345 1.01 -> 12223 Inexact Rounded -rdvx705 divide 12345 1.1 -> 11223 Inexact Rounded -rdvx706 divide 12355 4 -> 3088.8 Inexact Rounded -rdvx707 divide 12345 4 -> 3086.3 Inexact Rounded -rdvx708 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdvx709 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdvx710 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdvx711 divide 12345 4.99 -> 2474.0 Inexact Rounded -rdvx712 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdvx713 divide 12345 4.9999 -> 2469.1 Inexact Rounded -rdvx714 divide 12345 5 -> 2469 -rdvx715 divide 12345 5.0001 -> 2469.0 Inexact Rounded -rdvx716 divide 12345 5.001 -> 2468.6 Inexact Rounded -rdvx717 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdvx718 divide 12345 5.1 -> 2420.6 Inexact Rounded - --- [divideInteger and remainder unaffected] - --- Multiplication operator -------------------------------------------- - -rounding: down -rmux101 multiply 12345 1 -> 12345 -rmux102 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmux103 multiply 12345 1.001 -> 12357 Inexact Rounded -rmux104 multiply 12345 1.01 -> 12468 Inexact Rounded -rmux105 multiply 12345 1.1 -> 13579 Inexact Rounded -rmux106 multiply 12345 4 -> 49380 -rmux107 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmux108 multiply 12345 4.9 -> 60490 Inexact Rounded -rmux109 multiply 12345 4.99 -> 61601 Inexact Rounded -rmux110 multiply 12345 4.999 -> 61712 Inexact Rounded -rmux111 multiply 12345 4.9999 -> 61723 Inexact Rounded -rmux112 multiply 12345 5 -> 61725 -rmux113 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmux114 multiply 12345 5.001 -> 61737 Inexact Rounded -rmux115 multiply 12345 5.01 -> 61848 Inexact Rounded -rmux116 multiply 12345 12 -> 1.4814E+5 Rounded -rmux117 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmux118 multiply 12355 12 -> 1.4826E+5 Rounded -rmux119 multiply 12355 13 -> 1.6061E+5 Inexact Rounded - -rounding: half_down -rmux201 multiply 12345 1 -> 12345 -rmux202 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmux203 multiply 12345 1.001 -> 12357 Inexact Rounded -rmux204 multiply 12345 1.01 -> 12468 Inexact Rounded -rmux205 multiply 12345 1.1 -> 13579 Inexact Rounded -rmux206 multiply 12345 4 -> 49380 -rmux207 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmux208 multiply 12345 4.9 -> 60490 Inexact Rounded -rmux209 multiply 12345 4.99 -> 61602 Inexact Rounded -rmux210 multiply 12345 4.999 -> 61713 Inexact Rounded -rmux211 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmux212 multiply 12345 5 -> 61725 -rmux213 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmux214 multiply 12345 5.001 -> 61737 Inexact Rounded -rmux215 multiply 12345 5.01 -> 61848 Inexact Rounded -rmux216 multiply 12345 12 -> 1.4814E+5 Rounded -rmux217 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmux218 multiply 12355 12 -> 1.4826E+5 Rounded -rmux219 multiply 12355 13 -> 1.6061E+5 Inexact Rounded - -rounding: half_even -rmux301 multiply 12345 1 -> 12345 -rmux302 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmux303 multiply 12345 1.001 -> 12357 Inexact Rounded -rmux304 multiply 12345 1.01 -> 12468 Inexact Rounded -rmux305 multiply 12345 1.1 -> 13580 Inexact Rounded -rmux306 multiply 12345 4 -> 49380 -rmux307 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmux308 multiply 12345 4.9 -> 60490 Inexact Rounded -rmux309 multiply 12345 4.99 -> 61602 Inexact Rounded -rmux310 multiply 12345 4.999 -> 61713 Inexact Rounded -rmux311 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmux312 multiply 12345 5 -> 61725 -rmux313 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmux314 multiply 12345 5.001 -> 61737 Inexact Rounded -rmux315 multiply 12345 5.01 -> 61848 Inexact Rounded -rmux316 multiply 12345 12 -> 1.4814E+5 Rounded -rmux317 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmux318 multiply 12355 12 -> 1.4826E+5 Rounded -rmux319 multiply 12355 13 -> 1.6062E+5 Inexact Rounded - -rounding: half_up -rmux401 multiply 12345 1 -> 12345 -rmux402 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmux403 multiply 12345 1.001 -> 12357 Inexact Rounded -rmux404 multiply 12345 1.01 -> 12468 Inexact Rounded -rmux405 multiply 12345 1.1 -> 13580 Inexact Rounded -rmux406 multiply 12345 4 -> 49380 -rmux407 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmux408 multiply 12345 4.9 -> 60491 Inexact Rounded -rmux409 multiply 12345 4.99 -> 61602 Inexact Rounded -rmux410 multiply 12345 4.999 -> 61713 Inexact Rounded -rmux411 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmux412 multiply 12345 5 -> 61725 -rmux413 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmux414 multiply 12345 5.001 -> 61737 Inexact Rounded -rmux415 multiply 12345 5.01 -> 61848 Inexact Rounded -rmux416 multiply 12345 12 -> 1.4814E+5 Rounded -rmux417 multiply 12345 13 -> 1.6049E+5 Inexact Rounded -rmux418 multiply 12355 12 -> 1.4826E+5 Rounded -rmux419 multiply 12355 13 -> 1.6062E+5 Inexact Rounded - -rounding: up -rmux501 multiply 12345 1 -> 12345 -rmux502 multiply 12345 1.0001 -> 12347 Inexact Rounded -rmux503 multiply 12345 1.001 -> 12358 Inexact Rounded -rmux504 multiply 12345 1.01 -> 12469 Inexact Rounded -rmux505 multiply 12345 1.1 -> 13580 Inexact Rounded -rmux506 multiply 12345 4 -> 49380 -rmux507 multiply 12345 4.0001 -> 49382 Inexact Rounded -rmux508 multiply 12345 4.9 -> 60491 Inexact Rounded -rmux509 multiply 12345 4.99 -> 61602 Inexact Rounded -rmux510 multiply 12345 4.999 -> 61713 Inexact Rounded -rmux511 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmux512 multiply 12345 5 -> 61725 -rmux513 multiply 12345 5.0001 -> 61727 Inexact Rounded -rmux514 multiply 12345 5.001 -> 61738 Inexact Rounded -rmux515 multiply 12345 5.01 -> 61849 Inexact Rounded -rmux516 multiply 12345 12 -> 1.4814E+5 Rounded -rmux517 multiply 12345 13 -> 1.6049E+5 Inexact Rounded -rmux518 multiply 12355 12 -> 1.4826E+5 Rounded -rmux519 multiply 12355 13 -> 1.6062E+5 Inexact Rounded --- [rmux516 & rmux518] can surprise - -rounding: floor -rmux601 multiply 12345 1 -> 12345 -rmux602 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmux603 multiply 12345 1.001 -> 12357 Inexact Rounded -rmux604 multiply 12345 1.01 -> 12468 Inexact Rounded -rmux605 multiply 12345 1.1 -> 13579 Inexact Rounded -rmux606 multiply 12345 4 -> 49380 -rmux607 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmux608 multiply 12345 4.9 -> 60490 Inexact Rounded -rmux609 multiply 12345 4.99 -> 61601 Inexact Rounded -rmux610 multiply 12345 4.999 -> 61712 Inexact Rounded -rmux611 multiply 12345 4.9999 -> 61723 Inexact Rounded -rmux612 multiply 12345 5 -> 61725 -rmux613 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmux614 multiply 12345 5.001 -> 61737 Inexact Rounded -rmux615 multiply 12345 5.01 -> 61848 Inexact Rounded -rmux616 multiply 12345 12 -> 1.4814E+5 Rounded -rmux617 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmux618 multiply 12355 12 -> 1.4826E+5 Rounded -rmux619 multiply 12355 13 -> 1.6061E+5 Inexact Rounded - -rounding: ceiling -rmux701 multiply 12345 1 -> 12345 -rmux702 multiply 12345 1.0001 -> 12347 Inexact Rounded -rmux703 multiply 12345 1.001 -> 12358 Inexact Rounded -rmux704 multiply 12345 1.01 -> 12469 Inexact Rounded -rmux705 multiply 12345 1.1 -> 13580 Inexact Rounded -rmux706 multiply 12345 4 -> 49380 -rmux707 multiply 12345 4.0001 -> 49382 Inexact Rounded -rmux708 multiply 12345 4.9 -> 60491 Inexact Rounded -rmux709 multiply 12345 4.99 -> 61602 Inexact Rounded -rmux710 multiply 12345 4.999 -> 61713 Inexact Rounded -rmux711 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmux712 multiply 12345 5 -> 61725 -rmux713 multiply 12345 5.0001 -> 61727 Inexact Rounded -rmux714 multiply 12345 5.001 -> 61738 Inexact Rounded -rmux715 multiply 12345 5.01 -> 61849 Inexact Rounded -rmux716 multiply 12345 12 -> 1.4814E+5 Rounded -rmux717 multiply 12345 13 -> 1.6049E+5 Inexact Rounded -rmux718 multiply 12355 12 -> 1.4826E+5 Rounded -rmux719 multiply 12355 13 -> 1.6062E+5 Inexact Rounded - --- Power operator ----------------------------------------------------- - -rounding: down -rpox101 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpox102 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpox103 power 12345 -3 -> 5.3152E-13 Inexact Rounded -rpox104 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpox105 power 12345 -1 -> 0.000081004 Inexact Rounded -rpox106 power 12345 0 -> 1 -rpox107 power 12345 1 -> 12345 -rpox108 power 12345 2 -> 1.5239E+8 Inexact Rounded -rpox109 power 12345 3 -> 1.8813E+12 Inexact Rounded -rpox110 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpox111 power 12345 5 -> 2.8671E+20 Inexact Rounded -rpox112 power 415 2 -> 1.7222E+5 Inexact Rounded -rpox113 power 75 3 -> 4.2187E+5 Inexact Rounded - -rounding: half_down -rpox201 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpox202 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpox203 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpox204 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpox205 power 12345 -1 -> 0.000081004 Inexact Rounded -rpox206 power 12345 0 -> 1 -rpox207 power 12345 1 -> 12345 -rpox208 power 12345 2 -> 1.5240E+8 Inexact Rounded -rpox209 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpox210 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpox211 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpox212 power 415 2 -> 1.7222E+5 Inexact Rounded -rpox213 power 75 3 -> 4.2187E+5 Inexact Rounded - -rounding: half_even -rpox301 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpox302 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpox303 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpox304 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpox305 power 12345 -1 -> 0.000081004 Inexact Rounded -rpox306 power 12345 0 -> 1 -rpox307 power 12345 1 -> 12345 -rpox308 power 12345 2 -> 1.5240E+8 Inexact Rounded -rpox309 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpox310 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpox311 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpox312 power 415 2 -> 1.7222E+5 Inexact Rounded -rpox313 power 75 3 -> 4.2188E+5 Inexact Rounded - -rounding: half_up -rpox401 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpox402 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpox403 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpox404 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpox405 power 12345 -1 -> 0.000081004 Inexact Rounded -rpox406 power 12345 0 -> 1 -rpox407 power 12345 1 -> 12345 -rpox408 power 12345 2 -> 1.5240E+8 Inexact Rounded -rpox409 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpox410 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpox411 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpox412 power 415 2 -> 1.7223E+5 Inexact Rounded -rpox413 power 75 3 -> 4.2188E+5 Inexact Rounded - -rounding: up -rpox501 power 12345 -5 -> 3.4878E-21 Inexact Rounded -rpox502 power 12345 -4 -> 4.3057E-17 Inexact Rounded -rpox503 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpox504 power 12345 -2 -> 6.5618E-9 Inexact Rounded -rpox505 power 12345 -1 -> 0.000081005 Inexact Rounded -rpox506 power 12345 0 -> 1 -rpox507 power 12345 1 -> 12345 -rpox508 power 12345 2 -> 1.5240E+8 Inexact Rounded -rpox509 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpox510 power 12345 4 -> 2.3226E+16 Inexact Rounded -rpox511 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpox512 power 415 2 -> 1.7223E+5 Inexact Rounded -rpox513 power 75 3 -> 4.2188E+5 Inexact Rounded - -rounding: floor -rpox601 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpox602 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpox603 power 12345 -3 -> 5.3152E-13 Inexact Rounded -rpox604 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpox605 power 12345 -1 -> 0.000081004 Inexact Rounded -rpox606 power 12345 0 -> 1 -rpox607 power 12345 1 -> 12345 -rpox608 power 12345 2 -> 1.5239E+8 Inexact Rounded -rpox609 power 12345 3 -> 1.8813E+12 Inexact Rounded -rpox610 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpox611 power 12345 5 -> 2.8671E+20 Inexact Rounded -rpox612 power 415 2 -> 1.7222E+5 Inexact Rounded -rpox613 power 75 3 -> 4.2187E+5 Inexact Rounded - -rounding: ceiling -rpox701 power 12345 -5 -> 3.4878E-21 Inexact Rounded -rpox702 power 12345 -4 -> 4.3057E-17 Inexact Rounded -rpox703 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpox704 power 12345 -2 -> 6.5618E-9 Inexact Rounded -rpox705 power 12345 -1 -> 0.000081005 Inexact Rounded -rpox706 power 12345 0 -> 1 -rpox707 power 12345 1 -> 12345 -rpox708 power 12345 2 -> 1.5240E+8 Inexact Rounded -rpox709 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpox710 power 12345 4 -> 2.3226E+16 Inexact Rounded -rpox711 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpox712 power 415 2 -> 1.7223E+5 Inexact Rounded -rpox713 power 75 3 -> 4.2188E+5 Inexact Rounded - --- Underflow Subnormal and overflow values vary with rounding mode and sign -maxexponent: 999999999 -minexponent: -999999999 -rounding: down -rovx100 multiply 10 9E+999999999 -> 9.9999E+999999999 Overflow Inexact Rounded -rovx101 multiply -10 9E+999999999 -> -9.9999E+999999999 Overflow Inexact Rounded -rovx102 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped -rovx104 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped - -rounding: up -rovx110 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded -rovx111 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded -rovx112 divide 1E-9 9E+999999999 -> 1E-1000000003 Underflow Subnormal Inexact Rounded -rovx114 divide -1E-9 9E+999999999 -> -1E-1000000003 Underflow Subnormal Inexact Rounded - -rounding: ceiling -rovx120 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded -rovx121 multiply -10 9E+999999999 -> -9.9999E+999999999 Overflow Inexact Rounded -rovx122 divide 1E-9 9E+999999999 -> 1E-1000000003 Underflow Subnormal Inexact Rounded -rovx124 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped - -rounding: floor -rovx130 multiply 10 9E+999999999 -> 9.9999E+999999999 Overflow Inexact Rounded -rovx131 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded -rovx132 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped -rovx134 divide -1E-9 9E+999999999 -> -1E-1000000003 Underflow Subnormal Inexact Rounded - -rounding: half_up -rovx140 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded -rovx141 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded -rovx142 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped -rovx144 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped - -rounding: half_even -rovx150 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded -rovx151 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded -rovx152 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped -rovx154 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped - -rounding: half_down -rovx160 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded -rovx161 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded -rovx162 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped -rovx164 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped - --- check maximum finite value over a range of precisions -rounding: down -precision: 1 -rovx200 multiply 10 9E+999999999 -> 9E+999999999 Overflow Inexact Rounded -rovx201 multiply -10 9E+999999999 -> -9E+999999999 Overflow Inexact Rounded -precision: 2 -rovx210 multiply 10 9E+999999999 -> 9.9E+999999999 Overflow Inexact Rounded -rovx211 multiply -10 9E+999999999 -> -9.9E+999999999 Overflow Inexact Rounded -precision: 3 -rovx220 multiply 10 9E+999999999 -> 9.99E+999999999 Overflow Inexact Rounded -rovx221 multiply -10 9E+999999999 -> -9.99E+999999999 Overflow Inexact Rounded -precision: 4 -rovx230 multiply 10 9E+999999999 -> 9.999E+999999999 Overflow Inexact Rounded -rovx231 multiply -10 9E+999999999 -> -9.999E+999999999 Overflow Inexact Rounded -precision: 5 -rovx240 multiply 10 9E+999999999 -> 9.9999E+999999999 Overflow Inexact Rounded -rovx241 multiply -10 9E+999999999 -> -9.9999E+999999999 Overflow Inexact Rounded -precision: 6 -rovx250 multiply 10 9E+999999999 -> 9.99999E+999999999 Overflow Inexact Rounded -rovx251 multiply -10 9E+999999999 -> -9.99999E+999999999 Overflow Inexact Rounded -precision: 7 -rovx260 multiply 10 9E+999999999 -> 9.999999E+999999999 Overflow Inexact Rounded -rovx261 multiply -10 9E+999999999 -> -9.999999E+999999999 Overflow Inexact Rounded -precision: 8 -rovx270 multiply 10 9E+999999999 -> 9.9999999E+999999999 Overflow Inexact Rounded -rovx271 multiply -10 9E+999999999 -> -9.9999999E+999999999 Overflow Inexact Rounded -precision: 9 -rovx280 multiply 10 9E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded -rovx281 multiply -10 9E+999999999 -> -9.99999999E+999999999 Overflow Inexact Rounded -precision: 10 -rovx290 multiply 10 9E+999999999 -> 9.999999999E+999999999 Overflow Inexact Rounded -rovx291 multiply -10 9E+999999999 -> -9.999999999E+999999999 Overflow Inexact Rounded - --- reprise rounding mode effect (using multiplies so precision directive used) -precision: 9 -maxexponent: 999999999 -rounding: half_up -rmex400 multiply -9.999E+999999999 10 -> -Infinity Overflow Inexact Rounded -rmex401 multiply 9.999E+999999999 10 -> Infinity Overflow Inexact Rounded -rounding: half_down -rmex402 multiply -9.999E+999999999 10 -> -Infinity Overflow Inexact Rounded -rmex403 multiply 9.999E+999999999 10 -> Infinity Overflow Inexact Rounded -rounding: half_even -rmex404 multiply -9.999E+999999999 10 -> -Infinity Overflow Inexact Rounded -rmex405 multiply 9.999E+999999999 10 -> Infinity Overflow Inexact Rounded -rounding: floor -rmex406 multiply -9.999E+999999999 10 -> -Infinity Overflow Inexact Rounded -rmex407 multiply 9.999E+999999999 10 -> 9.99999999E+999999999 Overflow Inexact Rounded -rounding: ceiling -rmex408 multiply -9.999E+999999999 10 -> -9.99999999E+999999999 Overflow Inexact Rounded -rmex409 multiply 9.999E+999999999 10 -> Infinity Overflow Inexact Rounded -rounding: up -rmex410 multiply -9.999E+999999999 10 -> -Infinity Overflow Inexact Rounded -rmex411 multiply 9.999E+999999999 10 -> Infinity Overflow Inexact Rounded -rounding: down -rmex412 multiply -9.999E+999999999 10 -> -9.99999999E+999999999 Overflow Inexact Rounded -rmex413 multiply 9.999E+999999999 10 -> 9.99999999E+999999999 Overflow Inexact Rounded - ------ Round-for-reround ----- -rounding: 05up -precision: 5 -- for easier visual inspection -maxExponent: 999 -minexponent: -999 - --- basic rounding; really is just 0 and 5 up -r05up001 add 12340 0.001 -> 12341 Inexact Rounded -r05up002 add 12341 0.001 -> 12341 Inexact Rounded -r05up003 add 12342 0.001 -> 12342 Inexact Rounded -r05up004 add 12343 0.001 -> 12343 Inexact Rounded -r05up005 add 12344 0.001 -> 12344 Inexact Rounded -r05up006 add 12345 0.001 -> 12346 Inexact Rounded -r05up007 add 12346 0.001 -> 12346 Inexact Rounded -r05up008 add 12347 0.001 -> 12347 Inexact Rounded -r05up009 add 12348 0.001 -> 12348 Inexact Rounded -r05up010 add 12349 0.001 -> 12349 Inexact Rounded - -r05up011 add 12340 0.000 -> 12340 Rounded -r05up012 add 12341 0.000 -> 12341 Rounded -r05up013 add 12342 0.000 -> 12342 Rounded -r05up014 add 12343 0.000 -> 12343 Rounded -r05up015 add 12344 0.000 -> 12344 Rounded -r05up016 add 12345 0.000 -> 12345 Rounded -r05up017 add 12346 0.000 -> 12346 Rounded -r05up018 add 12347 0.000 -> 12347 Rounded -r05up019 add 12348 0.000 -> 12348 Rounded -r05up020 add 12349 0.000 -> 12349 Rounded - -r05up021 add 12340 0.901 -> 12341 Inexact Rounded -r05up022 add 12341 0.901 -> 12341 Inexact Rounded -r05up023 add 12342 0.901 -> 12342 Inexact Rounded -r05up024 add 12343 0.901 -> 12343 Inexact Rounded -r05up025 add 12344 0.901 -> 12344 Inexact Rounded -r05up026 add 12345 0.901 -> 12346 Inexact Rounded -r05up027 add 12346 0.901 -> 12346 Inexact Rounded -r05up028 add 12347 0.901 -> 12347 Inexact Rounded -r05up029 add 12348 0.901 -> 12348 Inexact Rounded -r05up030 add 12349 0.901 -> 12349 Inexact Rounded - -r05up031 add -12340 -0.001 -> -12341 Inexact Rounded -r05up032 add -12341 -0.001 -> -12341 Inexact Rounded -r05up033 add -12342 -0.001 -> -12342 Inexact Rounded -r05up034 add -12343 -0.001 -> -12343 Inexact Rounded -r05up035 add -12344 -0.001 -> -12344 Inexact Rounded -r05up036 add -12345 -0.001 -> -12346 Inexact Rounded -r05up037 add -12346 -0.001 -> -12346 Inexact Rounded -r05up038 add -12347 -0.001 -> -12347 Inexact Rounded -r05up039 add -12348 -0.001 -> -12348 Inexact Rounded -r05up040 add -12349 -0.001 -> -12349 Inexact Rounded - -r05up041 add -12340 0.001 -> -12339 Inexact Rounded -r05up042 add -12341 0.001 -> -12341 Inexact Rounded -r05up043 add -12342 0.001 -> -12341 Inexact Rounded -r05up044 add -12343 0.001 -> -12342 Inexact Rounded -r05up045 add -12344 0.001 -> -12343 Inexact Rounded -r05up046 add -12345 0.001 -> -12344 Inexact Rounded -r05up047 add -12346 0.001 -> -12346 Inexact Rounded -r05up048 add -12347 0.001 -> -12346 Inexact Rounded -r05up049 add -12348 0.001 -> -12347 Inexact Rounded -r05up050 add -12349 0.001 -> -12348 Inexact Rounded - --- Addition operators ------------------------------------------------- --- [The first few of these check negative residue possibilities; these --- cases may be implemented as a negative residue in fastpaths] - -r0adx100 add 12345 -0.1 -> 12344 Inexact Rounded -r0adx101 add 12345 -0.01 -> 12344 Inexact Rounded -r0adx102 add 12345 -0.001 -> 12344 Inexact Rounded -r0adx103 add 12345 -0.00001 -> 12344 Inexact Rounded -r0adx104 add 12345 -0.000001 -> 12344 Inexact Rounded -r0adx105 add 12345 -0.0000001 -> 12344 Inexact Rounded -r0adx106 add 12345 0 -> 12345 -r0adx107 add 12345 0.0000001 -> 12346 Inexact Rounded -r0adx108 add 12345 0.000001 -> 12346 Inexact Rounded -r0adx109 add 12345 0.00001 -> 12346 Inexact Rounded -r0adx110 add 12345 0.0001 -> 12346 Inexact Rounded -r0adx111 add 12345 0.001 -> 12346 Inexact Rounded -r0adx112 add 12345 0.01 -> 12346 Inexact Rounded -r0adx113 add 12345 0.1 -> 12346 Inexact Rounded - -r0adx115 add 12346 0.49999 -> 12346 Inexact Rounded -r0adx116 add 12346 0.5 -> 12346 Inexact Rounded -r0adx117 add 12346 0.50001 -> 12346 Inexact Rounded - -r0adx120 add 12345 0.4 -> 12346 Inexact Rounded -r0adx121 add 12345 0.49 -> 12346 Inexact Rounded -r0adx122 add 12345 0.499 -> 12346 Inexact Rounded -r0adx123 add 12345 0.49999 -> 12346 Inexact Rounded -r0adx124 add 12345 0.5 -> 12346 Inexact Rounded -r0adx125 add 12345 0.50001 -> 12346 Inexact Rounded -r0adx126 add 12345 0.5001 -> 12346 Inexact Rounded -r0adx127 add 12345 0.501 -> 12346 Inexact Rounded -r0adx128 add 12345 0.51 -> 12346 Inexact Rounded -r0adx129 add 12345 0.6 -> 12346 Inexact Rounded - --- negatives... - -r0sux100 add -12345 -0.1 -> -12346 Inexact Rounded -r0sux101 add -12345 -0.01 -> -12346 Inexact Rounded -r0sux102 add -12345 -0.001 -> -12346 Inexact Rounded -r0sux103 add -12345 -0.00001 -> -12346 Inexact Rounded -r0sux104 add -12345 -0.000001 -> -12346 Inexact Rounded -r0sux105 add -12345 -0.0000001 -> -12346 Inexact Rounded -r0sux106 add -12345 0 -> -12345 -r0sux107 add -12345 0.0000001 -> -12344 Inexact Rounded -r0sux108 add -12345 0.000001 -> -12344 Inexact Rounded -r0sux109 add -12345 0.00001 -> -12344 Inexact Rounded -r0sux110 add -12345 0.0001 -> -12344 Inexact Rounded -r0sux111 add -12345 0.001 -> -12344 Inexact Rounded -r0sux112 add -12345 0.01 -> -12344 Inexact Rounded -r0sux113 add -12345 0.1 -> -12344 Inexact Rounded - -r0sux115 add -12346 0.49999 -> -12346 Inexact Rounded -r0sux116 add -12346 0.5 -> -12346 Inexact Rounded -r0sux117 add -12346 0.50001 -> -12346 Inexact Rounded - -r0sux120 add -12345 0.4 -> -12344 Inexact Rounded -r0sux121 add -12345 0.49 -> -12344 Inexact Rounded -r0sux122 add -12345 0.499 -> -12344 Inexact Rounded -r0sux123 add -12345 0.49999 -> -12344 Inexact Rounded -r0sux124 add -12345 0.5 -> -12344 Inexact Rounded -r0sux125 add -12345 0.50001 -> -12344 Inexact Rounded -r0sux126 add -12345 0.5001 -> -12344 Inexact Rounded -r0sux127 add -12345 0.501 -> -12344 Inexact Rounded -r0sux128 add -12345 0.51 -> -12344 Inexact Rounded -r0sux129 add -12345 0.6 -> -12344 Inexact Rounded - --- Check cancellation subtractions --- (The IEEE 854 'curious rule' in $6.3) - -r0zex001 add 0 0 -> 0 -r0zex002 add 0 -0 -> 0 -r0zex003 add -0 0 -> 0 -r0zex004 add -0 -0 -> -0 -r0zex005 add 1 -1 -> 0 -r0zex006 add -1 1 -> 0 -r0zex007 add 1.5 -1.5 -> 0.0 -r0zex008 add -1.5 1.5 -> 0.0 -r0zex009 add 2 -2 -> 0 -r0zex010 add -2 2 -> 0 - - --- Division operators ------------------------------------------------- - -r0dvx101 divide 12345 1 -> 12345 -r0dvx102 divide 12345 1.0001 -> 12343 Inexact Rounded -r0dvx103 divide 12345 1.001 -> 12332 Inexact Rounded -r0dvx104 divide 12345 1.01 -> 12222 Inexact Rounded -r0dvx105 divide 12345 1.1 -> 11222 Inexact Rounded -r0dvx106 divide 12355 4 -> 3088.7 Inexact Rounded -r0dvx107 divide 12345 4 -> 3086.2 Inexact Rounded -r0dvx108 divide 12355 4.0001 -> 3088.6 Inexact Rounded -r0dvx109 divide 12345 4.0001 -> 3086.1 Inexact Rounded -r0dvx110 divide 12345 4.9 -> 2519.3 Inexact Rounded -r0dvx111 divide 12345 4.99 -> 2473.9 Inexact Rounded -r0dvx112 divide 12345 4.999 -> 2469.4 Inexact Rounded -r0dvx113 divide 12345 4.9999 -> 2469.1 Inexact Rounded -r0dvx114 divide 12345 5 -> 2469 -r0dvx115 divide 12345 5.0001 -> 2468.9 Inexact Rounded -r0dvx116 divide 12345 5.001 -> 2468.6 Inexact Rounded -r0dvx117 divide 12345 5.01 -> 2464.1 Inexact Rounded -r0dvx118 divide 12345 5.1 -> 2420.6 Inexact Rounded - --- [divideInteger and remainder unaffected] - --- Multiplication operator -------------------------------------------- - -r0mux101 multiply 12345 1 -> 12345 -r0mux102 multiply 12345 1.0001 -> 12346 Inexact Rounded -r0mux103 multiply 12345 1.001 -> 12357 Inexact Rounded -r0mux104 multiply 12345 1.01 -> 12468 Inexact Rounded -r0mux105 multiply 12345 1.1 -> 13579 Inexact Rounded -r0mux106 multiply 12345 4 -> 49380 -r0mux107 multiply 12345 4.0001 -> 49381 Inexact Rounded -r0mux108 multiply 12345 4.9 -> 60491 Inexact Rounded -r0mux109 multiply 12345 4.99 -> 61601 Inexact Rounded -r0mux110 multiply 12345 4.999 -> 61712 Inexact Rounded -r0mux111 multiply 12345 4.9999 -> 61723 Inexact Rounded -r0mux112 multiply 12345 5 -> 61725 -r0mux113 multiply 12345 5.0001 -> 61726 Inexact Rounded -r0mux114 multiply 12345 5.001 -> 61737 Inexact Rounded -r0mux115 multiply 12345 5.01 -> 61848 Inexact Rounded -r0mux116 multiply 12345 12 -> 1.4814E+5 Rounded -r0mux117 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -r0mux118 multiply 12355 12 -> 1.4826E+5 Rounded -r0mux119 multiply 12355 13 -> 1.6061E+5 Inexact Rounded - - --- Power operator ----------------------------------------------------- - -r0pox101 power 12345 -5 -> 3.4877E-21 Inexact Rounded -r0pox102 power 12345 -4 -> 4.3056E-17 Inexact Rounded -r0pox103 power 12345 -3 -> 5.3152E-13 Inexact Rounded -r0pox104 power 12345 -2 -> 6.5617E-9 Inexact Rounded -r0pox105 power 12345 -1 -> 0.000081004 Inexact Rounded -r0pox106 power 12345 0 -> 1 -r0pox107 power 12345 1 -> 12345 -r0pox108 power 12345 2 -> 1.5239E+8 Inexact Rounded -r0pox109 power 12345 3 -> 1.8813E+12 Inexact Rounded -r0pox110 power 12345 4 -> 2.3226E+16 Inexact Rounded -r0pox111 power 12345 5 -> 2.8671E+20 Inexact Rounded -r0pox112 power 415 2 -> 1.7222E+5 Inexact Rounded -r0pox113 power 75 3 -> 4.2187E+5 Inexact Rounded - - --- Underflow Subnormal and overflow values vary with rounding mode and sign -maxexponent: 999999999 -minexponent: -999999999 --- [round down gives Nmax on first two and .0E... on the next two] -r0ovx100 multiply 10 9E+999999999 -> 9.9999E+999999999 Overflow Inexact Rounded -r0ovx101 multiply -10 9E+999999999 -> -9.9999E+999999999 Overflow Inexact Rounded -r0ovx102 divide 1E-9 9E+999999999 -> 1E-1000000003 Underflow Subnormal Inexact Rounded -r0ovx104 divide -1E-9 9E+999999999 -> -1E-1000000003 Underflow Subnormal Inexact Rounded - --- reprise rounding mode effect (using multiplies so precision directive used) -precision: 9 -maxexponent: 999999999 -r0mex412 multiply -9.999E+999999999 10 -> -9.99999999E+999999999 Overflow Inexact Rounded -r0mex413 multiply 9.999E+999999999 10 -> 9.99999999E+999999999 Overflow Inexact Rounded - diff --git a/qdecimal/test/tc_full/samequantum.decTest b/qdecimal/test/tc_full/samequantum.decTest deleted file mode 100644 index 5f62150..0000000 --- a/qdecimal/test/tc_full/samequantum.decTest +++ /dev/null @@ -1,389 +0,0 @@ ------------------------------------------------------------------------- --- samequantum.decTest -- check quantums match -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - -samq001 samequantum 0 0 -> 1 -samq002 samequantum 0 1 -> 1 -samq003 samequantum 1 0 -> 1 -samq004 samequantum 1 1 -> 1 - -samq011 samequantum 10 1E+1 -> 0 -samq012 samequantum 10E+1 10E+1 -> 1 -samq013 samequantum 100 10E+1 -> 0 -samq014 samequantum 100 1E+2 -> 0 -samq015 samequantum 0.1 1E-2 -> 0 -samq016 samequantum 0.1 1E-1 -> 1 -samq017 samequantum 0.1 1E-0 -> 0 -samq018 samequantum 999 999 -> 1 -samq019 samequantum 999E-1 99.9 -> 1 -samq020 samequantum 111E-1 22.2 -> 1 -samq021 samequantum 111E-1 1234.2 -> 1 - --- zeros -samq030 samequantum 0.0 1.1 -> 1 -samq031 samequantum 0.0 1.11 -> 0 -samq032 samequantum 0.0 0 -> 0 -samq033 samequantum 0.0 0.0 -> 1 -samq034 samequantum 0.0 0.00 -> 0 -samq035 samequantum 0E+1 0E+0 -> 0 -samq036 samequantum 0E+1 0E+1 -> 1 -samq037 samequantum 0E+1 0E+2 -> 0 -samq038 samequantum 0E-17 0E-16 -> 0 -samq039 samequantum 0E-17 0E-17 -> 1 -samq040 samequantum 0E-17 0E-18 -> 0 -samq041 samequantum 0E-17 0.0E-15 -> 0 -samq042 samequantum 0E-17 0.0E-16 -> 1 -samq043 samequantum 0E-17 0.0E-17 -> 0 -samq044 samequantum -0E-17 0.0E-16 -> 1 -samq045 samequantum 0E-17 -0.0E-17 -> 0 -samq046 samequantum 0E-17 -0.0E-16 -> 1 -samq047 samequantum -0E-17 0.0E-17 -> 0 -samq048 samequantum -0E-17 -0.0E-16 -> 1 -samq049 samequantum -0E-17 -0.0E-17 -> 0 - --- Nmax, Nmin, Ntiny -samq051 samequantum 9.99999999E+999 9.99999999E+999 -> 1 -samq052 samequantum 1E-999 1E-999 -> 1 -samq053 samequantum 1.00000000E-999 1.00000000E-999 -> 1 -samq054 samequantum 1E-1007 1E-1007 -> 1 -samq055 samequantum 9.99999999E+999 9.99999999E+999 -> 1 -samq056 samequantum 1E-999 1E-999 -> 1 -samq057 samequantum 1.00000000E-999 1.00000000E-999 -> 1 -samq058 samequantum 1E-1007 1E-1007 -> 1 - -samq061 samequantum -1E-1007 -1E-1007 -> 1 -samq062 samequantum -1.00000000E-999 -1.00000000E-999 -> 1 -samq063 samequantum -1E-999 -1E-999 -> 1 -samq064 samequantum -9.99999999E+999 -9.99999999E+999 -> 1 -samq065 samequantum -1E-1007 -1E-1007 -> 1 -samq066 samequantum -1.00000000E-999 -1.00000000E-999 -> 1 -samq067 samequantum -1E-999 -1E-999 -> 1 -samq068 samequantum -9.99999999E+999 -9.99999999E+999 -> 1 - -samq071 samequantum -4E-1007 -1E-1007 -> 1 -samq072 samequantum -4.00000000E-999 -1.00004000E-999 -> 1 -samq073 samequantum -4E-999 -1E-999 -> 1 -samq074 samequantum -4.99999999E+999 -9.99949999E+999 -> 1 -samq075 samequantum -4E-1007 -1E-1007 -> 1 -samq076 samequantum -4.00000000E-999 -1.00400000E-999 -> 1 -samq077 samequantum -4E-999 -1E-999 -> 1 -samq078 samequantum -4.99999999E+999 -9.94999999E+999 -> 1 - -samq081 samequantum -4E-1006 -1E-1007 -> 0 -samq082 samequantum -4.00000000E-999 -1.00004000E-996 -> 0 -samq083 samequantum -4E-996 -1E-999 -> 0 -samq084 samequantum -4.99999999E+999 -9.99949999E+996 -> 0 -samq085 samequantum -4E-1006 -1E-1007 -> 0 -samq086 samequantum -4.00000000E-999 -1.00400000E-996 -> 0 -samq087 samequantum -4E-996 -1E-999 -> 0 -samq088 samequantum -4.99999999E+999 -9.94999999E+996 -> 0 - --- specials & combinations -samq0110 samequantum -Inf -Inf -> 1 -samq0111 samequantum -Inf Inf -> 1 -samq0112 samequantum -Inf NaN -> 0 -samq0113 samequantum -Inf -7E+3 -> 0 -samq0114 samequantum -Inf -7 -> 0 -samq0115 samequantum -Inf -7E-3 -> 0 -samq0116 samequantum -Inf -0E-3 -> 0 -samq0117 samequantum -Inf -0 -> 0 -samq0118 samequantum -Inf -0E+3 -> 0 -samq0119 samequantum -Inf 0E-3 -> 0 -samq0120 samequantum -Inf 0 -> 0 -samq0121 samequantum -Inf 0E+3 -> 0 -samq0122 samequantum -Inf 7E-3 -> 0 -samq0123 samequantum -Inf 7 -> 0 -samq0124 samequantum -Inf 7E+3 -> 0 -samq0125 samequantum -Inf sNaN -> 0 - -samq0210 samequantum Inf -Inf -> 1 -samq0211 samequantum Inf Inf -> 1 -samq0212 samequantum Inf NaN -> 0 -samq0213 samequantum Inf -7E+3 -> 0 -samq0214 samequantum Inf -7 -> 0 -samq0215 samequantum Inf -7E-3 -> 0 -samq0216 samequantum Inf -0E-3 -> 0 -samq0217 samequantum Inf -0 -> 0 -samq0218 samequantum Inf -0E+3 -> 0 -samq0219 samequantum Inf 0E-3 -> 0 -samq0220 samequantum Inf 0 -> 0 -samq0221 samequantum Inf 0E+3 -> 0 -samq0222 samequantum Inf 7E-3 -> 0 -samq0223 samequantum Inf 7 -> 0 -samq0224 samequantum Inf 7E+3 -> 0 -samq0225 samequantum Inf sNaN -> 0 - -samq0310 samequantum NaN -Inf -> 0 -samq0311 samequantum NaN Inf -> 0 -samq0312 samequantum NaN NaN -> 1 -samq0313 samequantum NaN -7E+3 -> 0 -samq0314 samequantum NaN -7 -> 0 -samq0315 samequantum NaN -7E-3 -> 0 -samq0316 samequantum NaN -0E-3 -> 0 -samq0317 samequantum NaN -0 -> 0 -samq0318 samequantum NaN -0E+3 -> 0 -samq0319 samequantum NaN 0E-3 -> 0 -samq0320 samequantum NaN 0 -> 0 -samq0321 samequantum NaN 0E+3 -> 0 -samq0322 samequantum NaN 7E-3 -> 0 -samq0323 samequantum NaN 7 -> 0 -samq0324 samequantum NaN 7E+3 -> 0 -samq0325 samequantum NaN sNaN -> 1 - -samq0410 samequantum -7E+3 -Inf -> 0 -samq0411 samequantum -7E+3 Inf -> 0 -samq0412 samequantum -7E+3 NaN -> 0 -samq0413 samequantum -7E+3 -7E+3 -> 1 -samq0414 samequantum -7E+3 -7 -> 0 -samq0415 samequantum -7E+3 -7E-3 -> 0 -samq0416 samequantum -7E+3 -0E-3 -> 0 -samq0417 samequantum -7E+3 -0 -> 0 -samq0418 samequantum -7E+3 -0E+3 -> 1 -samq0419 samequantum -7E+3 0E-3 -> 0 -samq0420 samequantum -7E+3 0 -> 0 -samq0421 samequantum -7E+3 0E+3 -> 1 -samq0422 samequantum -7E+3 7E-3 -> 0 -samq0423 samequantum -7E+3 7 -> 0 -samq0424 samequantum -7E+3 7E+3 -> 1 -samq0425 samequantum -7E+3 sNaN -> 0 - -samq0510 samequantum -7 -Inf -> 0 -samq0511 samequantum -7 Inf -> 0 -samq0512 samequantum -7 NaN -> 0 -samq0513 samequantum -7 -7E+3 -> 0 -samq0514 samequantum -7 -7 -> 1 -samq0515 samequantum -7 -7E-3 -> 0 -samq0516 samequantum -7 -0E-3 -> 0 -samq0517 samequantum -7 -0 -> 1 -samq0518 samequantum -7 -0E+3 -> 0 -samq0519 samequantum -7 0E-3 -> 0 -samq0520 samequantum -7 0 -> 1 -samq0521 samequantum -7 0E+3 -> 0 -samq0522 samequantum -7 7E-3 -> 0 -samq0523 samequantum -7 7 -> 1 -samq0524 samequantum -7 7E+3 -> 0 -samq0525 samequantum -7 sNaN -> 0 - -samq0610 samequantum -7E-3 -Inf -> 0 -samq0611 samequantum -7E-3 Inf -> 0 -samq0612 samequantum -7E-3 NaN -> 0 -samq0613 samequantum -7E-3 -7E+3 -> 0 -samq0614 samequantum -7E-3 -7 -> 0 -samq0615 samequantum -7E-3 -7E-3 -> 1 -samq0616 samequantum -7E-3 -0E-3 -> 1 -samq0617 samequantum -7E-3 -0 -> 0 -samq0618 samequantum -7E-3 -0E+3 -> 0 -samq0619 samequantum -7E-3 0E-3 -> 1 -samq0620 samequantum -7E-3 0 -> 0 -samq0621 samequantum -7E-3 0E+3 -> 0 -samq0622 samequantum -7E-3 7E-3 -> 1 -samq0623 samequantum -7E-3 7 -> 0 -samq0624 samequantum -7E-3 7E+3 -> 0 -samq0625 samequantum -7E-3 sNaN -> 0 - -samq0710 samequantum -0E-3 -Inf -> 0 -samq0711 samequantum -0E-3 Inf -> 0 -samq0712 samequantum -0E-3 NaN -> 0 -samq0713 samequantum -0E-3 -7E+3 -> 0 -samq0714 samequantum -0E-3 -7 -> 0 -samq0715 samequantum -0E-3 -7E-3 -> 1 -samq0716 samequantum -0E-3 -0E-3 -> 1 -samq0717 samequantum -0E-3 -0 -> 0 -samq0718 samequantum -0E-3 -0E+3 -> 0 -samq0719 samequantum -0E-3 0E-3 -> 1 -samq0720 samequantum -0E-3 0 -> 0 -samq0721 samequantum -0E-3 0E+3 -> 0 -samq0722 samequantum -0E-3 7E-3 -> 1 -samq0723 samequantum -0E-3 7 -> 0 -samq0724 samequantum -0E-3 7E+3 -> 0 -samq0725 samequantum -0E-3 sNaN -> 0 - -samq0810 samequantum -0 -Inf -> 0 -samq0811 samequantum -0 Inf -> 0 -samq0812 samequantum -0 NaN -> 0 -samq0813 samequantum -0 -7E+3 -> 0 -samq0814 samequantum -0 -7 -> 1 -samq0815 samequantum -0 -7E-3 -> 0 -samq0816 samequantum -0 -0E-3 -> 0 -samq0817 samequantum -0 -0 -> 1 -samq0818 samequantum -0 -0E+3 -> 0 -samq0819 samequantum -0 0E-3 -> 0 -samq0820 samequantum -0 0 -> 1 -samq0821 samequantum -0 0E+3 -> 0 -samq0822 samequantum -0 7E-3 -> 0 -samq0823 samequantum -0 7 -> 1 -samq0824 samequantum -0 7E+3 -> 0 -samq0825 samequantum -0 sNaN -> 0 - -samq0910 samequantum -0E+3 -Inf -> 0 -samq0911 samequantum -0E+3 Inf -> 0 -samq0912 samequantum -0E+3 NaN -> 0 -samq0913 samequantum -0E+3 -7E+3 -> 1 -samq0914 samequantum -0E+3 -7 -> 0 -samq0915 samequantum -0E+3 -7E-3 -> 0 -samq0916 samequantum -0E+3 -0E-3 -> 0 -samq0917 samequantum -0E+3 -0 -> 0 -samq0918 samequantum -0E+3 -0E+3 -> 1 -samq0919 samequantum -0E+3 0E-3 -> 0 -samq0920 samequantum -0E+3 0 -> 0 -samq0921 samequantum -0E+3 0E+3 -> 1 -samq0922 samequantum -0E+3 7E-3 -> 0 -samq0923 samequantum -0E+3 7 -> 0 -samq0924 samequantum -0E+3 7E+3 -> 1 -samq0925 samequantum -0E+3 sNaN -> 0 - -samq1110 samequantum 0E-3 -Inf -> 0 -samq1111 samequantum 0E-3 Inf -> 0 -samq1112 samequantum 0E-3 NaN -> 0 -samq1113 samequantum 0E-3 -7E+3 -> 0 -samq1114 samequantum 0E-3 -7 -> 0 -samq1115 samequantum 0E-3 -7E-3 -> 1 -samq1116 samequantum 0E-3 -0E-3 -> 1 -samq1117 samequantum 0E-3 -0 -> 0 -samq1118 samequantum 0E-3 -0E+3 -> 0 -samq1119 samequantum 0E-3 0E-3 -> 1 -samq1120 samequantum 0E-3 0 -> 0 -samq1121 samequantum 0E-3 0E+3 -> 0 -samq1122 samequantum 0E-3 7E-3 -> 1 -samq1123 samequantum 0E-3 7 -> 0 -samq1124 samequantum 0E-3 7E+3 -> 0 -samq1125 samequantum 0E-3 sNaN -> 0 - -samq1210 samequantum 0 -Inf -> 0 -samq1211 samequantum 0 Inf -> 0 -samq1212 samequantum 0 NaN -> 0 -samq1213 samequantum 0 -7E+3 -> 0 -samq1214 samequantum 0 -7 -> 1 -samq1215 samequantum 0 -7E-3 -> 0 -samq1216 samequantum 0 -0E-3 -> 0 -samq1217 samequantum 0 -0 -> 1 -samq1218 samequantum 0 -0E+3 -> 0 -samq1219 samequantum 0 0E-3 -> 0 -samq1220 samequantum 0 0 -> 1 -samq1221 samequantum 0 0E+3 -> 0 -samq1222 samequantum 0 7E-3 -> 0 -samq1223 samequantum 0 7 -> 1 -samq1224 samequantum 0 7E+3 -> 0 -samq1225 samequantum 0 sNaN -> 0 - -samq1310 samequantum 0E+3 -Inf -> 0 -samq1311 samequantum 0E+3 Inf -> 0 -samq1312 samequantum 0E+3 NaN -> 0 -samq1313 samequantum 0E+3 -7E+3 -> 1 -samq1314 samequantum 0E+3 -7 -> 0 -samq1315 samequantum 0E+3 -7E-3 -> 0 -samq1316 samequantum 0E+3 -0E-3 -> 0 -samq1317 samequantum 0E+3 -0 -> 0 -samq1318 samequantum 0E+3 -0E+3 -> 1 -samq1319 samequantum 0E+3 0E-3 -> 0 -samq1320 samequantum 0E+3 0 -> 0 -samq1321 samequantum 0E+3 0E+3 -> 1 -samq1322 samequantum 0E+3 7E-3 -> 0 -samq1323 samequantum 0E+3 7 -> 0 -samq1324 samequantum 0E+3 7E+3 -> 1 -samq1325 samequantum 0E+3 sNaN -> 0 - -samq1410 samequantum 7E-3 -Inf -> 0 -samq1411 samequantum 7E-3 Inf -> 0 -samq1412 samequantum 7E-3 NaN -> 0 -samq1413 samequantum 7E-3 -7E+3 -> 0 -samq1414 samequantum 7E-3 -7 -> 0 -samq1415 samequantum 7E-3 -7E-3 -> 1 -samq1416 samequantum 7E-3 -0E-3 -> 1 -samq1417 samequantum 7E-3 -0 -> 0 -samq1418 samequantum 7E-3 -0E+3 -> 0 -samq1419 samequantum 7E-3 0E-3 -> 1 -samq1420 samequantum 7E-3 0 -> 0 -samq1421 samequantum 7E-3 0E+3 -> 0 -samq1422 samequantum 7E-3 7E-3 -> 1 -samq1423 samequantum 7E-3 7 -> 0 -samq1424 samequantum 7E-3 7E+3 -> 0 -samq1425 samequantum 7E-3 sNaN -> 0 - -samq1510 samequantum 7 -Inf -> 0 -samq1511 samequantum 7 Inf -> 0 -samq1512 samequantum 7 NaN -> 0 -samq1513 samequantum 7 -7E+3 -> 0 -samq1514 samequantum 7 -7 -> 1 -samq1515 samequantum 7 -7E-3 -> 0 -samq1516 samequantum 7 -0E-3 -> 0 -samq1517 samequantum 7 -0 -> 1 -samq1518 samequantum 7 -0E+3 -> 0 -samq1519 samequantum 7 0E-3 -> 0 -samq1520 samequantum 7 0 -> 1 -samq1521 samequantum 7 0E+3 -> 0 -samq1522 samequantum 7 7E-3 -> 0 -samq1523 samequantum 7 7 -> 1 -samq1524 samequantum 7 7E+3 -> 0 -samq1525 samequantum 7 sNaN -> 0 - -samq1610 samequantum 7E+3 -Inf -> 0 -samq1611 samequantum 7E+3 Inf -> 0 -samq1612 samequantum 7E+3 NaN -> 0 -samq1613 samequantum 7E+3 -7E+3 -> 1 -samq1614 samequantum 7E+3 -7 -> 0 -samq1615 samequantum 7E+3 -7E-3 -> 0 -samq1616 samequantum 7E+3 -0E-3 -> 0 -samq1617 samequantum 7E+3 -0 -> 0 -samq1618 samequantum 7E+3 -0E+3 -> 1 -samq1619 samequantum 7E+3 0E-3 -> 0 -samq1620 samequantum 7E+3 0 -> 0 -samq1621 samequantum 7E+3 0E+3 -> 1 -samq1622 samequantum 7E+3 7E-3 -> 0 -samq1623 samequantum 7E+3 7 -> 0 -samq1624 samequantum 7E+3 7E+3 -> 1 -samq1625 samequantum 7E+3 sNaN -> 0 - -samq1710 samequantum sNaN -Inf -> 0 -samq1711 samequantum sNaN Inf -> 0 -samq1712 samequantum sNaN NaN -> 1 -samq1713 samequantum sNaN -7E+3 -> 0 -samq1714 samequantum sNaN -7 -> 0 -samq1715 samequantum sNaN -7E-3 -> 0 -samq1716 samequantum sNaN -0E-3 -> 0 -samq1717 samequantum sNaN -0 -> 0 -samq1718 samequantum sNaN -0E+3 -> 0 -samq1719 samequantum sNaN 0E-3 -> 0 -samq1720 samequantum sNaN 0 -> 0 -samq1721 samequantum sNaN 0E+3 -> 0 -samq1722 samequantum sNaN 7E-3 -> 0 -samq1723 samequantum sNaN 7 -> 0 -samq1724 samequantum sNaN 7E+3 -> 0 -samq1725 samequantum sNaN sNaN -> 1 --- noisy NaNs -samq1730 samequantum sNaN3 sNaN3 -> 1 -samq1731 samequantum sNaN3 sNaN4 -> 1 -samq1732 samequantum NaN3 NaN3 -> 1 -samq1733 samequantum NaN3 NaN4 -> 1 -samq1734 samequantum sNaN3 3 -> 0 -samq1735 samequantum NaN3 3 -> 0 -samq1736 samequantum 4 sNaN4 -> 0 -samq1737 samequantum 3 NaN3 -> 0 -samq1738 samequantum Inf sNaN4 -> 0 -samq1739 samequantum -Inf NaN3 -> 0 - - - diff --git a/qdecimal/test/tc_full/scaleb.decTest b/qdecimal/test/tc_full/scaleb.decTest deleted file mode 100644 index f6730f2..0000000 --- a/qdecimal/test/tc_full/scaleb.decTest +++ /dev/null @@ -1,200 +0,0 @@ ------------------------------------------------------------------------- --- scaleb.decTest -- scale a number by powers of 10 -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Max |rhs| is 2*(999+9) = 2016 - --- Sanity checks -scbx001 scaleb 7.50 10 -> 7.50E+10 -scbx002 scaleb 7.50 3 -> 7.50E+3 -scbx003 scaleb 7.50 2 -> 750 -scbx004 scaleb 7.50 1 -> 75.0 -scbx005 scaleb 7.50 0 -> 7.50 -scbx006 scaleb 7.50 -1 -> 0.750 -scbx007 scaleb 7.50 -2 -> 0.0750 -scbx008 scaleb 7.50 -10 -> 7.50E-10 -scbx009 scaleb -7.50 3 -> -7.50E+3 -scbx010 scaleb -7.50 2 -> -750 -scbx011 scaleb -7.50 1 -> -75.0 -scbx012 scaleb -7.50 0 -> -7.50 -scbx013 scaleb -7.50 -1 -> -0.750 - --- Infinities -scbx014 scaleb Infinity 1 -> Infinity -scbx015 scaleb -Infinity 2 -> -Infinity -scbx016 scaleb Infinity -1 -> Infinity -scbx017 scaleb -Infinity -2 -> -Infinity - --- Next two are somewhat undefined in 754r; treat as non-integer -scbx018 scaleb 10 Infinity -> NaN Invalid_operation -scbx019 scaleb 10 -Infinity -> NaN Invalid_operation - --- NaNs are undefined in 754r; assume usual processing --- NaNs, 0 payload -scbx021 scaleb NaN 1 -> NaN -scbx022 scaleb -NaN -1 -> -NaN -scbx023 scaleb sNaN 1 -> NaN Invalid_operation -scbx024 scaleb -sNaN 1 -> -NaN Invalid_operation -scbx025 scaleb 4 NaN -> NaN -scbx026 scaleb -Inf -NaN -> -NaN -scbx027 scaleb 4 sNaN -> NaN Invalid_operation -scbx028 scaleb Inf -sNaN -> -NaN Invalid_operation - --- non-integer RHS -scbx030 scaleb 1.23 1 -> 12.3 -scbx031 scaleb 1.23 1.00 -> NaN Invalid_operation -scbx032 scaleb 1.23 1.1 -> NaN Invalid_operation -scbx033 scaleb 1.23 1.01 -> NaN Invalid_operation -scbx034 scaleb 1.23 0.01 -> NaN Invalid_operation -scbx035 scaleb 1.23 0.11 -> NaN Invalid_operation -scbx036 scaleb 1.23 0.999999999 -> NaN Invalid_operation -scbx037 scaleb 1.23 -1 -> 0.123 -scbx038 scaleb 1.23 -1.00 -> NaN Invalid_operation -scbx039 scaleb 1.23 -1.1 -> NaN Invalid_operation -scbx040 scaleb 1.23 -1.01 -> NaN Invalid_operation -scbx041 scaleb 1.23 -0.01 -> NaN Invalid_operation -scbx042 scaleb 1.23 -0.11 -> NaN Invalid_operation -scbx043 scaleb 1.23 -0.999999999 -> NaN Invalid_operation -scbx044 scaleb 1.23 0.1 -> NaN Invalid_operation -scbx045 scaleb 1.23 1E+1 -> NaN Invalid_operation -scbx046 scaleb 1.23 1.1234E+6 -> NaN Invalid_operation -scbx047 scaleb 1.23 1.123E+4 -> NaN Invalid_operation - - -scbx120 scaleb 1.23 2015 -> Infinity Overflow Inexact Rounded -scbx121 scaleb 1.23 2016 -> Infinity Overflow Inexact Rounded -scbx122 scaleb 1.23 2017 -> NaN Invalid_operation -scbx123 scaleb 1.23 2018 -> NaN Invalid_operation -scbx124 scaleb 1.23 -2015 -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped -scbx125 scaleb 1.23 -2016 -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped -scbx126 scaleb 1.23 -2017 -> NaN Invalid_operation -scbx127 scaleb 1.23 -2018 -> NaN Invalid_operation - --- NaNs, non-0 payload --- propagating NaNs -scbx861 scaleb NaN01 -Inf -> NaN1 -scbx862 scaleb -NaN02 -1000 -> -NaN2 -scbx863 scaleb NaN03 1000 -> NaN3 -scbx864 scaleb NaN04 Inf -> NaN4 -scbx865 scaleb NaN05 NaN61 -> NaN5 -scbx866 scaleb -Inf -NaN71 -> -NaN71 -scbx867 scaleb -1000 NaN81 -> NaN81 -scbx868 scaleb 1000 NaN91 -> NaN91 -scbx869 scaleb Inf NaN101 -> NaN101 -scbx871 scaleb sNaN011 -Inf -> NaN11 Invalid_operation -scbx872 scaleb sNaN012 -1000 -> NaN12 Invalid_operation -scbx873 scaleb -sNaN013 1000 -> -NaN13 Invalid_operation -scbx874 scaleb sNaN014 NaN171 -> NaN14 Invalid_operation -scbx875 scaleb sNaN015 sNaN181 -> NaN15 Invalid_operation -scbx876 scaleb NaN016 sNaN191 -> NaN191 Invalid_operation -scbx877 scaleb -Inf sNaN201 -> NaN201 Invalid_operation -scbx878 scaleb -1000 sNaN211 -> NaN211 Invalid_operation -scbx879 scaleb 1000 -sNaN221 -> -NaN221 Invalid_operation -scbx880 scaleb Inf sNaN231 -> NaN231 Invalid_operation -scbx881 scaleb NaN025 sNaN241 -> NaN241 Invalid_operation - --- finites -scbx051 scaleb 7 -2 -> 0.07 -scbx052 scaleb -7 -2 -> -0.07 -scbx053 scaleb 75 -2 -> 0.75 -scbx054 scaleb -75 -2 -> -0.75 -scbx055 scaleb 7.50 -2 -> 0.0750 -scbx056 scaleb -7.50 -2 -> -0.0750 -scbx057 scaleb 7.500 -2 -> 0.07500 -scbx058 scaleb -7.500 -2 -> -0.07500 -scbx061 scaleb 7 -1 -> 0.7 -scbx062 scaleb -7 -1 -> -0.7 -scbx063 scaleb 75 -1 -> 7.5 -scbx064 scaleb -75 -1 -> -7.5 -scbx065 scaleb 7.50 -1 -> 0.750 -scbx066 scaleb -7.50 -1 -> -0.750 -scbx067 scaleb 7.500 -1 -> 0.7500 -scbx068 scaleb -7.500 -1 -> -0.7500 -scbx071 scaleb 7 0 -> 7 -scbx072 scaleb -7 0 -> -7 -scbx073 scaleb 75 0 -> 75 -scbx074 scaleb -75 0 -> -75 -scbx075 scaleb 7.50 0 -> 7.50 -scbx076 scaleb -7.50 0 -> -7.50 -scbx077 scaleb 7.500 0 -> 7.500 -scbx078 scaleb -7.500 0 -> -7.500 -scbx081 scaleb 7 1 -> 7E+1 -scbx082 scaleb -7 1 -> -7E+1 -scbx083 scaleb 75 1 -> 7.5E+2 -scbx084 scaleb -75 1 -> -7.5E+2 -scbx085 scaleb 7.50 1 -> 75.0 -scbx086 scaleb -7.50 1 -> -75.0 -scbx087 scaleb 7.500 1 -> 75.00 -scbx088 scaleb -7.500 1 -> -75.00 -scbx091 scaleb 7 2 -> 7E+2 -scbx092 scaleb -7 2 -> -7E+2 -scbx093 scaleb 75 2 -> 7.5E+3 -scbx094 scaleb -75 2 -> -7.5E+3 -scbx095 scaleb 7.50 2 -> 750 -scbx096 scaleb -7.50 2 -> -750 -scbx097 scaleb 7.500 2 -> 750.0 -scbx098 scaleb -7.500 2 -> -750.0 - --- zeros -scbx111 scaleb 0 1 -> 0E+1 -scbx112 scaleb -0 2 -> -0E+2 -scbx113 scaleb 0E+4 3 -> 0E+7 -scbx114 scaleb -0E+4 4 -> -0E+8 -scbx115 scaleb 0.0000 5 -> 0E+1 -scbx116 scaleb -0.0000 6 -> -0E+2 -scbx117 scaleb 0E-141 7 -> 0E-134 -scbx118 scaleb -0E-141 8 -> -0E-133 - --- Nmax, Nmin, Ntiny -scbx132 scaleb 9.99999999E+999 +999 -> Infinity Overflow Inexact Rounded -scbx133 scaleb 9.99999999E+999 +10 -> Infinity Overflow Inexact Rounded -scbx134 scaleb 9.99999999E+999 +1 -> Infinity Overflow Inexact Rounded -scbx135 scaleb 9.99999999E+999 0 -> 9.99999999E+999 -scbx136 scaleb 9.99999999E+999 -1 -> 9.99999999E+998 -scbx137 scaleb 1E-999 +1 -> 1E-998 -scbx138 scaleb 1E-999 -0 -> 1E-999 -scbx139 scaleb 1E-999 -1 -> 1E-1000 Subnormal -scbx140 scaleb 1.00000000E-999 +1 -> 1.00000000E-998 -scbx141 scaleb 1.00000000E-999 0 -> 1.00000000E-999 -scbx142 scaleb 1.00000000E-999 -1 -> 1.0000000E-1000 Subnormal Rounded -scbx143 scaleb 1E-1007 +1 -> 1E-1006 Subnormal -scbx144 scaleb 1E-1007 -0 -> 1E-1007 Subnormal -scbx145 scaleb 1E-1007 -1 -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped - -scbx150 scaleb -1E-1007 +1 -> -1E-1006 Subnormal -scbx151 scaleb -1E-1007 -0 -> -1E-1007 Subnormal -scbx152 scaleb -1E-1007 -1 -> -0E-1007 Underflow Subnormal Inexact Rounded Clamped -scbx153 scaleb -1.00000000E-999 +1 -> -1.00000000E-998 -scbx154 scaleb -1.00000000E-999 +0 -> -1.00000000E-999 -scbx155 scaleb -1.00000000E-999 -1 -> -1.0000000E-1000 Subnormal Rounded -scbx156 scaleb -1E-999 +1 -> -1E-998 -scbx157 scaleb -1E-999 -0 -> -1E-999 -scbx158 scaleb -1E-999 -1 -> -1E-1000 Subnormal -scbx159 scaleb -9.99999999E+999 +1 -> -Infinity Overflow Inexact Rounded -scbx160 scaleb -9.99999999E+999 +0 -> -9.99999999E+999 -scbx161 scaleb -9.99999999E+999 -1 -> -9.99999999E+998 -scbx162 scaleb -9E+999 +1 -> -Infinity Overflow Inexact Rounded -scbx163 scaleb -1E+999 +1 -> -Infinity Overflow Inexact Rounded diff --git a/qdecimal/test/tc_full/shift.decTest b/qdecimal/test/tc_full/shift.decTest deleted file mode 100644 index 5933967..0000000 --- a/qdecimal/test/tc_full/shift.decTest +++ /dev/null @@ -1,250 +0,0 @@ ------------------------------------------------------------------------- --- shift.decTest -- shift coefficient left or right -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check -shix001 shift 0 0 -> 0 -shix002 shift 0 2 -> 0 -shix003 shift 1 2 -> 100 -shix004 shift 1 8 -> 100000000 -shix005 shift 1 9 -> 0 -shix006 shift 1 -1 -> 0 -shix007 shift 123456789 -1 -> 12345678 -shix008 shift 123456789 -8 -> 1 -shix009 shift 123456789 -9 -> 0 -shix010 shift 0 -2 -> 0 - --- rhs must be an integer -shix011 shift 1 1.5 -> NaN Invalid_operation -shix012 shift 1 1.0 -> NaN Invalid_operation -shix013 shift 1 0.1 -> NaN Invalid_operation -shix014 shift 1 0.0 -> NaN Invalid_operation -shix015 shift 1 1E+1 -> NaN Invalid_operation -shix016 shift 1 1E+99 -> NaN Invalid_operation -shix017 shift 1 Inf -> NaN Invalid_operation -shix018 shift 1 -Inf -> NaN Invalid_operation --- and |rhs| <= precision -shix020 shift 1 -1000 -> NaN Invalid_operation -shix021 shift 1 -10 -> NaN Invalid_operation -shix022 shift 1 10 -> NaN Invalid_operation -shix023 shift 1 1000 -> NaN Invalid_operation - --- full shifting pattern -shix030 shift 123456789 -9 -> 0 -shix031 shift 123456789 -8 -> 1 -shix032 shift 123456789 -7 -> 12 -shix033 shift 123456789 -6 -> 123 -shix034 shift 123456789 -5 -> 1234 -shix035 shift 123456789 -4 -> 12345 -shix036 shift 123456789 -3 -> 123456 -shix037 shift 123456789 -2 -> 1234567 -shix038 shift 123456789 -1 -> 12345678 -shix039 shift 123456789 -0 -> 123456789 -shix040 shift 123456789 +0 -> 123456789 -shix041 shift 123456789 +1 -> 234567890 -shix042 shift 123456789 +2 -> 345678900 -shix043 shift 123456789 +3 -> 456789000 -shix044 shift 123456789 +4 -> 567890000 -shix045 shift 123456789 +5 -> 678900000 -shix046 shift 123456789 +6 -> 789000000 -shix047 shift 123456789 +7 -> 890000000 -shix048 shift 123456789 +8 -> 900000000 -shix049 shift 123456789 +9 -> 0 - --- from examples -shix051 shift 34 8 -> '400000000' -shix052 shift 12 9 -> '0' -shix053 shift 123456789 -2 -> '1234567' -shix054 shift 123456789 0 -> '123456789' -shix055 shift 123456789 +2 -> '345678900' - --- zeros -shix060 shift 0E-10 +9 -> 0E-10 -shix061 shift 0E-10 -9 -> 0E-10 -shix062 shift 0.000 +9 -> 0.000 -shix063 shift 0.000 -9 -> 0.000 -shix064 shift 0E+10 +9 -> 0E+10 -shix065 shift 0E+10 -9 -> 0E+10 -shix066 shift -0E-10 +9 -> -0E-10 -shix067 shift -0E-10 -9 -> -0E-10 -shix068 shift -0.000 +9 -> -0.000 -shix069 shift -0.000 -9 -> -0.000 -shix070 shift -0E+10 +9 -> -0E+10 -shix071 shift -0E+10 -9 -> -0E+10 - --- Nmax, Nmin, Ntiny -shix141 shift 9.99999999E+999 -1 -> 9.9999999E+998 -shix142 shift 9.99999999E+999 -8 -> 9E+991 -shix143 shift 9.99999999E+999 1 -> 9.99999990E+999 -shix144 shift 9.99999999E+999 8 -> 9.00000000E+999 -shix145 shift 1E-999 -1 -> 0E-999 -shix146 shift 1E-999 -8 -> 0E-999 -shix147 shift 1E-999 1 -> 1.0E-998 -shix148 shift 1E-999 8 -> 1.00000000E-991 -shix151 shift 1.00000000E-999 -1 -> 1.0000000E-1000 -shix152 shift 1.00000000E-999 -8 -> 1E-1007 -shix153 shift 1.00000000E-999 1 -> 0E-1007 -shix154 shift 1.00000000E-999 8 -> 0E-1007 -shix155 shift 9.00000000E-999 -1 -> 9.0000000E-1000 -shix156 shift 9.00000000E-999 -8 -> 9E-1007 -shix157 shift 9.00000000E-999 1 -> 0E-1007 -shix158 shift 9.00000000E-999 8 -> 0E-1007 -shix160 shift 1E-1007 -1 -> 0E-1007 -shix161 shift 1E-1007 -8 -> 0E-1007 -shix162 shift 1E-1007 1 -> 1.0E-1006 -shix163 shift 1E-1007 8 -> 1.00000000E-999 --- negatives -shix171 shift -9.99999999E+999 -1 -> -9.9999999E+998 -shix172 shift -9.99999999E+999 -8 -> -9E+991 -shix173 shift -9.99999999E+999 1 -> -9.99999990E+999 -shix174 shift -9.99999999E+999 8 -> -9.00000000E+999 -shix175 shift -1E-999 -1 -> -0E-999 -shix176 shift -1E-999 -8 -> -0E-999 -shix177 shift -1E-999 1 -> -1.0E-998 -shix178 shift -1E-999 8 -> -1.00000000E-991 -shix181 shift -1.00000000E-999 -1 -> -1.0000000E-1000 -shix182 shift -1.00000000E-999 -8 -> -1E-1007 -shix183 shift -1.00000000E-999 1 -> -0E-1007 -shix184 shift -1.00000000E-999 8 -> -0E-1007 -shix185 shift -9.00000000E-999 -1 -> -9.0000000E-1000 -shix186 shift -9.00000000E-999 -8 -> -9E-1007 -shix187 shift -9.00000000E-999 1 -> -0E-1007 -shix188 shift -9.00000000E-999 8 -> -0E-1007 -shix190 shift -1E-1007 -1 -> -0E-1007 -shix191 shift -1E-1007 -8 -> -0E-1007 -shix192 shift -1E-1007 1 -> -1.0E-1006 -shix193 shift -1E-1007 8 -> -1.00000000E-999 - --- more negatives (of sanities) -shix201 shift -0 0 -> -0 -shix202 shift -0 2 -> -0 -shix203 shift -1 2 -> -100 -shix204 shift -1 8 -> -100000000 -shix205 shift -1 9 -> -0 -shix206 shift -1 -1 -> -0 -shix207 shift -123456789 -1 -> -12345678 -shix208 shift -123456789 -8 -> -1 -shix209 shift -123456789 -9 -> -0 -shix210 shift -0 -2 -> -0 -shix211 shift -0 -0 -> -0 - - --- Specials; NaNs are handled as usual -shix781 shift -Inf -8 -> -Infinity -shix782 shift -Inf -1 -> -Infinity -shix783 shift -Inf -0 -> -Infinity -shix784 shift -Inf 0 -> -Infinity -shix785 shift -Inf 1 -> -Infinity -shix786 shift -Inf 8 -> -Infinity -shix787 shift -1000 -Inf -> NaN Invalid_operation -shix788 shift -Inf -Inf -> NaN Invalid_operation -shix789 shift -1 -Inf -> NaN Invalid_operation -shix790 shift -0 -Inf -> NaN Invalid_operation -shix791 shift 0 -Inf -> NaN Invalid_operation -shix792 shift 1 -Inf -> NaN Invalid_operation -shix793 shift 1000 -Inf -> NaN Invalid_operation -shix794 shift Inf -Inf -> NaN Invalid_operation - -shix800 shift Inf -Inf -> NaN Invalid_operation -shix801 shift Inf -8 -> Infinity -shix802 shift Inf -1 -> Infinity -shix803 shift Inf -0 -> Infinity -shix804 shift Inf 0 -> Infinity -shix805 shift Inf 1 -> Infinity -shix806 shift Inf 8 -> Infinity -shix807 shift Inf Inf -> NaN Invalid_operation -shix808 shift -1000 Inf -> NaN Invalid_operation -shix809 shift -Inf Inf -> NaN Invalid_operation -shix810 shift -1 Inf -> NaN Invalid_operation -shix811 shift -0 Inf -> NaN Invalid_operation -shix812 shift 0 Inf -> NaN Invalid_operation -shix813 shift 1 Inf -> NaN Invalid_operation -shix814 shift 1000 Inf -> NaN Invalid_operation -shix815 shift Inf Inf -> NaN Invalid_operation - -shix821 shift NaN -Inf -> NaN -shix822 shift NaN -1000 -> NaN -shix823 shift NaN -1 -> NaN -shix824 shift NaN -0 -> NaN -shix825 shift NaN 0 -> NaN -shix826 shift NaN 1 -> NaN -shix827 shift NaN 1000 -> NaN -shix828 shift NaN Inf -> NaN -shix829 shift NaN NaN -> NaN -shix830 shift -Inf NaN -> NaN -shix831 shift -1000 NaN -> NaN -shix832 shift -1 NaN -> NaN -shix833 shift -0 NaN -> NaN -shix834 shift 0 NaN -> NaN -shix835 shift 1 NaN -> NaN -shix836 shift 1000 NaN -> NaN -shix837 shift Inf NaN -> NaN - -shix841 shift sNaN -Inf -> NaN Invalid_operation -shix842 shift sNaN -1000 -> NaN Invalid_operation -shix843 shift sNaN -1 -> NaN Invalid_operation -shix844 shift sNaN -0 -> NaN Invalid_operation -shix845 shift sNaN 0 -> NaN Invalid_operation -shix846 shift sNaN 1 -> NaN Invalid_operation -shix847 shift sNaN 1000 -> NaN Invalid_operation -shix848 shift sNaN NaN -> NaN Invalid_operation -shix849 shift sNaN sNaN -> NaN Invalid_operation -shix850 shift NaN sNaN -> NaN Invalid_operation -shix851 shift -Inf sNaN -> NaN Invalid_operation -shix852 shift -1000 sNaN -> NaN Invalid_operation -shix853 shift -1 sNaN -> NaN Invalid_operation -shix854 shift -0 sNaN -> NaN Invalid_operation -shix855 shift 0 sNaN -> NaN Invalid_operation -shix856 shift 1 sNaN -> NaN Invalid_operation -shix857 shift 1000 sNaN -> NaN Invalid_operation -shix858 shift Inf sNaN -> NaN Invalid_operation -shix859 shift NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -shix861 shift NaN1 -Inf -> NaN1 -shix862 shift +NaN2 -1000 -> NaN2 -shix863 shift NaN3 1000 -> NaN3 -shix864 shift NaN4 Inf -> NaN4 -shix865 shift NaN5 +NaN6 -> NaN5 -shix866 shift -Inf NaN7 -> NaN7 -shix867 shift -1000 NaN8 -> NaN8 -shix868 shift 1000 NaN9 -> NaN9 -shix869 shift Inf +NaN10 -> NaN10 -shix871 shift sNaN11 -Inf -> NaN11 Invalid_operation -shix872 shift sNaN12 -1000 -> NaN12 Invalid_operation -shix873 shift sNaN13 1000 -> NaN13 Invalid_operation -shix874 shift sNaN14 NaN17 -> NaN14 Invalid_operation -shix875 shift sNaN15 sNaN18 -> NaN15 Invalid_operation -shix876 shift NaN16 sNaN19 -> NaN19 Invalid_operation -shix877 shift -Inf +sNaN20 -> NaN20 Invalid_operation -shix878 shift -1000 sNaN21 -> NaN21 Invalid_operation -shix879 shift 1000 sNaN22 -> NaN22 Invalid_operation -shix880 shift Inf sNaN23 -> NaN23 Invalid_operation -shix881 shift +NaN25 +sNaN24 -> NaN24 Invalid_operation -shix882 shift -NaN26 NaN28 -> -NaN26 -shix883 shift -sNaN27 sNaN29 -> -NaN27 Invalid_operation -shix884 shift 1000 -NaN30 -> -NaN30 -shix885 shift 1000 -sNaN31 -> -NaN31 Invalid_operation diff --git a/qdecimal/test/tc_full/squareroot.decTest b/qdecimal/test/tc_full/squareroot.decTest deleted file mode 100644 index 33e9689..0000000 --- a/qdecimal/test/tc_full/squareroot.decTest +++ /dev/null @@ -1,3824 +0,0 @@ ------------------------------------------------------------------------- --- squareroot.decTest -- decimal square root -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- basics -sqtx001 squareroot 1 -> 1 -sqtx002 squareroot -1 -> NaN Invalid_operation -sqtx003 squareroot 1.00 -> 1.0 -sqtx004 squareroot -1.00 -> NaN Invalid_operation -sqtx005 squareroot 0 -> 0 -sqtx006 squareroot 00.0 -> 0.0 -sqtx007 squareroot 0.00 -> 0.0 -sqtx008 squareroot 00.00 -> 0.0 -sqtx009 squareroot 00.000 -> 0.00 -sqtx010 squareroot 00.0000 -> 0.00 -sqtx011 squareroot 00 -> 0 - -sqtx012 squareroot -2 -> NaN Invalid_operation -sqtx013 squareroot 2 -> 1.41421356 Inexact Rounded -sqtx014 squareroot -2.00 -> NaN Invalid_operation -sqtx015 squareroot 2.00 -> 1.41421356 Inexact Rounded -sqtx016 squareroot -0 -> -0 -sqtx017 squareroot -0.0 -> -0.0 -sqtx018 squareroot -00.00 -> -0.0 -sqtx019 squareroot -00.000 -> -0.00 -sqtx020 squareroot -0.0000 -> -0.00 -sqtx021 squareroot -0E+9 -> -0E+4 -sqtx022 squareroot -0E+10 -> -0E+5 -sqtx023 squareroot -0E+11 -> -0E+5 -sqtx024 squareroot -0E+12 -> -0E+6 -sqtx025 squareroot -00 -> -0 -sqtx026 squareroot 0E+5 -> 0E+2 -sqtx027 squareroot 4.0 -> 2.0 -sqtx028 squareroot 4.00 -> 2.0 - -sqtx030 squareroot +0.1 -> 0.316227766 Inexact Rounded -sqtx031 squareroot -0.1 -> NaN Invalid_operation -sqtx032 squareroot +0.01 -> 0.1 -sqtx033 squareroot -0.01 -> NaN Invalid_operation -sqtx034 squareroot +0.001 -> 0.0316227766 Inexact Rounded -sqtx035 squareroot -0.001 -> NaN Invalid_operation -sqtx036 squareroot +0.000001 -> 0.001 -sqtx037 squareroot -0.000001 -> NaN Invalid_operation -sqtx038 squareroot +0.000000000001 -> 0.000001 -sqtx039 squareroot -0.000000000001 -> NaN Invalid_operation - -sqtx041 squareroot 1.1 -> 1.04880885 Inexact Rounded -sqtx042 squareroot 1.10 -> 1.04880885 Inexact Rounded -sqtx043 squareroot 1.100 -> 1.04880885 Inexact Rounded -sqtx044 squareroot 1.110 -> 1.05356538 Inexact Rounded -sqtx045 squareroot -1.1 -> NaN Invalid_operation -sqtx046 squareroot -1.10 -> NaN Invalid_operation -sqtx047 squareroot -1.100 -> NaN Invalid_operation -sqtx048 squareroot -1.110 -> NaN Invalid_operation -sqtx049 squareroot 9.9 -> 3.14642654 Inexact Rounded -sqtx050 squareroot 9.90 -> 3.14642654 Inexact Rounded -sqtx051 squareroot 9.900 -> 3.14642654 Inexact Rounded -sqtx052 squareroot 9.990 -> 3.16069613 Inexact Rounded -sqtx053 squareroot -9.9 -> NaN Invalid_operation -sqtx054 squareroot -9.90 -> NaN Invalid_operation -sqtx055 squareroot -9.900 -> NaN Invalid_operation -sqtx056 squareroot -9.990 -> NaN Invalid_operation - -sqtx060 squareroot 1 -> 1 -sqtx061 squareroot 1.0 -> 1.0 -sqtx062 squareroot 1.00 -> 1.0 -sqtx063 squareroot 10.0 -> 3.16227766 Inexact Rounded -sqtx064 squareroot 10.0 -> 3.16227766 Inexact Rounded -sqtx065 squareroot 10.0 -> 3.16227766 Inexact Rounded -sqtx066 squareroot 10.00 -> 3.16227766 Inexact Rounded -sqtx067 squareroot 100 -> 10 -sqtx068 squareroot 100.0 -> 10.0 -sqtx069 squareroot 100.00 -> 10.0 -sqtx070 squareroot 1.1000E+3 -> 33.1662479 Inexact Rounded -sqtx071 squareroot 1.10000E+3 -> 33.1662479 Inexact Rounded -sqtx072 squareroot -10.0 -> NaN Invalid_operation -sqtx073 squareroot -10.00 -> NaN Invalid_operation -sqtx074 squareroot -100.0 -> NaN Invalid_operation -sqtx075 squareroot -100.00 -> NaN Invalid_operation -sqtx076 squareroot -1.1000E+3 -> NaN Invalid_operation -sqtx077 squareroot -1.10000E+3 -> NaN Invalid_operation -sqtx078 squareroot 1.000 -> 1.00 -sqtx079 squareroot 1.0000 -> 1.00 - --- famous squares -sqtx080 squareroot 1 -> 1 -sqtx081 squareroot 4 -> 2 -sqtx082 squareroot 9 -> 3 -sqtx083 squareroot 16 -> 4 -sqtx084 squareroot 25 -> 5 -sqtx085 squareroot 36 -> 6 -sqtx086 squareroot 49 -> 7 -sqtx087 squareroot 64 -> 8 -sqtx088 squareroot 81 -> 9 -sqtx089 squareroot 100 -> 10 -sqtx090 squareroot 121 -> 11 -sqtx091 squareroot 144 -> 12 -sqtx092 squareroot 169 -> 13 -sqtx093 squareroot 256 -> 16 -sqtx094 squareroot 1024 -> 32 -sqtx095 squareroot 4096 -> 64 -sqtx100 squareroot 0.01 -> 0.1 -sqtx101 squareroot 0.04 -> 0.2 -sqtx102 squareroot 0.09 -> 0.3 -sqtx103 squareroot 0.16 -> 0.4 -sqtx104 squareroot 0.25 -> 0.5 -sqtx105 squareroot 0.36 -> 0.6 -sqtx106 squareroot 0.49 -> 0.7 -sqtx107 squareroot 0.64 -> 0.8 -sqtx108 squareroot 0.81 -> 0.9 -sqtx109 squareroot 1.00 -> 1.0 -sqtx110 squareroot 1.21 -> 1.1 -sqtx111 squareroot 1.44 -> 1.2 -sqtx112 squareroot 1.69 -> 1.3 -sqtx113 squareroot 2.56 -> 1.6 -sqtx114 squareroot 10.24 -> 3.2 -sqtx115 squareroot 40.96 -> 6.4 - --- Precision 1 squareroot tests [exhaustive, plus exponent adjusts] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 1 -sqtx1201 squareroot 0.1 -> 0.3 Inexact Rounded -sqtx1202 squareroot 0.01 -> 0.1 -sqtx1203 squareroot 1.0E-1 -> 0.3 Inexact Rounded -sqtx1204 squareroot 1.00E-2 -> 0.1 Rounded -sqtx1205 squareroot 1E-3 -> 0.03 Inexact Rounded -sqtx1206 squareroot 1E+1 -> 3 Inexact Rounded -sqtx1207 squareroot 1E+2 -> 1E+1 -sqtx1208 squareroot 1E+3 -> 3E+1 Inexact Rounded -sqtx1209 squareroot 0.2 -> 0.4 Inexact Rounded -sqtx1210 squareroot 0.02 -> 0.1 Inexact Rounded -sqtx1211 squareroot 2.0E-1 -> 0.4 Inexact Rounded -sqtx1212 squareroot 2.00E-2 -> 0.1 Inexact Rounded -sqtx1213 squareroot 2E-3 -> 0.04 Inexact Rounded -sqtx1214 squareroot 2E+1 -> 4 Inexact Rounded -sqtx1215 squareroot 2E+2 -> 1E+1 Inexact Rounded -sqtx1216 squareroot 2E+3 -> 4E+1 Inexact Rounded -sqtx1217 squareroot 0.3 -> 0.5 Inexact Rounded -sqtx1218 squareroot 0.03 -> 0.2 Inexact Rounded -sqtx1219 squareroot 3.0E-1 -> 0.5 Inexact Rounded -sqtx1220 squareroot 3.00E-2 -> 0.2 Inexact Rounded -sqtx1221 squareroot 3E-3 -> 0.05 Inexact Rounded -sqtx1222 squareroot 3E+1 -> 5 Inexact Rounded -sqtx1223 squareroot 3E+2 -> 2E+1 Inexact Rounded -sqtx1224 squareroot 3E+3 -> 5E+1 Inexact Rounded -sqtx1225 squareroot 0.4 -> 0.6 Inexact Rounded -sqtx1226 squareroot 0.04 -> 0.2 -sqtx1227 squareroot 4.0E-1 -> 0.6 Inexact Rounded -sqtx1228 squareroot 4.00E-2 -> 0.2 Rounded -sqtx1229 squareroot 4E-3 -> 0.06 Inexact Rounded -sqtx1230 squareroot 4E+1 -> 6 Inexact Rounded -sqtx1231 squareroot 4E+2 -> 2E+1 -sqtx1232 squareroot 4E+3 -> 6E+1 Inexact Rounded -sqtx1233 squareroot 0.5 -> 0.7 Inexact Rounded -sqtx1234 squareroot 0.05 -> 0.2 Inexact Rounded -sqtx1235 squareroot 5.0E-1 -> 0.7 Inexact Rounded -sqtx1236 squareroot 5.00E-2 -> 0.2 Inexact Rounded -sqtx1237 squareroot 5E-3 -> 0.07 Inexact Rounded -sqtx1238 squareroot 5E+1 -> 7 Inexact Rounded -sqtx1239 squareroot 5E+2 -> 2E+1 Inexact Rounded -sqtx1240 squareroot 5E+3 -> 7E+1 Inexact Rounded -sqtx1241 squareroot 0.6 -> 0.8 Inexact Rounded -sqtx1242 squareroot 0.06 -> 0.2 Inexact Rounded -sqtx1243 squareroot 6.0E-1 -> 0.8 Inexact Rounded -sqtx1244 squareroot 6.00E-2 -> 0.2 Inexact Rounded -sqtx1245 squareroot 6E-3 -> 0.08 Inexact Rounded -sqtx1246 squareroot 6E+1 -> 8 Inexact Rounded -sqtx1247 squareroot 6E+2 -> 2E+1 Inexact Rounded -sqtx1248 squareroot 6E+3 -> 8E+1 Inexact Rounded -sqtx1249 squareroot 0.7 -> 0.8 Inexact Rounded -sqtx1250 squareroot 0.07 -> 0.3 Inexact Rounded -sqtx1251 squareroot 7.0E-1 -> 0.8 Inexact Rounded -sqtx1252 squareroot 7.00E-2 -> 0.3 Inexact Rounded -sqtx1253 squareroot 7E-3 -> 0.08 Inexact Rounded -sqtx1254 squareroot 7E+1 -> 8 Inexact Rounded -sqtx1255 squareroot 7E+2 -> 3E+1 Inexact Rounded -sqtx1256 squareroot 7E+3 -> 8E+1 Inexact Rounded -sqtx1257 squareroot 0.8 -> 0.9 Inexact Rounded -sqtx1258 squareroot 0.08 -> 0.3 Inexact Rounded -sqtx1259 squareroot 8.0E-1 -> 0.9 Inexact Rounded -sqtx1260 squareroot 8.00E-2 -> 0.3 Inexact Rounded -sqtx1261 squareroot 8E-3 -> 0.09 Inexact Rounded -sqtx1262 squareroot 8E+1 -> 9 Inexact Rounded -sqtx1263 squareroot 8E+2 -> 3E+1 Inexact Rounded -sqtx1264 squareroot 8E+3 -> 9E+1 Inexact Rounded -sqtx1265 squareroot 0.9 -> 0.9 Inexact Rounded -sqtx1266 squareroot 0.09 -> 0.3 -sqtx1267 squareroot 9.0E-1 -> 0.9 Inexact Rounded -sqtx1268 squareroot 9.00E-2 -> 0.3 Rounded -sqtx1269 squareroot 9E-3 -> 0.09 Inexact Rounded -sqtx1270 squareroot 9E+1 -> 9 Inexact Rounded -sqtx1271 squareroot 9E+2 -> 3E+1 -sqtx1272 squareroot 9E+3 -> 9E+1 Inexact Rounded - --- Precision 2 squareroot tests [exhaustive, plus exponent adjusts] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 2 -sqtx2201 squareroot 0.1 -> 0.32 Inexact Rounded -sqtx2202 squareroot 0.01 -> 0.1 -sqtx2203 squareroot 1.0E-1 -> 0.32 Inexact Rounded -sqtx2204 squareroot 1.00E-2 -> 0.10 -sqtx2205 squareroot 1E-3 -> 0.032 Inexact Rounded -sqtx2206 squareroot 1E+1 -> 3.2 Inexact Rounded -sqtx2207 squareroot 1E+2 -> 1E+1 -sqtx2208 squareroot 1E+3 -> 32 Inexact Rounded -sqtx2209 squareroot 0.2 -> 0.45 Inexact Rounded -sqtx2210 squareroot 0.02 -> 0.14 Inexact Rounded -sqtx2211 squareroot 2.0E-1 -> 0.45 Inexact Rounded -sqtx2212 squareroot 2.00E-2 -> 0.14 Inexact Rounded -sqtx2213 squareroot 2E-3 -> 0.045 Inexact Rounded -sqtx2214 squareroot 2E+1 -> 4.5 Inexact Rounded -sqtx2215 squareroot 2E+2 -> 14 Inexact Rounded -sqtx2216 squareroot 2E+3 -> 45 Inexact Rounded -sqtx2217 squareroot 0.3 -> 0.55 Inexact Rounded -sqtx2218 squareroot 0.03 -> 0.17 Inexact Rounded -sqtx2219 squareroot 3.0E-1 -> 0.55 Inexact Rounded -sqtx2220 squareroot 3.00E-2 -> 0.17 Inexact Rounded -sqtx2221 squareroot 3E-3 -> 0.055 Inexact Rounded -sqtx2222 squareroot 3E+1 -> 5.5 Inexact Rounded -sqtx2223 squareroot 3E+2 -> 17 Inexact Rounded -sqtx2224 squareroot 3E+3 -> 55 Inexact Rounded -sqtx2225 squareroot 0.4 -> 0.63 Inexact Rounded -sqtx2226 squareroot 0.04 -> 0.2 -sqtx2227 squareroot 4.0E-1 -> 0.63 Inexact Rounded -sqtx2228 squareroot 4.00E-2 -> 0.20 -sqtx2229 squareroot 4E-3 -> 0.063 Inexact Rounded -sqtx2230 squareroot 4E+1 -> 6.3 Inexact Rounded -sqtx2231 squareroot 4E+2 -> 2E+1 -sqtx2232 squareroot 4E+3 -> 63 Inexact Rounded -sqtx2233 squareroot 0.5 -> 0.71 Inexact Rounded -sqtx2234 squareroot 0.05 -> 0.22 Inexact Rounded -sqtx2235 squareroot 5.0E-1 -> 0.71 Inexact Rounded -sqtx2236 squareroot 5.00E-2 -> 0.22 Inexact Rounded -sqtx2237 squareroot 5E-3 -> 0.071 Inexact Rounded -sqtx2238 squareroot 5E+1 -> 7.1 Inexact Rounded -sqtx2239 squareroot 5E+2 -> 22 Inexact Rounded -sqtx2240 squareroot 5E+3 -> 71 Inexact Rounded -sqtx2241 squareroot 0.6 -> 0.77 Inexact Rounded -sqtx2242 squareroot 0.06 -> 0.24 Inexact Rounded -sqtx2243 squareroot 6.0E-1 -> 0.77 Inexact Rounded -sqtx2244 squareroot 6.00E-2 -> 0.24 Inexact Rounded -sqtx2245 squareroot 6E-3 -> 0.077 Inexact Rounded -sqtx2246 squareroot 6E+1 -> 7.7 Inexact Rounded -sqtx2247 squareroot 6E+2 -> 24 Inexact Rounded -sqtx2248 squareroot 6E+3 -> 77 Inexact Rounded -sqtx2249 squareroot 0.7 -> 0.84 Inexact Rounded -sqtx2250 squareroot 0.07 -> 0.26 Inexact Rounded -sqtx2251 squareroot 7.0E-1 -> 0.84 Inexact Rounded -sqtx2252 squareroot 7.00E-2 -> 0.26 Inexact Rounded -sqtx2253 squareroot 7E-3 -> 0.084 Inexact Rounded -sqtx2254 squareroot 7E+1 -> 8.4 Inexact Rounded -sqtx2255 squareroot 7E+2 -> 26 Inexact Rounded -sqtx2256 squareroot 7E+3 -> 84 Inexact Rounded -sqtx2257 squareroot 0.8 -> 0.89 Inexact Rounded -sqtx2258 squareroot 0.08 -> 0.28 Inexact Rounded -sqtx2259 squareroot 8.0E-1 -> 0.89 Inexact Rounded -sqtx2260 squareroot 8.00E-2 -> 0.28 Inexact Rounded -sqtx2261 squareroot 8E-3 -> 0.089 Inexact Rounded -sqtx2262 squareroot 8E+1 -> 8.9 Inexact Rounded -sqtx2263 squareroot 8E+2 -> 28 Inexact Rounded -sqtx2264 squareroot 8E+3 -> 89 Inexact Rounded -sqtx2265 squareroot 0.9 -> 0.95 Inexact Rounded -sqtx2266 squareroot 0.09 -> 0.3 -sqtx2267 squareroot 9.0E-1 -> 0.95 Inexact Rounded -sqtx2268 squareroot 9.00E-2 -> 0.30 -sqtx2269 squareroot 9E-3 -> 0.095 Inexact Rounded -sqtx2270 squareroot 9E+1 -> 9.5 Inexact Rounded -sqtx2271 squareroot 9E+2 -> 3E+1 -sqtx2272 squareroot 9E+3 -> 95 Inexact Rounded -sqtx2273 squareroot 0.10 -> 0.32 Inexact Rounded -sqtx2274 squareroot 0.010 -> 0.10 -sqtx2275 squareroot 10.0E-1 -> 1.0 -sqtx2276 squareroot 10.00E-2 -> 0.32 Inexact Rounded -sqtx2277 squareroot 10E-3 -> 0.10 -sqtx2278 squareroot 10E+1 -> 10 -sqtx2279 squareroot 10E+2 -> 32 Inexact Rounded -sqtx2280 squareroot 10E+3 -> 1.0E+2 -sqtx2281 squareroot 0.11 -> 0.33 Inexact Rounded -sqtx2282 squareroot 0.011 -> 0.10 Inexact Rounded -sqtx2283 squareroot 11.0E-1 -> 1.0 Inexact Rounded -sqtx2284 squareroot 11.00E-2 -> 0.33 Inexact Rounded -sqtx2285 squareroot 11E-3 -> 0.10 Inexact Rounded -sqtx2286 squareroot 11E+1 -> 10 Inexact Rounded -sqtx2287 squareroot 11E+2 -> 33 Inexact Rounded -sqtx2288 squareroot 11E+3 -> 1.0E+2 Inexact Rounded -sqtx2289 squareroot 0.12 -> 0.35 Inexact Rounded -sqtx2290 squareroot 0.012 -> 0.11 Inexact Rounded -sqtx2291 squareroot 12.0E-1 -> 1.1 Inexact Rounded -sqtx2292 squareroot 12.00E-2 -> 0.35 Inexact Rounded -sqtx2293 squareroot 12E-3 -> 0.11 Inexact Rounded -sqtx2294 squareroot 12E+1 -> 11 Inexact Rounded -sqtx2295 squareroot 12E+2 -> 35 Inexact Rounded -sqtx2296 squareroot 12E+3 -> 1.1E+2 Inexact Rounded -sqtx2297 squareroot 0.13 -> 0.36 Inexact Rounded -sqtx2298 squareroot 0.013 -> 0.11 Inexact Rounded -sqtx2299 squareroot 13.0E-1 -> 1.1 Inexact Rounded -sqtx2300 squareroot 13.00E-2 -> 0.36 Inexact Rounded -sqtx2301 squareroot 13E-3 -> 0.11 Inexact Rounded -sqtx2302 squareroot 13E+1 -> 11 Inexact Rounded -sqtx2303 squareroot 13E+2 -> 36 Inexact Rounded -sqtx2304 squareroot 13E+3 -> 1.1E+2 Inexact Rounded -sqtx2305 squareroot 0.14 -> 0.37 Inexact Rounded -sqtx2306 squareroot 0.014 -> 0.12 Inexact Rounded -sqtx2307 squareroot 14.0E-1 -> 1.2 Inexact Rounded -sqtx2308 squareroot 14.00E-2 -> 0.37 Inexact Rounded -sqtx2309 squareroot 14E-3 -> 0.12 Inexact Rounded -sqtx2310 squareroot 14E+1 -> 12 Inexact Rounded -sqtx2311 squareroot 14E+2 -> 37 Inexact Rounded -sqtx2312 squareroot 14E+3 -> 1.2E+2 Inexact Rounded -sqtx2313 squareroot 0.15 -> 0.39 Inexact Rounded -sqtx2314 squareroot 0.015 -> 0.12 Inexact Rounded -sqtx2315 squareroot 15.0E-1 -> 1.2 Inexact Rounded -sqtx2316 squareroot 15.00E-2 -> 0.39 Inexact Rounded -sqtx2317 squareroot 15E-3 -> 0.12 Inexact Rounded -sqtx2318 squareroot 15E+1 -> 12 Inexact Rounded -sqtx2319 squareroot 15E+2 -> 39 Inexact Rounded -sqtx2320 squareroot 15E+3 -> 1.2E+2 Inexact Rounded -sqtx2321 squareroot 0.16 -> 0.4 -sqtx2322 squareroot 0.016 -> 0.13 Inexact Rounded -sqtx2323 squareroot 16.0E-1 -> 1.3 Inexact Rounded -sqtx2324 squareroot 16.00E-2 -> 0.40 -sqtx2325 squareroot 16E-3 -> 0.13 Inexact Rounded -sqtx2326 squareroot 16E+1 -> 13 Inexact Rounded -sqtx2327 squareroot 16E+2 -> 4E+1 -sqtx2328 squareroot 16E+3 -> 1.3E+2 Inexact Rounded -sqtx2329 squareroot 0.17 -> 0.41 Inexact Rounded -sqtx2330 squareroot 0.017 -> 0.13 Inexact Rounded -sqtx2331 squareroot 17.0E-1 -> 1.3 Inexact Rounded -sqtx2332 squareroot 17.00E-2 -> 0.41 Inexact Rounded -sqtx2333 squareroot 17E-3 -> 0.13 Inexact Rounded -sqtx2334 squareroot 17E+1 -> 13 Inexact Rounded -sqtx2335 squareroot 17E+2 -> 41 Inexact Rounded -sqtx2336 squareroot 17E+3 -> 1.3E+2 Inexact Rounded -sqtx2337 squareroot 0.18 -> 0.42 Inexact Rounded -sqtx2338 squareroot 0.018 -> 0.13 Inexact Rounded -sqtx2339 squareroot 18.0E-1 -> 1.3 Inexact Rounded -sqtx2340 squareroot 18.00E-2 -> 0.42 Inexact Rounded -sqtx2341 squareroot 18E-3 -> 0.13 Inexact Rounded -sqtx2342 squareroot 18E+1 -> 13 Inexact Rounded -sqtx2343 squareroot 18E+2 -> 42 Inexact Rounded -sqtx2344 squareroot 18E+3 -> 1.3E+2 Inexact Rounded -sqtx2345 squareroot 0.19 -> 0.44 Inexact Rounded -sqtx2346 squareroot 0.019 -> 0.14 Inexact Rounded -sqtx2347 squareroot 19.0E-1 -> 1.4 Inexact Rounded -sqtx2348 squareroot 19.00E-2 -> 0.44 Inexact Rounded -sqtx2349 squareroot 19E-3 -> 0.14 Inexact Rounded -sqtx2350 squareroot 19E+1 -> 14 Inexact Rounded -sqtx2351 squareroot 19E+2 -> 44 Inexact Rounded -sqtx2352 squareroot 19E+3 -> 1.4E+2 Inexact Rounded -sqtx2353 squareroot 0.20 -> 0.45 Inexact Rounded -sqtx2354 squareroot 0.020 -> 0.14 Inexact Rounded -sqtx2355 squareroot 20.0E-1 -> 1.4 Inexact Rounded -sqtx2356 squareroot 20.00E-2 -> 0.45 Inexact Rounded -sqtx2357 squareroot 20E-3 -> 0.14 Inexact Rounded -sqtx2358 squareroot 20E+1 -> 14 Inexact Rounded -sqtx2359 squareroot 20E+2 -> 45 Inexact Rounded -sqtx2360 squareroot 20E+3 -> 1.4E+2 Inexact Rounded -sqtx2361 squareroot 0.21 -> 0.46 Inexact Rounded -sqtx2362 squareroot 0.021 -> 0.14 Inexact Rounded -sqtx2363 squareroot 21.0E-1 -> 1.4 Inexact Rounded -sqtx2364 squareroot 21.00E-2 -> 0.46 Inexact Rounded -sqtx2365 squareroot 21E-3 -> 0.14 Inexact Rounded -sqtx2366 squareroot 21E+1 -> 14 Inexact Rounded -sqtx2367 squareroot 21E+2 -> 46 Inexact Rounded -sqtx2368 squareroot 21E+3 -> 1.4E+2 Inexact Rounded -sqtx2369 squareroot 0.22 -> 0.47 Inexact Rounded -sqtx2370 squareroot 0.022 -> 0.15 Inexact Rounded -sqtx2371 squareroot 22.0E-1 -> 1.5 Inexact Rounded -sqtx2372 squareroot 22.00E-2 -> 0.47 Inexact Rounded -sqtx2373 squareroot 22E-3 -> 0.15 Inexact Rounded -sqtx2374 squareroot 22E+1 -> 15 Inexact Rounded -sqtx2375 squareroot 22E+2 -> 47 Inexact Rounded -sqtx2376 squareroot 22E+3 -> 1.5E+2 Inexact Rounded -sqtx2377 squareroot 0.23 -> 0.48 Inexact Rounded -sqtx2378 squareroot 0.023 -> 0.15 Inexact Rounded -sqtx2379 squareroot 23.0E-1 -> 1.5 Inexact Rounded -sqtx2380 squareroot 23.00E-2 -> 0.48 Inexact Rounded -sqtx2381 squareroot 23E-3 -> 0.15 Inexact Rounded -sqtx2382 squareroot 23E+1 -> 15 Inexact Rounded -sqtx2383 squareroot 23E+2 -> 48 Inexact Rounded -sqtx2384 squareroot 23E+3 -> 1.5E+2 Inexact Rounded -sqtx2385 squareroot 0.24 -> 0.49 Inexact Rounded -sqtx2386 squareroot 0.024 -> 0.15 Inexact Rounded -sqtx2387 squareroot 24.0E-1 -> 1.5 Inexact Rounded -sqtx2388 squareroot 24.00E-2 -> 0.49 Inexact Rounded -sqtx2389 squareroot 24E-3 -> 0.15 Inexact Rounded -sqtx2390 squareroot 24E+1 -> 15 Inexact Rounded -sqtx2391 squareroot 24E+2 -> 49 Inexact Rounded -sqtx2392 squareroot 24E+3 -> 1.5E+2 Inexact Rounded -sqtx2393 squareroot 0.25 -> 0.5 -sqtx2394 squareroot 0.025 -> 0.16 Inexact Rounded -sqtx2395 squareroot 25.0E-1 -> 1.6 Inexact Rounded -sqtx2396 squareroot 25.00E-2 -> 0.50 -sqtx2397 squareroot 25E-3 -> 0.16 Inexact Rounded -sqtx2398 squareroot 25E+1 -> 16 Inexact Rounded -sqtx2399 squareroot 25E+2 -> 5E+1 -sqtx2400 squareroot 25E+3 -> 1.6E+2 Inexact Rounded -sqtx2401 squareroot 0.26 -> 0.51 Inexact Rounded -sqtx2402 squareroot 0.026 -> 0.16 Inexact Rounded -sqtx2403 squareroot 26.0E-1 -> 1.6 Inexact Rounded -sqtx2404 squareroot 26.00E-2 -> 0.51 Inexact Rounded -sqtx2405 squareroot 26E-3 -> 0.16 Inexact Rounded -sqtx2406 squareroot 26E+1 -> 16 Inexact Rounded -sqtx2407 squareroot 26E+2 -> 51 Inexact Rounded -sqtx2408 squareroot 26E+3 -> 1.6E+2 Inexact Rounded -sqtx2409 squareroot 0.27 -> 0.52 Inexact Rounded -sqtx2410 squareroot 0.027 -> 0.16 Inexact Rounded -sqtx2411 squareroot 27.0E-1 -> 1.6 Inexact Rounded -sqtx2412 squareroot 27.00E-2 -> 0.52 Inexact Rounded -sqtx2413 squareroot 27E-3 -> 0.16 Inexact Rounded -sqtx2414 squareroot 27E+1 -> 16 Inexact Rounded -sqtx2415 squareroot 27E+2 -> 52 Inexact Rounded -sqtx2416 squareroot 27E+3 -> 1.6E+2 Inexact Rounded -sqtx2417 squareroot 0.28 -> 0.53 Inexact Rounded -sqtx2418 squareroot 0.028 -> 0.17 Inexact Rounded -sqtx2419 squareroot 28.0E-1 -> 1.7 Inexact Rounded -sqtx2420 squareroot 28.00E-2 -> 0.53 Inexact Rounded -sqtx2421 squareroot 28E-3 -> 0.17 Inexact Rounded -sqtx2422 squareroot 28E+1 -> 17 Inexact Rounded -sqtx2423 squareroot 28E+2 -> 53 Inexact Rounded -sqtx2424 squareroot 28E+3 -> 1.7E+2 Inexact Rounded -sqtx2425 squareroot 0.29 -> 0.54 Inexact Rounded -sqtx2426 squareroot 0.029 -> 0.17 Inexact Rounded -sqtx2427 squareroot 29.0E-1 -> 1.7 Inexact Rounded -sqtx2428 squareroot 29.00E-2 -> 0.54 Inexact Rounded -sqtx2429 squareroot 29E-3 -> 0.17 Inexact Rounded -sqtx2430 squareroot 29E+1 -> 17 Inexact Rounded -sqtx2431 squareroot 29E+2 -> 54 Inexact Rounded -sqtx2432 squareroot 29E+3 -> 1.7E+2 Inexact Rounded -sqtx2433 squareroot 0.30 -> 0.55 Inexact Rounded -sqtx2434 squareroot 0.030 -> 0.17 Inexact Rounded -sqtx2435 squareroot 30.0E-1 -> 1.7 Inexact Rounded -sqtx2436 squareroot 30.00E-2 -> 0.55 Inexact Rounded -sqtx2437 squareroot 30E-3 -> 0.17 Inexact Rounded -sqtx2438 squareroot 30E+1 -> 17 Inexact Rounded -sqtx2439 squareroot 30E+2 -> 55 Inexact Rounded -sqtx2440 squareroot 30E+3 -> 1.7E+2 Inexact Rounded -sqtx2441 squareroot 0.31 -> 0.56 Inexact Rounded -sqtx2442 squareroot 0.031 -> 0.18 Inexact Rounded -sqtx2443 squareroot 31.0E-1 -> 1.8 Inexact Rounded -sqtx2444 squareroot 31.00E-2 -> 0.56 Inexact Rounded -sqtx2445 squareroot 31E-3 -> 0.18 Inexact Rounded -sqtx2446 squareroot 31E+1 -> 18 Inexact Rounded -sqtx2447 squareroot 31E+2 -> 56 Inexact Rounded -sqtx2448 squareroot 31E+3 -> 1.8E+2 Inexact Rounded -sqtx2449 squareroot 0.32 -> 0.57 Inexact Rounded -sqtx2450 squareroot 0.032 -> 0.18 Inexact Rounded -sqtx2451 squareroot 32.0E-1 -> 1.8 Inexact Rounded -sqtx2452 squareroot 32.00E-2 -> 0.57 Inexact Rounded -sqtx2453 squareroot 32E-3 -> 0.18 Inexact Rounded -sqtx2454 squareroot 32E+1 -> 18 Inexact Rounded -sqtx2455 squareroot 32E+2 -> 57 Inexact Rounded -sqtx2456 squareroot 32E+3 -> 1.8E+2 Inexact Rounded -sqtx2457 squareroot 0.33 -> 0.57 Inexact Rounded -sqtx2458 squareroot 0.033 -> 0.18 Inexact Rounded -sqtx2459 squareroot 33.0E-1 -> 1.8 Inexact Rounded -sqtx2460 squareroot 33.00E-2 -> 0.57 Inexact Rounded -sqtx2461 squareroot 33E-3 -> 0.18 Inexact Rounded -sqtx2462 squareroot 33E+1 -> 18 Inexact Rounded -sqtx2463 squareroot 33E+2 -> 57 Inexact Rounded -sqtx2464 squareroot 33E+3 -> 1.8E+2 Inexact Rounded -sqtx2465 squareroot 0.34 -> 0.58 Inexact Rounded -sqtx2466 squareroot 0.034 -> 0.18 Inexact Rounded -sqtx2467 squareroot 34.0E-1 -> 1.8 Inexact Rounded -sqtx2468 squareroot 34.00E-2 -> 0.58 Inexact Rounded -sqtx2469 squareroot 34E-3 -> 0.18 Inexact Rounded -sqtx2470 squareroot 34E+1 -> 18 Inexact Rounded -sqtx2471 squareroot 34E+2 -> 58 Inexact Rounded -sqtx2472 squareroot 34E+3 -> 1.8E+2 Inexact Rounded -sqtx2473 squareroot 0.35 -> 0.59 Inexact Rounded -sqtx2474 squareroot 0.035 -> 0.19 Inexact Rounded -sqtx2475 squareroot 35.0E-1 -> 1.9 Inexact Rounded -sqtx2476 squareroot 35.00E-2 -> 0.59 Inexact Rounded -sqtx2477 squareroot 35E-3 -> 0.19 Inexact Rounded -sqtx2478 squareroot 35E+1 -> 19 Inexact Rounded -sqtx2479 squareroot 35E+2 -> 59 Inexact Rounded -sqtx2480 squareroot 35E+3 -> 1.9E+2 Inexact Rounded -sqtx2481 squareroot 0.36 -> 0.6 -sqtx2482 squareroot 0.036 -> 0.19 Inexact Rounded -sqtx2483 squareroot 36.0E-1 -> 1.9 Inexact Rounded -sqtx2484 squareroot 36.00E-2 -> 0.60 -sqtx2485 squareroot 36E-3 -> 0.19 Inexact Rounded -sqtx2486 squareroot 36E+1 -> 19 Inexact Rounded -sqtx2487 squareroot 36E+2 -> 6E+1 -sqtx2488 squareroot 36E+3 -> 1.9E+2 Inexact Rounded -sqtx2489 squareroot 0.37 -> 0.61 Inexact Rounded -sqtx2490 squareroot 0.037 -> 0.19 Inexact Rounded -sqtx2491 squareroot 37.0E-1 -> 1.9 Inexact Rounded -sqtx2492 squareroot 37.00E-2 -> 0.61 Inexact Rounded -sqtx2493 squareroot 37E-3 -> 0.19 Inexact Rounded -sqtx2494 squareroot 37E+1 -> 19 Inexact Rounded -sqtx2495 squareroot 37E+2 -> 61 Inexact Rounded -sqtx2496 squareroot 37E+3 -> 1.9E+2 Inexact Rounded -sqtx2497 squareroot 0.38 -> 0.62 Inexact Rounded -sqtx2498 squareroot 0.038 -> 0.19 Inexact Rounded -sqtx2499 squareroot 38.0E-1 -> 1.9 Inexact Rounded -sqtx2500 squareroot 38.00E-2 -> 0.62 Inexact Rounded -sqtx2501 squareroot 38E-3 -> 0.19 Inexact Rounded -sqtx2502 squareroot 38E+1 -> 19 Inexact Rounded -sqtx2503 squareroot 38E+2 -> 62 Inexact Rounded -sqtx2504 squareroot 38E+3 -> 1.9E+2 Inexact Rounded -sqtx2505 squareroot 0.39 -> 0.62 Inexact Rounded -sqtx2506 squareroot 0.039 -> 0.20 Inexact Rounded -sqtx2507 squareroot 39.0E-1 -> 2.0 Inexact Rounded -sqtx2508 squareroot 39.00E-2 -> 0.62 Inexact Rounded -sqtx2509 squareroot 39E-3 -> 0.20 Inexact Rounded -sqtx2510 squareroot 39E+1 -> 20 Inexact Rounded -sqtx2511 squareroot 39E+2 -> 62 Inexact Rounded -sqtx2512 squareroot 39E+3 -> 2.0E+2 Inexact Rounded -sqtx2513 squareroot 0.40 -> 0.63 Inexact Rounded -sqtx2514 squareroot 0.040 -> 0.20 -sqtx2515 squareroot 40.0E-1 -> 2.0 -sqtx2516 squareroot 40.00E-2 -> 0.63 Inexact Rounded -sqtx2517 squareroot 40E-3 -> 0.20 -sqtx2518 squareroot 40E+1 -> 20 -sqtx2519 squareroot 40E+2 -> 63 Inexact Rounded -sqtx2520 squareroot 40E+3 -> 2.0E+2 -sqtx2521 squareroot 0.41 -> 0.64 Inexact Rounded -sqtx2522 squareroot 0.041 -> 0.20 Inexact Rounded -sqtx2523 squareroot 41.0E-1 -> 2.0 Inexact Rounded -sqtx2524 squareroot 41.00E-2 -> 0.64 Inexact Rounded -sqtx2525 squareroot 41E-3 -> 0.20 Inexact Rounded -sqtx2526 squareroot 41E+1 -> 20 Inexact Rounded -sqtx2527 squareroot 41E+2 -> 64 Inexact Rounded -sqtx2528 squareroot 41E+3 -> 2.0E+2 Inexact Rounded -sqtx2529 squareroot 0.42 -> 0.65 Inexact Rounded -sqtx2530 squareroot 0.042 -> 0.20 Inexact Rounded -sqtx2531 squareroot 42.0E-1 -> 2.0 Inexact Rounded -sqtx2532 squareroot 42.00E-2 -> 0.65 Inexact Rounded -sqtx2533 squareroot 42E-3 -> 0.20 Inexact Rounded -sqtx2534 squareroot 42E+1 -> 20 Inexact Rounded -sqtx2535 squareroot 42E+2 -> 65 Inexact Rounded -sqtx2536 squareroot 42E+3 -> 2.0E+2 Inexact Rounded -sqtx2537 squareroot 0.43 -> 0.66 Inexact Rounded -sqtx2538 squareroot 0.043 -> 0.21 Inexact Rounded -sqtx2539 squareroot 43.0E-1 -> 2.1 Inexact Rounded -sqtx2540 squareroot 43.00E-2 -> 0.66 Inexact Rounded -sqtx2541 squareroot 43E-3 -> 0.21 Inexact Rounded -sqtx2542 squareroot 43E+1 -> 21 Inexact Rounded -sqtx2543 squareroot 43E+2 -> 66 Inexact Rounded -sqtx2544 squareroot 43E+3 -> 2.1E+2 Inexact Rounded -sqtx2545 squareroot 0.44 -> 0.66 Inexact Rounded -sqtx2546 squareroot 0.044 -> 0.21 Inexact Rounded -sqtx2547 squareroot 44.0E-1 -> 2.1 Inexact Rounded -sqtx2548 squareroot 44.00E-2 -> 0.66 Inexact Rounded -sqtx2549 squareroot 44E-3 -> 0.21 Inexact Rounded -sqtx2550 squareroot 44E+1 -> 21 Inexact Rounded -sqtx2551 squareroot 44E+2 -> 66 Inexact Rounded -sqtx2552 squareroot 44E+3 -> 2.1E+2 Inexact Rounded -sqtx2553 squareroot 0.45 -> 0.67 Inexact Rounded -sqtx2554 squareroot 0.045 -> 0.21 Inexact Rounded -sqtx2555 squareroot 45.0E-1 -> 2.1 Inexact Rounded -sqtx2556 squareroot 45.00E-2 -> 0.67 Inexact Rounded -sqtx2557 squareroot 45E-3 -> 0.21 Inexact Rounded -sqtx2558 squareroot 45E+1 -> 21 Inexact Rounded -sqtx2559 squareroot 45E+2 -> 67 Inexact Rounded -sqtx2560 squareroot 45E+3 -> 2.1E+2 Inexact Rounded -sqtx2561 squareroot 0.46 -> 0.68 Inexact Rounded -sqtx2562 squareroot 0.046 -> 0.21 Inexact Rounded -sqtx2563 squareroot 46.0E-1 -> 2.1 Inexact Rounded -sqtx2564 squareroot 46.00E-2 -> 0.68 Inexact Rounded -sqtx2565 squareroot 46E-3 -> 0.21 Inexact Rounded -sqtx2566 squareroot 46E+1 -> 21 Inexact Rounded -sqtx2567 squareroot 46E+2 -> 68 Inexact Rounded -sqtx2568 squareroot 46E+3 -> 2.1E+2 Inexact Rounded -sqtx2569 squareroot 0.47 -> 0.69 Inexact Rounded -sqtx2570 squareroot 0.047 -> 0.22 Inexact Rounded -sqtx2571 squareroot 47.0E-1 -> 2.2 Inexact Rounded -sqtx2572 squareroot 47.00E-2 -> 0.69 Inexact Rounded -sqtx2573 squareroot 47E-3 -> 0.22 Inexact Rounded -sqtx2574 squareroot 47E+1 -> 22 Inexact Rounded -sqtx2575 squareroot 47E+2 -> 69 Inexact Rounded -sqtx2576 squareroot 47E+3 -> 2.2E+2 Inexact Rounded -sqtx2577 squareroot 0.48 -> 0.69 Inexact Rounded -sqtx2578 squareroot 0.048 -> 0.22 Inexact Rounded -sqtx2579 squareroot 48.0E-1 -> 2.2 Inexact Rounded -sqtx2580 squareroot 48.00E-2 -> 0.69 Inexact Rounded -sqtx2581 squareroot 48E-3 -> 0.22 Inexact Rounded -sqtx2582 squareroot 48E+1 -> 22 Inexact Rounded -sqtx2583 squareroot 48E+2 -> 69 Inexact Rounded -sqtx2584 squareroot 48E+3 -> 2.2E+2 Inexact Rounded -sqtx2585 squareroot 0.49 -> 0.7 -sqtx2586 squareroot 0.049 -> 0.22 Inexact Rounded -sqtx2587 squareroot 49.0E-1 -> 2.2 Inexact Rounded -sqtx2588 squareroot 49.00E-2 -> 0.70 -sqtx2589 squareroot 49E-3 -> 0.22 Inexact Rounded -sqtx2590 squareroot 49E+1 -> 22 Inexact Rounded -sqtx2591 squareroot 49E+2 -> 7E+1 -sqtx2592 squareroot 49E+3 -> 2.2E+2 Inexact Rounded -sqtx2593 squareroot 0.50 -> 0.71 Inexact Rounded -sqtx2594 squareroot 0.050 -> 0.22 Inexact Rounded -sqtx2595 squareroot 50.0E-1 -> 2.2 Inexact Rounded -sqtx2596 squareroot 50.00E-2 -> 0.71 Inexact Rounded -sqtx2597 squareroot 50E-3 -> 0.22 Inexact Rounded -sqtx2598 squareroot 50E+1 -> 22 Inexact Rounded -sqtx2599 squareroot 50E+2 -> 71 Inexact Rounded -sqtx2600 squareroot 50E+3 -> 2.2E+2 Inexact Rounded -sqtx2601 squareroot 0.51 -> 0.71 Inexact Rounded -sqtx2602 squareroot 0.051 -> 0.23 Inexact Rounded -sqtx2603 squareroot 51.0E-1 -> 2.3 Inexact Rounded -sqtx2604 squareroot 51.00E-2 -> 0.71 Inexact Rounded -sqtx2605 squareroot 51E-3 -> 0.23 Inexact Rounded -sqtx2606 squareroot 51E+1 -> 23 Inexact Rounded -sqtx2607 squareroot 51E+2 -> 71 Inexact Rounded -sqtx2608 squareroot 51E+3 -> 2.3E+2 Inexact Rounded -sqtx2609 squareroot 0.52 -> 0.72 Inexact Rounded -sqtx2610 squareroot 0.052 -> 0.23 Inexact Rounded -sqtx2611 squareroot 52.0E-1 -> 2.3 Inexact Rounded -sqtx2612 squareroot 52.00E-2 -> 0.72 Inexact Rounded -sqtx2613 squareroot 52E-3 -> 0.23 Inexact Rounded -sqtx2614 squareroot 52E+1 -> 23 Inexact Rounded -sqtx2615 squareroot 52E+2 -> 72 Inexact Rounded -sqtx2616 squareroot 52E+3 -> 2.3E+2 Inexact Rounded -sqtx2617 squareroot 0.53 -> 0.73 Inexact Rounded -sqtx2618 squareroot 0.053 -> 0.23 Inexact Rounded -sqtx2619 squareroot 53.0E-1 -> 2.3 Inexact Rounded -sqtx2620 squareroot 53.00E-2 -> 0.73 Inexact Rounded -sqtx2621 squareroot 53E-3 -> 0.23 Inexact Rounded -sqtx2622 squareroot 53E+1 -> 23 Inexact Rounded -sqtx2623 squareroot 53E+2 -> 73 Inexact Rounded -sqtx2624 squareroot 53E+3 -> 2.3E+2 Inexact Rounded -sqtx2625 squareroot 0.54 -> 0.73 Inexact Rounded -sqtx2626 squareroot 0.054 -> 0.23 Inexact Rounded -sqtx2627 squareroot 54.0E-1 -> 2.3 Inexact Rounded -sqtx2628 squareroot 54.00E-2 -> 0.73 Inexact Rounded -sqtx2629 squareroot 54E-3 -> 0.23 Inexact Rounded -sqtx2630 squareroot 54E+1 -> 23 Inexact Rounded -sqtx2631 squareroot 54E+2 -> 73 Inexact Rounded -sqtx2632 squareroot 54E+3 -> 2.3E+2 Inexact Rounded -sqtx2633 squareroot 0.55 -> 0.74 Inexact Rounded -sqtx2634 squareroot 0.055 -> 0.23 Inexact Rounded -sqtx2635 squareroot 55.0E-1 -> 2.3 Inexact Rounded -sqtx2636 squareroot 55.00E-2 -> 0.74 Inexact Rounded -sqtx2637 squareroot 55E-3 -> 0.23 Inexact Rounded -sqtx2638 squareroot 55E+1 -> 23 Inexact Rounded -sqtx2639 squareroot 55E+2 -> 74 Inexact Rounded -sqtx2640 squareroot 55E+3 -> 2.3E+2 Inexact Rounded -sqtx2641 squareroot 0.56 -> 0.75 Inexact Rounded -sqtx2642 squareroot 0.056 -> 0.24 Inexact Rounded -sqtx2643 squareroot 56.0E-1 -> 2.4 Inexact Rounded -sqtx2644 squareroot 56.00E-2 -> 0.75 Inexact Rounded -sqtx2645 squareroot 56E-3 -> 0.24 Inexact Rounded -sqtx2646 squareroot 56E+1 -> 24 Inexact Rounded -sqtx2647 squareroot 56E+2 -> 75 Inexact Rounded -sqtx2648 squareroot 56E+3 -> 2.4E+2 Inexact Rounded -sqtx2649 squareroot 0.57 -> 0.75 Inexact Rounded -sqtx2650 squareroot 0.057 -> 0.24 Inexact Rounded -sqtx2651 squareroot 57.0E-1 -> 2.4 Inexact Rounded -sqtx2652 squareroot 57.00E-2 -> 0.75 Inexact Rounded -sqtx2653 squareroot 57E-3 -> 0.24 Inexact Rounded -sqtx2654 squareroot 57E+1 -> 24 Inexact Rounded -sqtx2655 squareroot 57E+2 -> 75 Inexact Rounded -sqtx2656 squareroot 57E+3 -> 2.4E+2 Inexact Rounded -sqtx2657 squareroot 0.58 -> 0.76 Inexact Rounded -sqtx2658 squareroot 0.058 -> 0.24 Inexact Rounded -sqtx2659 squareroot 58.0E-1 -> 2.4 Inexact Rounded -sqtx2660 squareroot 58.00E-2 -> 0.76 Inexact Rounded -sqtx2661 squareroot 58E-3 -> 0.24 Inexact Rounded -sqtx2662 squareroot 58E+1 -> 24 Inexact Rounded -sqtx2663 squareroot 58E+2 -> 76 Inexact Rounded -sqtx2664 squareroot 58E+3 -> 2.4E+2 Inexact Rounded -sqtx2665 squareroot 0.59 -> 0.77 Inexact Rounded -sqtx2666 squareroot 0.059 -> 0.24 Inexact Rounded -sqtx2667 squareroot 59.0E-1 -> 2.4 Inexact Rounded -sqtx2668 squareroot 59.00E-2 -> 0.77 Inexact Rounded -sqtx2669 squareroot 59E-3 -> 0.24 Inexact Rounded -sqtx2670 squareroot 59E+1 -> 24 Inexact Rounded -sqtx2671 squareroot 59E+2 -> 77 Inexact Rounded -sqtx2672 squareroot 59E+3 -> 2.4E+2 Inexact Rounded -sqtx2673 squareroot 0.60 -> 0.77 Inexact Rounded -sqtx2674 squareroot 0.060 -> 0.24 Inexact Rounded -sqtx2675 squareroot 60.0E-1 -> 2.4 Inexact Rounded -sqtx2676 squareroot 60.00E-2 -> 0.77 Inexact Rounded -sqtx2677 squareroot 60E-3 -> 0.24 Inexact Rounded -sqtx2678 squareroot 60E+1 -> 24 Inexact Rounded -sqtx2679 squareroot 60E+2 -> 77 Inexact Rounded -sqtx2680 squareroot 60E+3 -> 2.4E+2 Inexact Rounded -sqtx2681 squareroot 0.61 -> 0.78 Inexact Rounded -sqtx2682 squareroot 0.061 -> 0.25 Inexact Rounded -sqtx2683 squareroot 61.0E-1 -> 2.5 Inexact Rounded -sqtx2684 squareroot 61.00E-2 -> 0.78 Inexact Rounded -sqtx2685 squareroot 61E-3 -> 0.25 Inexact Rounded -sqtx2686 squareroot 61E+1 -> 25 Inexact Rounded -sqtx2687 squareroot 61E+2 -> 78 Inexact Rounded -sqtx2688 squareroot 61E+3 -> 2.5E+2 Inexact Rounded -sqtx2689 squareroot 0.62 -> 0.79 Inexact Rounded -sqtx2690 squareroot 0.062 -> 0.25 Inexact Rounded -sqtx2691 squareroot 62.0E-1 -> 2.5 Inexact Rounded -sqtx2692 squareroot 62.00E-2 -> 0.79 Inexact Rounded -sqtx2693 squareroot 62E-3 -> 0.25 Inexact Rounded -sqtx2694 squareroot 62E+1 -> 25 Inexact Rounded -sqtx2695 squareroot 62E+2 -> 79 Inexact Rounded -sqtx2696 squareroot 62E+3 -> 2.5E+2 Inexact Rounded -sqtx2697 squareroot 0.63 -> 0.79 Inexact Rounded -sqtx2698 squareroot 0.063 -> 0.25 Inexact Rounded -sqtx2699 squareroot 63.0E-1 -> 2.5 Inexact Rounded -sqtx2700 squareroot 63.00E-2 -> 0.79 Inexact Rounded -sqtx2701 squareroot 63E-3 -> 0.25 Inexact Rounded -sqtx2702 squareroot 63E+1 -> 25 Inexact Rounded -sqtx2703 squareroot 63E+2 -> 79 Inexact Rounded -sqtx2704 squareroot 63E+3 -> 2.5E+2 Inexact Rounded -sqtx2705 squareroot 0.64 -> 0.8 -sqtx2706 squareroot 0.064 -> 0.25 Inexact Rounded -sqtx2707 squareroot 64.0E-1 -> 2.5 Inexact Rounded -sqtx2708 squareroot 64.00E-2 -> 0.80 -sqtx2709 squareroot 64E-3 -> 0.25 Inexact Rounded -sqtx2710 squareroot 64E+1 -> 25 Inexact Rounded -sqtx2711 squareroot 64E+2 -> 8E+1 -sqtx2712 squareroot 64E+3 -> 2.5E+2 Inexact Rounded -sqtx2713 squareroot 0.65 -> 0.81 Inexact Rounded -sqtx2714 squareroot 0.065 -> 0.25 Inexact Rounded -sqtx2715 squareroot 65.0E-1 -> 2.5 Inexact Rounded -sqtx2716 squareroot 65.00E-2 -> 0.81 Inexact Rounded -sqtx2717 squareroot 65E-3 -> 0.25 Inexact Rounded -sqtx2718 squareroot 65E+1 -> 25 Inexact Rounded -sqtx2719 squareroot 65E+2 -> 81 Inexact Rounded -sqtx2720 squareroot 65E+3 -> 2.5E+2 Inexact Rounded -sqtx2721 squareroot 0.66 -> 0.81 Inexact Rounded -sqtx2722 squareroot 0.066 -> 0.26 Inexact Rounded -sqtx2723 squareroot 66.0E-1 -> 2.6 Inexact Rounded -sqtx2724 squareroot 66.00E-2 -> 0.81 Inexact Rounded -sqtx2725 squareroot 66E-3 -> 0.26 Inexact Rounded -sqtx2726 squareroot 66E+1 -> 26 Inexact Rounded -sqtx2727 squareroot 66E+2 -> 81 Inexact Rounded -sqtx2728 squareroot 66E+3 -> 2.6E+2 Inexact Rounded -sqtx2729 squareroot 0.67 -> 0.82 Inexact Rounded -sqtx2730 squareroot 0.067 -> 0.26 Inexact Rounded -sqtx2731 squareroot 67.0E-1 -> 2.6 Inexact Rounded -sqtx2732 squareroot 67.00E-2 -> 0.82 Inexact Rounded -sqtx2733 squareroot 67E-3 -> 0.26 Inexact Rounded -sqtx2734 squareroot 67E+1 -> 26 Inexact Rounded -sqtx2735 squareroot 67E+2 -> 82 Inexact Rounded -sqtx2736 squareroot 67E+3 -> 2.6E+2 Inexact Rounded -sqtx2737 squareroot 0.68 -> 0.82 Inexact Rounded -sqtx2738 squareroot 0.068 -> 0.26 Inexact Rounded -sqtx2739 squareroot 68.0E-1 -> 2.6 Inexact Rounded -sqtx2740 squareroot 68.00E-2 -> 0.82 Inexact Rounded -sqtx2741 squareroot 68E-3 -> 0.26 Inexact Rounded -sqtx2742 squareroot 68E+1 -> 26 Inexact Rounded -sqtx2743 squareroot 68E+2 -> 82 Inexact Rounded -sqtx2744 squareroot 68E+3 -> 2.6E+2 Inexact Rounded -sqtx2745 squareroot 0.69 -> 0.83 Inexact Rounded -sqtx2746 squareroot 0.069 -> 0.26 Inexact Rounded -sqtx2747 squareroot 69.0E-1 -> 2.6 Inexact Rounded -sqtx2748 squareroot 69.00E-2 -> 0.83 Inexact Rounded -sqtx2749 squareroot 69E-3 -> 0.26 Inexact Rounded -sqtx2750 squareroot 69E+1 -> 26 Inexact Rounded -sqtx2751 squareroot 69E+2 -> 83 Inexact Rounded -sqtx2752 squareroot 69E+3 -> 2.6E+2 Inexact Rounded -sqtx2753 squareroot 0.70 -> 0.84 Inexact Rounded -sqtx2754 squareroot 0.070 -> 0.26 Inexact Rounded -sqtx2755 squareroot 70.0E-1 -> 2.6 Inexact Rounded -sqtx2756 squareroot 70.00E-2 -> 0.84 Inexact Rounded -sqtx2757 squareroot 70E-3 -> 0.26 Inexact Rounded -sqtx2758 squareroot 70E+1 -> 26 Inexact Rounded -sqtx2759 squareroot 70E+2 -> 84 Inexact Rounded -sqtx2760 squareroot 70E+3 -> 2.6E+2 Inexact Rounded -sqtx2761 squareroot 0.71 -> 0.84 Inexact Rounded -sqtx2762 squareroot 0.071 -> 0.27 Inexact Rounded -sqtx2763 squareroot 71.0E-1 -> 2.7 Inexact Rounded -sqtx2764 squareroot 71.00E-2 -> 0.84 Inexact Rounded -sqtx2765 squareroot 71E-3 -> 0.27 Inexact Rounded -sqtx2766 squareroot 71E+1 -> 27 Inexact Rounded -sqtx2767 squareroot 71E+2 -> 84 Inexact Rounded -sqtx2768 squareroot 71E+3 -> 2.7E+2 Inexact Rounded -sqtx2769 squareroot 0.72 -> 0.85 Inexact Rounded -sqtx2770 squareroot 0.072 -> 0.27 Inexact Rounded -sqtx2771 squareroot 72.0E-1 -> 2.7 Inexact Rounded -sqtx2772 squareroot 72.00E-2 -> 0.85 Inexact Rounded -sqtx2773 squareroot 72E-3 -> 0.27 Inexact Rounded -sqtx2774 squareroot 72E+1 -> 27 Inexact Rounded -sqtx2775 squareroot 72E+2 -> 85 Inexact Rounded -sqtx2776 squareroot 72E+3 -> 2.7E+2 Inexact Rounded -sqtx2777 squareroot 0.73 -> 0.85 Inexact Rounded -sqtx2778 squareroot 0.073 -> 0.27 Inexact Rounded -sqtx2779 squareroot 73.0E-1 -> 2.7 Inexact Rounded -sqtx2780 squareroot 73.00E-2 -> 0.85 Inexact Rounded -sqtx2781 squareroot 73E-3 -> 0.27 Inexact Rounded -sqtx2782 squareroot 73E+1 -> 27 Inexact Rounded -sqtx2783 squareroot 73E+2 -> 85 Inexact Rounded -sqtx2784 squareroot 73E+3 -> 2.7E+2 Inexact Rounded -sqtx2785 squareroot 0.74 -> 0.86 Inexact Rounded -sqtx2786 squareroot 0.074 -> 0.27 Inexact Rounded -sqtx2787 squareroot 74.0E-1 -> 2.7 Inexact Rounded -sqtx2788 squareroot 74.00E-2 -> 0.86 Inexact Rounded -sqtx2789 squareroot 74E-3 -> 0.27 Inexact Rounded -sqtx2790 squareroot 74E+1 -> 27 Inexact Rounded -sqtx2791 squareroot 74E+2 -> 86 Inexact Rounded -sqtx2792 squareroot 74E+3 -> 2.7E+2 Inexact Rounded -sqtx2793 squareroot 0.75 -> 0.87 Inexact Rounded -sqtx2794 squareroot 0.075 -> 0.27 Inexact Rounded -sqtx2795 squareroot 75.0E-1 -> 2.7 Inexact Rounded -sqtx2796 squareroot 75.00E-2 -> 0.87 Inexact Rounded -sqtx2797 squareroot 75E-3 -> 0.27 Inexact Rounded -sqtx2798 squareroot 75E+1 -> 27 Inexact Rounded -sqtx2799 squareroot 75E+2 -> 87 Inexact Rounded -sqtx2800 squareroot 75E+3 -> 2.7E+2 Inexact Rounded -sqtx2801 squareroot 0.76 -> 0.87 Inexact Rounded -sqtx2802 squareroot 0.076 -> 0.28 Inexact Rounded -sqtx2803 squareroot 76.0E-1 -> 2.8 Inexact Rounded -sqtx2804 squareroot 76.00E-2 -> 0.87 Inexact Rounded -sqtx2805 squareroot 76E-3 -> 0.28 Inexact Rounded -sqtx2806 squareroot 76E+1 -> 28 Inexact Rounded -sqtx2807 squareroot 76E+2 -> 87 Inexact Rounded -sqtx2808 squareroot 76E+3 -> 2.8E+2 Inexact Rounded -sqtx2809 squareroot 0.77 -> 0.88 Inexact Rounded -sqtx2810 squareroot 0.077 -> 0.28 Inexact Rounded -sqtx2811 squareroot 77.0E-1 -> 2.8 Inexact Rounded -sqtx2812 squareroot 77.00E-2 -> 0.88 Inexact Rounded -sqtx2813 squareroot 77E-3 -> 0.28 Inexact Rounded -sqtx2814 squareroot 77E+1 -> 28 Inexact Rounded -sqtx2815 squareroot 77E+2 -> 88 Inexact Rounded -sqtx2816 squareroot 77E+3 -> 2.8E+2 Inexact Rounded -sqtx2817 squareroot 0.78 -> 0.88 Inexact Rounded -sqtx2818 squareroot 0.078 -> 0.28 Inexact Rounded -sqtx2819 squareroot 78.0E-1 -> 2.8 Inexact Rounded -sqtx2820 squareroot 78.00E-2 -> 0.88 Inexact Rounded -sqtx2821 squareroot 78E-3 -> 0.28 Inexact Rounded -sqtx2822 squareroot 78E+1 -> 28 Inexact Rounded -sqtx2823 squareroot 78E+2 -> 88 Inexact Rounded -sqtx2824 squareroot 78E+3 -> 2.8E+2 Inexact Rounded -sqtx2825 squareroot 0.79 -> 0.89 Inexact Rounded -sqtx2826 squareroot 0.079 -> 0.28 Inexact Rounded -sqtx2827 squareroot 79.0E-1 -> 2.8 Inexact Rounded -sqtx2828 squareroot 79.00E-2 -> 0.89 Inexact Rounded -sqtx2829 squareroot 79E-3 -> 0.28 Inexact Rounded -sqtx2830 squareroot 79E+1 -> 28 Inexact Rounded -sqtx2831 squareroot 79E+2 -> 89 Inexact Rounded -sqtx2832 squareroot 79E+3 -> 2.8E+2 Inexact Rounded -sqtx2833 squareroot 0.80 -> 0.89 Inexact Rounded -sqtx2834 squareroot 0.080 -> 0.28 Inexact Rounded -sqtx2835 squareroot 80.0E-1 -> 2.8 Inexact Rounded -sqtx2836 squareroot 80.00E-2 -> 0.89 Inexact Rounded -sqtx2837 squareroot 80E-3 -> 0.28 Inexact Rounded -sqtx2838 squareroot 80E+1 -> 28 Inexact Rounded -sqtx2839 squareroot 80E+2 -> 89 Inexact Rounded -sqtx2840 squareroot 80E+3 -> 2.8E+2 Inexact Rounded -sqtx2841 squareroot 0.81 -> 0.9 -sqtx2842 squareroot 0.081 -> 0.28 Inexact Rounded -sqtx2843 squareroot 81.0E-1 -> 2.8 Inexact Rounded -sqtx2844 squareroot 81.00E-2 -> 0.90 -sqtx2845 squareroot 81E-3 -> 0.28 Inexact Rounded -sqtx2846 squareroot 81E+1 -> 28 Inexact Rounded -sqtx2847 squareroot 81E+2 -> 9E+1 -sqtx2848 squareroot 81E+3 -> 2.8E+2 Inexact Rounded -sqtx2849 squareroot 0.82 -> 0.91 Inexact Rounded -sqtx2850 squareroot 0.082 -> 0.29 Inexact Rounded -sqtx2851 squareroot 82.0E-1 -> 2.9 Inexact Rounded -sqtx2852 squareroot 82.00E-2 -> 0.91 Inexact Rounded -sqtx2853 squareroot 82E-3 -> 0.29 Inexact Rounded -sqtx2854 squareroot 82E+1 -> 29 Inexact Rounded -sqtx2855 squareroot 82E+2 -> 91 Inexact Rounded -sqtx2856 squareroot 82E+3 -> 2.9E+2 Inexact Rounded -sqtx2857 squareroot 0.83 -> 0.91 Inexact Rounded -sqtx2858 squareroot 0.083 -> 0.29 Inexact Rounded -sqtx2859 squareroot 83.0E-1 -> 2.9 Inexact Rounded -sqtx2860 squareroot 83.00E-2 -> 0.91 Inexact Rounded -sqtx2861 squareroot 83E-3 -> 0.29 Inexact Rounded -sqtx2862 squareroot 83E+1 -> 29 Inexact Rounded -sqtx2863 squareroot 83E+2 -> 91 Inexact Rounded -sqtx2864 squareroot 83E+3 -> 2.9E+2 Inexact Rounded -sqtx2865 squareroot 0.84 -> 0.92 Inexact Rounded -sqtx2866 squareroot 0.084 -> 0.29 Inexact Rounded -sqtx2867 squareroot 84.0E-1 -> 2.9 Inexact Rounded -sqtx2868 squareroot 84.00E-2 -> 0.92 Inexact Rounded -sqtx2869 squareroot 84E-3 -> 0.29 Inexact Rounded -sqtx2870 squareroot 84E+1 -> 29 Inexact Rounded -sqtx2871 squareroot 84E+2 -> 92 Inexact Rounded -sqtx2872 squareroot 84E+3 -> 2.9E+2 Inexact Rounded -sqtx2873 squareroot 0.85 -> 0.92 Inexact Rounded -sqtx2874 squareroot 0.085 -> 0.29 Inexact Rounded -sqtx2875 squareroot 85.0E-1 -> 2.9 Inexact Rounded -sqtx2876 squareroot 85.00E-2 -> 0.92 Inexact Rounded -sqtx2877 squareroot 85E-3 -> 0.29 Inexact Rounded -sqtx2878 squareroot 85E+1 -> 29 Inexact Rounded -sqtx2879 squareroot 85E+2 -> 92 Inexact Rounded -sqtx2880 squareroot 85E+3 -> 2.9E+2 Inexact Rounded -sqtx2881 squareroot 0.86 -> 0.93 Inexact Rounded -sqtx2882 squareroot 0.086 -> 0.29 Inexact Rounded -sqtx2883 squareroot 86.0E-1 -> 2.9 Inexact Rounded -sqtx2884 squareroot 86.00E-2 -> 0.93 Inexact Rounded -sqtx2885 squareroot 86E-3 -> 0.29 Inexact Rounded -sqtx2886 squareroot 86E+1 -> 29 Inexact Rounded -sqtx2887 squareroot 86E+2 -> 93 Inexact Rounded -sqtx2888 squareroot 86E+3 -> 2.9E+2 Inexact Rounded -sqtx2889 squareroot 0.87 -> 0.93 Inexact Rounded -sqtx2890 squareroot 0.087 -> 0.29 Inexact Rounded -sqtx2891 squareroot 87.0E-1 -> 2.9 Inexact Rounded -sqtx2892 squareroot 87.00E-2 -> 0.93 Inexact Rounded -sqtx2893 squareroot 87E-3 -> 0.29 Inexact Rounded -sqtx2894 squareroot 87E+1 -> 29 Inexact Rounded -sqtx2895 squareroot 87E+2 -> 93 Inexact Rounded -sqtx2896 squareroot 87E+3 -> 2.9E+2 Inexact Rounded -sqtx2897 squareroot 0.88 -> 0.94 Inexact Rounded -sqtx2898 squareroot 0.088 -> 0.30 Inexact Rounded -sqtx2899 squareroot 88.0E-1 -> 3.0 Inexact Rounded -sqtx2900 squareroot 88.00E-2 -> 0.94 Inexact Rounded -sqtx2901 squareroot 88E-3 -> 0.30 Inexact Rounded -sqtx2902 squareroot 88E+1 -> 30 Inexact Rounded -sqtx2903 squareroot 88E+2 -> 94 Inexact Rounded -sqtx2904 squareroot 88E+3 -> 3.0E+2 Inexact Rounded -sqtx2905 squareroot 0.89 -> 0.94 Inexact Rounded -sqtx2906 squareroot 0.089 -> 0.30 Inexact Rounded -sqtx2907 squareroot 89.0E-1 -> 3.0 Inexact Rounded -sqtx2908 squareroot 89.00E-2 -> 0.94 Inexact Rounded -sqtx2909 squareroot 89E-3 -> 0.30 Inexact Rounded -sqtx2910 squareroot 89E+1 -> 30 Inexact Rounded -sqtx2911 squareroot 89E+2 -> 94 Inexact Rounded -sqtx2912 squareroot 89E+3 -> 3.0E+2 Inexact Rounded -sqtx2913 squareroot 0.90 -> 0.95 Inexact Rounded -sqtx2914 squareroot 0.090 -> 0.30 -sqtx2915 squareroot 90.0E-1 -> 3.0 -sqtx2916 squareroot 90.00E-2 -> 0.95 Inexact Rounded -sqtx2917 squareroot 90E-3 -> 0.30 -sqtx2918 squareroot 90E+1 -> 30 -sqtx2919 squareroot 90E+2 -> 95 Inexact Rounded -sqtx2920 squareroot 90E+3 -> 3.0E+2 -sqtx2921 squareroot 0.91 -> 0.95 Inexact Rounded -sqtx2922 squareroot 0.091 -> 0.30 Inexact Rounded -sqtx2923 squareroot 91.0E-1 -> 3.0 Inexact Rounded -sqtx2924 squareroot 91.00E-2 -> 0.95 Inexact Rounded -sqtx2925 squareroot 91E-3 -> 0.30 Inexact Rounded -sqtx2926 squareroot 91E+1 -> 30 Inexact Rounded -sqtx2927 squareroot 91E+2 -> 95 Inexact Rounded -sqtx2928 squareroot 91E+3 -> 3.0E+2 Inexact Rounded -sqtx2929 squareroot 0.92 -> 0.96 Inexact Rounded -sqtx2930 squareroot 0.092 -> 0.30 Inexact Rounded -sqtx2931 squareroot 92.0E-1 -> 3.0 Inexact Rounded -sqtx2932 squareroot 92.00E-2 -> 0.96 Inexact Rounded -sqtx2933 squareroot 92E-3 -> 0.30 Inexact Rounded -sqtx2934 squareroot 92E+1 -> 30 Inexact Rounded -sqtx2935 squareroot 92E+2 -> 96 Inexact Rounded -sqtx2936 squareroot 92E+3 -> 3.0E+2 Inexact Rounded -sqtx2937 squareroot 0.93 -> 0.96 Inexact Rounded -sqtx2938 squareroot 0.093 -> 0.30 Inexact Rounded -sqtx2939 squareroot 93.0E-1 -> 3.0 Inexact Rounded -sqtx2940 squareroot 93.00E-2 -> 0.96 Inexact Rounded -sqtx2941 squareroot 93E-3 -> 0.30 Inexact Rounded -sqtx2942 squareroot 93E+1 -> 30 Inexact Rounded -sqtx2943 squareroot 93E+2 -> 96 Inexact Rounded -sqtx2944 squareroot 93E+3 -> 3.0E+2 Inexact Rounded -sqtx2945 squareroot 0.94 -> 0.97 Inexact Rounded -sqtx2946 squareroot 0.094 -> 0.31 Inexact Rounded -sqtx2947 squareroot 94.0E-1 -> 3.1 Inexact Rounded -sqtx2948 squareroot 94.00E-2 -> 0.97 Inexact Rounded -sqtx2949 squareroot 94E-3 -> 0.31 Inexact Rounded -sqtx2950 squareroot 94E+1 -> 31 Inexact Rounded -sqtx2951 squareroot 94E+2 -> 97 Inexact Rounded -sqtx2952 squareroot 94E+3 -> 3.1E+2 Inexact Rounded -sqtx2953 squareroot 0.95 -> 0.97 Inexact Rounded -sqtx2954 squareroot 0.095 -> 0.31 Inexact Rounded -sqtx2955 squareroot 95.0E-1 -> 3.1 Inexact Rounded -sqtx2956 squareroot 95.00E-2 -> 0.97 Inexact Rounded -sqtx2957 squareroot 95E-3 -> 0.31 Inexact Rounded -sqtx2958 squareroot 95E+1 -> 31 Inexact Rounded -sqtx2959 squareroot 95E+2 -> 97 Inexact Rounded -sqtx2960 squareroot 95E+3 -> 3.1E+2 Inexact Rounded -sqtx2961 squareroot 0.96 -> 0.98 Inexact Rounded -sqtx2962 squareroot 0.096 -> 0.31 Inexact Rounded -sqtx2963 squareroot 96.0E-1 -> 3.1 Inexact Rounded -sqtx2964 squareroot 96.00E-2 -> 0.98 Inexact Rounded -sqtx2965 squareroot 96E-3 -> 0.31 Inexact Rounded -sqtx2966 squareroot 96E+1 -> 31 Inexact Rounded -sqtx2967 squareroot 96E+2 -> 98 Inexact Rounded -sqtx2968 squareroot 96E+3 -> 3.1E+2 Inexact Rounded -sqtx2969 squareroot 0.97 -> 0.98 Inexact Rounded -sqtx2970 squareroot 0.097 -> 0.31 Inexact Rounded -sqtx2971 squareroot 97.0E-1 -> 3.1 Inexact Rounded -sqtx2972 squareroot 97.00E-2 -> 0.98 Inexact Rounded -sqtx2973 squareroot 97E-3 -> 0.31 Inexact Rounded -sqtx2974 squareroot 97E+1 -> 31 Inexact Rounded -sqtx2975 squareroot 97E+2 -> 98 Inexact Rounded -sqtx2976 squareroot 97E+3 -> 3.1E+2 Inexact Rounded -sqtx2977 squareroot 0.98 -> 0.99 Inexact Rounded -sqtx2978 squareroot 0.098 -> 0.31 Inexact Rounded -sqtx2979 squareroot 98.0E-1 -> 3.1 Inexact Rounded -sqtx2980 squareroot 98.00E-2 -> 0.99 Inexact Rounded -sqtx2981 squareroot 98E-3 -> 0.31 Inexact Rounded -sqtx2982 squareroot 98E+1 -> 31 Inexact Rounded -sqtx2983 squareroot 98E+2 -> 99 Inexact Rounded -sqtx2984 squareroot 98E+3 -> 3.1E+2 Inexact Rounded -sqtx2985 squareroot 0.99 -> 0.99 Inexact Rounded -sqtx2986 squareroot 0.099 -> 0.31 Inexact Rounded -sqtx2987 squareroot 99.0E-1 -> 3.1 Inexact Rounded -sqtx2988 squareroot 99.00E-2 -> 0.99 Inexact Rounded -sqtx2989 squareroot 99E-3 -> 0.31 Inexact Rounded -sqtx2990 squareroot 99E+1 -> 31 Inexact Rounded -sqtx2991 squareroot 99E+2 -> 99 Inexact Rounded -sqtx2992 squareroot 99E+3 -> 3.1E+2 Inexact Rounded - --- Precision 3 squareroot tests [exhaustive, f and f/10] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 3 -sqtx3001 squareroot 0.1 -> 0.316 Inexact Rounded -sqtx3002 squareroot 0.01 -> 0.1 -sqtx3003 squareroot 0.2 -> 0.447 Inexact Rounded -sqtx3004 squareroot 0.02 -> 0.141 Inexact Rounded -sqtx3005 squareroot 0.3 -> 0.548 Inexact Rounded -sqtx3006 squareroot 0.03 -> 0.173 Inexact Rounded -sqtx3007 squareroot 0.4 -> 0.632 Inexact Rounded -sqtx3008 squareroot 0.04 -> 0.2 -sqtx3009 squareroot 0.5 -> 0.707 Inexact Rounded -sqtx3010 squareroot 0.05 -> 0.224 Inexact Rounded -sqtx3011 squareroot 0.6 -> 0.775 Inexact Rounded -sqtx3012 squareroot 0.06 -> 0.245 Inexact Rounded -sqtx3013 squareroot 0.7 -> 0.837 Inexact Rounded -sqtx3014 squareroot 0.07 -> 0.265 Inexact Rounded -sqtx3015 squareroot 0.8 -> 0.894 Inexact Rounded -sqtx3016 squareroot 0.08 -> 0.283 Inexact Rounded -sqtx3017 squareroot 0.9 -> 0.949 Inexact Rounded -sqtx3018 squareroot 0.09 -> 0.3 -sqtx3019 squareroot 0.11 -> 0.332 Inexact Rounded -sqtx3020 squareroot 0.011 -> 0.105 Inexact Rounded -sqtx3021 squareroot 0.12 -> 0.346 Inexact Rounded -sqtx3022 squareroot 0.012 -> 0.110 Inexact Rounded -sqtx3023 squareroot 0.13 -> 0.361 Inexact Rounded -sqtx3024 squareroot 0.013 -> 0.114 Inexact Rounded -sqtx3025 squareroot 0.14 -> 0.374 Inexact Rounded -sqtx3026 squareroot 0.014 -> 0.118 Inexact Rounded -sqtx3027 squareroot 0.15 -> 0.387 Inexact Rounded -sqtx3028 squareroot 0.015 -> 0.122 Inexact Rounded -sqtx3029 squareroot 0.16 -> 0.4 -sqtx3030 squareroot 0.016 -> 0.126 Inexact Rounded -sqtx3031 squareroot 0.17 -> 0.412 Inexact Rounded -sqtx3032 squareroot 0.017 -> 0.130 Inexact Rounded -sqtx3033 squareroot 0.18 -> 0.424 Inexact Rounded -sqtx3034 squareroot 0.018 -> 0.134 Inexact Rounded -sqtx3035 squareroot 0.19 -> 0.436 Inexact Rounded -sqtx3036 squareroot 0.019 -> 0.138 Inexact Rounded -sqtx3037 squareroot 0.21 -> 0.458 Inexact Rounded -sqtx3038 squareroot 0.021 -> 0.145 Inexact Rounded -sqtx3039 squareroot 0.22 -> 0.469 Inexact Rounded -sqtx3040 squareroot 0.022 -> 0.148 Inexact Rounded -sqtx3041 squareroot 0.23 -> 0.480 Inexact Rounded -sqtx3042 squareroot 0.023 -> 0.152 Inexact Rounded -sqtx3043 squareroot 0.24 -> 0.490 Inexact Rounded -sqtx3044 squareroot 0.024 -> 0.155 Inexact Rounded -sqtx3045 squareroot 0.25 -> 0.5 -sqtx3046 squareroot 0.025 -> 0.158 Inexact Rounded -sqtx3047 squareroot 0.26 -> 0.510 Inexact Rounded -sqtx3048 squareroot 0.026 -> 0.161 Inexact Rounded -sqtx3049 squareroot 0.27 -> 0.520 Inexact Rounded -sqtx3050 squareroot 0.027 -> 0.164 Inexact Rounded -sqtx3051 squareroot 0.28 -> 0.529 Inexact Rounded -sqtx3052 squareroot 0.028 -> 0.167 Inexact Rounded -sqtx3053 squareroot 0.29 -> 0.539 Inexact Rounded -sqtx3054 squareroot 0.029 -> 0.170 Inexact Rounded -sqtx3055 squareroot 0.31 -> 0.557 Inexact Rounded -sqtx3056 squareroot 0.031 -> 0.176 Inexact Rounded -sqtx3057 squareroot 0.32 -> 0.566 Inexact Rounded -sqtx3058 squareroot 0.032 -> 0.179 Inexact Rounded -sqtx3059 squareroot 0.33 -> 0.574 Inexact Rounded -sqtx3060 squareroot 0.033 -> 0.182 Inexact Rounded -sqtx3061 squareroot 0.34 -> 0.583 Inexact Rounded -sqtx3062 squareroot 0.034 -> 0.184 Inexact Rounded -sqtx3063 squareroot 0.35 -> 0.592 Inexact Rounded -sqtx3064 squareroot 0.035 -> 0.187 Inexact Rounded -sqtx3065 squareroot 0.36 -> 0.6 -sqtx3066 squareroot 0.036 -> 0.190 Inexact Rounded -sqtx3067 squareroot 0.37 -> 0.608 Inexact Rounded -sqtx3068 squareroot 0.037 -> 0.192 Inexact Rounded -sqtx3069 squareroot 0.38 -> 0.616 Inexact Rounded -sqtx3070 squareroot 0.038 -> 0.195 Inexact Rounded -sqtx3071 squareroot 0.39 -> 0.624 Inexact Rounded -sqtx3072 squareroot 0.039 -> 0.197 Inexact Rounded -sqtx3073 squareroot 0.41 -> 0.640 Inexact Rounded -sqtx3074 squareroot 0.041 -> 0.202 Inexact Rounded -sqtx3075 squareroot 0.42 -> 0.648 Inexact Rounded -sqtx3076 squareroot 0.042 -> 0.205 Inexact Rounded -sqtx3077 squareroot 0.43 -> 0.656 Inexact Rounded -sqtx3078 squareroot 0.043 -> 0.207 Inexact Rounded -sqtx3079 squareroot 0.44 -> 0.663 Inexact Rounded -sqtx3080 squareroot 0.044 -> 0.210 Inexact Rounded -sqtx3081 squareroot 0.45 -> 0.671 Inexact Rounded -sqtx3082 squareroot 0.045 -> 0.212 Inexact Rounded -sqtx3083 squareroot 0.46 -> 0.678 Inexact Rounded -sqtx3084 squareroot 0.046 -> 0.214 Inexact Rounded -sqtx3085 squareroot 0.47 -> 0.686 Inexact Rounded -sqtx3086 squareroot 0.047 -> 0.217 Inexact Rounded -sqtx3087 squareroot 0.48 -> 0.693 Inexact Rounded -sqtx3088 squareroot 0.048 -> 0.219 Inexact Rounded -sqtx3089 squareroot 0.49 -> 0.7 -sqtx3090 squareroot 0.049 -> 0.221 Inexact Rounded -sqtx3091 squareroot 0.51 -> 0.714 Inexact Rounded -sqtx3092 squareroot 0.051 -> 0.226 Inexact Rounded -sqtx3093 squareroot 0.52 -> 0.721 Inexact Rounded -sqtx3094 squareroot 0.052 -> 0.228 Inexact Rounded -sqtx3095 squareroot 0.53 -> 0.728 Inexact Rounded -sqtx3096 squareroot 0.053 -> 0.230 Inexact Rounded -sqtx3097 squareroot 0.54 -> 0.735 Inexact Rounded -sqtx3098 squareroot 0.054 -> 0.232 Inexact Rounded -sqtx3099 squareroot 0.55 -> 0.742 Inexact Rounded -sqtx3100 squareroot 0.055 -> 0.235 Inexact Rounded -sqtx3101 squareroot 0.56 -> 0.748 Inexact Rounded -sqtx3102 squareroot 0.056 -> 0.237 Inexact Rounded -sqtx3103 squareroot 0.57 -> 0.755 Inexact Rounded -sqtx3104 squareroot 0.057 -> 0.239 Inexact Rounded -sqtx3105 squareroot 0.58 -> 0.762 Inexact Rounded -sqtx3106 squareroot 0.058 -> 0.241 Inexact Rounded -sqtx3107 squareroot 0.59 -> 0.768 Inexact Rounded -sqtx3108 squareroot 0.059 -> 0.243 Inexact Rounded -sqtx3109 squareroot 0.61 -> 0.781 Inexact Rounded -sqtx3110 squareroot 0.061 -> 0.247 Inexact Rounded -sqtx3111 squareroot 0.62 -> 0.787 Inexact Rounded -sqtx3112 squareroot 0.062 -> 0.249 Inexact Rounded -sqtx3113 squareroot 0.63 -> 0.794 Inexact Rounded -sqtx3114 squareroot 0.063 -> 0.251 Inexact Rounded -sqtx3115 squareroot 0.64 -> 0.8 -sqtx3116 squareroot 0.064 -> 0.253 Inexact Rounded -sqtx3117 squareroot 0.65 -> 0.806 Inexact Rounded -sqtx3118 squareroot 0.065 -> 0.255 Inexact Rounded -sqtx3119 squareroot 0.66 -> 0.812 Inexact Rounded -sqtx3120 squareroot 0.066 -> 0.257 Inexact Rounded -sqtx3121 squareroot 0.67 -> 0.819 Inexact Rounded -sqtx3122 squareroot 0.067 -> 0.259 Inexact Rounded -sqtx3123 squareroot 0.68 -> 0.825 Inexact Rounded -sqtx3124 squareroot 0.068 -> 0.261 Inexact Rounded -sqtx3125 squareroot 0.69 -> 0.831 Inexact Rounded -sqtx3126 squareroot 0.069 -> 0.263 Inexact Rounded -sqtx3127 squareroot 0.71 -> 0.843 Inexact Rounded -sqtx3128 squareroot 0.071 -> 0.266 Inexact Rounded -sqtx3129 squareroot 0.72 -> 0.849 Inexact Rounded -sqtx3130 squareroot 0.072 -> 0.268 Inexact Rounded -sqtx3131 squareroot 0.73 -> 0.854 Inexact Rounded -sqtx3132 squareroot 0.073 -> 0.270 Inexact Rounded -sqtx3133 squareroot 0.74 -> 0.860 Inexact Rounded -sqtx3134 squareroot 0.074 -> 0.272 Inexact Rounded -sqtx3135 squareroot 0.75 -> 0.866 Inexact Rounded -sqtx3136 squareroot 0.075 -> 0.274 Inexact Rounded -sqtx3137 squareroot 0.76 -> 0.872 Inexact Rounded -sqtx3138 squareroot 0.076 -> 0.276 Inexact Rounded -sqtx3139 squareroot 0.77 -> 0.877 Inexact Rounded -sqtx3140 squareroot 0.077 -> 0.277 Inexact Rounded -sqtx3141 squareroot 0.78 -> 0.883 Inexact Rounded -sqtx3142 squareroot 0.078 -> 0.279 Inexact Rounded -sqtx3143 squareroot 0.79 -> 0.889 Inexact Rounded -sqtx3144 squareroot 0.079 -> 0.281 Inexact Rounded -sqtx3145 squareroot 0.81 -> 0.9 -sqtx3146 squareroot 0.081 -> 0.285 Inexact Rounded -sqtx3147 squareroot 0.82 -> 0.906 Inexact Rounded -sqtx3148 squareroot 0.082 -> 0.286 Inexact Rounded -sqtx3149 squareroot 0.83 -> 0.911 Inexact Rounded -sqtx3150 squareroot 0.083 -> 0.288 Inexact Rounded -sqtx3151 squareroot 0.84 -> 0.917 Inexact Rounded -sqtx3152 squareroot 0.084 -> 0.290 Inexact Rounded -sqtx3153 squareroot 0.85 -> 0.922 Inexact Rounded -sqtx3154 squareroot 0.085 -> 0.292 Inexact Rounded -sqtx3155 squareroot 0.86 -> 0.927 Inexact Rounded -sqtx3156 squareroot 0.086 -> 0.293 Inexact Rounded -sqtx3157 squareroot 0.87 -> 0.933 Inexact Rounded -sqtx3158 squareroot 0.087 -> 0.295 Inexact Rounded -sqtx3159 squareroot 0.88 -> 0.938 Inexact Rounded -sqtx3160 squareroot 0.088 -> 0.297 Inexact Rounded -sqtx3161 squareroot 0.89 -> 0.943 Inexact Rounded -sqtx3162 squareroot 0.089 -> 0.298 Inexact Rounded -sqtx3163 squareroot 0.91 -> 0.954 Inexact Rounded -sqtx3164 squareroot 0.091 -> 0.302 Inexact Rounded -sqtx3165 squareroot 0.92 -> 0.959 Inexact Rounded -sqtx3166 squareroot 0.092 -> 0.303 Inexact Rounded -sqtx3167 squareroot 0.93 -> 0.964 Inexact Rounded -sqtx3168 squareroot 0.093 -> 0.305 Inexact Rounded -sqtx3169 squareroot 0.94 -> 0.970 Inexact Rounded -sqtx3170 squareroot 0.094 -> 0.307 Inexact Rounded -sqtx3171 squareroot 0.95 -> 0.975 Inexact Rounded -sqtx3172 squareroot 0.095 -> 0.308 Inexact Rounded -sqtx3173 squareroot 0.96 -> 0.980 Inexact Rounded -sqtx3174 squareroot 0.096 -> 0.310 Inexact Rounded -sqtx3175 squareroot 0.97 -> 0.985 Inexact Rounded -sqtx3176 squareroot 0.097 -> 0.311 Inexact Rounded -sqtx3177 squareroot 0.98 -> 0.990 Inexact Rounded -sqtx3178 squareroot 0.098 -> 0.313 Inexact Rounded -sqtx3179 squareroot 0.99 -> 0.995 Inexact Rounded -sqtx3180 squareroot 0.099 -> 0.315 Inexact Rounded -sqtx3181 squareroot 0.101 -> 0.318 Inexact Rounded -sqtx3182 squareroot 0.0101 -> 0.100 Inexact Rounded -sqtx3183 squareroot 0.102 -> 0.319 Inexact Rounded -sqtx3184 squareroot 0.0102 -> 0.101 Inexact Rounded -sqtx3185 squareroot 0.103 -> 0.321 Inexact Rounded -sqtx3186 squareroot 0.0103 -> 0.101 Inexact Rounded -sqtx3187 squareroot 0.104 -> 0.322 Inexact Rounded -sqtx3188 squareroot 0.0104 -> 0.102 Inexact Rounded -sqtx3189 squareroot 0.105 -> 0.324 Inexact Rounded -sqtx3190 squareroot 0.0105 -> 0.102 Inexact Rounded -sqtx3191 squareroot 0.106 -> 0.326 Inexact Rounded -sqtx3192 squareroot 0.0106 -> 0.103 Inexact Rounded -sqtx3193 squareroot 0.107 -> 0.327 Inexact Rounded -sqtx3194 squareroot 0.0107 -> 0.103 Inexact Rounded -sqtx3195 squareroot 0.108 -> 0.329 Inexact Rounded -sqtx3196 squareroot 0.0108 -> 0.104 Inexact Rounded -sqtx3197 squareroot 0.109 -> 0.330 Inexact Rounded -sqtx3198 squareroot 0.0109 -> 0.104 Inexact Rounded -sqtx3199 squareroot 0.111 -> 0.333 Inexact Rounded -sqtx3200 squareroot 0.0111 -> 0.105 Inexact Rounded -sqtx3201 squareroot 0.112 -> 0.335 Inexact Rounded -sqtx3202 squareroot 0.0112 -> 0.106 Inexact Rounded -sqtx3203 squareroot 0.113 -> 0.336 Inexact Rounded -sqtx3204 squareroot 0.0113 -> 0.106 Inexact Rounded -sqtx3205 squareroot 0.114 -> 0.338 Inexact Rounded -sqtx3206 squareroot 0.0114 -> 0.107 Inexact Rounded -sqtx3207 squareroot 0.115 -> 0.339 Inexact Rounded -sqtx3208 squareroot 0.0115 -> 0.107 Inexact Rounded -sqtx3209 squareroot 0.116 -> 0.341 Inexact Rounded -sqtx3210 squareroot 0.0116 -> 0.108 Inexact Rounded -sqtx3211 squareroot 0.117 -> 0.342 Inexact Rounded -sqtx3212 squareroot 0.0117 -> 0.108 Inexact Rounded -sqtx3213 squareroot 0.118 -> 0.344 Inexact Rounded -sqtx3214 squareroot 0.0118 -> 0.109 Inexact Rounded -sqtx3215 squareroot 0.119 -> 0.345 Inexact Rounded -sqtx3216 squareroot 0.0119 -> 0.109 Inexact Rounded -sqtx3217 squareroot 0.121 -> 0.348 Inexact Rounded -sqtx3218 squareroot 0.0121 -> 0.11 -sqtx3219 squareroot 0.122 -> 0.349 Inexact Rounded -sqtx3220 squareroot 0.0122 -> 0.110 Inexact Rounded -sqtx3221 squareroot 0.123 -> 0.351 Inexact Rounded -sqtx3222 squareroot 0.0123 -> 0.111 Inexact Rounded -sqtx3223 squareroot 0.124 -> 0.352 Inexact Rounded -sqtx3224 squareroot 0.0124 -> 0.111 Inexact Rounded -sqtx3225 squareroot 0.125 -> 0.354 Inexact Rounded -sqtx3226 squareroot 0.0125 -> 0.112 Inexact Rounded -sqtx3227 squareroot 0.126 -> 0.355 Inexact Rounded -sqtx3228 squareroot 0.0126 -> 0.112 Inexact Rounded -sqtx3229 squareroot 0.127 -> 0.356 Inexact Rounded -sqtx3230 squareroot 0.0127 -> 0.113 Inexact Rounded -sqtx3231 squareroot 0.128 -> 0.358 Inexact Rounded -sqtx3232 squareroot 0.0128 -> 0.113 Inexact Rounded -sqtx3233 squareroot 0.129 -> 0.359 Inexact Rounded -sqtx3234 squareroot 0.0129 -> 0.114 Inexact Rounded -sqtx3235 squareroot 0.131 -> 0.362 Inexact Rounded -sqtx3236 squareroot 0.0131 -> 0.114 Inexact Rounded -sqtx3237 squareroot 0.132 -> 0.363 Inexact Rounded -sqtx3238 squareroot 0.0132 -> 0.115 Inexact Rounded -sqtx3239 squareroot 0.133 -> 0.365 Inexact Rounded -sqtx3240 squareroot 0.0133 -> 0.115 Inexact Rounded -sqtx3241 squareroot 0.134 -> 0.366 Inexact Rounded -sqtx3242 squareroot 0.0134 -> 0.116 Inexact Rounded -sqtx3243 squareroot 0.135 -> 0.367 Inexact Rounded -sqtx3244 squareroot 0.0135 -> 0.116 Inexact Rounded -sqtx3245 squareroot 0.136 -> 0.369 Inexact Rounded -sqtx3246 squareroot 0.0136 -> 0.117 Inexact Rounded -sqtx3247 squareroot 0.137 -> 0.370 Inexact Rounded -sqtx3248 squareroot 0.0137 -> 0.117 Inexact Rounded -sqtx3249 squareroot 0.138 -> 0.371 Inexact Rounded -sqtx3250 squareroot 0.0138 -> 0.117 Inexact Rounded -sqtx3251 squareroot 0.139 -> 0.373 Inexact Rounded -sqtx3252 squareroot 0.0139 -> 0.118 Inexact Rounded -sqtx3253 squareroot 0.141 -> 0.375 Inexact Rounded -sqtx3254 squareroot 0.0141 -> 0.119 Inexact Rounded -sqtx3255 squareroot 0.142 -> 0.377 Inexact Rounded -sqtx3256 squareroot 0.0142 -> 0.119 Inexact Rounded -sqtx3257 squareroot 0.143 -> 0.378 Inexact Rounded -sqtx3258 squareroot 0.0143 -> 0.120 Inexact Rounded -sqtx3259 squareroot 0.144 -> 0.379 Inexact Rounded -sqtx3260 squareroot 0.0144 -> 0.12 -sqtx3261 squareroot 0.145 -> 0.381 Inexact Rounded -sqtx3262 squareroot 0.0145 -> 0.120 Inexact Rounded -sqtx3263 squareroot 0.146 -> 0.382 Inexact Rounded -sqtx3264 squareroot 0.0146 -> 0.121 Inexact Rounded -sqtx3265 squareroot 0.147 -> 0.383 Inexact Rounded -sqtx3266 squareroot 0.0147 -> 0.121 Inexact Rounded -sqtx3267 squareroot 0.148 -> 0.385 Inexact Rounded -sqtx3268 squareroot 0.0148 -> 0.122 Inexact Rounded -sqtx3269 squareroot 0.149 -> 0.386 Inexact Rounded -sqtx3270 squareroot 0.0149 -> 0.122 Inexact Rounded -sqtx3271 squareroot 0.151 -> 0.389 Inexact Rounded -sqtx3272 squareroot 0.0151 -> 0.123 Inexact Rounded -sqtx3273 squareroot 0.152 -> 0.390 Inexact Rounded -sqtx3274 squareroot 0.0152 -> 0.123 Inexact Rounded -sqtx3275 squareroot 0.153 -> 0.391 Inexact Rounded -sqtx3276 squareroot 0.0153 -> 0.124 Inexact Rounded -sqtx3277 squareroot 0.154 -> 0.392 Inexact Rounded -sqtx3278 squareroot 0.0154 -> 0.124 Inexact Rounded -sqtx3279 squareroot 0.155 -> 0.394 Inexact Rounded -sqtx3280 squareroot 0.0155 -> 0.124 Inexact Rounded -sqtx3281 squareroot 0.156 -> 0.395 Inexact Rounded -sqtx3282 squareroot 0.0156 -> 0.125 Inexact Rounded -sqtx3283 squareroot 0.157 -> 0.396 Inexact Rounded -sqtx3284 squareroot 0.0157 -> 0.125 Inexact Rounded -sqtx3285 squareroot 0.158 -> 0.397 Inexact Rounded -sqtx3286 squareroot 0.0158 -> 0.126 Inexact Rounded -sqtx3287 squareroot 0.159 -> 0.399 Inexact Rounded -sqtx3288 squareroot 0.0159 -> 0.126 Inexact Rounded -sqtx3289 squareroot 0.161 -> 0.401 Inexact Rounded -sqtx3290 squareroot 0.0161 -> 0.127 Inexact Rounded -sqtx3291 squareroot 0.162 -> 0.402 Inexact Rounded -sqtx3292 squareroot 0.0162 -> 0.127 Inexact Rounded -sqtx3293 squareroot 0.163 -> 0.404 Inexact Rounded -sqtx3294 squareroot 0.0163 -> 0.128 Inexact Rounded -sqtx3295 squareroot 0.164 -> 0.405 Inexact Rounded -sqtx3296 squareroot 0.0164 -> 0.128 Inexact Rounded -sqtx3297 squareroot 0.165 -> 0.406 Inexact Rounded -sqtx3298 squareroot 0.0165 -> 0.128 Inexact Rounded -sqtx3299 squareroot 0.166 -> 0.407 Inexact Rounded -sqtx3300 squareroot 0.0166 -> 0.129 Inexact Rounded -sqtx3301 squareroot 0.167 -> 0.409 Inexact Rounded -sqtx3302 squareroot 0.0167 -> 0.129 Inexact Rounded -sqtx3303 squareroot 0.168 -> 0.410 Inexact Rounded -sqtx3304 squareroot 0.0168 -> 0.130 Inexact Rounded -sqtx3305 squareroot 0.169 -> 0.411 Inexact Rounded -sqtx3306 squareroot 0.0169 -> 0.13 -sqtx3307 squareroot 0.171 -> 0.414 Inexact Rounded -sqtx3308 squareroot 0.0171 -> 0.131 Inexact Rounded -sqtx3309 squareroot 0.172 -> 0.415 Inexact Rounded -sqtx3310 squareroot 0.0172 -> 0.131 Inexact Rounded -sqtx3311 squareroot 0.173 -> 0.416 Inexact Rounded -sqtx3312 squareroot 0.0173 -> 0.132 Inexact Rounded -sqtx3313 squareroot 0.174 -> 0.417 Inexact Rounded -sqtx3314 squareroot 0.0174 -> 0.132 Inexact Rounded -sqtx3315 squareroot 0.175 -> 0.418 Inexact Rounded -sqtx3316 squareroot 0.0175 -> 0.132 Inexact Rounded -sqtx3317 squareroot 0.176 -> 0.420 Inexact Rounded -sqtx3318 squareroot 0.0176 -> 0.133 Inexact Rounded -sqtx3319 squareroot 0.177 -> 0.421 Inexact Rounded -sqtx3320 squareroot 0.0177 -> 0.133 Inexact Rounded -sqtx3321 squareroot 0.178 -> 0.422 Inexact Rounded -sqtx3322 squareroot 0.0178 -> 0.133 Inexact Rounded -sqtx3323 squareroot 0.179 -> 0.423 Inexact Rounded -sqtx3324 squareroot 0.0179 -> 0.134 Inexact Rounded -sqtx3325 squareroot 0.181 -> 0.425 Inexact Rounded -sqtx3326 squareroot 0.0181 -> 0.135 Inexact Rounded -sqtx3327 squareroot 0.182 -> 0.427 Inexact Rounded -sqtx3328 squareroot 0.0182 -> 0.135 Inexact Rounded -sqtx3329 squareroot 0.183 -> 0.428 Inexact Rounded -sqtx3330 squareroot 0.0183 -> 0.135 Inexact Rounded -sqtx3331 squareroot 0.184 -> 0.429 Inexact Rounded -sqtx3332 squareroot 0.0184 -> 0.136 Inexact Rounded -sqtx3333 squareroot 0.185 -> 0.430 Inexact Rounded -sqtx3334 squareroot 0.0185 -> 0.136 Inexact Rounded -sqtx3335 squareroot 0.186 -> 0.431 Inexact Rounded -sqtx3336 squareroot 0.0186 -> 0.136 Inexact Rounded -sqtx3337 squareroot 0.187 -> 0.432 Inexact Rounded -sqtx3338 squareroot 0.0187 -> 0.137 Inexact Rounded -sqtx3339 squareroot 0.188 -> 0.434 Inexact Rounded -sqtx3340 squareroot 0.0188 -> 0.137 Inexact Rounded -sqtx3341 squareroot 0.189 -> 0.435 Inexact Rounded -sqtx3342 squareroot 0.0189 -> 0.137 Inexact Rounded -sqtx3343 squareroot 0.191 -> 0.437 Inexact Rounded -sqtx3344 squareroot 0.0191 -> 0.138 Inexact Rounded -sqtx3345 squareroot 0.192 -> 0.438 Inexact Rounded -sqtx3346 squareroot 0.0192 -> 0.139 Inexact Rounded -sqtx3347 squareroot 0.193 -> 0.439 Inexact Rounded -sqtx3348 squareroot 0.0193 -> 0.139 Inexact Rounded -sqtx3349 squareroot 0.194 -> 0.440 Inexact Rounded -sqtx3350 squareroot 0.0194 -> 0.139 Inexact Rounded -sqtx3351 squareroot 0.195 -> 0.442 Inexact Rounded -sqtx3352 squareroot 0.0195 -> 0.140 Inexact Rounded -sqtx3353 squareroot 0.196 -> 0.443 Inexact Rounded -sqtx3354 squareroot 0.0196 -> 0.14 -sqtx3355 squareroot 0.197 -> 0.444 Inexact Rounded -sqtx3356 squareroot 0.0197 -> 0.140 Inexact Rounded -sqtx3357 squareroot 0.198 -> 0.445 Inexact Rounded -sqtx3358 squareroot 0.0198 -> 0.141 Inexact Rounded -sqtx3359 squareroot 0.199 -> 0.446 Inexact Rounded -sqtx3360 squareroot 0.0199 -> 0.141 Inexact Rounded -sqtx3361 squareroot 0.201 -> 0.448 Inexact Rounded -sqtx3362 squareroot 0.0201 -> 0.142 Inexact Rounded -sqtx3363 squareroot 0.202 -> 0.449 Inexact Rounded -sqtx3364 squareroot 0.0202 -> 0.142 Inexact Rounded -sqtx3365 squareroot 0.203 -> 0.451 Inexact Rounded -sqtx3366 squareroot 0.0203 -> 0.142 Inexact Rounded -sqtx3367 squareroot 0.204 -> 0.452 Inexact Rounded -sqtx3368 squareroot 0.0204 -> 0.143 Inexact Rounded -sqtx3369 squareroot 0.205 -> 0.453 Inexact Rounded -sqtx3370 squareroot 0.0205 -> 0.143 Inexact Rounded -sqtx3371 squareroot 0.206 -> 0.454 Inexact Rounded -sqtx3372 squareroot 0.0206 -> 0.144 Inexact Rounded -sqtx3373 squareroot 0.207 -> 0.455 Inexact Rounded -sqtx3374 squareroot 0.0207 -> 0.144 Inexact Rounded -sqtx3375 squareroot 0.208 -> 0.456 Inexact Rounded -sqtx3376 squareroot 0.0208 -> 0.144 Inexact Rounded -sqtx3377 squareroot 0.209 -> 0.457 Inexact Rounded -sqtx3378 squareroot 0.0209 -> 0.145 Inexact Rounded -sqtx3379 squareroot 0.211 -> 0.459 Inexact Rounded -sqtx3380 squareroot 0.0211 -> 0.145 Inexact Rounded -sqtx3381 squareroot 0.212 -> 0.460 Inexact Rounded -sqtx3382 squareroot 0.0212 -> 0.146 Inexact Rounded -sqtx3383 squareroot 0.213 -> 0.462 Inexact Rounded -sqtx3384 squareroot 0.0213 -> 0.146 Inexact Rounded -sqtx3385 squareroot 0.214 -> 0.463 Inexact Rounded -sqtx3386 squareroot 0.0214 -> 0.146 Inexact Rounded -sqtx3387 squareroot 0.215 -> 0.464 Inexact Rounded -sqtx3388 squareroot 0.0215 -> 0.147 Inexact Rounded -sqtx3389 squareroot 0.216 -> 0.465 Inexact Rounded -sqtx3390 squareroot 0.0216 -> 0.147 Inexact Rounded -sqtx3391 squareroot 0.217 -> 0.466 Inexact Rounded -sqtx3392 squareroot 0.0217 -> 0.147 Inexact Rounded -sqtx3393 squareroot 0.218 -> 0.467 Inexact Rounded -sqtx3394 squareroot 0.0218 -> 0.148 Inexact Rounded -sqtx3395 squareroot 0.219 -> 0.468 Inexact Rounded -sqtx3396 squareroot 0.0219 -> 0.148 Inexact Rounded -sqtx3397 squareroot 0.221 -> 0.470 Inexact Rounded -sqtx3398 squareroot 0.0221 -> 0.149 Inexact Rounded -sqtx3399 squareroot 0.222 -> 0.471 Inexact Rounded -sqtx3400 squareroot 0.0222 -> 0.149 Inexact Rounded -sqtx3401 squareroot 0.223 -> 0.472 Inexact Rounded -sqtx3402 squareroot 0.0223 -> 0.149 Inexact Rounded -sqtx3403 squareroot 0.224 -> 0.473 Inexact Rounded -sqtx3404 squareroot 0.0224 -> 0.150 Inexact Rounded -sqtx3405 squareroot 0.225 -> 0.474 Inexact Rounded -sqtx3406 squareroot 0.0225 -> 0.15 -sqtx3407 squareroot 0.226 -> 0.475 Inexact Rounded -sqtx3408 squareroot 0.0226 -> 0.150 Inexact Rounded -sqtx3409 squareroot 0.227 -> 0.476 Inexact Rounded -sqtx3410 squareroot 0.0227 -> 0.151 Inexact Rounded -sqtx3411 squareroot 0.228 -> 0.477 Inexact Rounded -sqtx3412 squareroot 0.0228 -> 0.151 Inexact Rounded -sqtx3413 squareroot 0.229 -> 0.479 Inexact Rounded -sqtx3414 squareroot 0.0229 -> 0.151 Inexact Rounded -sqtx3415 squareroot 0.231 -> 0.481 Inexact Rounded -sqtx3416 squareroot 0.0231 -> 0.152 Inexact Rounded -sqtx3417 squareroot 0.232 -> 0.482 Inexact Rounded -sqtx3418 squareroot 0.0232 -> 0.152 Inexact Rounded -sqtx3419 squareroot 0.233 -> 0.483 Inexact Rounded -sqtx3420 squareroot 0.0233 -> 0.153 Inexact Rounded -sqtx3421 squareroot 0.234 -> 0.484 Inexact Rounded -sqtx3422 squareroot 0.0234 -> 0.153 Inexact Rounded -sqtx3423 squareroot 0.235 -> 0.485 Inexact Rounded -sqtx3424 squareroot 0.0235 -> 0.153 Inexact Rounded -sqtx3425 squareroot 0.236 -> 0.486 Inexact Rounded -sqtx3426 squareroot 0.0236 -> 0.154 Inexact Rounded -sqtx3427 squareroot 0.237 -> 0.487 Inexact Rounded -sqtx3428 squareroot 0.0237 -> 0.154 Inexact Rounded -sqtx3429 squareroot 0.238 -> 0.488 Inexact Rounded -sqtx3430 squareroot 0.0238 -> 0.154 Inexact Rounded -sqtx3431 squareroot 0.239 -> 0.489 Inexact Rounded -sqtx3432 squareroot 0.0239 -> 0.155 Inexact Rounded -sqtx3433 squareroot 0.241 -> 0.491 Inexact Rounded -sqtx3434 squareroot 0.0241 -> 0.155 Inexact Rounded -sqtx3435 squareroot 0.242 -> 0.492 Inexact Rounded -sqtx3436 squareroot 0.0242 -> 0.156 Inexact Rounded -sqtx3437 squareroot 0.243 -> 0.493 Inexact Rounded -sqtx3438 squareroot 0.0243 -> 0.156 Inexact Rounded -sqtx3439 squareroot 0.244 -> 0.494 Inexact Rounded -sqtx3440 squareroot 0.0244 -> 0.156 Inexact Rounded -sqtx3441 squareroot 0.245 -> 0.495 Inexact Rounded -sqtx3442 squareroot 0.0245 -> 0.157 Inexact Rounded -sqtx3443 squareroot 0.246 -> 0.496 Inexact Rounded -sqtx3444 squareroot 0.0246 -> 0.157 Inexact Rounded -sqtx3445 squareroot 0.247 -> 0.497 Inexact Rounded -sqtx3446 squareroot 0.0247 -> 0.157 Inexact Rounded -sqtx3447 squareroot 0.248 -> 0.498 Inexact Rounded -sqtx3448 squareroot 0.0248 -> 0.157 Inexact Rounded -sqtx3449 squareroot 0.249 -> 0.499 Inexact Rounded -sqtx3450 squareroot 0.0249 -> 0.158 Inexact Rounded -sqtx3451 squareroot 0.251 -> 0.501 Inexact Rounded -sqtx3452 squareroot 0.0251 -> 0.158 Inexact Rounded -sqtx3453 squareroot 0.252 -> 0.502 Inexact Rounded -sqtx3454 squareroot 0.0252 -> 0.159 Inexact Rounded -sqtx3455 squareroot 0.253 -> 0.503 Inexact Rounded -sqtx3456 squareroot 0.0253 -> 0.159 Inexact Rounded -sqtx3457 squareroot 0.254 -> 0.504 Inexact Rounded -sqtx3458 squareroot 0.0254 -> 0.159 Inexact Rounded -sqtx3459 squareroot 0.255 -> 0.505 Inexact Rounded -sqtx3460 squareroot 0.0255 -> 0.160 Inexact Rounded -sqtx3461 squareroot 0.256 -> 0.506 Inexact Rounded -sqtx3462 squareroot 0.0256 -> 0.16 -sqtx3463 squareroot 0.257 -> 0.507 Inexact Rounded -sqtx3464 squareroot 0.0257 -> 0.160 Inexact Rounded -sqtx3465 squareroot 0.258 -> 0.508 Inexact Rounded -sqtx3466 squareroot 0.0258 -> 0.161 Inexact Rounded -sqtx3467 squareroot 0.259 -> 0.509 Inexact Rounded -sqtx3468 squareroot 0.0259 -> 0.161 Inexact Rounded -sqtx3469 squareroot 0.261 -> 0.511 Inexact Rounded -sqtx3470 squareroot 0.0261 -> 0.162 Inexact Rounded -sqtx3471 squareroot 0.262 -> 0.512 Inexact Rounded -sqtx3472 squareroot 0.0262 -> 0.162 Inexact Rounded -sqtx3473 squareroot 0.263 -> 0.513 Inexact Rounded -sqtx3474 squareroot 0.0263 -> 0.162 Inexact Rounded -sqtx3475 squareroot 0.264 -> 0.514 Inexact Rounded -sqtx3476 squareroot 0.0264 -> 0.162 Inexact Rounded -sqtx3477 squareroot 0.265 -> 0.515 Inexact Rounded -sqtx3478 squareroot 0.0265 -> 0.163 Inexact Rounded -sqtx3479 squareroot 0.266 -> 0.516 Inexact Rounded -sqtx3480 squareroot 0.0266 -> 0.163 Inexact Rounded -sqtx3481 squareroot 0.267 -> 0.517 Inexact Rounded -sqtx3482 squareroot 0.0267 -> 0.163 Inexact Rounded -sqtx3483 squareroot 0.268 -> 0.518 Inexact Rounded -sqtx3484 squareroot 0.0268 -> 0.164 Inexact Rounded -sqtx3485 squareroot 0.269 -> 0.519 Inexact Rounded -sqtx3486 squareroot 0.0269 -> 0.164 Inexact Rounded -sqtx3487 squareroot 0.271 -> 0.521 Inexact Rounded -sqtx3488 squareroot 0.0271 -> 0.165 Inexact Rounded -sqtx3489 squareroot 0.272 -> 0.522 Inexact Rounded -sqtx3490 squareroot 0.0272 -> 0.165 Inexact Rounded -sqtx3491 squareroot 0.273 -> 0.522 Inexact Rounded -sqtx3492 squareroot 0.0273 -> 0.165 Inexact Rounded -sqtx3493 squareroot 0.274 -> 0.523 Inexact Rounded -sqtx3494 squareroot 0.0274 -> 0.166 Inexact Rounded -sqtx3495 squareroot 0.275 -> 0.524 Inexact Rounded -sqtx3496 squareroot 0.0275 -> 0.166 Inexact Rounded -sqtx3497 squareroot 0.276 -> 0.525 Inexact Rounded -sqtx3498 squareroot 0.0276 -> 0.166 Inexact Rounded -sqtx3499 squareroot 0.277 -> 0.526 Inexact Rounded -sqtx3500 squareroot 0.0277 -> 0.166 Inexact Rounded -sqtx3501 squareroot 0.278 -> 0.527 Inexact Rounded -sqtx3502 squareroot 0.0278 -> 0.167 Inexact Rounded -sqtx3503 squareroot 0.279 -> 0.528 Inexact Rounded -sqtx3504 squareroot 0.0279 -> 0.167 Inexact Rounded -sqtx3505 squareroot 0.281 -> 0.530 Inexact Rounded -sqtx3506 squareroot 0.0281 -> 0.168 Inexact Rounded -sqtx3507 squareroot 0.282 -> 0.531 Inexact Rounded -sqtx3508 squareroot 0.0282 -> 0.168 Inexact Rounded -sqtx3509 squareroot 0.283 -> 0.532 Inexact Rounded -sqtx3510 squareroot 0.0283 -> 0.168 Inexact Rounded -sqtx3511 squareroot 0.284 -> 0.533 Inexact Rounded -sqtx3512 squareroot 0.0284 -> 0.169 Inexact Rounded -sqtx3513 squareroot 0.285 -> 0.534 Inexact Rounded -sqtx3514 squareroot 0.0285 -> 0.169 Inexact Rounded -sqtx3515 squareroot 0.286 -> 0.535 Inexact Rounded -sqtx3516 squareroot 0.0286 -> 0.169 Inexact Rounded -sqtx3517 squareroot 0.287 -> 0.536 Inexact Rounded -sqtx3518 squareroot 0.0287 -> 0.169 Inexact Rounded -sqtx3519 squareroot 0.288 -> 0.537 Inexact Rounded -sqtx3520 squareroot 0.0288 -> 0.170 Inexact Rounded -sqtx3521 squareroot 0.289 -> 0.538 Inexact Rounded -sqtx3522 squareroot 0.0289 -> 0.17 -sqtx3523 squareroot 0.291 -> 0.539 Inexact Rounded -sqtx3524 squareroot 0.0291 -> 0.171 Inexact Rounded -sqtx3525 squareroot 0.292 -> 0.540 Inexact Rounded -sqtx3526 squareroot 0.0292 -> 0.171 Inexact Rounded -sqtx3527 squareroot 0.293 -> 0.541 Inexact Rounded -sqtx3528 squareroot 0.0293 -> 0.171 Inexact Rounded -sqtx3529 squareroot 0.294 -> 0.542 Inexact Rounded -sqtx3530 squareroot 0.0294 -> 0.171 Inexact Rounded -sqtx3531 squareroot 0.295 -> 0.543 Inexact Rounded -sqtx3532 squareroot 0.0295 -> 0.172 Inexact Rounded -sqtx3533 squareroot 0.296 -> 0.544 Inexact Rounded -sqtx3534 squareroot 0.0296 -> 0.172 Inexact Rounded -sqtx3535 squareroot 0.297 -> 0.545 Inexact Rounded -sqtx3536 squareroot 0.0297 -> 0.172 Inexact Rounded -sqtx3537 squareroot 0.298 -> 0.546 Inexact Rounded -sqtx3538 squareroot 0.0298 -> 0.173 Inexact Rounded -sqtx3539 squareroot 0.299 -> 0.547 Inexact Rounded -sqtx3540 squareroot 0.0299 -> 0.173 Inexact Rounded -sqtx3541 squareroot 0.301 -> 0.549 Inexact Rounded -sqtx3542 squareroot 0.0301 -> 0.173 Inexact Rounded -sqtx3543 squareroot 0.302 -> 0.550 Inexact Rounded -sqtx3544 squareroot 0.0302 -> 0.174 Inexact Rounded -sqtx3545 squareroot 0.303 -> 0.550 Inexact Rounded -sqtx3546 squareroot 0.0303 -> 0.174 Inexact Rounded -sqtx3547 squareroot 0.304 -> 0.551 Inexact Rounded -sqtx3548 squareroot 0.0304 -> 0.174 Inexact Rounded -sqtx3549 squareroot 0.305 -> 0.552 Inexact Rounded -sqtx3550 squareroot 0.0305 -> 0.175 Inexact Rounded -sqtx3551 squareroot 0.306 -> 0.553 Inexact Rounded -sqtx3552 squareroot 0.0306 -> 0.175 Inexact Rounded -sqtx3553 squareroot 0.307 -> 0.554 Inexact Rounded -sqtx3554 squareroot 0.0307 -> 0.175 Inexact Rounded -sqtx3555 squareroot 0.308 -> 0.555 Inexact Rounded -sqtx3556 squareroot 0.0308 -> 0.175 Inexact Rounded -sqtx3557 squareroot 0.309 -> 0.556 Inexact Rounded -sqtx3558 squareroot 0.0309 -> 0.176 Inexact Rounded -sqtx3559 squareroot 0.311 -> 0.558 Inexact Rounded -sqtx3560 squareroot 0.0311 -> 0.176 Inexact Rounded -sqtx3561 squareroot 0.312 -> 0.559 Inexact Rounded -sqtx3562 squareroot 0.0312 -> 0.177 Inexact Rounded -sqtx3563 squareroot 0.313 -> 0.559 Inexact Rounded -sqtx3564 squareroot 0.0313 -> 0.177 Inexact Rounded -sqtx3565 squareroot 0.314 -> 0.560 Inexact Rounded -sqtx3566 squareroot 0.0314 -> 0.177 Inexact Rounded -sqtx3567 squareroot 0.315 -> 0.561 Inexact Rounded -sqtx3568 squareroot 0.0315 -> 0.177 Inexact Rounded -sqtx3569 squareroot 0.316 -> 0.562 Inexact Rounded -sqtx3570 squareroot 0.0316 -> 0.178 Inexact Rounded -sqtx3571 squareroot 0.317 -> 0.563 Inexact Rounded -sqtx3572 squareroot 0.0317 -> 0.178 Inexact Rounded -sqtx3573 squareroot 0.318 -> 0.564 Inexact Rounded -sqtx3574 squareroot 0.0318 -> 0.178 Inexact Rounded -sqtx3575 squareroot 0.319 -> 0.565 Inexact Rounded -sqtx3576 squareroot 0.0319 -> 0.179 Inexact Rounded -sqtx3577 squareroot 0.321 -> 0.567 Inexact Rounded -sqtx3578 squareroot 0.0321 -> 0.179 Inexact Rounded -sqtx3579 squareroot 0.322 -> 0.567 Inexact Rounded -sqtx3580 squareroot 0.0322 -> 0.179 Inexact Rounded -sqtx3581 squareroot 0.323 -> 0.568 Inexact Rounded -sqtx3582 squareroot 0.0323 -> 0.180 Inexact Rounded -sqtx3583 squareroot 0.324 -> 0.569 Inexact Rounded -sqtx3584 squareroot 0.0324 -> 0.18 -sqtx3585 squareroot 0.325 -> 0.570 Inexact Rounded -sqtx3586 squareroot 0.0325 -> 0.180 Inexact Rounded -sqtx3587 squareroot 0.326 -> 0.571 Inexact Rounded -sqtx3588 squareroot 0.0326 -> 0.181 Inexact Rounded -sqtx3589 squareroot 0.327 -> 0.572 Inexact Rounded -sqtx3590 squareroot 0.0327 -> 0.181 Inexact Rounded -sqtx3591 squareroot 0.328 -> 0.573 Inexact Rounded -sqtx3592 squareroot 0.0328 -> 0.181 Inexact Rounded -sqtx3593 squareroot 0.329 -> 0.574 Inexact Rounded -sqtx3594 squareroot 0.0329 -> 0.181 Inexact Rounded -sqtx3595 squareroot 0.331 -> 0.575 Inexact Rounded -sqtx3596 squareroot 0.0331 -> 0.182 Inexact Rounded -sqtx3597 squareroot 0.332 -> 0.576 Inexact Rounded -sqtx3598 squareroot 0.0332 -> 0.182 Inexact Rounded -sqtx3599 squareroot 0.333 -> 0.577 Inexact Rounded -sqtx3600 squareroot 0.0333 -> 0.182 Inexact Rounded -sqtx3601 squareroot 0.334 -> 0.578 Inexact Rounded -sqtx3602 squareroot 0.0334 -> 0.183 Inexact Rounded -sqtx3603 squareroot 0.335 -> 0.579 Inexact Rounded -sqtx3604 squareroot 0.0335 -> 0.183 Inexact Rounded -sqtx3605 squareroot 0.336 -> 0.580 Inexact Rounded -sqtx3606 squareroot 0.0336 -> 0.183 Inexact Rounded -sqtx3607 squareroot 0.337 -> 0.581 Inexact Rounded -sqtx3608 squareroot 0.0337 -> 0.184 Inexact Rounded -sqtx3609 squareroot 0.338 -> 0.581 Inexact Rounded -sqtx3610 squareroot 0.0338 -> 0.184 Inexact Rounded -sqtx3611 squareroot 0.339 -> 0.582 Inexact Rounded -sqtx3612 squareroot 0.0339 -> 0.184 Inexact Rounded -sqtx3613 squareroot 0.341 -> 0.584 Inexact Rounded -sqtx3614 squareroot 0.0341 -> 0.185 Inexact Rounded -sqtx3615 squareroot 0.342 -> 0.585 Inexact Rounded -sqtx3616 squareroot 0.0342 -> 0.185 Inexact Rounded -sqtx3617 squareroot 0.343 -> 0.586 Inexact Rounded -sqtx3618 squareroot 0.0343 -> 0.185 Inexact Rounded -sqtx3619 squareroot 0.344 -> 0.587 Inexact Rounded -sqtx3620 squareroot 0.0344 -> 0.185 Inexact Rounded -sqtx3621 squareroot 0.345 -> 0.587 Inexact Rounded -sqtx3622 squareroot 0.0345 -> 0.186 Inexact Rounded -sqtx3623 squareroot 0.346 -> 0.588 Inexact Rounded -sqtx3624 squareroot 0.0346 -> 0.186 Inexact Rounded -sqtx3625 squareroot 0.347 -> 0.589 Inexact Rounded -sqtx3626 squareroot 0.0347 -> 0.186 Inexact Rounded -sqtx3627 squareroot 0.348 -> 0.590 Inexact Rounded -sqtx3628 squareroot 0.0348 -> 0.187 Inexact Rounded -sqtx3629 squareroot 0.349 -> 0.591 Inexact Rounded -sqtx3630 squareroot 0.0349 -> 0.187 Inexact Rounded -sqtx3631 squareroot 0.351 -> 0.592 Inexact Rounded -sqtx3632 squareroot 0.0351 -> 0.187 Inexact Rounded -sqtx3633 squareroot 0.352 -> 0.593 Inexact Rounded -sqtx3634 squareroot 0.0352 -> 0.188 Inexact Rounded -sqtx3635 squareroot 0.353 -> 0.594 Inexact Rounded -sqtx3636 squareroot 0.0353 -> 0.188 Inexact Rounded -sqtx3637 squareroot 0.354 -> 0.595 Inexact Rounded -sqtx3638 squareroot 0.0354 -> 0.188 Inexact Rounded -sqtx3639 squareroot 0.355 -> 0.596 Inexact Rounded -sqtx3640 squareroot 0.0355 -> 0.188 Inexact Rounded -sqtx3641 squareroot 0.356 -> 0.597 Inexact Rounded -sqtx3642 squareroot 0.0356 -> 0.189 Inexact Rounded -sqtx3643 squareroot 0.357 -> 0.597 Inexact Rounded -sqtx3644 squareroot 0.0357 -> 0.189 Inexact Rounded -sqtx3645 squareroot 0.358 -> 0.598 Inexact Rounded -sqtx3646 squareroot 0.0358 -> 0.189 Inexact Rounded -sqtx3647 squareroot 0.359 -> 0.599 Inexact Rounded -sqtx3648 squareroot 0.0359 -> 0.189 Inexact Rounded -sqtx3649 squareroot 0.361 -> 0.601 Inexact Rounded -sqtx3650 squareroot 0.0361 -> 0.19 -sqtx3651 squareroot 0.362 -> 0.602 Inexact Rounded -sqtx3652 squareroot 0.0362 -> 0.190 Inexact Rounded -sqtx3653 squareroot 0.363 -> 0.602 Inexact Rounded -sqtx3654 squareroot 0.0363 -> 0.191 Inexact Rounded -sqtx3655 squareroot 0.364 -> 0.603 Inexact Rounded -sqtx3656 squareroot 0.0364 -> 0.191 Inexact Rounded -sqtx3657 squareroot 0.365 -> 0.604 Inexact Rounded -sqtx3658 squareroot 0.0365 -> 0.191 Inexact Rounded -sqtx3659 squareroot 0.366 -> 0.605 Inexact Rounded -sqtx3660 squareroot 0.0366 -> 0.191 Inexact Rounded -sqtx3661 squareroot 0.367 -> 0.606 Inexact Rounded -sqtx3662 squareroot 0.0367 -> 0.192 Inexact Rounded -sqtx3663 squareroot 0.368 -> 0.607 Inexact Rounded -sqtx3664 squareroot 0.0368 -> 0.192 Inexact Rounded -sqtx3665 squareroot 0.369 -> 0.607 Inexact Rounded -sqtx3666 squareroot 0.0369 -> 0.192 Inexact Rounded -sqtx3667 squareroot 0.371 -> 0.609 Inexact Rounded -sqtx3668 squareroot 0.0371 -> 0.193 Inexact Rounded -sqtx3669 squareroot 0.372 -> 0.610 Inexact Rounded -sqtx3670 squareroot 0.0372 -> 0.193 Inexact Rounded -sqtx3671 squareroot 0.373 -> 0.611 Inexact Rounded -sqtx3672 squareroot 0.0373 -> 0.193 Inexact Rounded -sqtx3673 squareroot 0.374 -> 0.612 Inexact Rounded -sqtx3674 squareroot 0.0374 -> 0.193 Inexact Rounded -sqtx3675 squareroot 0.375 -> 0.612 Inexact Rounded -sqtx3676 squareroot 0.0375 -> 0.194 Inexact Rounded -sqtx3677 squareroot 0.376 -> 0.613 Inexact Rounded -sqtx3678 squareroot 0.0376 -> 0.194 Inexact Rounded -sqtx3679 squareroot 0.377 -> 0.614 Inexact Rounded -sqtx3680 squareroot 0.0377 -> 0.194 Inexact Rounded -sqtx3681 squareroot 0.378 -> 0.615 Inexact Rounded -sqtx3682 squareroot 0.0378 -> 0.194 Inexact Rounded -sqtx3683 squareroot 0.379 -> 0.616 Inexact Rounded -sqtx3684 squareroot 0.0379 -> 0.195 Inexact Rounded -sqtx3685 squareroot 0.381 -> 0.617 Inexact Rounded -sqtx3686 squareroot 0.0381 -> 0.195 Inexact Rounded -sqtx3687 squareroot 0.382 -> 0.618 Inexact Rounded -sqtx3688 squareroot 0.0382 -> 0.195 Inexact Rounded -sqtx3689 squareroot 0.383 -> 0.619 Inexact Rounded -sqtx3690 squareroot 0.0383 -> 0.196 Inexact Rounded -sqtx3691 squareroot 0.384 -> 0.620 Inexact Rounded -sqtx3692 squareroot 0.0384 -> 0.196 Inexact Rounded -sqtx3693 squareroot 0.385 -> 0.620 Inexact Rounded -sqtx3694 squareroot 0.0385 -> 0.196 Inexact Rounded -sqtx3695 squareroot 0.386 -> 0.621 Inexact Rounded -sqtx3696 squareroot 0.0386 -> 0.196 Inexact Rounded -sqtx3697 squareroot 0.387 -> 0.622 Inexact Rounded -sqtx3698 squareroot 0.0387 -> 0.197 Inexact Rounded -sqtx3699 squareroot 0.388 -> 0.623 Inexact Rounded -sqtx3700 squareroot 0.0388 -> 0.197 Inexact Rounded -sqtx3701 squareroot 0.389 -> 0.624 Inexact Rounded -sqtx3702 squareroot 0.0389 -> 0.197 Inexact Rounded -sqtx3703 squareroot 0.391 -> 0.625 Inexact Rounded -sqtx3704 squareroot 0.0391 -> 0.198 Inexact Rounded -sqtx3705 squareroot 0.392 -> 0.626 Inexact Rounded -sqtx3706 squareroot 0.0392 -> 0.198 Inexact Rounded -sqtx3707 squareroot 0.393 -> 0.627 Inexact Rounded -sqtx3708 squareroot 0.0393 -> 0.198 Inexact Rounded -sqtx3709 squareroot 0.394 -> 0.628 Inexact Rounded -sqtx3710 squareroot 0.0394 -> 0.198 Inexact Rounded -sqtx3711 squareroot 0.395 -> 0.628 Inexact Rounded -sqtx3712 squareroot 0.0395 -> 0.199 Inexact Rounded -sqtx3713 squareroot 0.396 -> 0.629 Inexact Rounded -sqtx3714 squareroot 0.0396 -> 0.199 Inexact Rounded -sqtx3715 squareroot 0.397 -> 0.630 Inexact Rounded -sqtx3716 squareroot 0.0397 -> 0.199 Inexact Rounded -sqtx3717 squareroot 0.398 -> 0.631 Inexact Rounded -sqtx3718 squareroot 0.0398 -> 0.199 Inexact Rounded -sqtx3719 squareroot 0.399 -> 0.632 Inexact Rounded -sqtx3720 squareroot 0.0399 -> 0.200 Inexact Rounded -sqtx3721 squareroot 0.401 -> 0.633 Inexact Rounded -sqtx3722 squareroot 0.0401 -> 0.200 Inexact Rounded -sqtx3723 squareroot 0.402 -> 0.634 Inexact Rounded -sqtx3724 squareroot 0.0402 -> 0.200 Inexact Rounded -sqtx3725 squareroot 0.403 -> 0.635 Inexact Rounded -sqtx3726 squareroot 0.0403 -> 0.201 Inexact Rounded -sqtx3727 squareroot 0.404 -> 0.636 Inexact Rounded -sqtx3728 squareroot 0.0404 -> 0.201 Inexact Rounded -sqtx3729 squareroot 0.405 -> 0.636 Inexact Rounded -sqtx3730 squareroot 0.0405 -> 0.201 Inexact Rounded -sqtx3731 squareroot 0.406 -> 0.637 Inexact Rounded -sqtx3732 squareroot 0.0406 -> 0.201 Inexact Rounded -sqtx3733 squareroot 0.407 -> 0.638 Inexact Rounded -sqtx3734 squareroot 0.0407 -> 0.202 Inexact Rounded -sqtx3735 squareroot 0.408 -> 0.639 Inexact Rounded -sqtx3736 squareroot 0.0408 -> 0.202 Inexact Rounded -sqtx3737 squareroot 0.409 -> 0.640 Inexact Rounded -sqtx3738 squareroot 0.0409 -> 0.202 Inexact Rounded -sqtx3739 squareroot 0.411 -> 0.641 Inexact Rounded -sqtx3740 squareroot 0.0411 -> 0.203 Inexact Rounded -sqtx3741 squareroot 0.412 -> 0.642 Inexact Rounded -sqtx3742 squareroot 0.0412 -> 0.203 Inexact Rounded -sqtx3743 squareroot 0.413 -> 0.643 Inexact Rounded -sqtx3744 squareroot 0.0413 -> 0.203 Inexact Rounded -sqtx3745 squareroot 0.414 -> 0.643 Inexact Rounded -sqtx3746 squareroot 0.0414 -> 0.203 Inexact Rounded -sqtx3747 squareroot 0.415 -> 0.644 Inexact Rounded -sqtx3748 squareroot 0.0415 -> 0.204 Inexact Rounded -sqtx3749 squareroot 0.416 -> 0.645 Inexact Rounded -sqtx3750 squareroot 0.0416 -> 0.204 Inexact Rounded -sqtx3751 squareroot 0.417 -> 0.646 Inexact Rounded -sqtx3752 squareroot 0.0417 -> 0.204 Inexact Rounded -sqtx3753 squareroot 0.418 -> 0.647 Inexact Rounded -sqtx3754 squareroot 0.0418 -> 0.204 Inexact Rounded -sqtx3755 squareroot 0.419 -> 0.647 Inexact Rounded -sqtx3756 squareroot 0.0419 -> 0.205 Inexact Rounded -sqtx3757 squareroot 0.421 -> 0.649 Inexact Rounded -sqtx3758 squareroot 0.0421 -> 0.205 Inexact Rounded -sqtx3759 squareroot 0.422 -> 0.650 Inexact Rounded -sqtx3760 squareroot 0.0422 -> 0.205 Inexact Rounded -sqtx3761 squareroot 0.423 -> 0.650 Inexact Rounded -sqtx3762 squareroot 0.0423 -> 0.206 Inexact Rounded -sqtx3763 squareroot 0.424 -> 0.651 Inexact Rounded -sqtx3764 squareroot 0.0424 -> 0.206 Inexact Rounded -sqtx3765 squareroot 0.425 -> 0.652 Inexact Rounded -sqtx3766 squareroot 0.0425 -> 0.206 Inexact Rounded -sqtx3767 squareroot 0.426 -> 0.653 Inexact Rounded -sqtx3768 squareroot 0.0426 -> 0.206 Inexact Rounded -sqtx3769 squareroot 0.427 -> 0.653 Inexact Rounded -sqtx3770 squareroot 0.0427 -> 0.207 Inexact Rounded -sqtx3771 squareroot 0.428 -> 0.654 Inexact Rounded -sqtx3772 squareroot 0.0428 -> 0.207 Inexact Rounded -sqtx3773 squareroot 0.429 -> 0.655 Inexact Rounded -sqtx3774 squareroot 0.0429 -> 0.207 Inexact Rounded -sqtx3775 squareroot 0.431 -> 0.657 Inexact Rounded -sqtx3776 squareroot 0.0431 -> 0.208 Inexact Rounded -sqtx3777 squareroot 0.432 -> 0.657 Inexact Rounded -sqtx3778 squareroot 0.0432 -> 0.208 Inexact Rounded -sqtx3779 squareroot 0.433 -> 0.658 Inexact Rounded -sqtx3780 squareroot 0.0433 -> 0.208 Inexact Rounded -sqtx3781 squareroot 0.434 -> 0.659 Inexact Rounded -sqtx3782 squareroot 0.0434 -> 0.208 Inexact Rounded -sqtx3783 squareroot 0.435 -> 0.660 Inexact Rounded -sqtx3784 squareroot 0.0435 -> 0.209 Inexact Rounded -sqtx3785 squareroot 0.436 -> 0.660 Inexact Rounded -sqtx3786 squareroot 0.0436 -> 0.209 Inexact Rounded -sqtx3787 squareroot 0.437 -> 0.661 Inexact Rounded -sqtx3788 squareroot 0.0437 -> 0.209 Inexact Rounded -sqtx3789 squareroot 0.438 -> 0.662 Inexact Rounded -sqtx3790 squareroot 0.0438 -> 0.209 Inexact Rounded -sqtx3791 squareroot 0.439 -> 0.663 Inexact Rounded -sqtx3792 squareroot 0.0439 -> 0.210 Inexact Rounded -sqtx3793 squareroot 0.441 -> 0.664 Inexact Rounded -sqtx3794 squareroot 0.0441 -> 0.21 -sqtx3795 squareroot 0.442 -> 0.665 Inexact Rounded -sqtx3796 squareroot 0.0442 -> 0.210 Inexact Rounded -sqtx3797 squareroot 0.443 -> 0.666 Inexact Rounded -sqtx3798 squareroot 0.0443 -> 0.210 Inexact Rounded -sqtx3799 squareroot 0.444 -> 0.666 Inexact Rounded -sqtx3800 squareroot 0.0444 -> 0.211 Inexact Rounded -sqtx3801 squareroot 0.445 -> 0.667 Inexact Rounded -sqtx3802 squareroot 0.0445 -> 0.211 Inexact Rounded -sqtx3803 squareroot 0.446 -> 0.668 Inexact Rounded -sqtx3804 squareroot 0.0446 -> 0.211 Inexact Rounded -sqtx3805 squareroot 0.447 -> 0.669 Inexact Rounded -sqtx3806 squareroot 0.0447 -> 0.211 Inexact Rounded -sqtx3807 squareroot 0.448 -> 0.669 Inexact Rounded -sqtx3808 squareroot 0.0448 -> 0.212 Inexact Rounded -sqtx3809 squareroot 0.449 -> 0.670 Inexact Rounded -sqtx3810 squareroot 0.0449 -> 0.212 Inexact Rounded -sqtx3811 squareroot 0.451 -> 0.672 Inexact Rounded -sqtx3812 squareroot 0.0451 -> 0.212 Inexact Rounded -sqtx3813 squareroot 0.452 -> 0.672 Inexact Rounded -sqtx3814 squareroot 0.0452 -> 0.213 Inexact Rounded -sqtx3815 squareroot 0.453 -> 0.673 Inexact Rounded -sqtx3816 squareroot 0.0453 -> 0.213 Inexact Rounded -sqtx3817 squareroot 0.454 -> 0.674 Inexact Rounded -sqtx3818 squareroot 0.0454 -> 0.213 Inexact Rounded -sqtx3819 squareroot 0.455 -> 0.675 Inexact Rounded -sqtx3820 squareroot 0.0455 -> 0.213 Inexact Rounded -sqtx3821 squareroot 0.456 -> 0.675 Inexact Rounded -sqtx3822 squareroot 0.0456 -> 0.214 Inexact Rounded -sqtx3823 squareroot 0.457 -> 0.676 Inexact Rounded -sqtx3824 squareroot 0.0457 -> 0.214 Inexact Rounded -sqtx3825 squareroot 0.458 -> 0.677 Inexact Rounded -sqtx3826 squareroot 0.0458 -> 0.214 Inexact Rounded -sqtx3827 squareroot 0.459 -> 0.677 Inexact Rounded -sqtx3828 squareroot 0.0459 -> 0.214 Inexact Rounded -sqtx3829 squareroot 0.461 -> 0.679 Inexact Rounded -sqtx3830 squareroot 0.0461 -> 0.215 Inexact Rounded -sqtx3831 squareroot 0.462 -> 0.680 Inexact Rounded -sqtx3832 squareroot 0.0462 -> 0.215 Inexact Rounded -sqtx3833 squareroot 0.463 -> 0.680 Inexact Rounded -sqtx3834 squareroot 0.0463 -> 0.215 Inexact Rounded -sqtx3835 squareroot 0.464 -> 0.681 Inexact Rounded -sqtx3836 squareroot 0.0464 -> 0.215 Inexact Rounded -sqtx3837 squareroot 0.465 -> 0.682 Inexact Rounded -sqtx3838 squareroot 0.0465 -> 0.216 Inexact Rounded -sqtx3839 squareroot 0.466 -> 0.683 Inexact Rounded -sqtx3840 squareroot 0.0466 -> 0.216 Inexact Rounded -sqtx3841 squareroot 0.467 -> 0.683 Inexact Rounded -sqtx3842 squareroot 0.0467 -> 0.216 Inexact Rounded -sqtx3843 squareroot 0.468 -> 0.684 Inexact Rounded -sqtx3844 squareroot 0.0468 -> 0.216 Inexact Rounded -sqtx3845 squareroot 0.469 -> 0.685 Inexact Rounded -sqtx3846 squareroot 0.0469 -> 0.217 Inexact Rounded -sqtx3847 squareroot 0.471 -> 0.686 Inexact Rounded -sqtx3848 squareroot 0.0471 -> 0.217 Inexact Rounded -sqtx3849 squareroot 0.472 -> 0.687 Inexact Rounded -sqtx3850 squareroot 0.0472 -> 0.217 Inexact Rounded -sqtx3851 squareroot 0.473 -> 0.688 Inexact Rounded -sqtx3852 squareroot 0.0473 -> 0.217 Inexact Rounded -sqtx3853 squareroot 0.474 -> 0.688 Inexact Rounded -sqtx3854 squareroot 0.0474 -> 0.218 Inexact Rounded -sqtx3855 squareroot 0.475 -> 0.689 Inexact Rounded -sqtx3856 squareroot 0.0475 -> 0.218 Inexact Rounded -sqtx3857 squareroot 0.476 -> 0.690 Inexact Rounded -sqtx3858 squareroot 0.0476 -> 0.218 Inexact Rounded -sqtx3859 squareroot 0.477 -> 0.691 Inexact Rounded -sqtx3860 squareroot 0.0477 -> 0.218 Inexact Rounded -sqtx3861 squareroot 0.478 -> 0.691 Inexact Rounded -sqtx3862 squareroot 0.0478 -> 0.219 Inexact Rounded -sqtx3863 squareroot 0.479 -> 0.692 Inexact Rounded -sqtx3864 squareroot 0.0479 -> 0.219 Inexact Rounded -sqtx3865 squareroot 0.481 -> 0.694 Inexact Rounded -sqtx3866 squareroot 0.0481 -> 0.219 Inexact Rounded -sqtx3867 squareroot 0.482 -> 0.694 Inexact Rounded -sqtx3868 squareroot 0.0482 -> 0.220 Inexact Rounded -sqtx3869 squareroot 0.483 -> 0.695 Inexact Rounded -sqtx3870 squareroot 0.0483 -> 0.220 Inexact Rounded -sqtx3871 squareroot 0.484 -> 0.696 Inexact Rounded -sqtx3872 squareroot 0.0484 -> 0.22 -sqtx3873 squareroot 0.485 -> 0.696 Inexact Rounded -sqtx3874 squareroot 0.0485 -> 0.220 Inexact Rounded -sqtx3875 squareroot 0.486 -> 0.697 Inexact Rounded -sqtx3876 squareroot 0.0486 -> 0.220 Inexact Rounded -sqtx3877 squareroot 0.487 -> 0.698 Inexact Rounded -sqtx3878 squareroot 0.0487 -> 0.221 Inexact Rounded -sqtx3879 squareroot 0.488 -> 0.699 Inexact Rounded -sqtx3880 squareroot 0.0488 -> 0.221 Inexact Rounded -sqtx3881 squareroot 0.489 -> 0.699 Inexact Rounded -sqtx3882 squareroot 0.0489 -> 0.221 Inexact Rounded -sqtx3883 squareroot 0.491 -> 0.701 Inexact Rounded -sqtx3884 squareroot 0.0491 -> 0.222 Inexact Rounded -sqtx3885 squareroot 0.492 -> 0.701 Inexact Rounded -sqtx3886 squareroot 0.0492 -> 0.222 Inexact Rounded -sqtx3887 squareroot 0.493 -> 0.702 Inexact Rounded -sqtx3888 squareroot 0.0493 -> 0.222 Inexact Rounded -sqtx3889 squareroot 0.494 -> 0.703 Inexact Rounded -sqtx3890 squareroot 0.0494 -> 0.222 Inexact Rounded -sqtx3891 squareroot 0.495 -> 0.704 Inexact Rounded -sqtx3892 squareroot 0.0495 -> 0.222 Inexact Rounded -sqtx3893 squareroot 0.496 -> 0.704 Inexact Rounded -sqtx3894 squareroot 0.0496 -> 0.223 Inexact Rounded -sqtx3895 squareroot 0.497 -> 0.705 Inexact Rounded -sqtx3896 squareroot 0.0497 -> 0.223 Inexact Rounded -sqtx3897 squareroot 0.498 -> 0.706 Inexact Rounded -sqtx3898 squareroot 0.0498 -> 0.223 Inexact Rounded -sqtx3899 squareroot 0.499 -> 0.706 Inexact Rounded -sqtx3900 squareroot 0.0499 -> 0.223 Inexact Rounded -sqtx3901 squareroot 0.501 -> 0.708 Inexact Rounded -sqtx3902 squareroot 0.0501 -> 0.224 Inexact Rounded -sqtx3903 squareroot 0.502 -> 0.709 Inexact Rounded -sqtx3904 squareroot 0.0502 -> 0.224 Inexact Rounded -sqtx3905 squareroot 0.503 -> 0.709 Inexact Rounded -sqtx3906 squareroot 0.0503 -> 0.224 Inexact Rounded -sqtx3907 squareroot 0.504 -> 0.710 Inexact Rounded -sqtx3908 squareroot 0.0504 -> 0.224 Inexact Rounded -sqtx3909 squareroot 0.505 -> 0.711 Inexact Rounded -sqtx3910 squareroot 0.0505 -> 0.225 Inexact Rounded -sqtx3911 squareroot 0.506 -> 0.711 Inexact Rounded -sqtx3912 squareroot 0.0506 -> 0.225 Inexact Rounded -sqtx3913 squareroot 0.507 -> 0.712 Inexact Rounded -sqtx3914 squareroot 0.0507 -> 0.225 Inexact Rounded -sqtx3915 squareroot 0.508 -> 0.713 Inexact Rounded -sqtx3916 squareroot 0.0508 -> 0.225 Inexact Rounded -sqtx3917 squareroot 0.509 -> 0.713 Inexact Rounded -sqtx3918 squareroot 0.0509 -> 0.226 Inexact Rounded -sqtx3919 squareroot 0.511 -> 0.715 Inexact Rounded -sqtx3920 squareroot 0.0511 -> 0.226 Inexact Rounded -sqtx3921 squareroot 0.512 -> 0.716 Inexact Rounded -sqtx3922 squareroot 0.0512 -> 0.226 Inexact Rounded -sqtx3923 squareroot 0.513 -> 0.716 Inexact Rounded -sqtx3924 squareroot 0.0513 -> 0.226 Inexact Rounded -sqtx3925 squareroot 0.514 -> 0.717 Inexact Rounded -sqtx3926 squareroot 0.0514 -> 0.227 Inexact Rounded -sqtx3927 squareroot 0.515 -> 0.718 Inexact Rounded -sqtx3928 squareroot 0.0515 -> 0.227 Inexact Rounded -sqtx3929 squareroot 0.516 -> 0.718 Inexact Rounded -sqtx3930 squareroot 0.0516 -> 0.227 Inexact Rounded -sqtx3931 squareroot 0.517 -> 0.719 Inexact Rounded -sqtx3932 squareroot 0.0517 -> 0.227 Inexact Rounded -sqtx3933 squareroot 0.518 -> 0.720 Inexact Rounded -sqtx3934 squareroot 0.0518 -> 0.228 Inexact Rounded -sqtx3935 squareroot 0.519 -> 0.720 Inexact Rounded -sqtx3936 squareroot 0.0519 -> 0.228 Inexact Rounded -sqtx3937 squareroot 0.521 -> 0.722 Inexact Rounded -sqtx3938 squareroot 0.0521 -> 0.228 Inexact Rounded -sqtx3939 squareroot 0.522 -> 0.722 Inexact Rounded -sqtx3940 squareroot 0.0522 -> 0.228 Inexact Rounded -sqtx3941 squareroot 0.523 -> 0.723 Inexact Rounded -sqtx3942 squareroot 0.0523 -> 0.229 Inexact Rounded -sqtx3943 squareroot 0.524 -> 0.724 Inexact Rounded -sqtx3944 squareroot 0.0524 -> 0.229 Inexact Rounded -sqtx3945 squareroot 0.525 -> 0.725 Inexact Rounded -sqtx3946 squareroot 0.0525 -> 0.229 Inexact Rounded -sqtx3947 squareroot 0.526 -> 0.725 Inexact Rounded -sqtx3948 squareroot 0.0526 -> 0.229 Inexact Rounded -sqtx3949 squareroot 0.527 -> 0.726 Inexact Rounded -sqtx3950 squareroot 0.0527 -> 0.230 Inexact Rounded -sqtx3951 squareroot 0.528 -> 0.727 Inexact Rounded -sqtx3952 squareroot 0.0528 -> 0.230 Inexact Rounded -sqtx3953 squareroot 0.529 -> 0.727 Inexact Rounded -sqtx3954 squareroot 0.0529 -> 0.23 -sqtx3955 squareroot 0.531 -> 0.729 Inexact Rounded -sqtx3956 squareroot 0.0531 -> 0.230 Inexact Rounded -sqtx3957 squareroot 0.532 -> 0.729 Inexact Rounded -sqtx3958 squareroot 0.0532 -> 0.231 Inexact Rounded -sqtx3959 squareroot 0.533 -> 0.730 Inexact Rounded -sqtx3960 squareroot 0.0533 -> 0.231 Inexact Rounded -sqtx3961 squareroot 0.534 -> 0.731 Inexact Rounded -sqtx3962 squareroot 0.0534 -> 0.231 Inexact Rounded -sqtx3963 squareroot 0.535 -> 0.731 Inexact Rounded -sqtx3964 squareroot 0.0535 -> 0.231 Inexact Rounded -sqtx3965 squareroot 0.536 -> 0.732 Inexact Rounded -sqtx3966 squareroot 0.0536 -> 0.232 Inexact Rounded -sqtx3967 squareroot 0.537 -> 0.733 Inexact Rounded -sqtx3968 squareroot 0.0537 -> 0.232 Inexact Rounded -sqtx3969 squareroot 0.538 -> 0.733 Inexact Rounded -sqtx3970 squareroot 0.0538 -> 0.232 Inexact Rounded -sqtx3971 squareroot 0.539 -> 0.734 Inexact Rounded -sqtx3972 squareroot 0.0539 -> 0.232 Inexact Rounded -sqtx3973 squareroot 0.541 -> 0.736 Inexact Rounded -sqtx3974 squareroot 0.0541 -> 0.233 Inexact Rounded -sqtx3975 squareroot 0.542 -> 0.736 Inexact Rounded -sqtx3976 squareroot 0.0542 -> 0.233 Inexact Rounded -sqtx3977 squareroot 0.543 -> 0.737 Inexact Rounded -sqtx3978 squareroot 0.0543 -> 0.233 Inexact Rounded -sqtx3979 squareroot 0.544 -> 0.738 Inexact Rounded -sqtx3980 squareroot 0.0544 -> 0.233 Inexact Rounded -sqtx3981 squareroot 0.545 -> 0.738 Inexact Rounded -sqtx3982 squareroot 0.0545 -> 0.233 Inexact Rounded -sqtx3983 squareroot 0.546 -> 0.739 Inexact Rounded -sqtx3984 squareroot 0.0546 -> 0.234 Inexact Rounded -sqtx3985 squareroot 0.547 -> 0.740 Inexact Rounded -sqtx3986 squareroot 0.0547 -> 0.234 Inexact Rounded -sqtx3987 squareroot 0.548 -> 0.740 Inexact Rounded -sqtx3988 squareroot 0.0548 -> 0.234 Inexact Rounded -sqtx3989 squareroot 0.549 -> 0.741 Inexact Rounded -sqtx3990 squareroot 0.0549 -> 0.234 Inexact Rounded -sqtx3991 squareroot 0.551 -> 0.742 Inexact Rounded -sqtx3992 squareroot 0.0551 -> 0.235 Inexact Rounded -sqtx3993 squareroot 0.552 -> 0.743 Inexact Rounded -sqtx3994 squareroot 0.0552 -> 0.235 Inexact Rounded -sqtx3995 squareroot 0.553 -> 0.744 Inexact Rounded -sqtx3996 squareroot 0.0553 -> 0.235 Inexact Rounded -sqtx3997 squareroot 0.554 -> 0.744 Inexact Rounded -sqtx3998 squareroot 0.0554 -> 0.235 Inexact Rounded -sqtx3999 squareroot 0.555 -> 0.745 Inexact Rounded -sqtx4000 squareroot 0.0555 -> 0.236 Inexact Rounded -sqtx4001 squareroot 0.556 -> 0.746 Inexact Rounded -sqtx4002 squareroot 0.0556 -> 0.236 Inexact Rounded -sqtx4003 squareroot 0.557 -> 0.746 Inexact Rounded -sqtx4004 squareroot 0.0557 -> 0.236 Inexact Rounded -sqtx4005 squareroot 0.558 -> 0.747 Inexact Rounded -sqtx4006 squareroot 0.0558 -> 0.236 Inexact Rounded -sqtx4007 squareroot 0.559 -> 0.748 Inexact Rounded -sqtx4008 squareroot 0.0559 -> 0.236 Inexact Rounded -sqtx4009 squareroot 0.561 -> 0.749 Inexact Rounded -sqtx4010 squareroot 0.0561 -> 0.237 Inexact Rounded -sqtx4011 squareroot 0.562 -> 0.750 Inexact Rounded -sqtx4012 squareroot 0.0562 -> 0.237 Inexact Rounded -sqtx4013 squareroot 0.563 -> 0.750 Inexact Rounded -sqtx4014 squareroot 0.0563 -> 0.237 Inexact Rounded -sqtx4015 squareroot 0.564 -> 0.751 Inexact Rounded -sqtx4016 squareroot 0.0564 -> 0.237 Inexact Rounded -sqtx4017 squareroot 0.565 -> 0.752 Inexact Rounded -sqtx4018 squareroot 0.0565 -> 0.238 Inexact Rounded -sqtx4019 squareroot 0.566 -> 0.752 Inexact Rounded -sqtx4020 squareroot 0.0566 -> 0.238 Inexact Rounded -sqtx4021 squareroot 0.567 -> 0.753 Inexact Rounded -sqtx4022 squareroot 0.0567 -> 0.238 Inexact Rounded -sqtx4023 squareroot 0.568 -> 0.754 Inexact Rounded -sqtx4024 squareroot 0.0568 -> 0.238 Inexact Rounded -sqtx4025 squareroot 0.569 -> 0.754 Inexact Rounded -sqtx4026 squareroot 0.0569 -> 0.239 Inexact Rounded -sqtx4027 squareroot 0.571 -> 0.756 Inexact Rounded -sqtx4028 squareroot 0.0571 -> 0.239 Inexact Rounded -sqtx4029 squareroot 0.572 -> 0.756 Inexact Rounded -sqtx4030 squareroot 0.0572 -> 0.239 Inexact Rounded -sqtx4031 squareroot 0.573 -> 0.757 Inexact Rounded -sqtx4032 squareroot 0.0573 -> 0.239 Inexact Rounded -sqtx4033 squareroot 0.574 -> 0.758 Inexact Rounded -sqtx4034 squareroot 0.0574 -> 0.240 Inexact Rounded -sqtx4035 squareroot 0.575 -> 0.758 Inexact Rounded -sqtx4036 squareroot 0.0575 -> 0.240 Inexact Rounded -sqtx4037 squareroot 0.576 -> 0.759 Inexact Rounded -sqtx4038 squareroot 0.0576 -> 0.24 -sqtx4039 squareroot 0.577 -> 0.760 Inexact Rounded -sqtx4040 squareroot 0.0577 -> 0.240 Inexact Rounded -sqtx4041 squareroot 0.578 -> 0.760 Inexact Rounded -sqtx4042 squareroot 0.0578 -> 0.240 Inexact Rounded -sqtx4043 squareroot 0.579 -> 0.761 Inexact Rounded -sqtx4044 squareroot 0.0579 -> 0.241 Inexact Rounded -sqtx4045 squareroot 0.581 -> 0.762 Inexact Rounded -sqtx4046 squareroot 0.0581 -> 0.241 Inexact Rounded -sqtx4047 squareroot 0.582 -> 0.763 Inexact Rounded -sqtx4048 squareroot 0.0582 -> 0.241 Inexact Rounded -sqtx4049 squareroot 0.583 -> 0.764 Inexact Rounded -sqtx4050 squareroot 0.0583 -> 0.241 Inexact Rounded -sqtx4051 squareroot 0.584 -> 0.764 Inexact Rounded -sqtx4052 squareroot 0.0584 -> 0.242 Inexact Rounded -sqtx4053 squareroot 0.585 -> 0.765 Inexact Rounded -sqtx4054 squareroot 0.0585 -> 0.242 Inexact Rounded -sqtx4055 squareroot 0.586 -> 0.766 Inexact Rounded -sqtx4056 squareroot 0.0586 -> 0.242 Inexact Rounded -sqtx4057 squareroot 0.587 -> 0.766 Inexact Rounded -sqtx4058 squareroot 0.0587 -> 0.242 Inexact Rounded -sqtx4059 squareroot 0.588 -> 0.767 Inexact Rounded -sqtx4060 squareroot 0.0588 -> 0.242 Inexact Rounded -sqtx4061 squareroot 0.589 -> 0.767 Inexact Rounded -sqtx4062 squareroot 0.0589 -> 0.243 Inexact Rounded -sqtx4063 squareroot 0.591 -> 0.769 Inexact Rounded -sqtx4064 squareroot 0.0591 -> 0.243 Inexact Rounded -sqtx4065 squareroot 0.592 -> 0.769 Inexact Rounded -sqtx4066 squareroot 0.0592 -> 0.243 Inexact Rounded -sqtx4067 squareroot 0.593 -> 0.770 Inexact Rounded -sqtx4068 squareroot 0.0593 -> 0.244 Inexact Rounded -sqtx4069 squareroot 0.594 -> 0.771 Inexact Rounded -sqtx4070 squareroot 0.0594 -> 0.244 Inexact Rounded -sqtx4071 squareroot 0.595 -> 0.771 Inexact Rounded -sqtx4072 squareroot 0.0595 -> 0.244 Inexact Rounded -sqtx4073 squareroot 0.596 -> 0.772 Inexact Rounded -sqtx4074 squareroot 0.0596 -> 0.244 Inexact Rounded -sqtx4075 squareroot 0.597 -> 0.773 Inexact Rounded -sqtx4076 squareroot 0.0597 -> 0.244 Inexact Rounded -sqtx4077 squareroot 0.598 -> 0.773 Inexact Rounded -sqtx4078 squareroot 0.0598 -> 0.245 Inexact Rounded -sqtx4079 squareroot 0.599 -> 0.774 Inexact Rounded -sqtx4080 squareroot 0.0599 -> 0.245 Inexact Rounded -sqtx4081 squareroot 0.601 -> 0.775 Inexact Rounded -sqtx4082 squareroot 0.0601 -> 0.245 Inexact Rounded -sqtx4083 squareroot 0.602 -> 0.776 Inexact Rounded -sqtx4084 squareroot 0.0602 -> 0.245 Inexact Rounded -sqtx4085 squareroot 0.603 -> 0.777 Inexact Rounded -sqtx4086 squareroot 0.0603 -> 0.246 Inexact Rounded -sqtx4087 squareroot 0.604 -> 0.777 Inexact Rounded -sqtx4088 squareroot 0.0604 -> 0.246 Inexact Rounded -sqtx4089 squareroot 0.605 -> 0.778 Inexact Rounded -sqtx4090 squareroot 0.0605 -> 0.246 Inexact Rounded -sqtx4091 squareroot 0.606 -> 0.778 Inexact Rounded -sqtx4092 squareroot 0.0606 -> 0.246 Inexact Rounded -sqtx4093 squareroot 0.607 -> 0.779 Inexact Rounded -sqtx4094 squareroot 0.0607 -> 0.246 Inexact Rounded -sqtx4095 squareroot 0.608 -> 0.780 Inexact Rounded -sqtx4096 squareroot 0.0608 -> 0.247 Inexact Rounded -sqtx4097 squareroot 0.609 -> 0.780 Inexact Rounded -sqtx4098 squareroot 0.0609 -> 0.247 Inexact Rounded -sqtx4099 squareroot 0.611 -> 0.782 Inexact Rounded -sqtx4100 squareroot 0.0611 -> 0.247 Inexact Rounded -sqtx4101 squareroot 0.612 -> 0.782 Inexact Rounded -sqtx4102 squareroot 0.0612 -> 0.247 Inexact Rounded -sqtx4103 squareroot 0.613 -> 0.783 Inexact Rounded -sqtx4104 squareroot 0.0613 -> 0.248 Inexact Rounded -sqtx4105 squareroot 0.614 -> 0.784 Inexact Rounded -sqtx4106 squareroot 0.0614 -> 0.248 Inexact Rounded -sqtx4107 squareroot 0.615 -> 0.784 Inexact Rounded -sqtx4108 squareroot 0.0615 -> 0.248 Inexact Rounded -sqtx4109 squareroot 0.616 -> 0.785 Inexact Rounded -sqtx4110 squareroot 0.0616 -> 0.248 Inexact Rounded -sqtx4111 squareroot 0.617 -> 0.785 Inexact Rounded -sqtx4112 squareroot 0.0617 -> 0.248 Inexact Rounded -sqtx4113 squareroot 0.618 -> 0.786 Inexact Rounded -sqtx4114 squareroot 0.0618 -> 0.249 Inexact Rounded -sqtx4115 squareroot 0.619 -> 0.787 Inexact Rounded -sqtx4116 squareroot 0.0619 -> 0.249 Inexact Rounded -sqtx4117 squareroot 0.621 -> 0.788 Inexact Rounded -sqtx4118 squareroot 0.0621 -> 0.249 Inexact Rounded -sqtx4119 squareroot 0.622 -> 0.789 Inexact Rounded -sqtx4120 squareroot 0.0622 -> 0.249 Inexact Rounded -sqtx4121 squareroot 0.623 -> 0.789 Inexact Rounded -sqtx4122 squareroot 0.0623 -> 0.250 Inexact Rounded -sqtx4123 squareroot 0.624 -> 0.790 Inexact Rounded -sqtx4124 squareroot 0.0624 -> 0.250 Inexact Rounded -sqtx4125 squareroot 0.625 -> 0.791 Inexact Rounded -sqtx4126 squareroot 0.0625 -> 0.25 -sqtx4127 squareroot 0.626 -> 0.791 Inexact Rounded -sqtx4128 squareroot 0.0626 -> 0.250 Inexact Rounded -sqtx4129 squareroot 0.627 -> 0.792 Inexact Rounded -sqtx4130 squareroot 0.0627 -> 0.250 Inexact Rounded -sqtx4131 squareroot 0.628 -> 0.792 Inexact Rounded -sqtx4132 squareroot 0.0628 -> 0.251 Inexact Rounded -sqtx4133 squareroot 0.629 -> 0.793 Inexact Rounded -sqtx4134 squareroot 0.0629 -> 0.251 Inexact Rounded -sqtx4135 squareroot 0.631 -> 0.794 Inexact Rounded -sqtx4136 squareroot 0.0631 -> 0.251 Inexact Rounded -sqtx4137 squareroot 0.632 -> 0.795 Inexact Rounded -sqtx4138 squareroot 0.0632 -> 0.251 Inexact Rounded -sqtx4139 squareroot 0.633 -> 0.796 Inexact Rounded -sqtx4140 squareroot 0.0633 -> 0.252 Inexact Rounded -sqtx4141 squareroot 0.634 -> 0.796 Inexact Rounded -sqtx4142 squareroot 0.0634 -> 0.252 Inexact Rounded -sqtx4143 squareroot 0.635 -> 0.797 Inexact Rounded -sqtx4144 squareroot 0.0635 -> 0.252 Inexact Rounded -sqtx4145 squareroot 0.636 -> 0.797 Inexact Rounded -sqtx4146 squareroot 0.0636 -> 0.252 Inexact Rounded -sqtx4147 squareroot 0.637 -> 0.798 Inexact Rounded -sqtx4148 squareroot 0.0637 -> 0.252 Inexact Rounded -sqtx4149 squareroot 0.638 -> 0.799 Inexact Rounded -sqtx4150 squareroot 0.0638 -> 0.253 Inexact Rounded -sqtx4151 squareroot 0.639 -> 0.799 Inexact Rounded -sqtx4152 squareroot 0.0639 -> 0.253 Inexact Rounded -sqtx4153 squareroot 0.641 -> 0.801 Inexact Rounded -sqtx4154 squareroot 0.0641 -> 0.253 Inexact Rounded -sqtx4155 squareroot 0.642 -> 0.801 Inexact Rounded -sqtx4156 squareroot 0.0642 -> 0.253 Inexact Rounded -sqtx4157 squareroot 0.643 -> 0.802 Inexact Rounded -sqtx4158 squareroot 0.0643 -> 0.254 Inexact Rounded -sqtx4159 squareroot 0.644 -> 0.802 Inexact Rounded -sqtx4160 squareroot 0.0644 -> 0.254 Inexact Rounded -sqtx4161 squareroot 0.645 -> 0.803 Inexact Rounded -sqtx4162 squareroot 0.0645 -> 0.254 Inexact Rounded -sqtx4163 squareroot 0.646 -> 0.804 Inexact Rounded -sqtx4164 squareroot 0.0646 -> 0.254 Inexact Rounded -sqtx4165 squareroot 0.647 -> 0.804 Inexact Rounded -sqtx4166 squareroot 0.0647 -> 0.254 Inexact Rounded -sqtx4167 squareroot 0.648 -> 0.805 Inexact Rounded -sqtx4168 squareroot 0.0648 -> 0.255 Inexact Rounded -sqtx4169 squareroot 0.649 -> 0.806 Inexact Rounded -sqtx4170 squareroot 0.0649 -> 0.255 Inexact Rounded -sqtx4171 squareroot 0.651 -> 0.807 Inexact Rounded -sqtx4172 squareroot 0.0651 -> 0.255 Inexact Rounded -sqtx4173 squareroot 0.652 -> 0.807 Inexact Rounded -sqtx4174 squareroot 0.0652 -> 0.255 Inexact Rounded -sqtx4175 squareroot 0.653 -> 0.808 Inexact Rounded -sqtx4176 squareroot 0.0653 -> 0.256 Inexact Rounded -sqtx4177 squareroot 0.654 -> 0.809 Inexact Rounded -sqtx4178 squareroot 0.0654 -> 0.256 Inexact Rounded -sqtx4179 squareroot 0.655 -> 0.809 Inexact Rounded -sqtx4180 squareroot 0.0655 -> 0.256 Inexact Rounded -sqtx4181 squareroot 0.656 -> 0.810 Inexact Rounded -sqtx4182 squareroot 0.0656 -> 0.256 Inexact Rounded -sqtx4183 squareroot 0.657 -> 0.811 Inexact Rounded -sqtx4184 squareroot 0.0657 -> 0.256 Inexact Rounded -sqtx4185 squareroot 0.658 -> 0.811 Inexact Rounded -sqtx4186 squareroot 0.0658 -> 0.257 Inexact Rounded -sqtx4187 squareroot 0.659 -> 0.812 Inexact Rounded -sqtx4188 squareroot 0.0659 -> 0.257 Inexact Rounded -sqtx4189 squareroot 0.661 -> 0.813 Inexact Rounded -sqtx4190 squareroot 0.0661 -> 0.257 Inexact Rounded -sqtx4191 squareroot 0.662 -> 0.814 Inexact Rounded -sqtx4192 squareroot 0.0662 -> 0.257 Inexact Rounded -sqtx4193 squareroot 0.663 -> 0.814 Inexact Rounded -sqtx4194 squareroot 0.0663 -> 0.257 Inexact Rounded -sqtx4195 squareroot 0.664 -> 0.815 Inexact Rounded -sqtx4196 squareroot 0.0664 -> 0.258 Inexact Rounded -sqtx4197 squareroot 0.665 -> 0.815 Inexact Rounded -sqtx4198 squareroot 0.0665 -> 0.258 Inexact Rounded -sqtx4199 squareroot 0.666 -> 0.816 Inexact Rounded -sqtx4200 squareroot 0.0666 -> 0.258 Inexact Rounded -sqtx4201 squareroot 0.667 -> 0.817 Inexact Rounded -sqtx4202 squareroot 0.0667 -> 0.258 Inexact Rounded -sqtx4203 squareroot 0.668 -> 0.817 Inexact Rounded -sqtx4204 squareroot 0.0668 -> 0.258 Inexact Rounded -sqtx4205 squareroot 0.669 -> 0.818 Inexact Rounded -sqtx4206 squareroot 0.0669 -> 0.259 Inexact Rounded -sqtx4207 squareroot 0.671 -> 0.819 Inexact Rounded -sqtx4208 squareroot 0.0671 -> 0.259 Inexact Rounded -sqtx4209 squareroot 0.672 -> 0.820 Inexact Rounded -sqtx4210 squareroot 0.0672 -> 0.259 Inexact Rounded -sqtx4211 squareroot 0.673 -> 0.820 Inexact Rounded -sqtx4212 squareroot 0.0673 -> 0.259 Inexact Rounded -sqtx4213 squareroot 0.674 -> 0.821 Inexact Rounded -sqtx4214 squareroot 0.0674 -> 0.260 Inexact Rounded -sqtx4215 squareroot 0.675 -> 0.822 Inexact Rounded -sqtx4216 squareroot 0.0675 -> 0.260 Inexact Rounded -sqtx4217 squareroot 0.676 -> 0.822 Inexact Rounded -sqtx4218 squareroot 0.0676 -> 0.26 -sqtx4219 squareroot 0.677 -> 0.823 Inexact Rounded -sqtx4220 squareroot 0.0677 -> 0.260 Inexact Rounded -sqtx4221 squareroot 0.678 -> 0.823 Inexact Rounded -sqtx4222 squareroot 0.0678 -> 0.260 Inexact Rounded -sqtx4223 squareroot 0.679 -> 0.824 Inexact Rounded -sqtx4224 squareroot 0.0679 -> 0.261 Inexact Rounded -sqtx4225 squareroot 0.681 -> 0.825 Inexact Rounded -sqtx4226 squareroot 0.0681 -> 0.261 Inexact Rounded -sqtx4227 squareroot 0.682 -> 0.826 Inexact Rounded -sqtx4228 squareroot 0.0682 -> 0.261 Inexact Rounded -sqtx4229 squareroot 0.683 -> 0.826 Inexact Rounded -sqtx4230 squareroot 0.0683 -> 0.261 Inexact Rounded -sqtx4231 squareroot 0.684 -> 0.827 Inexact Rounded -sqtx4232 squareroot 0.0684 -> 0.262 Inexact Rounded -sqtx4233 squareroot 0.685 -> 0.828 Inexact Rounded -sqtx4234 squareroot 0.0685 -> 0.262 Inexact Rounded -sqtx4235 squareroot 0.686 -> 0.828 Inexact Rounded -sqtx4236 squareroot 0.0686 -> 0.262 Inexact Rounded -sqtx4237 squareroot 0.687 -> 0.829 Inexact Rounded -sqtx4238 squareroot 0.0687 -> 0.262 Inexact Rounded -sqtx4239 squareroot 0.688 -> 0.829 Inexact Rounded -sqtx4240 squareroot 0.0688 -> 0.262 Inexact Rounded -sqtx4241 squareroot 0.689 -> 0.830 Inexact Rounded -sqtx4242 squareroot 0.0689 -> 0.262 Inexact Rounded -sqtx4243 squareroot 0.691 -> 0.831 Inexact Rounded -sqtx4244 squareroot 0.0691 -> 0.263 Inexact Rounded -sqtx4245 squareroot 0.692 -> 0.832 Inexact Rounded -sqtx4246 squareroot 0.0692 -> 0.263 Inexact Rounded -sqtx4247 squareroot 0.693 -> 0.832 Inexact Rounded -sqtx4248 squareroot 0.0693 -> 0.263 Inexact Rounded -sqtx4249 squareroot 0.694 -> 0.833 Inexact Rounded -sqtx4250 squareroot 0.0694 -> 0.263 Inexact Rounded -sqtx4251 squareroot 0.695 -> 0.834 Inexact Rounded -sqtx4252 squareroot 0.0695 -> 0.264 Inexact Rounded -sqtx4253 squareroot 0.696 -> 0.834 Inexact Rounded -sqtx4254 squareroot 0.0696 -> 0.264 Inexact Rounded -sqtx4255 squareroot 0.697 -> 0.835 Inexact Rounded -sqtx4256 squareroot 0.0697 -> 0.264 Inexact Rounded -sqtx4257 squareroot 0.698 -> 0.835 Inexact Rounded -sqtx4258 squareroot 0.0698 -> 0.264 Inexact Rounded -sqtx4259 squareroot 0.699 -> 0.836 Inexact Rounded -sqtx4260 squareroot 0.0699 -> 0.264 Inexact Rounded -sqtx4261 squareroot 0.701 -> 0.837 Inexact Rounded -sqtx4262 squareroot 0.0701 -> 0.265 Inexact Rounded -sqtx4263 squareroot 0.702 -> 0.838 Inexact Rounded -sqtx4264 squareroot 0.0702 -> 0.265 Inexact Rounded -sqtx4265 squareroot 0.703 -> 0.838 Inexact Rounded -sqtx4266 squareroot 0.0703 -> 0.265 Inexact Rounded -sqtx4267 squareroot 0.704 -> 0.839 Inexact Rounded -sqtx4268 squareroot 0.0704 -> 0.265 Inexact Rounded -sqtx4269 squareroot 0.705 -> 0.840 Inexact Rounded -sqtx4270 squareroot 0.0705 -> 0.266 Inexact Rounded -sqtx4271 squareroot 0.706 -> 0.840 Inexact Rounded -sqtx4272 squareroot 0.0706 -> 0.266 Inexact Rounded -sqtx4273 squareroot 0.707 -> 0.841 Inexact Rounded -sqtx4274 squareroot 0.0707 -> 0.266 Inexact Rounded -sqtx4275 squareroot 0.708 -> 0.841 Inexact Rounded -sqtx4276 squareroot 0.0708 -> 0.266 Inexact Rounded -sqtx4277 squareroot 0.709 -> 0.842 Inexact Rounded -sqtx4278 squareroot 0.0709 -> 0.266 Inexact Rounded -sqtx4279 squareroot 0.711 -> 0.843 Inexact Rounded -sqtx4280 squareroot 0.0711 -> 0.267 Inexact Rounded -sqtx4281 squareroot 0.712 -> 0.844 Inexact Rounded -sqtx4282 squareroot 0.0712 -> 0.267 Inexact Rounded -sqtx4283 squareroot 0.713 -> 0.844 Inexact Rounded -sqtx4284 squareroot 0.0713 -> 0.267 Inexact Rounded -sqtx4285 squareroot 0.714 -> 0.845 Inexact Rounded -sqtx4286 squareroot 0.0714 -> 0.267 Inexact Rounded -sqtx4287 squareroot 0.715 -> 0.846 Inexact Rounded -sqtx4288 squareroot 0.0715 -> 0.267 Inexact Rounded -sqtx4289 squareroot 0.716 -> 0.846 Inexact Rounded -sqtx4290 squareroot 0.0716 -> 0.268 Inexact Rounded -sqtx4291 squareroot 0.717 -> 0.847 Inexact Rounded -sqtx4292 squareroot 0.0717 -> 0.268 Inexact Rounded -sqtx4293 squareroot 0.718 -> 0.847 Inexact Rounded -sqtx4294 squareroot 0.0718 -> 0.268 Inexact Rounded -sqtx4295 squareroot 0.719 -> 0.848 Inexact Rounded -sqtx4296 squareroot 0.0719 -> 0.268 Inexact Rounded -sqtx4297 squareroot 0.721 -> 0.849 Inexact Rounded -sqtx4298 squareroot 0.0721 -> 0.269 Inexact Rounded -sqtx4299 squareroot 0.722 -> 0.850 Inexact Rounded -sqtx4300 squareroot 0.0722 -> 0.269 Inexact Rounded -sqtx4301 squareroot 0.723 -> 0.850 Inexact Rounded -sqtx4302 squareroot 0.0723 -> 0.269 Inexact Rounded -sqtx4303 squareroot 0.724 -> 0.851 Inexact Rounded -sqtx4304 squareroot 0.0724 -> 0.269 Inexact Rounded -sqtx4305 squareroot 0.725 -> 0.851 Inexact Rounded -sqtx4306 squareroot 0.0725 -> 0.269 Inexact Rounded -sqtx4307 squareroot 0.726 -> 0.852 Inexact Rounded -sqtx4308 squareroot 0.0726 -> 0.269 Inexact Rounded -sqtx4309 squareroot 0.727 -> 0.853 Inexact Rounded -sqtx4310 squareroot 0.0727 -> 0.270 Inexact Rounded -sqtx4311 squareroot 0.728 -> 0.853 Inexact Rounded -sqtx4312 squareroot 0.0728 -> 0.270 Inexact Rounded -sqtx4313 squareroot 0.729 -> 0.854 Inexact Rounded -sqtx4314 squareroot 0.0729 -> 0.27 -sqtx4315 squareroot 0.731 -> 0.855 Inexact Rounded -sqtx4316 squareroot 0.0731 -> 0.270 Inexact Rounded -sqtx4317 squareroot 0.732 -> 0.856 Inexact Rounded -sqtx4318 squareroot 0.0732 -> 0.271 Inexact Rounded -sqtx4319 squareroot 0.733 -> 0.856 Inexact Rounded -sqtx4320 squareroot 0.0733 -> 0.271 Inexact Rounded -sqtx4321 squareroot 0.734 -> 0.857 Inexact Rounded -sqtx4322 squareroot 0.0734 -> 0.271 Inexact Rounded -sqtx4323 squareroot 0.735 -> 0.857 Inexact Rounded -sqtx4324 squareroot 0.0735 -> 0.271 Inexact Rounded -sqtx4325 squareroot 0.736 -> 0.858 Inexact Rounded -sqtx4326 squareroot 0.0736 -> 0.271 Inexact Rounded -sqtx4327 squareroot 0.737 -> 0.858 Inexact Rounded -sqtx4328 squareroot 0.0737 -> 0.271 Inexact Rounded -sqtx4329 squareroot 0.738 -> 0.859 Inexact Rounded -sqtx4330 squareroot 0.0738 -> 0.272 Inexact Rounded -sqtx4331 squareroot 0.739 -> 0.860 Inexact Rounded -sqtx4332 squareroot 0.0739 -> 0.272 Inexact Rounded -sqtx4333 squareroot 0.741 -> 0.861 Inexact Rounded -sqtx4334 squareroot 0.0741 -> 0.272 Inexact Rounded -sqtx4335 squareroot 0.742 -> 0.861 Inexact Rounded -sqtx4336 squareroot 0.0742 -> 0.272 Inexact Rounded -sqtx4337 squareroot 0.743 -> 0.862 Inexact Rounded -sqtx4338 squareroot 0.0743 -> 0.273 Inexact Rounded -sqtx4339 squareroot 0.744 -> 0.863 Inexact Rounded -sqtx4340 squareroot 0.0744 -> 0.273 Inexact Rounded -sqtx4341 squareroot 0.745 -> 0.863 Inexact Rounded -sqtx4342 squareroot 0.0745 -> 0.273 Inexact Rounded -sqtx4343 squareroot 0.746 -> 0.864 Inexact Rounded -sqtx4344 squareroot 0.0746 -> 0.273 Inexact Rounded -sqtx4345 squareroot 0.747 -> 0.864 Inexact Rounded -sqtx4346 squareroot 0.0747 -> 0.273 Inexact Rounded -sqtx4347 squareroot 0.748 -> 0.865 Inexact Rounded -sqtx4348 squareroot 0.0748 -> 0.273 Inexact Rounded -sqtx4349 squareroot 0.749 -> 0.865 Inexact Rounded -sqtx4350 squareroot 0.0749 -> 0.274 Inexact Rounded -sqtx4351 squareroot 0.751 -> 0.867 Inexact Rounded -sqtx4352 squareroot 0.0751 -> 0.274 Inexact Rounded -sqtx4353 squareroot 0.752 -> 0.867 Inexact Rounded -sqtx4354 squareroot 0.0752 -> 0.274 Inexact Rounded -sqtx4355 squareroot 0.753 -> 0.868 Inexact Rounded -sqtx4356 squareroot 0.0753 -> 0.274 Inexact Rounded -sqtx4357 squareroot 0.754 -> 0.868 Inexact Rounded -sqtx4358 squareroot 0.0754 -> 0.275 Inexact Rounded -sqtx4359 squareroot 0.755 -> 0.869 Inexact Rounded -sqtx4360 squareroot 0.0755 -> 0.275 Inexact Rounded -sqtx4361 squareroot 0.756 -> 0.869 Inexact Rounded -sqtx4362 squareroot 0.0756 -> 0.275 Inexact Rounded -sqtx4363 squareroot 0.757 -> 0.870 Inexact Rounded -sqtx4364 squareroot 0.0757 -> 0.275 Inexact Rounded -sqtx4365 squareroot 0.758 -> 0.871 Inexact Rounded -sqtx4366 squareroot 0.0758 -> 0.275 Inexact Rounded -sqtx4367 squareroot 0.759 -> 0.871 Inexact Rounded -sqtx4368 squareroot 0.0759 -> 0.275 Inexact Rounded -sqtx4369 squareroot 0.761 -> 0.872 Inexact Rounded -sqtx4370 squareroot 0.0761 -> 0.276 Inexact Rounded -sqtx4371 squareroot 0.762 -> 0.873 Inexact Rounded -sqtx4372 squareroot 0.0762 -> 0.276 Inexact Rounded -sqtx4373 squareroot 0.763 -> 0.873 Inexact Rounded -sqtx4374 squareroot 0.0763 -> 0.276 Inexact Rounded -sqtx4375 squareroot 0.764 -> 0.874 Inexact Rounded -sqtx4376 squareroot 0.0764 -> 0.276 Inexact Rounded -sqtx4377 squareroot 0.765 -> 0.875 Inexact Rounded -sqtx4378 squareroot 0.0765 -> 0.277 Inexact Rounded -sqtx4379 squareroot 0.766 -> 0.875 Inexact Rounded -sqtx4380 squareroot 0.0766 -> 0.277 Inexact Rounded -sqtx4381 squareroot 0.767 -> 0.876 Inexact Rounded -sqtx4382 squareroot 0.0767 -> 0.277 Inexact Rounded -sqtx4383 squareroot 0.768 -> 0.876 Inexact Rounded -sqtx4384 squareroot 0.0768 -> 0.277 Inexact Rounded -sqtx4385 squareroot 0.769 -> 0.877 Inexact Rounded -sqtx4386 squareroot 0.0769 -> 0.277 Inexact Rounded -sqtx4387 squareroot 0.771 -> 0.878 Inexact Rounded -sqtx4388 squareroot 0.0771 -> 0.278 Inexact Rounded -sqtx4389 squareroot 0.772 -> 0.879 Inexact Rounded -sqtx4390 squareroot 0.0772 -> 0.278 Inexact Rounded -sqtx4391 squareroot 0.773 -> 0.879 Inexact Rounded -sqtx4392 squareroot 0.0773 -> 0.278 Inexact Rounded -sqtx4393 squareroot 0.774 -> 0.880 Inexact Rounded -sqtx4394 squareroot 0.0774 -> 0.278 Inexact Rounded -sqtx4395 squareroot 0.775 -> 0.880 Inexact Rounded -sqtx4396 squareroot 0.0775 -> 0.278 Inexact Rounded -sqtx4397 squareroot 0.776 -> 0.881 Inexact Rounded -sqtx4398 squareroot 0.0776 -> 0.279 Inexact Rounded -sqtx4399 squareroot 0.777 -> 0.881 Inexact Rounded -sqtx4400 squareroot 0.0777 -> 0.279 Inexact Rounded -sqtx4401 squareroot 0.778 -> 0.882 Inexact Rounded -sqtx4402 squareroot 0.0778 -> 0.279 Inexact Rounded -sqtx4403 squareroot 0.779 -> 0.883 Inexact Rounded -sqtx4404 squareroot 0.0779 -> 0.279 Inexact Rounded -sqtx4405 squareroot 0.781 -> 0.884 Inexact Rounded -sqtx4406 squareroot 0.0781 -> 0.279 Inexact Rounded -sqtx4407 squareroot 0.782 -> 0.884 Inexact Rounded -sqtx4408 squareroot 0.0782 -> 0.280 Inexact Rounded -sqtx4409 squareroot 0.783 -> 0.885 Inexact Rounded -sqtx4410 squareroot 0.0783 -> 0.280 Inexact Rounded -sqtx4411 squareroot 0.784 -> 0.885 Inexact Rounded -sqtx4412 squareroot 0.0784 -> 0.28 -sqtx4413 squareroot 0.785 -> 0.886 Inexact Rounded -sqtx4414 squareroot 0.0785 -> 0.280 Inexact Rounded -sqtx4415 squareroot 0.786 -> 0.887 Inexact Rounded -sqtx4416 squareroot 0.0786 -> 0.280 Inexact Rounded -sqtx4417 squareroot 0.787 -> 0.887 Inexact Rounded -sqtx4418 squareroot 0.0787 -> 0.281 Inexact Rounded -sqtx4419 squareroot 0.788 -> 0.888 Inexact Rounded -sqtx4420 squareroot 0.0788 -> 0.281 Inexact Rounded -sqtx4421 squareroot 0.789 -> 0.888 Inexact Rounded -sqtx4422 squareroot 0.0789 -> 0.281 Inexact Rounded -sqtx4423 squareroot 0.791 -> 0.889 Inexact Rounded -sqtx4424 squareroot 0.0791 -> 0.281 Inexact Rounded -sqtx4425 squareroot 0.792 -> 0.890 Inexact Rounded -sqtx4426 squareroot 0.0792 -> 0.281 Inexact Rounded -sqtx4427 squareroot 0.793 -> 0.891 Inexact Rounded -sqtx4428 squareroot 0.0793 -> 0.282 Inexact Rounded -sqtx4429 squareroot 0.794 -> 0.891 Inexact Rounded -sqtx4430 squareroot 0.0794 -> 0.282 Inexact Rounded -sqtx4431 squareroot 0.795 -> 0.892 Inexact Rounded -sqtx4432 squareroot 0.0795 -> 0.282 Inexact Rounded -sqtx4433 squareroot 0.796 -> 0.892 Inexact Rounded -sqtx4434 squareroot 0.0796 -> 0.282 Inexact Rounded -sqtx4435 squareroot 0.797 -> 0.893 Inexact Rounded -sqtx4436 squareroot 0.0797 -> 0.282 Inexact Rounded -sqtx4437 squareroot 0.798 -> 0.893 Inexact Rounded -sqtx4438 squareroot 0.0798 -> 0.282 Inexact Rounded -sqtx4439 squareroot 0.799 -> 0.894 Inexact Rounded -sqtx4440 squareroot 0.0799 -> 0.283 Inexact Rounded -sqtx4441 squareroot 0.801 -> 0.895 Inexact Rounded -sqtx4442 squareroot 0.0801 -> 0.283 Inexact Rounded -sqtx4443 squareroot 0.802 -> 0.896 Inexact Rounded -sqtx4444 squareroot 0.0802 -> 0.283 Inexact Rounded -sqtx4445 squareroot 0.803 -> 0.896 Inexact Rounded -sqtx4446 squareroot 0.0803 -> 0.283 Inexact Rounded -sqtx4447 squareroot 0.804 -> 0.897 Inexact Rounded -sqtx4448 squareroot 0.0804 -> 0.284 Inexact Rounded -sqtx4449 squareroot 0.805 -> 0.897 Inexact Rounded -sqtx4450 squareroot 0.0805 -> 0.284 Inexact Rounded -sqtx4451 squareroot 0.806 -> 0.898 Inexact Rounded -sqtx4452 squareroot 0.0806 -> 0.284 Inexact Rounded -sqtx4453 squareroot 0.807 -> 0.898 Inexact Rounded -sqtx4454 squareroot 0.0807 -> 0.284 Inexact Rounded -sqtx4455 squareroot 0.808 -> 0.899 Inexact Rounded -sqtx4456 squareroot 0.0808 -> 0.284 Inexact Rounded -sqtx4457 squareroot 0.809 -> 0.899 Inexact Rounded -sqtx4458 squareroot 0.0809 -> 0.284 Inexact Rounded -sqtx4459 squareroot 0.811 -> 0.901 Inexact Rounded -sqtx4460 squareroot 0.0811 -> 0.285 Inexact Rounded -sqtx4461 squareroot 0.812 -> 0.901 Inexact Rounded -sqtx4462 squareroot 0.0812 -> 0.285 Inexact Rounded -sqtx4463 squareroot 0.813 -> 0.902 Inexact Rounded -sqtx4464 squareroot 0.0813 -> 0.285 Inexact Rounded -sqtx4465 squareroot 0.814 -> 0.902 Inexact Rounded -sqtx4466 squareroot 0.0814 -> 0.285 Inexact Rounded -sqtx4467 squareroot 0.815 -> 0.903 Inexact Rounded -sqtx4468 squareroot 0.0815 -> 0.285 Inexact Rounded -sqtx4469 squareroot 0.816 -> 0.903 Inexact Rounded -sqtx4470 squareroot 0.0816 -> 0.286 Inexact Rounded -sqtx4471 squareroot 0.817 -> 0.904 Inexact Rounded -sqtx4472 squareroot 0.0817 -> 0.286 Inexact Rounded -sqtx4473 squareroot 0.818 -> 0.904 Inexact Rounded -sqtx4474 squareroot 0.0818 -> 0.286 Inexact Rounded -sqtx4475 squareroot 0.819 -> 0.905 Inexact Rounded -sqtx4476 squareroot 0.0819 -> 0.286 Inexact Rounded -sqtx4477 squareroot 0.821 -> 0.906 Inexact Rounded -sqtx4478 squareroot 0.0821 -> 0.287 Inexact Rounded -sqtx4479 squareroot 0.822 -> 0.907 Inexact Rounded -sqtx4480 squareroot 0.0822 -> 0.287 Inexact Rounded -sqtx4481 squareroot 0.823 -> 0.907 Inexact Rounded -sqtx4482 squareroot 0.0823 -> 0.287 Inexact Rounded -sqtx4483 squareroot 0.824 -> 0.908 Inexact Rounded -sqtx4484 squareroot 0.0824 -> 0.287 Inexact Rounded -sqtx4485 squareroot 0.825 -> 0.908 Inexact Rounded -sqtx4486 squareroot 0.0825 -> 0.287 Inexact Rounded -sqtx4487 squareroot 0.826 -> 0.909 Inexact Rounded -sqtx4488 squareroot 0.0826 -> 0.287 Inexact Rounded -sqtx4489 squareroot 0.827 -> 0.909 Inexact Rounded -sqtx4490 squareroot 0.0827 -> 0.288 Inexact Rounded -sqtx4491 squareroot 0.828 -> 0.910 Inexact Rounded -sqtx4492 squareroot 0.0828 -> 0.288 Inexact Rounded -sqtx4493 squareroot 0.829 -> 0.910 Inexact Rounded -sqtx4494 squareroot 0.0829 -> 0.288 Inexact Rounded -sqtx4495 squareroot 0.831 -> 0.912 Inexact Rounded -sqtx4496 squareroot 0.0831 -> 0.288 Inexact Rounded -sqtx4497 squareroot 0.832 -> 0.912 Inexact Rounded -sqtx4498 squareroot 0.0832 -> 0.288 Inexact Rounded -sqtx4499 squareroot 0.833 -> 0.913 Inexact Rounded -sqtx4500 squareroot 0.0833 -> 0.289 Inexact Rounded -sqtx4501 squareroot 0.834 -> 0.913 Inexact Rounded -sqtx4502 squareroot 0.0834 -> 0.289 Inexact Rounded -sqtx4503 squareroot 0.835 -> 0.914 Inexact Rounded -sqtx4504 squareroot 0.0835 -> 0.289 Inexact Rounded -sqtx4505 squareroot 0.836 -> 0.914 Inexact Rounded -sqtx4506 squareroot 0.0836 -> 0.289 Inexact Rounded -sqtx4507 squareroot 0.837 -> 0.915 Inexact Rounded -sqtx4508 squareroot 0.0837 -> 0.289 Inexact Rounded -sqtx4509 squareroot 0.838 -> 0.915 Inexact Rounded -sqtx4510 squareroot 0.0838 -> 0.289 Inexact Rounded -sqtx4511 squareroot 0.839 -> 0.916 Inexact Rounded -sqtx4512 squareroot 0.0839 -> 0.290 Inexact Rounded -sqtx4513 squareroot 0.841 -> 0.917 Inexact Rounded -sqtx4514 squareroot 0.0841 -> 0.29 -sqtx4515 squareroot 0.842 -> 0.918 Inexact Rounded -sqtx4516 squareroot 0.0842 -> 0.290 Inexact Rounded -sqtx4517 squareroot 0.843 -> 0.918 Inexact Rounded -sqtx4518 squareroot 0.0843 -> 0.290 Inexact Rounded -sqtx4519 squareroot 0.844 -> 0.919 Inexact Rounded -sqtx4520 squareroot 0.0844 -> 0.291 Inexact Rounded -sqtx4521 squareroot 0.845 -> 0.919 Inexact Rounded -sqtx4522 squareroot 0.0845 -> 0.291 Inexact Rounded -sqtx4523 squareroot 0.846 -> 0.920 Inexact Rounded -sqtx4524 squareroot 0.0846 -> 0.291 Inexact Rounded -sqtx4525 squareroot 0.847 -> 0.920 Inexact Rounded -sqtx4526 squareroot 0.0847 -> 0.291 Inexact Rounded -sqtx4527 squareroot 0.848 -> 0.921 Inexact Rounded -sqtx4528 squareroot 0.0848 -> 0.291 Inexact Rounded -sqtx4529 squareroot 0.849 -> 0.921 Inexact Rounded -sqtx4530 squareroot 0.0849 -> 0.291 Inexact Rounded -sqtx4531 squareroot 0.851 -> 0.922 Inexact Rounded -sqtx4532 squareroot 0.0851 -> 0.292 Inexact Rounded -sqtx4533 squareroot 0.852 -> 0.923 Inexact Rounded -sqtx4534 squareroot 0.0852 -> 0.292 Inexact Rounded -sqtx4535 squareroot 0.853 -> 0.924 Inexact Rounded -sqtx4536 squareroot 0.0853 -> 0.292 Inexact Rounded -sqtx4537 squareroot 0.854 -> 0.924 Inexact Rounded -sqtx4538 squareroot 0.0854 -> 0.292 Inexact Rounded -sqtx4539 squareroot 0.855 -> 0.925 Inexact Rounded -sqtx4540 squareroot 0.0855 -> 0.292 Inexact Rounded -sqtx4541 squareroot 0.856 -> 0.925 Inexact Rounded -sqtx4542 squareroot 0.0856 -> 0.293 Inexact Rounded -sqtx4543 squareroot 0.857 -> 0.926 Inexact Rounded -sqtx4544 squareroot 0.0857 -> 0.293 Inexact Rounded -sqtx4545 squareroot 0.858 -> 0.926 Inexact Rounded -sqtx4546 squareroot 0.0858 -> 0.293 Inexact Rounded -sqtx4547 squareroot 0.859 -> 0.927 Inexact Rounded -sqtx4548 squareroot 0.0859 -> 0.293 Inexact Rounded -sqtx4549 squareroot 0.861 -> 0.928 Inexact Rounded -sqtx4550 squareroot 0.0861 -> 0.293 Inexact Rounded -sqtx4551 squareroot 0.862 -> 0.928 Inexact Rounded -sqtx4552 squareroot 0.0862 -> 0.294 Inexact Rounded -sqtx4553 squareroot 0.863 -> 0.929 Inexact Rounded -sqtx4554 squareroot 0.0863 -> 0.294 Inexact Rounded -sqtx4555 squareroot 0.864 -> 0.930 Inexact Rounded -sqtx4556 squareroot 0.0864 -> 0.294 Inexact Rounded -sqtx4557 squareroot 0.865 -> 0.930 Inexact Rounded -sqtx4558 squareroot 0.0865 -> 0.294 Inexact Rounded -sqtx4559 squareroot 0.866 -> 0.931 Inexact Rounded -sqtx4560 squareroot 0.0866 -> 0.294 Inexact Rounded -sqtx4561 squareroot 0.867 -> 0.931 Inexact Rounded -sqtx4562 squareroot 0.0867 -> 0.294 Inexact Rounded -sqtx4563 squareroot 0.868 -> 0.932 Inexact Rounded -sqtx4564 squareroot 0.0868 -> 0.295 Inexact Rounded -sqtx4565 squareroot 0.869 -> 0.932 Inexact Rounded -sqtx4566 squareroot 0.0869 -> 0.295 Inexact Rounded -sqtx4567 squareroot 0.871 -> 0.933 Inexact Rounded -sqtx4568 squareroot 0.0871 -> 0.295 Inexact Rounded -sqtx4569 squareroot 0.872 -> 0.934 Inexact Rounded -sqtx4570 squareroot 0.0872 -> 0.295 Inexact Rounded -sqtx4571 squareroot 0.873 -> 0.934 Inexact Rounded -sqtx4572 squareroot 0.0873 -> 0.295 Inexact Rounded -sqtx4573 squareroot 0.874 -> 0.935 Inexact Rounded -sqtx4574 squareroot 0.0874 -> 0.296 Inexact Rounded -sqtx4575 squareroot 0.875 -> 0.935 Inexact Rounded -sqtx4576 squareroot 0.0875 -> 0.296 Inexact Rounded -sqtx4577 squareroot 0.876 -> 0.936 Inexact Rounded -sqtx4578 squareroot 0.0876 -> 0.296 Inexact Rounded -sqtx4579 squareroot 0.877 -> 0.936 Inexact Rounded -sqtx4580 squareroot 0.0877 -> 0.296 Inexact Rounded -sqtx4581 squareroot 0.878 -> 0.937 Inexact Rounded -sqtx4582 squareroot 0.0878 -> 0.296 Inexact Rounded -sqtx4583 squareroot 0.879 -> 0.938 Inexact Rounded -sqtx4584 squareroot 0.0879 -> 0.296 Inexact Rounded -sqtx4585 squareroot 0.881 -> 0.939 Inexact Rounded -sqtx4586 squareroot 0.0881 -> 0.297 Inexact Rounded -sqtx4587 squareroot 0.882 -> 0.939 Inexact Rounded -sqtx4588 squareroot 0.0882 -> 0.297 Inexact Rounded -sqtx4589 squareroot 0.883 -> 0.940 Inexact Rounded -sqtx4590 squareroot 0.0883 -> 0.297 Inexact Rounded -sqtx4591 squareroot 0.884 -> 0.940 Inexact Rounded -sqtx4592 squareroot 0.0884 -> 0.297 Inexact Rounded -sqtx4593 squareroot 0.885 -> 0.941 Inexact Rounded -sqtx4594 squareroot 0.0885 -> 0.297 Inexact Rounded -sqtx4595 squareroot 0.886 -> 0.941 Inexact Rounded -sqtx4596 squareroot 0.0886 -> 0.298 Inexact Rounded -sqtx4597 squareroot 0.887 -> 0.942 Inexact Rounded -sqtx4598 squareroot 0.0887 -> 0.298 Inexact Rounded -sqtx4599 squareroot 0.888 -> 0.942 Inexact Rounded -sqtx4600 squareroot 0.0888 -> 0.298 Inexact Rounded -sqtx4601 squareroot 0.889 -> 0.943 Inexact Rounded -sqtx4602 squareroot 0.0889 -> 0.298 Inexact Rounded -sqtx4603 squareroot 0.891 -> 0.944 Inexact Rounded -sqtx4604 squareroot 0.0891 -> 0.298 Inexact Rounded -sqtx4605 squareroot 0.892 -> 0.944 Inexact Rounded -sqtx4606 squareroot 0.0892 -> 0.299 Inexact Rounded -sqtx4607 squareroot 0.893 -> 0.945 Inexact Rounded -sqtx4608 squareroot 0.0893 -> 0.299 Inexact Rounded -sqtx4609 squareroot 0.894 -> 0.946 Inexact Rounded -sqtx4610 squareroot 0.0894 -> 0.299 Inexact Rounded -sqtx4611 squareroot 0.895 -> 0.946 Inexact Rounded -sqtx4612 squareroot 0.0895 -> 0.299 Inexact Rounded -sqtx4613 squareroot 0.896 -> 0.947 Inexact Rounded -sqtx4614 squareroot 0.0896 -> 0.299 Inexact Rounded -sqtx4615 squareroot 0.897 -> 0.947 Inexact Rounded -sqtx4616 squareroot 0.0897 -> 0.299 Inexact Rounded -sqtx4617 squareroot 0.898 -> 0.948 Inexact Rounded -sqtx4618 squareroot 0.0898 -> 0.300 Inexact Rounded -sqtx4619 squareroot 0.899 -> 0.948 Inexact Rounded -sqtx4620 squareroot 0.0899 -> 0.300 Inexact Rounded -sqtx4621 squareroot 0.901 -> 0.949 Inexact Rounded -sqtx4622 squareroot 0.0901 -> 0.300 Inexact Rounded -sqtx4623 squareroot 0.902 -> 0.950 Inexact Rounded -sqtx4624 squareroot 0.0902 -> 0.300 Inexact Rounded -sqtx4625 squareroot 0.903 -> 0.950 Inexact Rounded -sqtx4626 squareroot 0.0903 -> 0.300 Inexact Rounded -sqtx4627 squareroot 0.904 -> 0.951 Inexact Rounded -sqtx4628 squareroot 0.0904 -> 0.301 Inexact Rounded -sqtx4629 squareroot 0.905 -> 0.951 Inexact Rounded -sqtx4630 squareroot 0.0905 -> 0.301 Inexact Rounded -sqtx4631 squareroot 0.906 -> 0.952 Inexact Rounded -sqtx4632 squareroot 0.0906 -> 0.301 Inexact Rounded -sqtx4633 squareroot 0.907 -> 0.952 Inexact Rounded -sqtx4634 squareroot 0.0907 -> 0.301 Inexact Rounded -sqtx4635 squareroot 0.908 -> 0.953 Inexact Rounded -sqtx4636 squareroot 0.0908 -> 0.301 Inexact Rounded -sqtx4637 squareroot 0.909 -> 0.953 Inexact Rounded -sqtx4638 squareroot 0.0909 -> 0.301 Inexact Rounded -sqtx4639 squareroot 0.911 -> 0.954 Inexact Rounded -sqtx4640 squareroot 0.0911 -> 0.302 Inexact Rounded -sqtx4641 squareroot 0.912 -> 0.955 Inexact Rounded -sqtx4642 squareroot 0.0912 -> 0.302 Inexact Rounded -sqtx4643 squareroot 0.913 -> 0.956 Inexact Rounded -sqtx4644 squareroot 0.0913 -> 0.302 Inexact Rounded -sqtx4645 squareroot 0.914 -> 0.956 Inexact Rounded -sqtx4646 squareroot 0.0914 -> 0.302 Inexact Rounded -sqtx4647 squareroot 0.915 -> 0.957 Inexact Rounded -sqtx4648 squareroot 0.0915 -> 0.302 Inexact Rounded -sqtx4649 squareroot 0.916 -> 0.957 Inexact Rounded -sqtx4650 squareroot 0.0916 -> 0.303 Inexact Rounded -sqtx4651 squareroot 0.917 -> 0.958 Inexact Rounded -sqtx4652 squareroot 0.0917 -> 0.303 Inexact Rounded -sqtx4653 squareroot 0.918 -> 0.958 Inexact Rounded -sqtx4654 squareroot 0.0918 -> 0.303 Inexact Rounded -sqtx4655 squareroot 0.919 -> 0.959 Inexact Rounded -sqtx4656 squareroot 0.0919 -> 0.303 Inexact Rounded -sqtx4657 squareroot 0.921 -> 0.960 Inexact Rounded -sqtx4658 squareroot 0.0921 -> 0.303 Inexact Rounded -sqtx4659 squareroot 0.922 -> 0.960 Inexact Rounded -sqtx4660 squareroot 0.0922 -> 0.304 Inexact Rounded -sqtx4661 squareroot 0.923 -> 0.961 Inexact Rounded -sqtx4662 squareroot 0.0923 -> 0.304 Inexact Rounded -sqtx4663 squareroot 0.924 -> 0.961 Inexact Rounded -sqtx4664 squareroot 0.0924 -> 0.304 Inexact Rounded -sqtx4665 squareroot 0.925 -> 0.962 Inexact Rounded -sqtx4666 squareroot 0.0925 -> 0.304 Inexact Rounded -sqtx4667 squareroot 0.926 -> 0.962 Inexact Rounded -sqtx4668 squareroot 0.0926 -> 0.304 Inexact Rounded -sqtx4669 squareroot 0.927 -> 0.963 Inexact Rounded -sqtx4670 squareroot 0.0927 -> 0.304 Inexact Rounded -sqtx4671 squareroot 0.928 -> 0.963 Inexact Rounded -sqtx4672 squareroot 0.0928 -> 0.305 Inexact Rounded -sqtx4673 squareroot 0.929 -> 0.964 Inexact Rounded -sqtx4674 squareroot 0.0929 -> 0.305 Inexact Rounded -sqtx4675 squareroot 0.931 -> 0.965 Inexact Rounded -sqtx4676 squareroot 0.0931 -> 0.305 Inexact Rounded -sqtx4677 squareroot 0.932 -> 0.965 Inexact Rounded -sqtx4678 squareroot 0.0932 -> 0.305 Inexact Rounded -sqtx4679 squareroot 0.933 -> 0.966 Inexact Rounded -sqtx4680 squareroot 0.0933 -> 0.305 Inexact Rounded -sqtx4681 squareroot 0.934 -> 0.966 Inexact Rounded -sqtx4682 squareroot 0.0934 -> 0.306 Inexact Rounded -sqtx4683 squareroot 0.935 -> 0.967 Inexact Rounded -sqtx4684 squareroot 0.0935 -> 0.306 Inexact Rounded -sqtx4685 squareroot 0.936 -> 0.967 Inexact Rounded -sqtx4686 squareroot 0.0936 -> 0.306 Inexact Rounded -sqtx4687 squareroot 0.937 -> 0.968 Inexact Rounded -sqtx4688 squareroot 0.0937 -> 0.306 Inexact Rounded -sqtx4689 squareroot 0.938 -> 0.969 Inexact Rounded -sqtx4690 squareroot 0.0938 -> 0.306 Inexact Rounded -sqtx4691 squareroot 0.939 -> 0.969 Inexact Rounded -sqtx4692 squareroot 0.0939 -> 0.306 Inexact Rounded -sqtx4693 squareroot 0.941 -> 0.970 Inexact Rounded -sqtx4694 squareroot 0.0941 -> 0.307 Inexact Rounded -sqtx4695 squareroot 0.942 -> 0.971 Inexact Rounded -sqtx4696 squareroot 0.0942 -> 0.307 Inexact Rounded -sqtx4697 squareroot 0.943 -> 0.971 Inexact Rounded -sqtx4698 squareroot 0.0943 -> 0.307 Inexact Rounded -sqtx4699 squareroot 0.944 -> 0.972 Inexact Rounded -sqtx4700 squareroot 0.0944 -> 0.307 Inexact Rounded -sqtx4701 squareroot 0.945 -> 0.972 Inexact Rounded -sqtx4702 squareroot 0.0945 -> 0.307 Inexact Rounded -sqtx4703 squareroot 0.946 -> 0.973 Inexact Rounded -sqtx4704 squareroot 0.0946 -> 0.308 Inexact Rounded -sqtx4705 squareroot 0.947 -> 0.973 Inexact Rounded -sqtx4706 squareroot 0.0947 -> 0.308 Inexact Rounded -sqtx4707 squareroot 0.948 -> 0.974 Inexact Rounded -sqtx4708 squareroot 0.0948 -> 0.308 Inexact Rounded -sqtx4709 squareroot 0.949 -> 0.974 Inexact Rounded -sqtx4710 squareroot 0.0949 -> 0.308 Inexact Rounded -sqtx4711 squareroot 0.951 -> 0.975 Inexact Rounded -sqtx4712 squareroot 0.0951 -> 0.308 Inexact Rounded -sqtx4713 squareroot 0.952 -> 0.976 Inexact Rounded -sqtx4714 squareroot 0.0952 -> 0.309 Inexact Rounded -sqtx4715 squareroot 0.953 -> 0.976 Inexact Rounded -sqtx4716 squareroot 0.0953 -> 0.309 Inexact Rounded -sqtx4717 squareroot 0.954 -> 0.977 Inexact Rounded -sqtx4718 squareroot 0.0954 -> 0.309 Inexact Rounded -sqtx4719 squareroot 0.955 -> 0.977 Inexact Rounded -sqtx4720 squareroot 0.0955 -> 0.309 Inexact Rounded -sqtx4721 squareroot 0.956 -> 0.978 Inexact Rounded -sqtx4722 squareroot 0.0956 -> 0.309 Inexact Rounded -sqtx4723 squareroot 0.957 -> 0.978 Inexact Rounded -sqtx4724 squareroot 0.0957 -> 0.309 Inexact Rounded -sqtx4725 squareroot 0.958 -> 0.979 Inexact Rounded -sqtx4726 squareroot 0.0958 -> 0.310 Inexact Rounded -sqtx4727 squareroot 0.959 -> 0.979 Inexact Rounded -sqtx4728 squareroot 0.0959 -> 0.310 Inexact Rounded -sqtx4729 squareroot 0.961 -> 0.980 Inexact Rounded -sqtx4730 squareroot 0.0961 -> 0.31 -sqtx4731 squareroot 0.962 -> 0.981 Inexact Rounded -sqtx4732 squareroot 0.0962 -> 0.310 Inexact Rounded -sqtx4733 squareroot 0.963 -> 0.981 Inexact Rounded -sqtx4734 squareroot 0.0963 -> 0.310 Inexact Rounded -sqtx4735 squareroot 0.964 -> 0.982 Inexact Rounded -sqtx4736 squareroot 0.0964 -> 0.310 Inexact Rounded -sqtx4737 squareroot 0.965 -> 0.982 Inexact Rounded -sqtx4738 squareroot 0.0965 -> 0.311 Inexact Rounded -sqtx4739 squareroot 0.966 -> 0.983 Inexact Rounded -sqtx4740 squareroot 0.0966 -> 0.311 Inexact Rounded -sqtx4741 squareroot 0.967 -> 0.983 Inexact Rounded -sqtx4742 squareroot 0.0967 -> 0.311 Inexact Rounded -sqtx4743 squareroot 0.968 -> 0.984 Inexact Rounded -sqtx4744 squareroot 0.0968 -> 0.311 Inexact Rounded -sqtx4745 squareroot 0.969 -> 0.984 Inexact Rounded -sqtx4746 squareroot 0.0969 -> 0.311 Inexact Rounded -sqtx4747 squareroot 0.971 -> 0.985 Inexact Rounded -sqtx4748 squareroot 0.0971 -> 0.312 Inexact Rounded -sqtx4749 squareroot 0.972 -> 0.986 Inexact Rounded -sqtx4750 squareroot 0.0972 -> 0.312 Inexact Rounded -sqtx4751 squareroot 0.973 -> 0.986 Inexact Rounded -sqtx4752 squareroot 0.0973 -> 0.312 Inexact Rounded -sqtx4753 squareroot 0.974 -> 0.987 Inexact Rounded -sqtx4754 squareroot 0.0974 -> 0.312 Inexact Rounded -sqtx4755 squareroot 0.975 -> 0.987 Inexact Rounded -sqtx4756 squareroot 0.0975 -> 0.312 Inexact Rounded -sqtx4757 squareroot 0.976 -> 0.988 Inexact Rounded -sqtx4758 squareroot 0.0976 -> 0.312 Inexact Rounded -sqtx4759 squareroot 0.977 -> 0.988 Inexact Rounded -sqtx4760 squareroot 0.0977 -> 0.313 Inexact Rounded -sqtx4761 squareroot 0.978 -> 0.989 Inexact Rounded -sqtx4762 squareroot 0.0978 -> 0.313 Inexact Rounded -sqtx4763 squareroot 0.979 -> 0.989 Inexact Rounded -sqtx4764 squareroot 0.0979 -> 0.313 Inexact Rounded -sqtx4765 squareroot 0.981 -> 0.990 Inexact Rounded -sqtx4766 squareroot 0.0981 -> 0.313 Inexact Rounded -sqtx4767 squareroot 0.982 -> 0.991 Inexact Rounded -sqtx4768 squareroot 0.0982 -> 0.313 Inexact Rounded -sqtx4769 squareroot 0.983 -> 0.991 Inexact Rounded -sqtx4770 squareroot 0.0983 -> 0.314 Inexact Rounded -sqtx4771 squareroot 0.984 -> 0.992 Inexact Rounded -sqtx4772 squareroot 0.0984 -> 0.314 Inexact Rounded -sqtx4773 squareroot 0.985 -> 0.992 Inexact Rounded -sqtx4774 squareroot 0.0985 -> 0.314 Inexact Rounded -sqtx4775 squareroot 0.986 -> 0.993 Inexact Rounded -sqtx4776 squareroot 0.0986 -> 0.314 Inexact Rounded -sqtx4777 squareroot 0.987 -> 0.993 Inexact Rounded -sqtx4778 squareroot 0.0987 -> 0.314 Inexact Rounded -sqtx4779 squareroot 0.988 -> 0.994 Inexact Rounded -sqtx4780 squareroot 0.0988 -> 0.314 Inexact Rounded -sqtx4781 squareroot 0.989 -> 0.994 Inexact Rounded -sqtx4782 squareroot 0.0989 -> 0.314 Inexact Rounded -sqtx4783 squareroot 0.991 -> 0.995 Inexact Rounded -sqtx4784 squareroot 0.0991 -> 0.315 Inexact Rounded -sqtx4785 squareroot 0.992 -> 0.996 Inexact Rounded -sqtx4786 squareroot 0.0992 -> 0.315 Inexact Rounded -sqtx4787 squareroot 0.993 -> 0.996 Inexact Rounded -sqtx4788 squareroot 0.0993 -> 0.315 Inexact Rounded -sqtx4789 squareroot 0.994 -> 0.997 Inexact Rounded -sqtx4790 squareroot 0.0994 -> 0.315 Inexact Rounded -sqtx4791 squareroot 0.995 -> 0.997 Inexact Rounded -sqtx4792 squareroot 0.0995 -> 0.315 Inexact Rounded -sqtx4793 squareroot 0.996 -> 0.998 Inexact Rounded -sqtx4794 squareroot 0.0996 -> 0.316 Inexact Rounded -sqtx4795 squareroot 0.997 -> 0.998 Inexact Rounded -sqtx4796 squareroot 0.0997 -> 0.316 Inexact Rounded -sqtx4797 squareroot 0.998 -> 0.999 Inexact Rounded -sqtx4798 squareroot 0.0998 -> 0.316 Inexact Rounded -sqtx4799 squareroot 0.999 -> 0.999 Inexact Rounded -sqtx4800 squareroot 0.0999 -> 0.316 Inexact Rounded - --- A group of precision 4 tests where Hull & Abrham adjustments are --- needed in some cases (both up and down) [see Hull1985b] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 4 -sqtx5001 squareroot 0.0118 -> 0.1086 Inexact Rounded -sqtx5002 squareroot 0.119 -> 0.3450 Inexact Rounded -sqtx5003 squareroot 0.0119 -> 0.1091 Inexact Rounded -sqtx5004 squareroot 0.121 -> 0.3479 Inexact Rounded -sqtx5005 squareroot 0.0121 -> 0.11 -sqtx5006 squareroot 0.122 -> 0.3493 Inexact Rounded -sqtx5007 squareroot 0.0122 -> 0.1105 Inexact Rounded -sqtx5008 squareroot 0.123 -> 0.3507 Inexact Rounded -sqtx5009 squareroot 0.494 -> 0.7029 Inexact Rounded -sqtx5010 squareroot 0.0669 -> 0.2587 Inexact Rounded -sqtx5011 squareroot 0.9558 -> 0.9777 Inexact Rounded -sqtx5012 squareroot 0.9348 -> 0.9669 Inexact Rounded -sqtx5013 squareroot 0.9345 -> 0.9667 Inexact Rounded -sqtx5014 squareroot 0.09345 -> 0.3057 Inexact Rounded -sqtx5015 squareroot 0.9346 -> 0.9667 Inexact Rounded -sqtx5016 squareroot 0.09346 -> 0.3057 Inexact Rounded -sqtx5017 squareroot 0.9347 -> 0.9668 Inexact Rounded - --- examples from decArith -precision: 9 -sqtx700 squareroot 0 -> '0' -sqtx701 squareroot -0 -> '-0' -sqtx702 squareroot 0.39 -> 0.624499800 Inexact Rounded -sqtx703 squareroot 100 -> '10' -sqtx704 squareroot 1.00 -> '1.0' -sqtx705 squareroot 7 -> '2.64575131' Inexact Rounded -sqtx706 squareroot 10 -> 3.16227766 Inexact Rounded - --- some one-offs -precision: 9 -sqtx711 squareroot 0.1 -> 0.316227766 Inexact Rounded -sqtx712 squareroot 0.2 -> 0.447213595 Inexact Rounded -sqtx713 squareroot 0.3 -> 0.547722558 Inexact Rounded -sqtx714 squareroot 0.4 -> 0.632455532 Inexact Rounded -sqtx715 squareroot 0.5 -> 0.707106781 Inexact Rounded -sqtx716 squareroot 0.6 -> 0.774596669 Inexact Rounded -sqtx717 squareroot 0.7 -> 0.836660027 Inexact Rounded -sqtx718 squareroot 0.8 -> 0.894427191 Inexact Rounded -sqtx719 squareroot 0.9 -> 0.948683298 Inexact Rounded -precision: 10 -- note no normalizatoin here -sqtx720 squareroot +0.1 -> 0.3162277660 Inexact Rounded -precision: 11 -sqtx721 squareroot +0.1 -> 0.31622776602 Inexact Rounded -precision: 12 -sqtx722 squareroot +0.1 -> 0.316227766017 Inexact Rounded -precision: 9 -sqtx723 squareroot 0.39 -> 0.624499800 Inexact Rounded -precision: 15 -sqtx724 squareroot 0.39 -> 0.624499799839840 Inexact Rounded - --- discussion cases -precision: 7 -sqtx731 squareroot 9 -> 3 -sqtx732 squareroot 100 -> 10 -sqtx733 squareroot 123 -> 11.09054 Inexact Rounded -sqtx734 squareroot 144 -> 12 -sqtx735 squareroot 156 -> 12.49000 Inexact Rounded -sqtx736 squareroot 10000 -> 100 - --- values close to overflow (if there were input rounding) -maxexponent: 99 -minexponent: -99 -precision: 5 -sqtx760 squareroot 9.9997E+99 -> 9.9998E+49 Inexact Rounded -sqtx761 squareroot 9.9998E+99 -> 9.9999E+49 Inexact Rounded -sqtx762 squareroot 9.9999E+99 -> 9.9999E+49 Inexact Rounded -sqtx763 squareroot 9.99991E+99 -> 1.0000E+50 Inexact Rounded -sqtx764 squareroot 9.99994E+99 -> 1.0000E+50 Inexact Rounded -sqtx765 squareroot 9.99995E+99 -> 1.0000E+50 Inexact Rounded -sqtx766 squareroot 9.99999E+99 -> 1.0000E+50 Inexact Rounded -precision: 9 -sqtx770 squareroot 9.9997E+99 -> 9.99985000E+49 Inexact Rounded -sqtx771 squareroot 9.9998E+99 -> 9.99990000E+49 Inexact Rounded -sqtx772 squareroot 9.9999E+99 -> 9.99995000E+49 Inexact Rounded -sqtx773 squareroot 9.99991E+99 -> 9.99995500E+49 Inexact Rounded -sqtx774 squareroot 9.99994E+99 -> 9.99997000E+49 Inexact Rounded -sqtx775 squareroot 9.99995E+99 -> 9.99997500E+49 Inexact Rounded -sqtx776 squareroot 9.99999E+99 -> 9.99999500E+49 Inexact Rounded -precision: 20 -sqtx780 squareroot 9.9997E+99 -> '9.9998499988749831247E+49' Inexact Rounded -sqtx781 squareroot 9.9998E+99 -> '9.9998999994999949999E+49' Inexact Rounded -sqtx782 squareroot 9.9999E+99 -> '9.9999499998749993750E+49' Inexact Rounded -sqtx783 squareroot 9.99991E+99 -> '9.9999549998987495444E+49' Inexact Rounded -sqtx784 squareroot 9.99994E+99 -> '9.9999699999549998650E+49' Inexact Rounded -sqtx785 squareroot 9.99995E+99 -> '9.9999749999687499219E+49' Inexact Rounded -sqtx786 squareroot 9.99999E+99 -> '9.9999949999987499994E+49' Inexact Rounded - --- subnormals and underflows [these can only result when eMax is < digits+1] --- Etiny = -(Emax + (precision-1)) --- start with subnormal operands and normal results -maxexponent: 9 -minexponent: -9 -precision: 9 -- Etiny=-17 -sqtx800 squareroot 1E-17 -> 3.16227766E-9 Inexact Rounded -sqtx801 squareroot 10E-17 -> 1.0E-8 -precision: 10 -- Etiny=-18 -sqtx802 squareroot 10E-18 -> 3.162277660E-9 Inexact Rounded -sqtx803 squareroot 1E-18 -> 1E-9 - -precision: 11 -- Etiny=-19 -sqtx804 squareroot 1E-19 -> 3.162277660E-10 Underflow Subnormal Inexact Rounded -sqtx805 squareroot 10E-19 -> 1.0E-9 -- exact -precision: 12 -- Etiny=-20 -sqtx806 squareroot 10E-20 -> 3.1622776602E-10 Underflow Subnormal Inexact Rounded -sqtx807 squareroot 1E-20 -> 1E-10 Subnormal -- exact Subnormal case - -precision: 13 -- Etiny=-21 -sqtx808 squareroot 1E-21 -> 3.1622776602E-11 Underflow Subnormal Inexact Rounded -sqtx809 squareroot 10E-21 -> 1.0E-10 Subnormal -- exact Subnormal case -precision: 14 -- Etiny=-22 -sqtx810 squareroot 1E-21 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded -sqtx811 squareroot 10E-22 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded -sqtx812 squareroot 1E-22 -> 1E-11 Subnormal -- exact Subnormal case - --- Not enough digits? -precision: 16 -maxExponent: 384 -minExponent: -383 -rounding: half_even -sqtx815 squareroot 1.0000000001000000E-78 -> 1.000000000050000E-39 Inexact Rounded --- 1 234567890123456 - --- special values -maxexponent: 999 -minexponent: -999 -sqtx820 squareroot Inf -> Infinity -sqtx821 squareroot -Inf -> NaN Invalid_operation -sqtx822 squareroot NaN -> NaN -sqtx823 squareroot sNaN -> NaN Invalid_operation --- propagating NaNs -sqtx824 squareroot sNaN123 -> NaN123 Invalid_operation -sqtx825 squareroot -sNaN321 -> -NaN321 Invalid_operation -sqtx826 squareroot NaN456 -> NaN456 -sqtx827 squareroot -NaN654 -> -NaN654 -sqtx828 squareroot NaN1 -> NaN1 - --- payload decapitate -precision: 5 -sqtx840 squareroot -sNaN1234567890 -> -NaN67890 Invalid_operation - ------------------------------------------------------------------------- --- --- Special thanks to Mark Dickinson for tests in the range 8000-8999. --- --- Extra tests for the square root function, dealing with a variety of --- corner cases. In particular, these tests concentrate on --- (1) cases where the input precision exceeds the context precision, and --- (2) cases where the input exponent is outside the current context, --- and in particular when the result is subnormal --- --- maxexponent and minexponent are set to 9 and -9 for most of these --- cases; only the precision changes. The rounding also does not --- change, because it is ignored for this operation. -maxexponent: 9 -minexponent: -9 - --- exact results, input precision > context precision -precision: 1 -sqtx8000 squareroot 0 -> 0 -sqtx8001 squareroot 1 -> 1 -sqtx8002 squareroot 4 -> 2 -sqtx8003 squareroot 9 -> 3 -sqtx8004 squareroot 16 -> 4 -sqtx8005 squareroot 25 -> 5 -sqtx8006 squareroot 36 -> 6 -sqtx8007 squareroot 49 -> 7 -sqtx8008 squareroot 64 -> 8 -sqtx8009 squareroot 81 -> 9 -sqtx8010 squareroot 100 -> 1E+1 Rounded -sqtx8011 squareroot 121 -> 1E+1 Inexact Rounded - -precision: 2 -sqtx8012 squareroot 0 -> 0 -sqtx8013 squareroot 1 -> 1 -sqtx8014 squareroot 4 -> 2 -sqtx8015 squareroot 9 -> 3 -sqtx8016 squareroot 16 -> 4 -sqtx8017 squareroot 25 -> 5 -sqtx8018 squareroot 36 -> 6 -sqtx8019 squareroot 49 -> 7 -sqtx8020 squareroot 64 -> 8 -sqtx8021 squareroot 81 -> 9 -sqtx8022 squareroot 100 -> 10 -sqtx8023 squareroot 121 -> 11 -sqtx8024 squareroot 144 -> 12 -sqtx8025 squareroot 169 -> 13 -sqtx8026 squareroot 196 -> 14 -sqtx8027 squareroot 225 -> 15 -sqtx8028 squareroot 256 -> 16 -sqtx8029 squareroot 289 -> 17 -sqtx8030 squareroot 324 -> 18 -sqtx8031 squareroot 361 -> 19 -sqtx8032 squareroot 400 -> 20 -sqtx8033 squareroot 441 -> 21 -sqtx8034 squareroot 484 -> 22 -sqtx8035 squareroot 529 -> 23 -sqtx8036 squareroot 576 -> 24 -sqtx8037 squareroot 625 -> 25 -sqtx8038 squareroot 676 -> 26 -sqtx8039 squareroot 729 -> 27 -sqtx8040 squareroot 784 -> 28 -sqtx8041 squareroot 841 -> 29 -sqtx8042 squareroot 900 -> 30 -sqtx8043 squareroot 961 -> 31 -sqtx8044 squareroot 1024 -> 32 -sqtx8045 squareroot 1089 -> 33 -sqtx8046 squareroot 1156 -> 34 -sqtx8047 squareroot 1225 -> 35 -sqtx8048 squareroot 1296 -> 36 -sqtx8049 squareroot 1369 -> 37 -sqtx8050 squareroot 1444 -> 38 -sqtx8051 squareroot 1521 -> 39 -sqtx8052 squareroot 1600 -> 40 -sqtx8053 squareroot 1681 -> 41 -sqtx8054 squareroot 1764 -> 42 -sqtx8055 squareroot 1849 -> 43 -sqtx8056 squareroot 1936 -> 44 -sqtx8057 squareroot 2025 -> 45 -sqtx8058 squareroot 2116 -> 46 -sqtx8059 squareroot 2209 -> 47 -sqtx8060 squareroot 2304 -> 48 -sqtx8061 squareroot 2401 -> 49 -sqtx8062 squareroot 2500 -> 50 -sqtx8063 squareroot 2601 -> 51 -sqtx8064 squareroot 2704 -> 52 -sqtx8065 squareroot 2809 -> 53 -sqtx8066 squareroot 2916 -> 54 -sqtx8067 squareroot 3025 -> 55 -sqtx8068 squareroot 3136 -> 56 -sqtx8069 squareroot 3249 -> 57 -sqtx8070 squareroot 3364 -> 58 -sqtx8071 squareroot 3481 -> 59 -sqtx8072 squareroot 3600 -> 60 -sqtx8073 squareroot 3721 -> 61 -sqtx8074 squareroot 3844 -> 62 -sqtx8075 squareroot 3969 -> 63 -sqtx8076 squareroot 4096 -> 64 -sqtx8077 squareroot 4225 -> 65 -sqtx8078 squareroot 4356 -> 66 -sqtx8079 squareroot 4489 -> 67 -sqtx8080 squareroot 4624 -> 68 -sqtx8081 squareroot 4761 -> 69 -sqtx8082 squareroot 4900 -> 70 -sqtx8083 squareroot 5041 -> 71 -sqtx8084 squareroot 5184 -> 72 -sqtx8085 squareroot 5329 -> 73 -sqtx8086 squareroot 5476 -> 74 -sqtx8087 squareroot 5625 -> 75 -sqtx8088 squareroot 5776 -> 76 -sqtx8089 squareroot 5929 -> 77 -sqtx8090 squareroot 6084 -> 78 -sqtx8091 squareroot 6241 -> 79 -sqtx8092 squareroot 6400 -> 80 -sqtx8093 squareroot 6561 -> 81 -sqtx8094 squareroot 6724 -> 82 -sqtx8095 squareroot 6889 -> 83 -sqtx8096 squareroot 7056 -> 84 -sqtx8097 squareroot 7225 -> 85 -sqtx8098 squareroot 7396 -> 86 -sqtx8099 squareroot 7569 -> 87 -sqtx8100 squareroot 7744 -> 88 -sqtx8101 squareroot 7921 -> 89 -sqtx8102 squareroot 8100 -> 90 -sqtx8103 squareroot 8281 -> 91 -sqtx8104 squareroot 8464 -> 92 -sqtx8105 squareroot 8649 -> 93 -sqtx8106 squareroot 8836 -> 94 -sqtx8107 squareroot 9025 -> 95 -sqtx8108 squareroot 9216 -> 96 -sqtx8109 squareroot 9409 -> 97 -sqtx8110 squareroot 9604 -> 98 -sqtx8111 squareroot 9801 -> 99 -sqtx8112 squareroot 10000 -> 1.0E+2 Rounded -sqtx8113 squareroot 10201 -> 1.0E+2 Inexact Rounded - -precision: 3 -sqtx8114 squareroot 841 -> 29 -sqtx8115 squareroot 1600 -> 40 -sqtx8116 squareroot 2209 -> 47 -sqtx8117 squareroot 9604 -> 98 -sqtx8118 squareroot 21316 -> 146 -sqtx8119 squareroot 52441 -> 229 -sqtx8120 squareroot 68644 -> 262 -sqtx8121 squareroot 69696 -> 264 -sqtx8122 squareroot 70225 -> 265 -sqtx8123 squareroot 76729 -> 277 -sqtx8124 squareroot 130321 -> 361 -sqtx8125 squareroot 171396 -> 414 -sqtx8126 squareroot 270400 -> 520 -sqtx8127 squareroot 279841 -> 529 -sqtx8128 squareroot 407044 -> 638 -sqtx8129 squareroot 408321 -> 639 -sqtx8130 squareroot 480249 -> 693 -sqtx8131 squareroot 516961 -> 719 -sqtx8132 squareroot 692224 -> 832 -sqtx8133 squareroot 829921 -> 911 - --- selection of random exact results -precision: 6 -sqtx8134 squareroot 2.25E-12 -> 0.0000015 -sqtx8135 squareroot 8.41E-14 -> 2.9E-7 -sqtx8136 squareroot 6.241E-15 -> 7.9E-8 -sqtx8137 squareroot 5.041E+13 -> 7.1E+6 -sqtx8138 squareroot 4761 -> 69 -sqtx8139 squareroot 1.369E+17 -> 3.7E+8 -sqtx8140 squareroot 0.00002116 -> 0.0046 -sqtx8141 squareroot 7.29E+4 -> 2.7E+2 -sqtx8142 squareroot 4.624E-13 -> 6.8E-7 -sqtx8143 squareroot 3.969E+5 -> 6.3E+2 -sqtx8144 squareroot 3.73321E-11 -> 0.00000611 -sqtx8145 squareroot 5.61001E+17 -> 7.49E+8 -sqtx8146 squareroot 2.30400E-11 -> 0.00000480 -sqtx8147 squareroot 4.30336E+17 -> 6.56E+8 -sqtx8148 squareroot 0.057121 -> 0.239 -sqtx8149 squareroot 7.225E+17 -> 8.5E+8 -sqtx8150 squareroot 3.14721E+13 -> 5.61E+6 -sqtx8151 squareroot 4.61041E+17 -> 6.79E+8 -sqtx8152 squareroot 1.39876E-15 -> 3.74E-8 -sqtx8153 squareroot 6.19369E-9 -> 0.0000787 -sqtx8154 squareroot 1.620529E-10 -> 0.00001273 -sqtx8155 squareroot 1177.1761 -> 34.31 -sqtx8156 squareroot 67043344 -> 8188 -sqtx8157 squareroot 4.84E+6 -> 2.2E+3 -sqtx8158 squareroot 1.23904E+11 -> 3.52E+5 -sqtx8159 squareroot 32604100 -> 5710 -sqtx8160 squareroot 2.9757025E-11 -> 0.000005455 -sqtx8161 squareroot 6.3760225E-9 -> 0.00007985 -sqtx8162 squareroot 4.5198729E-11 -> 0.000006723 -sqtx8163 squareroot 1.4745600E-11 -> 0.000003840 -sqtx8164 squareroot 18964283.04 -> 4354.8 -sqtx8165 squareroot 3.308895529E+13 -> 5.7523E+6 -sqtx8166 squareroot 0.0028590409 -> 0.05347 -sqtx8167 squareroot 3572.213824 -> 59.768 -sqtx8168 squareroot 4.274021376E+15 -> 6.5376E+7 -sqtx8169 squareroot 4455476.64 -> 2110.8 -sqtx8170 squareroot 38.44 -> 6.2 -sqtx8171 squareroot 68.558400 -> 8.280 -sqtx8172 squareroot 715402009 -> 26747 -sqtx8173 squareroot 93.373569 -> 9.663 -sqtx8174 squareroot 2.62144000000E+15 -> 5.12000E+7 -sqtx8175 squareroot 7.48225000000E+15 -> 8.65000E+7 -sqtx8176 squareroot 3.38724000000E-9 -> 0.0000582000 -sqtx8177 squareroot 5.64001000000E-13 -> 7.51000E-7 -sqtx8178 squareroot 5.06944000000E-15 -> 7.12000E-8 -sqtx8179 squareroot 4.95616000000E+17 -> 7.04000E+8 -sqtx8180 squareroot 0.0000242064000000 -> 0.00492000 -sqtx8181 squareroot 1.48996000000E-15 -> 3.86000E-8 -sqtx8182 squareroot 9.37024000000E+17 -> 9.68000E+8 -sqtx8183 squareroot 7128900.0000 -> 2670.00 -sqtx8184 squareroot 8.2311610000E-10 -> 0.0000286900 -sqtx8185 squareroot 482747040000 -> 694800 -sqtx8186 squareroot 4.14478440000E+17 -> 6.43800E+8 -sqtx8187 squareroot 5.10510250000E-7 -> 0.000714500 -sqtx8188 squareroot 355096.810000 -> 595.900 -sqtx8189 squareroot 14288400.0000 -> 3780.00 -sqtx8190 squareroot 3.36168040000E-15 -> 5.79800E-8 -sqtx8191 squareroot 1.70899560000E-13 -> 4.13400E-7 -sqtx8192 squareroot 0.0000378348010000 -> 0.00615100 -sqtx8193 squareroot 2.00972890000E-13 -> 4.48300E-7 -sqtx8194 squareroot 4.07222659600E-13 -> 6.38140E-7 -sqtx8195 squareroot 131486012100 -> 362610 -sqtx8196 squareroot 818192611600 -> 904540 -sqtx8197 squareroot 9.8558323600E+16 -> 3.13940E+8 -sqtx8198 squareroot 5641.06144900 -> 75.1070 -sqtx8199 squareroot 4.58789475600E+17 -> 6.77340E+8 -sqtx8200 squareroot 3.21386948100E-9 -> 0.0000566910 -sqtx8201 squareroot 3.9441960000E-8 -> 0.000198600 -sqtx8202 squareroot 242723.728900 -> 492.670 -sqtx8203 squareroot 1874.89000000 -> 43.3000 -sqtx8204 squareroot 2.56722595684E+15 -> 5.06678E+7 -sqtx8205 squareroot 3.96437714689E-17 -> 6.29633E-9 -sqtx8206 squareroot 3.80106774784E-17 -> 6.16528E-9 -sqtx8207 squareroot 1.42403588496E-13 -> 3.77364E-7 -sqtx8208 squareroot 4604.84388100 -> 67.8590 -sqtx8209 squareroot 2157100869.16 -> 46444.6 -sqtx8210 squareroot 355288570.81 -> 18849.1 -sqtx8211 squareroot 4.69775901604E-11 -> 0.00000685402 -sqtx8212 squareroot 8.22115770436E+17 -> 9.06706E+8 -sqtx8213 squareroot 7.16443744900E+15 -> 8.46430E+7 -sqtx8214 squareroot 9.48995498896E+15 -> 9.74164E+7 -sqtx8215 squareroot 0.0000419091801129 -> 0.00647373 -sqtx8216 squareroot 5862627996.84 -> 76567.8 -sqtx8217 squareroot 9369537.3409 -> 3060.97 -sqtx8218 squareroot 7.74792529729E+17 -> 8.80223E+8 -sqtx8219 squareroot 1.08626931396E+17 -> 3.29586E+8 -sqtx8220 squareroot 8.89584739684E-7 -> 0.000943178 -sqtx8221 squareroot 4.0266040896E-18 -> 2.00664E-9 -sqtx8222 squareroot 9.27669480336E-7 -> 0.000963156 -sqtx8223 squareroot 0.00225497717956 -> 0.0474866 - --- test use of round-half-even for ties -precision: 1 -sqtx8224 squareroot 225 -> 2E+1 Inexact Rounded -sqtx8225 squareroot 625 -> 2E+1 Inexact Rounded -sqtx8226 squareroot 1225 -> 4E+1 Inexact Rounded -sqtx8227 squareroot 2025 -> 4E+1 Inexact Rounded -sqtx8228 squareroot 3025 -> 6E+1 Inexact Rounded -sqtx8229 squareroot 4225 -> 6E+1 Inexact Rounded -sqtx8230 squareroot 5625 -> 8E+1 Inexact Rounded -sqtx8231 squareroot 7225 -> 8E+1 Inexact Rounded -sqtx8232 squareroot 9025 -> 1E+2 Inexact Rounded - -precision: 2 -sqtx8233 squareroot 11025 -> 1.0E+2 Inexact Rounded -sqtx8234 squareroot 13225 -> 1.2E+2 Inexact Rounded -sqtx8235 squareroot 15625 -> 1.2E+2 Inexact Rounded -sqtx8236 squareroot 18225 -> 1.4E+2 Inexact Rounded -sqtx8237 squareroot 21025 -> 1.4E+2 Inexact Rounded -sqtx8238 squareroot 24025 -> 1.6E+2 Inexact Rounded -sqtx8239 squareroot 27225 -> 1.6E+2 Inexact Rounded -sqtx8240 squareroot 30625 -> 1.8E+2 Inexact Rounded -sqtx8241 squareroot 34225 -> 1.8E+2 Inexact Rounded -sqtx8242 squareroot 38025 -> 2.0E+2 Inexact Rounded -sqtx8243 squareroot 42025 -> 2.0E+2 Inexact Rounded -sqtx8244 squareroot 46225 -> 2.2E+2 Inexact Rounded -sqtx8245 squareroot 50625 -> 2.2E+2 Inexact Rounded -sqtx8246 squareroot 55225 -> 2.4E+2 Inexact Rounded -sqtx8247 squareroot 60025 -> 2.4E+2 Inexact Rounded -sqtx8248 squareroot 65025 -> 2.6E+2 Inexact Rounded -sqtx8249 squareroot 70225 -> 2.6E+2 Inexact Rounded -sqtx8250 squareroot 75625 -> 2.8E+2 Inexact Rounded -sqtx8251 squareroot 81225 -> 2.8E+2 Inexact Rounded -sqtx8252 squareroot 87025 -> 3.0E+2 Inexact Rounded -sqtx8253 squareroot 93025 -> 3.0E+2 Inexact Rounded -sqtx8254 squareroot 99225 -> 3.2E+2 Inexact Rounded -sqtx8255 squareroot 105625 -> 3.2E+2 Inexact Rounded -sqtx8256 squareroot 112225 -> 3.4E+2 Inexact Rounded -sqtx8257 squareroot 119025 -> 3.4E+2 Inexact Rounded -sqtx8258 squareroot 126025 -> 3.6E+2 Inexact Rounded -sqtx8259 squareroot 133225 -> 3.6E+2 Inexact Rounded -sqtx8260 squareroot 140625 -> 3.8E+2 Inexact Rounded -sqtx8261 squareroot 148225 -> 3.8E+2 Inexact Rounded -sqtx8262 squareroot 156025 -> 4.0E+2 Inexact Rounded -sqtx8263 squareroot 164025 -> 4.0E+2 Inexact Rounded -sqtx8264 squareroot 172225 -> 4.2E+2 Inexact Rounded -sqtx8265 squareroot 180625 -> 4.2E+2 Inexact Rounded -sqtx8266 squareroot 189225 -> 4.4E+2 Inexact Rounded -sqtx8267 squareroot 198025 -> 4.4E+2 Inexact Rounded -sqtx8268 squareroot 207025 -> 4.6E+2 Inexact Rounded -sqtx8269 squareroot 216225 -> 4.6E+2 Inexact Rounded -sqtx8270 squareroot 225625 -> 4.8E+2 Inexact Rounded -sqtx8271 squareroot 235225 -> 4.8E+2 Inexact Rounded -sqtx8272 squareroot 245025 -> 5.0E+2 Inexact Rounded -sqtx8273 squareroot 255025 -> 5.0E+2 Inexact Rounded -sqtx8274 squareroot 265225 -> 5.2E+2 Inexact Rounded -sqtx8275 squareroot 275625 -> 5.2E+2 Inexact Rounded -sqtx8276 squareroot 286225 -> 5.4E+2 Inexact Rounded -sqtx8277 squareroot 297025 -> 5.4E+2 Inexact Rounded -sqtx8278 squareroot 308025 -> 5.6E+2 Inexact Rounded -sqtx8279 squareroot 319225 -> 5.6E+2 Inexact Rounded -sqtx8280 squareroot 330625 -> 5.8E+2 Inexact Rounded -sqtx8281 squareroot 342225 -> 5.8E+2 Inexact Rounded -sqtx8282 squareroot 354025 -> 6.0E+2 Inexact Rounded -sqtx8283 squareroot 366025 -> 6.0E+2 Inexact Rounded -sqtx8284 squareroot 378225 -> 6.2E+2 Inexact Rounded -sqtx8285 squareroot 390625 -> 6.2E+2 Inexact Rounded -sqtx8286 squareroot 403225 -> 6.4E+2 Inexact Rounded -sqtx8287 squareroot 416025 -> 6.4E+2 Inexact Rounded -sqtx8288 squareroot 429025 -> 6.6E+2 Inexact Rounded -sqtx8289 squareroot 442225 -> 6.6E+2 Inexact Rounded -sqtx8290 squareroot 455625 -> 6.8E+2 Inexact Rounded -sqtx8291 squareroot 469225 -> 6.8E+2 Inexact Rounded -sqtx8292 squareroot 483025 -> 7.0E+2 Inexact Rounded -sqtx8293 squareroot 497025 -> 7.0E+2 Inexact Rounded -sqtx8294 squareroot 511225 -> 7.2E+2 Inexact Rounded -sqtx8295 squareroot 525625 -> 7.2E+2 Inexact Rounded -sqtx8296 squareroot 540225 -> 7.4E+2 Inexact Rounded -sqtx8297 squareroot 555025 -> 7.4E+2 Inexact Rounded -sqtx8298 squareroot 570025 -> 7.6E+2 Inexact Rounded -sqtx8299 squareroot 585225 -> 7.6E+2 Inexact Rounded -sqtx8300 squareroot 600625 -> 7.8E+2 Inexact Rounded -sqtx8301 squareroot 616225 -> 7.8E+2 Inexact Rounded -sqtx8302 squareroot 632025 -> 8.0E+2 Inexact Rounded -sqtx8303 squareroot 648025 -> 8.0E+2 Inexact Rounded -sqtx8304 squareroot 664225 -> 8.2E+2 Inexact Rounded -sqtx8305 squareroot 680625 -> 8.2E+2 Inexact Rounded -sqtx8306 squareroot 697225 -> 8.4E+2 Inexact Rounded -sqtx8307 squareroot 714025 -> 8.4E+2 Inexact Rounded -sqtx8308 squareroot 731025 -> 8.6E+2 Inexact Rounded -sqtx8309 squareroot 748225 -> 8.6E+2 Inexact Rounded -sqtx8310 squareroot 765625 -> 8.8E+2 Inexact Rounded -sqtx8311 squareroot 783225 -> 8.8E+2 Inexact Rounded -sqtx8312 squareroot 801025 -> 9.0E+2 Inexact Rounded -sqtx8313 squareroot 819025 -> 9.0E+2 Inexact Rounded -sqtx8314 squareroot 837225 -> 9.2E+2 Inexact Rounded -sqtx8315 squareroot 855625 -> 9.2E+2 Inexact Rounded -sqtx8316 squareroot 874225 -> 9.4E+2 Inexact Rounded -sqtx8317 squareroot 893025 -> 9.4E+2 Inexact Rounded -sqtx8318 squareroot 912025 -> 9.6E+2 Inexact Rounded -sqtx8319 squareroot 931225 -> 9.6E+2 Inexact Rounded -sqtx8320 squareroot 950625 -> 9.8E+2 Inexact Rounded -sqtx8321 squareroot 970225 -> 9.8E+2 Inexact Rounded -sqtx8322 squareroot 990025 -> 1.0E+3 Inexact Rounded - -precision: 6 -sqtx8323 squareroot 88975734963025 -> 9.43270E+6 Inexact Rounded -sqtx8324 squareroot 71085555000625 -> 8.43122E+6 Inexact Rounded -sqtx8325 squareroot 39994304.051025 -> 6324.10 Inexact Rounded -sqtx8326 squareroot 0.000007327172265625 -> 0.00270688 Inexact Rounded -sqtx8327 squareroot 1.0258600439025E-13 -> 3.20290E-7 Inexact Rounded -sqtx8328 squareroot 0.0034580574275625 -> 0.0588052 Inexact Rounded -sqtx8329 squareroot 7.6842317700625E-7 -> 0.000876598 Inexact Rounded -sqtx8330 squareroot 1263834495.2025 -> 35550.4 Inexact Rounded -sqtx8331 squareroot 433970666460.25 -> 658764 Inexact Rounded -sqtx8332 squareroot 4.5879286230625E-7 -> 0.000677342 Inexact Rounded -sqtx8333 squareroot 0.0029305603306225 -> 0.0541346 Inexact Rounded -sqtx8334 squareroot 70218282.733225 -> 8379.64 Inexact Rounded -sqtx8335 squareroot 11942519.082025 -> 3455.80 Inexact Rounded -sqtx8336 squareroot 0.0021230668905625 -> 0.0460768 Inexact Rounded -sqtx8337 squareroot 0.90081833411025 -> 0.949114 Inexact Rounded -sqtx8338 squareroot 5.5104120936225E-17 -> 7.42322E-9 Inexact Rounded -sqtx8339 squareroot 0.10530446854225 -> 0.324506 Inexact Rounded -sqtx8340 squareroot 8.706069866025E-14 -> 2.95060E-7 Inexact Rounded -sqtx8341 squareroot 23838.58800625 -> 154.398 Inexact Rounded -sqtx8342 squareroot 0.0013426911275625 -> 0.0366428 Inexact Rounded - --- test use of round-half-even in underflow situations - --- precisions 2; all cases where result is both subnormal and a tie -precision: 2 -sqtx8343 squareroot 2.5E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped -sqtx8344 squareroot 2.25E-20 -> 2E-10 Underflow Subnormal Inexact Rounded -sqtx8345 squareroot 6.25E-20 -> 2E-10 Underflow Subnormal Inexact Rounded -sqtx8346 squareroot 1.225E-19 -> 4E-10 Underflow Subnormal Inexact Rounded -sqtx8347 squareroot 2.025E-19 -> 4E-10 Underflow Subnormal Inexact Rounded -sqtx8348 squareroot 3.025E-19 -> 6E-10 Underflow Subnormal Inexact Rounded -sqtx8349 squareroot 4.225E-19 -> 6E-10 Underflow Subnormal Inexact Rounded -sqtx8350 squareroot 5.625E-19 -> 8E-10 Underflow Subnormal Inexact Rounded -sqtx8351 squareroot 7.225E-19 -> 8E-10 Underflow Subnormal Inexact Rounded -sqtx8352 squareroot 9.025E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded - --- precision 3, input precision <= 5 -precision: 3 -sqtx8353 squareroot 2.5E-23 -> 0E-11 Underflow Subnormal Inexact Rounded Clamped -sqtx8354 squareroot 2.25E-22 -> 2E-11 Underflow Subnormal Inexact Rounded -sqtx8355 squareroot 6.25E-22 -> 2E-11 Underflow Subnormal Inexact Rounded -sqtx8356 squareroot 1.225E-21 -> 4E-11 Underflow Subnormal Inexact Rounded -sqtx8357 squareroot 2.025E-21 -> 4E-11 Underflow Subnormal Inexact Rounded -sqtx8358 squareroot 3.025E-21 -> 6E-11 Underflow Subnormal Inexact Rounded -sqtx8359 squareroot 4.225E-21 -> 6E-11 Underflow Subnormal Inexact Rounded -sqtx8360 squareroot 5.625E-21 -> 8E-11 Underflow Subnormal Inexact Rounded -sqtx8361 squareroot 7.225E-21 -> 8E-11 Underflow Subnormal Inexact Rounded -sqtx8362 squareroot 9.025E-21 -> 1.0E-10 Underflow Subnormal Inexact Rounded -sqtx8363 squareroot 1.1025E-20 -> 1.0E-10 Underflow Subnormal Inexact Rounded -sqtx8364 squareroot 1.3225E-20 -> 1.2E-10 Underflow Subnormal Inexact Rounded -sqtx8365 squareroot 1.5625E-20 -> 1.2E-10 Underflow Subnormal Inexact Rounded -sqtx8366 squareroot 1.8225E-20 -> 1.4E-10 Underflow Subnormal Inexact Rounded -sqtx8367 squareroot 2.1025E-20 -> 1.4E-10 Underflow Subnormal Inexact Rounded -sqtx8368 squareroot 2.4025E-20 -> 1.6E-10 Underflow Subnormal Inexact Rounded -sqtx8369 squareroot 2.7225E-20 -> 1.6E-10 Underflow Subnormal Inexact Rounded -sqtx8370 squareroot 3.0625E-20 -> 1.8E-10 Underflow Subnormal Inexact Rounded -sqtx8371 squareroot 3.4225E-20 -> 1.8E-10 Underflow Subnormal Inexact Rounded -sqtx8372 squareroot 3.8025E-20 -> 2.0E-10 Underflow Subnormal Inexact Rounded -sqtx8373 squareroot 4.2025E-20 -> 2.0E-10 Underflow Subnormal Inexact Rounded -sqtx8374 squareroot 4.6225E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded -sqtx8375 squareroot 5.0625E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded -sqtx8376 squareroot 5.5225E-20 -> 2.4E-10 Underflow Subnormal Inexact Rounded -sqtx8377 squareroot 6.0025E-20 -> 2.4E-10 Underflow Subnormal Inexact Rounded -sqtx8378 squareroot 6.5025E-20 -> 2.6E-10 Underflow Subnormal Inexact Rounded -sqtx8379 squareroot 7.0225E-20 -> 2.6E-10 Underflow Subnormal Inexact Rounded -sqtx8380 squareroot 7.5625E-20 -> 2.8E-10 Underflow Subnormal Inexact Rounded -sqtx8381 squareroot 8.1225E-20 -> 2.8E-10 Underflow Subnormal Inexact Rounded -sqtx8382 squareroot 8.7025E-20 -> 3.0E-10 Underflow Subnormal Inexact Rounded -sqtx8383 squareroot 9.3025E-20 -> 3.0E-10 Underflow Subnormal Inexact Rounded -sqtx8384 squareroot 9.9225E-20 -> 3.2E-10 Underflow Subnormal Inexact Rounded - ---precision 4, input precision <= 4 -precision: 4 -sqtx8385 squareroot 2.5E-25 -> 0E-12 Underflow Subnormal Inexact Rounded Clamped -sqtx8386 squareroot 2.25E-24 -> 2E-12 Underflow Subnormal Inexact Rounded -sqtx8387 squareroot 6.25E-24 -> 2E-12 Underflow Subnormal Inexact Rounded -sqtx8388 squareroot 1.225E-23 -> 4E-12 Underflow Subnormal Inexact Rounded -sqtx8389 squareroot 2.025E-23 -> 4E-12 Underflow Subnormal Inexact Rounded -sqtx8390 squareroot 3.025E-23 -> 6E-12 Underflow Subnormal Inexact Rounded -sqtx8391 squareroot 4.225E-23 -> 6E-12 Underflow Subnormal Inexact Rounded -sqtx8392 squareroot 5.625E-23 -> 8E-12 Underflow Subnormal Inexact Rounded -sqtx8393 squareroot 7.225E-23 -> 8E-12 Underflow Subnormal Inexact Rounded -sqtx8394 squareroot 9.025E-23 -> 1.0E-11 Underflow Subnormal Inexact Rounded - ---precision 5, input precision <= 5 -precision: 5 -sqtx8395 squareroot 2.5E-27 -> 0E-13 Underflow Subnormal Inexact Rounded Clamped -sqtx8396 squareroot 2.25E-26 -> 2E-13 Underflow Subnormal Inexact Rounded -sqtx8397 squareroot 6.25E-26 -> 2E-13 Underflow Subnormal Inexact Rounded -sqtx8398 squareroot 1.225E-25 -> 4E-13 Underflow Subnormal Inexact Rounded -sqtx8399 squareroot 2.025E-25 -> 4E-13 Underflow Subnormal Inexact Rounded -sqtx8400 squareroot 3.025E-25 -> 6E-13 Underflow Subnormal Inexact Rounded -sqtx8401 squareroot 4.225E-25 -> 6E-13 Underflow Subnormal Inexact Rounded -sqtx8402 squareroot 5.625E-25 -> 8E-13 Underflow Subnormal Inexact Rounded -sqtx8403 squareroot 7.225E-25 -> 8E-13 Underflow Subnormal Inexact Rounded -sqtx8404 squareroot 9.025E-25 -> 1.0E-12 Underflow Subnormal Inexact Rounded -sqtx8405 squareroot 1.1025E-24 -> 1.0E-12 Underflow Subnormal Inexact Rounded -sqtx8406 squareroot 1.3225E-24 -> 1.2E-12 Underflow Subnormal Inexact Rounded -sqtx8407 squareroot 1.5625E-24 -> 1.2E-12 Underflow Subnormal Inexact Rounded -sqtx8408 squareroot 1.8225E-24 -> 1.4E-12 Underflow Subnormal Inexact Rounded -sqtx8409 squareroot 2.1025E-24 -> 1.4E-12 Underflow Subnormal Inexact Rounded -sqtx8410 squareroot 2.4025E-24 -> 1.6E-12 Underflow Subnormal Inexact Rounded -sqtx8411 squareroot 2.7225E-24 -> 1.6E-12 Underflow Subnormal Inexact Rounded -sqtx8412 squareroot 3.0625E-24 -> 1.8E-12 Underflow Subnormal Inexact Rounded -sqtx8413 squareroot 3.4225E-24 -> 1.8E-12 Underflow Subnormal Inexact Rounded -sqtx8414 squareroot 3.8025E-24 -> 2.0E-12 Underflow Subnormal Inexact Rounded -sqtx8415 squareroot 4.2025E-24 -> 2.0E-12 Underflow Subnormal Inexact Rounded -sqtx8416 squareroot 4.6225E-24 -> 2.2E-12 Underflow Subnormal Inexact Rounded -sqtx8417 squareroot 5.0625E-24 -> 2.2E-12 Underflow Subnormal Inexact Rounded -sqtx8418 squareroot 5.5225E-24 -> 2.4E-12 Underflow Subnormal Inexact Rounded -sqtx8419 squareroot 6.0025E-24 -> 2.4E-12 Underflow Subnormal Inexact Rounded -sqtx8420 squareroot 6.5025E-24 -> 2.6E-12 Underflow Subnormal Inexact Rounded -sqtx8421 squareroot 7.0225E-24 -> 2.6E-12 Underflow Subnormal Inexact Rounded -sqtx8422 squareroot 7.5625E-24 -> 2.8E-12 Underflow Subnormal Inexact Rounded -sqtx8423 squareroot 8.1225E-24 -> 2.8E-12 Underflow Subnormal Inexact Rounded -sqtx8424 squareroot 8.7025E-24 -> 3.0E-12 Underflow Subnormal Inexact Rounded -sqtx8425 squareroot 9.3025E-24 -> 3.0E-12 Underflow Subnormal Inexact Rounded -sqtx8426 squareroot 9.9225E-24 -> 3.2E-12 Underflow Subnormal Inexact Rounded - --- a random selection of values that Python2.5.1 rounds incorrectly -precision: 1 -sqtx8427 squareroot 227 -> 2E+1 Inexact Rounded -sqtx8428 squareroot 625 -> 2E+1 Inexact Rounded -sqtx8429 squareroot 1215 -> 3E+1 Inexact Rounded -sqtx8430 squareroot 2008 -> 4E+1 Inexact Rounded -sqtx8431 squareroot 2020 -> 4E+1 Inexact Rounded -sqtx8432 squareroot 2026 -> 5E+1 Inexact Rounded -sqtx8433 squareroot 2027 -> 5E+1 Inexact Rounded -sqtx8434 squareroot 2065 -> 5E+1 Inexact Rounded -sqtx8435 squareroot 2075 -> 5E+1 Inexact Rounded -sqtx8436 squareroot 2088 -> 5E+1 Inexact Rounded -sqtx8437 squareroot 3049 -> 6E+1 Inexact Rounded -sqtx8438 squareroot 3057 -> 6E+1 Inexact Rounded -sqtx8439 squareroot 3061 -> 6E+1 Inexact Rounded -sqtx8440 squareroot 3092 -> 6E+1 Inexact Rounded -sqtx8441 squareroot 4222 -> 6E+1 Inexact Rounded -sqtx8442 squareroot 5676 -> 8E+1 Inexact Rounded -sqtx8443 squareroot 5686 -> 8E+1 Inexact Rounded -sqtx8444 squareroot 7215 -> 8E+1 Inexact Rounded -sqtx8445 squareroot 9086 -> 1E+2 Inexact Rounded -sqtx8446 squareroot 9095 -> 1E+2 Inexact Rounded - -precision: 2 -sqtx8447 squareroot 1266 -> 36 Inexact Rounded -sqtx8448 squareroot 2552 -> 51 Inexact Rounded -sqtx8449 squareroot 5554 -> 75 Inexact Rounded -sqtx8450 squareroot 7832 -> 88 Inexact Rounded -sqtx8451 squareroot 13201 -> 1.1E+2 Inexact Rounded -sqtx8452 squareroot 15695 -> 1.3E+2 Inexact Rounded -sqtx8453 squareroot 18272 -> 1.4E+2 Inexact Rounded -sqtx8454 squareroot 21026 -> 1.5E+2 Inexact Rounded -sqtx8455 squareroot 24069 -> 1.6E+2 Inexact Rounded -sqtx8456 squareroot 34277 -> 1.9E+2 Inexact Rounded -sqtx8457 squareroot 46233 -> 2.2E+2 Inexact Rounded -sqtx8458 squareroot 46251 -> 2.2E+2 Inexact Rounded -sqtx8459 squareroot 46276 -> 2.2E+2 Inexact Rounded -sqtx8460 squareroot 70214 -> 2.6E+2 Inexact Rounded -sqtx8461 squareroot 81249 -> 2.9E+2 Inexact Rounded -sqtx8462 squareroot 81266 -> 2.9E+2 Inexact Rounded -sqtx8463 squareroot 93065 -> 3.1E+2 Inexact Rounded -sqtx8464 squareroot 93083 -> 3.1E+2 Inexact Rounded -sqtx8465 squareroot 99230 -> 3.2E+2 Inexact Rounded -sqtx8466 squareroot 99271 -> 3.2E+2 Inexact Rounded - -precision: 3 -sqtx8467 squareroot 11349 -> 107 Inexact Rounded -sqtx8468 squareroot 26738 -> 164 Inexact Rounded -sqtx8469 squareroot 31508 -> 178 Inexact Rounded -sqtx8470 squareroot 44734 -> 212 Inexact Rounded -sqtx8471 squareroot 44738 -> 212 Inexact Rounded -sqtx8472 squareroot 51307 -> 227 Inexact Rounded -sqtx8473 squareroot 62259 -> 250 Inexact Rounded -sqtx8474 squareroot 75901 -> 276 Inexact Rounded -sqtx8475 squareroot 76457 -> 277 Inexact Rounded -sqtx8476 squareroot 180287 -> 425 Inexact Rounded -sqtx8477 squareroot 202053 -> 450 Inexact Rounded -sqtx8478 squareroot 235747 -> 486 Inexact Rounded -sqtx8479 squareroot 256537 -> 506 Inexact Rounded -sqtx8480 squareroot 299772 -> 548 Inexact Rounded -sqtx8481 squareroot 415337 -> 644 Inexact Rounded -sqtx8482 squareroot 617067 -> 786 Inexact Rounded -sqtx8483 squareroot 628022 -> 792 Inexact Rounded -sqtx8484 squareroot 645629 -> 804 Inexact Rounded -sqtx8485 squareroot 785836 -> 886 Inexact Rounded -sqtx8486 squareroot 993066 -> 997 Inexact Rounded - -precision: 6 -sqtx8487 squareroot 14917781 -> 3862.35 Inexact Rounded -sqtx8488 squareroot 17237238 -> 4151.78 Inexact Rounded -sqtx8489 squareroot 18054463 -> 4249.05 Inexact Rounded -sqtx8490 squareroot 19990694 -> 4471.10 Inexact Rounded -sqtx8491 squareroot 29061855 -> 5390.90 Inexact Rounded -sqtx8492 squareroot 49166257 -> 7011.87 Inexact Rounded -sqtx8493 squareroot 53082086 -> 7285.75 Inexact Rounded -sqtx8494 squareroot 56787909 -> 7535.78 Inexact Rounded -sqtx8495 squareroot 81140019 -> 9007.78 Inexact Rounded -sqtx8496 squareroot 87977554 -> 9379.64 Inexact Rounded -sqtx8497 squareroot 93624683 -> 9675.98 Inexact Rounded -sqtx8498 squareroot 98732747 -> 9936.44 Inexact Rounded -sqtx8499 squareroot 99222813 -> 9961.06 Inexact Rounded -sqtx8500 squareroot 143883626 -> 11995.2 Inexact Rounded -sqtx8501 squareroot 180433301 -> 13432.5 Inexact Rounded -sqtx8502 squareroot 227034020 -> 15067.6 Inexact Rounded -sqtx8503 squareroot 283253992 -> 16830.2 Inexact Rounded -sqtx8504 squareroot 617047954 -> 24840.4 Inexact Rounded -sqtx8505 squareroot 736870094 -> 27145.4 Inexact Rounded -sqtx8506 squareroot 897322915 -> 29955.3 Inexact Rounded - --- results close to minimum normal -precision: 1 -sqtx8507 squareroot 1E-20 -> 0E-9 Underflow Subnormal Inexact Rounded Clamped -sqtx8508 squareroot 1E-19 -> 0E-9 Underflow Subnormal Inexact Rounded Clamped -sqtx8509 squareroot 1E-18 -> 1E-9 - -precision: 2 -sqtx8510 squareroot 8.1E-19 -> 9E-10 Subnormal -sqtx8511 squareroot 8.10E-19 -> 9E-10 Subnormal Rounded -sqtx8512 squareroot 9.0E-19 -> 9E-10 Underflow Subnormal Inexact Rounded -sqtx8513 squareroot 9.02E-19 -> 9E-10 Underflow Subnormal Inexact Rounded -sqtx8514 squareroot 9.03E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8515 squareroot 9.1E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8516 squareroot 9.9E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8517 squareroot 9.91E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8518 squareroot 9.92E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8519 squareroot 9.95E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8520 squareroot 9.98E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8521 squareroot 9.99E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -sqtx8522 squareroot 1E-18 -> 1E-9 -sqtx8523 squareroot 1.0E-18 -> 1.0E-9 -sqtx8524 squareroot 1.00E-18 -> 1.0E-9 -sqtx8525 squareroot 1.000E-18 -> 1.0E-9 Rounded -sqtx8526 squareroot 1.0000E-18 -> 1.0E-9 Rounded -sqtx8527 squareroot 1.01E-18 -> 1.0E-9 Inexact Rounded -sqtx8528 squareroot 1.02E-18 -> 1.0E-9 Inexact Rounded -sqtx8529 squareroot 1.1E-18 -> 1.0E-9 Inexact Rounded - -precision: 3 -sqtx8530 squareroot 8.1E-19 -> 9E-10 Subnormal -sqtx8531 squareroot 8.10E-19 -> 9.0E-10 Subnormal -sqtx8532 squareroot 8.100E-19 -> 9.0E-10 Subnormal -sqtx8533 squareroot 8.1000E-19 -> 9.0E-10 Subnormal Rounded -sqtx8534 squareroot 9.9E-19 -> 9.9E-10 Underflow Subnormal Inexact Rounded -sqtx8535 squareroot 9.91E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded -sqtx8536 squareroot 9.99E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded -sqtx8537 squareroot 9.998E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded -sqtx8538 squareroot 1E-18 -> 1E-9 -sqtx8539 squareroot 1.0E-18 -> 1.0E-9 -sqtx8540 squareroot 1.00E-18 -> 1.0E-9 -sqtx8541 squareroot 1.000E-18 -> 1.00E-9 -sqtx8542 squareroot 1.0000E-18 -> 1.00E-9 -sqtx8543 squareroot 1.00000E-18 -> 1.00E-9 Rounded -sqtx8544 squareroot 1.000000E-18 -> 1.00E-9 Rounded -sqtx8545 squareroot 1.01E-18 -> 1.00E-9 Inexact Rounded -sqtx8546 squareroot 1.02E-18 -> 1.01E-9 Inexact Rounded - --- result exactly representable with precision p, but not necessarily --- exactly representable as a subnormal; check the correct flags are raised -precision: 2 -sqtx8547 squareroot 1.21E-20 -> 1E-10 Underflow Subnormal Inexact Rounded -sqtx8548 squareroot 1.44E-20 -> 1E-10 Underflow Subnormal Inexact Rounded -sqtx8549 squareroot 9.61E-20 -> 3E-10 Underflow Subnormal Inexact Rounded -sqtx8550 squareroot 8.836E-19 -> 9E-10 Underflow Subnormal Inexact Rounded -sqtx8551 squareroot 9.216E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded - -precision: 3 -sqtx8552 squareroot 1.21E-22 -> 1E-11 Underflow Subnormal Inexact Rounded -sqtx8553 squareroot 1.21E-20 -> 1.1E-10 Subnormal -sqtx8554 squareroot 1.96E-22 -> 1E-11 Underflow Subnormal Inexact Rounded -sqtx8555 squareroot 1.96E-20 -> 1.4E-10 Subnormal -sqtx8556 squareroot 2.56E-22 -> 2E-11 Underflow Subnormal Inexact Rounded -sqtx8557 squareroot 4.00E-22 -> 2E-11 Subnormal Rounded -sqtx8558 squareroot 7.84E-22 -> 3E-11 Underflow Subnormal Inexact Rounded -sqtx8559 squareroot 9.801E-21 -> 1.0E-10 Underflow Subnormal Inexact Rounded -sqtx8560 squareroot 9.801E-19 -> 9.9E-10 Subnormal -sqtx8561 squareroot 1.0201E-20 -> 1.0E-10 Underflow Subnormal Inexact Rounded -sqtx8562 squareroot 1.1025E-20 -> 1.0E-10 Underflow Subnormal Inexact Rounded -sqtx8563 squareroot 1.1236E-20 -> 1.1E-10 Underflow Subnormal Inexact Rounded -sqtx8564 squareroot 1.2996E-20 -> 1.1E-10 Underflow Subnormal Inexact Rounded -sqtx8565 squareroot 1.3225E-20 -> 1.2E-10 Underflow Subnormal Inexact Rounded - --- A selection of subnormal results prone to double rounding errors -precision: 2 -sqtx8566 squareroot 2.3E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped -sqtx8567 squareroot 2.4E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped -sqtx8568 squareroot 2.5E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped -sqtx8569 squareroot 2.6E-21 -> 1E-10 Underflow Subnormal Inexact Rounded -sqtx8570 squareroot 2.7E-21 -> 1E-10 Underflow Subnormal Inexact Rounded -sqtx8571 squareroot 2.8E-21 -> 1E-10 Underflow Subnormal Inexact Rounded -sqtx8572 squareroot 2.2E-20 -> 1E-10 Underflow Subnormal Inexact Rounded -sqtx8573 squareroot 2.3E-20 -> 2E-10 Underflow Subnormal Inexact Rounded -sqtx8574 squareroot 2.4E-20 -> 2E-10 Underflow Subnormal Inexact Rounded -sqtx8575 squareroot 6.2E-20 -> 2E-10 Underflow Subnormal Inexact Rounded -sqtx8576 squareroot 6.3E-20 -> 3E-10 Underflow Subnormal Inexact Rounded -sqtx8577 squareroot 6.4E-20 -> 3E-10 Underflow Subnormal Inexact Rounded -sqtx8578 squareroot 6.5E-20 -> 3E-10 Underflow Subnormal Inexact Rounded -sqtx8579 squareroot 1.2E-19 -> 3E-10 Underflow Subnormal Inexact Rounded -sqtx8580 squareroot 2.0E-19 -> 4E-10 Underflow Subnormal Inexact Rounded -sqtx8581 squareroot 4.2E-19 -> 6E-10 Underflow Subnormal Inexact Rounded -sqtx8582 squareroot 5.6E-19 -> 7E-10 Underflow Subnormal Inexact Rounded -sqtx8583 squareroot 5.7E-19 -> 8E-10 Underflow Subnormal Inexact Rounded -sqtx8584 squareroot 9.0E-19 -> 9E-10 Underflow Subnormal Inexact Rounded -sqtx8585 squareroot 9.1E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded -precision: 3 -sqtx8586 squareroot 2.6E-23 -> 1E-11 Underflow Subnormal Inexact Rounded -sqtx8587 squareroot 2.22E-22 -> 1E-11 Underflow Subnormal Inexact Rounded -sqtx8588 squareroot 6.07E-22 -> 2E-11 Underflow Subnormal Inexact Rounded -sqtx8589 squareroot 6.25E-22 -> 2E-11 Underflow Subnormal Inexact Rounded -sqtx8590 squareroot 6.45E-22 -> 3E-11 Underflow Subnormal Inexact Rounded -sqtx8591 squareroot 6.50E-22 -> 3E-11 Underflow Subnormal Inexact Rounded -sqtx8592 squareroot 1.22E-21 -> 3E-11 Underflow Subnormal Inexact Rounded -sqtx8593 squareroot 1.24E-21 -> 4E-11 Underflow Subnormal Inexact Rounded -sqtx8594 squareroot 4.18E-21 -> 6E-11 Underflow Subnormal Inexact Rounded -sqtx8595 squareroot 7.19E-21 -> 8E-11 Underflow Subnormal Inexact Rounded -sqtx8596 squareroot 8.94E-21 -> 9E-11 Underflow Subnormal Inexact Rounded -sqtx8597 squareroot 1.81E-20 -> 1.3E-10 Underflow Subnormal Inexact Rounded -sqtx8598 squareroot 4.64E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded -sqtx8599 squareroot 5.06E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded -sqtx8600 squareroot 5.08E-20 -> 2.3E-10 Underflow Subnormal Inexact Rounded -sqtx8601 squareroot 7.00E-20 -> 2.6E-10 Underflow Subnormal Inexact Rounded -sqtx8602 squareroot 1.81E-19 -> 4.3E-10 Underflow Subnormal Inexact Rounded -sqtx8603 squareroot 6.64E-19 -> 8.1E-10 Underflow Subnormal Inexact Rounded -sqtx8604 squareroot 7.48E-19 -> 8.6E-10 Underflow Subnormal Inexact Rounded -sqtx8605 squareroot 9.91E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded -precision: 4 -sqtx8606 squareroot 6.24E-24 -> 2E-12 Underflow Subnormal Inexact Rounded -sqtx8607 squareroot 7.162E-23 -> 8E-12 Underflow Subnormal Inexact Rounded -sqtx8608 squareroot 7.243E-23 -> 9E-12 Underflow Subnormal Inexact Rounded -sqtx8609 squareroot 8.961E-23 -> 9E-12 Underflow Subnormal Inexact Rounded -sqtx8610 squareroot 9.029E-23 -> 1.0E-11 Underflow Subnormal Inexact Rounded -sqtx8611 squareroot 4.624E-22 -> 2.2E-11 Underflow Subnormal Inexact Rounded -sqtx8612 squareroot 5.980E-22 -> 2.4E-11 Underflow Subnormal Inexact Rounded -sqtx8613 squareroot 6.507E-22 -> 2.6E-11 Underflow Subnormal Inexact Rounded -sqtx8614 squareroot 1.483E-21 -> 3.9E-11 Underflow Subnormal Inexact Rounded -sqtx8615 squareroot 3.903E-21 -> 6.2E-11 Underflow Subnormal Inexact Rounded -sqtx8616 squareroot 8.733E-21 -> 9.3E-11 Underflow Subnormal Inexact Rounded -sqtx8617 squareroot 1.781E-20 -> 1.33E-10 Underflow Subnormal Inexact Rounded -sqtx8618 squareroot 6.426E-20 -> 2.53E-10 Underflow Subnormal Inexact Rounded -sqtx8619 squareroot 7.102E-20 -> 2.66E-10 Underflow Subnormal Inexact Rounded -sqtx8620 squareroot 7.535E-20 -> 2.74E-10 Underflow Subnormal Inexact Rounded -sqtx8621 squareroot 9.892E-20 -> 3.15E-10 Underflow Subnormal Inexact Rounded -sqtx8622 squareroot 1.612E-19 -> 4.01E-10 Underflow Subnormal Inexact Rounded -sqtx8623 squareroot 1.726E-19 -> 4.15E-10 Underflow Subnormal Inexact Rounded -sqtx8624 squareroot 1.853E-19 -> 4.30E-10 Underflow Subnormal Inexact Rounded -sqtx8625 squareroot 4.245E-19 -> 6.52E-10 Underflow Subnormal Inexact Rounded - --- clamping and overflow for large exponents -precision: 1 -sqtx8626 squareroot 1E+18 -> 1E+9 -sqtx8627 squareroot 1E+19 -> 3E+9 Inexact Rounded --- in this next one, intermediate result is 9486832980.505137996... --- so rounds down to 9 (not up to 10 which would cause Infinity overflow) -sqtx8628 squareroot 9E+19 -> 9E+9 Inexact Rounded -sqtx8629 squareroot 9.1E+19 -> Infinity Overflow Inexact Rounded -sqtx8630 squareroot 1E+20 -> Infinity Overflow Inexact Rounded - -precision: 2 -sqtx8631 squareroot 1E+18 -> 1E+9 -sqtx8632 squareroot 1.0E+18 -> 1.0E+9 -sqtx8633 squareroot 1.00E+18 -> 1.0E+9 -sqtx8634 squareroot 1.000E+18 -> 1.0E+9 Rounded -sqtx8635 squareroot 1E+20 -> Infinity Overflow Inexact Rounded -clamp: 1 -sqtx8636 squareroot 1E+18 -> 1.0E+9 Clamped -sqtx8637 squareroot 1.0E+18 -> 1.0E+9 -sqtx8638 squareroot 1E+20 -> Infinity Overflow Inexact Rounded -clamp: 0 - -precision: 6 -sqtx8639 squareroot 1E+18 -> 1E+9 -sqtx8640 squareroot 1.0000000000E+18 -> 1.00000E+9 -sqtx8641 squareroot 1.00000000000E+18 -> 1.00000E+9 Rounded -sqtx8642 squareroot 1E+20 -> Infinity Overflow Inexact Rounded -clamp: 1 -sqtx8643 squareroot 1E+8 -> 1E+4 -sqtx8644 squareroot 1E+10 -> 1.0E+5 Clamped -sqtx8645 squareroot 1.0E+10 -> 1.0E+5 -sqtx8646 squareroot 1E+12 -> 1.00E+6 Clamped -sqtx8647 squareroot 1.0E+12 -> 1.00E+6 Clamped -sqtx8648 squareroot 1.00E+12 -> 1.00E+6 Clamped -sqtx8649 squareroot 1.000E+12 -> 1.00E+6 -sqtx8650 squareroot 1E+18 -> 1.00000E+9 Clamped -sqtx8651 squareroot 1.00000000E+18 -> 1.00000E+9 Clamped -sqtx8652 squareroot 1.000000000E+18 -> 1.00000E+9 -sqtx8653 squareroot 1E+20 -> Infinity Overflow Inexact Rounded -clamp: 0 - --- The following example causes a TypeError in Python 2.5.1 -precision: 3 -maxexponent: 9 -minexponent: -9 -sqtx8654 squareroot 10000000000 -> 1.00E+5 Rounded - --- Additional tricky cases of underflown subnormals -rounding: half_even -precision: 5 -maxexponent: 999 -minexponent: -999 -sqtx8700 squareroot 2.8073E-2000 -> 1.675E-1000 Underflow Subnormal Inexact Rounded -sqtx8701 squareroot 2.8883E-2000 -> 1.699E-1000 Underflow Subnormal Inexact Rounded -sqtx8702 squareroot 3.1524E-2000 -> 1.775E-1000 Underflow Subnormal Inexact Rounded -sqtx8703 squareroot 3.2382E-2000 -> 1.799E-1000 Underflow Subnormal Inexact Rounded -sqtx8704 squareroot 3.5175E-2000 -> 1.875E-1000 Underflow Subnormal Inexact Rounded -sqtx8705 squareroot 3.6081E-2000 -> 1.899E-1000 Underflow Subnormal Inexact Rounded -sqtx8706 squareroot 3.9026E-2000 -> 1.975E-1000 Underflow Subnormal Inexact Rounded -sqtx8707 squareroot 3.9980E-2000 -> 1.999E-1000 Underflow Subnormal Inexact Rounded -sqtx8708 squareroot 4.3077E-2000 -> 2.075E-1000 Underflow Subnormal Inexact Rounded -sqtx8709 squareroot 4.4079E-2000 -> 2.099E-1000 Underflow Subnormal Inexact Rounded -sqtx8710 squareroot 4.7328E-2000 -> 2.175E-1000 Underflow Subnormal Inexact Rounded -sqtx8711 squareroot 4.8378E-2000 -> 2.199E-1000 Underflow Subnormal Inexact Rounded -sqtx8712 squareroot 5.1779E-2000 -> 2.275E-1000 Underflow Subnormal Inexact Rounded -sqtx8713 squareroot 5.2877E-2000 -> 2.299E-1000 Underflow Subnormal Inexact Rounded -sqtx8714 squareroot 5.6430E-2000 -> 2.375E-1000 Underflow Subnormal Inexact Rounded -sqtx8715 squareroot 5.7576E-2000 -> 2.399E-1000 Underflow Subnormal Inexact Rounded -sqtx8716 squareroot 6.1281E-2000 -> 2.475E-1000 Underflow Subnormal Inexact Rounded -sqtx8717 squareroot 6.2475E-2000 -> 2.499E-1000 Underflow Subnormal Inexact Rounded -sqtx8718 squareroot 6.6332E-2000 -> 2.575E-1000 Underflow Subnormal Inexact Rounded -sqtx8719 squareroot 6.7574E-2000 -> 2.599E-1000 Underflow Subnormal Inexact Rounded -sqtx8720 squareroot 7.1583E-2000 -> 2.675E-1000 Underflow Subnormal Inexact Rounded -sqtx8721 squareroot 7.2873E-2000 -> 2.699E-1000 Underflow Subnormal Inexact Rounded -sqtx8722 squareroot 7.7034E-2000 -> 2.775E-1000 Underflow Subnormal Inexact Rounded -sqtx8723 squareroot 7.8372E-2000 -> 2.799E-1000 Underflow Subnormal Inexact Rounded -sqtx8724 squareroot 8.2685E-2000 -> 2.875E-1000 Underflow Subnormal Inexact Rounded -sqtx8725 squareroot 8.4071E-2000 -> 2.899E-1000 Underflow Subnormal Inexact Rounded -sqtx8726 squareroot 8.8536E-2000 -> 2.975E-1000 Underflow Subnormal Inexact Rounded -sqtx8727 squareroot 8.9970E-2000 -> 2.999E-1000 Underflow Subnormal Inexact Rounded -sqtx8728 squareroot 9.4587E-2000 -> 3.075E-1000 Underflow Subnormal Inexact Rounded -sqtx8729 squareroot 9.6069E-2000 -> 3.099E-1000 Underflow Subnormal Inexact Rounded --- (End of Mark Dickinson's testcases.) - - --- Some additional edge cases -maxexponent: 9 -minexponent: -9 -precision: 2 -sqtx9000 squareroot 9980.01 -> 1.0E+2 Inexact Rounded -precision: 3 -sqtx9001 squareroot 9980.01 -> 99.9 -precision: 4 -sqtx9002 squareroot 9980.01 -> 99.9 - --- Exact from over-precise -precision: 4 -sqtx9003 squareroot 11025 -> 105 -precision: 3 -sqtx9004 squareroot 11025 -> 105 -precision: 2 -sqtx9005 squareroot 11025 -> 1.0E+2 Inexact Rounded -precision: 1 -sqtx9006 squareroot 11025 -> 1E+2 Inexact Rounded - --- an interesting case -precision: 7 -sqtx9007 squareroot 1600000e1 -> 4000 - --- Out-of-bounds zeros -precision: 4 -sqtx9010 squareroot 0E-9 -> 0.00000 -sqtx9011 squareroot 0E-10 -> 0.00000 -sqtx9012 squareroot 0E-11 -> 0.000000 -sqtx9013 squareroot 0E-12 -> 0.000000 -sqtx9014 squareroot 0E-13 -> 0E-7 -sqtx9015 squareroot 0E-14 -> 0E-7 -sqtx9020 squareroot 0E-17 -> 0E-9 -sqtx9021 squareroot 0E-20 -> 0E-10 -sqtx9022 squareroot 0E-22 -> 0E-11 -sqtx9023 squareroot 0E-24 -> 0E-12 -sqtx9024 squareroot 0E-25 -> 0E-12 Clamped -sqtx9025 squareroot 0E-26 -> 0E-12 Clamped -sqtx9026 squareroot 0E-27 -> 0E-12 Clamped -sqtx9027 squareroot 0E-28 -> 0E-12 Clamped - -sqtx9030 squareroot 0E+8 -> 0E+4 -sqtx9031 squareroot 0E+10 -> 0E+5 -sqtx9032 squareroot 0E+12 -> 0E+6 -sqtx9033 squareroot 0E+14 -> 0E+7 -sqtx9034 squareroot 0E+15 -> 0E+7 -sqtx9035 squareroot 0E+16 -> 0E+8 -sqtx9036 squareroot 0E+18 -> 0E+9 -sqtx9037 squareroot 0E+19 -> 0E+9 -sqtx9038 squareroot 0E+20 -> 0E+9 Clamped -sqtx9039 squareroot 0E+21 -> 0E+9 Clamped -sqtx9040 squareroot 0E+22 -> 0E+9 Clamped - --- if digits > emax maximum real exponent is negative -maxexponent: 9 -minexponent: -9 -precision: 15 -clamp: 1 -sqtx9045 squareroot 1 -> 1.00000 Clamped - --- High-precision exact and inexact -maxexponent: 999 -minexponent: -999 -precision: 400 -sqtx9050 squareroot 2 -> 1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571470109559971605970274534596862014728517418640889198609552329230484308714321450839762603627995251407989687253396546331808829640620615258352395054745750287759961729835575220337531857011354374603408498847 Inexact Rounded -sqtx9051 squareroot 1089 -> 33 -sqtx9052 squareroot 10.89 -> 3.3 - --- Null test -sqtx9900 squareroot # -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/subtract.decTest b/qdecimal/test/tc_full/subtract.decTest deleted file mode 100644 index 87072b3..0000000 --- a/qdecimal/test/tc_full/subtract.decTest +++ /dev/null @@ -1,873 +0,0 @@ ------------------------------------------------------------------------- --- subtract.decTest -- decimal subtraction -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- [first group are 'quick confidence check'] -subx001 subtract 0 0 -> '0' -subx002 subtract 1 1 -> '0' -subx003 subtract 1 2 -> '-1' -subx004 subtract 2 1 -> '1' -subx005 subtract 2 2 -> '0' -subx006 subtract 3 2 -> '1' -subx007 subtract 2 3 -> '-1' - -subx011 subtract -0 0 -> '-0' -subx012 subtract -1 1 -> '-2' -subx013 subtract -1 2 -> '-3' -subx014 subtract -2 1 -> '-3' -subx015 subtract -2 2 -> '-4' -subx016 subtract -3 2 -> '-5' -subx017 subtract -2 3 -> '-5' - -subx021 subtract 0 -0 -> '0' -subx022 subtract 1 -1 -> '2' -subx023 subtract 1 -2 -> '3' -subx024 subtract 2 -1 -> '3' -subx025 subtract 2 -2 -> '4' -subx026 subtract 3 -2 -> '5' -subx027 subtract 2 -3 -> '5' - -subx030 subtract 11 1 -> 10 -subx031 subtract 10 1 -> 9 -subx032 subtract 9 1 -> 8 -subx033 subtract 1 1 -> 0 -subx034 subtract 0 1 -> -1 -subx035 subtract -1 1 -> -2 -subx036 subtract -9 1 -> -10 -subx037 subtract -10 1 -> -11 -subx038 subtract -11 1 -> -12 - -subx040 subtract '5.75' '3.3' -> '2.45' -subx041 subtract '5' '-3' -> '8' -subx042 subtract '-5' '-3' -> '-2' -subx043 subtract '-7' '2.5' -> '-9.5' -subx044 subtract '0.7' '0.3' -> '0.4' -subx045 subtract '1.3' '0.3' -> '1.0' -subx046 subtract '1.25' '1.25' -> '0.00' - -subx050 subtract '1.23456789' '1.00000000' -> '0.23456789' -subx051 subtract '1.23456789' '1.00000089' -> '0.23456700' -subx052 subtract '0.5555555559' '0.0000000001' -> '0.555555556' Inexact Rounded -subx053 subtract '0.5555555559' '0.0000000005' -> '0.555555555' Inexact Rounded -subx054 subtract '0.4444444444' '0.1111111111' -> '0.333333333' Inexact Rounded -subx055 subtract '1.0000000000' '0.00000001' -> '0.999999990' Rounded -subx056 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded -subx057 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded - -subx060 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -subx061 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -subx062 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded -subx063 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded -subx064 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded - -- symmetry: -subx065 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded -subx066 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded -subx067 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded -subx068 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded -subx069 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded - - -- change precision -subx080 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded -precision: 6 -subx081 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded -precision: 9 - - -- some of the next group are really constructor tests -subx090 subtract '00.0' '0.0' -> '0.0' -subx091 subtract '00.0' '0.00' -> '0.00' -subx092 subtract '0.00' '00.0' -> '0.00' -subx093 subtract '00.0' '0.00' -> '0.00' -subx094 subtract '0.00' '00.0' -> '0.00' -subx095 subtract '3' '.3' -> '2.7' -subx096 subtract '3.' '.3' -> '2.7' -subx097 subtract '3.0' '.3' -> '2.7' -subx098 subtract '3.00' '.3' -> '2.70' -subx099 subtract '3' '3' -> '0' -subx100 subtract '3' '+3' -> '0' -subx101 subtract '3' '-3' -> '6' -subx102 subtract '3' '0.3' -> '2.7' -subx103 subtract '3.' '0.3' -> '2.7' -subx104 subtract '3.0' '0.3' -> '2.7' -subx105 subtract '3.00' '0.3' -> '2.70' -subx106 subtract '3' '3.0' -> '0.0' -subx107 subtract '3' '+3.0' -> '0.0' -subx108 subtract '3' '-3.0' -> '6.0' - --- the above all from add; massaged and extended. Now some new ones... --- [particularly important for comparisons] --- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7 --- with input rounding. -subx120 subtract '10.23456784' '10.23456789' -> '-5E-8' -subx121 subtract '10.23456785' '10.23456789' -> '-4E-8' -subx122 subtract '10.23456786' '10.23456789' -> '-3E-8' -subx123 subtract '10.23456787' '10.23456789' -> '-2E-8' -subx124 subtract '10.23456788' '10.23456789' -> '-1E-8' -subx125 subtract '10.23456789' '10.23456789' -> '0E-8' -subx126 subtract '10.23456790' '10.23456789' -> '1E-8' -subx127 subtract '10.23456791' '10.23456789' -> '2E-8' -subx128 subtract '10.23456792' '10.23456789' -> '3E-8' -subx129 subtract '10.23456793' '10.23456789' -> '4E-8' -subx130 subtract '10.23456794' '10.23456789' -> '5E-8' -subx131 subtract '10.23456781' '10.23456786' -> '-5E-8' -subx132 subtract '10.23456782' '10.23456786' -> '-4E-8' -subx133 subtract '10.23456783' '10.23456786' -> '-3E-8' -subx134 subtract '10.23456784' '10.23456786' -> '-2E-8' -subx135 subtract '10.23456785' '10.23456786' -> '-1E-8' -subx136 subtract '10.23456786' '10.23456786' -> '0E-8' -subx137 subtract '10.23456787' '10.23456786' -> '1E-8' -subx138 subtract '10.23456788' '10.23456786' -> '2E-8' -subx139 subtract '10.23456789' '10.23456786' -> '3E-8' -subx140 subtract '10.23456790' '10.23456786' -> '4E-8' -subx141 subtract '10.23456791' '10.23456786' -> '5E-8' -subx142 subtract '1' '0.999999999' -> '1E-9' -subx143 subtract '0.999999999' '1' -> '-1E-9' -subx144 subtract '-10.23456780' '-10.23456786' -> '6E-8' -subx145 subtract '-10.23456790' '-10.23456786' -> '-4E-8' -subx146 subtract '-10.23456791' '-10.23456786' -> '-5E-8' - -precision: 3 -subx150 subtract '12345678900000' '9999999999999' -> 2.35E+12 Inexact Rounded -subx151 subtract '9999999999999' '12345678900000' -> -2.35E+12 Inexact Rounded -precision: 6 -subx152 subtract '12345678900000' '9999999999999' -> 2.34568E+12 Inexact Rounded -subx153 subtract '9999999999999' '12345678900000' -> -2.34568E+12 Inexact Rounded -precision: 9 -subx154 subtract '12345678900000' '9999999999999' -> 2.34567890E+12 Inexact Rounded -subx155 subtract '9999999999999' '12345678900000' -> -2.34567890E+12 Inexact Rounded -precision: 12 -subx156 subtract '12345678900000' '9999999999999' -> 2.34567890000E+12 Inexact Rounded -subx157 subtract '9999999999999' '12345678900000' -> -2.34567890000E+12 Inexact Rounded -precision: 15 -subx158 subtract '12345678900000' '9999999999999' -> 2345678900001 -subx159 subtract '9999999999999' '12345678900000' -> -2345678900001 -precision: 9 - --- additional scaled arithmetic tests [0.97 problem] -subx160 subtract '0' '.1' -> '-0.1' -subx161 subtract '00' '.97983' -> '-0.97983' -subx162 subtract '0' '.9' -> '-0.9' -subx163 subtract '0' '0.102' -> '-0.102' -subx164 subtract '0' '.4' -> '-0.4' -subx165 subtract '0' '.307' -> '-0.307' -subx166 subtract '0' '.43822' -> '-0.43822' -subx167 subtract '0' '.911' -> '-0.911' -subx168 subtract '.0' '.02' -> '-0.02' -subx169 subtract '00' '.392' -> '-0.392' -subx170 subtract '0' '.26' -> '-0.26' -subx171 subtract '0' '0.51' -> '-0.51' -subx172 subtract '0' '.2234' -> '-0.2234' -subx173 subtract '0' '.2' -> '-0.2' -subx174 subtract '.0' '.0008' -> '-0.0008' --- 0. on left -subx180 subtract '0.0' '-.1' -> '0.1' -subx181 subtract '0.00' '-.97983' -> '0.97983' -subx182 subtract '0.0' '-.9' -> '0.9' -subx183 subtract '0.0' '-0.102' -> '0.102' -subx184 subtract '0.0' '-.4' -> '0.4' -subx185 subtract '0.0' '-.307' -> '0.307' -subx186 subtract '0.0' '-.43822' -> '0.43822' -subx187 subtract '0.0' '-.911' -> '0.911' -subx188 subtract '0.0' '-.02' -> '0.02' -subx189 subtract '0.00' '-.392' -> '0.392' -subx190 subtract '0.0' '-.26' -> '0.26' -subx191 subtract '0.0' '-0.51' -> '0.51' -subx192 subtract '0.0' '-.2234' -> '0.2234' -subx193 subtract '0.0' '-.2' -> '0.2' -subx194 subtract '0.0' '-.0008' -> '0.0008' --- negatives of same -subx200 subtract '0' '-.1' -> '0.1' -subx201 subtract '00' '-.97983' -> '0.97983' -subx202 subtract '0' '-.9' -> '0.9' -subx203 subtract '0' '-0.102' -> '0.102' -subx204 subtract '0' '-.4' -> '0.4' -subx205 subtract '0' '-.307' -> '0.307' -subx206 subtract '0' '-.43822' -> '0.43822' -subx207 subtract '0' '-.911' -> '0.911' -subx208 subtract '.0' '-.02' -> '0.02' -subx209 subtract '00' '-.392' -> '0.392' -subx210 subtract '0' '-.26' -> '0.26' -subx211 subtract '0' '-0.51' -> '0.51' -subx212 subtract '0' '-.2234' -> '0.2234' -subx213 subtract '0' '-.2' -> '0.2' -subx214 subtract '.0' '-.0008' -> '0.0008' - --- more fixed, LHS swaps [really the same as testcases under add] -subx220 subtract '-56267E-12' 0 -> '-5.6267E-8' -subx221 subtract '-56267E-11' 0 -> '-5.6267E-7' -subx222 subtract '-56267E-10' 0 -> '-0.0000056267' -subx223 subtract '-56267E-9' 0 -> '-0.000056267' -subx224 subtract '-56267E-8' 0 -> '-0.00056267' -subx225 subtract '-56267E-7' 0 -> '-0.0056267' -subx226 subtract '-56267E-6' 0 -> '-0.056267' -subx227 subtract '-56267E-5' 0 -> '-0.56267' -subx228 subtract '-56267E-2' 0 -> '-562.67' -subx229 subtract '-56267E-1' 0 -> '-5626.7' -subx230 subtract '-56267E-0' 0 -> '-56267' --- symmetry ... -subx240 subtract 0 '-56267E-12' -> '5.6267E-8' -subx241 subtract 0 '-56267E-11' -> '5.6267E-7' -subx242 subtract 0 '-56267E-10' -> '0.0000056267' -subx243 subtract 0 '-56267E-9' -> '0.000056267' -subx244 subtract 0 '-56267E-8' -> '0.00056267' -subx245 subtract 0 '-56267E-7' -> '0.0056267' -subx246 subtract 0 '-56267E-6' -> '0.056267' -subx247 subtract 0 '-56267E-5' -> '0.56267' -subx248 subtract 0 '-56267E-2' -> '562.67' -subx249 subtract 0 '-56267E-1' -> '5626.7' -subx250 subtract 0 '-56267E-0' -> '56267' - --- now some more from the 'new' add -precision: 9 -subx301 subtract '1.23456789' '1.00000000' -> '0.23456789' -subx302 subtract '1.23456789' '1.00000011' -> '0.23456778' - -subx311 subtract '0.4444444444' '0.5555555555' -> '-0.111111111' Inexact Rounded -subx312 subtract '0.4444444440' '0.5555555555' -> '-0.111111112' Inexact Rounded -subx313 subtract '0.4444444444' '0.5555555550' -> '-0.111111111' Inexact Rounded -subx314 subtract '0.44444444449' '0' -> '0.444444444' Inexact Rounded -subx315 subtract '0.444444444499' '0' -> '0.444444444' Inexact Rounded -subx316 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded -subx317 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded -subx318 subtract '0.4444444445001' '0' -> '0.444444445' Inexact Rounded -subx319 subtract '0.444444444501' '0' -> '0.444444445' Inexact Rounded -subx320 subtract '0.44444444451' '0' -> '0.444444445' Inexact Rounded - --- some carrying effects -subx321 subtract '0.9998' '0.0000' -> '0.9998' -subx322 subtract '0.9998' '0.0001' -> '0.9997' -subx323 subtract '0.9998' '0.0002' -> '0.9996' -subx324 subtract '0.9998' '0.0003' -> '0.9995' -subx325 subtract '0.9998' '-0.0000' -> '0.9998' -subx326 subtract '0.9998' '-0.0001' -> '0.9999' -subx327 subtract '0.9998' '-0.0002' -> '1.0000' -subx328 subtract '0.9998' '-0.0003' -> '1.0001' - -subx330 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -subx331 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -subx332 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded -subx333 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded -subx334 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded -subx335 subtract '7000000' '10000e+9' -> '-9.99999300E+12' Rounded --- symmetry: -subx340 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded -subx341 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded -subx342 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded -subx343 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded -subx344 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded -subx345 subtract '10000e+9' '7000000' -> '9.99999300E+12' Rounded - --- same, higher precision -precision: 15 -subx346 subtract '10000e+9' '7' -> '9999999999993' -subx347 subtract '10000e+9' '70' -> '9999999999930' -subx348 subtract '10000e+9' '700' -> '9999999999300' -subx349 subtract '10000e+9' '7000' -> '9999999993000' -subx350 subtract '10000e+9' '70000' -> '9999999930000' -subx351 subtract '10000e+9' '700000' -> '9999999300000' -subx352 subtract '7' '10000e+9' -> '-9999999999993' -subx353 subtract '70' '10000e+9' -> '-9999999999930' -subx354 subtract '700' '10000e+9' -> '-9999999999300' -subx355 subtract '7000' '10000e+9' -> '-9999999993000' -subx356 subtract '70000' '10000e+9' -> '-9999999930000' -subx357 subtract '700000' '10000e+9' -> '-9999999300000' - --- zero preservation -precision: 6 -subx360 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded -subx361 subtract 1 '0.0001' -> '0.9999' -subx362 subtract 1 '0.00001' -> '0.99999' -subx363 subtract 1 '0.000001' -> '0.999999' -subx364 subtract 1 '0.0000001' -> '1.00000' Inexact Rounded -subx365 subtract 1 '0.00000001' -> '1.00000' Inexact Rounded - --- some funny zeros [in case of bad signum] -subx370 subtract 1 0 -> 1 -subx371 subtract 1 0. -> 1 -subx372 subtract 1 .0 -> 1.0 -subx373 subtract 1 0.0 -> 1.0 -subx374 subtract 0 1 -> -1 -subx375 subtract 0. 1 -> -1 -subx376 subtract .0 1 -> -1.0 -subx377 subtract 0.0 1 -> -1.0 - -precision: 9 - --- leading 0 digit before round -subx910 subtract -103519362 -51897955.3 -> -51621406.7 -subx911 subtract 159579.444 89827.5229 -> 69751.9211 - -subx920 subtract 333.123456 33.1234566 -> 299.999999 Inexact Rounded -subx921 subtract 333.123456 33.1234565 -> 300.000000 Inexact Rounded -subx922 subtract 133.123456 33.1234565 -> 99.9999995 -subx923 subtract 133.123456 33.1234564 -> 99.9999996 -subx924 subtract 133.123456 33.1234540 -> 100.000002 Rounded -subx925 subtract 133.123456 43.1234560 -> 90.0000000 -subx926 subtract 133.123456 43.1234561 -> 89.9999999 -subx927 subtract 133.123456 43.1234566 -> 89.9999994 -subx928 subtract 101.123456 91.1234566 -> 9.9999994 -subx929 subtract 101.123456 99.1234566 -> 1.9999994 - --- more of the same; probe for cluster boundary problems -precision: 1 -subx930 subtract 11 2 -> 9 -precision: 2 -subx932 subtract 101 2 -> 99 -precision: 3 -subx934 subtract 101 2.1 -> 98.9 -subx935 subtract 101 92.01 -> 8.99 -precision: 4 -subx936 subtract 101 2.01 -> 98.99 -subx937 subtract 101 92.01 -> 8.99 -subx938 subtract 101 92.006 -> 8.994 -precision: 5 -subx939 subtract 101 2.001 -> 98.999 -subx940 subtract 101 92.001 -> 8.999 -subx941 subtract 101 92.0006 -> 8.9994 -precision: 6 -subx942 subtract 101 2.0001 -> 98.9999 -subx943 subtract 101 92.0001 -> 8.9999 -subx944 subtract 101 92.00006 -> 8.99994 -precision: 7 -subx945 subtract 101 2.00001 -> 98.99999 -subx946 subtract 101 92.00001 -> 8.99999 -subx947 subtract 101 92.000006 -> 8.999994 -precision: 8 -subx948 subtract 101 2.000001 -> 98.999999 -subx949 subtract 101 92.000001 -> 8.999999 -subx950 subtract 101 92.0000006 -> 8.9999994 -precision: 9 -subx951 subtract 101 2.0000001 -> 98.9999999 -subx952 subtract 101 92.0000001 -> 8.9999999 -subx953 subtract 101 92.00000006 -> 8.99999994 - -precision: 9 - --- more LHS swaps [were fixed] -subx390 subtract '-56267E-10' 0 -> '-0.0000056267' -subx391 subtract '-56267E-6' 0 -> '-0.056267' -subx392 subtract '-56267E-5' 0 -> '-0.56267' -subx393 subtract '-56267E-4' 0 -> '-5.6267' -subx394 subtract '-56267E-3' 0 -> '-56.267' -subx395 subtract '-56267E-2' 0 -> '-562.67' -subx396 subtract '-56267E-1' 0 -> '-5626.7' -subx397 subtract '-56267E-0' 0 -> '-56267' -subx398 subtract '-5E-10' 0 -> '-5E-10' -subx399 subtract '-5E-7' 0 -> '-5E-7' -subx400 subtract '-5E-6' 0 -> '-0.000005' -subx401 subtract '-5E-5' 0 -> '-0.00005' -subx402 subtract '-5E-4' 0 -> '-0.0005' -subx403 subtract '-5E-1' 0 -> '-0.5' -subx404 subtract '-5E0' 0 -> '-5' -subx405 subtract '-5E1' 0 -> '-50' -subx406 subtract '-5E5' 0 -> '-500000' -subx407 subtract '-5E8' 0 -> '-500000000' -subx408 subtract '-5E9' 0 -> '-5.00000000E+9' Rounded -subx409 subtract '-5E10' 0 -> '-5.00000000E+10' Rounded -subx410 subtract '-5E11' 0 -> '-5.00000000E+11' Rounded -subx411 subtract '-5E100' 0 -> '-5.00000000E+100' Rounded - --- more RHS swaps [were fixed] -subx420 subtract 0 '-56267E-10' -> '0.0000056267' -subx421 subtract 0 '-56267E-6' -> '0.056267' -subx422 subtract 0 '-56267E-5' -> '0.56267' -subx423 subtract 0 '-56267E-4' -> '5.6267' -subx424 subtract 0 '-56267E-3' -> '56.267' -subx425 subtract 0 '-56267E-2' -> '562.67' -subx426 subtract 0 '-56267E-1' -> '5626.7' -subx427 subtract 0 '-56267E-0' -> '56267' -subx428 subtract 0 '-5E-10' -> '5E-10' -subx429 subtract 0 '-5E-7' -> '5E-7' -subx430 subtract 0 '-5E-6' -> '0.000005' -subx431 subtract 0 '-5E-5' -> '0.00005' -subx432 subtract 0 '-5E-4' -> '0.0005' -subx433 subtract 0 '-5E-1' -> '0.5' -subx434 subtract 0 '-5E0' -> '5' -subx435 subtract 0 '-5E1' -> '50' -subx436 subtract 0 '-5E5' -> '500000' -subx437 subtract 0 '-5E8' -> '500000000' -subx438 subtract 0 '-5E9' -> '5.00000000E+9' Rounded -subx439 subtract 0 '-5E10' -> '5.00000000E+10' Rounded -subx440 subtract 0 '-5E11' -> '5.00000000E+11' Rounded -subx441 subtract 0 '-5E100' -> '5.00000000E+100' Rounded - - --- try borderline precision, with carries, etc. -precision: 15 -subx461 subtract '1E+12' '1' -> '999999999999' -subx462 subtract '1E+12' '-1.11' -> '1000000000001.11' -subx463 subtract '1.11' '-1E+12' -> '1000000000001.11' -subx464 subtract '-1' '-1E+12' -> '999999999999' -subx465 subtract '7E+12' '1' -> '6999999999999' -subx466 subtract '7E+12' '-1.11' -> '7000000000001.11' -subx467 subtract '1.11' '-7E+12' -> '7000000000001.11' -subx468 subtract '-1' '-7E+12' -> '6999999999999' - --- 123456789012345 123456789012345 1 23456789012345 -subx470 subtract '0.444444444444444' '-0.555555555555563' -> '1.00000000000001' Inexact Rounded -subx471 subtract '0.444444444444444' '-0.555555555555562' -> '1.00000000000001' Inexact Rounded -subx472 subtract '0.444444444444444' '-0.555555555555561' -> '1.00000000000001' Inexact Rounded -subx473 subtract '0.444444444444444' '-0.555555555555560' -> '1.00000000000000' Inexact Rounded -subx474 subtract '0.444444444444444' '-0.555555555555559' -> '1.00000000000000' Inexact Rounded -subx475 subtract '0.444444444444444' '-0.555555555555558' -> '1.00000000000000' Inexact Rounded -subx476 subtract '0.444444444444444' '-0.555555555555557' -> '1.00000000000000' Inexact Rounded -subx477 subtract '0.444444444444444' '-0.555555555555556' -> '1.00000000000000' Rounded -subx478 subtract '0.444444444444444' '-0.555555555555555' -> '0.999999999999999' -subx479 subtract '0.444444444444444' '-0.555555555555554' -> '0.999999999999998' -subx480 subtract '0.444444444444444' '-0.555555555555553' -> '0.999999999999997' -subx481 subtract '0.444444444444444' '-0.555555555555552' -> '0.999999999999996' -subx482 subtract '0.444444444444444' '-0.555555555555551' -> '0.999999999999995' -subx483 subtract '0.444444444444444' '-0.555555555555550' -> '0.999999999999994' - --- and some more, including residue effects and different roundings -precision: 9 -rounding: half_up -subx500 subtract '123456789' 0 -> '123456789' -subx501 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded -subx502 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded -subx503 subtract '123456789' 0.1 -> '123456789' Inexact Rounded -subx504 subtract '123456789' 0.4 -> '123456789' Inexact Rounded -subx505 subtract '123456789' 0.49 -> '123456789' Inexact Rounded -subx506 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded -subx507 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded -subx508 subtract '123456789' 0.5 -> '123456789' Inexact Rounded -subx509 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded -subx510 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded -subx511 subtract '123456789' 0.51 -> '123456788' Inexact Rounded -subx512 subtract '123456789' 0.6 -> '123456788' Inexact Rounded -subx513 subtract '123456789' 0.9 -> '123456788' Inexact Rounded -subx514 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded -subx515 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded -subx516 subtract '123456789' 1 -> '123456788' -subx517 subtract '123456789' 1.000000001 -> '123456788' Inexact Rounded -subx518 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded -subx519 subtract '123456789' 1.1 -> '123456788' Inexact Rounded - -rounding: half_even -subx520 subtract '123456789' 0 -> '123456789' -subx521 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded -subx522 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded -subx523 subtract '123456789' 0.1 -> '123456789' Inexact Rounded -subx524 subtract '123456789' 0.4 -> '123456789' Inexact Rounded -subx525 subtract '123456789' 0.49 -> '123456789' Inexact Rounded -subx526 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded -subx527 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded -subx528 subtract '123456789' 0.5 -> '123456788' Inexact Rounded -subx529 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded -subx530 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded -subx531 subtract '123456789' 0.51 -> '123456788' Inexact Rounded -subx532 subtract '123456789' 0.6 -> '123456788' Inexact Rounded -subx533 subtract '123456789' 0.9 -> '123456788' Inexact Rounded -subx534 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded -subx535 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded -subx536 subtract '123456789' 1 -> '123456788' -subx537 subtract '123456789' 1.00000001 -> '123456788' Inexact Rounded -subx538 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded -subx539 subtract '123456789' 1.1 -> '123456788' Inexact Rounded --- critical few with even bottom digit... -subx540 subtract '123456788' 0.499999999 -> '123456788' Inexact Rounded -subx541 subtract '123456788' 0.5 -> '123456788' Inexact Rounded -subx542 subtract '123456788' 0.500000001 -> '123456787' Inexact Rounded - -rounding: down -subx550 subtract '123456789' 0 -> '123456789' -subx551 subtract '123456789' 0.000000001 -> '123456788' Inexact Rounded -subx552 subtract '123456789' 0.000001 -> '123456788' Inexact Rounded -subx553 subtract '123456789' 0.1 -> '123456788' Inexact Rounded -subx554 subtract '123456789' 0.4 -> '123456788' Inexact Rounded -subx555 subtract '123456789' 0.49 -> '123456788' Inexact Rounded -subx556 subtract '123456789' 0.499999 -> '123456788' Inexact Rounded -subx557 subtract '123456789' 0.499999999 -> '123456788' Inexact Rounded -subx558 subtract '123456789' 0.5 -> '123456788' Inexact Rounded -subx559 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded -subx560 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded -subx561 subtract '123456789' 0.51 -> '123456788' Inexact Rounded -subx562 subtract '123456789' 0.6 -> '123456788' Inexact Rounded -subx563 subtract '123456789' 0.9 -> '123456788' Inexact Rounded -subx564 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded -subx565 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded -subx566 subtract '123456789' 1 -> '123456788' -subx567 subtract '123456789' 1.00000001 -> '123456787' Inexact Rounded -subx568 subtract '123456789' 1.00001 -> '123456787' Inexact Rounded -subx569 subtract '123456789' 1.1 -> '123456787' Inexact Rounded - --- symmetry... -rounding: half_up -subx600 subtract 0 '123456789' -> '-123456789' -subx601 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded -subx602 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded -subx603 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded -subx604 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded -subx605 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded -subx606 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded -subx607 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded -subx608 subtract 0.5 '123456789' -> '-123456789' Inexact Rounded -subx609 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded -subx610 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded -subx611 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded -subx612 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded -subx613 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded -subx614 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded -subx615 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded -subx616 subtract 1 '123456789' -> '-123456788' -subx617 subtract 1.000000001 '123456789' -> '-123456788' Inexact Rounded -subx618 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded -subx619 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded - -rounding: half_even -subx620 subtract 0 '123456789' -> '-123456789' -subx621 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded -subx622 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded -subx623 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded -subx624 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded -subx625 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded -subx626 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded -subx627 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded -subx628 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded -subx629 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded -subx630 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded -subx631 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded -subx632 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded -subx633 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded -subx634 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded -subx635 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded -subx636 subtract 1 '123456789' -> '-123456788' -subx637 subtract 1.00000001 '123456789' -> '-123456788' Inexact Rounded -subx638 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded -subx639 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded --- critical few with even bottom digit... -subx640 subtract 0.499999999 '123456788' -> '-123456788' Inexact Rounded -subx641 subtract 0.5 '123456788' -> '-123456788' Inexact Rounded -subx642 subtract 0.500000001 '123456788' -> '-123456787' Inexact Rounded - -rounding: down -subx650 subtract 0 '123456789' -> '-123456789' -subx651 subtract 0.000000001 '123456789' -> '-123456788' Inexact Rounded -subx652 subtract 0.000001 '123456789' -> '-123456788' Inexact Rounded -subx653 subtract 0.1 '123456789' -> '-123456788' Inexact Rounded -subx654 subtract 0.4 '123456789' -> '-123456788' Inexact Rounded -subx655 subtract 0.49 '123456789' -> '-123456788' Inexact Rounded -subx656 subtract 0.499999 '123456789' -> '-123456788' Inexact Rounded -subx657 subtract 0.499999999 '123456789' -> '-123456788' Inexact Rounded -subx658 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded -subx659 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded -subx660 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded -subx661 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded -subx662 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded -subx663 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded -subx664 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded -subx665 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded -subx666 subtract 1 '123456789' -> '-123456788' -subx667 subtract 1.00000001 '123456789' -> '-123456787' Inexact Rounded -subx668 subtract 1.00001 '123456789' -> '-123456787' Inexact Rounded -subx669 subtract 1.1 '123456789' -> '-123456787' Inexact Rounded - - --- lots of leading zeros in intermediate result, and showing effects of --- input rounding would have affected the following -precision: 9 -rounding: half_up -subx670 subtract '123456789' '123456788.1' -> 0.9 -subx671 subtract '123456789' '123456788.9' -> 0.1 -subx672 subtract '123456789' '123456789.1' -> -0.1 -subx673 subtract '123456789' '123456789.5' -> -0.5 -subx674 subtract '123456789' '123456789.9' -> -0.9 - -rounding: half_even -subx680 subtract '123456789' '123456788.1' -> 0.9 -subx681 subtract '123456789' '123456788.9' -> 0.1 -subx682 subtract '123456789' '123456789.1' -> -0.1 -subx683 subtract '123456789' '123456789.5' -> -0.5 -subx684 subtract '123456789' '123456789.9' -> -0.9 - -subx685 subtract '123456788' '123456787.1' -> 0.9 -subx686 subtract '123456788' '123456787.9' -> 0.1 -subx687 subtract '123456788' '123456788.1' -> -0.1 -subx688 subtract '123456788' '123456788.5' -> -0.5 -subx689 subtract '123456788' '123456788.9' -> -0.9 - -rounding: down -subx690 subtract '123456789' '123456788.1' -> 0.9 -subx691 subtract '123456789' '123456788.9' -> 0.1 -subx692 subtract '123456789' '123456789.1' -> -0.1 -subx693 subtract '123456789' '123456789.5' -> -0.5 -subx694 subtract '123456789' '123456789.9' -> -0.9 - --- input preparation tests -rounding: half_up -precision: 3 - -subx700 subtract '12345678900000' -9999999999999 -> '2.23E+13' Inexact Rounded -subx701 subtract '9999999999999' -12345678900000 -> '2.23E+13' Inexact Rounded -subx702 subtract '12E+3' '-3456' -> '1.55E+4' Inexact Rounded -subx703 subtract '12E+3' '-3446' -> '1.54E+4' Inexact Rounded -subx704 subtract '12E+3' '-3454' -> '1.55E+4' Inexact Rounded -subx705 subtract '12E+3' '-3444' -> '1.54E+4' Inexact Rounded - -subx706 subtract '3456' '-12E+3' -> '1.55E+4' Inexact Rounded -subx707 subtract '3446' '-12E+3' -> '1.54E+4' Inexact Rounded -subx708 subtract '3454' '-12E+3' -> '1.55E+4' Inexact Rounded -subx709 subtract '3444' '-12E+3' -> '1.54E+4' Inexact Rounded - --- overflow and underflow tests [subnormals now possible] -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -rounding: down -subx710 subtract 1E+999999999 -9E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded -subx711 subtract 9E+999999999 -1E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded -rounding: half_up -subx712 subtract 1E+999999999 -9E+999999999 -> Infinity Overflow Inexact Rounded -subx713 subtract 9E+999999999 -1E+999999999 -> Infinity Overflow Inexact Rounded -subx714 subtract -1.1E-999999999 -1E-999999999 -> -1E-1000000000 Subnormal -subx715 subtract 1E-999999999 +1.1e-999999999 -> -1E-1000000000 Subnormal -subx716 subtract -1E+999999999 +9E+999999999 -> -Infinity Overflow Inexact Rounded -subx717 subtract -9E+999999999 +1E+999999999 -> -Infinity Overflow Inexact Rounded -subx718 subtract +1.1E-999999999 +1E-999999999 -> 1E-1000000000 Subnormal -subx719 subtract -1E-999999999 -1.1e-999999999 -> 1E-1000000000 Subnormal - -precision: 3 -subx720 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded -subx721 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded -subx722 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded -subx723 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded -subx724 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded -subx725 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded -subx726 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded -subx727 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded - --- [more below] - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -sub731 subtract 12345678000 0 -> 1.23456780E+10 Rounded -sub732 subtract 0 12345678000 -> -1.23456780E+10 Rounded -sub733 subtract 1234567800 0 -> 1.23456780E+9 Rounded -sub734 subtract 0 1234567800 -> -1.23456780E+9 Rounded -sub735 subtract 1234567890 0 -> 1.23456789E+9 Rounded -sub736 subtract 0 1234567890 -> -1.23456789E+9 Rounded -sub737 subtract 1234567891 0 -> 1.23456789E+9 Inexact Rounded -sub738 subtract 0 1234567891 -> -1.23456789E+9 Inexact Rounded -sub739 subtract 12345678901 0 -> 1.23456789E+10 Inexact Rounded -sub740 subtract 0 12345678901 -> -1.23456789E+10 Inexact Rounded -sub741 subtract 1234567896 0 -> 1.23456790E+9 Inexact Rounded -sub742 subtract 0 1234567896 -> -1.23456790E+9 Inexact Rounded - -precision: 15 -sub751 subtract 12345678000 0 -> 12345678000 -sub752 subtract 0 12345678000 -> -12345678000 -sub753 subtract 1234567800 0 -> 1234567800 -sub754 subtract 0 1234567800 -> -1234567800 -sub755 subtract 1234567890 0 -> 1234567890 -sub756 subtract 0 1234567890 -> -1234567890 -sub757 subtract 1234567891 0 -> 1234567891 -sub758 subtract 0 1234567891 -> -1234567891 -sub759 subtract 12345678901 0 -> 12345678901 -sub760 subtract 0 12345678901 -> -12345678901 -sub761 subtract 1234567896 0 -> 1234567896 -sub762 subtract 0 1234567896 -> -1234567896 - --- Specials -subx780 subtract -Inf Inf -> -Infinity -subx781 subtract -Inf 1000 -> -Infinity -subx782 subtract -Inf 1 -> -Infinity -subx783 subtract -Inf -0 -> -Infinity -subx784 subtract -Inf -1 -> -Infinity -subx785 subtract -Inf -1000 -> -Infinity -subx787 subtract -1000 Inf -> -Infinity -subx788 subtract -Inf Inf -> -Infinity -subx789 subtract -1 Inf -> -Infinity -subx790 subtract 0 Inf -> -Infinity -subx791 subtract 1 Inf -> -Infinity -subx792 subtract 1000 Inf -> -Infinity - -subx800 subtract Inf Inf -> NaN Invalid_operation -subx801 subtract Inf 1000 -> Infinity -subx802 subtract Inf 1 -> Infinity -subx803 subtract Inf 0 -> Infinity -subx804 subtract Inf -0 -> Infinity -subx805 subtract Inf -1 -> Infinity -subx806 subtract Inf -1000 -> Infinity -subx807 subtract Inf -Inf -> Infinity -subx808 subtract -1000 -Inf -> Infinity -subx809 subtract -Inf -Inf -> NaN Invalid_operation -subx810 subtract -1 -Inf -> Infinity -subx811 subtract -0 -Inf -> Infinity -subx812 subtract 0 -Inf -> Infinity -subx813 subtract 1 -Inf -> Infinity -subx814 subtract 1000 -Inf -> Infinity -subx815 subtract Inf -Inf -> Infinity - -subx821 subtract NaN Inf -> NaN -subx822 subtract -NaN 1000 -> -NaN -subx823 subtract NaN 1 -> NaN -subx824 subtract NaN 0 -> NaN -subx825 subtract NaN -0 -> NaN -subx826 subtract NaN -1 -> NaN -subx827 subtract NaN -1000 -> NaN -subx828 subtract NaN -Inf -> NaN -subx829 subtract -NaN NaN -> -NaN -subx830 subtract -Inf NaN -> NaN -subx831 subtract -1000 NaN -> NaN -subx832 subtract -1 NaN -> NaN -subx833 subtract -0 NaN -> NaN -subx834 subtract 0 NaN -> NaN -subx835 subtract 1 NaN -> NaN -subx836 subtract 1000 -NaN -> -NaN -subx837 subtract Inf NaN -> NaN - -subx841 subtract sNaN Inf -> NaN Invalid_operation -subx842 subtract -sNaN 1000 -> -NaN Invalid_operation -subx843 subtract sNaN 1 -> NaN Invalid_operation -subx844 subtract sNaN 0 -> NaN Invalid_operation -subx845 subtract sNaN -0 -> NaN Invalid_operation -subx846 subtract sNaN -1 -> NaN Invalid_operation -subx847 subtract sNaN -1000 -> NaN Invalid_operation -subx848 subtract sNaN NaN -> NaN Invalid_operation -subx849 subtract sNaN sNaN -> NaN Invalid_operation -subx850 subtract NaN sNaN -> NaN Invalid_operation -subx851 subtract -Inf -sNaN -> -NaN Invalid_operation -subx852 subtract -1000 sNaN -> NaN Invalid_operation -subx853 subtract -1 sNaN -> NaN Invalid_operation -subx854 subtract -0 sNaN -> NaN Invalid_operation -subx855 subtract 0 sNaN -> NaN Invalid_operation -subx856 subtract 1 sNaN -> NaN Invalid_operation -subx857 subtract 1000 sNaN -> NaN Invalid_operation -subx858 subtract Inf sNaN -> NaN Invalid_operation -subx859 subtract NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -subx861 subtract NaN01 -Inf -> NaN1 -subx862 subtract -NaN02 -1000 -> -NaN2 -subx863 subtract NaN03 1000 -> NaN3 -subx864 subtract NaN04 Inf -> NaN4 -subx865 subtract NaN05 NaN61 -> NaN5 -subx866 subtract -Inf -NaN71 -> -NaN71 -subx867 subtract -1000 NaN81 -> NaN81 -subx868 subtract 1000 NaN91 -> NaN91 -subx869 subtract Inf NaN101 -> NaN101 -subx871 subtract sNaN011 -Inf -> NaN11 Invalid_operation -subx872 subtract sNaN012 -1000 -> NaN12 Invalid_operation -subx873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation -subx874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation -subx875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation -subx876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation -subx877 subtract -Inf sNaN201 -> NaN201 Invalid_operation -subx878 subtract -1000 sNaN211 -> NaN211 Invalid_operation -subx879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation -subx880 subtract Inf sNaN231 -> NaN231 Invalid_operation -subx881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation - --- edge case spills -subx901 subtract 2.E-3 1.002 -> -1.000 -subx902 subtract 2.0E-3 1.002 -> -1.0000 -subx903 subtract 2.00E-3 1.0020 -> -1.00000 -subx904 subtract 2.000E-3 1.00200 -> -1.000000 -subx905 subtract 2.0000E-3 1.002000 -> -1.0000000 -subx906 subtract 2.00000E-3 1.0020000 -> -1.00000000 -subx907 subtract 2.000000E-3 1.00200000 -> -1.000000000 -subx908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000 - --- subnormals and underflows -precision: 3 -maxexponent: 999 -minexponent: -999 -subx1010 subtract 0 1.00E-999 -> -1.00E-999 -subx1011 subtract 0 0.1E-999 -> -1E-1000 Subnormal -subx1012 subtract 0 0.10E-999 -> -1.0E-1000 Subnormal -subx1013 subtract 0 0.100E-999 -> -1.0E-1000 Subnormal Rounded -subx1014 subtract 0 0.01E-999 -> -1E-1001 Subnormal --- next is rounded to Emin -subx1015 subtract 0 0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow -subx1016 subtract 0 0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -subx1017 subtract 0 0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow -subx1018 subtract 0 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -subx1019 subtract 0 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -subx1020 subtract 0 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped - -subx1030 subtract 0 -1.00E-999 -> 1.00E-999 -subx1031 subtract 0 -0.1E-999 -> 1E-1000 Subnormal -subx1032 subtract 0 -0.10E-999 -> 1.0E-1000 Subnormal -subx1033 subtract 0 -0.100E-999 -> 1.0E-1000 Subnormal Rounded -subx1034 subtract 0 -0.01E-999 -> 1E-1001 Subnormal --- next is rounded to Emin -subx1035 subtract 0 -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow -subx1036 subtract 0 -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -subx1037 subtract 0 -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow -subx1038 subtract 0 -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -subx1039 subtract 0 -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped -subx1040 subtract 0 -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped - --- some non-zero subnormal subtracts --- subx1056 is a tricky case -rounding: half_up -subx1050 subtract 1.00E-999 0.1E-999 -> 9.0E-1000 Subnormal -subx1051 subtract 0.1E-999 0.1E-999 -> 0E-1000 -subx1052 subtract 0.10E-999 0.1E-999 -> 0E-1001 -subx1053 subtract 0.100E-999 0.1E-999 -> 0E-1001 Clamped -subx1054 subtract 0.01E-999 0.1E-999 -> -9E-1001 Subnormal -subx1055 subtract 0.999E-999 0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow -subx1056 subtract 0.099E-999 0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -subx1057 subtract 0.009E-999 0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow -subx1058 subtract 0.001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -subx1059 subtract 0.0009E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -subx1060 subtract 0.0001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow - - --- check for double-rounded subnormals -precision: 5 -maxexponent: 79 -minexponent: -79 -subx1101 subtract 0 1.52444E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow -subx1102 subtract 0 1.52445E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow -subx1103 subtract 0 1.52446E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow -subx1104 subtract 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -subx1105 subtract 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow -subx1106 subtract 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow - -subx1111 subtract 1.2345678E-80 1.2345671E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped -subx1112 subtract 1.2345678E-80 1.2345618E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped -subx1113 subtract 1.2345678E-80 1.2345178E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped -subx1114 subtract 1.2345678E-80 1.2341678E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped -subx1115 subtract 1.2345678E-80 1.2315678E-80 -> 3E-83 Rounded Subnormal -subx1116 subtract 1.2345678E-80 1.2145678E-80 -> 2.0E-82 Rounded Subnormal -subx1117 subtract 1.2345678E-80 1.1345678E-80 -> 1.00E-81 Rounded Subnormal -subx1118 subtract 1.2345678E-80 0.2345678E-80 -> 1.000E-80 Rounded Subnormal - -precision: 34 -rounding: half_up -maxExponent: 6144 -minExponent: -6143 --- Examples from SQL proposal (Krishna Kulkarni) -subx1125 subtract 130E-2 120E-2 -> 0.10 -subx1126 subtract 130E-2 12E-1 -> 0.10 -subx1127 subtract 130E-2 1E0 -> 0.30 -subx1128 subtract 1E2 1E4 -> -9.9E+3 - --- Null tests -subx9990 subtract 10 # -> NaN Invalid_operation -subx9991 subtract # 10 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/testall.decTest b/qdecimal/test/tc_full/testall.decTest deleted file mode 100644 index 1a96a6d..0000000 --- a/qdecimal/test/tc_full/testall.decTest +++ /dev/null @@ -1,87 +0,0 @@ ------------------------------------------------------------------------- --- testall.decTest -- run all general decimal arithmetic testcases -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- core tests (using Extended: 1) -------------------------------------- -dectest: base - -dectest: abs -dectest: add -dectest: and -dectest: clamp -dectest: class -dectest: compare -dectest: comparesig -dectest: comparetotal -dectest: comparetotmag -dectest: copy -dectest: copyabs -dectest: copynegate -dectest: copysign -dectest: divide -dectest: divideint -dectest: exp -dectest: fma -dectest: inexact -dectest: invert -dectest: ln -dectest: logb -dectest: log10 -dectest: max -dectest: maxmag -dectest: min -dectest: minmag -dectest: minus -dectest: multiply -dectest: nextminus -dectest: nextplus -dectest: nexttoward -dectest: or -dectest: plus -dectest: power -dectest: powersqrt -dectest: quantize -dectest: randoms -dectest: reduce -- [was called normalize] -dectest: remainder -dectest: remaindernear -dectest: rescale -- [obsolete] -dectest: rotate -dectest: rounding -dectest: samequantum -dectest: scaleb -dectest: shift -dectest: squareroot -dectest: subtract -dectest: tointegral -dectest: tointegralx -dectest: trim -dectest: xor - --- The next are for the Strawman 4d concrete representations and --- tests at those sizes [including dsEncode, ddEncode, and dqEncode, --- which replace decimal32, decimal64, and decimal128] -dectest: decSingle -dectest: decDouble -dectest: decQuad - --- General 31->33-digit boundary tests -dectest: randombound32 - diff --git a/qdecimal/test/tc_full/tointegral.decTest b/qdecimal/test/tc_full/tointegral.decTest deleted file mode 100644 index d0be0c4..0000000 --- a/qdecimal/test/tc_full/tointegral.decTest +++ /dev/null @@ -1,241 +0,0 @@ ------------------------------------------------------------------------- --- tointegral.decTest -- round decimal to integral value -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests tests the extended specification 'round-to-integral --- value' operation (from IEEE 854, later modified in 754r). --- All non-zero results are defined as being those from either copy or --- quantize, so those are assumed to have been tested. --- Note that 754r requires that Inexact not be set, and we similarly --- assume Rounded is not set. - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - -intx001 tointegral 0 -> 0 -intx002 tointegral 0.0 -> 0 -intx003 tointegral 0.1 -> 0 -intx004 tointegral 0.2 -> 0 -intx005 tointegral 0.3 -> 0 -intx006 tointegral 0.4 -> 0 -intx007 tointegral 0.5 -> 1 -intx008 tointegral 0.6 -> 1 -intx009 tointegral 0.7 -> 1 -intx010 tointegral 0.8 -> 1 -intx011 tointegral 0.9 -> 1 -intx012 tointegral 1 -> 1 -intx013 tointegral 1.0 -> 1 -intx014 tointegral 1.1 -> 1 -intx015 tointegral 1.2 -> 1 -intx016 tointegral 1.3 -> 1 -intx017 tointegral 1.4 -> 1 -intx018 tointegral 1.5 -> 2 -intx019 tointegral 1.6 -> 2 -intx020 tointegral 1.7 -> 2 -intx021 tointegral 1.8 -> 2 -intx022 tointegral 1.9 -> 2 --- negatives -intx031 tointegral -0 -> -0 -intx032 tointegral -0.0 -> -0 -intx033 tointegral -0.1 -> -0 -intx034 tointegral -0.2 -> -0 -intx035 tointegral -0.3 -> -0 -intx036 tointegral -0.4 -> -0 -intx037 tointegral -0.5 -> -1 -intx038 tointegral -0.6 -> -1 -intx039 tointegral -0.7 -> -1 -intx040 tointegral -0.8 -> -1 -intx041 tointegral -0.9 -> -1 -intx042 tointegral -1 -> -1 -intx043 tointegral -1.0 -> -1 -intx044 tointegral -1.1 -> -1 -intx045 tointegral -1.2 -> -1 -intx046 tointegral -1.3 -> -1 -intx047 tointegral -1.4 -> -1 -intx048 tointegral -1.5 -> -2 -intx049 tointegral -1.6 -> -2 -intx050 tointegral -1.7 -> -2 -intx051 tointegral -1.8 -> -2 -intx052 tointegral -1.9 -> -2 --- next two would be NaN using quantize(x, 0) -intx053 tointegral 10E+30 -> 1.0E+31 -intx054 tointegral -10E+30 -> -1.0E+31 - --- numbers around precision -precision: 9 -intx060 tointegral '56267E-10' -> '0' -intx061 tointegral '56267E-5' -> '1' -intx062 tointegral '56267E-2' -> '563' -intx063 tointegral '56267E-1' -> '5627' -intx065 tointegral '56267E-0' -> '56267' -intx066 tointegral '56267E+0' -> '56267' -intx067 tointegral '56267E+1' -> '5.6267E+5' -intx068 tointegral '56267E+2' -> '5.6267E+6' -intx069 tointegral '56267E+3' -> '5.6267E+7' -intx070 tointegral '56267E+4' -> '5.6267E+8' -intx071 tointegral '56267E+5' -> '5.6267E+9' -intx072 tointegral '56267E+6' -> '5.6267E+10' -intx073 tointegral '1.23E+96' -> '1.23E+96' -intx074 tointegral '1.23E+384' -> '1.23E+384' -intx075 tointegral '1.23E+999' -> '1.23E+999' - -intx080 tointegral '-56267E-10' -> '-0' -intx081 tointegral '-56267E-5' -> '-1' -intx082 tointegral '-56267E-2' -> '-563' -intx083 tointegral '-56267E-1' -> '-5627' -intx085 tointegral '-56267E-0' -> '-56267' -intx086 tointegral '-56267E+0' -> '-56267' -intx087 tointegral '-56267E+1' -> '-5.6267E+5' -intx088 tointegral '-56267E+2' -> '-5.6267E+6' -intx089 tointegral '-56267E+3' -> '-5.6267E+7' -intx090 tointegral '-56267E+4' -> '-5.6267E+8' -intx091 tointegral '-56267E+5' -> '-5.6267E+9' -intx092 tointegral '-56267E+6' -> '-5.6267E+10' -intx093 tointegral '-1.23E+96' -> '-1.23E+96' -intx094 tointegral '-1.23E+384' -> '-1.23E+384' -intx095 tointegral '-1.23E+999' -> '-1.23E+999' - --- subnormal inputs -intx100 tointegral 1E-999 -> 0 -intx101 tointegral 0.1E-999 -> 0 -intx102 tointegral 0.01E-999 -> 0 -intx103 tointegral 0E-999 -> 0 - --- specials and zeros -intx120 tointegral 'Inf' -> Infinity -intx121 tointegral '-Inf' -> -Infinity -intx122 tointegral NaN -> NaN -intx123 tointegral sNaN -> NaN Invalid_operation -intx124 tointegral 0 -> 0 -intx125 tointegral -0 -> -0 -intx126 tointegral 0.000 -> 0 -intx127 tointegral 0.00 -> 0 -intx128 tointegral 0.0 -> 0 -intx129 tointegral 0 -> 0 -intx130 tointegral 0E-3 -> 0 -intx131 tointegral 0E-2 -> 0 -intx132 tointegral 0E-1 -> 0 -intx133 tointegral 0E-0 -> 0 -intx134 tointegral 0E+1 -> 0E+1 -intx135 tointegral 0E+2 -> 0E+2 -intx136 tointegral 0E+3 -> 0E+3 -intx137 tointegral 0E+4 -> 0E+4 -intx138 tointegral 0E+5 -> 0E+5 -intx139 tointegral -0.000 -> -0 -intx140 tointegral -0.00 -> -0 -intx141 tointegral -0.0 -> -0 -intx142 tointegral -0 -> -0 -intx143 tointegral -0E-3 -> -0 -intx144 tointegral -0E-2 -> -0 -intx145 tointegral -0E-1 -> -0 -intx146 tointegral -0E-0 -> -0 -intx147 tointegral -0E+1 -> -0E+1 -intx148 tointegral -0E+2 -> -0E+2 -intx149 tointegral -0E+3 -> -0E+3 -intx150 tointegral -0E+4 -> -0E+4 -intx151 tointegral -0E+5 -> -0E+5 --- propagating NaNs -intx152 tointegral NaN808 -> NaN808 -intx153 tointegral sNaN080 -> NaN80 Invalid_operation -intx154 tointegral -NaN808 -> -NaN808 -intx155 tointegral -sNaN080 -> -NaN80 Invalid_operation -intx156 tointegral -NaN -> -NaN -intx157 tointegral -sNaN -> -NaN Invalid_operation - --- examples -rounding: half_up -precision: 9 -intx200 tointegral 2.1 -> 2 -intx201 tointegral 100 -> 100 -intx202 tointegral 100.0 -> 100 -intx203 tointegral 101.5 -> 102 -intx204 tointegral -101.5 -> -102 -intx205 tointegral 10E+5 -> 1.0E+6 -intx206 tointegral 7.89E+77 -> 7.89E+77 -intx207 tointegral -Inf -> -Infinity - - --- all rounding modes -rounding: half_even - -intx210 tointegral 55.5 -> 56 -intx211 tointegral 56.5 -> 56 -intx212 tointegral 57.5 -> 58 -intx213 tointegral -55.5 -> -56 -intx214 tointegral -56.5 -> -56 -intx215 tointegral -57.5 -> -58 - -rounding: half_up - -intx220 tointegral 55.5 -> 56 -intx221 tointegral 56.5 -> 57 -intx222 tointegral 57.5 -> 58 -intx223 tointegral -55.5 -> -56 -intx224 tointegral -56.5 -> -57 -intx225 tointegral -57.5 -> -58 - -rounding: half_down - -intx230 tointegral 55.5 -> 55 -intx231 tointegral 56.5 -> 56 -intx232 tointegral 57.5 -> 57 -intx233 tointegral -55.5 -> -55 -intx234 tointegral -56.5 -> -56 -intx235 tointegral -57.5 -> -57 - -rounding: up - -intx240 tointegral 55.3 -> 56 -intx241 tointegral 56.3 -> 57 -intx242 tointegral 57.3 -> 58 -intx243 tointegral -55.3 -> -56 -intx244 tointegral -56.3 -> -57 -intx245 tointegral -57.3 -> -58 - -rounding: down - -intx250 tointegral 55.7 -> 55 -intx251 tointegral 56.7 -> 56 -intx252 tointegral 57.7 -> 57 -intx253 tointegral -55.7 -> -55 -intx254 tointegral -56.7 -> -56 -intx255 tointegral -57.7 -> -57 - -rounding: ceiling - -intx260 tointegral 55.3 -> 56 -intx261 tointegral 56.3 -> 57 -intx262 tointegral 57.3 -> 58 -intx263 tointegral -55.3 -> -55 -intx264 tointegral -56.3 -> -56 -intx265 tointegral -57.3 -> -57 - -rounding: floor - -intx270 tointegral 55.7 -> 55 -intx271 tointegral 56.7 -> 56 -intx272 tointegral 57.7 -> 57 -intx273 tointegral -55.7 -> -56 -intx274 tointegral -56.7 -> -57 -intx275 tointegral -57.7 -> -58 - diff --git a/qdecimal/test/tc_full/tointegralx.decTest b/qdecimal/test/tc_full/tointegralx.decTest deleted file mode 100644 index 51a8153..0000000 --- a/qdecimal/test/tc_full/tointegralx.decTest +++ /dev/null @@ -1,255 +0,0 @@ ------------------------------------------------------------------------- --- tointegralx.decTest -- round decimal to integral value, exact -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests tests the extended specification 'round-to-integral --- value' operation (from IEEE 854, later modified in 754r). --- All non-zero results are defined as being those from either copy or --- quantize, so those are assumed to have been tested. - --- This tests toIntegraExact, which may set Inexact - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - -intxx001 tointegralx 0 -> 0 -intxx002 tointegralx 0.0 -> 0 -intxx003 tointegralx 0.1 -> 0 Inexact Rounded -intxx004 tointegralx 0.2 -> 0 Inexact Rounded -intxx005 tointegralx 0.3 -> 0 Inexact Rounded -intxx006 tointegralx 0.4 -> 0 Inexact Rounded -intxx007 tointegralx 0.5 -> 1 Inexact Rounded -intxx008 tointegralx 0.6 -> 1 Inexact Rounded -intxx009 tointegralx 0.7 -> 1 Inexact Rounded -intxx010 tointegralx 0.8 -> 1 Inexact Rounded -intxx011 tointegralx 0.9 -> 1 Inexact Rounded -intxx012 tointegralx 1 -> 1 -intxx013 tointegralx 1.0 -> 1 Rounded -intxx014 tointegralx 1.1 -> 1 Inexact Rounded -intxx015 tointegralx 1.2 -> 1 Inexact Rounded -intxx016 tointegralx 1.3 -> 1 Inexact Rounded -intxx017 tointegralx 1.4 -> 1 Inexact Rounded -intxx018 tointegralx 1.5 -> 2 Inexact Rounded -intxx019 tointegralx 1.6 -> 2 Inexact Rounded -intxx020 tointegralx 1.7 -> 2 Inexact Rounded -intxx021 tointegralx 1.8 -> 2 Inexact Rounded -intxx022 tointegralx 1.9 -> 2 Inexact Rounded --- negatives -intxx031 tointegralx -0 -> -0 -intxx032 tointegralx -0.0 -> -0 -intxx033 tointegralx -0.1 -> -0 Inexact Rounded -intxx034 tointegralx -0.2 -> -0 Inexact Rounded -intxx035 tointegralx -0.3 -> -0 Inexact Rounded -intxx036 tointegralx -0.4 -> -0 Inexact Rounded -intxx037 tointegralx -0.5 -> -1 Inexact Rounded -intxx038 tointegralx -0.6 -> -1 Inexact Rounded -intxx039 tointegralx -0.7 -> -1 Inexact Rounded -intxx040 tointegralx -0.8 -> -1 Inexact Rounded -intxx041 tointegralx -0.9 -> -1 Inexact Rounded -intxx042 tointegralx -1 -> -1 -intxx043 tointegralx -1.0 -> -1 Rounded -intxx044 tointegralx -1.1 -> -1 Inexact Rounded -intxx045 tointegralx -1.2 -> -1 Inexact Rounded -intxx046 tointegralx -1.3 -> -1 Inexact Rounded -intxx047 tointegralx -1.4 -> -1 Inexact Rounded -intxx048 tointegralx -1.5 -> -2 Inexact Rounded -intxx049 tointegralx -1.6 -> -2 Inexact Rounded -intxx050 tointegralx -1.7 -> -2 Inexact Rounded -intxx051 tointegralx -1.8 -> -2 Inexact Rounded -intxx052 tointegralx -1.9 -> -2 Inexact Rounded --- next two would be NaN using quantize(x, 0) -intxx053 tointegralx 10E+30 -> 1.0E+31 -intxx054 tointegralx -10E+30 -> -1.0E+31 - --- numbers around precision -precision: 9 -intxx060 tointegralx '56267E-10' -> '0' Inexact Rounded -intxx061 tointegralx '56267E-5' -> '1' Inexact Rounded -intxx062 tointegralx '56267E-2' -> '563' Inexact Rounded -intxx063 tointegralx '56267E-1' -> '5627' Inexact Rounded -intxx065 tointegralx '56267E-0' -> '56267' -intxx066 tointegralx '56267E+0' -> '56267' -intxx067 tointegralx '56267E+1' -> '5.6267E+5' -intxx068 tointegralx '56267E+2' -> '5.6267E+6' -intxx069 tointegralx '56267E+3' -> '5.6267E+7' -intxx070 tointegralx '56267E+4' -> '5.6267E+8' -intxx071 tointegralx '56267E+5' -> '5.6267E+9' -intxx072 tointegralx '56267E+6' -> '5.6267E+10' -intxx073 tointegralx '1.23E+96' -> '1.23E+96' -intxx074 tointegralx '1.23E+384' -> '1.23E+384' -intxx075 tointegralx '1.23E+999' -> '1.23E+999' - -intxx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded -intxx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded -intxx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded -intxx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded -intxx085 tointegralx '-56267E-0' -> '-56267' -intxx086 tointegralx '-56267E+0' -> '-56267' -intxx087 tointegralx '-56267E+1' -> '-5.6267E+5' -intxx088 tointegralx '-56267E+2' -> '-5.6267E+6' -intxx089 tointegralx '-56267E+3' -> '-5.6267E+7' -intxx090 tointegralx '-56267E+4' -> '-5.6267E+8' -intxx091 tointegralx '-56267E+5' -> '-5.6267E+9' -intxx092 tointegralx '-56267E+6' -> '-5.6267E+10' -intxx093 tointegralx '-1.23E+96' -> '-1.23E+96' -intxx094 tointegralx '-1.23E+384' -> '-1.23E+384' -intxx095 tointegralx '-1.23E+999' -> '-1.23E+999' - --- subnormal inputs -intxx100 tointegralx 1E-999 -> 0 Inexact Rounded -intxx101 tointegralx 0.1E-999 -> 0 Inexact Rounded -intxx102 tointegralx 0.01E-999 -> 0 Inexact Rounded -intxx103 tointegralx 0E-999 -> 0 - --- specials and zeros -intxx120 tointegralx 'Inf' -> Infinity -intxx121 tointegralx '-Inf' -> -Infinity -intxx122 tointegralx NaN -> NaN -intxx123 tointegralx sNaN -> NaN Invalid_operation -intxx124 tointegralx 0 -> 0 -intxx125 tointegralx -0 -> -0 -intxx126 tointegralx 0.000 -> 0 -intxx127 tointegralx 0.00 -> 0 -intxx128 tointegralx 0.0 -> 0 -intxx129 tointegralx 0 -> 0 -intxx130 tointegralx 0E-3 -> 0 -intxx131 tointegralx 0E-2 -> 0 -intxx132 tointegralx 0E-1 -> 0 -intxx133 tointegralx 0E-0 -> 0 -intxx134 tointegralx 0E+1 -> 0E+1 -intxx135 tointegralx 0E+2 -> 0E+2 -intxx136 tointegralx 0E+3 -> 0E+3 -intxx137 tointegralx 0E+4 -> 0E+4 -intxx138 tointegralx 0E+5 -> 0E+5 -intxx139 tointegralx -0.000 -> -0 -intxx140 tointegralx -0.00 -> -0 -intxx141 tointegralx -0.0 -> -0 -intxx142 tointegralx -0 -> -0 -intxx143 tointegralx -0E-3 -> -0 -intxx144 tointegralx -0E-2 -> -0 -intxx145 tointegralx -0E-1 -> -0 -intxx146 tointegralx -0E-0 -> -0 -intxx147 tointegralx -0E+1 -> -0E+1 -intxx148 tointegralx -0E+2 -> -0E+2 -intxx149 tointegralx -0E+3 -> -0E+3 -intxx150 tointegralx -0E+4 -> -0E+4 -intxx151 tointegralx -0E+5 -> -0E+5 --- propagating NaNs -intxx152 tointegralx NaN808 -> NaN808 -intxx153 tointegralx sNaN080 -> NaN80 Invalid_operation -intxx154 tointegralx -NaN808 -> -NaN808 -intxx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation -intxx156 tointegralx -NaN -> -NaN -intxx157 tointegralx -sNaN -> -NaN Invalid_operation - --- examples -rounding: half_up -precision: 9 -intxx200 tointegralx 2.1 -> 2 Inexact Rounded -intxx201 tointegralx 100 -> 100 -intxx202 tointegralx 100.0 -> 100 Rounded -intxx203 tointegralx 101.5 -> 102 Inexact Rounded -intxx204 tointegralx -101.5 -> -102 Inexact Rounded -intxx205 tointegralx 10E+5 -> 1.0E+6 -intxx206 tointegralx 7.89E+77 -> 7.89E+77 -intxx207 tointegralx -Inf -> -Infinity - - --- all rounding modes -rounding: half_even - -intxx210 tointegralx 55.5 -> 56 Inexact Rounded -intxx211 tointegralx 56.5 -> 56 Inexact Rounded -intxx212 tointegralx 57.5 -> 58 Inexact Rounded -intxx213 tointegralx -55.5 -> -56 Inexact Rounded -intxx214 tointegralx -56.5 -> -56 Inexact Rounded -intxx215 tointegralx -57.5 -> -58 Inexact Rounded - -rounding: half_up - -intxx220 tointegralx 55.5 -> 56 Inexact Rounded -intxx221 tointegralx 56.5 -> 57 Inexact Rounded -intxx222 tointegralx 57.5 -> 58 Inexact Rounded -intxx223 tointegralx -55.5 -> -56 Inexact Rounded -intxx224 tointegralx -56.5 -> -57 Inexact Rounded -intxx225 tointegralx -57.5 -> -58 Inexact Rounded - -rounding: half_down - -intxx230 tointegralx 55.5 -> 55 Inexact Rounded -intxx231 tointegralx 56.5 -> 56 Inexact Rounded -intxx232 tointegralx 57.5 -> 57 Inexact Rounded -intxx233 tointegralx -55.5 -> -55 Inexact Rounded -intxx234 tointegralx -56.5 -> -56 Inexact Rounded -intxx235 tointegralx -57.5 -> -57 Inexact Rounded - -rounding: up - -intxx240 tointegralx 55.3 -> 56 Inexact Rounded -intxx241 tointegralx 56.3 -> 57 Inexact Rounded -intxx242 tointegralx 57.3 -> 58 Inexact Rounded -intxx243 tointegralx -55.3 -> -56 Inexact Rounded -intxx244 tointegralx -56.3 -> -57 Inexact Rounded -intxx245 tointegralx -57.3 -> -58 Inexact Rounded - -rounding: down - -intxx250 tointegralx 55.7 -> 55 Inexact Rounded -intxx251 tointegralx 56.7 -> 56 Inexact Rounded -intxx252 tointegralx 57.7 -> 57 Inexact Rounded -intxx253 tointegralx -55.7 -> -55 Inexact Rounded -intxx254 tointegralx -56.7 -> -56 Inexact Rounded -intxx255 tointegralx -57.7 -> -57 Inexact Rounded - -rounding: ceiling - -intxx260 tointegralx 55.3 -> 56 Inexact Rounded -intxx261 tointegralx 56.3 -> 57 Inexact Rounded -intxx262 tointegralx 57.3 -> 58 Inexact Rounded -intxx263 tointegralx -55.3 -> -55 Inexact Rounded -intxx264 tointegralx -56.3 -> -56 Inexact Rounded -intxx265 tointegralx -57.3 -> -57 Inexact Rounded - -rounding: floor - -intxx270 tointegralx 55.7 -> 55 Inexact Rounded -intxx271 tointegralx 56.7 -> 56 Inexact Rounded -intxx272 tointegralx 57.7 -> 57 Inexact Rounded -intxx273 tointegralx -55.7 -> -56 Inexact Rounded -intxx274 tointegralx -56.7 -> -57 Inexact Rounded -intxx275 tointegralx -57.7 -> -58 Inexact Rounded - --- Int and uInt32 edge values for testing conversions -precision: 16 -intxx300 tointegralx -2147483646 -> -2147483646 -intxx301 tointegralx -2147483647 -> -2147483647 -intxx302 tointegralx -2147483648 -> -2147483648 -intxx303 tointegralx -2147483649 -> -2147483649 -intxx304 tointegralx 2147483646 -> 2147483646 -intxx305 tointegralx 2147483647 -> 2147483647 -intxx306 tointegralx 2147483648 -> 2147483648 -intxx307 tointegralx 2147483649 -> 2147483649 -intxx308 tointegralx 4294967294 -> 4294967294 -intxx309 tointegralx 4294967295 -> 4294967295 -intxx310 tointegralx 4294967296 -> 4294967296 -intxx311 tointegralx 4294967297 -> 4294967297 diff --git a/qdecimal/test/tc_full/trim.decTest b/qdecimal/test/tc_full/trim.decTest deleted file mode 100644 index 82d6f70..0000000 --- a/qdecimal/test/tc_full/trim.decTest +++ /dev/null @@ -1,152 +0,0 @@ ------------------------------------------------------------------------- --- trim.decTest -- remove insignificant trailing zeros -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -trmx001 trim '1' -> '1' -trmx002 trim '-1' -> '-1' -trmx003 trim '1.00' -> '1' -trmx004 trim '-1.00' -> '-1' -trmx005 trim '0' -> '0' -trmx006 trim '0.00' -> '0' -trmx007 trim '00.0' -> '0' -trmx008 trim '00.00' -> '0' -trmx009 trim '00' -> '0' - -trmx010 trim '-2' -> '-2' -trmx011 trim '2' -> '2' -trmx012 trim '-2.00' -> '-2' -trmx013 trim '2.00' -> '2' -trmx014 trim '-0' -> '-0' -trmx015 trim '-0.00' -> '-0' -trmx016 trim '-00.0' -> '-0' -trmx017 trim '-00.00' -> '-0' -trmx018 trim '-00' -> '-0' -trmx019 trim '0E+5' -> '0' -trmx020 trim '-0E+1' -> '-0' - -trmx030 trim '+0.1' -> '0.1' -trmx031 trim '-0.1' -> '-0.1' -trmx032 trim '+0.01' -> '0.01' -trmx033 trim '-0.01' -> '-0.01' -trmx034 trim '+0.001' -> '0.001' -trmx035 trim '-0.001' -> '-0.001' -trmx036 trim '+0.000001' -> '0.000001' -trmx037 trim '-0.000001' -> '-0.000001' -trmx038 trim '+0.000000000001' -> '1E-12' -trmx039 trim '-0.000000000001' -> '-1E-12' - -trmx041 trim 1.1 -> 1.1 -trmx042 trim 1.10 -> 1.1 -trmx043 trim 1.100 -> 1.1 -trmx044 trim 1.110 -> 1.11 -trmx045 trim -1.1 -> -1.1 -trmx046 trim -1.10 -> -1.1 -trmx047 trim -1.100 -> -1.1 -trmx048 trim -1.110 -> -1.11 -trmx049 trim 9.9 -> 9.9 -trmx050 trim 9.90 -> 9.9 -trmx051 trim 9.900 -> 9.9 -trmx052 trim 9.990 -> 9.99 -trmx053 trim -9.9 -> -9.9 -trmx054 trim -9.90 -> -9.9 -trmx055 trim -9.900 -> -9.9 -trmx056 trim -9.990 -> -9.99 - --- some insignificant trailing fractional zeros -trmx060 trim 10.0 -> 10 -trmx061 trim 10.00 -> 10 -trmx062 trim 100.0 -> 100 -trmx063 trim 100.00 -> 100 -trmx064 trim 1.1000E+3 -> 1100 -trmx065 trim 1.10000E+3 -> 1100 -trmx066 trim -10.0 -> -10 -trmx067 trim -10.00 -> -10 -trmx068 trim -100.0 -> -100 -trmx069 trim -100.00 -> -100 -trmx070 trim -1.1000E+3 -> -1100 -trmx071 trim -1.10000E+3 -> -1100 - --- some insignificant trailing zeros with positive exponent -trmx080 trim 10E+1 -> 1E+2 -trmx081 trim 100E+1 -> 1E+3 -trmx082 trim 1.0E+2 -> 1E+2 -trmx083 trim 1.0E+3 -> 1E+3 -trmx084 trim 1.1E+3 -> 1.1E+3 -trmx085 trim 1.00E+3 -> 1E+3 -trmx086 trim 1.10E+3 -> 1.1E+3 -trmx087 trim -10E+1 -> -1E+2 -trmx088 trim -100E+1 -> -1E+3 -trmx089 trim -1.0E+2 -> -1E+2 -trmx090 trim -1.0E+3 -> -1E+3 -trmx091 trim -1.1E+3 -> -1.1E+3 -trmx092 trim -1.00E+3 -> -1E+3 -trmx093 trim -1.10E+3 -> -1.1E+3 - --- some significant trailing zeros -trmx100 trim 11 -> 11 -trmx101 trim 10 -> 10 -trmx102 trim 10. -> 10 -trmx103 trim 1.1E+1 -> 11 -trmx104 trim 1.0E+1 -> 10 -trmx105 trim 1.10E+2 -> 110 -trmx106 trim 1.00E+2 -> 100 -trmx107 trim 1.100E+3 -> 1100 -trmx108 trim 1.000E+3 -> 1000 -trmx109 trim 1.000000E+6 -> 1000000 -trmx110 trim -11 -> -11 -trmx111 trim -10 -> -10 -trmx112 trim -10. -> -10 -trmx113 trim -1.1E+1 -> -11 -trmx114 trim -1.0E+1 -> -10 -trmx115 trim -1.10E+2 -> -110 -trmx116 trim -1.00E+2 -> -100 -trmx117 trim -1.100E+3 -> -1100 -trmx118 trim -1.000E+3 -> -1000 -trmx119 trim -1.00000E+5 -> -100000 -trmx120 trim -1.000000E+6 -> -1000000 - --- examples from decArith -trmx140 trim '2.1' -> '2.1' -trmx141 trim '-2.0' -> '-2' -trmx142 trim '1.200' -> '1.2' -trmx143 trim '-120' -> '-120' -trmx144 trim '120.00' -> '120' -trmx145 trim '0.00' -> '0' - --- utilities pass through specials without raising exceptions -trmx320 trim 'Inf' -> 'Infinity' -trmx321 trim '-Inf' -> '-Infinity' -trmx322 trim NaN -> NaN -trmx323 trim sNaN -> sNaN -trmx324 trim NaN999 -> NaN999 -trmx325 trim sNaN777 -> sNaN777 -trmx326 trim -NaN -> -NaN -trmx327 trim -sNaN -> -sNaN -trmx328 trim -NaN999 -> -NaN999 -trmx329 trim -sNaN777 -> -sNaN777 - --- Null test -trmx900 trim # -> NaN Invalid_operation diff --git a/qdecimal/test/tc_full/xor.decTest b/qdecimal/test/tc_full/xor.decTest deleted file mode 100644 index 697f8f2..0000000 --- a/qdecimal/test/tc_full/xor.decTest +++ /dev/null @@ -1,335 +0,0 @@ ------------------------------------------------------------------------- --- xor.decTest -- digitwise logical XOR -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 1 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - --- Sanity check (truth table) -xorx001 xor 0 0 -> 0 -xorx002 xor 0 1 -> 1 -xorx003 xor 1 0 -> 1 -xorx004 xor 1 1 -> 0 -xorx005 xor 1100 1010 -> 110 -xorx006 xor 1111 10 -> 1101 --- and at msd and msd-1 -xorx010 xor 000000000 000000000 -> 0 -xorx011 xor 000000000 100000000 -> 100000000 -xorx012 xor 100000000 000000000 -> 100000000 -xorx013 xor 100000000 100000000 -> 0 -xorx014 xor 000000000 000000000 -> 0 -xorx015 xor 000000000 010000000 -> 10000000 -xorx016 xor 010000000 000000000 -> 10000000 -xorx017 xor 010000000 010000000 -> 0 - --- Various lengths --- 123456789 123456789 123456789 -xorx021 xor 111111111 111111111 -> 0 -xorx022 xor 111111111111 111111111 -> 0 -xorx023 xor 11111111 11111111 -> 0 -xorx025 xor 1111111 1111111 -> 0 -xorx026 xor 111111 111111 -> 0 -xorx027 xor 11111 11111 -> 0 -xorx028 xor 1111 1111 -> 0 -xorx029 xor 111 111 -> 0 -xorx031 xor 11 11 -> 0 -xorx032 xor 1 1 -> 0 -xorx033 xor 111111111111 1111111111 -> 0 -xorx034 xor 11111111111 11111111111 -> 0 -xorx035 xor 1111111111 111111111111 -> 0 -xorx036 xor 111111111 1111111111111 -> 0 - -xorx040 xor 111111111 111111111111 -> 0 -xorx041 xor 11111111 111111111111 -> 100000000 -xorx042 xor 11111111 111111111 -> 100000000 -xorx043 xor 1111111 100000010 -> 101111101 -xorx044 xor 111111 100000100 -> 100111011 -xorx045 xor 11111 100001000 -> 100010111 -xorx046 xor 1111 100010000 -> 100011111 -xorx047 xor 111 100100000 -> 100100111 -xorx048 xor 11 101000000 -> 101000011 -xorx049 xor 1 110000000 -> 110000001 - -xorx050 xor 1111111111 1 -> 111111110 -xorx051 xor 111111111 1 -> 111111110 -xorx052 xor 11111111 1 -> 11111110 -xorx053 xor 1111111 1 -> 1111110 -xorx054 xor 111111 1 -> 111110 -xorx055 xor 11111 1 -> 11110 -xorx056 xor 1111 1 -> 1110 -xorx057 xor 111 1 -> 110 -xorx058 xor 11 1 -> 10 -xorx059 xor 1 1 -> 0 - -xorx060 xor 1111111111 0 -> 111111111 -xorx061 xor 111111111 0 -> 111111111 -xorx062 xor 11111111 0 -> 11111111 -xorx063 xor 1111111 0 -> 1111111 -xorx064 xor 111111 0 -> 111111 -xorx065 xor 11111 0 -> 11111 -xorx066 xor 1111 0 -> 1111 -xorx067 xor 111 0 -> 111 -xorx068 xor 11 0 -> 11 -xorx069 xor 1 0 -> 1 - -xorx070 xor 1 1111111111 -> 111111110 -xorx071 xor 1 111111111 -> 111111110 -xorx072 xor 1 11111111 -> 11111110 -xorx073 xor 1 1111111 -> 1111110 -xorx074 xor 1 111111 -> 111110 -xorx075 xor 1 11111 -> 11110 -xorx076 xor 1 1111 -> 1110 -xorx077 xor 1 111 -> 110 -xorx078 xor 1 11 -> 10 -xorx079 xor 1 1 -> 0 - -xorx080 xor 0 1111111111 -> 111111111 -xorx081 xor 0 111111111 -> 111111111 -xorx082 xor 0 11111111 -> 11111111 -xorx083 xor 0 1111111 -> 1111111 -xorx084 xor 0 111111 -> 111111 -xorx085 xor 0 11111 -> 11111 -xorx086 xor 0 1111 -> 1111 -xorx087 xor 0 111 -> 111 -xorx088 xor 0 11 -> 11 -xorx089 xor 0 1 -> 1 - -xorx090 xor 011111111 111101111 -> 100010000 -xorx091 xor 101111111 111101111 -> 10010000 -xorx092 xor 110111111 111101111 -> 1010000 -xorx093 xor 111011111 111101111 -> 110000 -xorx094 xor 111101111 111101111 -> 0 -xorx095 xor 111110111 111101111 -> 11000 -xorx096 xor 111111011 111101111 -> 10100 -xorx097 xor 111111101 111101111 -> 10010 -xorx098 xor 111111110 111101111 -> 10001 - -xorx100 xor 111101111 011111111 -> 100010000 -xorx101 xor 111101111 101111111 -> 10010000 -xorx102 xor 111101111 110111111 -> 1010000 -xorx103 xor 111101111 111011111 -> 110000 -xorx104 xor 111101111 111101111 -> 0 -xorx105 xor 111101111 111110111 -> 11000 -xorx106 xor 111101111 111111011 -> 10100 -xorx107 xor 111101111 111111101 -> 10010 -xorx108 xor 111101111 111111110 -> 10001 - --- non-0/1 should not be accepted, nor should signs -xorx220 xor 111111112 111111111 -> NaN Invalid_operation -xorx221 xor 333333333 333333333 -> NaN Invalid_operation -xorx222 xor 555555555 555555555 -> NaN Invalid_operation -xorx223 xor 777777777 777777777 -> NaN Invalid_operation -xorx224 xor 999999999 999999999 -> NaN Invalid_operation -xorx225 xor 222222222 999999999 -> NaN Invalid_operation -xorx226 xor 444444444 999999999 -> NaN Invalid_operation -xorx227 xor 666666666 999999999 -> NaN Invalid_operation -xorx228 xor 888888888 999999999 -> NaN Invalid_operation -xorx229 xor 999999999 222222222 -> NaN Invalid_operation -xorx230 xor 999999999 444444444 -> NaN Invalid_operation -xorx231 xor 999999999 666666666 -> NaN Invalid_operation -xorx232 xor 999999999 888888888 -> NaN Invalid_operation --- a few randoms -xorx240 xor 567468689 -934981942 -> NaN Invalid_operation -xorx241 xor 567367689 934981942 -> NaN Invalid_operation -xorx242 xor -631917772 -706014634 -> NaN Invalid_operation -xorx243 xor -756253257 138579234 -> NaN Invalid_operation -xorx244 xor 835590149 567435400 -> NaN Invalid_operation --- test MSD -xorx250 xor 200000000 100000000 -> NaN Invalid_operation -xorx251 xor 700000000 100000000 -> NaN Invalid_operation -xorx252 xor 800000000 100000000 -> NaN Invalid_operation -xorx253 xor 900000000 100000000 -> NaN Invalid_operation -xorx254 xor 200000000 000000000 -> NaN Invalid_operation -xorx255 xor 700000000 000000000 -> NaN Invalid_operation -xorx256 xor 800000000 000000000 -> NaN Invalid_operation -xorx257 xor 900000000 000000000 -> NaN Invalid_operation -xorx258 xor 100000000 200000000 -> NaN Invalid_operation -xorx259 xor 100000000 700000000 -> NaN Invalid_operation -xorx260 xor 100000000 800000000 -> NaN Invalid_operation -xorx261 xor 100000000 900000000 -> NaN Invalid_operation -xorx262 xor 000000000 200000000 -> NaN Invalid_operation -xorx263 xor 000000000 700000000 -> NaN Invalid_operation -xorx264 xor 000000000 800000000 -> NaN Invalid_operation -xorx265 xor 000000000 900000000 -> NaN Invalid_operation --- test MSD-1 -xorx270 xor 020000000 100000000 -> NaN Invalid_operation -xorx271 xor 070100000 100000000 -> NaN Invalid_operation -xorx272 xor 080010000 100000001 -> NaN Invalid_operation -xorx273 xor 090001000 100000010 -> NaN Invalid_operation -xorx274 xor 100000100 020010100 -> NaN Invalid_operation -xorx275 xor 100000000 070001000 -> NaN Invalid_operation -xorx276 xor 100000010 080010100 -> NaN Invalid_operation -xorx277 xor 100000000 090000010 -> NaN Invalid_operation --- test LSD -xorx280 xor 001000002 100000000 -> NaN Invalid_operation -xorx281 xor 000000007 100000000 -> NaN Invalid_operation -xorx282 xor 000000008 100000000 -> NaN Invalid_operation -xorx283 xor 000000009 100000000 -> NaN Invalid_operation -xorx284 xor 100000000 000100002 -> NaN Invalid_operation -xorx285 xor 100100000 001000007 -> NaN Invalid_operation -xorx286 xor 100010000 010000008 -> NaN Invalid_operation -xorx287 xor 100001000 100000009 -> NaN Invalid_operation --- test Middie -xorx288 xor 001020000 100000000 -> NaN Invalid_operation -xorx289 xor 000070001 100000000 -> NaN Invalid_operation -xorx290 xor 000080000 100010000 -> NaN Invalid_operation -xorx291 xor 000090000 100001000 -> NaN Invalid_operation -xorx292 xor 100000010 000020100 -> NaN Invalid_operation -xorx293 xor 100100000 000070010 -> NaN Invalid_operation -xorx294 xor 100010100 000080001 -> NaN Invalid_operation -xorx295 xor 100001000 000090000 -> NaN Invalid_operation --- signs -xorx296 xor -100001000 -000000000 -> NaN Invalid_operation -xorx297 xor -100001000 000010000 -> NaN Invalid_operation -xorx298 xor 100001000 -000000000 -> NaN Invalid_operation -xorx299 xor 100001000 000011000 -> 100010000 - --- Nmax, Nmin, Ntiny -xorx331 xor 2 9.99999999E+999 -> NaN Invalid_operation -xorx332 xor 3 1E-999 -> NaN Invalid_operation -xorx333 xor 4 1.00000000E-999 -> NaN Invalid_operation -xorx334 xor 5 1E-1007 -> NaN Invalid_operation -xorx335 xor 6 -1E-1007 -> NaN Invalid_operation -xorx336 xor 7 -1.00000000E-999 -> NaN Invalid_operation -xorx337 xor 8 -1E-999 -> NaN Invalid_operation -xorx338 xor 9 -9.99999999E+999 -> NaN Invalid_operation -xorx341 xor 9.99999999E+999 -18 -> NaN Invalid_operation -xorx342 xor 1E-999 01 -> NaN Invalid_operation -xorx343 xor 1.00000000E-999 -18 -> NaN Invalid_operation -xorx344 xor 1E-1007 18 -> NaN Invalid_operation -xorx345 xor -1E-1007 -10 -> NaN Invalid_operation -xorx346 xor -1.00000000E-999 18 -> NaN Invalid_operation -xorx347 xor -1E-999 10 -> NaN Invalid_operation -xorx348 xor -9.99999999E+999 -18 -> NaN Invalid_operation - --- A few other non-integers -xorx361 xor 1.0 1 -> NaN Invalid_operation -xorx362 xor 1E+1 1 -> NaN Invalid_operation -xorx363 xor 0.0 1 -> NaN Invalid_operation -xorx364 xor 0E+1 1 -> NaN Invalid_operation -xorx365 xor 9.9 1 -> NaN Invalid_operation -xorx366 xor 9E+1 1 -> NaN Invalid_operation -xorx371 xor 0 1.0 -> NaN Invalid_operation -xorx372 xor 0 1E+1 -> NaN Invalid_operation -xorx373 xor 0 0.0 -> NaN Invalid_operation -xorx374 xor 0 0E+1 -> NaN Invalid_operation -xorx375 xor 0 9.9 -> NaN Invalid_operation -xorx376 xor 0 9E+1 -> NaN Invalid_operation - --- All Specials are in error -xorx780 xor -Inf -Inf -> NaN Invalid_operation -xorx781 xor -Inf -1000 -> NaN Invalid_operation -xorx782 xor -Inf -1 -> NaN Invalid_operation -xorx783 xor -Inf -0 -> NaN Invalid_operation -xorx784 xor -Inf 0 -> NaN Invalid_operation -xorx785 xor -Inf 1 -> NaN Invalid_operation -xorx786 xor -Inf 1000 -> NaN Invalid_operation -xorx787 xor -1000 -Inf -> NaN Invalid_operation -xorx788 xor -Inf -Inf -> NaN Invalid_operation -xorx789 xor -1 -Inf -> NaN Invalid_operation -xorx790 xor -0 -Inf -> NaN Invalid_operation -xorx791 xor 0 -Inf -> NaN Invalid_operation -xorx792 xor 1 -Inf -> NaN Invalid_operation -xorx793 xor 1000 -Inf -> NaN Invalid_operation -xorx794 xor Inf -Inf -> NaN Invalid_operation - -xorx800 xor Inf -Inf -> NaN Invalid_operation -xorx801 xor Inf -1000 -> NaN Invalid_operation -xorx802 xor Inf -1 -> NaN Invalid_operation -xorx803 xor Inf -0 -> NaN Invalid_operation -xorx804 xor Inf 0 -> NaN Invalid_operation -xorx805 xor Inf 1 -> NaN Invalid_operation -xorx806 xor Inf 1000 -> NaN Invalid_operation -xorx807 xor Inf Inf -> NaN Invalid_operation -xorx808 xor -1000 Inf -> NaN Invalid_operation -xorx809 xor -Inf Inf -> NaN Invalid_operation -xorx810 xor -1 Inf -> NaN Invalid_operation -xorx811 xor -0 Inf -> NaN Invalid_operation -xorx812 xor 0 Inf -> NaN Invalid_operation -xorx813 xor 1 Inf -> NaN Invalid_operation -xorx814 xor 1000 Inf -> NaN Invalid_operation -xorx815 xor Inf Inf -> NaN Invalid_operation - -xorx821 xor NaN -Inf -> NaN Invalid_operation -xorx822 xor NaN -1000 -> NaN Invalid_operation -xorx823 xor NaN -1 -> NaN Invalid_operation -xorx824 xor NaN -0 -> NaN Invalid_operation -xorx825 xor NaN 0 -> NaN Invalid_operation -xorx826 xor NaN 1 -> NaN Invalid_operation -xorx827 xor NaN 1000 -> NaN Invalid_operation -xorx828 xor NaN Inf -> NaN Invalid_operation -xorx829 xor NaN NaN -> NaN Invalid_operation -xorx830 xor -Inf NaN -> NaN Invalid_operation -xorx831 xor -1000 NaN -> NaN Invalid_operation -xorx832 xor -1 NaN -> NaN Invalid_operation -xorx833 xor -0 NaN -> NaN Invalid_operation -xorx834 xor 0 NaN -> NaN Invalid_operation -xorx835 xor 1 NaN -> NaN Invalid_operation -xorx836 xor 1000 NaN -> NaN Invalid_operation -xorx837 xor Inf NaN -> NaN Invalid_operation - -xorx841 xor sNaN -Inf -> NaN Invalid_operation -xorx842 xor sNaN -1000 -> NaN Invalid_operation -xorx843 xor sNaN -1 -> NaN Invalid_operation -xorx844 xor sNaN -0 -> NaN Invalid_operation -xorx845 xor sNaN 0 -> NaN Invalid_operation -xorx846 xor sNaN 1 -> NaN Invalid_operation -xorx847 xor sNaN 1000 -> NaN Invalid_operation -xorx848 xor sNaN NaN -> NaN Invalid_operation -xorx849 xor sNaN sNaN -> NaN Invalid_operation -xorx850 xor NaN sNaN -> NaN Invalid_operation -xorx851 xor -Inf sNaN -> NaN Invalid_operation -xorx852 xor -1000 sNaN -> NaN Invalid_operation -xorx853 xor -1 sNaN -> NaN Invalid_operation -xorx854 xor -0 sNaN -> NaN Invalid_operation -xorx855 xor 0 sNaN -> NaN Invalid_operation -xorx856 xor 1 sNaN -> NaN Invalid_operation -xorx857 xor 1000 sNaN -> NaN Invalid_operation -xorx858 xor Inf sNaN -> NaN Invalid_operation -xorx859 xor NaN sNaN -> NaN Invalid_operation - --- propagating NaNs -xorx861 xor NaN1 -Inf -> NaN Invalid_operation -xorx862 xor +NaN2 -1000 -> NaN Invalid_operation -xorx863 xor NaN3 1000 -> NaN Invalid_operation -xorx864 xor NaN4 Inf -> NaN Invalid_operation -xorx865 xor NaN5 +NaN6 -> NaN Invalid_operation -xorx866 xor -Inf NaN7 -> NaN Invalid_operation -xorx867 xor -1000 NaN8 -> NaN Invalid_operation -xorx868 xor 1000 NaN9 -> NaN Invalid_operation -xorx869 xor Inf +NaN10 -> NaN Invalid_operation -xorx871 xor sNaN11 -Inf -> NaN Invalid_operation -xorx872 xor sNaN12 -1000 -> NaN Invalid_operation -xorx873 xor sNaN13 1000 -> NaN Invalid_operation -xorx874 xor sNaN14 NaN17 -> NaN Invalid_operation -xorx875 xor sNaN15 sNaN18 -> NaN Invalid_operation -xorx876 xor NaN16 sNaN19 -> NaN Invalid_operation -xorx877 xor -Inf +sNaN20 -> NaN Invalid_operation -xorx878 xor -1000 sNaN21 -> NaN Invalid_operation -xorx879 xor 1000 sNaN22 -> NaN Invalid_operation -xorx880 xor Inf sNaN23 -> NaN Invalid_operation -xorx881 xor +NaN25 +sNaN24 -> NaN Invalid_operation -xorx882 xor -NaN26 NaN28 -> NaN Invalid_operation -xorx883 xor -sNaN27 sNaN29 -> NaN Invalid_operation -xorx884 xor 1000 -NaN30 -> NaN Invalid_operation -xorx885 xor 1000 -sNaN31 -> NaN Invalid_operation diff --git a/qdecimal/test/tc_subset/abs0.decTest b/qdecimal/test/tc_subset/abs0.decTest deleted file mode 100644 index 2c490a6..0000000 --- a/qdecimal/test/tc_subset/abs0.decTest +++ /dev/null @@ -1,117 +0,0 @@ ------------------------------------------------------------------------- --- abs0.decTest -- decimal absolute value (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests primarily tests the existence of the operator. --- Additon, subtraction, rounding, and more overflows are tested --- elsewhere. - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -abs001 abs '1' -> '1' -abs002 abs '-1' -> '1' -abs003 abs '1.00' -> '1.00' -abs004 abs '-1.00' -> '1.00' -abs005 abs '0' -> '0' -abs006 abs '0.00' -> '0' -abs007 abs '00.0' -> '0' -abs008 abs '00.00' -> '0' -abs009 abs '00' -> '0' - -abs010 abs '-2' -> '2' -abs011 abs '2' -> '2' -abs012 abs '-2.00' -> '2.00' -abs013 abs '2.00' -> '2.00' -abs014 abs '-0' -> '0' -abs015 abs '-0.00' -> '0' -abs016 abs '-00.0' -> '0' -abs017 abs '-00.00' -> '0' -abs018 abs '-00' -> '0' - -abs020 abs '-2000000' -> '2000000' -abs021 abs '2000000' -> '2000000' -precision: 7 -abs022 abs '-2000000' -> '2000000' -abs023 abs '2000000' -> '2000000' -precision: 6 -abs024 abs '-2000000' -> '2.00000E+6' Rounded -abs025 abs '2000000' -> '2.00000E+6' Rounded -precision: 3 -abs026 abs '-2000000' -> '2.00E+6' Rounded -abs027 abs '2000000' -> '2.00E+6' Rounded - -abs030 abs '+0.1' -> '0.1' -abs031 abs '-0.1' -> '0.1' -abs032 abs '+0.01' -> '0.01' -abs033 abs '-0.01' -> '0.01' -abs034 abs '+0.001' -> '0.001' -abs035 abs '-0.001' -> '0.001' -abs036 abs '+0.000001' -> '0.000001' -abs037 abs '-0.000001' -> '0.000001' -abs038 abs '+0.000000000001' -> '1E-12' -abs039 abs '-0.000000000001' -> '1E-12' - --- examples from decArith -precision: 9 -abs040 abs '2.1' -> '2.1' -abs041 abs '-100' -> '100' -abs042 abs '101.5' -> '101.5' -abs043 abs '-101.5' -> '101.5' - --- more fixed, potential LHS swaps/overlays if done by subtract 0 -precision: 9 -abs060 abs '-56267E-10' -> '0.0000056267' -abs061 abs '-56267E-5' -> '0.56267' -abs062 abs '-56267E-2' -> '562.67' -abs063 abs '-56267E-1' -> '5626.7' -abs065 abs '-56267E-0' -> '56267' - --- overflow tests [underflow not possible] -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -abs120 abs 9.999E+999999999 -> ? Inexact Lost_digits Overflow Rounded - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -abs301 abs 12345678000 -> 1.23456780E+10 Rounded -abs302 abs 1234567800 -> 1.23456780E+9 Rounded -abs303 abs 1234567890 -> 1.23456789E+9 Rounded -abs304 abs 1234567891 -> 1.23456789E+9 Inexact Lost_digits Rounded -abs305 abs 12345678901 -> 1.23456789E+10 Inexact Lost_digits Rounded -abs306 abs 1234567896 -> 1.23456790E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -abs321 abs 12345678000 -> 12345678000 -abs322 abs 1234567800 -> 1234567800 -abs323 abs 1234567890 -> 1234567890 -abs324 abs 1234567891 -> 1234567891 -abs325 abs 12345678901 -> 12345678901 -abs326 abs 1234567896 -> 1234567896 - --- Null tests -abs400 abs # -> ? Invalid_operation diff --git a/qdecimal/test/tc_subset/add0.decTest b/qdecimal/test/tc_subset/add0.decTest deleted file mode 100644 index 1ea6427..0000000 --- a/qdecimal/test/tc_subset/add0.decTest +++ /dev/null @@ -1,522 +0,0 @@ ------------------------------------------------------------------------- --- add0.decTest -- decimal addition (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- [first group are 'quick confidence check'] -add001 add 1 1 -> 2 -add002 add 2 3 -> 5 -add003 add '5.75' '3.3' -> 9.05 -add004 add '5' '-3' -> 2 -add005 add '-5' '-3' -> -8 -add006 add '-7' '2.5' -> -4.5 -add007 add '0.7' '0.3' -> 1.0 -add008 add '1.25' '1.25' -> 2.50 -add009 add '1.23456789' '1.00000000' -> '2.23456789' -add010 add '1.23456789' '1.00000011' -> '2.23456800' - -add011 add '0.4444444444' '0.5555555555' -> '1.00000000' Inexact Lost_digits Rounded -add012 add '0.4444444440' '0.5555555555' -> '1.00000000' Inexact Lost_digits Rounded -add013 add '0.4444444444' '0.5555555550' -> '0.999999999' Inexact Lost_digits Rounded -add014 add '0.44444444449' '0' -> '0.444444444' Inexact Lost_digits Rounded -add015 add '0.444444444499' '0' -> '0.444444444' Inexact Lost_digits Rounded -add016 add '0.4444444444999' '0' -> '0.444444444' Inexact Lost_digits Rounded -add017 add '0.4444444445000' '0' -> '0.444444445' Inexact Lost_digits Rounded -add018 add '0.4444444445001' '0' -> '0.444444445' Inexact Lost_digits Rounded -add019 add '0.444444444501' '0' -> '0.444444445' Inexact Lost_digits Rounded -add020 add '0.44444444451' '0' -> '0.444444445' Inexact Lost_digits Rounded - -add021 add 0 1 -> 1 -add022 add 1 1 -> 2 -add023 add 2 1 -> 3 -add024 add 3 1 -> 4 -add025 add 4 1 -> 5 -add026 add 5 1 -> 6 -add027 add 6 1 -> 7 -add028 add 7 1 -> 8 -add029 add 8 1 -> 9 -add030 add 9 1 -> 10 - --- some carrying effects -add031 add '0.9998' '0.0000' -> '0.9998' -add032 add '0.9998' '0.0001' -> '0.9999' -add033 add '0.9998' '0.0002' -> '1.0000' -add034 add '0.9998' '0.0003' -> '1.0001' - -add035 add '70' '10000e+9' -> '1.00000000E+13' Inexact Rounded -add036 add '700' '10000e+9' -> '1.00000000E+13' Inexact Rounded -add037 add '7000' '10000e+9' -> '1.00000000E+13' Inexact Rounded -add038 add '70000' '10000e+9' -> '1.00000001E+13' Inexact Rounded -add039 add '700000' '10000e+9' -> '1.00000007E+13' Rounded - --- symmetry: -add040 add '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded -add041 add '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded -add042 add '10000e+9' '7000' -> '1.00000000E+13' Inexact Rounded -add044 add '10000e+9' '70000' -> '1.00000001E+13' Inexact Rounded -add045 add '10000e+9' '700000' -> '1.00000007E+13' Rounded - --- same, higher precision -precision: 15 -add046 add '10000e+9' '7' -> '10000000000007' -add047 add '10000e+9' '70' -> '10000000000070' -add048 add '10000e+9' '700' -> '10000000000700' -add049 add '10000e+9' '7000' -> '10000000007000' -add050 add '10000e+9' '70000' -> '10000000070000' -add051 add '10000e+9' '700000' -> '10000000700000' - --- zero preservation -precision: 6 -add060 add '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded -add061 add 1 '0.0001' -> '1.0001' -add062 add 1 '0.00001' -> '1.00001' -add063 add 1 '0.000001' -> '1.00000' Inexact Rounded -add064 add 1 '0.0000001' -> '1.00000' Inexact Rounded -add065 add 1 '0.00000001' -> '1.00000' Inexact Rounded - --- some funny zeros [in case of bad signum] -add070 add 1 0 -> 1 -add071 add 1 0. -> 1 -add072 add 1 .0 -> 1 -add073 add 1 0.0 -> 1 -add074 add 0 1 -> 1 -add075 add 0. 1 -> 1 -add076 add .0 1 -> 1 -add077 add 0.0 1 -> 1 - -precision: 9 - --- some carries -add080 add 999999998 1 -> 999999999 -add081 add 999999999 1 -> 1.00000000E+9 Rounded -add082 add 99999999 1 -> 100000000 -add083 add 9999999 1 -> 10000000 -add084 add 999999 1 -> 1000000 -add085 add 99999 1 -> 100000 -add086 add 9999 1 -> 10000 -add087 add 999 1 -> 1000 -add088 add 99 1 -> 100 -add089 add 9 1 -> 10 - - --- more LHS swaps [were fixed] -add090 add '-56267E-10' 0 -> '-0.0000056267' -add091 add '-56267E-6' 0 -> '-0.056267' -add092 add '-56267E-5' 0 -> '-0.56267' -add093 add '-56267E-4' 0 -> '-5.6267' -add094 add '-56267E-3' 0 -> '-56.267' -add095 add '-56267E-2' 0 -> '-562.67' -add096 add '-56267E-1' 0 -> '-5626.7' -add097 add '-56267E-0' 0 -> '-56267' -add098 add '-5E-10' 0 -> '-5E-10' -add099 add '-5E-7' 0 -> '-5E-7' -add100 add '-5E-6' 0 -> '-0.000005' -add101 add '-5E-5' 0 -> '-0.00005' -add102 add '-5E-4' 0 -> '-0.0005' -add103 add '-5E-1' 0 -> '-0.5' -add104 add '-5E0' 0 -> '-5' -add105 add '-5E1' 0 -> '-50' -add106 add '-5E5' 0 -> '-500000' -add107 add '-5E8' 0 -> '-500000000' -add108 add '-5E9' 0 -> '-5E+9' -add109 add '-5E10' 0 -> '-5E+10' -add110 add '-5E11' 0 -> '-5E+11' -add111 add '-5E100' 0 -> '-5E+100' - --- more RHS swaps [were fixed] -add113 add 0 '-56267E-10' -> '-0.0000056267' -add114 add 0 '-56267E-6' -> '-0.056267' -add116 add 0 '-56267E-5' -> '-0.56267' -add117 add 0 '-56267E-4' -> '-5.6267' -add119 add 0 '-56267E-3' -> '-56.267' -add120 add 0 '-56267E-2' -> '-562.67' -add121 add 0 '-56267E-1' -> '-5626.7' -add122 add 0 '-56267E-0' -> '-56267' -add123 add 0 '-5E-10' -> '-5E-10' -add124 add 0 '-5E-7' -> '-5E-7' -add125 add 0 '-5E-6' -> '-0.000005' -add126 add 0 '-5E-5' -> '-0.00005' -add127 add 0 '-5E-4' -> '-0.0005' -add128 add 0 '-5E-1' -> '-0.5' -add129 add 0 '-5E0' -> '-5' -add130 add 0 '-5E1' -> '-50' -add131 add 0 '-5E5' -> '-500000' -add132 add 0 '-5E8' -> '-500000000' -add133 add 0 '-5E9' -> '-5E+9' -add134 add 0 '-5E10' -> '-5E+10' -add135 add 0 '-5E11' -> '-5E+11' -add136 add 0 '-5E100' -> '-5E+100' - --- [some of the next group are really constructor tests] -add140 add '00.0' 0 -> '0' -add141 add '0.00' 0 -> '0' -add142 add 0 '0.00' -> '0' -add143 add 0 '00.0' -> '0' - -add150 add '00.0' '0.00' -> '0' -add151 add '0.00' '00.0' -> '0' -add152 add '3' '.3' -> '3.3' -add153 add '3.' '.3' -> '3.3' -add154 add '3.0' '.3' -> '3.3' -add155 add '3.00' '.3' -> '3.30' -add156 add '3' '3' -> '6' -add157 add '3' '+3' -> '6' -add158 add '3' '-3' -> '0' -add159 add '0.3' '-0.3' -> '0' -add160 add '0.03' '-0.03' -> '0' - --- try borderline precision, with carries, etc. -precision: 15 -add161 add '1E+12' '-1' -> '999999999999' -add162 add '1E+12' '1.11' -> '1000000000001.11' -add163 add '1.11' '1E+12' -> '1000000000001.11' -add164 add '-1' '1E+12' -> '999999999999' -add165 add '7E+12' '-1' -> '6999999999999' -add166 add '7E+12' '1.11' -> '7000000000001.11' -add167 add '1.11' '7E+12' -> '7000000000001.11' -add168 add '-1' '7E+12' -> '6999999999999' - --- 123456789012345 123456789012345 1 23456789012345 -add170 add '0.444444444444444' '0.555555555555563' -> '1.00000000000001' Inexact Rounded -add171 add '0.444444444444444' '0.555555555555562' -> '1.00000000000001' Inexact Rounded -add172 add '0.444444444444444' '0.555555555555561' -> '1.00000000000001' Inexact Rounded -add173 add '0.444444444444444' '0.555555555555560' -> '1.00000000000000' Inexact Rounded -add174 add '0.444444444444444' '0.555555555555559' -> '1.00000000000000' Inexact Rounded -add175 add '0.444444444444444' '0.555555555555558' -> '1.00000000000000' Inexact Rounded -add176 add '0.444444444444444' '0.555555555555557' -> '1.00000000000000' Inexact Rounded -add177 add '0.444444444444444' '0.555555555555556' -> '1.00000000000000' Rounded -add178 add '0.444444444444444' '0.555555555555555' -> '0.999999999999999' -add179 add '0.444444444444444' '0.555555555555554' -> '0.999999999999998' -add180 add '0.444444444444444' '0.555555555555553' -> '0.999999999999997' -add181 add '0.444444444444444' '0.555555555555552' -> '0.999999999999996' -add182 add '0.444444444444444' '0.555555555555551' -> '0.999999999999995' -add183 add '0.444444444444444' '0.555555555555550' -> '0.999999999999994' - --- and some more, including residue effects and different roundings -precision: 9 -rounding: half_up -add200 add '123456789' 0 -> '123456789' -add201 add '123456789' 0.000000001 -> '123456789' Inexact Rounded -add202 add '123456789' 0.000001 -> '123456789' Inexact Rounded -add203 add '123456789' 0.1 -> '123456789' Inexact Rounded -add204 add '123456789' 0.4 -> '123456789' Inexact Rounded -add205 add '123456789' 0.49 -> '123456789' Inexact Rounded -add206 add '123456789' 0.499999 -> '123456789' Inexact Rounded -add207 add '123456789' 0.499999999 -> '123456789' Inexact Rounded -add208 add '123456789' 0.5 -> '123456790' Inexact Rounded -add209 add '123456789' 0.500000001 -> '123456790' Inexact Rounded -add210 add '123456789' 0.500001 -> '123456790' Inexact Rounded -add211 add '123456789' 0.51 -> '123456790' Inexact Rounded -add212 add '123456789' 0.6 -> '123456790' Inexact Rounded -add213 add '123456789' 0.9 -> '123456790' Inexact Rounded -add214 add '123456789' 0.99999 -> '123456790' Inexact Rounded -add215 add '123456789' 0.999999999 -> '123456790' Inexact Rounded -add216 add '123456789' 1 -> '123456790' -add217 add '123456789' 1.000000001 -> '123456790' Inexact Lost_digits Rounded -add218 add '123456789' 1.00001 -> '123456790' Inexact Rounded -add219 add '123456789' 1.1 -> '123456790' Inexact Rounded - -rounding: half_even -add220 add '123456789' 0 -> '123456789' -add221 add '123456789' 0.000000001 -> '123456789' Inexact Rounded -add222 add '123456789' 0.000001 -> '123456789' Inexact Rounded -add223 add '123456789' 0.1 -> '123456789' Inexact Rounded -add224 add '123456789' 0.4 -> '123456789' Inexact Rounded -add225 add '123456789' 0.49 -> '123456789' Inexact Rounded -add226 add '123456789' 0.499999 -> '123456789' Inexact Rounded -add227 add '123456789' 0.499999999 -> '123456789' Inexact Rounded -add228 add '123456789' 0.5 -> '123456790' Inexact Rounded -add229 add '123456789' 0.500000001 -> '123456790' Inexact Rounded -add230 add '123456789' 0.500001 -> '123456790' Inexact Rounded -add231 add '123456789' 0.51 -> '123456790' Inexact Rounded -add232 add '123456789' 0.6 -> '123456790' Inexact Rounded -add233 add '123456789' 0.9 -> '123456790' Inexact Rounded -add234 add '123456789' 0.99999 -> '123456790' Inexact Rounded -add235 add '123456789' 0.999999999 -> '123456790' Inexact Rounded -add236 add '123456789' 1 -> '123456790' -add237 add '123456789' 1.00000001 -> '123456790' Inexact Rounded -add238 add '123456789' 1.00001 -> '123456790' Inexact Rounded -add239 add '123456789' 1.1 -> '123456790' Inexact Rounded --- critical few with even bottom digit... -add240 add '123456788' 0.499999999 -> '123456788' Inexact Rounded -add241 add '123456788' 0.5 -> '123456788' Inexact Rounded -add242 add '123456788' 0.500000001 -> '123456789' Inexact Rounded - -rounding: down -add250 add '123456789' 0 -> '123456789' -add251 add '123456789' 0.000000001 -> '123456789' Inexact Rounded -add252 add '123456789' 0.000001 -> '123456789' Inexact Rounded -add253 add '123456789' 0.1 -> '123456789' Inexact Rounded -add254 add '123456789' 0.4 -> '123456789' Inexact Rounded -add255 add '123456789' 0.49 -> '123456789' Inexact Rounded -add256 add '123456789' 0.499999 -> '123456789' Inexact Rounded -add257 add '123456789' 0.499999999 -> '123456789' Inexact Rounded -add258 add '123456789' 0.5 -> '123456789' Inexact Rounded -add259 add '123456789' 0.500000001 -> '123456789' Inexact Rounded -add260 add '123456789' 0.500001 -> '123456789' Inexact Rounded -add261 add '123456789' 0.51 -> '123456789' Inexact Rounded -add262 add '123456789' 0.6 -> '123456789' Inexact Rounded -add263 add '123456789' 0.9 -> '123456789' Inexact Rounded -add264 add '123456789' 0.99999 -> '123456789' Inexact Rounded -add265 add '123456789' 0.999999999 -> '123456789' Inexact Rounded -add266 add '123456789' 1 -> '123456790' -add267 add '123456789' 1.00000001 -> '123456790' Inexact Rounded -add268 add '123456789' 1.00001 -> '123456790' Inexact Rounded -add269 add '123456789' 1.1 -> '123456790' Inexact Rounded - -rounding: half_up - --- input preparation tests -precision: 3 - -add300 add '12345678900000' 9999999999999 -> '2.23E+13' Inexact Lost_digits Rounded -add301 add '9999999999999' 12345678900000 -> '2.23E+13' Inexact Lost_digits Rounded -add302 add '12E+3' '3456' -> '1.55E+4' Inexact Lost_digits Rounded --- next was 1.54E+4 under old [truncate to digits+1] rules -add303 add '12E+3' '3446' -> '1.55E+4' Inexact Lost_digits Rounded -add304 add '12E+3' '3454' -> '1.55E+4' Inexact Lost_digits Rounded -add305 add '12E+3' '3444' -> '1.54E+4' Inexact Lost_digits Rounded - -add306 add '3456' '12E+3' -> '1.55E+4' Inexact Lost_digits Rounded --- next was 1.54E+4 under old [truncate to digits+1] rules -add307 add '3446' '12E+3' -> '1.55E+4' Inexact Lost_digits Rounded -add308 add '3454' '12E+3' -> '1.55E+4' Inexact Lost_digits Rounded -add309 add '3444' '12E+3' -> '1.54E+4' Inexact Lost_digits Rounded - --- 1 in last place tests -add501 add -1 1 -> 0 -add502 add 0 1 -> 1 -add503 add 1 1 -> 2 -add504 add 12 1 -> 13 -add505 add 98 1 -> 99 -add506 add 99 1 -> 100 -add507 add 100 1 -> 101 -add508 add 101 1 -> 102 -add509 add -1 -1 -> -2 -add510 add 0 -1 -> -1 -add511 add 1 -1 -> 0 -add512 add 12 -1 -> 11 -add513 add 98 -1 -> 97 -add514 add 99 -1 -> 98 -add515 add 100 -1 -> 99 -add516 add 101 -1 -> 100 - -add521 add -0.01 0.01 -> 0 -add522 add 0.00 0.01 -> 0.01 -add523 add 0.01 0.01 -> 0.02 -add524 add 0.12 0.01 -> 0.13 -add525 add 0.98 0.01 -> 0.99 -add526 add 0.99 0.01 -> 1.00 -add527 add 1.00 0.01 -> 1.01 -add528 add 1.01 0.01 -> 1.02 -add529 add -0.01 -0.01 -> -0.02 -add530 add 0.00 -0.01 -> -0.01 -add531 add 0.01 -0.01 -> 0 -add532 add 0.12 -0.01 -> 0.11 -add533 add 0.98 -0.01 -> 0.97 -add534 add 0.99 -0.01 -> 0.98 -add535 add 1.00 -0.01 -> 0.99 -add536 add 1.01 -0.01 -> 1.00 - --- ulp replacement tests -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -add600 add 1 77e-7 -> 1.0000077 -add601 add 1 77e-8 -> 1.00000077 -add602 add 1 77e-9 -> 1.00000008 Inexact Rounded -add603 add 1 77e-10 -> 1.00000001 Inexact Rounded -add604 add 1 77e-11 -> 1.00000000 Inexact Rounded -add605 add 1 77e-12 -> 1.00000000 Inexact Rounded -add606 add 1 77e-999 -> 1.00000000 Inexact Rounded -add607 add 1 77e-9999999 -> 1.00000000 Inexact Rounded - -add610 add 10 77e-7 -> 10.0000077 -add611 add 10 77e-8 -> 10.0000008 Inexact Rounded -add612 add 10 77e-9 -> 10.0000001 Inexact Rounded -add613 add 10 77e-10 -> 10.0000000 Inexact Rounded -add614 add 10 77e-11 -> 10.0000000 Inexact Rounded -add615 add 10 77e-12 -> 10.0000000 Inexact Rounded -add616 add 10 77e-999 -> 10.0000000 Inexact Rounded -add617 add 10 77e-9999999 -> 10.0000000 Inexact Rounded - -add620 add 77e-7 1 -> 1.0000077 -add621 add 77e-8 1 -> 1.00000077 -add622 add 77e-9 1 -> 1.00000008 Inexact Rounded -add623 add 77e-10 1 -> 1.00000001 Inexact Rounded -add624 add 77e-11 1 -> 1.00000000 Inexact Rounded -add625 add 77e-12 1 -> 1.00000000 Inexact Rounded -add626 add 77e-999 1 -> 1.00000000 Inexact Rounded -add627 add 77e-9999999 1 -> 1.00000000 Inexact Rounded - -add630 add 77e-7 10 -> 10.0000077 -add631 add 77e-8 10 -> 10.0000008 Inexact Rounded -add632 add 77e-9 10 -> 10.0000001 Inexact Rounded -add633 add 77e-10 10 -> 10.0000000 Inexact Rounded -add634 add 77e-11 10 -> 10.0000000 Inexact Rounded -add635 add 77e-12 10 -> 10.0000000 Inexact Rounded -add636 add 77e-999 10 -> 10.0000000 Inexact Rounded -add637 add 77e-9999999 10 -> 10.0000000 Inexact Rounded - --- negative ulps - --- Note that since we are under X3.274 rules, the rounding here after --- subtraction is from the leftmost digit of the operands, not the --- result. Hence, for example: 'add642 add 1 -77e-9' becomes: --- --- 1000000000 E-9 --- - 0000000077 E-9 --- ---------- --- 0999999923 E-9 --- --- which is rounded to 9 digits from the left (and including the leading --- 0 in this case). - -add640 add 1 -77e-7 -> 0.9999923 -add641 add 1 -77e-8 -> 0.99999923 -add642 add 1 -77e-9 -> 0.99999992 Inexact Rounded -add643 add 1 -77e-10 -> 0.99999999 Inexact Rounded -add644 add 1 -77e-11 -> 1.00000000 Inexact Rounded -add645 add 1 -77e-12 -> 1.00000000 Inexact Rounded -add646 add 1 -77e-999 -> 1.00000000 Inexact Rounded -add647 add 1 -77e-9999999 -> 1.00000000 Inexact Rounded - -add650 add 10 -77e-7 -> 9.9999923 -add651 add 10 -77e-8 -> 9.9999992 Inexact Rounded -add652 add 10 -77e-9 -> 9.9999999 Inexact Rounded -add653 add 10 -77e-10 -> 10.0000000 Inexact Rounded -add654 add 10 -77e-11 -> 10.0000000 Inexact Rounded -add655 add 10 -77e-12 -> 10.0000000 Inexact Rounded -add656 add 10 -77e-999 -> 10.0000000 Inexact Rounded -add657 add 10 -77e-9999999 -> 10.0000000 Inexact Rounded - -add660 add -77e-7 1 -> 0.9999923 -add661 add -77e-8 1 -> 0.99999923 -add662 add -77e-9 1 -> 0.99999992 Inexact Rounded -add663 add -77e-10 1 -> 0.99999999 Inexact Rounded -add664 add -77e-11 1 -> 1.00000000 Inexact Rounded -add665 add -77e-12 1 -> 1.00000000 Inexact Rounded -add666 add -77e-999 1 -> 1.00000000 Inexact Rounded -add667 add -77e-9999999 1 -> 1.00000000 Inexact Rounded - -add670 add -77e-7 10 -> 9.9999923 -add671 add -77e-8 10 -> 9.9999992 Inexact Rounded -add672 add -77e-9 10 -> 9.9999999 Inexact Rounded -add673 add -77e-10 10 -> 10.0000000 Inexact Rounded -add674 add -77e-11 10 -> 10.0000000 Inexact Rounded -add675 add -77e-12 10 -> 10.0000000 Inexact Rounded -add676 add -77e-999 10 -> 10.0000000 Inexact Rounded -add677 add -77e-9999999 10 -> 10.0000000 Inexact Rounded - --- negative negative ulps -add680 add -1 77e-7 -> -0.9999923 -add681 add -1 77e-8 -> -0.99999923 -add682 add -1 77e-9 -> -0.99999992 Inexact Rounded -add683 add -1 77e-10 -> -0.99999999 Inexact Rounded -add684 add -1 77e-11 -> -1.00000000 Inexact Rounded -add685 add -1 77e-12 -> -1.00000000 Inexact Rounded -add686 add -1 77e-999 -> -1.00000000 Inexact Rounded -add687 add -1 77e-9999999 -> -1.00000000 Inexact Rounded - -add690 add -10 77e-7 -> -9.9999923 -add691 add -10 77e-8 -> -9.9999992 Inexact Rounded -add692 add -10 77e-9 -> -9.9999999 Inexact Rounded -add693 add -10 77e-10 -> -10.0000000 Inexact Rounded -add694 add -10 77e-11 -> -10.0000000 Inexact Rounded -add695 add -10 77e-12 -> -10.0000000 Inexact Rounded -add696 add -10 77e-999 -> -10.0000000 Inexact Rounded -add697 add -10 77e-9999999 -> -10.0000000 Inexact Rounded - -add700 add 77e-7 -1 -> -0.9999923 -add701 add 77e-8 -1 -> -0.99999923 -add702 add 77e-9 -1 -> -0.99999992 Inexact Rounded -add703 add 77e-10 -1 -> -0.99999999 Inexact Rounded -add704 add 77e-11 -1 -> -1.00000000 Inexact Rounded -add705 add 77e-12 -1 -> -1.00000000 Inexact Rounded -add706 add 77e-999 -1 -> -1.00000000 Inexact Rounded -add707 add 77e-9999999 -1 -> -1.00000000 Inexact Rounded - -add710 add 77e-7 -10 -> -9.9999923 -add711 add 77e-8 -10 -> -9.9999992 Inexact Rounded -add712 add 77e-9 -10 -> -9.9999999 Inexact Rounded -add713 add 77e-10 -10 -> -10.0000000 Inexact Rounded -add714 add 77e-11 -10 -> -10.0000000 Inexact Rounded -add715 add 77e-12 -10 -> -10.0000000 Inexact Rounded -add716 add 77e-999 -10 -> -10.0000000 Inexact Rounded -add717 add 77e-9999999 -10 -> -10.0000000 Inexact Rounded - - --- overflow and underflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -add330 add 1E+999999999 9E+999999999 -> ? Overflow Inexact Rounded -add331 add 9E+999999999 1E+999999999 -> ? Overflow Inexact Rounded -add332 add -1.1E-999999999 1E-999999999 -> ? Underflow Subnormal Inexact Rounded -add333 add 1E-999999999 -1.1e-999999999 -> ? Underflow Subnormal Inexact Rounded -add334 add -1E+999999999 -9E+999999999 -> ? Overflow Inexact Rounded -add335 add -9E+999999999 -1E+999999999 -> ? Overflow Inexact Rounded -add336 add +1.1E-999999999 -1E-999999999 -> ? Underflow Subnormal Inexact Rounded -add337 add -1E-999999999 +1.1e-999999999 -> ? Underflow Subnormal Inexact Rounded -precision: 3 -add338 add 9.999E+999999999 0 -> ? Inexact Lost_digits Overflow Rounded -add339 add 0 9.999E+999999999 -> ? Inexact Lost_digits Overflow Rounded - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -add401 add 12345678000 0 -> 1.23456780E+10 Rounded -add402 add 0 12345678000 -> 1.23456780E+10 Rounded -add403 add 1234567800 0 -> 1.23456780E+9 Rounded -add404 add 0 1234567800 -> 1.23456780E+9 Rounded -add405 add 1234567890 0 -> 1.23456789E+9 Rounded -add406 add 0 1234567890 -> 1.23456789E+9 Rounded -add407 add 1234567891 0 -> 1.23456789E+9 Inexact Lost_digits Rounded -add408 add 0 1234567891 -> 1.23456789E+9 Inexact Lost_digits Rounded -add409 add 12345678901 0 -> 1.23456789E+10 Inexact Lost_digits Rounded -add410 add 0 12345678901 -> 1.23456789E+10 Inexact Lost_digits Rounded -add411 add 1234567896 0 -> 1.23456790E+9 Inexact Lost_digits Rounded -add412 add 0 1234567896 -> 1.23456790E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for lostDigits -add441 add 12345678000 0 -> 12345678000 -add442 add 0 12345678000 -> 12345678000 -add443 add 1234567800 0 -> 1234567800 -add444 add 0 1234567800 -> 1234567800 -add445 add 1234567890 0 -> 1234567890 -add446 add 0 1234567890 -> 1234567890 -add447 add 1234567891 0 -> 1234567891 -add448 add 0 1234567891 -> 1234567891 -add449 add 12345678901 0 -> 12345678901 -add450 add 0 12345678901 -> 12345678901 -add451 add 1234567896 0 -> 1234567896 -add452 add 0 1234567896 -> 1234567896 - --- Null tests -add900 add 10 # -> ? Invalid_operation -add901 add # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/base0.decTest b/qdecimal/test/tc_subset/base0.decTest deleted file mode 100644 index 5ab854e..0000000 --- a/qdecimal/test/tc_subset/base0.decTest +++ /dev/null @@ -1,892 +0,0 @@ ------------------------------------------------------------------------- --- base0.decTest -- base decimal <--> string conversions (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This file tests base conversions from string to a decimal number --- and back to a string (in either Scientific or Engineering form), --- using the simplified arithmetic rules - -extended: 0 -precision: 15 -rounding: half_up -maxExponent: 999999999 -minexponent: -999999999 - -bas001 toSci 0 -> 0 -bas002 toSci 1 -> 1 -bas003 toSci 1.0 -> 1.0 -bas004 toSci 1.00 -> 1.00 -bas005 toSci 10 -> 10 -bas006 toSci 1000 -> 1000 -bas007 toSci 10.0 -> 10.0 -bas008 toSci 10.1 -> 10.1 -bas009 toSci 10.4 -> 10.4 -bas010 toSci 10.5 -> 10.5 -bas011 toSci 10.6 -> 10.6 -bas012 toSci 10.9 -> 10.9 -bas013 toSci 11.0 -> 11.0 -bas014 toSci 1.234 -> 1.234 -bas015 toSci 0.123 -> 0.123 -bas016 toSci 0.012 -> 0.012 - -bas021 toSci -1 -> -1 -bas022 toSci -1.0 -> -1.0 -bas023 toSci -0.1 -> -0.1 -bas024 toSci -9.1 -> -9.1 -bas025 toSci -9.11 -> -9.11 -bas026 toSci -9.119 -> -9.119 -bas027 toSci -9.999 -> -9.999 - -bas030 toSci '123456789.123456' -> '123456789.123456' -bas031 toSci '123456789.000000' -> '123456789.000000' -bas032 toSci '123456789123456' -> '123456789123456' -bas033 toSci '0.0000123456789' -> '0.0000123456789' -bas034 toSci '0.00000123456789' -> '0.00000123456789' -bas035 toSci '0.000000123456789' -> '1.23456789E-7' -bas036 toSci '0.0000000123456789' -> '1.23456789E-8' - -bas037 toSci '0.123456789012344' -> '0.123456789012344' -bas038 toSci '0.123456789012345' -> '0.123456789012345' - --- String [many more examples are implicitly tested elsewhere] --- strings without E cannot generate E in result -bas101 toSci "12" -> '12' -bas102 toSci "-76" -> '-76' -bas103 toSci "12.76" -> '12.76' -bas104 toSci "+12.76" -> '12.76' -bas105 toSci "012.76" -> '12.76' -bas106 toSci "+0.003" -> '0.003' -bas107 toSci "17." -> '17' -bas108 toSci ".5" -> '0.5' -bas109 toSci "044" -> '44' -bas110 toSci "0044" -> '44' -bas111 toSci "0.0005" -> '0.0005' -bas112 toSci "00.00005" -> '0.00005' -bas113 toSci "0.000005" -> '0.000005' -bas114 toSci "0.0000005" -> '5E-7' -bas115 toSci "0.00000005" -> '5E-8' -bas116 toSci "12345678.543210" -> '12345678.543210' -bas117 toSci "2345678.543210" -> '2345678.543210' -bas118 toSci "345678.543210" -> '345678.543210' -bas119 toSci "0345678.54321" -> '345678.54321' -bas120 toSci "345678.5432" -> '345678.5432' -bas121 toSci "+345678.5432" -> '345678.5432' -bas122 toSci "+0345678.5432" -> '345678.5432' -bas123 toSci "+00345678.5432" -> '345678.5432' -bas124 toSci "-345678.5432" -> '-345678.5432' -bas125 toSci "-0345678.5432" -> '-345678.5432' -bas126 toSci "-00345678.5432" -> '-345678.5432' - --- [No exotics as no Unicode] - --- Numbers with E -bas130 toSci "0.000E-1" -> '0' -bas131 toSci "0.000E-2" -> '0' -bas132 toSci "0.000E-3" -> '0' -bas133 toSci "0.000E-4" -> '0' -bas134 toSci "0.00E-2" -> '0' -bas135 toSci "0.00E-3" -> '0' -bas136 toSci "0.00E-4" -> '0' -bas137 toSci "0.00E-5" -> '0' -bas138 toSci "+0E+9" -> '0' -bas139 toSci "-0E+9" -> '0' - -bas140 toSci "1E+9" -> '1E+9' -bas141 toSci "1e+09" -> '1E+9' -bas142 toSci "1E+90" -> '1E+90' -bas143 toSci "+1E+009" -> '1E+9' -bas144 toSci "0E+9" -> '0' -bas145 toSci "1E+9" -> '1E+9' -bas146 toSci "1E+09" -> '1E+9' -bas147 toSci "1e+90" -> '1E+90' -bas148 toSci "1E+009" -> '1E+9' -bas149 toSci "000E+9" -> '0' -bas150 toSci "1E9" -> '1E+9' -bas151 toSci "1e09" -> '1E+9' -bas152 toSci "1E90" -> '1E+90' -bas153 toSci "1E009" -> '1E+9' -bas154 toSci "0E9" -> '0' -bas155 toSci "0.000e+0" -> '0' -bas156 toSci "0.000E-1" -> '0' -bas157 toSci "4E+9" -> '4E+9' -bas158 toSci "44E+9" -> '4.4E+10' -bas159 toSci "0.73e-7" -> '7.3E-8' -bas160 toSci "00E+9" -> '0' -bas161 toSci "00E-9" -> '0' -bas162 toSci "10E+9" -> '1.0E+10' -bas163 toSci "10E+09" -> '1.0E+10' -bas164 toSci "10e+90" -> '1.0E+91' -bas165 toSci "10E+009" -> '1.0E+10' -bas166 toSci "100e+9" -> '1.00E+11' -bas167 toSci "100e+09" -> '1.00E+11' -bas168 toSci "100E+90" -> '1.00E+92' -bas169 toSci "100e+009" -> '1.00E+11' - -bas170 toSci "1.265" -> '1.265' -bas171 toSci "1.265E-20" -> '1.265E-20' -bas172 toSci "1.265E-8" -> '1.265E-8' -bas173 toSci "1.265E-4" -> '0.0001265' -bas174 toSci "1.265E-3" -> '0.001265' -bas175 toSci "1.265E-2" -> '0.01265' -bas176 toSci "1.265E-1" -> '0.1265' -bas177 toSci "1.265E-0" -> '1.265' -bas178 toSci "1.265E+1" -> '12.65' -bas179 toSci "1.265E+2" -> '126.5' -bas180 toSci "1.265E+3" -> '1265' -bas181 toSci "1.265E+4" -> '1.265E+4' -bas182 toSci "1.265E+8" -> '1.265E+8' -bas183 toSci "1.265E+20" -> '1.265E+20' - -bas190 toSci "12.65" -> '12.65' -bas191 toSci "12.65E-20" -> '1.265E-19' -bas192 toSci "12.65E-8" -> '1.265E-7' -bas193 toSci "12.65E-4" -> '0.001265' -bas194 toSci "12.65E-3" -> '0.01265' -bas195 toSci "12.65E-2" -> '0.1265' -bas196 toSci "12.65E-1" -> '1.265' -bas197 toSci "12.65E-0" -> '12.65' -bas198 toSci "12.65E+1" -> '126.5' -bas199 toSci "12.65E+2" -> '1265' -bas200 toSci "12.65E+3" -> '1.265E+4' -bas201 toSci "12.65E+4" -> '1.265E+5' -bas202 toSci "12.65E+8" -> '1.265E+9' -bas203 toSci "12.65E+20" -> '1.265E+21' - -bas210 toSci "126.5" -> '126.5' -bas211 toSci "126.5E-20" -> '1.265E-18' -bas212 toSci "126.5E-8" -> '0.000001265' -bas213 toSci "126.5E-4" -> '0.01265' -bas214 toSci "126.5E-3" -> '0.1265' -bas215 toSci "126.5E-2" -> '1.265' -bas216 toSci "126.5E-1" -> '12.65' -bas217 toSci "126.5E-0" -> '126.5' -bas218 toSci "126.5E+1" -> '1265' -bas219 toSci "126.5E+2" -> '1.265E+4' -bas220 toSci "126.5E+3" -> '1.265E+5' -bas221 toSci "126.5E+4" -> '1.265E+6' -bas222 toSci "126.5E+8" -> '1.265E+10' -bas223 toSci "126.5E+20" -> '1.265E+22' - -bas230 toSci "1265" -> '1265' -bas231 toSci "1265E-20" -> '1.265E-17' -bas232 toSci "1265E-8" -> '0.00001265' -bas233 toSci "1265E-4" -> '0.1265' -bas234 toSci "1265E-3" -> '1.265' -bas235 toSci "1265E-2" -> '12.65' -bas236 toSci "1265E-1" -> '126.5' -bas237 toSci "1265E-0" -> '1265' -bas238 toSci "1265E+1" -> '1.265E+4' -bas239 toSci "1265E+2" -> '1.265E+5' -bas240 toSci "1265E+3" -> '1.265E+6' -bas241 toSci "1265E+4" -> '1.265E+7' -bas242 toSci "1265E+8" -> '1.265E+11' -bas243 toSci "1265E+20" -> '1.265E+23' - -bas250 toSci "0.1265" -> '0.1265' -bas251 toSci "0.1265E-20" -> '1.265E-21' -bas252 toSci "0.1265E-8" -> '1.265E-9' -bas253 toSci "0.1265E-4" -> '0.00001265' -bas254 toSci "0.1265E-3" -> '0.0001265' -bas255 toSci "0.1265E-2" -> '0.001265' -bas256 toSci "0.1265E-1" -> '0.01265' -bas257 toSci "0.1265E-0" -> '0.1265' -bas258 toSci "0.1265E+1" -> '1.265' -bas259 toSci "0.1265E+2" -> '12.65' -bas260 toSci "0.1265E+3" -> '126.5' -bas261 toSci "0.1265E+4" -> '1265' -bas262 toSci "0.1265E+8" -> '1.265E+7' -bas263 toSci "0.1265E+20" -> '1.265E+19' - -bas270 toSci "0.09e999" -> '9E+997' -bas271 toSci "0.9e999" -> '9E+998' -bas272 toSci "9e999" -> '9E+999' -bas273 toSci "9.9e999" -> '9.9E+999' -bas274 toSci "9.99e999" -> '9.99E+999' -bas275 toSci "9.99e-999" -> '9.99E-999' -bas276 toSci "9.9e-999" -> '9.9E-999' -bas277 toSci "9e-999" -> '9E-999' -bas279 toSci "99e-999" -> '9.9E-998' -bas280 toSci "999e-999" -> '9.99E-997' -bas281 toSci '0.9e-998' -> '9E-999' -bas282 toSci '0.09e-997' -> '9E-999' -bas283 toSci '0.1e1000' -> '1E+999' -bas284 toSci '10e-1000' -> '1.0E-999' - --- Engineering notation tests -bas301 toSci 10e12 -> 1.0E+13 -bas302 toEng 10e12 -> 10E+12 -bas303 toSci 10e11 -> 1.0E+12 -bas304 toEng 10e11 -> 1.0E+12 -bas305 toSci 10e10 -> 1.0E+11 -bas306 toEng 10e10 -> 100E+9 -bas307 toSci 10e9 -> 1.0E+10 -bas308 toEng 10e9 -> 10E+9 -bas309 toSci 10e8 -> 1.0E+9 -bas310 toEng 10e8 -> 1.0E+9 -bas311 toSci 10e7 -> 1.0E+8 -bas312 toEng 10e7 -> 100E+6 -bas313 toSci 10e6 -> 1.0E+7 -bas314 toEng 10e6 -> 10E+6 -bas315 toSci 10e5 -> 1.0E+6 -bas316 toEng 10e5 -> 1.0E+6 -bas317 toSci 10e4 -> 1.0E+5 -bas318 toEng 10e4 -> 100E+3 -bas319 toSci 10e3 -> 1.0E+4 -bas320 toEng 10e3 -> 10E+3 -bas321 toSci 10e2 -> 1.0E+3 -bas322 toEng 10e2 -> 1.0E+3 -bas323 toSci 10e1 -> 1.0E+2 -bas324 toEng 10e1 -> 100 -bas325 toSci 10e0 -> 10 -bas326 toEng 10e0 -> 10 -bas327 toSci 10e-1 -> 1.0 -bas328 toEng 10e-1 -> 1.0 -bas329 toSci 10e-2 -> 0.10 -bas330 toEng 10e-2 -> 0.10 -bas331 toSci 10e-3 -> 0.010 -bas332 toEng 10e-3 -> 0.010 -bas333 toSci 10e-4 -> 0.0010 -bas334 toEng 10e-4 -> 0.0010 -bas335 toSci 10e-5 -> 0.00010 -bas336 toEng 10e-5 -> 0.00010 -bas337 toSci 10e-6 -> 0.000010 -bas338 toEng 10e-6 -> 0.000010 -bas339 toSci 10e-7 -> 0.0000010 -bas340 toEng 10e-7 -> 0.0000010 -bas341 toSci 10e-8 -> 1.0E-7 -bas342 toEng 10e-8 -> 100E-9 -bas343 toSci 10e-9 -> 1.0E-8 -bas344 toEng 10e-9 -> 10E-9 -bas345 toSci 10e-10 -> 1.0E-9 -bas346 toEng 10e-10 -> 1.0E-9 -bas347 toSci 10e-11 -> 1.0E-10 -bas348 toEng 10e-11 -> 100E-12 -bas349 toSci 10e-12 -> 1.0E-11 -bas350 toEng 10e-12 -> 10E-12 -bas351 toSci 10e-13 -> 1.0E-12 -bas352 toEng 10e-13 -> 1.0E-12 - -bas361 toSci 7E12 -> 7E+12 -bas362 toEng 7E12 -> 7E+12 -bas363 toSci 7E11 -> 7E+11 -bas364 toEng 7E11 -> 700E+9 -bas365 toSci 7E10 -> 7E+10 -bas366 toEng 7E10 -> 70E+9 -bas367 toSci 7E9 -> 7E+9 -bas368 toEng 7E9 -> 7E+9 -bas369 toSci 7E8 -> 7E+8 -bas370 toEng 7E8 -> 700E+6 -bas371 toSci 7E7 -> 7E+7 -bas372 toEng 7E7 -> 70E+6 -bas373 toSci 7E6 -> 7E+6 -bas374 toEng 7E6 -> 7E+6 -bas375 toSci 7E5 -> 7E+5 -bas376 toEng 7E5 -> 700E+3 -bas377 toSci 7E4 -> 7E+4 -bas378 toEng 7E4 -> 70E+3 -bas379 toSci 7E3 -> 7E+3 -bas380 toEng 7E3 -> 7E+3 -bas381 toSci 7E2 -> 7E+2 -bas382 toEng 7E2 -> 700 -bas383 toSci 7E1 -> 7E+1 -bas384 toEng 7E1 -> 70 -bas385 toSci 7E0 -> 7 -bas386 toEng 7E0 -> 7 -bas387 toSci 7E-1 -> 0.7 -bas388 toEng 7E-1 -> 0.7 -bas389 toSci 7E-2 -> 0.07 -bas390 toEng 7E-2 -> 0.07 -bas391 toSci 7E-3 -> 0.007 -bas392 toEng 7E-3 -> 0.007 -bas393 toSci 7E-4 -> 0.0007 -bas394 toEng 7E-4 -> 0.0007 -bas395 toSci 7E-5 -> 0.00007 -bas396 toEng 7E-5 -> 0.00007 -bas397 toSci 7E-6 -> 0.000007 -bas398 toEng 7E-6 -> 0.000007 -bas399 toSci 7E-7 -> 7E-7 -bas400 toEng 7E-7 -> 700E-9 -bas401 toSci 7E-8 -> 7E-8 -bas402 toEng 7E-8 -> 70E-9 -bas403 toSci 7E-9 -> 7E-9 -bas404 toEng 7E-9 -> 7E-9 -bas405 toSci 7E-10 -> 7E-10 -bas406 toEng 7E-10 -> 700E-12 -bas407 toSci 7E-11 -> 7E-11 -bas408 toEng 7E-11 -> 70E-12 -bas409 toSci 7E-12 -> 7E-12 -bas410 toEng 7E-12 -> 7E-12 -bas411 toSci 7E-13 -> 7E-13 -bas412 toEng 7E-13 -> 700E-15 --- Exacts remain exact within precision .. -precision: 9 -bas420 toSci 100 -> 100 -bas421 toEng 100 -> 100 -bas422 toSci 1000 -> 1000 -bas423 toEng 1000 -> 1000 -bas424 toSci 999.9 -> 999.9 -bas425 toEng 999.9 -> 999.9 -bas426 toSci 1000.0 -> 1000.0 -bas427 toEng 1000.0 -> 1000.0 -bas428 toSci 1000.1 -> 1000.1 -bas429 toEng 1000.1 -> 1000.1 -bas430 toSci 10000 -> 10000 -bas431 toEng 10000 -> 10000 -bas432 toSci 100000 -> 100000 -bas433 toEng 100000 -> 100000 -bas434 toSci 1000000 -> 1000000 -bas435 toEng 1000000 -> 1000000 -bas436 toSci 10000000 -> 10000000 -bas437 toEng 10000000 -> 10000000 -bas438 toSci 100000000 -> 100000000 -bas439 toEng 100000000 -> 100000000 -bas440 toSci 1000000000 -> 1.00000000E+9 Rounded -bas441 toEng 1000000000 -> 1.00000000E+9 Rounded -bas442 toSci 10000000000 -> 1.00000000E+10 Rounded -bas443 toEng 10000000000 -> 10.0000000E+9 Rounded -bas444 toSci 100000000000 -> 1.00000000E+11 Rounded -bas445 toEng 100000000000 -> 100.000000E+9 Rounded -bas446 toSci 100000000300 -> 1.00000000E+11 Rounded Inexact -bas447 toEng 100000000499 -> 100.000000E+9 Rounded Inexact -bas448 toSci 100000000500 -> 1.00000001E+11 Rounded Inexact -bas449 toEng 100000000900 -> 100.000001E+9 Rounded Inexact - --- The 'baddies' tests from DiagBigDecimal, plus some new ones -bas500 toSci '1..2' -> ? Conversion_syntax -bas501 toSci '.' -> ? Conversion_syntax -bas502 toSci '..' -> ? Conversion_syntax -bas503 toSci '++1' -> ? Conversion_syntax -bas504 toSci '--1' -> ? Conversion_syntax -bas505 toSci '-+1' -> ? Conversion_syntax -bas506 toSci '+-1' -> ? Conversion_syntax -bas507 toSci '12e' -> ? Conversion_syntax -bas508 toSci '12e++' -> ? Conversion_syntax -bas509 toSci '12f4' -> ? Conversion_syntax -bas510 toSci ' +1' -> ? Conversion_syntax -bas511 toSci '+ 1' -> ? Conversion_syntax -bas512 toSci '12 ' -> ? Conversion_syntax -bas513 toSci ' + 1' -> ? Conversion_syntax -bas514 toSci ' - 1 ' -> ? Conversion_syntax -bas515 toSci 'x' -> ? Conversion_syntax -bas516 toSci '-1-' -> ? Conversion_syntax -bas517 toSci '12-' -> ? Conversion_syntax -bas518 toSci '3+' -> ? Conversion_syntax -bas519 toSci '' -> ? Conversion_syntax -bas520 toSci '1e-' -> ? Conversion_syntax -bas521 toSci '7e99999a' -> ? Conversion_syntax -bas522 toSci '7e123567890x' -> ? Conversion_syntax -bas523 toSci '7e12356789012x' -> ? Conversion_syntax -bas524 toSci '' -> ? Conversion_syntax -bas525 toSci 'e100' -> ? Conversion_syntax -bas526 toSci '\u0e5a' -> ? Conversion_syntax -bas527 toSci '\u0b65' -> ? Conversion_syntax -bas528 toSci '123,65' -> ? Conversion_syntax -bas529 toSci '1.34.5' -> ? Conversion_syntax -bas530 toSci '.123.5' -> ? Conversion_syntax -bas531 toSci '01.35.' -> ? Conversion_syntax -bas532 toSci '01.35-' -> ? Conversion_syntax -bas533 toSci '0000..' -> ? Conversion_syntax -bas534 toSci '.0000.' -> ? Conversion_syntax -bas535 toSci '00..00' -> ? Conversion_syntax -bas536 toSci '111e*123' -> ? Conversion_syntax -bas537 toSci '111e123-' -> ? Conversion_syntax -bas538 toSci '111e+12+' -> ? Conversion_syntax -bas539 toSci '111e1-3-' -> ? Conversion_syntax -bas540 toSci '111e1*23' -> ? Conversion_syntax -bas541 toSci '111e1e+3' -> ? Conversion_syntax -bas542 toSci '1e1.0' -> ? Conversion_syntax -bas543 toSci '1e123e' -> ? Conversion_syntax -bas544 toSci 'ten' -> ? Conversion_syntax -bas545 toSci 'ONE' -> ? Conversion_syntax -bas546 toSci '1e.1' -> ? Conversion_syntax -bas547 toSci '1e1.' -> ? Conversion_syntax -bas548 toSci '1ee' -> ? Conversion_syntax -bas549 toSci 'e+1' -> ? Conversion_syntax -bas550 toSci '1.23.4' -> ? Conversion_syntax -bas551 toSci '1.2.1' -> ? Conversion_syntax -bas552 toSci '1E+1.2' -> ? Conversion_syntax -bas553 toSci '1E+1.2.3' -> ? Conversion_syntax -bas554 toSci '1E++1' -> ? Conversion_syntax -bas555 toSci '1E--1' -> ? Conversion_syntax -bas556 toSci '1E+-1' -> ? Conversion_syntax -bas557 toSci '1E-+1' -> ? Conversion_syntax -bas558 toSci '1E''1' -> ? Conversion_syntax -bas559 toSci "1E""1" -> ? Conversion_syntax -bas560 toSci "1E""""" -> ? Conversion_syntax --- Near-specials -bas561 toSci "qNaN" -> ? Conversion_syntax -bas562 toSci "NaNq" -> ? Conversion_syntax -bas563 toSci "NaNs" -> ? Conversion_syntax -bas564 toSci "Infi" -> ? Conversion_syntax -bas565 toSci "Infin" -> ? Conversion_syntax -bas566 toSci "Infini" -> ? Conversion_syntax -bas567 toSci "Infinit" -> ? Conversion_syntax - --- Xflows for all precisions -bas570 toSci '99e999999999' -> ? Overflow Inexact Rounded -bas571 toSci '999e999999999' -> ? Overflow Inexact Rounded -bas572 toSci '0.9e-999999999' -> ? Underflow Subnormal Inexact Rounded -bas573 toSci '0.09e-999999999' -> ? Underflow Subnormal Inexact Rounded -bas574 toSci '0.1e1000000000' -> 1E+999999999 -bas575 toSci '10e-1000000000' -> 1.0E-999999999 -bas576 toSci '0.9e9999999999' -> ? Overflow Inexact Rounded -bas577 toSci '99e-9999999999' -> ? Underflow Subnormal Inexact Rounded -bas578 toSci '111e9999999999' -> ? Overflow Inexact Rounded -bas579 toSci '1111e-9999999999' -> ? Underflow Subnormal Inexact Rounded -bas580 toSci '1111e-99999999999' -> ? Underflow Subnormal Inexact Rounded -bas581 toSci '7e1000000000' -> ? Overflow Inexact Rounded --- negatives the same -bas582 toSci '-99e999999999' -> ? Overflow Inexact Rounded -bas583 toSci '-999e999999999' -> ? Overflow Inexact Rounded -bas584 toSci '-0.9e-999999999' -> ? Underflow Subnormal Inexact Rounded -bas585 toSci '-0.09e-999999999' -> ? Underflow Subnormal Inexact Rounded -bas586 toSci '-0.1e1000000000' -> -1E+999999999 -bas587 toSci '-10e-1000000000' -> -1.0E-999999999 -bas588 toSci '-0.9e9999999999' -> ? Overflow Inexact Rounded -bas589 toSci '-99e-9999999999' -> ? Underflow Subnormal Inexact Rounded -bas590 toSci '-111e9999999999' -> ? Overflow Inexact Rounded -bas591 toSci '-1111e-9999999999' -> ? Underflow Subnormal Inexact Rounded -bas592 toSci '-1111e-99999999999' -> ? Underflow Subnormal Inexact Rounded -bas593 toSci '-7e1000000000' -> ? Overflow Inexact Rounded - --- Specials not allowed unless extended: 1 -bas700 toSci "Infinity" -> ? Conversion_syntax -bas701 toSci "sNaN" -> ? Conversion_syntax -bas702 toSci "NaN" -> ? Conversion_syntax -bas703 toSci "-Infinity" -> ? Conversion_syntax -bas704 toSci "-sNaN" -> ? Conversion_syntax -bas705 toSci "-NaN" -> ? Conversion_syntax -bas706 toSci "+Infinity" -> ? Conversion_syntax -bas708 toSci "+sNaN" -> ? Conversion_syntax -bas709 toSci "+NaN" -> ? Conversion_syntax -bas710 toSci "INFINITY" -> ? Conversion_syntax -bas711 toSci "SNAN" -> ? Conversion_syntax -bas712 toSci "NAN" -> ? Conversion_syntax -bas713 toSci "infinity" -> ? Conversion_syntax -bas714 toSci "snan" -> ? Conversion_syntax -bas715 toSci "nan" -> ? Conversion_syntax -bas716 toSci "InFINITY" -> ? Conversion_syntax -bas717 toSci "SnAN" -> ? Conversion_syntax -bas718 toSci "nAN" -> ? Conversion_syntax -bas719 toSci "iNfinity" -> ? Conversion_syntax -bas720 toSci "sNan" -> ? Conversion_syntax -bas721 toSci "Nan" -> ? Conversion_syntax - -bas601 toSci 0.000000000 -> 0 -bas602 toSci 0.00000000 -> 0 -bas603 toSci 0.0000000 -> 0 -bas604 toSci 0.000000 -> 0 -bas605 toSci 0.00000 -> 0 -bas606 toSci 0.0000 -> 0 -bas607 toSci 0.000 -> 0 -bas608 toSci 0.00 -> 0 -bas609 toSci 0.0 -> 0 -bas610 toSci .0 -> 0 -bas611 toSci 0. -> 0 -bas612 toSci -.0 -> 0 -bas613 toSci -0. -> 0 -bas614 toSci -0.0 -> 0 -bas615 toSci -0.00 -> 0 -bas616 toSci -0.000 -> 0 -bas617 toSci -0.0000 -> 0 -bas618 toSci -0.00000 -> 0 -bas619 toSci -0.000000 -> 0 -bas620 toSci -0.0000000 -> 0 -bas621 toSci -0.00000000 -> 0 -bas622 toSci -0.000000000 -> 0 - -bas630 toSci 0.00E+0 -> 0 -bas631 toSci 0.00E+1 -> 0 -bas632 toSci 0.00E+2 -> 0 -bas633 toSci 0.00E+3 -> 0 -bas634 toSci 0.00E+4 -> 0 -bas635 toSci 0.00E+5 -> 0 -bas636 toSci 0.00E+6 -> 0 -bas637 toSci 0.00E+7 -> 0 -bas638 toSci 0.00E+8 -> 0 -bas639 toSci 0.00E+9 -> 0 - -bas640 toSci 0.0E+0 -> 0 -bas641 toSci 0.0E+1 -> 0 -bas642 toSci 0.0E+2 -> 0 -bas643 toSci 0.0E+3 -> 0 -bas644 toSci 0.0E+4 -> 0 -bas645 toSci 0.0E+5 -> 0 -bas646 toSci 0.0E+6 -> 0 -bas647 toSci 0.0E+7 -> 0 -bas648 toSci 0.0E+8 -> 0 -bas649 toSci 0.0E+9 -> 0 - -bas650 toSci 0E+0 -> 0 -bas651 toSci 0E+1 -> 0 -bas652 toSci 0E+2 -> 0 -bas653 toSci 0E+3 -> 0 -bas654 toSci 0E+4 -> 0 -bas655 toSci 0E+5 -> 0 -bas656 toSci 0E+6 -> 0 -bas657 toSci 0E+7 -> 0 -bas658 toSci 0E+8 -> 0 -bas659 toSci 0E+9 -> 0 - -bas660 toSci 0.0E-0 -> 0 -bas661 toSci 0.0E-1 -> 0 -bas662 toSci 0.0E-2 -> 0 -bas663 toSci 0.0E-3 -> 0 -bas664 toSci 0.0E-4 -> 0 -bas665 toSci 0.0E-5 -> 0 -bas666 toSci 0.0E-6 -> 0 -bas667 toSci 0.0E-7 -> 0 -bas668 toSci 0.0E-8 -> 0 -bas669 toSci 0.0E-9 -> 0 - -bas670 toSci 0.00E-0 -> 0 -bas671 toSci 0.00E-1 -> 0 -bas672 toSci 0.00E-2 -> 0 -bas673 toSci 0.00E-3 -> 0 -bas674 toSci 0.00E-4 -> 0 -bas675 toSci 0.00E-5 -> 0 -bas676 toSci 0.00E-6 -> 0 -bas677 toSci 0.00E-7 -> 0 -bas678 toSci 0.00E-8 -> 0 -bas679 toSci 0.00E-9 -> 0 - --- Zeros for toEng -bas801 toEng 0.000000000 -> 0 -bas802 toEng 0.00000000 -> 0 -bas803 toEng 0.0000000 -> 0 -bas804 toEng 0.000000 -> 0 -bas805 toEng 0.00000 -> 0 -bas806 toEng 0.0000 -> 0 -bas807 toEng 0.000 -> 0 -bas808 toEng 0.00 -> 0 -bas809 toEng 0.0 -> 0 -bas810 toEng .0 -> 0 -bas811 toEng 0. -> 0 -bas812 toEng -.0 -> 0 -bas813 toEng -0. -> 0 -bas814 toEng -0.0 -> 0 -bas815 toEng -0.00 -> 0 -bas816 toEng -0.000 -> 0 -bas817 toEng -0.0000 -> 0 -bas818 toEng -0.00000 -> 0 -bas819 toEng -0.000000 -> 0 -bas820 toEng -0.0000000 -> 0 -bas821 toEng -0.00000000 -> 0 -bas822 toEng -0.000000000 -> 0 - -bas830 toEng 0.00E+0 -> 0 -bas831 toEng 0.00E+1 -> 0 -bas832 toEng 0.00E+2 -> 0 -bas833 toEng 0.00E+3 -> 0 -bas834 toEng 0.00E+4 -> 0 -bas835 toEng 0.00E+5 -> 0 -bas836 toEng 0.00E+6 -> 0 -bas837 toEng 0.00E+7 -> 0 -bas838 toEng 0.00E+8 -> 0 -bas839 toEng 0.00E+9 -> 0 - -bas840 toEng 0.0E+0 -> 0 -bas841 toEng 0.0E+1 -> 0 -bas842 toEng 0.0E+2 -> 0 -bas843 toEng 0.0E+3 -> 0 -bas844 toEng 0.0E+4 -> 0 -bas845 toEng 0.0E+5 -> 0 -bas846 toEng 0.0E+6 -> 0 -bas847 toEng 0.0E+7 -> 0 -bas848 toEng 0.0E+8 -> 0 -bas849 toEng 0.0E+9 -> 0 - -bas850 toEng 0E+0 -> 0 -bas851 toEng 0E+1 -> 0 -bas852 toEng 0E+2 -> 0 -bas853 toEng 0E+3 -> 0 -bas854 toEng 0E+4 -> 0 -bas855 toEng 0E+5 -> 0 -bas856 toEng 0E+6 -> 0 -bas857 toEng 0E+7 -> 0 -bas858 toEng 0E+8 -> 0 -bas859 toEng 0E+9 -> 0 - -bas860 toEng 0.0E-0 -> 0 -bas861 toEng 0.0E-1 -> 0 -bas862 toEng 0.0E-2 -> 0 -bas863 toEng 0.0E-3 -> 0 -bas864 toEng 0.0E-4 -> 0 -bas865 toEng 0.0E-5 -> 0 -bas866 toEng 0.0E-6 -> 0 -bas867 toEng 0.0E-7 -> 0 -bas868 toEng 0.0E-8 -> 0 -bas869 toEng 0.0E-9 -> 0 - -bas870 toEng 0.00E-0 -> 0 -bas871 toEng 0.00E-1 -> 0 -bas872 toEng 0.00E-2 -> 0 -bas873 toEng 0.00E-3 -> 0 -bas874 toEng 0.00E-4 -> 0 -bas875 toEng 0.00E-5 -> 0 -bas876 toEng 0.00E-6 -> 0 -bas877 toEng 0.00E-7 -> 0 -bas878 toEng 0.00E-8 -> 0 -bas879 toEng 0.00E-9 -> 0 - --- Giga exponent -maxexponent: 999999999 -minexponent: -999999999 - -bas951 toSci '99e999' -> '9.9E+1000' -bas952 toSci '999e999' -> '9.99E+1001' -bas953 toSci '0.9e-999' -> '9E-1000' -bas954 toSci '0.09e-999' -> '9E-1001' -bas955 toSci '0.1e1001' -> '1E+1000' -bas956 toSci '10e-1001' -> '1.0E-1000' -bas957 toSci '0.9e9999' -> '9E+9998' -bas958 toSci '99e-9999' -> '9.9E-9998' -bas959 toSci '111e9997' -> '1.11E+9999' -bas960 toSci '1111e-9999' -> '1.111E-9996' -bas961 toSci '99e9999' -> '9.9E+10000' -bas962 toSci '999e9999' -> '9.99E+10001' -bas963 toSci '0.9e-9999' -> '9E-10000' -bas964 toSci '0.09e-9999' -> '9E-10001' -bas965 toSci '0.1e10001' -> '1E+10000' -bas966 toSci '10e-10001' -> '1.0E-10000' -bas967 toSci '0.9e99999' -> '9E+99998' -bas968 toSci '99e-99999' -> '9.9E-99998' -bas969 toSci '111e99999' -> '1.11E+100001' -bas970 toSci '1111e-99999' -> '1.111E-99996' -bas971 toSci "0.09e999999999" -> '9E+999999997' -bas972 toSci "0.9e999999999" -> '9E+999999998' -bas973 toSci "9e999999999" -> '9E+999999999' -bas974 toSci "9.9e999999999" -> '9.9E+999999999' -bas975 toSci "9.99e999999999" -> '9.99E+999999999' -bas976 toSci "9.99e-999999999" -> '9.99E-999999999' -bas977 toSci "9.9e-999999999" -> '9.9E-999999999' -bas978 toSci "9e-999999999" -> '9E-999999999' -bas979 toSci "99e-999999999" -> '9.9E-999999998' -bas980 toSci "999e-999999999" -> '9.99E-999999997' - --- Varying exponent maximums -maxexponent: 0 -minexponent: 0 -emax001 toSci -1E+2 -> ? Overflow Inexact Rounded -emax002 toSci -100 -> ? Overflow Inexact Rounded -emax003 toSci -10 -> ? Overflow Inexact Rounded -emax004 toSci -9.9 -> -9.9 -emax005 toSci -9 -> -9 -emax006 toSci -1 -> -1 -emax007 toSci 0 -> 0 -emax008 toSci 1 -> 1 -emax009 toSci 9 -> 9 -emax010 toSci 9.9 -> 9.9 -emax011 toSci 10 -> ? Overflow Inexact Rounded -emax012 toSci 100 -> ? Overflow Inexact Rounded -emax013 toSci 1E+2 -> ? Overflow Inexact Rounded -emax014 toSci 0.99 -> ? Underflow Subnormal Inexact Rounded -emax015 toSci 0.1 -> ? Underflow Subnormal Inexact Rounded -emax016 toSci 0.01 -> ? Underflow Subnormal Inexact Rounded -emax017 toSci 1E-1 -> ? Underflow Subnormal Inexact Rounded -emax018 toSci 1E-2 -> ? Underflow Subnormal Inexact Rounded - -maxexponent: 1 -minexponent: -1 -emax100 toSci -1E+3 -> ? Overflow Inexact Rounded -emax101 toSci -1E+2 -> ? Overflow Inexact Rounded -emax102 toSci -100 -> ? Overflow Inexact Rounded -emax103 toSci -10 -> -10 -emax104 toSci -9.9 -> -9.9 -emax105 toSci -9 -> -9 -emax106 toSci -1 -> -1 -emax107 toSci 0 -> 0 -emax108 toSci 1 -> 1 -emax109 toSci 9 -> 9 -emax110 toSci 9.9 -> 9.9 -emax111 toSci 10 -> 10 -emax112 toSci 100 -> ? Overflow Inexact Rounded -emax113 toSci 1E+2 -> ? Overflow Inexact Rounded -emax114 toSci 1E+3 -> ? Overflow Inexact Rounded -emax115 toSci 0.99 -> 0.99 -emax116 toSci 0.1 -> 0.1 -emax117 toSci 0.01 -> ? Underflow Subnormal Inexact Rounded -emax118 toSci 1E-1 -> 0.1 -emax119 toSci 1E-2 -> ? Underflow Subnormal Inexact Rounded -emax120 toSci 1E-3 -> ? Underflow Subnormal Inexact Rounded - -maxexponent: 2 -minexponent: -2 -emax200 toSci -1E+3 -> ? Overflow Inexact Rounded -emax201 toSci -1E+2 -> -1E+2 -emax202 toSci -100 -> -100 -emax203 toSci -10 -> -10 -emax204 toSci -9.9 -> -9.9 -emax205 toSci -9 -> -9 -emax206 toSci -1 -> -1 -emax207 toSci 0 -> 0 -emax208 toSci 1 -> 1 -emax209 toSci 9 -> 9 -emax210 toSci 9.9 -> 9.9 -emax211 toSci 10 -> 10 -emax212 toSci 100 -> 100 -emax213 toSci 1E+2 -> 1E+2 -emax214 toSci 1E+3 -> ? Overflow Inexact Rounded -emax215 toSci 0.99 -> 0.99 -emax216 toSci 0.1 -> 0.1 -emax217 toSci 0.01 -> 0.01 -emax218 toSci 0.001 -> ? Underflow Subnormal Inexact Rounded -emax219 toSci 1E-1 -> 0.1 -emax220 toSci 1E-2 -> 0.01 -emax221 toSci 1E-3 -> ? Underflow Subnormal Inexact Rounded - -maxexponent: 7 -minexponent: -7 -emax231 toSci 1E-8 -> ? Underflow Subnormal Inexact Rounded -emax232 toSci 1E-7 -> 1E-7 -emax233 toSci 1E-6 -> 0.000001 -emax234 toSci 1E-5 -> 0.00001 -emax235 toSci 1E+5 -> 1E+5 -emax236 toSci 1E+6 -> 1E+6 -emax237 toSci 1E+7 -> 1E+7 -emax238 toSci 1E+8 -> ? Overflow Inexact Rounded - -maxexponent: 9 -minexponent: -9 -emax241 toSci 1E-10 -> ? Underflow Subnormal Inexact Rounded -emax242 toSci 1E-9 -> 1E-9 -emax243 toSci 1E-8 -> 1E-8 -emax244 toSci 1E-7 -> 1E-7 -emax245 toSci 1E+7 -> 1E+7 -emax246 toSci 1E+8 -> 1E+8 -emax247 toSci 1E+9 -> 1E+9 -emax248 toSci 1E+10 -> ? Overflow Inexact Rounded - -maxexponent: 10 -- boundary -minexponent: -10 -emax251 toSci 1E-11 -> ? Underflow Subnormal Inexact Rounded -emax252 toSci 1E-10 -> 1E-10 -emax253 toSci 1E-9 -> 1E-9 -emax254 toSci 1E-8 -> 1E-8 -emax255 toSci 1E+8 -> 1E+8 -emax256 toSci 1E+9 -> 1E+9 -emax257 toSci 1E+10 -> 1E+10 -emax258 toSci 1E+11 -> ? Overflow Inexact Rounded -emax261 toSci 1.00E-11 -> ? Underflow Subnormal Inexact Rounded -emax262 toSci 1.00E-10 -> 1.00E-10 -emax263 toSci 1.00E-9 -> 1.00E-9 -emax264 toSci 1.00E-8 -> 1.00E-8 -emax265 toSci 1.00E+8 -> 1.00E+8 -emax266 toSci 1.00E+9 -> 1.00E+9 -emax267 toSci 1.00E+10 -> 1.00E+10 -emax268 toSci 1.00E+11 -> ? Overflow Inexact Rounded -emax271 toSci 9.99E-11 -> ? Underflow Subnormal Inexact Rounded -emax272 toSci 9.99E-10 -> 9.99E-10 -emax273 toSci 9.99E-9 -> 9.99E-9 -emax274 toSci 9.99E-8 -> 9.99E-8 -emax275 toSci 9.99E+8 -> 9.99E+8 -emax276 toSci 9.99E+9 -> 9.99E+9 -emax277 toSci 9.99E+10 -> 9.99E+10 -emax278 toSci 9.99E+11 -> ? Overflow Inexact Rounded - -maxexponent: 99 -minexponent: -99 -emax281 toSci 1E-100 -> ? Underflow Subnormal Inexact Rounded -emax282 toSci 1E-99 -> 1E-99 -emax283 toSci 1E-98 -> 1E-98 -emax284 toSci 1E+98 -> 1E+98 -emax285 toSci 1E+99 -> 1E+99 -emax286 toSci 1E+100 -> ? Overflow Inexact Rounded - -maxexponent: 999 -minexponent: -999 -emax291 toSci 1E-1000 -> ? Underflow Subnormal Inexact Rounded -emax292 toSci 1E-999 -> 1E-999 -emax293 toSci 1E+999 -> 1E+999 -emax294 toSci 1E+1000 -> ? Overflow Inexact Rounded -maxexponent: 9999 -minexponent: -9999 -emax301 toSci 1E-10000 -> ? Underflow Subnormal Inexact Rounded -emax302 toSci 1E-9999 -> 1E-9999 -emax303 toSci 1E+9999 -> 1E+9999 -emax304 toSci 1E+10000 -> ? Overflow Inexact Rounded -maxexponent: 99999 -minexponent: -99999 -emax311 toSci 1E-100000 -> ? Underflow Subnormal Inexact Rounded -emax312 toSci 1E-99999 -> 1E-99999 -emax313 toSci 1E+99999 -> 1E+99999 -emax314 toSci 1E+100000 -> ? Overflow Inexact Rounded -maxexponent: 999999 -minexponent: -999999 -emax321 toSci 1E-1000000 -> ? Underflow Subnormal Inexact Rounded -emax322 toSci 1E-999999 -> 1E-999999 -emax323 toSci 1E+999999 -> 1E+999999 -emax324 toSci 1E+1000000 -> ? Overflow Inexact Rounded -maxexponent: 9999999 -minexponent: -9999999 -emax331 toSci 1E-10000000 -> ? Underflow Subnormal Inexact Rounded -emax332 toSci 1E-9999999 -> 1E-9999999 -emax333 toSci 1E+9999999 -> 1E+9999999 -emax334 toSci 1E+10000000 -> ? Overflow Inexact Rounded -maxexponent: 99999999 -minexponent: -99999999 -emax341 toSci 1E-100000000 -> ? Underflow Subnormal Inexact Rounded -emax342 toSci 1E-99999999 -> 1E-99999999 -emax343 toSci 1E+99999999 -> 1E+99999999 -emax344 toSci 1E+100000000 -> ? Overflow Inexact Rounded - -maxexponent: 999999999 -minexponent: -999999999 -emax351 toSci 1E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax352 toSci 1E-999999999 -> 1E-999999999 -emax353 toSci 1E+999999999 -> 1E+999999999 -emax354 toSci 1E+1000000000 -> ? Overflow Inexact Rounded -emax355 toSci 1.000E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax356 toSci 1.000E-999999999 -> 1.000E-999999999 -emax357 toSci 1.000E+999999999 -> 1.000E+999999999 -emax358 toSci 1.000E+1000000000 -> ? Overflow Inexact Rounded -emax359 toSci 1.001E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax360 toSci 1.001E-999999999 -> 1.001E-999999999 -emax361 toSci 1.001E+999999999 -> 1.001E+999999999 -emax362 toSci 1.001E+1000000000 -> ? Overflow Inexact Rounded -emax363 toSci 9.000E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax364 toSci 9.000E-999999999 -> 9.000E-999999999 -emax365 toSci 9.000E+999999999 -> 9.000E+999999999 -emax366 toSci 9.000E+1000000000 -> ? Overflow Inexact Rounded -emax367 toSci 9.999E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax368 toSci 9.999E-999999999 -> 9.999E-999999999 -emax369 toSci 9.999E+999999999 -> 9.999E+999999999 -emax370 toSci 9.999E+1000000000 -> ? Overflow Inexact Rounded -emax371 toSci -1E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax372 toSci -1E-999999999 -> -1E-999999999 -emax373 toSci -1E+999999999 -> -1E+999999999 -emax374 toSci -1E+1000000000 -> ? Overflow Inexact Rounded -emax375 toSci -1.000E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax376 toSci -1.000E-999999999 -> -1.000E-999999999 -emax377 toSci -1.000E+999999999 -> -1.000E+999999999 -emax378 toSci -1.000E+1000000000 -> ? Overflow Inexact Rounded -emax379 toSci -1.001E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax380 toSci -1.001E-999999999 -> -1.001E-999999999 -emax381 toSci -1.001E+999999999 -> -1.001E+999999999 -emax382 toSci -1.001E+1000000000 -> ? Overflow Inexact Rounded -emax383 toSci -9.000E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax384 toSci -9.000E-999999999 -> -9.000E-999999999 -emax385 toSci -9.000E+999999999 -> -9.000E+999999999 -emax386 toSci -9.000E+1000000000 -> ? Overflow Inexact Rounded -emax387 toSci -9.999E-1000000000 -> ? Underflow Subnormal Inexact Rounded -emax388 toSci -9.999E-999999999 -> -9.999E-999999999 -emax389 toSci -9.999E+999999999 -> -9.999E+999999999 -emax390 toSci -9.999E+1000000000 -> ? Overflow Inexact Rounded - diff --git a/qdecimal/test/tc_subset/compare0.decTest b/qdecimal/test/tc_subset/compare0.decTest deleted file mode 100644 index 04a1177..0000000 --- a/qdecimal/test/tc_subset/compare0.decTest +++ /dev/null @@ -1,492 +0,0 @@ ------------------------------------------------------------------------- --- compare0.decTest -- decimal comparison (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -com001 compare -2 -2 -> 0 -com002 compare -2 -1 -> -1 -com003 compare -2 0 -> -1 -com004 compare -2 1 -> -1 -com005 compare -2 2 -> -1 -com006 compare -1 -2 -> 1 -com007 compare -1 -1 -> 0 -com008 compare -1 0 -> -1 -com009 compare -1 1 -> -1 -com010 compare -1 2 -> -1 -com011 compare 0 -2 -> 1 -com012 compare 0 -1 -> 1 -com013 compare 0 0 -> 0 -com014 compare 0 1 -> -1 -com015 compare 0 2 -> -1 -com016 compare 1 -2 -> 1 -com017 compare 1 -1 -> 1 -com018 compare 1 0 -> 1 -com019 compare 1 1 -> 0 -com020 compare 1 2 -> -1 -com021 compare 2 -2 -> 1 -com022 compare 2 -1 -> 1 -com023 compare 2 0 -> 1 -com025 compare 2 1 -> 1 -com026 compare 2 2 -> 0 - -com031 compare -20 -20 -> 0 -com032 compare -20 -10 -> -1 -com033 compare -20 00 -> -1 -com034 compare -20 10 -> -1 -com035 compare -20 20 -> -1 -com036 compare -10 -20 -> 1 -com037 compare -10 -10 -> 0 -com038 compare -10 00 -> -1 -com039 compare -10 10 -> -1 -com040 compare -10 20 -> -1 -com041 compare 00 -20 -> 1 -com042 compare 00 -10 -> 1 -com043 compare 00 00 -> 0 -com044 compare 00 10 -> -1 -com045 compare 00 20 -> -1 -com046 compare 10 -20 -> 1 -com047 compare 10 -10 -> 1 -com048 compare 10 00 -> 1 -com049 compare 10 10 -> 0 -com050 compare 10 20 -> -1 -com051 compare 20 -20 -> 1 -com052 compare 20 -10 -> 1 -com053 compare 20 00 -> 1 -com055 compare 20 10 -> 1 -com056 compare 20 20 -> 0 - -com061 compare -2.0 -2.0 -> 0 -com062 compare -2.0 -1.0 -> -1 -com063 compare -2.0 0.0 -> -1 -com064 compare -2.0 1.0 -> -1 -com065 compare -2.0 2.0 -> -1 -com066 compare -1.0 -2.0 -> 1 -com067 compare -1.0 -1.0 -> 0 -com068 compare -1.0 0.0 -> -1 -com069 compare -1.0 1.0 -> -1 -com070 compare -1.0 2.0 -> -1 -com071 compare 0.0 -2.0 -> 1 -com072 compare 0.0 -1.0 -> 1 -com073 compare 0.0 0.0 -> 0 -com074 compare 0.0 1.0 -> -1 -com075 compare 0.0 2.0 -> -1 -com076 compare 1.0 -2.0 -> 1 -com077 compare 1.0 -1.0 -> 1 -com078 compare 1.0 0.0 -> 1 -com079 compare 1.0 1.0 -> 0 -com080 compare 1.0 2.0 -> -1 -com081 compare 2.0 -2.0 -> 1 -com082 compare 2.0 -1.0 -> 1 -com083 compare 2.0 0.0 -> 1 -com085 compare 2.0 1.0 -> 1 -com086 compare 2.0 2.0 -> 0 - --- some differing length/exponent cases -precision: 9 -com100 compare 7.0 7.0 -> 0 -com101 compare 7.0 7 -> 0 -com102 compare 7 7.0 -> 0 -com103 compare 7E+0 7.0 -> 0 -com104 compare 70E-1 7.0 -> 0 -com105 compare 0.7E+1 7 -> 0 -com106 compare 70E-1 7 -> 0 -com107 compare 7.0 7E+0 -> 0 -com108 compare 7.0 70E-1 -> 0 -com109 compare 7 0.7E+1 -> 0 -com110 compare 7 70E-1 -> 0 - -com120 compare 8.0 7.0 -> 1 -com121 compare 8.0 7 -> 1 -com122 compare 8 7.0 -> 1 -com123 compare 8E+0 7.0 -> 1 -com124 compare 80E-1 7.0 -> 1 -com125 compare 0.8E+1 7 -> 1 -com126 compare 80E-1 7 -> 1 -com127 compare 8.0 7E+0 -> 1 -com128 compare 8.0 70E-1 -> 1 -com129 compare 8 0.7E+1 -> 1 -com130 compare 8 70E-1 -> 1 - -com140 compare 8.0 9.0 -> -1 -com141 compare 8.0 9 -> -1 -com142 compare 8 9.0 -> -1 -com143 compare 8E+0 9.0 -> -1 -com144 compare 80E-1 9.0 -> -1 -com145 compare 0.8E+1 9 -> -1 -com146 compare 80E-1 9 -> -1 -com147 compare 8.0 9E+0 -> -1 -com148 compare 8.0 90E-1 -> -1 -com149 compare 8 0.9E+1 -> -1 -com150 compare 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -com200 compare -7.0 7.0 -> -1 -com201 compare -7.0 7 -> -1 -com202 compare -7 7.0 -> -1 -com203 compare -7E+0 7.0 -> -1 -com204 compare -70E-1 7.0 -> -1 -com205 compare -0.7E+1 7 -> -1 -com206 compare -70E-1 7 -> -1 -com207 compare -7.0 7E+0 -> -1 -com208 compare -7.0 70E-1 -> -1 -com209 compare -7 0.7E+1 -> -1 -com210 compare -7 70E-1 -> -1 - -com220 compare -8.0 7.0 -> -1 -com221 compare -8.0 7 -> -1 -com222 compare -8 7.0 -> -1 -com223 compare -8E+0 7.0 -> -1 -com224 compare -80E-1 7.0 -> -1 -com225 compare -0.8E+1 7 -> -1 -com226 compare -80E-1 7 -> -1 -com227 compare -8.0 7E+0 -> -1 -com228 compare -8.0 70E-1 -> -1 -com229 compare -8 0.7E+1 -> -1 -com230 compare -8 70E-1 -> -1 - -com240 compare -8.0 9.0 -> -1 -com241 compare -8.0 9 -> -1 -com242 compare -8 9.0 -> -1 -com243 compare -8E+0 9.0 -> -1 -com244 compare -80E-1 9.0 -> -1 -com245 compare -0.8E+1 9 -> -1 -com246 compare -80E-1 9 -> -1 -com247 compare -8.0 9E+0 -> -1 -com248 compare -8.0 90E-1 -> -1 -com249 compare -8 0.9E+1 -> -1 -com250 compare -8 90E-1 -> -1 - --- and again, with sign changes +- .. -com300 compare 7.0 -7.0 -> 1 -com301 compare 7.0 -7 -> 1 -com302 compare 7 -7.0 -> 1 -com303 compare 7E+0 -7.0 -> 1 -com304 compare 70E-1 -7.0 -> 1 -com305 compare .7E+1 -7 -> 1 -com306 compare 70E-1 -7 -> 1 -com307 compare 7.0 -7E+0 -> 1 -com308 compare 7.0 -70E-1 -> 1 -com309 compare 7 -.7E+1 -> 1 -com310 compare 7 -70E-1 -> 1 - -com320 compare 8.0 -7.0 -> 1 -com321 compare 8.0 -7 -> 1 -com322 compare 8 -7.0 -> 1 -com323 compare 8E+0 -7.0 -> 1 -com324 compare 80E-1 -7.0 -> 1 -com325 compare .8E+1 -7 -> 1 -com326 compare 80E-1 -7 -> 1 -com327 compare 8.0 -7E+0 -> 1 -com328 compare 8.0 -70E-1 -> 1 -com329 compare 8 -.7E+1 -> 1 -com330 compare 8 -70E-1 -> 1 - -com340 compare 8.0 -9.0 -> 1 -com341 compare 8.0 -9 -> 1 -com342 compare 8 -9.0 -> 1 -com343 compare 8E+0 -9.0 -> 1 -com344 compare 80E-1 -9.0 -> 1 -com345 compare .8E+1 -9 -> 1 -com346 compare 80E-1 -9 -> 1 -com347 compare 8.0 -9E+0 -> 1 -com348 compare 8.0 -90E-1 -> 1 -com349 compare 8 -.9E+1 -> 1 -com350 compare 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -com400 compare -7.0 -7.0 -> 0 -com401 compare -7.0 -7 -> 0 -com402 compare -7 -7.0 -> 0 -com403 compare -7E+0 -7.0 -> 0 -com404 compare -70E-1 -7.0 -> 0 -com405 compare -.7E+1 -7 -> 0 -com406 compare -70E-1 -7 -> 0 -com407 compare -7.0 -7E+0 -> 0 -com408 compare -7.0 -70E-1 -> 0 -com409 compare -7 -.7E+1 -> 0 -com410 compare -7 -70E-1 -> 0 - -com420 compare -8.0 -7.0 -> -1 -com421 compare -8.0 -7 -> -1 -com422 compare -8 -7.0 -> -1 -com423 compare -8E+0 -7.0 -> -1 -com424 compare -80E-1 -7.0 -> -1 -com425 compare -.8E+1 -7 -> -1 -com426 compare -80E-1 -7 -> -1 -com427 compare -8.0 -7E+0 -> -1 -com428 compare -8.0 -70E-1 -> -1 -com429 compare -8 -.7E+1 -> -1 -com430 compare -8 -70E-1 -> -1 - -com440 compare -8.0 -9.0 -> 1 -com441 compare -8.0 -9 -> 1 -com442 compare -8 -9.0 -> 1 -com443 compare -8E+0 -9.0 -> 1 -com444 compare -80E-1 -9.0 -> 1 -com445 compare -.8E+1 -9 -> 1 -com446 compare -80E-1 -9 -> 1 -com447 compare -8.0 -9E+0 -> 1 -com448 compare -8.0 -90E-1 -> 1 -com449 compare -8 -.9E+1 -> 1 -com450 compare -8 -90E-1 -> 1 - --- now some cases which might overflow if subtract were used -maxexponent: 999999999 -minexponent: -999999999 -com460 compare 9.99999999E+999999999 9.99999999E+999999999 -> 0 -com461 compare -9.99999999E+999999999 9.99999999E+999999999 -> -1 -com462 compare 9.99999999E+999999999 -9.99999999E+999999999 -> 1 -com463 compare -9.99999999E+999999999 -9.99999999E+999999999 -> 0 - --- testcases that subtract to lots of zeros at boundaries [pgr] -precision: 40 -com470 compare 123.4560000000000000E789 123.456E789 -> 0 -com471 compare 123.456000000000000E-89 123.456E-89 -> 0 -com472 compare 123.45600000000000E789 123.456E789 -> 0 -com473 compare 123.4560000000000E-89 123.456E-89 -> 0 -com474 compare 123.456000000000E789 123.456E789 -> 0 -com475 compare 123.45600000000E-89 123.456E-89 -> 0 -com476 compare 123.4560000000E789 123.456E789 -> 0 -com477 compare 123.456000000E-89 123.456E-89 -> 0 -com478 compare 123.45600000E789 123.456E789 -> 0 -com479 compare 123.4560000E-89 123.456E-89 -> 0 -com480 compare 123.456000E789 123.456E789 -> 0 -com481 compare 123.45600E-89 123.456E-89 -> 0 -com482 compare 123.4560E789 123.456E789 -> 0 -com483 compare 123.456E-89 123.456E-89 -> 0 -com484 compare 123.456E-89 123.4560000000000000E-89 -> 0 -com485 compare 123.456E789 123.456000000000000E789 -> 0 -com486 compare 123.456E-89 123.45600000000000E-89 -> 0 -com487 compare 123.456E789 123.4560000000000E789 -> 0 -com488 compare 123.456E-89 123.456000000000E-89 -> 0 -com489 compare 123.456E789 123.45600000000E789 -> 0 -com490 compare 123.456E-89 123.4560000000E-89 -> 0 -com491 compare 123.456E789 123.456000000E789 -> 0 -com492 compare 123.456E-89 123.45600000E-89 -> 0 -com493 compare 123.456E789 123.4560000E789 -> 0 -com494 compare 123.456E-89 123.456000E-89 -> 0 -com495 compare 123.456E789 123.45600E789 -> 0 -com496 compare 123.456E-89 123.4560E-89 -> 0 -com497 compare 123.456E789 123.456E789 -> 0 - --- wide-ranging, around precision; signs equal -precision: 9 -com500 compare 1 1E-15 -> 1 -com501 compare 1 1E-14 -> 1 -com502 compare 1 1E-13 -> 1 -com503 compare 1 1E-12 -> 1 -com504 compare 1 1E-11 -> 1 -com505 compare 1 1E-10 -> 1 -com506 compare 1 1E-9 -> 1 -com507 compare 1 1E-8 -> 1 -com508 compare 1 1E-7 -> 1 -com509 compare 1 1E-6 -> 1 -com510 compare 1 1E-5 -> 1 -com511 compare 1 1E-4 -> 1 -com512 compare 1 1E-3 -> 1 -com513 compare 1 1E-2 -> 1 -com514 compare 1 1E-1 -> 1 -com515 compare 1 1E-0 -> 0 -com516 compare 1 1E+1 -> -1 -com517 compare 1 1E+2 -> -1 -com518 compare 1 1E+3 -> -1 -com519 compare 1 1E+4 -> -1 -com521 compare 1 1E+5 -> -1 -com522 compare 1 1E+6 -> -1 -com523 compare 1 1E+7 -> -1 -com524 compare 1 1E+8 -> -1 -com525 compare 1 1E+9 -> -1 -com526 compare 1 1E+10 -> -1 -com527 compare 1 1E+11 -> -1 -com528 compare 1 1E+12 -> -1 -com529 compare 1 1E+13 -> -1 -com530 compare 1 1E+14 -> -1 -com531 compare 1 1E+15 -> -1 --- LR swap -com540 compare 1E-15 1 -> -1 -com541 compare 1E-14 1 -> -1 -com542 compare 1E-13 1 -> -1 -com543 compare 1E-12 1 -> -1 -com544 compare 1E-11 1 -> -1 -com545 compare 1E-10 1 -> -1 -com546 compare 1E-9 1 -> -1 -com547 compare 1E-8 1 -> -1 -com548 compare 1E-7 1 -> -1 -com549 compare 1E-6 1 -> -1 -com550 compare 1E-5 1 -> -1 -com551 compare 1E-4 1 -> -1 -com552 compare 1E-3 1 -> -1 -com553 compare 1E-2 1 -> -1 -com554 compare 1E-1 1 -> -1 -com555 compare 1E-0 1 -> 0 -com556 compare 1E+1 1 -> 1 -com557 compare 1E+2 1 -> 1 -com558 compare 1E+3 1 -> 1 -com559 compare 1E+4 1 -> 1 -com561 compare 1E+5 1 -> 1 -com562 compare 1E+6 1 -> 1 -com563 compare 1E+7 1 -> 1 -com564 compare 1E+8 1 -> 1 -com565 compare 1E+9 1 -> 1 -com566 compare 1E+10 1 -> 1 -com567 compare 1E+11 1 -> 1 -com568 compare 1E+12 1 -> 1 -com569 compare 1E+13 1 -> 1 -com570 compare 1E+14 1 -> 1 -com571 compare 1E+15 1 -> 1 --- similar with an useful coefficient, one side only -com580 compare 0.000000987654321 1E-15 -> 1 -com581 compare 0.000000987654321 1E-14 -> 1 -com582 compare 0.000000987654321 1E-13 -> 1 -com583 compare 0.000000987654321 1E-12 -> 1 -com584 compare 0.000000987654321 1E-11 -> 1 -com585 compare 0.000000987654321 1E-10 -> 1 -com586 compare 0.000000987654321 1E-9 -> 1 -com587 compare 0.000000987654321 1E-8 -> 1 -com588 compare 0.000000987654321 1E-7 -> 1 -com589 compare 0.000000987654321 1E-6 -> -1 -com590 compare 0.000000987654321 1E-5 -> -1 -com591 compare 0.000000987654321 1E-4 -> -1 -com592 compare 0.000000987654321 1E-3 -> -1 -com593 compare 0.000000987654321 1E-2 -> -1 -com594 compare 0.000000987654321 1E-1 -> -1 -com595 compare 0.000000987654321 1E-0 -> -1 -com596 compare 0.000000987654321 1E+1 -> -1 -com597 compare 0.000000987654321 1E+2 -> -1 -com598 compare 0.000000987654321 1E+3 -> -1 -com599 compare 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -precision: 20 -com600 compare 12 12.2345 -> -1 -com601 compare 12.0 12.2345 -> -1 -com602 compare 12.00 12.2345 -> -1 -com603 compare 12.000 12.2345 -> -1 -com604 compare 12.0000 12.2345 -> -1 -com605 compare 12.00000 12.2345 -> -1 -com606 compare 12.000000 12.2345 -> -1 -com607 compare 12.0000000 12.2345 -> -1 -com608 compare 12.00000000 12.2345 -> -1 -com609 compare 12.000000000 12.2345 -> -1 -com610 compare 12.1234 12 -> 1 -com611 compare 12.1234 12.0 -> 1 -com612 compare 12.1234 12.00 -> 1 -com613 compare 12.1234 12.000 -> 1 -com614 compare 12.1234 12.0000 -> 1 -com615 compare 12.1234 12.00000 -> 1 -com616 compare 12.1234 12.000000 -> 1 -com617 compare 12.1234 12.0000000 -> 1 -com618 compare 12.1234 12.00000000 -> 1 -com619 compare 12.1234 12.000000000 -> 1 -com620 compare -12 -12.2345 -> 1 -com621 compare -12.0 -12.2345 -> 1 -com622 compare -12.00 -12.2345 -> 1 -com623 compare -12.000 -12.2345 -> 1 -com624 compare -12.0000 -12.2345 -> 1 -com625 compare -12.00000 -12.2345 -> 1 -com626 compare -12.000000 -12.2345 -> 1 -com627 compare -12.0000000 -12.2345 -> 1 -com628 compare -12.00000000 -12.2345 -> 1 -com629 compare -12.000000000 -12.2345 -> 1 -com630 compare -12.1234 -12 -> -1 -com631 compare -12.1234 -12.0 -> -1 -com632 compare -12.1234 -12.00 -> -1 -com633 compare -12.1234 -12.000 -> -1 -com634 compare -12.1234 -12.0000 -> -1 -com635 compare -12.1234 -12.00000 -> -1 -com636 compare -12.1234 -12.000000 -> -1 -com637 compare -12.1234 -12.0000000 -> -1 -com638 compare -12.1234 -12.00000000 -> -1 -com639 compare -12.1234 -12.000000000 -> -1 - --- trailing zeros; unit-y -precision: 20 -com680 compare 12 12 -> 0 -com681 compare 12 12.0 -> 0 -com682 compare 12 12.00 -> 0 -com683 compare 12 12.000 -> 0 -com684 compare 12 12.0000 -> 0 -com685 compare 12 12.00000 -> 0 -com686 compare 12 12.000000 -> 0 -com687 compare 12 12.0000000 -> 0 -com688 compare 12 12.00000000 -> 0 -com689 compare 12 12.000000000 -> 0 -com690 compare 12 12 -> 0 -com691 compare 12.0 12 -> 0 -com692 compare 12.00 12 -> 0 -com693 compare 12.000 12 -> 0 -com694 compare 12.0000 12 -> 0 -com695 compare 12.00000 12 -> 0 -com696 compare 12.000000 12 -> 0 -com697 compare 12.0000000 12 -> 0 -com698 compare 12.00000000 12 -> 0 -com699 compare 12.000000000 12 -> 0 - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -com701 compare 12345678000 1 -> 1 Rounded -com702 compare 1 12345678000 -> -1 Rounded -com703 compare 1234567800 1 -> 1 Rounded -com704 compare 1 1234567800 -> -1 Rounded -com705 compare 1234567890 1 -> 1 Rounded -com706 compare 1 1234567890 -> -1 Rounded -com707 compare 1234567891 1 -> 1 Inexact Lost_digits Rounded -com708 compare 1 1234567891 -> -1 Inexact Lost_digits Rounded -com709 compare 12345678901 1 -> 1 Inexact Lost_digits Rounded -com710 compare 1 12345678901 -> -1 Inexact Lost_digits Rounded -com711 compare 1234567896 1 -> 1 Inexact Lost_digits Rounded -com712 compare 1 1234567896 -> -1 Inexact Lost_digits Rounded -com713 compare -1234567891 1 -> -1 Inexact Lost_digits Rounded -com714 compare 1 -1234567891 -> 1 Inexact Lost_digits Rounded -com715 compare -12345678901 1 -> -1 Inexact Lost_digits Rounded -com716 compare 1 -12345678901 -> 1 Inexact Lost_digits Rounded -com717 compare -1234567896 1 -> -1 Inexact Lost_digits Rounded -com718 compare 1 -1234567896 -> 1 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -com741 compare 12345678000 1 -> 1 -com742 compare 1 12345678000 -> -1 -com743 compare 1234567800 1 -> 1 -com744 compare 1 1234567800 -> -1 -com745 compare 1234567890 1 -> 1 -com746 compare 1 1234567890 -> -1 -com747 compare 1234567891 1 -> 1 -com748 compare 1 1234567891 -> -1 -com749 compare 12345678901 1 -> 1 -com750 compare 1 12345678901 -> -1 -com751 compare 1234567896 1 -> 1 -com752 compare 1 1234567896 -> -1 - --- Null tests -com900 compare 10 # -> ? Invalid_operation -com901 compare # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/comparetotal0.decTest b/qdecimal/test/tc_subset/comparetotal0.decTest deleted file mode 100644 index 10edeb2..0000000 --- a/qdecimal/test/tc_subset/comparetotal0.decTest +++ /dev/null @@ -1,547 +0,0 @@ ------------------------------------------------------------------------- --- comparetotal0.decTest -- decimal comparison using total ordering -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Note that we cannot assume add/subtract tests cover paths adequately, --- here, because the code might be quite different (comparison cannot --- overflow or underflow, so actual subtractions are not necessary). --- Similarly, comparetotal will have some radically different paths --- than compare. - -extended: 0 -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - --- sanity checks -cot001 comparetotal -2 -2 -> 0 -cot002 comparetotal -2 -1 -> -1 -cot003 comparetotal -2 0 -> -1 -cot004 comparetotal -2 1 -> -1 -cot005 comparetotal -2 2 -> -1 -cot006 comparetotal -1 -2 -> 1 -cot007 comparetotal -1 -1 -> 0 -cot008 comparetotal -1 0 -> -1 -cot009 comparetotal -1 1 -> -1 -cot010 comparetotal -1 2 -> -1 -cot011 comparetotal 0 -2 -> 1 -cot012 comparetotal 0 -1 -> 1 -cot013 comparetotal 0 0 -> 0 -cot014 comparetotal 0 1 -> -1 -cot015 comparetotal 0 2 -> -1 -cot016 comparetotal 1 -2 -> 1 -cot017 comparetotal 1 -1 -> 1 -cot018 comparetotal 1 0 -> 1 -cot019 comparetotal 1 1 -> 0 -cot020 comparetotal 1 2 -> -1 -cot021 comparetotal 2 -2 -> 1 -cot022 comparetotal 2 -1 -> 1 -cot023 comparetotal 2 0 -> 1 -cot025 comparetotal 2 1 -> 1 -cot026 comparetotal 2 2 -> 0 - -cot031 comparetotal -20 -20 -> 0 -cot032 comparetotal -20 -10 -> -1 -cot033 comparetotal -20 00 -> -1 -cot034 comparetotal -20 10 -> -1 -cot035 comparetotal -20 20 -> -1 -cot036 comparetotal -10 -20 -> 1 -cot037 comparetotal -10 -10 -> 0 -cot038 comparetotal -10 00 -> -1 -cot039 comparetotal -10 10 -> -1 -cot040 comparetotal -10 20 -> -1 -cot041 comparetotal 00 -20 -> 1 -cot042 comparetotal 00 -10 -> 1 -cot043 comparetotal 00 00 -> 0 -cot044 comparetotal 00 10 -> -1 -cot045 comparetotal 00 20 -> -1 -cot046 comparetotal 10 -20 -> 1 -cot047 comparetotal 10 -10 -> 1 -cot048 comparetotal 10 00 -> 1 -cot049 comparetotal 10 10 -> 0 -cot050 comparetotal 10 20 -> -1 -cot051 comparetotal 20 -20 -> 1 -cot052 comparetotal 20 -10 -> 1 -cot053 comparetotal 20 00 -> 1 -cot055 comparetotal 20 10 -> 1 -cot056 comparetotal 20 20 -> 0 - -cot061 comparetotal -2.0 -2.0 -> 0 -cot062 comparetotal -2.0 -1.0 -> -1 -cot063 comparetotal -2.0 0.0 -> -1 -cot064 comparetotal -2.0 1.0 -> -1 -cot065 comparetotal -2.0 2.0 -> -1 -cot066 comparetotal -1.0 -2.0 -> 1 -cot067 comparetotal -1.0 -1.0 -> 0 -cot068 comparetotal -1.0 0.0 -> -1 -cot069 comparetotal -1.0 1.0 -> -1 -cot070 comparetotal -1.0 2.0 -> -1 -cot071 comparetotal 0.0 -2.0 -> 1 -cot072 comparetotal 0.0 -1.0 -> 1 -cot073 comparetotal 0.0 0.0 -> 0 -cot074 comparetotal 0.0 1.0 -> -1 -cot075 comparetotal 0.0 2.0 -> -1 -cot076 comparetotal 1.0 -2.0 -> 1 -cot077 comparetotal 1.0 -1.0 -> 1 -cot078 comparetotal 1.0 0.0 -> 1 -cot079 comparetotal 1.0 1.0 -> 0 -cot080 comparetotal 1.0 2.0 -> -1 -cot081 comparetotal 2.0 -2.0 -> 1 -cot082 comparetotal 2.0 -1.0 -> 1 -cot083 comparetotal 2.0 0.0 -> 1 -cot085 comparetotal 2.0 1.0 -> 1 -cot086 comparetotal 2.0 2.0 -> 0 - --- now some cases which might overflow if subtract were used -maxexponent: 999999999 -minexponent: -999999999 -cot090 comparetotal 9.99999999E+999999999 9.99999999E+999999999 -> 0 -cot091 comparetotal -9.99999999E+999999999 9.99999999E+999999999 -> -1 -cot092 comparetotal 9.99999999E+999999999 -9.99999999E+999999999 -> 1 -cot093 comparetotal -9.99999999E+999999999 -9.99999999E+999999999 -> 0 - --- some differing length/exponent cases --- in this first group, compare would compare all equal -cot100 comparetotal 7.0 7.0 -> 0 -cot101 comparetotal 7.0 7 -> -1 -cot102 comparetotal 7 7.0 -> 1 -cot103 comparetotal 7E+0 7.0 -> 1 -cot104 comparetotal 70E-1 7.0 -> 0 -cot105 comparetotal 0.7E+1 7 -> 0 -cot106 comparetotal 70E-1 7 -> -1 -cot107 comparetotal 7.0 7E+0 -> -1 -cot108 comparetotal 7.0 70E-1 -> 0 -cot109 comparetotal 7 0.7E+1 -> 0 -cot110 comparetotal 7 70E-1 -> 1 - -cot120 comparetotal 8.0 7.0 -> 1 -cot121 comparetotal 8.0 7 -> 1 -cot122 comparetotal 8 7.0 -> 1 -cot123 comparetotal 8E+0 7.0 -> 1 -cot124 comparetotal 80E-1 7.0 -> 1 -cot125 comparetotal 0.8E+1 7 -> 1 -cot126 comparetotal 80E-1 7 -> 1 -cot127 comparetotal 8.0 7E+0 -> 1 -cot128 comparetotal 8.0 70E-1 -> 1 -cot129 comparetotal 8 0.7E+1 -> 1 -cot130 comparetotal 8 70E-1 -> 1 - -cot140 comparetotal 8.0 9.0 -> -1 -cot141 comparetotal 8.0 9 -> -1 -cot142 comparetotal 8 9.0 -> -1 -cot143 comparetotal 8E+0 9.0 -> -1 -cot144 comparetotal 80E-1 9.0 -> -1 -cot145 comparetotal 0.8E+1 9 -> -1 -cot146 comparetotal 80E-1 9 -> -1 -cot147 comparetotal 8.0 9E+0 -> -1 -cot148 comparetotal 8.0 90E-1 -> -1 -cot149 comparetotal 8 0.9E+1 -> -1 -cot150 comparetotal 8 90E-1 -> -1 - --- and again, with sign changes -+ .. -cot200 comparetotal -7.0 7.0 -> -1 -cot201 comparetotal -7.0 7 -> -1 -cot202 comparetotal -7 7.0 -> -1 -cot203 comparetotal -7E+0 7.0 -> -1 -cot204 comparetotal -70E-1 7.0 -> -1 -cot205 comparetotal -0.7E+1 7 -> -1 -cot206 comparetotal -70E-1 7 -> -1 -cot207 comparetotal -7.0 7E+0 -> -1 -cot208 comparetotal -7.0 70E-1 -> -1 -cot209 comparetotal -7 0.7E+1 -> -1 -cot210 comparetotal -7 70E-1 -> -1 - -cot220 comparetotal -8.0 7.0 -> -1 -cot221 comparetotal -8.0 7 -> -1 -cot222 comparetotal -8 7.0 -> -1 -cot223 comparetotal -8E+0 7.0 -> -1 -cot224 comparetotal -80E-1 7.0 -> -1 -cot225 comparetotal -0.8E+1 7 -> -1 -cot226 comparetotal -80E-1 7 -> -1 -cot227 comparetotal -8.0 7E+0 -> -1 -cot228 comparetotal -8.0 70E-1 -> -1 -cot229 comparetotal -8 0.7E+1 -> -1 -cot230 comparetotal -8 70E-1 -> -1 - -cot240 comparetotal -8.0 9.0 -> -1 -cot241 comparetotal -8.0 9 -> -1 -cot242 comparetotal -8 9.0 -> -1 -cot243 comparetotal -8E+0 9.0 -> -1 -cot244 comparetotal -80E-1 9.0 -> -1 -cot245 comparetotal -0.8E+1 9 -> -1 -cot246 comparetotal -80E-1 9 -> -1 -cot247 comparetotal -8.0 9E+0 -> -1 -cot248 comparetotal -8.0 90E-1 -> -1 -cot249 comparetotal -8 0.9E+1 -> -1 -cot250 comparetotal -8 90E-1 -> -1 - --- and again, with sign changes +- .. -cot300 comparetotal 7.0 -7.0 -> 1 -cot301 comparetotal 7.0 -7 -> 1 -cot302 comparetotal 7 -7.0 -> 1 -cot303 comparetotal 7E+0 -7.0 -> 1 -cot304 comparetotal 70E-1 -7.0 -> 1 -cot305 comparetotal .7E+1 -7 -> 1 -cot306 comparetotal 70E-1 -7 -> 1 -cot307 comparetotal 7.0 -7E+0 -> 1 -cot308 comparetotal 7.0 -70E-1 -> 1 -cot309 comparetotal 7 -.7E+1 -> 1 -cot310 comparetotal 7 -70E-1 -> 1 - -cot320 comparetotal 8.0 -7.0 -> 1 -cot321 comparetotal 8.0 -7 -> 1 -cot322 comparetotal 8 -7.0 -> 1 -cot323 comparetotal 8E+0 -7.0 -> 1 -cot324 comparetotal 80E-1 -7.0 -> 1 -cot325 comparetotal .8E+1 -7 -> 1 -cot326 comparetotal 80E-1 -7 -> 1 -cot327 comparetotal 8.0 -7E+0 -> 1 -cot328 comparetotal 8.0 -70E-1 -> 1 -cot329 comparetotal 8 -.7E+1 -> 1 -cot330 comparetotal 8 -70E-1 -> 1 - -cot340 comparetotal 8.0 -9.0 -> 1 -cot341 comparetotal 8.0 -9 -> 1 -cot342 comparetotal 8 -9.0 -> 1 -cot343 comparetotal 8E+0 -9.0 -> 1 -cot344 comparetotal 80E-1 -9.0 -> 1 -cot345 comparetotal .8E+1 -9 -> 1 -cot346 comparetotal 80E-1 -9 -> 1 -cot347 comparetotal 8.0 -9E+0 -> 1 -cot348 comparetotal 8.0 -90E-1 -> 1 -cot349 comparetotal 8 -.9E+1 -> 1 -cot350 comparetotal 8 -90E-1 -> 1 - --- and again, with sign changes -- .. -cot400 comparetotal -7.0 -7.0 -> 0 -cot401 comparetotal -7.0 -7 -> 1 -cot402 comparetotal -7 -7.0 -> -1 -cot403 comparetotal -7E+0 -7.0 -> -1 -cot404 comparetotal -70E-1 -7.0 -> 0 -cot405 comparetotal -.7E+1 -7 -> 0 -cot406 comparetotal -70E-1 -7 -> 1 -cot407 comparetotal -7.0 -7E+0 -> 1 -cot408 comparetotal -7.0 -70E-1 -> 0 -cot409 comparetotal -7 -.7E+1 -> 0 -cot410 comparetotal -7 -70E-1 -> -1 - -cot420 comparetotal -8.0 -7.0 -> -1 -cot421 comparetotal -8.0 -7 -> -1 -cot422 comparetotal -8 -7.0 -> -1 -cot423 comparetotal -8E+0 -7.0 -> -1 -cot424 comparetotal -80E-1 -7.0 -> -1 -cot425 comparetotal -.8E+1 -7 -> -1 -cot426 comparetotal -80E-1 -7 -> -1 -cot427 comparetotal -8.0 -7E+0 -> -1 -cot428 comparetotal -8.0 -70E-1 -> -1 -cot429 comparetotal -8 -.7E+1 -> -1 -cot430 comparetotal -8 -70E-1 -> -1 - -cot440 comparetotal -8.0 -9.0 -> 1 -cot441 comparetotal -8.0 -9 -> 1 -cot442 comparetotal -8 -9.0 -> 1 -cot443 comparetotal -8E+0 -9.0 -> 1 -cot444 comparetotal -80E-1 -9.0 -> 1 -cot445 comparetotal -.8E+1 -9 -> 1 -cot446 comparetotal -80E-1 -9 -> 1 -cot447 comparetotal -8.0 -9E+0 -> 1 -cot448 comparetotal -8.0 -90E-1 -> 1 -cot449 comparetotal -8 -.9E+1 -> 1 -cot450 comparetotal -8 -90E-1 -> 1 - - --- testcases that subtract to lots of zeros at boundaries [pgr] -precision: 40 -cot470 comparetotal 123.4560000000000000E789 123.456E789 -> -1 -cot471 comparetotal 123.456000000000000E-89 123.456E-89 -> -1 -cot472 comparetotal 123.45600000000000E789 123.456E789 -> -1 -cot473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1 -cot474 comparetotal 123.456000000000E789 123.456E789 -> -1 -cot475 comparetotal 123.45600000000E-89 123.456E-89 -> -1 -cot476 comparetotal 123.4560000000E789 123.456E789 -> -1 -cot477 comparetotal 123.456000000E-89 123.456E-89 -> -1 -cot478 comparetotal 123.45600000E789 123.456E789 -> -1 -cot479 comparetotal 123.4560000E-89 123.456E-89 -> -1 -cot480 comparetotal 123.456000E789 123.456E789 -> -1 -cot481 comparetotal 123.45600E-89 123.456E-89 -> -1 -cot482 comparetotal 123.4560E789 123.456E789 -> -1 -cot483 comparetotal 123.456E-89 123.456E-89 -> 0 -cot484 comparetotal 123.456E-89 123.4560000000000000E-89 -> 1 -cot485 comparetotal 123.456E789 123.456000000000000E789 -> 1 -cot486 comparetotal 123.456E-89 123.45600000000000E-89 -> 1 -cot487 comparetotal 123.456E789 123.4560000000000E789 -> 1 -cot488 comparetotal 123.456E-89 123.456000000000E-89 -> 1 -cot489 comparetotal 123.456E789 123.45600000000E789 -> 1 -cot490 comparetotal 123.456E-89 123.4560000000E-89 -> 1 -cot491 comparetotal 123.456E789 123.456000000E789 -> 1 -cot492 comparetotal 123.456E-89 123.45600000E-89 -> 1 -cot493 comparetotal 123.456E789 123.4560000E789 -> 1 -cot494 comparetotal 123.456E-89 123.456000E-89 -> 1 -cot495 comparetotal 123.456E789 123.45600E789 -> 1 -cot496 comparetotal 123.456E-89 123.4560E-89 -> 1 -cot497 comparetotal 123.456E789 123.456E789 -> 0 - --- wide-ranging, around precision; signs equal -precision: 9 -cot500 comparetotal 1 1E-15 -> 1 -cot501 comparetotal 1 1E-14 -> 1 -cot502 comparetotal 1 1E-13 -> 1 -cot503 comparetotal 1 1E-12 -> 1 -cot504 comparetotal 1 1E-11 -> 1 -cot505 comparetotal 1 1E-10 -> 1 -cot506 comparetotal 1 1E-9 -> 1 -cot507 comparetotal 1 1E-8 -> 1 -cot508 comparetotal 1 1E-7 -> 1 -cot509 comparetotal 1 1E-6 -> 1 -cot510 comparetotal 1 1E-5 -> 1 -cot511 comparetotal 1 1E-4 -> 1 -cot512 comparetotal 1 1E-3 -> 1 -cot513 comparetotal 1 1E-2 -> 1 -cot514 comparetotal 1 1E-1 -> 1 -cot515 comparetotal 1 1E-0 -> 0 -cot516 comparetotal 1 1E+1 -> -1 -cot517 comparetotal 1 1E+2 -> -1 -cot518 comparetotal 1 1E+3 -> -1 -cot519 comparetotal 1 1E+4 -> -1 -cot521 comparetotal 1 1E+5 -> -1 -cot522 comparetotal 1 1E+6 -> -1 -cot523 comparetotal 1 1E+7 -> -1 -cot524 comparetotal 1 1E+8 -> -1 -cot525 comparetotal 1 1E+9 -> -1 -cot526 comparetotal 1 1E+10 -> -1 -cot527 comparetotal 1 1E+11 -> -1 -cot528 comparetotal 1 1E+12 -> -1 -cot529 comparetotal 1 1E+13 -> -1 -cot530 comparetotal 1 1E+14 -> -1 -cot531 comparetotal 1 1E+15 -> -1 --- LR swap -cot540 comparetotal 1E-15 1 -> -1 -cot541 comparetotal 1E-14 1 -> -1 -cot542 comparetotal 1E-13 1 -> -1 -cot543 comparetotal 1E-12 1 -> -1 -cot544 comparetotal 1E-11 1 -> -1 -cot545 comparetotal 1E-10 1 -> -1 -cot546 comparetotal 1E-9 1 -> -1 -cot547 comparetotal 1E-8 1 -> -1 -cot548 comparetotal 1E-7 1 -> -1 -cot549 comparetotal 1E-6 1 -> -1 -cot550 comparetotal 1E-5 1 -> -1 -cot551 comparetotal 1E-4 1 -> -1 -cot552 comparetotal 1E-3 1 -> -1 -cot553 comparetotal 1E-2 1 -> -1 -cot554 comparetotal 1E-1 1 -> -1 -cot555 comparetotal 1E-0 1 -> 0 -cot556 comparetotal 1E+1 1 -> 1 -cot557 comparetotal 1E+2 1 -> 1 -cot558 comparetotal 1E+3 1 -> 1 -cot559 comparetotal 1E+4 1 -> 1 -cot561 comparetotal 1E+5 1 -> 1 -cot562 comparetotal 1E+6 1 -> 1 -cot563 comparetotal 1E+7 1 -> 1 -cot564 comparetotal 1E+8 1 -> 1 -cot565 comparetotal 1E+9 1 -> 1 -cot566 comparetotal 1E+10 1 -> 1 -cot567 comparetotal 1E+11 1 -> 1 -cot568 comparetotal 1E+12 1 -> 1 -cot569 comparetotal 1E+13 1 -> 1 -cot570 comparetotal 1E+14 1 -> 1 -cot571 comparetotal 1E+15 1 -> 1 --- similar with an useful coefficient, one side only -cot580 comparetotal 0.000000987654321 1E-15 -> 1 -cot581 comparetotal 0.000000987654321 1E-14 -> 1 -cot582 comparetotal 0.000000987654321 1E-13 -> 1 -cot583 comparetotal 0.000000987654321 1E-12 -> 1 -cot584 comparetotal 0.000000987654321 1E-11 -> 1 -cot585 comparetotal 0.000000987654321 1E-10 -> 1 -cot586 comparetotal 0.000000987654321 1E-9 -> 1 -cot587 comparetotal 0.000000987654321 1E-8 -> 1 -cot588 comparetotal 0.000000987654321 1E-7 -> 1 -cot589 comparetotal 0.000000987654321 1E-6 -> -1 -cot590 comparetotal 0.000000987654321 1E-5 -> -1 -cot591 comparetotal 0.000000987654321 1E-4 -> -1 -cot592 comparetotal 0.000000987654321 1E-3 -> -1 -cot593 comparetotal 0.000000987654321 1E-2 -> -1 -cot594 comparetotal 0.000000987654321 1E-1 -> -1 -cot595 comparetotal 0.000000987654321 1E-0 -> -1 -cot596 comparetotal 0.000000987654321 1E+1 -> -1 -cot597 comparetotal 0.000000987654321 1E+2 -> -1 -cot598 comparetotal 0.000000987654321 1E+3 -> -1 -cot599 comparetotal 0.000000987654321 1E+4 -> -1 - --- check some unit-y traps -precision: 20 -cot600 comparetotal 12 12.2345 -> -1 -cot601 comparetotal 12.0 12.2345 -> -1 -cot602 comparetotal 12.00 12.2345 -> -1 -cot603 comparetotal 12.000 12.2345 -> -1 -cot604 comparetotal 12.0000 12.2345 -> -1 -cot605 comparetotal 12.00000 12.2345 -> -1 -cot606 comparetotal 12.000000 12.2345 -> -1 -cot607 comparetotal 12.0000000 12.2345 -> -1 -cot608 comparetotal 12.00000000 12.2345 -> -1 -cot609 comparetotal 12.000000000 12.2345 -> -1 -cot610 comparetotal 12.1234 12 -> 1 -cot611 comparetotal 12.1234 12.0 -> 1 -cot612 comparetotal 12.1234 12.00 -> 1 -cot613 comparetotal 12.1234 12.000 -> 1 -cot614 comparetotal 12.1234 12.0000 -> 1 -cot615 comparetotal 12.1234 12.00000 -> 1 -cot616 comparetotal 12.1234 12.000000 -> 1 -cot617 comparetotal 12.1234 12.0000000 -> 1 -cot618 comparetotal 12.1234 12.00000000 -> 1 -cot619 comparetotal 12.1234 12.000000000 -> 1 -cot620 comparetotal -12 -12.2345 -> 1 -cot621 comparetotal -12.0 -12.2345 -> 1 -cot622 comparetotal -12.00 -12.2345 -> 1 -cot623 comparetotal -12.000 -12.2345 -> 1 -cot624 comparetotal -12.0000 -12.2345 -> 1 -cot625 comparetotal -12.00000 -12.2345 -> 1 -cot626 comparetotal -12.000000 -12.2345 -> 1 -cot627 comparetotal -12.0000000 -12.2345 -> 1 -cot628 comparetotal -12.00000000 -12.2345 -> 1 -cot629 comparetotal -12.000000000 -12.2345 -> 1 -cot630 comparetotal -12.1234 -12 -> -1 -cot631 comparetotal -12.1234 -12.0 -> -1 -cot632 comparetotal -12.1234 -12.00 -> -1 -cot633 comparetotal -12.1234 -12.000 -> -1 -cot634 comparetotal -12.1234 -12.0000 -> -1 -cot635 comparetotal -12.1234 -12.00000 -> -1 -cot636 comparetotal -12.1234 -12.000000 -> -1 -cot637 comparetotal -12.1234 -12.0000000 -> -1 -cot638 comparetotal -12.1234 -12.00000000 -> -1 -cot639 comparetotal -12.1234 -12.000000000 -> -1 -precision: 9 - --- trailing zeros; unit-y -precision: 20 -cot680 comparetotal 12 12 -> 0 -cot681 comparetotal 12 12.0 -> 1 -cot682 comparetotal 12 12.00 -> 1 -cot683 comparetotal 12 12.000 -> 1 -cot684 comparetotal 12 12.0000 -> 1 -cot685 comparetotal 12 12.00000 -> 1 -cot686 comparetotal 12 12.000000 -> 1 -cot687 comparetotal 12 12.0000000 -> 1 -cot688 comparetotal 12 12.00000000 -> 1 -cot689 comparetotal 12 12.000000000 -> 1 -cot690 comparetotal 12 12 -> 0 -cot691 comparetotal 12.0 12 -> -1 -cot692 comparetotal 12.00 12 -> -1 -cot693 comparetotal 12.000 12 -> -1 -cot694 comparetotal 12.0000 12 -> -1 -cot695 comparetotal 12.00000 12 -> -1 -cot696 comparetotal 12.000000 12 -> -1 -cot697 comparetotal 12.0000000 12 -> -1 -cot698 comparetotal 12.00000000 12 -> -1 -cot699 comparetotal 12.000000000 12 -> -1 - --- long operand checks -maxexponent: 999 -minexponent: -999 -precision: 9 -cot701 comparetotal 12345678000 1 -> 1 Rounded -cot702 comparetotal 1 12345678000 -> -1 Rounded -cot703 comparetotal 1234567800 1 -> 1 Rounded -cot704 comparetotal 1 1234567800 -> -1 Rounded -cot705 comparetotal 1234567890 1 -> 1 Rounded -cot706 comparetotal 1 1234567890 -> -1 Rounded -cot707 comparetotal 1234567891 1 -> 1 Rounded Inexact Lost_digits -cot708 comparetotal 1 1234567891 -> -1 Rounded Inexact Lost_digits -cot709 comparetotal 12345678901 1 -> 1 Rounded Inexact Lost_digits -cot710 comparetotal 1 12345678901 -> -1 Rounded Inexact Lost_digits -cot711 comparetotal 1234567896 1 -> 1 Rounded Inexact Lost_digits -cot712 comparetotal 1 1234567896 -> -1 Rounded Inexact Lost_digits -cot713 comparetotal -1234567891 1 -> -1 Rounded Inexact Lost_digits -cot714 comparetotal 1 -1234567891 -> 1 Rounded Inexact Lost_digits -cot715 comparetotal -12345678901 1 -> -1 Rounded Inexact Lost_digits -cot716 comparetotal 1 -12345678901 -> 1 Rounded Inexact Lost_digits -cot717 comparetotal -1234567896 1 -> -1 Rounded Inexact Lost_digits -cot718 comparetotal 1 -1234567896 -> 1 Rounded Inexact Lost_digits - -precision: 15 --- same with plenty of precision -cot721 comparetotal 12345678000 1 -> 1 -cot722 comparetotal 1 12345678000 -> -1 -cot723 comparetotal 1234567800 1 -> 1 -cot724 comparetotal 1 1234567800 -> -1 -cot725 comparetotal 1234567890 1 -> 1 -cot726 comparetotal 1 1234567890 -> -1 -cot727 comparetotal 1234567891 1 -> 1 -cot728 comparetotal 1 1234567891 -> -1 -cot729 comparetotal 12345678901 1 -> 1 -cot730 comparetotal 1 12345678901 -> -1 -cot731 comparetotal 1234567896 1 -> 1 -cot732 comparetotal 1 1234567896 -> -1 - --- residue cases (NB operands rounded on input) -precision: 5 -cot740 comparetotal 1 0.9999999 -> 1 Rounded Inexact Lost_digits -cot741 comparetotal 1 0.999999 -> 1 Rounded Inexact Lost_digits -cot742 comparetotal 1 0.99999 -> 1 -cot743 comparetotal 1 1.0000 -> 1 -cot744 comparetotal 1 1.00001 -> 1 Rounded Inexact Lost_digits -cot745 comparetotal 1 1.000001 -> 1 Rounded Inexact Lost_digits -cot746 comparetotal 1 1.0000001 -> 1 Rounded Inexact Lost_digits -cot750 comparetotal 0.9999999 1 -> -1 Rounded Inexact Lost_digits -cot751 comparetotal 0.999999 1 -> -1 Rounded Inexact Lost_digits -cot752 comparetotal 0.99999 1 -> -1 -cot753 comparetotal 1.0000 1 -> -1 -cot754 comparetotal 1.00001 1 -> -1 Rounded Inexact Lost_digits -cot755 comparetotal 1.000001 1 -> -1 Rounded Inexact Lost_digits -cot756 comparetotal 1.0000001 1 -> -1 Rounded Inexact Lost_digits - --- overflow and underflow tests .. subnormal results now allowed -maxExponent: 999999999 -minexponent: -999999999 -cot1080 comparetotal +1.23456789012345E-0 9E+999999999 -> -1 Rounded Inexact Lost_digits -cot1081 comparetotal 9E+999999999 +1.23456789012345E-0 -> 1 Rounded Inexact Lost_digits -cot1082 comparetotal +0.100 9E-999999999 -> 1 -cot1083 comparetotal 9E-999999999 +0.100 -> -1 -cot1085 comparetotal -1.23456789012345E-0 9E+999999999 -> -1 Rounded Inexact Lost_digits -cot1086 comparetotal 9E+999999999 -1.23456789012345E-0 -> 1 Rounded Inexact Lost_digits -cot1087 comparetotal -0.100 9E-999999999 -> -1 -cot1088 comparetotal 9E-999999999 -0.100 -> 1 - -cot1089 comparetotal 1e-599999999 1e-400000001 -> -1 -cot1090 comparetotal 1e-599999999 1e-400000000 -> -1 -cot1091 comparetotal 1e-600000000 1e-400000000 -> -1 -cot1092 comparetotal 9e-999999998 0.01 -> -1 -cot1093 comparetotal 9e-999999998 0.1 -> -1 -cot1094 comparetotal 0.01 9e-999999998 -> 1 -cot1095 comparetotal 1e599999999 1e400000001 -> 1 -cot1096 comparetotal 1e599999999 1e400000000 -> 1 -cot1097 comparetotal 1e600000000 1e400000000 -> 1 -cot1098 comparetotal 9e999999998 100 -> 1 -cot1099 comparetotal 9e999999998 10 -> 1 -cot1100 comparetotal 100 9e999999998 -> -1 --- signs -cot1101 comparetotal 1e+777777777 1e+411111111 -> 1 -cot1102 comparetotal 1e+777777777 -1e+411111111 -> 1 -cot1103 comparetotal -1e+777777777 1e+411111111 -> -1 -cot1104 comparetotal -1e+777777777 -1e+411111111 -> -1 -cot1105 comparetotal 1e-777777777 1e-411111111 -> -1 -cot1106 comparetotal 1e-777777777 -1e-411111111 -> 1 -cot1107 comparetotal -1e-777777777 1e-411111111 -> -1 -cot1108 comparetotal -1e-777777777 -1e-411111111 -> 1 - --- Null tests -cot9990 comparetotal 10 # -> ? Invalid_operation -cot9991 comparetotal # 10 -> ? Invalid_operation diff --git a/qdecimal/test/tc_subset/divide0.decTest b/qdecimal/test/tc_subset/divide0.decTest deleted file mode 100644 index 1fbbd04..0000000 --- a/qdecimal/test/tc_subset/divide0.decTest +++ /dev/null @@ -1,258 +0,0 @@ ------------------------------------------------------------------------- --- divide0.decTest -- decimal division (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -div001 divide 1 1 -> 1 -div002 divide 2 1 -> 2 -div003 divide 1 2 -> 0.5 -div004 divide 2 2 -> 1 -div005 divide 0 1 -> 0 -div006 divide 0 2 -> 0 -div007 divide 1 3 -> 0.333333333 Inexact Rounded -div008 divide 2 3 -> 0.666666667 Inexact Rounded -div009 divide 3 3 -> 1 - -div010 divide 2.4 1 -> 2.4 -div011 divide 2.4 -1 -> -2.4 -div012 divide -2.4 1 -> -2.4 -div013 divide -2.4 -1 -> 2.4 -div014 divide 2.40 1 -> 2.4 -div015 divide 2.400 1 -> 2.4 -div016 divide 2.4 2 -> 1.2 -div017 divide 2.400 2 -> 1.2 -div018 divide 2. 2 -> 1 -div019 divide 20 20 -> 1 - -div020 divide 187 187 -> 1 -div021 divide 5 2 -> 2.5 -div022 divide 5 2.0 -> 2.5 -div023 divide 5 2.000 -> 2.5 -div024 divide 5 0.200 -> 25 -div025 divide 5 0.200 -> 25 -div026 divide 10 1 -> 10 -div027 divide 100 1 -> 100 -div028 divide 1000 1 -> 1000 -div029 divide 1000 100 -> 10 - -div030 divide 1 2 -> 0.5 -div031 divide 1 4 -> 0.25 -div032 divide 1 8 -> 0.125 -div033 divide 1 16 -> 0.0625 -div034 divide 1 32 -> 0.03125 -div035 divide 1 64 -> 0.015625 -div040 divide 1 -2 -> -0.5 -div041 divide 1 -4 -> -0.25 -div042 divide 1 -8 -> -0.125 -div043 divide 1 -16 -> -0.0625 -div044 divide 1 -32 -> -0.03125 -div045 divide 1 -64 -> -0.015625 -div050 divide -1 2 -> -0.5 -div051 divide -1 4 -> -0.25 -div052 divide -1 8 -> -0.125 -div053 divide -1 16 -> -0.0625 -div054 divide -1 32 -> -0.03125 -div055 divide -1 64 -> -0.015625 -div060 divide -1 -2 -> 0.5 -div061 divide -1 -4 -> 0.25 -div062 divide -1 -8 -> 0.125 -div063 divide -1 -16 -> 0.0625 -div064 divide -1 -32 -> 0.03125 -div065 divide -1 -64 -> 0.015625 - -div070 divide 999999999 1 -> 999999999 -div071 divide 999999999.4 1 -> 999999999 Inexact Lost_digits Rounded -div072 divide 999999999.5 1 -> 1E+9 Inexact Lost_digits Rounded -div073 divide 999999999.9 1 -> 1E+9 Inexact Lost_digits Rounded -div074 divide 999999999.999 1 -> 1E+9 Inexact Lost_digits Rounded -precision: 6 -div080 divide 999999999 1 -> 1E+9 Inexact Lost_digits Rounded -div081 divide 99999999 1 -> 1E+8 Inexact Lost_digits Rounded -div082 divide 9999999 1 -> 1E+7 Inexact Lost_digits Rounded -div083 divide 999999 1 -> 999999 -div084 divide 99999 1 -> 99999 -div085 divide 9999 1 -> 9999 -div086 divide 999 1 -> 999 -div087 divide 99 1 -> 99 -div088 divide 9 1 -> 9 - -precision: 9 -div090 divide 0. 1 -> 0 -div091 divide .0 1 -> 0 -div092 divide 0.00 1 -> 0 -div093 divide 0.00E+9 1 -> 0 -div094 divide 0.0000E-50 1 -> 0 - -div095 divide 1 1E-8 -> 100000000 -div096 divide 1 1E-9 -> 1E+9 -div097 divide 1 1E-10 -> 1E+10 -div098 divide 1 1E-11 -> 1E+11 -div099 divide 1 1E-12 -> 1E+12 - -div100 divide 1 1 -> 1 -div101 divide 1 2 -> 0.5 -div102 divide 1 3 -> 0.333333333 Inexact Rounded -div103 divide 1 4 -> 0.25 -div104 divide 1 5 -> 0.2 -div105 divide 1 6 -> 0.166666667 Inexact Rounded -div106 divide 1 7 -> 0.142857143 Inexact Rounded -div107 divide 1 8 -> 0.125 -div108 divide 1 9 -> 0.111111111 Inexact Rounded -div109 divide 1 10 -> 0.1 -div110 divide 1 1 -> 1 -div111 divide 2 1 -> 2 -div112 divide 3 1 -> 3 -div113 divide 4 1 -> 4 -div114 divide 5 1 -> 5 -div115 divide 6 1 -> 6 -div116 divide 7 1 -> 7 -div117 divide 8 1 -> 8 -div118 divide 9 1 -> 9 -div119 divide 10 1 -> 10 - -div130 divide 12345 4.999 -> 2469.4939 Inexact Rounded -div131 divide 12345 4.99 -> 2473.9479 Inexact Rounded -div132 divide 12345 4.9 -> 2519.38776 Inexact Rounded -div133 divide 12345 5 -> 2469 -div134 divide 12345 5.1 -> 2420.58824 Inexact Rounded -div135 divide 12345 5.01 -> 2464.07186 Inexact Rounded -div136 divide 12345 5.001 -> 2468.5063 Inexact Rounded - --- Various flavours of divide by 0 -maxexponent: 999999999 -minexponent: -999999999 -div201 divide 0 0 -> ? Division_undefined -div202 divide 0.0E5 0 -> ? Division_undefined -div203 divide 0.000 0 -> ? Division_undefined -div204 divide 0.0001 0 -> ? Division_by_zero -div205 divide 0.01 0 -> ? Division_by_zero -div206 divide 0.1 0 -> ? Division_by_zero -div207 divide 1 0 -> ? Division_by_zero -div208 divide 1 0.0 -> ? Division_by_zero -div209 divide 10 0.0 -> ? Division_by_zero -div210 divide 1E+100 0.0 -> ? Division_by_zero -div211 divide 1E+1000 0 -> ? Division_by_zero - --- test possibly imprecise results -div220 divide 391 597 -> 0.654941374 Inexact Rounded -div221 divide 391 -597 -> -0.654941374 Inexact Rounded -div222 divide -391 597 -> -0.654941374 Inexact Rounded -div223 divide -391 -597 -> 0.654941374 Inexact Rounded - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -div270 divide 1 1e999999999 -> 1E-999999999 -div271 divide 1 0.9e999999999 -> 1.11111111E-999999999 Inexact Rounded -div272 divide 1 0.99e999999999 -> 1.01010101E-999999999 Inexact Rounded -div273 divide 1 0.999999999e999999999 -> 1E-999999999 Inexact Rounded -div274 divide 9e999999999 1 -> 9E+999999999 -div275 divide 9.9e999999999 1 -> 9.9E+999999999 -div276 divide 9.99e999999999 1 -> 9.99E+999999999 -div277 divide 9.99999999e999999999 1 -> 9.99999999E+999999999 - -div280 divide 0.1 9e-999999999 -> 1.11111111E+999999997 Inexact Rounded -div281 divide 0.1 99e-999999999 -> 1.01010101E+999999996 Inexact Rounded -div282 divide 0.1 999e-999999999 -> 1.001001E+999999995 Inexact Rounded - -div283 divide 0.1 9e-999999998 -> 1.11111111E+999999996 Inexact Rounded -div284 divide 0.1 99e-999999998 -> 1.01010101E+999999995 Inexact Rounded -div285 divide 0.1 999e-999999998 -> 1.001001E+999999994 Inexact Rounded -div286 divide 0.1 999e-999999997 -> 1.001001E+999999993 Inexact Rounded -div287 divide 0.1 9999e-999999997 -> 1.00010001E+999999992 Inexact Rounded -div288 divide 0.1 99999e-999999997 -> 1.00001E+999999991 Inexact Rounded - --- overflow and underflow tests -maxexponent: 999999999 -minexponent: -999999999 -div330 divide +1.23456789012345E-0 9E+999999999 -> ? Inexact Lost_digits Rounded Underflow Subnormal -div331 divide 9E+999999999 +0.23456789012345E-0 -> ? Inexact Lost_digits Overflow Rounded -div332 divide +0.100 9E+999999999 -> ? Inexact Rounded Underflow Subnormal -div333 divide 9E-999999999 +9.100 -> ? Inexact Rounded Underflow Subnormal -div335 divide -1.23456789012345E-0 9E+999999999 -> ? Inexact Lost_digits Rounded Underflow Subnormal -div336 divide 9E+999999999 -0.83456789012345E-0 -> ? Inexact Lost_digits Overflow Rounded -div337 divide -0.100 9E+999999999 -> ? Inexact Rounded Underflow Subnormal -div338 divide 9E-999999999 -9.100 -> ? Inexact Rounded Underflow Subnormal - --- 'subnormal' results (all underflow or overflow in base arithemtic) -div360 divide 1e-600000000 1e+400000001 -> ? Underflow Subnormal Inexact Rounded -div361 divide 1e-600000000 1e+400000002 -> ? Underflow Subnormal Inexact Rounded -div362 divide 1e-600000000 1e+400000003 -> ? Underflow Subnormal Inexact Rounded -div363 divide 1e-600000000 1e+400000004 -> ? Underflow Subnormal Inexact Rounded -div364 divide 1e-600000000 1e+400000005 -> ? Underflow Subnormal Inexact Rounded -div365 divide 1e-600000000 1e+400000006 -> ? Underflow Subnormal Inexact Rounded -div366 divide 1e-600000000 1e+400000007 -> ? Underflow Subnormal Inexact Rounded -div367 divide 1e-600000000 1e+400000008 -> ? Underflow Subnormal Inexact Rounded -div368 divide 1e-600000000 1e+400000009 -> ? Underflow Subnormal Inexact Rounded -div369 divide 1e-600000000 1e+400000010 -> ? Underflow Subnormal Inexact Rounded --- [no equivalent of 'subnormal' for overflow] -div370 divide 1e+600000000 1e-400000001 -> ? Overflow Inexact Rounded -div371 divide 1e+600000000 1e-400000002 -> ? Overflow Inexact Rounded -div372 divide 1e+600000000 1e-400000003 -> ? Overflow Inexact Rounded -div373 divide 1e+600000000 1e-400000004 -> ? Overflow Inexact Rounded -div374 divide 1e+600000000 1e-400000005 -> ? Overflow Inexact Rounded -div375 divide 1e+600000000 1e-400000006 -> ? Overflow Inexact Rounded -div376 divide 1e+600000000 1e-400000007 -> ? Overflow Inexact Rounded -div377 divide 1e+600000000 1e-400000008 -> ? Overflow Inexact Rounded -div378 divide 1e+600000000 1e-400000009 -> ? Overflow Inexact Rounded -div379 divide 1e+600000000 1e-400000010 -> ? Overflow Inexact Rounded - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -div401 divide 12345678000 1 -> 1.2345678E+10 Rounded -div402 divide 1 12345678000 -> 8.10000066E-11 Inexact Rounded -div403 divide 1234567800 1 -> 1.2345678E+9 Rounded -div404 divide 1 1234567800 -> 8.10000066E-10 Inexact Rounded -div405 divide 1234567890 1 -> 1.23456789E+9 Rounded -div406 divide 1 1234567890 -> 8.10000007E-10 Inexact Rounded -div407 divide 1234567891 1 -> 1.23456789E+9 Inexact Lost_digits Rounded -div408 divide 1 1234567891 -> 8.10000007E-10 Inexact Lost_digits Rounded -div409 divide 12345678901 1 -> 1.23456789E+10 Inexact Lost_digits Rounded -div410 divide 1 12345678901 -> 8.10000007E-11 Inexact Lost_digits Rounded -div411 divide 1234567896 1 -> 1.2345679E+9 Inexact Lost_digits Rounded -div412 divide 1 1234567896 -> 8.10000001E-10 Inexact Lost_digits Rounded --- previous case different (8.10000003E-10) if no input rounding - -precision: 15 --- still checking for [no] lostDigits -div441 divide 12345678000 1 -> 12345678000 -div442 divide 1 12345678000 -> 8.10000066420005E-11 Inexact Rounded -div443 divide 1234567800 1 -> 1234567800 -div444 divide 1 1234567800 -> 8.10000066420005E-10 Inexact Rounded -div445 divide 1234567890 1 -> 1234567890 -div446 divide 1 1234567890 -> 8.10000007371E-10 Inexact Rounded -div447 divide 1234567891 1 -> 1234567891 -div448 divide 1 1234567891 -> 8.100000067149E-10 Inexact Rounded -div449 divide 12345678901 1 -> 12345678901 -div450 divide 1 12345678901 -> 8.1000000730539E-11 Inexact Rounded -div451 divide 1234567896 1 -> 1234567896 -div452 divide 1 1234567896 -> 8.100000034344E-10 Inexact Rounded - --- Null tests -div900 divide 10 # -> ? Invalid_operation -div901 divide # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/divideint0.decTest b/qdecimal/test/tc_subset/divideint0.decTest deleted file mode 100644 index 0002db5..0000000 --- a/qdecimal/test/tc_subset/divideint0.decTest +++ /dev/null @@ -1,240 +0,0 @@ ------------------------------------------------------------------------- --- divideint0.decTest -- decimal integer division (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -dvi001 divideint 1 1 -> 1 -dvi002 divideint 2 1 -> 2 -dvi003 divideint 1 2 -> 0 -dvi004 divideint 2 2 -> 1 -dvi005 divideint 0 1 -> 0 -dvi006 divideint 0 2 -> 0 -dvi007 divideint 1 3 -> 0 -dvi008 divideint 2 3 -> 0 -dvi009 divideint 3 3 -> 1 - -dvi010 divideint 2.4 1 -> 2 -dvi011 divideint 2.4 -1 -> -2 -dvi012 divideint -2.4 1 -> -2 -dvi013 divideint -2.4 -1 -> 2 -dvi014 divideint 2.40 1 -> 2 -dvi015 divideint 2.400 1 -> 2 -dvi016 divideint 2.4 2 -> 1 -dvi017 divideint 2.400 2 -> 1 -dvi018 divideint 2. 2 -> 1 -dvi019 divideint 20 20 -> 1 - -dvi020 divideint 187 187 -> 1 -dvi021 divideint 5 2 -> 2 -dvi022 divideint 5 2.0 -> 2 -dvi023 divideint 5 2.000 -> 2 -dvi024 divideint 5 0.200 -> 25 -dvi025 divideint 5 0.200 -> 25 - -dvi030 divideint 1 2 -> 0 -dvi031 divideint 1 4 -> 0 -dvi032 divideint 1 8 -> 0 -dvi033 divideint 1 16 -> 0 -dvi034 divideint 1 32 -> 0 -dvi035 divideint 1 64 -> 0 -dvi040 divideint 1 -2 -> 0 -dvi041 divideint 1 -4 -> 0 -dvi042 divideint 1 -8 -> 0 -dvi043 divideint 1 -16 -> 0 -dvi044 divideint 1 -32 -> 0 -dvi045 divideint 1 -64 -> 0 -dvi050 divideint -1 2 -> 0 -dvi051 divideint -1 4 -> 0 -dvi052 divideint -1 8 -> 0 -dvi053 divideint -1 16 -> 0 -dvi054 divideint -1 32 -> 0 -dvi055 divideint -1 64 -> 0 -dvi060 divideint -1 -2 -> 0 -dvi061 divideint -1 -4 -> 0 -dvi062 divideint -1 -8 -> 0 -dvi063 divideint -1 -16 -> 0 -dvi064 divideint -1 -32 -> 0 -dvi065 divideint -1 -64 -> 0 - --- some lostDigits cases here -dvi070 divideint 999999999 1 -> 999999999 -dvi071 divideint 999999999.4 1 -> 999999999 Inexact Lost_digits Rounded -dvi072 divideint 999999999.5 1 -> ? Division_impossible Inexact Lost_digits Rounded -dvi073 divideint 999999999.9 1 -> ? Division_impossible Inexact Lost_digits Rounded -dvi074 divideint 999999999.999 1 -> ? Division_impossible Inexact Lost_digits Rounded -precision: 6 -dvi080 divideint 999999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -dvi081 divideint 99999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -dvi082 divideint 9999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -dvi083 divideint 999999 1 -> 999999 -dvi084 divideint 99999 1 -> 99999 -dvi085 divideint 9999 1 -> 9999 -dvi086 divideint 999 1 -> 999 -dvi087 divideint 99 1 -> 99 -dvi088 divideint 9 1 -> 9 - -precision: 9 -dvi090 divideint 0. 1 -> 0 -dvi091 divideint .0 1 -> 0 -dvi092 divideint 0.00 1 -> 0 -dvi093 divideint 0.00E+9 1 -> 0 -dvi094 divideint 0.0000E-50 1 -> 0 - -dvi100 divideint 1 1 -> 1 -dvi101 divideint 1 2 -> 0 -dvi102 divideint 1 3 -> 0 -dvi103 divideint 1 4 -> 0 -dvi104 divideint 1 5 -> 0 -dvi105 divideint 1 6 -> 0 -dvi106 divideint 1 7 -> 0 -dvi107 divideint 1 8 -> 0 -dvi108 divideint 1 9 -> 0 -dvi109 divideint 1 10 -> 0 -dvi110 divideint 1 1 -> 1 -dvi111 divideint 2 1 -> 2 -dvi112 divideint 3 1 -> 3 -dvi113 divideint 4 1 -> 4 -dvi114 divideint 5 1 -> 5 -dvi115 divideint 6 1 -> 6 -dvi116 divideint 7 1 -> 7 -dvi117 divideint 8 1 -> 8 -dvi118 divideint 9 1 -> 9 -dvi119 divideint 10 1 -> 10 - --- from DiagBigDecimal -dvi131 divideint 101.3 1 -> 101 -dvi132 divideint 101.0 1 -> 101 -dvi133 divideint 101.3 3 -> 33 -dvi134 divideint 101.0 3 -> 33 -dvi135 divideint 2.4 1 -> 2 -dvi136 divideint 2.400 1 -> 2 -dvi137 divideint 18 18 -> 1 -dvi138 divideint 1120 1000 -> 1 -dvi139 divideint 2.4 2 -> 1 -dvi140 divideint 2.400 2 -> 1 -dvi141 divideint 0.5 2.000 -> 0 -dvi142 divideint 8.005 7 -> 1 -dvi143 divideint 5 2 -> 2 -dvi144 divideint 0 2 -> 0 -dvi145 divideint 0.00 2 -> 0 - --- Others -dvi150 divideint 12345 4.999 -> 2469 -dvi151 divideint 12345 4.99 -> 2473 -dvi152 divideint 12345 4.9 -> 2519 -dvi153 divideint 12345 5 -> 2469 -dvi154 divideint 12345 5.1 -> 2420 -dvi155 divideint 12345 5.01 -> 2464 -dvi156 divideint 12345 5.001 -> 2468 -dvi157 divideint 101 7.6 -> 13 - - --- Various flavours of divideint by 0 -maxexponent: 999999999 -minexponent: -999999999 -dvi201 divideint 0 0 -> ? Division_undefined -dvi202 divideint 0.0E5 0 -> ? Division_undefined -dvi203 divideint 0.000 0 -> ? Division_undefined -dvi204 divideint 0.0001 0 -> ? Division_by_zero -dvi205 divideint 0.01 0 -> ? Division_by_zero -dvi206 divideint 0.1 0 -> ? Division_by_zero -dvi207 divideint 1 0 -> ? Division_by_zero -dvi208 divideint 1 0.0 -> ? Division_by_zero -dvi209 divideint 10 0.0 -> ? Division_by_zero -dvi210 divideint 1E+100 0.0 -> ? Division_by_zero -dvi211 divideint 1E+1000 0 -> ? Division_by_zero - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -dvi270 divideint 1 1e999999999 -> 0 -dvi271 divideint 1 0.9e999999999 -> 0 -dvi272 divideint 1 0.99e999999999 -> 0 -dvi273 divideint 1 0.999999999e999999999 -> 0 -dvi274 divideint 9e999999999 1 -> ? Division_impossible -dvi275 divideint 9.9e999999999 1 -> ? Division_impossible -dvi276 divideint 9.99e999999999 1 -> ? Division_impossible -dvi277 divideint 9.99999999e999999999 1 -> ? Division_impossible - -dvi280 divideint 0.1 9e-999999999 -> ? Division_impossible -dvi281 divideint 0.1 99e-999999999 -> ? Division_impossible -dvi282 divideint 0.1 999e-999999999 -> ? Division_impossible - -dvi283 divideint 0.1 9e-999999998 -> ? Division_impossible -dvi284 divideint 0.1 99e-999999998 -> ? Division_impossible -dvi285 divideint 0.1 999e-999999998 -> ? Division_impossible -dvi286 divideint 0.1 999e-999999997 -> ? Division_impossible -dvi287 divideint 0.1 9999e-999999997 -> ? Division_impossible -dvi288 divideint 0.1 99999e-999999997 -> ? Division_impossible - - --- overflow and underflow tests [from divide] -maxexponent: 999999999 -minexponent: -999999999 -dvi330 divideint +1.23456789012345E-0 9E+999999999 -> 0 Inexact Lost_digits Rounded -dvi331 divideint 9E+999999999 +0.23456789012345E-0 -> ? Division_impossible Inexact Lost_digits Rounded -dvi332 divideint +0.100 9E+999999999 -> 0 -dvi333 divideint 9E-999999999 +9.100 -> 0 -dvi335 divideint -1.23456789012345E-0 9E+999999999 -> 0 Inexact Lost_digits Rounded -dvi336 divideint 9E+999999999 -0.83456789012345E-0 -> ? Division_impossible Inexact Lost_digits Rounded -dvi337 divideint -0.100 9E+999999999 -> 0 -dvi338 divideint 9E-999999999 -9.100 -> 0 - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -dvi401 divideint 12345678000 100 -> 123456780 Rounded -dvi402 divideint 1 12345678000 -> 0 Rounded -dvi403 divideint 1234567800 10 -> 123456780 Rounded -dvi404 divideint 1 1234567800 -> 0 Rounded -dvi405 divideint 1234567890 10 -> 123456789 Rounded -dvi406 divideint 1 1234567890 -> 0 Rounded -dvi407 divideint 1234567891 10 -> 123456789 Inexact Lost_digits Rounded -dvi408 divideint 1 1234567891 -> 0 Inexact Lost_digits Rounded -dvi409 divideint 12345678901 100 -> 123456789 Inexact Lost_digits Rounded -dvi410 divideint 1 12345678901 -> 0 Inexact Lost_digits Rounded -dvi411 divideint 1234567896 10 -> 123456790 Inexact Lost_digits Rounded -dvi412 divideint 1 1234567896 -> 0 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -dvi441 divideint 12345678000 1 -> 12345678000 -dvi442 divideint 1 12345678000 -> 0 -dvi443 divideint 1234567800 1 -> 1234567800 -dvi444 divideint 1 1234567800 -> 0 -dvi445 divideint 1234567890 1 -> 1234567890 -dvi446 divideint 1 1234567890 -> 0 -dvi447 divideint 1234567891 1 -> 1234567891 -dvi448 divideint 1 1234567891 -> 0 -dvi449 divideint 12345678901 1 -> 12345678901 -dvi450 divideint 1 12345678901 -> 0 -dvi451 divideint 1234567896 1 -> 1234567896 -dvi452 divideint 1 1234567896 -> 0 - --- Null tests -dvi900 divideint 10 # -> ? Invalid_operation -dvi901 divideint # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/exp0.decTest b/qdecimal/test/tc_subset/exp0.decTest deleted file mode 100644 index 5a9ea94..0000000 --- a/qdecimal/test/tc_subset/exp0.decTest +++ /dev/null @@ -1,491 +0,0 @@ ------------------------------------------------------------------------- --- exp0.decTest -- decimal natural exponentiation (subset) -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Tests of the exponential funtion. Currently all testcases here --- show results which are correctly rounded (within <= 0.5 ulp). - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- basics -exp002 exp -1 -> 0.367879441 Inexact Rounded -exp003 exp 0 -> 1 -exp004 exp 1 -> 2.71828183 Inexact Rounded - --- tiny edge cases -precision: 7 -exp021 exp 0.1 -> 1.105171 Inexact Rounded -exp022 exp 0.01 -> 1.010050 Inexact Rounded -exp023 exp 0.00001 -> 1.000010 Inexact Rounded -exp024 exp 0.000001 -> 1.000001 Inexact Rounded -exp025 exp 0.0000001 -> 1.000000 Inexact Rounded -exp026 exp 0.0000003 -> 1.000000 Inexact Rounded -exp027 exp 0.0000004 -> 1.000000 Inexact Rounded -exp028 exp 0.0000005 -> 1.000001 Inexact Rounded -exp029 exp 0.0000008 -> 1.000001 Inexact Rounded -exp030 exp 0.0000009 -> 1.000001 Inexact Rounded -exp031 exp 0.0000010 -> 1.000001 Inexact Rounded -exp032 exp 0.0000011 -> 1.000001 Inexact Rounded -exp033 exp 0.00000009 -> 1.000000 Inexact Rounded -exp034 exp 0.00000005 -> 1.000000 Inexact Rounded -exp035 exp 0.00000004 -> 1.000000 Inexact Rounded -exp036 exp 0.00000001 -> 1.000000 Inexact Rounded - --- and some more zeros -exp037 exp 0.00000000 -> 1 -exp038 exp 0E+100 -> 1 -exp039 exp 0E-100 -> 1 - --- basic e=0, e=1, e=2, e=4, e>=8 cases -precision: 7 -exp041 exp 1 -> 2.718282 Inexact Rounded -exp042 exp -1 -> 0.3678794 Inexact Rounded -exp043 exp 10 -> 22026.47 Inexact Rounded -exp044 exp -10 -> 0.00004539993 Inexact Rounded -exp045 exp 100 -> 2.688117E+43 Inexact Rounded -exp046 exp -100 -> 3.720076E-44 Inexact Rounded -exp047 exp 1000 -> ? Overflow Inexact Rounded -exp048 exp -1000 -> ? Underflow Inexact Rounded Clamped Subnormal -exp049 exp 100000000 -> ? Overflow Inexact Rounded -exp050 exp -100000000 -> ? Underflow Inexact Rounded Clamped Subnormal - - --- rounding in areas of ..500.., ..499.., ..100.., ..999.. sequences -precision: 50 -exp101 exp -9E-8 -> 0.99999991000000404999987850000273374995079250073811 Inexact Rounded -precision: 31 -exp102 exp -9E-8 -> 0.9999999100000040499998785000027 Inexact Rounded -precision: 30 -exp103 exp -9E-8 -> 0.999999910000004049999878500003 Inexact Rounded -precision: 29 -exp104 exp -9E-8 -> 0.99999991000000404999987850000 Inexact Rounded -precision: 28 -exp105 exp -9E-8 -> 0.9999999100000040499998785000 Inexact Rounded -precision: 27 -exp106 exp -9E-8 -> 0.999999910000004049999878500 Inexact Rounded -precision: 26 -exp107 exp -9E-8 -> 0.99999991000000404999987850 Inexact Rounded -precision: 25 -exp108 exp -9E-8 -> 0.9999999100000040499998785 Inexact Rounded -precision: 24 -exp109 exp -9E-8 -> 0.999999910000004049999879 Inexact Rounded -precision: 23 -exp110 exp -9E-8 -> 0.99999991000000404999988 Inexact Rounded -precision: 22 -exp111 exp -9E-8 -> 0.9999999100000040499999 Inexact Rounded -precision: 21 -exp112 exp -9E-8 -> 0.999999910000004050000 Inexact Rounded -precision: 20 -exp113 exp -9E-8 -> 0.99999991000000405000 Inexact Rounded -precision: 19 -exp114 exp -9E-8 -> 0.9999999100000040500 Inexact Rounded -precision: 18 -exp115 exp -9E-8 -> 0.999999910000004050 Inexact Rounded -precision: 17 -exp116 exp -9E-8 -> 0.99999991000000405 Inexact Rounded -precision: 16 -exp117 exp -9E-8 -> 0.9999999100000040 Inexact Rounded -precision: 15 -exp118 exp -9E-8 -> 0.999999910000004 Inexact Rounded -precision: 14 -exp119 exp -9E-8 -> 0.99999991000000 Inexact Rounded -precision: 13 -exp120 exp -9E-8 -> 0.9999999100000 Inexact Rounded -precision: 12 -exp121 exp -9E-8 -> 0.999999910000 Inexact Rounded -precision: 11 -exp122 exp -9E-8 -> 0.99999991000 Inexact Rounded -precision: 10 -exp123 exp -9E-8 -> 0.9999999100 Inexact Rounded -precision: 9 -exp124 exp -9E-8 -> 0.999999910 Inexact Rounded -precision: 8 -exp125 exp -9E-8 -> 0.99999991 Inexact Rounded -precision: 7 -exp126 exp -9E-8 -> 0.9999999 Inexact Rounded -precision: 6 -exp127 exp -9E-8 -> 1.00000 Inexact Rounded -precision: 5 -exp128 exp -9E-8 -> 1.0000 Inexact Rounded -precision: 4 -exp129 exp -9E-8 -> 1.000 Inexact Rounded -precision: 3 -exp130 exp -9E-8 -> 1.00 Inexact Rounded -precision: 2 -exp131 exp -9E-8 -> 1.0 Inexact Rounded -precision: 1 -exp132 exp -9E-8 -> 1 Inexact Rounded - - --- sanity checks, with iteration counts [normalized so 0<=|x|<1] -precision: 50 - -exp210 exp 0 -> 1 --- iterations: 2 -exp211 exp -1E-40 -> 0.99999999999999999999999999999999999999990000000000 Inexact Rounded --- iterations: 8 -exp212 exp -9E-7 -> 0.99999910000040499987850002733749507925073811240510 Inexact Rounded --- iterations: 6 -exp213 exp -9E-8 -> 0.99999991000000404999987850000273374995079250073811 Inexact Rounded --- iterations: 15 -exp214 exp -0.003 -> 0.99700449550337297601206623409756091074177480489845 Inexact Rounded --- iterations: 14 -exp215 exp -0.001 -> 0.99900049983337499166805535716765597470235590236008 Inexact Rounded --- iterations: 26 -exp216 exp -0.1 -> 0.90483741803595957316424905944643662119470536098040 Inexact Rounded --- iterations: 39 -exp217 exp -0.7 -> 0.49658530379140951470480009339752896170766716571182 Inexact Rounded --- iterations: 41 -exp218 exp -0.9 -> 0.40656965974059911188345423964562598783370337617038 Inexact Rounded --- iterations: 43 -exp219 exp -0.99 -> 0.37157669102204569053152411990820138691802885490501 Inexact Rounded --- iterations: 26 -exp220 exp -1 -> 0.36787944117144232159552377016146086744581113103177 Inexact Rounded --- iterations: 26 -exp221 exp -1.01 -> 0.36421897957152331975704629563734548959589139192482 Inexact Rounded --- iterations: 27 -exp222 exp -1.1 -> 0.33287108369807955328884690643131552161247952156921 Inexact Rounded --- iterations: 28 -exp223 exp -1.5 -> 0.22313016014842982893328047076401252134217162936108 Inexact Rounded --- iterations: 30 -exp224 exp -2 -> 0.13533528323661269189399949497248440340763154590958 Inexact Rounded --- iterations: 36 -exp225 exp -5 -> 0.0067379469990854670966360484231484242488495850273551 Inexact Rounded --- iterations: 26 -exp226 exp -10 -> 0.000045399929762484851535591515560550610237918088866565 Inexact Rounded --- iterations: 28 -exp227 exp -14 -> 8.3152871910356788406398514256526229460765836498457E-7 Inexact Rounded --- iterations: 29 -exp228 exp -15 -> 3.0590232050182578837147949770228963937082078081856E-7 Inexact Rounded --- iterations: 30 -exp233 exp 0 -> 1 --- iterations: 2 -exp234 exp 1E-40 -> 1.0000000000000000000000000000000000000001000000000 Inexact Rounded --- iterations: 7 -exp235 exp 9E-7 -> 1.0000009000004050001215000273375049207507381125949 Inexact Rounded --- iterations: 6 -exp236 exp 9E-8 -> 1.0000000900000040500001215000027337500492075007381 Inexact Rounded --- iterations: 15 -exp237 exp 0.003 -> 1.0030045045033770260129340913489002053318727195619 Inexact Rounded --- iterations: 13 -exp238 exp 0.001 -> 1.0010005001667083416680557539930583115630762005807 Inexact Rounded --- iterations: 25 -exp239 exp 0.1 -> 1.1051709180756476248117078264902466682245471947375 Inexact Rounded --- iterations: 38 -exp240 exp 0.7 -> 2.0137527074704765216245493885830652700175423941459 Inexact Rounded --- iterations: 41 -exp241 exp 0.9 -> 2.4596031111569496638001265636024706954217723064401 Inexact Rounded --- iterations: 42 -exp242 exp 0.99 -> 2.6912344723492622890998794040710139721802931841030 Inexact Rounded --- iterations: 26 -exp243 exp 1 -> 2.7182818284590452353602874713526624977572470937000 Inexact Rounded --- iterations: 26 -exp244 exp 1.01 -> 2.7456010150169164939897763166603876240737508195960 Inexact Rounded --- iterations: 26 -exp245 exp 1.1 -> 3.0041660239464331120584079535886723932826810260163 Inexact Rounded --- iterations: 28 -exp246 exp 1.5 -> 4.4816890703380648226020554601192758190057498683697 Inexact Rounded --- iterations: 29 -exp247 exp 2 -> 7.3890560989306502272304274605750078131803155705518 Inexact Rounded --- iterations: 36 -exp248 exp 5 -> 148.41315910257660342111558004055227962348766759388 Inexact Rounded --- iterations: 26 -exp249 exp 10 -> 22026.465794806716516957900645284244366353512618557 Inexact Rounded --- iterations: 28 -exp250 exp 14 -> 1202604.2841647767777492367707678594494124865433761 Inexact Rounded --- iterations: 28 -exp251 exp 15 -> 3269017.3724721106393018550460917213155057385438200 Inexact Rounded --- iterations: 29 - --- 0<-x<<1 effects -precision: 30 -exp320 exp -4.9999999999999E-8 -> 0.999999950000001250000979166617 Inexact Rounded -exp321 exp -5.0000000000000E-8 -> 0.999999950000001249999979166667 Inexact Rounded -exp322 exp -5.0000000000001E-8 -> 0.999999950000001249998979166717 Inexact Rounded -precision: 20 -exp323 exp -4.9999999999999E-8 -> 0.99999995000000125000 Inexact Rounded -exp324 exp -5.0000000000000E-8 -> 0.99999995000000125000 Inexact Rounded -exp325 exp -5.0000000000001E-8 -> 0.99999995000000125000 Inexact Rounded -precision: 14 -exp326 exp -4.9999999999999E-8 -> 0.99999995000000 Inexact Rounded -exp327 exp -5.0000000000000E-8 -> 0.99999995000000 Inexact Rounded -exp328 exp -5.0000000000001E-8 -> 0.99999995000000 Inexact Rounded - --- 0 1.00000005000000124999902083328 Inexact Rounded -exp341 exp 5.0000000000000E-8 -> 1.00000005000000125000002083333 Inexact Rounded -exp342 exp 5.0000000000001E-8 -> 1.00000005000000125000102083338 Inexact Rounded -precision: 20 -exp343 exp 4.9999999999999E-8 -> 1.0000000500000012500 Inexact Rounded -exp344 exp 5.0000000000000E-8 -> 1.0000000500000012500 Inexact Rounded -exp345 exp 5.0000000000001E-8 -> 1.0000000500000012500 Inexact Rounded -precision: 14 -exp346 exp 4.9999999999999E-8 -> 1.0000000500000 Inexact Rounded -exp347 exp 5.0000000000000E-8 -> 1.0000000500000 Inexact Rounded -exp348 exp 5.0000000000001E-8 -> 1.0000000500000 Inexact Rounded - --- cases near 1 -- 1 2345678901234567890 -precision: 20 -exp401 exp 0.99999999999996 -> 2.7182818284589365041 Inexact Rounded -exp402 exp 0.99999999999997 -> 2.7182818284589636869 Inexact Rounded -exp403 exp 0.99999999999998 -> 2.7182818284589908697 Inexact Rounded -exp404 exp 0.99999999999999 -> 2.7182818284590180525 Inexact Rounded -exp405 exp 1.0000000000000 -> 2.7182818284590452354 Inexact Rounded -exp406 exp 1.0000000000001 -> 2.7182818284593170635 Inexact Rounded -exp407 exp 1.0000000000002 -> 2.7182818284595888917 Inexact Rounded -precision: 14 -exp411 exp 0.99999999999996 -> 2.7182818284589 Inexact Rounded -exp412 exp 0.99999999999997 -> 2.7182818284590 Inexact Rounded -exp413 exp 0.99999999999998 -> 2.7182818284590 Inexact Rounded -exp414 exp 0.99999999999999 -> 2.7182818284590 Inexact Rounded -exp415 exp 1.0000000000000 -> 2.7182818284590 Inexact Rounded -exp416 exp 1.0000000000001 -> 2.7182818284593 Inexact Rounded -exp417 exp 1.0000000000002 -> 2.7182818284596 Inexact Rounded - --- overflows -precision: 7 -maxExponent: 384 -minExponent: -383 -exp704 exp 1000000 -> ? Overflow Inexact Rounded -exp705 exp 100000 -> ? Overflow Inexact Rounded -exp706 exp 10000 -> ? Overflow Inexact Rounded -exp707 exp 1000 -> ? Overflow Inexact Rounded -precision: 16 -exp725 exp 886.4952608027076 -> ? Overflow Inexact Rounded -exp726 exp 886.4952608027075 -> 9.999999999999117E+384 Inexact Rounded - --- subnormals and underflows, including underflow-to-zero edge point -precision: 7 -maxExponent: 384 -minExponent: -383 -exp754 exp -1000000 -> ? Underflow Inexact Rounded Clamped Subnormal -exp755 exp -100000 -> ? Underflow Inexact Rounded Clamped Subnormal -exp756 exp -10000 -> ? Underflow Inexact Rounded Clamped Subnormal -exp757 exp -1000 -> ? Underflow Inexact Rounded Clamped Subnormal -exp759 exp -881.8901 -> ? Inexact Rounded Underflow Subnormal -exp760 exp -885 -> ? Inexact Rounded Underflow Subnormal -exp761 exp -888 -> ? Inexact Rounded Underflow Subnormal -exp762 exp -890 -> ? Inexact Rounded Underflow Subnormal -exp763 exp -892.9 -> ? Inexact Rounded Underflow Subnormal -exp764 exp -893 -> ? Inexact Rounded Underflow Subnormal -exp765 exp -893.5 -> ? Inexact Rounded Underflow Subnormal -exp766 exp -895.7056 -> ? Inexact Rounded Underflow Subnormal -exp769 exp -895.8 -> ? Inexact Rounded Underflow Subnormal -exp770 exp -895.73 -> ? Inexact Rounded Underflow Subnormal -exp771 exp -896.3987 -> ? Inexact Rounded Underflow Subnormal -exp772 exp -896.3988 -> ? Inexact Rounded Underflow Subnormal -exp773 exp -898.0081 -> ? Inexact Rounded Underflow Subnormal -exp774 exp -898.0082 -> ? Inexact Rounded Underflow Subnormal - --- -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_up - --- Null test -exp900 exp # -> ? Invalid_operation - - --- Randoms P=50, within 0-999 -Precision: 50 -maxExponent: 384 -minExponent: -383 -exp1501 exp 656.35397950590285612266095596539934213943872885728 -> 1.1243757610640319783611178528839652672062820040314E+285 Inexact Rounded -exp1502 exp 0.93620571093652800225038550600780322831236082781471 -> 2.5502865130986176689199711857825771311178046842009 Inexact Rounded -exp1503 exp 0.00000000000000008340785856601514714183373874105791 -> 1.0000000000000000834078585660151506202691740252512 Inexact Rounded -exp1504 exp 0.00009174057262887789625745574686545163168788456203 -> 1.0000917447809239005146722341251524081006051473273 Inexact Rounded -exp1505 exp 33.909116897973797735657751591014926629051117541243 -> 532773181025002.03543618901306726495870476617232229 Inexact Rounded -exp1506 exp 0.00000740470413004406592124575295278456936809587311 -> 1.0000074047315449333590066395670306135567889210814 Inexact Rounded -exp1507 exp 0.00000000000124854922222108802453746922483071445492 -> 1.0000000000012485492222218674621176239911424968263 Inexact Rounded -exp1508 exp 4.1793280674155659794286951159430651258356014391382 -> 65.321946520147199404199787811336860087975118278185 Inexact Rounded -exp1509 exp 485.43595745460655893746179890255529919221550201686 -> 6.6398403920459617255950476953129377459845366585463E+210 Inexact Rounded -exp1510 exp 0.00000000003547259806590856032527875157830328156597 -> 1.0000000000354725980665377129320589406715000685515 Inexact Rounded -exp1511 exp 0.00000000000000759621497339104047930616478635042678 -> 1.0000000000000075962149733910693305471257715463887 Inexact Rounded -exp1512 exp 9.7959168821760339304571595474480640286072720233796 -> 17960.261146042955179164303653412650751681436352437 Inexact Rounded -exp1513 exp 0.00000000566642006258290526783901451194943164535581 -> 1.0000000056664200786370634609832438815665249347650 Inexact Rounded -exp1514 exp 741.29888791134298194088827572374718940925820027354 -> 8.7501694006317332808128946666402622432064923198731E+321 Inexact Rounded -exp1515 exp 032.75573003552517668808529099897153710887014947935 -> 168125196578678.17725841108617955904425345631092339 Inexact Rounded -exp1516 exp 42.333700726429333308594265553422902463737399437644 -> 2428245675864172475.4681119493045657797309369672012 Inexact Rounded -exp1517 exp 0.00000000000000559682616876491888197609158802835798 -> 1.0000000000000055968261687649345442076732739577049 Inexact Rounded -exp1518 exp 0.00000000000080703688668280193584758300973549486312 -> 1.0000000000008070368866831275901158164321867914342 Inexact Rounded -exp1519 exp 640.72396012796509482382712891709072570653606838251 -> 1.8318094990683394229304133068983914236995326891045E+278 Inexact Rounded -exp1520 exp 0.00000000000000509458922167631071416948112219512224 -> 1.0000000000000050945892216763236915891499324358556 Inexact Rounded -exp1521 exp 6.7670394314315206378625221583973414660727960241395 -> 868.73613012822031367806248697092884415119568271315 Inexact Rounded -exp1522 exp 04.823217407412963506638267226891024138054783122548 -> 124.36457929588837129731821077586705505565904205366 Inexact Rounded -exp1523 exp 193.51307878701196403991208482520115359690106143615 -> 1.1006830872854715677390914655452261550768957576034E+84 Inexact Rounded -exp1524 exp 5.7307749038303650539200345901210497015617393970463 -> 308.20800743106843083522721523715645950574866495196 Inexact Rounded -exp1525 exp 0.00000000000095217825199797965200541169123743500267 -> 1.0000000000009521782519984329737172007991390381273 Inexact Rounded -exp1526 exp 0.00027131440949183370966393682617930153495028919140 -> 1.0002713512185751022906058160480606598754913607364 Inexact Rounded -exp1527 exp 0.00000000064503059114680682343002315662069272707123 -> 1.0000000006450305913548390552323517403613135496633 Inexact Rounded -exp1528 exp 0.00000000000000095616643506527288866235238548440593 -> 1.0000000000000009561664350652733457894781582009094 Inexact Rounded -exp1529 exp 0.00000000000000086449942811678650244459550252743433 -> 1.0000000000000008644994281167868761242261096529986 Inexact Rounded -exp1530 exp 0.06223488355635359965683053157729204988381887621850 -> 1.0642122813392406657789688931838919323826250630831 Inexact Rounded -exp1531 exp 0.00000400710807804429435502657131912308680674057053 -> 1.0000040071161065125925620890019319832127863559260 Inexact Rounded -exp1532 exp 85.522796894744576211573232055494551429297878413017 -> 13870073686404228452757799770251085177.853337368935 Inexact Rounded -exp1533 exp 9.1496720811363678696938036379756663548353399954363 -> 9411.3537122832743386783597629161763057370034495157 Inexact Rounded -exp1534 exp 8.2215705240788294472944382056330516738577785177942 -> 3720.3406813383076953899654701615084425598377758189 Inexact Rounded -exp1535 exp 0.00000000015772064569640613142823203726821076239561 -> 1.0000000001577206457088440324683315788358926129830 Inexact Rounded -exp1536 exp 0.58179346473959531432624153576883440625538017532480 -> 1.7892445018275360163797022372655837188423194863605 Inexact Rounded -exp1537 exp 33.555726197149525061455517784870570470833498096559 -> 374168069896324.62578073148993526626307095854407952 Inexact Rounded -exp1538 exp 9.7898079803906215094140010009583375537259810398659 -> 17850.878119912208888217100998019986634620368538426 Inexact Rounded -exp1539 exp 89.157697327174521542502447953032536541038636966347 -> 525649152320166503771224149330448089550.67293829227 Inexact Rounded -exp1540 exp 25.022947600123328912029051897171319573322888514885 -> 73676343442.952517824345431437683153304645851960524 Inexact Rounded - --- Randoms P=34, within 0-999 -Precision: 34 -maxExponent: 6144 -minExponent: -6143 -exp1201 exp 309.5948855821510212996700645087188 -> 2.853319692901387521201738015050724E+134 Inexact Rounded -exp1202 exp 9.936543068706211420422803962680164 -> 20672.15839203171877476511093276022 Inexact Rounded -exp1203 exp 6.307870323881505684429839491707908 -> 548.8747777054637296137277391754665 Inexact Rounded -exp1204 exp 0.0003543281389438420535201308282503 -> 1.000354390920573746164733350843155 Inexact Rounded -exp1205 exp 0.0000037087453363918375598394920229 -> 1.000003708752213796324841920189323 Inexact Rounded -exp1206 exp 0.0020432312687512438040222444116585 -> 1.002045320088164826013561630975308 Inexact Rounded -exp1207 exp 6.856313340032177672550343216129586 -> 949.8587981604144147983589660524396 Inexact Rounded -exp1208 exp 0.0000000000402094928333815643326418 -> 1.000000000040209492834189965989612 Inexact Rounded -exp1209 exp 0.0049610784722412117632647003545839 -> 1.004973404997901987039589029277833 Inexact Rounded -exp1210 exp 0.0000891471883724066909746786702686 -> 1.000089151162101085412780088266699 Inexact Rounded -exp1211 exp 08.59979170376061890684723211112566 -> 5430.528314920905714615339273738097 Inexact Rounded -exp1212 exp 9.473117039341003854872778112752590 -> 13005.36234331224953460055897913917 Inexact Rounded -exp1213 exp 0.0999060724692207648429969999310118 -> 1.105067116975190602296052700726802 Inexact Rounded -exp1214 exp 0.0000000927804533555877884082269247 -> 1.000000092780457659694183954740772 Inexact Rounded -exp1215 exp 0.0376578583872889916298772818265677 -> 1.038375900489771946477857818447556 Inexact Rounded -exp1216 exp 261.6896411697539524911536116712307 -> 4.470613562127465095241600174941460E+113 Inexact Rounded -exp1217 exp 0.0709997423269162980875824213889626 -> 1.073580949235407949417814485533172 Inexact Rounded -exp1218 exp 0.0000000444605583295169895235658731 -> 1.000000044460559317887627657593900 Inexact Rounded -exp1219 exp 0.0000021224072854777512281369815185 -> 1.000002122409537785687390631070906 Inexact Rounded -exp1220 exp 547.5174462574156885473558485475052 -> 6.078629247383807942612114579728672E+237 Inexact Rounded -exp1221 exp 0.0000009067598041615192002339844670 -> 1.000000906760215268314680115374387 Inexact Rounded -exp1222 exp 0.0316476500308065365803455533244603 -> 1.032153761880187977658387961769034 Inexact Rounded -exp1223 exp 84.46160530377645101833996706384473 -> 4.799644995897968383503269871697856E+36 Inexact Rounded -exp1224 exp 0.0000000000520599740290848018904145 -> 1.000000000052059974030439922338393 Inexact Rounded -exp1225 exp 0.0000006748530640093620665651726708 -> 1.000000674853291722742292331812997 Inexact Rounded -exp1226 exp 0.0000000116853119761042020507916169 -> 1.000000011685312044377460306165203 Inexact Rounded -exp1227 exp 0.0022593818094258636727616886693280 -> 1.002261936135876893707094845543461 Inexact Rounded -exp1228 exp 0.0029398857673478912249856509667517 -> 1.002944211469495086813087651287012 Inexact Rounded -exp1229 exp 0.7511480029928802775376270557636963 -> 2.119431734510320169806976569366789 Inexact Rounded -exp1230 exp 174.9431952176750671150886423048447 -> 9.481222305374955011464619468044051E+75 Inexact Rounded -exp1231 exp 0.0000810612451694136129199895164424 -> 1.000081064530720924186615149646920 Inexact Rounded -exp1232 exp 51.06888989702669288180946272499035 -> 15098613888619165073959.89896018749 Inexact Rounded -exp1233 exp 0.0000000005992887599437093651494510 -> 1.000000000599288760123282874082758 Inexact Rounded -exp1234 exp 714.8549046761054856311108828903972 -> 2.867744544891081117381595080480784E+310 Inexact Rounded -exp1235 exp 0.0000000004468247802990643645607110 -> 1.000000000446824780398890556720233 Inexact Rounded -exp1236 exp 831.5818151589890366323551672043709 -> 1.417077409182624969435938062261655E+361 Inexact Rounded -exp1237 exp 0.0000000006868323825179605747108044 -> 1.000000000686832382753829935602454 Inexact Rounded -exp1238 exp 0.0000001306740266408976840228440255 -> 1.000000130674035178748675187648098 Inexact Rounded -exp1239 exp 0.3182210609022267704811502412335163 -> 1.374680115667798185758927247894859 Inexact Rounded -exp1240 exp 0.0147741234179104437440264644295501 -> 1.014883800239950682628277534839222 Inexact Rounded - --- Randoms P=16, within 0-99 -Precision: 16 -maxExponent: 384 -minExponent: -383 -exp1101 exp 8.473011527013724 -> 4783.900643969246 Inexact Rounded -exp1102 exp 0.0000055753022764 -> 1.000005575317818 Inexact Rounded -exp1103 exp 0.0000323474114482 -> 1.000032347934631 Inexact Rounded -exp1104 exp 64.54374138544166 -> 1.073966476173531E+28 Inexact Rounded -exp1105 exp 90.47203246416569 -> 1.956610887250643E+39 Inexact Rounded -exp1106 exp 9.299931532342757 -> 10937.27033325227 Inexact Rounded -exp1107 exp 8.759678437852203 -> 6372.062234495381 Inexact Rounded -exp1108 exp 0.0000931755127172 -> 1.000093179853690 Inexact Rounded -exp1109 exp 0.0000028101158373 -> 1.000002810119786 Inexact Rounded -exp1110 exp 0.0000008008130919 -> 1.000000800813413 Inexact Rounded -exp1111 exp 8.339771722299049 -> 4187.133803081878 Inexact Rounded -exp1112 exp 0.0026140497995474 -> 1.002617469406750 Inexact Rounded -exp1113 exp 0.7478033356261771 -> 2.112354781975418 Inexact Rounded -exp1114 exp 51.77663761827966 -> 3.064135801120365E+22 Inexact Rounded -exp1115 exp 0.1524989783061012 -> 1.164741272084955 Inexact Rounded -exp1116 exp 0.0066298798669219 -> 1.006651906170791 Inexact Rounded -exp1117 exp 9.955141865534960 -> 21060.23334287038 Inexact Rounded -exp1118 exp 92.34503059198483 -> 1.273318993481226E+40 Inexact Rounded -exp1119 exp 0.0000709388677346 -> 1.000070941383956 Inexact Rounded -exp1120 exp 79.12883036433204 -> 2.318538899389243E+34 Inexact Rounded -exp1121 exp 0.0000090881548873 -> 1.000009088196185 Inexact Rounded -exp1122 exp 0.0424828809603411 -> 1.043398194245720 Inexact Rounded -exp1123 exp 0.8009035891427416 -> 2.227552811933310 Inexact Rounded -exp1124 exp 8.825786167283102 -> 6807.540455289995 Inexact Rounded -exp1125 exp 1.535457249746275 -> 4.643448260146849 Inexact Rounded -exp1126 exp 69.02254254355800 -> 9.464754500670653E+29 Inexact Rounded -exp1127 exp 0.0007050554368713 -> 1.000705304046880 Inexact Rounded -exp1128 exp 0.0000081206549504 -> 1.000008120687923 Inexact Rounded -exp1129 exp 0.621774854641137 -> 1.862230298554903 Inexact Rounded -exp1130 exp 3.847629031404354 -> 46.88177613568203 Inexact Rounded -exp1131 exp 24.81250184697732 -> 59694268456.19966 Inexact Rounded -exp1132 exp 5.107546500516044 -> 165.2643809755670 Inexact Rounded -exp1133 exp 79.17810943951986 -> 2.435656372541360E+34 Inexact Rounded -exp1134 exp 0.0051394695667015 -> 1.005152699295301 Inexact Rounded -exp1135 exp 57.44504488501725 -> 8.872908566929688E+24 Inexact Rounded -exp1136 exp 0.0000508388968036 -> 1.000050840189122 Inexact Rounded -exp1137 exp 69.71309932148997 -> 1.888053740693541E+30 Inexact Rounded -exp1138 exp 0.0064183412981502 -> 1.006438982988835 Inexact Rounded -exp1139 exp 9.346991220814677 -> 11464.27802035082 Inexact Rounded -exp1140 exp 33.09087139999152 -> 235062229168763.5 Inexact Rounded - --- Randoms P=7, within 0-9 -Precision: 7 -maxExponent: 96 -minExponent: -95 -exp1001 exp 2.395441 -> 10.97304 Inexact Rounded -exp1002 exp 0.6406779 -> 1.897767 Inexact Rounded -exp1003 exp 0.5618218 -> 1.753865 Inexact Rounded -exp1004 exp 3.055120 -> 21.22373 Inexact Rounded -exp1005 exp 1.536792 -> 4.649650 Inexact Rounded -exp1006 exp 0.0801591 -> 1.083459 Inexact Rounded -exp1007 exp 0.0966875 -> 1.101516 Inexact Rounded -exp1008 exp 0.0646761 -> 1.066813 Inexact Rounded -exp1009 exp 0.0095670 -> 1.009613 Inexact Rounded -exp1010 exp 2.956859 -> 19.23745 Inexact Rounded -exp1011 exp 7.504679 -> 1816.522 Inexact Rounded -exp1012 exp 0.0045259 -> 1.004536 Inexact Rounded -exp1013 exp 3.810071 -> 45.15364 Inexact Rounded -exp1014 exp 1.502390 -> 4.492413 Inexact Rounded -exp1015 exp 0.0321523 -> 1.032675 Inexact Rounded -exp1016 exp 0.0057214 -> 1.005738 Inexact Rounded -exp1017 exp 9.811445 -> 18241.33 Inexact Rounded -exp1018 exp 3.245249 -> 25.66810 Inexact Rounded -exp1019 exp 0.3189742 -> 1.375716 Inexact Rounded -exp1020 exp 0.8621610 -> 2.368273 Inexact Rounded -exp1021 exp 0.0122511 -> 1.012326 Inexact Rounded -exp1022 exp 2.202088 -> 9.043877 Inexact Rounded -exp1023 exp 8.778203 -> 6491.202 Inexact Rounded -exp1024 exp 0.1896279 -> 1.208800 Inexact Rounded -exp1025 exp 0.4510947 -> 1.570030 Inexact Rounded -exp1026 exp 0.276413 -> 1.318392 Inexact Rounded -exp1027 exp 4.490067 -> 89.12742 Inexact Rounded -exp1028 exp 0.0439786 -> 1.044960 Inexact Rounded -exp1029 exp 0.8168245 -> 2.263301 Inexact Rounded -exp1030 exp 0.0391658 -> 1.039943 Inexact Rounded -exp1031 exp 9.261816 -> 10528.24 Inexact Rounded -exp1032 exp 9.611186 -> 14930.87 Inexact Rounded -exp1033 exp 9.118125 -> 9119.087 Inexact Rounded -exp1034 exp 9.469083 -> 12953.00 Inexact Rounded -exp1035 exp 0.0499983 -> 1.051269 Inexact Rounded -exp1036 exp 0.0050746 -> 1.005087 Inexact Rounded -exp1037 exp 0.0014696 -> 1.001471 Inexact Rounded -exp1038 exp 9.138494 -> 9306.739 Inexact Rounded -exp1039 exp 0.0065436 -> 1.006565 Inexact Rounded -exp1040 exp 0.7284803 -> 2.071930 Inexact Rounded - diff --git a/qdecimal/test/tc_subset/fma0.decTest b/qdecimal/test/tc_subset/fma0.decTest deleted file mode 100644 index 743105e..0000000 --- a/qdecimal/test/tc_subset/fma0.decTest +++ /dev/null @@ -1,46 +0,0 @@ ------------------------------------------------------------------------- --- fma0.decTest -- decimal fused multiply add (subset arithmetic) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- FMA is not defined in subset, so all values return Invalid --- [And no special values, of course.] - --- Sanity checks -fma0001 fma 1 1 1 -> ? Invalid_operation - --- zeros, etc. -fma2021 fma 0 0 0E+999999 -> ? Invalid_operation - --- examples from decarith -fma2050 fma 1.20 3 0E+999999 -> ? Invalid_operation -fma2051 fma 7 3 0E+999999 -> ? Invalid_operation -fma2052 fma 0.9 0.8 0E+999999 -> ? Invalid_operation -fma2053 fma 0.9 -0 0E+999999 -> ? Invalid_operation -fma2054 fma 654321 654321 0E+999999 -> ? Invalid_operation - --- Null tests -fma39990 fma 1 10 # -> ? Invalid_operation -fma39991 fma 1 # 10 -> ? Invalid_operation diff --git a/qdecimal/test/tc_subset/inexact0.decTest b/qdecimal/test/tc_subset/inexact0.decTest deleted file mode 100644 index 831f663..0000000 --- a/qdecimal/test/tc_subset/inexact0.decTest +++ /dev/null @@ -1,174 +0,0 @@ ------------------------------------------------------------------------- --- inexact0.decTest -- decimal inexact and rounded edge cases (simp.) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -inx001 add 1 1 -> 2 -inx002 add 123456789 0 -> 123456789 -inx003 add 123456789 0.0 -> 123456789 -inx004 add 123456789 0.00 -> 123456789 -inx005 add 123456789 1 -> 123456790 -inx006 add 123456789 0.1 -> 123456789 Inexact Rounded -inx007 add 123456789 0.01 -> 123456789 Inexact Rounded -inx008 add 123456789 0.001 -> 123456789 Inexact Rounded -inx009 add 123456789 0.000001 -> 123456789 Inexact Rounded -inx010 add 123456789 0.000000001 -> 123456789 Inexact Rounded -inx011 add 123456789 0.000000000001 -> 123456789 Inexact Rounded - -inx012 add 123456789 0.9 -> 123456790 Inexact Rounded -inx013 add 123456789 0.09 -> 123456789 Inexact Rounded -inx014 add 123456789 0.009 -> 123456789 Inexact Rounded -inx015 add 123456789 0.000009 -> 123456789 Inexact Rounded -inx016 add 123456789 0.000000009 -> 123456789 Inexact Rounded -inx017 add 123456789 0.000000000009 -> 123456789 Inexact Rounded - -inx021 add 1 -1 -> 0 -inx022 add 123456789 -0 -> 123456789 -inx023 add 123456789 -0.0 -> 123456789 -inx024 add 123456789 -0.00 -> 123456789 -inx025 add 123456789 -1 -> 123456788 -inx026 add 123456789 -0.1 -> 123456789 Inexact Rounded -inx027 add 123456789 -0.01 -> 123456789 Inexact Rounded -inx028 add 123456789 -0.001 -> 123456789 Inexact Rounded -inx029 add 123456789 -0.000001 -> 123456789 Inexact Rounded -inx030 add 123456789 -0.000000001 -> 123456789 Inexact Rounded -inx031 add 123456789 -0.000000000001 -> 123456789 Inexact Rounded -inx032 add 123456789 -0.9 -> 123456788 Inexact Rounded -inx033 add 123456789 -0.09 -> 123456789 Inexact Rounded -inx034 add 123456789 -0.009 -> 123456789 Inexact Rounded -inx035 add 123456789 -0.000009 -> 123456789 Inexact Rounded -inx036 add 123456789 -0.000000009 -> 123456789 Inexact Rounded -inx037 add 123456789 -0.000000000009 -> 123456789 Inexact Rounded - -inx042 add 0 123456789 -> 123456789 -inx043 add 0.0 123456789 -> 123456789 -inx044 add 0.00 123456789 -> 123456789 -inx045 add 1 123456789 -> 123456790 -inx046 add 0.1 123456789 -> 123456789 Inexact Rounded -inx047 add 0.01 123456789 -> 123456789 Inexact Rounded -inx048 add 0.001 123456789 -> 123456789 Inexact Rounded -inx049 add 0.000001 123456789 -> 123456789 Inexact Rounded -inx050 add 0.000000001 123456789 -> 123456789 Inexact Rounded -inx051 add 0.000000000001 123456789 -> 123456789 Inexact Rounded -inx052 add 0.9 123456789 -> 123456790 Inexact Rounded -inx053 add 0.09 123456789 -> 123456789 Inexact Rounded -inx054 add 0.009 123456789 -> 123456789 Inexact Rounded -inx055 add 0.000009 123456789 -> 123456789 Inexact Rounded -inx056 add 0.000000009 123456789 -> 123456789 Inexact Rounded -inx057 add 0.000000000009 123456789 -> 123456789 Inexact Rounded - -inx062 add -0 123456789 -> 123456789 -inx063 add -0.0 123456789 -> 123456789 -inx064 add -0.00 123456789 -> 123456789 -inx065 add -1 123456789 -> 123456788 -inx066 add -0.1 123456789 -> 123456789 Inexact Rounded -inx067 add -0.01 123456789 -> 123456789 Inexact Rounded -inx068 add -0.001 123456789 -> 123456789 Inexact Rounded -inx069 add -0.000001 123456789 -> 123456789 Inexact Rounded -inx070 add -0.000000001 123456789 -> 123456789 Inexact Rounded -inx071 add -0.000000000001 123456789 -> 123456789 Inexact Rounded -inx072 add -0.9 123456789 -> 123456788 Inexact Rounded -inx073 add -0.09 123456789 -> 123456789 Inexact Rounded -inx074 add -0.009 123456789 -> 123456789 Inexact Rounded -inx075 add -0.000009 123456789 -> 123456789 Inexact Rounded -inx076 add -0.000000009 123456789 -> 123456789 Inexact Rounded -inx077 add -0.000000000009 123456789 -> 123456789 Inexact Rounded - --- some boundaries -inx081 add 999999999 0 -> 999999999 -inx082 add 0.999999999 0.000000000 -> 0.999999999 -inx083 add 999999999 1 -> 1.00000000E+9 Rounded -inx084 add 0.999999999 0.000000001 -> 1.00000000 Rounded -inx085 add 999999999 2 -> 1.00000000E+9 Inexact Rounded -inx086 add 0.999999999 0.000000002 -> 1.00000000 Inexact Rounded -inx087 add 999999999 3 -> 1.00000000E+9 Inexact Rounded -inx089 add 0.999999999 0.000000003 -> 1.00000000 Inexact Rounded - --- minus, plus, and subtract all assumed to work like add. - --- multiply -precision: 8 -inx101 multiply 1000 1000 -> 1000000 -inx102 multiply 9000 9000 -> 81000000 -inx103 multiply 9999 9999 -> 99980001 -inx104 multiply 1000 10000 -> 10000000 -inx105 multiply 10000 10000 -> 1.0000000E+8 Rounded -inx106 multiply 10001 10000 -> 1.0001000E+8 Rounded -inx107 multiply 10001 10001 -> 1.0002000E+8 Inexact Rounded -inx108 multiply 10101 10001 -> 1.0102010E+8 Inexact Rounded -inx109 multiply 10001 10101 -> 1.0102010E+8 Inexact Rounded - --- divide -precision: 4 -inx201 divide 1000 1000 -> 1 -inx202 divide 1000 1 -> 1000 -inx203 divide 1000 2 -> 500 -inx204 divide 1000 3 -> 333.3 Inexact Rounded -inx205 divide 1000 4 -> 250 -inx206 divide 1000 5 -> 200 -inx207 divide 1000 6 -> 166.7 Inexact Rounded -inx208 divide 1000 7 -> 142.9 Inexact Rounded -inx209 divide 1000 8 -> 125 -inx210 divide 1000 9 -> 111.1 Inexact Rounded -inx211 divide 1000 10 -> 100 - -inx220 divide 1 1 -> 1 -inx221 divide 1 2 -> 0.5 -inx222 divide 1 4 -> 0.25 -inx223 divide 1 8 -> 0.125 -inx224 divide 1 16 -> 0.0625 -inx225 divide 1 32 -> 0.03125 -inx226 divide 1 64 -> 0.01563 Inexact Rounded -inx227 divide 1 128 -> 0.007813 Inexact Rounded - --- power -precision: 4 -inx301 power 0.5 2 -> 0.25 -inx302 power 0.5 4 -> 0.0625 -inx303 power 0.5 8 -> 0.003906 Inexact Rounded -inx304 power 0.5 16 -> 0.00001526 Inexact Rounded -inx305 power 0.5 32 -> 2.328E-10 Inexact Rounded - --- compare, divideInteger, and remainder are always exact - --- rescale -precision: 4 -inx401 rescale 0 0 -> 0 -inx402 rescale 1 0 -> 1 -inx403 rescale 0.1 +2 -> 0E+2 Inexact Rounded -inx404 rescale 0.1 +1 -> 0E+1 Inexact Rounded -inx405 rescale 0.1 0 -> 0 Inexact Rounded -inx406 rescale 0.1 -1 -> 0.1 -inx407 rescale 0.1 -2 -> 0.10 - --- lostDigits implies Inexact... -precision: 9 -inx801 plus 123456789 -> 123456789 -inx802 plus 1234567890 -> 1.23456789E+9 Rounded -inx803 plus 1234567891 -> 1.23456789E+9 Inexact Lost_digits Rounded -inx804 plus 1234567892 -> 1.23456789E+9 Inexact Lost_digits Rounded -inx805 plus 1234567899 -> 1.23456790E+9 Inexact Lost_digits Rounded -inx806 plus 1234567900 -> 1.23456790E+9 Rounded - diff --git a/qdecimal/test/tc_subset/ln0.decTest b/qdecimal/test/tc_subset/ln0.decTest deleted file mode 100644 index 910e7a3..0000000 --- a/qdecimal/test/tc_subset/ln0.decTest +++ /dev/null @@ -1,467 +0,0 @@ ------------------------------------------------------------------------- --- ln0.decTest -- decimal natural logarithm subset -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 16 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- basics (examples in specification, etc.) -ln0001 ln 0 -> ? Invalid_operation -ln0002 ln 1E-9 -> -20.72326583694641 Inexact Rounded -ln0003 ln 0.0007 -> -7.264430222920869 Inexact Rounded -ln0004 ln 0.1 -> -2.302585092994046 Inexact Rounded -ln0005 ln 0.7 -> -0.3566749439387324 Inexact Rounded -ln0006 ln 1 -> 0 -ln0007 ln 1.5 -> 0.4054651081081644 Inexact Rounded -ln0008 ln 2 -> 0.6931471805599453 Inexact Rounded -ln0009 ln 2.718281828459045 -> 0.9999999999999999 Inexact Rounded -ln0010 ln 2.718281828459046 -> 1.000000000000000 Inexact Rounded -ln0011 ln 2.718281828459047 -> 1.000000000000001 Inexact Rounded -ln0012 ln 10 -> 2.302585092994046 Inexact Rounded -ln0013 ln 10.5 -> 2.351375257163478 Inexact Rounded -ln0014 ln 9999 -> 9.210240366975849 Inexact Rounded -ln0015 ln 1E6 -> 13.81551055796427 Inexact Rounded -ln0016 ln 1E+9 -> 20.72326583694641 Inexact Rounded - --- notable cases --- negatives -ln0021 ln -1E-9 -> ? Invalid_operation -ln0022 ln -0.0007 -> ? Invalid_operation -ln0023 ln -0.1 -> ? Invalid_operation -ln0024 ln -0.7 -> ? Invalid_operation -ln0025 ln -1 -> ? Invalid_operation -ln0026 ln -1.5 -> ? Invalid_operation -ln0027 ln -2 -> ? Invalid_operation -ln0029 ln -10.5 -> ? Invalid_operation -ln0028 ln -9999 -> ? Invalid_operation -ln0030 ln -2.718281828459045 -> ? Invalid_operation -ln0031 ln -2.718281828459046 -> ? Invalid_operation -ln0032 ln -0 -> ? Invalid_operation -ln0033 ln -0E+17 -> ? Invalid_operation -ln0034 ln -0E-17 -> ? Invalid_operation --- other zeros -ln0041 ln 0 -> ? Invalid_operation -ln0042 ln 0E+17 -> ? Invalid_operation -ln0043 ln 0E-17 -> ? Invalid_operation --- ones -ln0050 ln 1 -> 0 -ln0051 ln 1.0 -> 0 -ln0052 ln 1.000000000000000 -> 0 -ln0053 ln 1.000000000000000000 -> 0 Rounded -ln0054 ln 1.000000000000000001 -> 0 Rounded Lost_digits Inexact - --- lower precision basics -Precision: 7 -ln0101 ln 0 -> ? Invalid_operation -ln0102 ln 1E-9 -> -20.72327 Inexact Rounded -ln0103 ln 0.0007 -> -7.264430 Inexact Rounded -ln0104 ln 0.1 -> -2.302585 Inexact Rounded -ln0105 ln 0.7 -> -0.3566749 Inexact Rounded -ln0106 ln 1 -> 0 -ln0107 ln 1.5 -> 0.4054651 Inexact Rounded -ln0108 ln 2 -> 0.6931472 Inexact Rounded -ln0111 ln 2.718282 -> 1.000000 Inexact Rounded -ln0112 ln 10 -> 2.302585 Inexact Rounded -ln0113 ln 10.5 -> 2.351375 Inexact Rounded -ln0114 ln 9999 -> 9.210240 Inexact Rounded -ln0115 ln 1E6 -> 13.81551 Inexact Rounded -ln0116 ln 1E+9 -> 20.72327 Inexact Rounded - --- extreme input range values -maxExponent: 384 -minExponent: -383 -Precision: 16 - -ln0901 ln 1e-400 -> -921.0340371976183 Inexact Rounded -ln0902 ln 1e+400 -> 921.0340371976183 Inexact Rounded -ln0903 ln 1e-999999 -> -2302582.790408953 Inexact Rounded -ln0904 ln 1e+999999 -> 2302582.790408953 Inexact Rounded -ln0905 ln 1e-1000013 -> -2302615.026600255 Inexact Rounded -ln0906 ln 2e-1000013 -> -2302614.333453074 Inexact Rounded - -ln0910 ln 9.999999e+999999 -> 2302585.092993946 Inexact Rounded -ln0911 ln 9.9999999e+999999 -> 2302585.092994036 Inexact Rounded -ln0912 ln 9.99999999e+999999 -> 2302585.092994045 Inexact Rounded -ln0913 ln 9.999999999e+999999 -> 2302585.092994046 Inexact Rounded -ln0914 ln 9.999999999999e+999999 -> 2302585.092994046 Inexact Rounded -ln0915 ln 9.999999999999999e+999999 -> 2302585.092994046 Inexact Rounded -ln0916 ln 9.999999999999999999999999e+999999 -> ? Lost_digits Overflow Inexact Rounded - --- randoms --- P=50, within 0-999 -Precision: 50 -maxExponent: 384 -minExponent: -383 -ln1501 ln 0.00098800906574486388604608477869812518857023768951 -> -6.9198186844033787995945147836955586009548513043689 Inexact Rounded -ln1502 ln 158.15866624664623070184595045304145949900714987827 -> 5.0635987458895647454907806507503825602758392287684 Inexact Rounded -ln1503 ln 0.00565661412059571925040285814021799775249288309321 -> -5.1749297776760632102047540300491550931651318975237 Inexact Rounded -ln1504 ln 0.00000006914232532620489602008402091666547903180607 -> -16.487098770877825308138976818688771638172333034347 Inexact Rounded -ln1505 ln 0.00025380374621297657504661540749355251231770070723 -> -8.2789492423005003205242162741569033124260321954589 Inexact Rounded -ln1506 ln 83.033654063877426261108592599182418953442677554806 -> 4.4192459962647137976949249810815698465031609843669 Inexact Rounded -ln1507 ln 0.00000000416863228092481651627734668440663678118729 -> -19.295677845122141772791294599714950175284915666430 Inexact Rounded -ln1508 ln 0.00000140847873187820570181214271960511080523457669 -> -13.473000349581967189668305314384952251556809480339 Inexact Rounded -ln1509 ln 66.176106555181527101630351127583944689752069132522 -> 4.1923194696232505883666171116966137694013431504252 Inexact Rounded -ln1510 ln 0.00000000000009899043487403590900111602024562297908 -> -29.943753166877840985821508112917991506656545174163 Inexact Rounded -ln1511 ln 0.00000000000324618296721747097510453388683912733569 -> -26.453541281444586819009546418577507163362590139422 Inexact Rounded -ln1512 ln 72.646968818463546449499147579023555008392860423385 -> 4.2856116660689646882852128853423566276718230426479 Inexact Rounded -ln1513 ln 0.00000000000000066755483124635612574263153825990523 -> -34.942910142802769319262875080398852491588707172483 Inexact Rounded -ln1514 ln 61.002910447202398204114909451851111424657671911002 -> 4.1109215752843377323363182051446177066434038096529 Inexact Rounded -ln1515 ln 917.06917611331980999227893584010544542312239174774 -> 6.8211829068303114128752453661946446979787826282907 Inexact Rounded -ln1516 ln 0.00000000170823794883673083358549749078972003965194 -> -20.187803436976150477297246666771626827057191023004 Inexact Rounded -ln1517 ln 0.53731767845358224445809761315159249898566542910649 -> -0.62116577939968409211736413628236285160048357000961 Inexact Rounded -ln1518 ln 0.00000000000000008965291392882804161299758708033373 -> -36.950585970980857376081265073276303670820056916206 Inexact Rounded -ln1519 ln 0.00000000006990244916026429904498278982530170295668 -> -23.383920429244457578373523508427783144589480420753 Inexact Rounded -ln1520 ln 4.0312542977070300070506064666536478373801988540614 -> 1.3940775676592451945795752796421391871302024763305 Inexact Rounded -ln1521 ln 271.84991311551875601432518819562391699324632396423 -> 5.6052501239873862517916679747146539808077431873478 Inexact Rounded -ln1522 ln 7.4118671629373864667229445746862314443895404818689 -> 2.0030823863706344628239147639318289961917060121141 Inexact Rounded -ln1523 ln 0.00000000000002026311452625364905357321664186034258 -> -31.529974180054438792043856877314043794320951134754 Inexact Rounded -ln1524 ln 0.00000000000009563398651261756952398250624737809347 -> -29.978248130576972953141284136962670021368834792579 Inexact Rounded -ln1525 ln 0.00000000009556772669409858653026558223465197808991 -> -23.071185939748285541228206161472956661196956741186 Inexact Rounded -ln1526 ln 6.8441648298027301292342057248737326152250794026761 -> 1.9233964395801946597272589473417948024361005082908 Inexact Rounded -ln1527 ln 0.00000000000073059699884439979394945822035704264577 -> -27.944914388353724718836101828677771967128509603158 Inexact Rounded -ln1528 ln 0.00000000000000002610078280419082263138064745416787 -> -38.184566367516207885573773320135965798717120735115 Inexact Rounded -ln1529 ln 0.00000000000000000150259517166294243088546806083283 -> -41.039337946266676108538170837580051699618334928421 Inexact Rounded -ln1530 ln 0.00000000000000087919160541714580707181969708502091 -> -34.667528818827671507514319744047440696187358676848 Inexact Rounded -ln1531 ln 0.00000000000395726725120787763271849577708068584598 -> -26.255467416961357741818735787226671938678424748431 Inexact Rounded -ln1532 ln 0.00000000002014334901669366218018377213150715938355 -> -24.628146955635359035289123027319969201693737159108 Inexact Rounded -ln1533 ln 0.00000008097927101101093117753938766241442896030637 -> -16.329072628469715178637178365710373398203190937454 Inexact Rounded -ln1534 ln 0.00000000000017115834162632864392039668116243984176 -> -29.396187292434898225453626794459285157263177528034 Inexact Rounded -ln1535 ln 0.39168317593866334087305459933723864294857086105035 -> -0.93730199062757240485836637306785037368746737693029 Inexact Rounded -ln1536 ln 79.335036798971515026519630103325369729637514127617 -> 4.3736798570287828823772149735170431010616961976965 Inexact Rounded -ln1537 ln 0.00000000000000056004952129926137413602116591493625 -> -35.118506463181870020730685884333000241039028127213 Inexact Rounded -ln1538 ln 0.00000006006035907843890918832481099660639553666078 -> -16.627915795747112566532705974853114454405010472043 Inexact Rounded -ln1539 ln 0.00000000085242024937414906371333826574632450587590 -> -20.882941460268101080186482230657774997273494107221 Inexact Rounded -ln1540 ln 0.00000000000043671099499262350316173246550771951561 -> -28.459504757285639221776305968469058854558726593945 Inexact Rounded - --- P=34, within 0-999 -Precision: 34 -ln1201 ln 0.0086732880815927182997566810334394 -> -4.747507311920844752486938187973721 Inexact Rounded -ln1202 ln 0.0007104103693460260609792222569854 -> -7.249667769903503023005549250347695 Inexact Rounded -ln1203 ln 786.8398945385105190697541493392742 -> 6.668024790031836340471824147010546 Inexact Rounded -ln1204 ln 0.7723073620282687656895190171967399 -> -0.2583726708506850868786816238217326 Inexact Rounded -ln1205 ln 0.0061057951517197631287183938412200 -> -5.098516933918797347064454103742635 Inexact Rounded -ln1206 ln 0.6181379708184393730103917562498745 -> -0.4810435926903365087463387760350021 Inexact Rounded -ln1207 ln 09.13888261229039989110753389096760 -> 2.212538125507975574509563027696021 Inexact Rounded -ln1208 ln 802.0105417063143696497292158147174 -> 6.687121752052341737234832203350214 Inexact Rounded -ln1209 ln 778.7749710387773713523028497333058 -> 6.657722135126935472086625031413031 Inexact Rounded -ln1210 ln 0.0024457295895346502513567679390616 -> -6.013411799940245345321348290398517 Inexact Rounded -ln1211 ln 0.0000511296947872828310338864217860 -> -9.881145118237281798081573131711636 Inexact Rounded -ln1212 ln 0.0000246803508602554924938685155658 -> -10.60950314264825661825360971430218 Inexact Rounded -ln1213 ln 9.027898199253511668242977766616082 -> 2.200319582778899029786017830557293 Inexact Rounded -ln1214 ln 0.0991812396542505631850692800904188 -> -2.310806398964672258823043180400384 Inexact Rounded -ln1215 ln 0.0000000000070238810143028811223924 -> -25.68170519961636647174714538290075 Inexact Rounded -ln1216 ln 2.630101665342826494730394729313167 -> 0.9670225014664367465128243039749559 Inexact Rounded -ln1217 ln 0.0056878928594359587691526063254683 -> -5.169415422904037819736637399445096 Inexact Rounded -ln1218 ln 567.3436047121057843908106573095590 -> 6.340965124964258486463444360787970 Inexact Rounded -ln1219 ln 1.199291248124655996614605745649725 -> 0.1817307557425911805765087755675657 Inexact Rounded -ln1220 ln 25.02050448582031098696267479135557 -> 3.219695668137659139544178905459317 Inexact Rounded -ln1221 ln 0.0000000000009939597023558756961300 -> -27.63707972996537636504396558259058 Inexact Rounded -ln1222 ln 0.0000007988551670159429716506430403 -> -14.04008617542597230988198612376415 Inexact Rounded -ln1223 ln 4.681515800176129184873770605589795 -> 1.543621946415383338972124445445748 Inexact Rounded -ln1224 ln 15.95126669161103011206658749345781 -> 2.769538242479483539275986395443539 Inexact Rounded -ln1225 ln 0.0301626783922211213675457279076066 -> -3.501149933677283341023932281826341 Inexact Rounded -ln1226 ln 000.0040544064881821770528475185674 -> -5.507950967557021671647165889608324 Inexact Rounded -ln1227 ln 29.01617095935593792095913785100360 -> 3.367853293862745651888450004473297 Inexact Rounded -ln1228 ln 78.01836167344736733024804243195323 -> 4.356944205055768575987781375003992 Inexact Rounded -ln1229 ln 0.0000000096545319316965321158634893 -> -18.45583840160965814462095477365013 Inexact Rounded -ln1230 ln 97.95475237720579752770587185074428 -> 4.584505661612812742208619358214729 Inexact Rounded -ln1231 ln 528.0609262050423246402564228432371 -> 6.269211667589138113396583894315956 Inexact Rounded -ln1232 ln 0.0000002250064349732969696660452972 -> -15.30713683526963996712167701738724 Inexact Rounded -ln1233 ln 47.97063637767998658567199049725754 -> 3.870589081585660692195989854842372 Inexact Rounded -ln1234 ln 0.0005394311344541432318853513414361 -> -7.524995428393925934087126702974121 Inexact Rounded -ln1235 ln 0.0000000090973385649567471674972633 -> -18.51528393158931783447035004125791 Inexact Rounded -ln1236 ln 0.0000000000238776490227576197317977 -> -24.45807828188389561331158879207262 Inexact Rounded -ln1237 ln 0.0000236587000231921532145326218758 -> -10.65177964499823314952429277979034 Inexact Rounded -ln1238 ln 499.1277448846130709827154556125942 -> 6.212862064761427967461188083514774 Inexact Rounded -ln1239 ln 0.0000003960192300284787663712417647 -> -14.74180306619298548093697608293284 Inexact Rounded -ln1240 ln 41.08268350829477451667228892495136 -> 3.715586706887278039173584859218960 Inexact Rounded - --- P=16, within 0-99 -Precision: 16 -ln1101 ln 7.964875261033948 -> 2.075041282352241 Inexact Rounded -ln1102 ln 13.54527396845394 -> 2.606037701870263 Inexact Rounded -ln1103 ln 0.0008026554341331 -> -7.127585034321814 Inexact Rounded -ln1104 ln 0.0000030582233261 -> -12.69767642300625 Inexact Rounded -ln1105 ln 0.0004477497509672 -> -7.711276073210766 Inexact Rounded -ln1106 ln 7.616268622474371 -> 2.030286567675148 Inexact Rounded -ln1107 ln 51.58329925806381 -> 3.943197962309569 Inexact Rounded -ln1108 ln 0.0018197497951263 -> -6.309056262549345 Inexact Rounded -ln1109 ln 2.956282457072984 -> 1.083932552334575 Inexact Rounded -ln1110 ln 0.3843325579189906 -> -0.9562470649400558 Inexact Rounded -ln1111 ln 0.0074466329265663 -> -4.899993304919237 Inexact Rounded -ln1112 ln 0.0003372478532993 -> -7.994692428206378 Inexact Rounded -ln1113 ln 0.0084792263167809 -> -4.770136069569271 Inexact Rounded -ln1114 ln 5.926756998151102 -> 1.779477182834305 Inexact Rounded -ln1115 ln 9.025699152180897 -> 2.200075969604119 Inexact Rounded -ln1116 ln 1.910124643533526 -> 0.6471684983238183 Inexact Rounded -ln1117 ln 0.8158922711411020 -> -0.2034729533939387 Inexact Rounded -ln1118 ln 0.0067080016475322 -> -5.004454189414139 Inexact Rounded -ln1119 ln 0.0047583242092716 -> -5.347859729601094 Inexact Rounded -ln1120 ln 0.0386647411641339 -> -3.252827175263113 Inexact Rounded -ln1121 ln 0.0050226427841761 -> -5.293799032774131 Inexact Rounded -ln1122 ln 6.927937541637261 -> 1.935562155866906 Inexact Rounded -ln1123 ln 0.0000095745343513 -> -11.55640365579814 Inexact Rounded -ln1124 ln 1.602465492956538 -> 0.4715433763243936 Inexact Rounded -ln1125 ln 38.98415625087535 -> 3.663155313610213 Inexact Rounded -ln1126 ln 5.343182042276734 -> 1.675821363568112 Inexact Rounded -ln1127 ln 55.89763703245816 -> 4.023522107934110 Inexact Rounded -ln1128 ln 0.7445257810280847 -> -0.2950077988101030 Inexact Rounded -ln1129 ln 1.631407314946094 -> 0.4894430257201248 Inexact Rounded -ln1130 ln 0.0005462451932602 -> -7.512442611116852 Inexact Rounded -ln1131 ln 0.0000864173269362 -> -9.356322359017317 Inexact Rounded -ln1132 ln 5.227161719132849 -> 1.653868438439637 Inexact Rounded -ln1133 ln 60.57078466941998 -> 4.103812675662452 Inexact Rounded -ln1134 ln 0.0992864325333160 -> -2.309746348350318 Inexact Rounded -ln1135 ln 09.48564268447325 -> 2.249779359074983 Inexact Rounded -ln1136 ln 0.0036106089355634 -> -5.623878840650787 Inexact Rounded -ln1137 ln 1.805176865587172 -> 0.5906585734593707 Inexact Rounded -ln1138 ln 62.59363259642255 -> 4.136663557220559 Inexact Rounded -ln1139 ln 4.373828261137201 -> 1.475638657912000 Inexact Rounded -ln1140 ln 0.994483524148738 -> -0.005531747794938690 Inexact Rounded - --- P=7, within 0-9 -Precision: 7 -ln1001 ln 0.0912025 -> -2.394673 Inexact Rounded -ln1002 ln 0.9728626 -> -0.02751242 Inexact Rounded -ln1003 ln 0.3886032 -> -0.9451965 Inexact Rounded -ln1004 ln 8.798639 -> 2.174597 Inexact Rounded -ln1005 ln 2.459121 -> 0.8998040 Inexact Rounded -ln1006 ln 2.013193 -> 0.6997220 Inexact Rounded -ln1007 ln 9.064857 -> 2.204405 Inexact Rounded -ln1008 ln 5.796417 -> 1.757240 Inexact Rounded -ln1009 ln 0.1143471 -> -2.168517 Inexact Rounded -ln1010 ln 0.5341542 -> -0.6270707 Inexact Rounded -ln1011 ln 6.693781 -> 1.901179 Inexact Rounded -ln1012 ln 0.0081779 -> -4.806320 Inexact Rounded -ln1013 ln 8.313616 -> 2.117895 Inexact Rounded -ln1014 ln 3.486925 -> 1.249020 Inexact Rounded -ln1015 ln 0.1801401 -> -1.714020 Inexact Rounded -ln1016 ln 0.5227148 -> -0.6487193 Inexact Rounded -ln1017 ln 7.818111 -> 2.056443 Inexact Rounded -ln1018 ln 0.0870671 -> -2.441076 Inexact Rounded -ln1019 ln 8.153966 -> 2.098504 Inexact Rounded -ln1020 ln 2.040975 -> 0.7134276 Inexact Rounded -ln1021 ln 1.481642 -> 0.3931509 Inexact Rounded -ln1022 ln 0.2610123 -> -1.343188 Inexact Rounded -ln1023 ln 0.466723 -> -0.7620193 Inexact Rounded -ln1024 ln 0.0518756 -> -2.958907 Inexact Rounded -ln1025 ln 2.056410 -> 0.7209617 Inexact Rounded -ln1026 ln 0.181522 -> -1.706378 Inexact Rounded -ln1027 ln 0.515551 -> -0.6625190 Inexact Rounded -ln1028 ln 8.425089 -> 2.131214 Inexact Rounded -ln1029 ln 2.077091 -> 0.7309684 Inexact Rounded -ln1030 ln 6.212705 -> 1.826596 Inexact Rounded -ln1031 ln 5.729343 -> 1.745601 Inexact Rounded -ln1032 ln 4.831251 -> 1.575105 Inexact Rounded -ln1033 ln 2.029760 -> 0.7079176 Inexact Rounded -ln1034 ln 8.615060 -> 2.153512 Inexact Rounded -ln1035 ln 0.0611511 -> -2.794407 Inexact Rounded -ln1036 ln 5.195269 -> 1.647748 Inexact Rounded -ln1037 ln 9.617686 -> 2.263604 Inexact Rounded -ln1038 ln 0.0049382 -> -5.310754 Inexact Rounded -ln1039 ln 2.786840 -> 1.024908 Inexact Rounded -ln1040 ln 0.0091073 -> -4.698679 Inexact Rounded - --- from here 3-digit tests are based on reverse exp tests -precision: 9 -rounding: half_up -maxExponent: 384 -minexponent: -383 - -ln001 ln 0 -> ? Invalid_operation -ln002 ln 0.367879441 -> -1.00000000 Inexact Rounded -ln003 ln 1 -> 0 -ln005 ln 2.71828183 -> 1.00000000 Inexact Rounded -ln006 ln 2.00000000 -> 0.693147181 Inexact Rounded - --- tiny edge cases -precision: 7 -ln011 ln 1.105171 -> 0.1000001 Inexact Rounded -ln012 ln 1.010050 -> 0.009999835 Inexact Rounded -ln013 ln 1.000010 -> 0.000009999950 Inexact Rounded -ln014 ln 1.000001 -> 9.999995E-7 Inexact Rounded -ln015 ln 1.000000 -> 0 - --- basic e=0, e=1, e=2, e=4, e>=8 cases -precision: 7 -ln041 ln 2.718282 -> 1.000000 Inexact Rounded -ln042 ln 0.3678794 -> -1.000000 Inexact Rounded -ln043 ln 22026.47 -> 10.00000 Inexact Rounded -ln044 ln 0.00004539993 -> -10.00000 Inexact Rounded -ln045 ln 2.688117E+43 -> 100.0000 Inexact Rounded -ln046 ln 3.720076E-44 -> -100.0000 Inexact Rounded -ln048 ln 0E-389 -> ? Invalid_operation - --- miscellanea -precision: 16 -ln055 ln 2.717658486884572E-236 -> -542.4103112874415 Inexact Rounded -precision: 17 -ln056 ln 2.7176584868845721E-236 -> -542.41031128744146 Inexact Rounded -precision: 18 -ln057 ln 2.71765848688457211E-236 -> -542.410311287441459 Inexact Rounded -precision: 19 -ln058 ln 2.717658486884572112E-236 -> -542.4103112874414592 Inexact Rounded -precision: 20 -ln059 ln 2.7176584868845721118E-236 -> -542.41031128744145917 Inexact Rounded - --- inputs ending in ..500.., ..499.., ..100.., ..999.. sequences -precision: 50 -ln102 ln 0.9999999100000040499998785000027 -> -9.0000000000000000000000033749953829996446124861750E-8 Inexact Rounded -precision: 30 -ln103 ln 0.999999910000004049999878500003 -> -8.99999999999999999999997337499E-8 Inexact Rounded -precision: 29 -ln104 ln 0.99999991000000404999987850000 -> -9.0000000000000000000002733750E-8 Inexact Rounded -precision: 28 -ln105 ln 0.9999999100000040499998785000 -> -9.000000000000000000000273375E-8 Inexact Rounded -precision: 27 -ln106 ln 0.999999910000004049999878500 -> -9.00000000000000000000027338E-8 Inexact Rounded -precision: 26 -ln107 ln 0.99999991000000404999987850 -> -9.0000000000000000000002734E-8 Inexact Rounded -precision: 25 -ln108 ln 0.9999999100000040499998785 -> -9.000000000000000000000273E-8 Inexact Rounded -precision: 24 -ln109 ln 0.999999910000004049999879 -> -8.99999999999999995000027E-8 Inexact Rounded -precision: 23 -ln110 ln 0.99999991000000404999988 -> -8.9999999999999998500003E-8 Inexact Rounded -precision: 22 -ln111 ln 0.9999999100000040499999 -> -8.999999999999997850000E-8 Inexact Rounded -precision: 21 -ln112 ln 0.999999910000004050000 -> -8.99999999999998785000E-8 Inexact Rounded -precision: 20 -ln113 ln 0.99999991000000405000 -> -8.9999999999999878500E-8 Inexact Rounded -precision: 19 -ln114 ln 0.9999999100000040500 -> -8.999999999999987850E-8 Inexact Rounded -precision: 18 -ln115 ln 0.999999910000004050 -> -8.99999999999998785E-8 Inexact Rounded --- next is a > 0.5ulp case -precision: 17 -ln116 ln 0.99999991000000405 -> -8.9999999999999879E-8 Inexact Rounded -precision: 16 -ln117 ln 0.9999999100000040 -> -9.000000004999988E-8 Inexact Rounded -precision: 15 -ln118 ln 0.999999910000004 -> -9.00000000499999E-8 Inexact Rounded -precision: 14 -ln119 ln 0.99999991000000 -> -9.0000004050000E-8 Inexact Rounded -precision: 13 -ln120 ln 0.9999999100000 -> -9.000000405000E-8 Inexact Rounded -precision: 12 -ln121 ln 0.999999910000 -> -9.00000040500E-8 Inexact Rounded -precision: 11 -ln122 ln 0.99999991000 -> -9.0000004050E-8 Inexact Rounded -precision: 10 -ln123 ln 0.9999999100 -> -9.000000405E-8 Inexact Rounded -precision: 9 -ln124 ln 0.999999910 -> -9.00000041E-8 Inexact Rounded -precision: 8 -ln125 ln 0.99999991 -> -9.0000004E-8 Inexact Rounded -precision: 7 -ln126 ln 0.9999999 -> -1.000000E-7 Inexact Rounded -precision: 16 -ln126b ln 0.9999999 -> -1.000000050000003E-7 Inexact Rounded -precision: 6 -ln127 ln 0.999999 -> -0.00000100000 Inexact Rounded -precision: 5 -ln128 ln 0.99999 -> -0.000010000 Inexact Rounded -precision: 4 -ln129 ln 0.9999 -> -0.0001000 Inexact Rounded -precision: 3 -ln130 ln 0.999 -> -0.00100 Inexact Rounded -precision: 2 -ln131 ln 0.99 -> -0.010 Inexact Rounded -precision: 1 -ln132 ln 0.9 -> -0.1 Inexact Rounded - - --- cases near 1 -- 1 2345678901234567890 -precision: 20 -ln401 ln 2.7182818284589365041 -> 0.99999999999996000000 Inexact Rounded -ln402 ln 2.7182818284589636869 -> 0.99999999999997000000 Inexact Rounded -ln403 ln 2.7182818284589908697 -> 0.99999999999997999999 Inexact Rounded -ln404 ln 2.7182818284590180525 -> 0.99999999999998999998 Inexact Rounded -ln405 ln 2.7182818284590452354 -> 1.0000000000000000000 Inexact Rounded -ln406 ln 2.7182818284593170635 -> 1.0000000000001000000 Inexact Rounded -ln407 ln 2.7182818284595888917 -> 1.0000000000002000000 Inexact Rounded -precision: 14 -ln411 ln 2.7182818284589 -> 0.99999999999995 Inexact Rounded -ln413 ln 2.7182818284590 -> 0.99999999999998 Inexact Rounded -ln416 ln 2.7182818284591 -> 1.0000000000000 Inexact Rounded -ln417 ln 2.7182818284592 -> 1.0000000000001 Inexact Rounded - --- overflows, including some exp overprecise borderlines -precision: 7 -maxExponent: 384 -minExponent: -383 -ln709 ln 9.999999E+384 -> 886.4953 Inexact Rounded -ln711 ln 9.999992E+384 -> 886.4953 Inexact Rounded -precision: 16 -ln722 ln 9.999999999999999E+384 -> 886.4952608027076 Inexact Rounded -ln724 ln 9.999999999999917E+384 -> 886.4952608027076 Inexact Rounded -ln726 ln 9.999999999999117E+384 -> 886.4952608027075 Inexact Rounded - --- subnormals and underflows for exp, including underflow-to-zero edge point -precision: 7 -maxExponent: 384 -minExponent: -383 -ln751 ln 0E-389 -> ? Invalid_operation -ln758 ln 1.000001E-383 -> -881.8901 Inexact Rounded -ln759 ln 9.99991E-384 -> -881.8901 Inexact Rounded -ln760 ln 4.4605E-385 -> -885.0000 Inexact Rounded -ln761 ln 2.221E-386 -> -887.9999 Inexact Rounded -ln762 ln 3.01E-387 -> -889.9985 Inexact Rounded -ln763 ln 1.7E-388 -> -892.8724 Inexact Rounded -ln764 ln 1.5E-388 -> -892.9976 Inexact Rounded -ln765 ln 9E-389 -> -893.5084 Inexact Rounded -ln766 ln 1E-389 -> -895.7056 Inexact Rounded -ln774 ln 0E-389 -> ? Invalid_operation - --- Invalid operations due to restrictions --- [next two probably skipped by most test harnesses] -precision: 100000000 -ln901 ln 0 -> ? Invalid_context -precision: 99999999 -ln902 ln 0 -> ? Invalid_operation - -precision: 9 -maxExponent: 1000000 -minExponent: -999999 -ln903 ln 1 -> ? Invalid_context -maxExponent: 999999 -minExponent: -999999 -ln904 ln 0 -> ? Invalid_operation -maxExponent: 999999 -minExponent: -1000000 -ln905 ln 1 -> ? Invalid_context -maxExponent: 999999 -minExponent: -999998 -ln906 ln 0 -> ? Invalid_operation - --- -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_up - --- Null test -ln900 ln # -> ? Invalid_operation - - diff --git a/qdecimal/test/tc_subset/log100.decTest b/qdecimal/test/tc_subset/log100.decTest deleted file mode 100644 index 838b37c..0000000 --- a/qdecimal/test/tc_subset/log100.decTest +++ /dev/null @@ -1,456 +0,0 @@ ------------------------------------------------------------------------- --- log100.decTest -- decimal logarithm in base 10 subset -- --- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 16 -rounding: half_up -maxExponent: 384 -minexponent: -383 - --- basics (examples in specification, etc.) -log0000 log10 0 -> ? Invalid_operation -log0001 log10 7E-1000 -> -999.1549019599857 Inexact Rounded -log0002 log10 1.1E-9 -> -8.958607314841775 Inexact Rounded -log0003 log10 0.0007 -> -3.154901959985743 Inexact Rounded -log0004 log10 0.11 -> -0.9586073148417750 Inexact Rounded -log0005 log10 0.7 -> -0.1549019599857432 Inexact Rounded -log0006 log10 1 -> 0 -log0007 log10 1.5 -> 0.1760912590556812 Inexact Rounded -log0008 log10 2 -> 0.3010299956639812 Inexact Rounded -log0009 log10 2.718281828459045 -> 0.4342944819032518 Inexact Rounded -log0010 log10 2.718281828459046 -> 0.4342944819032519 Inexact Rounded -log0011 log10 2.718281828459047 -> 0.4342944819032521 Inexact Rounded -log0012 log10 7 -> 0.8450980400142568 Inexact Rounded -log0013 log10 10 -> 1 -log0014 log10 10.5 -> 1.021189299069938 Inexact Rounded -log0015 log10 11 -> 1.041392685158225 Inexact Rounded -log0016 log10 70 -> 1.845098040014257 Inexact Rounded -log0017 log10 9999 -> 3.999956568380192 Inexact Rounded -log0018 log10 1.21E6 -> 6.082785370316450 Inexact Rounded -log0019 log10 1.1E+9 -> 9.041392685158225 Inexact Rounded -log0020 log10 7E+1000 -> 1000.845098040014 Inexact Rounded - --- notable cases --- negatives -log0031 log10 -1E-9 -> ? Invalid_operation -log0032 log10 -0.0007 -> ? Invalid_operation -log0033 log10 -0.1 -> ? Invalid_operation -log0034 log10 -0.7 -> ? Invalid_operation -log0035 log10 -1 -> ? Invalid_operation -log0036 log10 -1.5 -> ? Invalid_operation -log0037 log10 -2 -> ? Invalid_operation -log0038 log10 -10.5 -> ? Invalid_operation -log0039 log10 -10.5 -> ? Invalid_operation -log0040 log10 -9999 -> ? Invalid_operation -log0041 log10 -10 -> ? Invalid_operation -log0042 log10 -0 -> ? Invalid_operation -log0043 log10 -0E+17 -> ? Invalid_operation -log0044 log10 -0E-17 -> ? Invalid_operation --- other zeros -log0051 log10 0 -> ? Invalid_operation -log0052 log10 0E+17 -> ? Invalid_operation -log0053 log10 0E-17 -> ? Invalid_operation --- ones -log0061 log10 1 -> 0 -log0062 log10 1.0 -> 0 -log0063 log10 1.000000000000000 -> 0 -log0064 log10 1.000000000000000000 -> 0 Rounded - --- notable cases -- exact powers of 10 -log1100 log10 1 -> 0 -log1101 log10 10 -> 1 -log1102 log10 100 -> 2 -log1103 log10 1000 -> 3 -log1104 log10 10000 -> 4 -log1105 log10 100000 -> 5 -log1106 log10 1000000 -> 6 -log1107 log10 10000000 -> 7 -log1108 log10 100000000 -> 8 -log1109 log10 1000000000 -> 9 -log1110 log10 10000000000 -> 10 -log1111 log10 100000000000 -> 11 -log1112 log10 1000000000000 -> 12 - --- check normally exact cases round properly -precision: 1 -log1141 log10 10000000000 -> 1E+1 Rounded -log1142 log10 1000000000000 -> 1E+1 Inexact Rounded -log1143 log10 1E+100 -> 1E+2 Rounded -log1144 log10 1E+123 -> 1E+2 Inexact Rounded -log1145 log10 1E+126 -> 1E+2 Inexact Rounded -log1146 log10 1E+916 -> 9E+2 Inexact Rounded -log1147 log10 1E+999 -> 1E+3 Inexact Rounded - -precision: 2 -log1151 log10 10000000000 -> 10 Rounded -log1152 log10 1000000000000 -> 12 Rounded -log1153 log10 1E+100 -> 1.0E+2 Rounded -log1154 log10 1E+123 -> 1.2E+2 Inexact Rounded -log1155 log10 1E+126 -> 1.3E+2 Inexact Rounded -log1156 log10 1E+916 -> 9.2E+2 Inexact Rounded -log1157 log10 1E+999 -> 1.0E+3 Inexact Rounded - -precision: 3 -log1161 log10 10000000000 -> 10 Rounded -log1162 log10 1000000000000 -> 12 Rounded -log1163 log10 1E+100 -> 100 -log1164 log10 1E+123 -> 123 -log1165 log10 1E+126 -> 126 -log1166 log10 1E+916 -> 916 -log1167 log10 1E+999 -> 999 --- - --- log10(2) .. tests both ln(2) and ln(10) constants, too -precision: 50 -log1201 log10 2 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded -log1202 log10 2.000 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded -log1203 log10 0.2E1 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded -precision: 49 -log1204 log10 2 -> 0.3010299956639811952137388947244930267681898814621 Inexact Rounded -precision: 48 -log1205 log10 2 -> 0.301029995663981195213738894724493026768189881462 Inexact Rounded -precision: 47 -log1206 log10 2 -> 0.30102999566398119521373889472449302676818988146 Inexact Rounded -precision: 46 -log1207 log10 2 -> 0.3010299956639811952137388947244930267681898815 Inexact Rounded -precision: 45 -log1208 log10 2 -> 0.301029995663981195213738894724493026768189881 Inexact Rounded -precision: 44 -log1209 log10 2 -> 0.30102999566398119521373889472449302676818988 Inexact Rounded -precision: 43 -log1210 log10 2 -> 0.3010299956639811952137388947244930267681899 Inexact Rounded -precision: 42 -log1211 log10 2 -> 0.301029995663981195213738894724493026768190 Inexact Rounded -precision: 41 -log1212 log10 2 -> 0.30102999566398119521373889472449302676819 Inexact Rounded -precision: 40 -log1213 log10 2 -> 0.3010299956639811952137388947244930267682 Inexact Rounded -precision: 39 -log1214 log10 2 -> 0.301029995663981195213738894724493026768 Inexact Rounded -precision: 38 -log1215 log10 2 -> 0.30102999566398119521373889472449302677 Inexact Rounded -precision: 37 -log1216 log10 2 -> 0.3010299956639811952137388947244930268 Inexact Rounded -precision: 36 -log1217 log10 2 -> 0.301029995663981195213738894724493027 Inexact Rounded -precision: 35 -log1218 log10 2 -> 0.30102999566398119521373889472449303 Inexact Rounded -precision: 34 -log1219 log10 2 -> 0.3010299956639811952137388947244930 Inexact Rounded -precision: 33 -log1220 log10 2 -> 0.301029995663981195213738894724493 Inexact Rounded -precision: 32 -log1221 log10 2 -> 0.30102999566398119521373889472449 Inexact Rounded -precision: 31 -log1222 log10 2 -> 0.3010299956639811952137388947245 Inexact Rounded -precision: 30 -log1223 log10 2 -> 0.301029995663981195213738894724 Inexact Rounded -precision: 29 -log1224 log10 2 -> 0.30102999566398119521373889472 Inexact Rounded -precision: 28 -log1225 log10 2 -> 0.3010299956639811952137388947 Inexact Rounded -precision: 27 -log1226 log10 2 -> 0.301029995663981195213738895 Inexact Rounded -precision: 26 -log1227 log10 2 -> 0.30102999566398119521373889 Inexact Rounded -precision: 25 -log1228 log10 2 -> 0.3010299956639811952137389 Inexact Rounded -precision: 24 -log1229 log10 2 -> 0.301029995663981195213739 Inexact Rounded -precision: 23 -log1230 log10 2 -> 0.30102999566398119521374 Inexact Rounded -precision: 22 -log1231 log10 2 -> 0.3010299956639811952137 Inexact Rounded -precision: 21 -log1232 log10 2 -> 0.301029995663981195214 Inexact Rounded -precision: 20 -log1233 log10 2 -> 0.30102999566398119521 Inexact Rounded -precision: 19 -log1234 log10 2 -> 0.3010299956639811952 Inexact Rounded -precision: 18 -log1235 log10 2 -> 0.301029995663981195 Inexact Rounded -precision: 17 -log1236 log10 2 -> 0.30102999566398120 Inexact Rounded -precision: 16 -log1237 log10 2 -> 0.3010299956639812 Inexact Rounded -precision: 15 -log1238 log10 2 -> 0.301029995663981 Inexact Rounded -precision: 14 -log1239 log10 2 -> 0.30102999566398 Inexact Rounded -precision: 13 -log1240 log10 2 -> 0.3010299956640 Inexact Rounded -precision: 12 -log1241 log10 2 -> 0.301029995664 Inexact Rounded -precision: 11 -log1242 log10 2 -> 0.30102999566 Inexact Rounded -precision: 10 -log1243 log10 2 -> 0.3010299957 Inexact Rounded -precision: 9 -log1244 log10 2 -> 0.301029996 Inexact Rounded -precision: 8 -log1245 log10 2 -> 0.30103000 Inexact Rounded -precision: 7 -log1246 log10 2 -> 0.3010300 Inexact Rounded -precision: 6 -log1247 log10 2 -> 0.301030 Inexact Rounded -precision: 5 -log1248 log10 2 -> 0.30103 Inexact Rounded -precision: 4 -log1249 log10 2 -> 0.3010 Inexact Rounded -precision: 3 -log1250 log10 2 -> 0.301 Inexact Rounded -precision: 2 -log1251 log10 2 -> 0.30 Inexact Rounded -precision: 1 -log1252 log10 2 -> 0.3 Inexact Rounded - -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_up - --- More close-to-e, etc., tests -precision: 34 -log1301 log10 2.718281828459045235360287471352661 -> 0.4342944819032518276511289189166048 Inexact Rounded -log1302 log10 2.718281828459045235360287471352662 -> 0.4342944819032518276511289189166050 Inexact Rounded -log1303 log10 2.718281828459045235360287471352663 -> 0.4342944819032518276511289189166052 Inexact Rounded -log1304 log10 0.99999999999999999999999999999999 -> -4.342944819032518276511289189166073E-33 Inexact Rounded -log1305 log10 0.999999999999999999999999999999999 -> -4.342944819032518276511289189166053E-34 Inexact Rounded -log1306 log10 0.9999999999999999999999999999999999 -> -4.342944819032518276511289189166051E-35 Inexact Rounded -log1307 log10 1.000000000000000000000000000000000 -> 0 -log1308 log10 1.0000000000000000000000000000000001 -> 0 Inexact Rounded Lost_digits -log1309 log10 1.000000000000000000000000000000001 -> 4.342944819032518276511289189166049E-34 Inexact Rounded -log1310 log10 1.00000000000000000000000000000001 -> 4.342944819032518276511289189166029E-33 Inexact Rounded --- lower p [several with input rounding] -precision: 7 -log1320 log10 0.999999 -> -4.342947E-7 Inexact Rounded -log1321 log10 0.9999999 -> -4.342945E-8 Inexact Rounded -log1322 log10 0.99999999 -> 0 Inexact Rounded Lost_digits -log1323 log10 0.999999999 -> 0 Inexact Rounded Lost_digits -log1324 log10 1.00000000 -> 0 Rounded -log1325 log10 1.00000001 -> 0 Inexact Rounded Lost_digits -log1326 log10 1.0000001 -> 0 Inexact Rounded Lost_digits -log1327 log10 1.000001 -> 4.342943E-7 Inexact Rounded - --- Randoms --- P=50, within 0-9999 -Precision: 50 -log2501 log10 0.00035448001667968141775891246991912655961163345904 -> -3.4504082425411775290864053318247274944685586188505 Inexact Rounded -log2502 log10 70.636455726424311228255338637935330826995136597644 -> 1.8490288998408492045793070255302335558140975719247 Inexact Rounded -log2503 log10 0.00000000000000233550362473821889060812804063040169 -> -14.631619454343834858023578299142866557717904223667 Inexact Rounded -log2504 log10 97.783628621523244679901260358286898958832135433764 -> 1.9902661493224219517897657964362571690592734407330 Inexact Rounded -log2505 log10 0062.2377135315858392802612812022807838599572017342 -> 1.7940536293085066199287632725026837018486533544141 Inexact Rounded -log2506 log10 6.3767634652071053619977602804724129652981747879532 -> 0.80460030789825961615100163576080761326857374098644 Inexact Rounded -log2507 log10 63.297088981313278529306533814195068850532666658798 -> 1.8013837373724427092417170149098614410849353839673 Inexact Rounded -log2508 log10 0.00000077239693316881797717820110898167721602299187 -> -6.1121594592718550613773886241951966264826760310047 Inexact Rounded -log2509 log10 0.00000003953580359780185534830572461922527831395002 -> -7.4030094293833847136252547069905477213541787177561 Inexact Rounded -log2510 log10 754.62905817369989169188998111527272688791544577204 -> 2.8777335243761300047758534304371912099958057545416 Inexact Rounded -log2511 log10 0.00000048360378410241428936607147056283282849158312 -> -6.3155103095309353457604038397980091650760346334512 Inexact Rounded -log2512 log10 0.00007509037583645612577196104591672080542932166089 -> -4.1244157219700166314012344705538088030592896111026 Inexact Rounded -log2513 log10 0.00000000000705475944638915053419839063567898092064 -> -11.151517790256466048553810002525868198178167950377 Inexact Rounded -log2514 log10 9.6210300460497657917445410947099633479609165120661 -> 0.98322157093260978206633922877716078683518617768411 Inexact Rounded -log2515 log10 0.00000000050150361386555527496607245976120864985611 -> -9.2997259330798261040411086835563234390934934629340 Inexact Rounded -log2516 log10 098.24754029731994125797723545333677604490074810751 -> 1.9923216862874337077795278629351060819105679670633 Inexact Rounded -log2517 log10 7.5091998150046994320441463854301624742491015752980 -> 0.87559366078005924080766469158763499725414024128781 Inexact Rounded -log2518 log10 0.00000000000079540571273330075193668596942268542425 -> -12.099411294165176028817305108475326325006250936963 Inexact Rounded -log2519 log10 0.00000042395034799555215782907515074134154915491701 -> -6.3726850039125381134069450802108893075604464135297 Inexact Rounded -log2520 log10 56.683376304674355481905023145238799909301732694982 -> 1.7534557107853480435703421826077606250636580091754 Inexact Rounded -log2521 log10 48.734033811444195070807606721517169810438049581227 -> 1.6878323602741065190942654710049433808208291564049 Inexact Rounded -log2522 log10 0.00074830310930046865009851706989430228561880221063 -> -3.1259224502209974082223667712016445572431791920618 Inexact Rounded -log2523 log10 36.677348885111593384020836720396262497122708598359 -> 1.5643979364260796086754530282302605477567469395425 Inexact Rounded -log2524 log10 0.00000000000000004495678560480432858812419145833744 -> -16.347204748239740510014320630363244015916029619561 Inexact Rounded -log2525 log10 9509.5854013650642799374159131940108748594774307104 -> 3.9781615829916326741100166519726824430945406302661 Inexact Rounded -log2526 log10 0.07834891268689177014044454793608715276615743819097 -> -1.1059670262197643147805517398621288897669876996348 Inexact Rounded -log2527 log10 0.00000029584529880706128444454688454999032801904794 -> -6.5289353275814043710076526920566721570375026917206 Inexact Rounded -log2528 log10 3.0713496544497618098794332787772186176981011904294 -> 0.48732926103896828546424341029492468100431414072994 Inexact Rounded -log2529 log10 352.66392670788816474407442785460803833927136413943 -> 2.5473610388199562714709836398243933320284077008314 Inexact Rounded -log2530 log10 0.00304743125181876267210516527361742185617091801650 -> -2.5160660830163981967774124745311497447050056400207 Inexact Rounded -log2531 log10 0.00000076120535894952136499250364604538117729437183 -> -6.1184981629047051532448413863950776496652483019415 Inexact Rounded -log2532 log10 769.88795978534353052965286195053735007473187735815 -> 2.8864275277862652709986498581064117950288798222100 Inexact Rounded -log2533 log10 0.00000000000000041297494808612226304619570016336188 -> -15.384076292745415917510668454361868659468669804710 Inexact Rounded -log2534 log10 860.88864595714426940247940960258558876903741966974 -> 2.9349469800554277915920278090647283233440859155176 Inexact Rounded -log2535 log10 5839.0328812994787235900178587371051096898683972444 -> 3.7663409208972392569269125539438874737147906238543 Inexact Rounded -log2536 log10 0.00000028532710151284840471670497112821201598377841 -> -6.5446569753514027675878879843238065488490618159490 Inexact Rounded -log2537 log10 0.00000000000000009734490059931638483445631835651581 -> -16.011686794011271135978633880864278692254243106931 Inexact Rounded -log2538 log10 5.8610949526439529489252302463450302981511714144330 -> 0.76797875722452549281028552067645732490929361952278 Inexact Rounded -log2539 log10 6.6282432221115923372151148990137179611977576327206 -> 0.82139843639227213211012044000785757267155736071361 Inexact Rounded -log2540 log10 0.00000000001994071862386846626954819923923344413454 -> -10.700259194632339980266559224447212260115021637626 Inexact Rounded - --- P=34, within 0-9999 -Precision: 34 -log2201 log10 1.522513203889714179088327328864183 -> 0.1825610677098896250496651330492109 Inexact Rounded -log2202 log10 0.171123774769717316154080888930404 -> -0.7666896483548462582461898092764408 Inexact Rounded -log2203 log10 0.0000000997467236251714283104963838 -> -7.001101360652518274271569010312115 Inexact Rounded -log2204 log10 0.0008856103624122479769647543468633 -> -3.052757310476070891830490327138190 Inexact Rounded -log2205 log10 1.938274868738032930709498221236758 -> 0.2874153648259449520201536171714594 Inexact Rounded -log2206 log10 479.5667847823826713082613445010097 -> 2.680849095850361068709165157286435 Inexact Rounded -log2207 log10 8856.136599178820202141823157336804 -> 3.947244306584767101480454261950559 Inexact Rounded -log2208 log10 0.0000911026318801903982642871344858 -> -4.040469076434979398438617464033826 Inexact Rounded -log2209 log10 0.0000000000017271112650427414732630 -> -11.76267968314038748995178212654921 Inexact Rounded -log2210 log10 6.962605370078885647639503548229695 -> 0.8427717807200322352686396925992250 Inexact Rounded -log2211 log10 0.3354804428992793132855923541692781 -> -0.4743327923012159170967636070844834 Inexact Rounded -log2212 log10 2.079864257474859008252165836663504 -> 0.3180349916198059046812506741388856 Inexact Rounded -log2213 log10 2805.479529292939499220276986621988 -> 3.448007104139974344565978780624744 Inexact Rounded -log2214 log10 66.45731133034187374557028537213949 -> 1.822542767005644041661520936223086 Inexact Rounded -log2215 log10 0.0000001206521261762681738274822835 -> -6.918465020390216969561494755767318 Inexact Rounded -log2216 log10 0.0000000001884891916264401160472381 -> -9.724713548119065386091933007528633 Inexact Rounded -log2217 log10 0.0000015467279551726326581314582759 -> -5.810586065070435383755759514608738 Inexact Rounded -log2218 log10 0.0090776316728068586744633914135952 -> -2.042027442843745884503280954390114 Inexact Rounded -log2219 log10 0.0000000000024541106528713393740030 -> -11.61010585935635713090119156069479 Inexact Rounded -log2220 log10 14.12936879385863410081087750645856 -> 1.150122760895466989841057385742662 Inexact Rounded -log2221 log10 0.0000036912481831392922922647231392 -> -5.432826753789892283556211380824203 Inexact Rounded -log2222 log10 0.0000000004067477525420424270138734 -> -9.390674838050073122857868012475060 Inexact Rounded -log2223 log10 7080.122562705399744969319589806194 -> 3.850040775747103318724330047546916 Inexact Rounded -log2224 log10 261.3491411363679209175524790255725 -> 2.417221077227536319655699517530855 Inexact Rounded -log2225 log10 003.9945581449915240094728380041494 -> 0.6014687471531988260823066997845691 Inexact Rounded -log2226 log10 0.0000000000583549164588495206767840 -> -10.23392254834182677023231713519341 Inexact Rounded -log2227 log10 9567.961832607240278342761088487484 -> 3.980819434211107631569386147016368 Inexact Rounded -log2228 log10 06.26592979160342972777219828867033 -> 0.7969855243966221408595024012574729 Inexact Rounded -log2229 log10 0.0000000000589847046598067273287319 -> -10.22926059078206218717755253582907 Inexact Rounded -log2230 log10 567.9388648235589204769442863724997 -> 2.754301589058313576472380262907638 Inexact Rounded -log2231 log10 039.7790325480037778918162264883415 -> 1.599654216592019199639285308997886 Inexact Rounded -log2232 log10 0.0000000005123951921894162149817207 -> -9.290394953898862694847327137242690 Inexact Rounded -log2233 log10 0.0000000000038500999723636904276723 -> -11.41452799337924056186867324854691 Inexact Rounded -log2234 log10 0.0006726500658977759825616537935864 -> -3.172210810922768725687671849421792 Inexact Rounded -log2235 log10 260.2400250475967528429943779126507 -> 2.415374092073799204236801383070064 Inexact Rounded -log2236 log10 0.0000000006101942339385102585042548 -> -9.214531900562046557191261226632509 Inexact Rounded -log2237 log10 0.0000000010846867501382746760066557 -> -8.964695664883282406359874242387236 Inexact Rounded -log2238 log10 60.24078375568814769010333711509928 -> 1.779890613567084253168373266648922 Inexact Rounded -log2239 log10 0.0012058738711757669337600252986093 -> -2.918698115012605915753728220896010 Inexact Rounded -log2240 log10 230.9450930197841600611503095185600 -> 2.363508739056822846742942599628966 Inexact Rounded - --- P=16, within 0-999 -Precision: 16 -log2101 log10 0.0072067119605184 -> -2.142262835573038 Inexact Rounded -log2102 log10 503.6828482226624 -> 2.702157162195652 Inexact Rounded -log2103 log10 64.96074447821815 -> 1.812650993464174 Inexact Rounded -log2104 log10 48.75408597467246 -> 1.688011018842600 Inexact Rounded -log2105 log10 0.0329009839269587 -> -1.482791113975280 Inexact Rounded -log2106 log10 223.5320415060633 -> 2.349339784523410 Inexact Rounded -log2107 log10 73.12765002292194 -> 1.864081617476268 Inexact Rounded -log2108 log10 487.3749378358509 -> 2.687863192802252 Inexact Rounded -log2109 log10 0.0000019671987621 -> -5.706151757557926 Inexact Rounded -log2110 log10 0.0570680660609784 -> -1.243606844697873 Inexact Rounded -log2111 log10 33.10311638788998 -> 1.519868880976773 Inexact Rounded -log2112 log10 0.0687382699187077 -> -1.162801402868185 Inexact Rounded -log2113 log10 258.9416193626484 -> 2.413201859654145 Inexact Rounded -log2114 log10 0.0005306100136736 -> -3.275224558269725 Inexact Rounded -log2115 log10 65.78490393408572 -> 1.818126244825109 Inexact Rounded -log2116 log10 504.2328842073510 -> 2.702631165346958 Inexact Rounded -log2117 log10 9.417432755815027 -> 0.9739325278524503 Inexact Rounded -log2118 log10 006.7054835355498 -> 0.8264301004947640 Inexact Rounded -log2119 log10 0.0917012272363915 -> -1.037624852133399 Inexact Rounded -log2120 log10 5.959404385244921 -> 0.7752028561953401 Inexact Rounded -log2121 log10 0.0001209759148486 -> -3.917301084968903 Inexact Rounded -log2122 log10 0.0004706112139838 -> -3.327337728428039 Inexact Rounded -log2123 log10 0.0069700457377046 -> -2.156764372035771 Inexact Rounded -log2124 log10 0.5155584569852619 -> -0.2877220847805025 Inexact Rounded -log2125 log10 88.06005885607414 -> 1.944778971389913 Inexact Rounded -log2126 log10 0.0448240038219866 -> -1.348489353509709 Inexact Rounded -log2127 log10 3.419622484059565 -> 0.5339781639101145 Inexact Rounded -log2128 log10 5.171123353858721 -> 0.7135848977142854 Inexact Rounded -log2129 log10 0.0002133188319807 -> -3.670970802945872 Inexact Rounded -log2130 log10 46.21086703136966 -> 1.664744117045149 Inexact Rounded -log2131 log10 0.0000631053714415 -> -4.199933672639880 Inexact Rounded -log2132 log10 78.66019196870698 -> 1.895755001962469 Inexact Rounded -log2133 log10 0.0007152278351188 -> -3.145555592082297 Inexact Rounded -log2134 log10 45.52509819928536 -> 1.658250891256892 Inexact Rounded -log2135 log10 0.0000703227795740 -> -4.152903971697183 Inexact Rounded -log2136 log10 26.24438641426669 -> 1.419036423550599 Inexact Rounded -log2137 log10 0.0000044654829535 -> -5.350131564166817 Inexact Rounded -log2138 log10 0.7360702733062529 -> -0.1330807211893611 Inexact Rounded -log2139 log10 8.417059176469655 -> 0.9251603805112778 Inexact Rounded -log2140 log10 0.0002926570767968 -> -3.533640969664818 Inexact Rounded - --- P=7, within 0-99 -Precision: 7 -log2001 log10 57.26089 -> 1.757858 Inexact Rounded -log2002 log10 0.0575421 -> -1.240014 Inexact Rounded -log2003 log10 0.5918465 -> -0.2277909 Inexact Rounded -log2004 log10 0.0068776 -> -2.162563 Inexact Rounded -log2005 log10 0.0066833 -> -2.175009 Inexact Rounded -log2006 log10 9.926963 -> 0.9968164 Inexact Rounded -log2007 log10 0.0041852 -> -2.378284 Inexact Rounded -log2008 log10 84.15412 -> 1.925075 Inexact Rounded -log2009 log10 2.466856 -> 0.3921438 Inexact Rounded -log2010 log10 0.0058047 -> -2.236220 Inexact Rounded -log2011 log10 9.885154 -> 0.9949834 Inexact Rounded -log2012 log10 0.6667654 -> -0.1760269 Inexact Rounded -log2013 log10 34.65736 -> 1.539795 Inexact Rounded -log2014 log10 0.0026884 -> -2.570506 Inexact Rounded -log2015 log10 0.0432767 -> -1.363746 Inexact Rounded -log2016 log10 66.01407 -> 1.819637 Inexact Rounded -log2017 log10 0.0070572 -> -2.151368 Inexact Rounded -log2018 log10 0.0731613 -> -1.135719 Inexact Rounded -log2019 log10 9.838983 -> 0.9929502 Inexact Rounded -log2020 log10 15.89696 -> 1.201314 Inexact Rounded -log2021 log10 8.459247 -> 0.9273317 Inexact Rounded -log2022 log10 0.0010873 -> -2.963651 Inexact Rounded -log2023 log10 0.6498619 -> -0.1871789 Inexact Rounded -log2024 log10 0.0847008 -> -1.072112 Inexact Rounded -log2025 log10 0.0075489 -> -2.122116 Inexact Rounded -log2026 log10 51.11152 -> 1.708519 Inexact Rounded -log2027 log10 0.7233866 -> -0.1406295 Inexact Rounded -log2028 log10 2.254721 -> 0.3530928 Inexact Rounded -log2029 log10 6.568444 -> 0.8174625 Inexact Rounded -log2030 log10 83.72639 -> 1.922862 Inexact Rounded -log2031 log10 6.720585 -> 0.8274071 Inexact Rounded -log2032 log10 87.90366 -> 1.944007 Inexact Rounded -log2033 log10 0.0433324 -> -1.363187 Inexact Rounded -log2034 log10 34.63912 -> 1.539567 Inexact Rounded -log2035 log10 0.8089059 -> -0.09210200 Inexact Rounded -log2036 log10 7.793405 -> 0.8917272 Inexact Rounded -log2037 log10 0.0041757 -> -2.379271 Inexact Rounded -log2038 log10 7.135417 -> 0.8534194 Inexact Rounded -log2039 log10 12.49570 -> 1.096761 Inexact Rounded -log2040 log10 6.356276 -> 0.8032027 Inexact Rounded - --------- -maxExponent: 384 -minExponent: -383 -precision: 16 -rounding: half_up - --- Invalid operations due to restrictions --- [next two probably skipped by most test harnesses] -precision: 100000000 -log901 log10 ? -> ? Invalid_operation -precision: 99999999 -log902 log10 0 -> ? Invalid_operation - -precision: 9 -maxExponent: 1000000 -minExponent: -999999 -log903 log10 1 -> ? Invalid_context -maxExponent: 999999 -minExponent: -999999 -log904 log10 0 -> ? Invalid_operation -maxExponent: 999999 -minExponent: -1000000 -log905 log10 1 -> ? Invalid_context -maxExponent: 999999 -minExponent: -999998 -log906 log10 0 -> ? Invalid_operation - --- Null test -log900 log10 # -> ? Invalid_operation - - diff --git a/qdecimal/test/tc_subset/max0.decTest b/qdecimal/test/tc_subset/max0.decTest deleted file mode 100644 index 2932d82..0000000 --- a/qdecimal/test/tc_subset/max0.decTest +++ /dev/null @@ -1,111 +0,0 @@ ------------------------------------------------------------------------- --- max0.decTest -- decimal maximum (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases, lost digits, and rounding - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- sanity checks -max001 max -2 -2 -> -2 -max002 max -2 -1 -> -1 -max003 max -2 0 -> 0 -max004 max -2 1 -> 1 -max005 max -2 2 -> 2 -max006 max -1 -2 -> -1 -max007 max -1 -1 -> -1 -max008 max -1 0 -> 0 -max009 max -1 1 -> 1 -max010 max -1 2 -> 2 -max011 max 0 -2 -> 0 -max012 max 0 -1 -> 0 -max013 max 0 0 -> 0 -max014 max 0 1 -> 1 -max015 max 0 2 -> 2 -max016 max 1 -2 -> 1 -max017 max 1 -1 -> 1 -max018 max 1 0 -> 1 -max019 max 1 1 -> 1 -max020 max 1 2 -> 2 -max021 max 2 -2 -> 2 -max022 max 2 -1 -> 2 -max023 max 2 0 -> 2 -max025 max 2 1 -> 2 -max026 max 2 2 -> 2 - --- lostDigits and input rounding checks -maxexponent: 999 -minexponent: -999 -precision: 9 -max101 max 12345678000 1 -> 1.23456780E+10 Rounded -max102 max 1 12345678000 -> 1.23456780E+10 Rounded -max103 max 1234567800 1 -> 1.23456780E+9 Rounded -max104 max 1 1234567800 -> 1.23456780E+9 Rounded -max105 max 1234567890 1 -> 1.23456789E+9 Rounded -max106 max 1 1234567890 -> 1.23456789E+9 Rounded -max107 max 1234567891 1 -> 1.23456789E+9 Inexact Lost_digits Rounded -max108 max 1 1234567891 -> 1.23456789E+9 Inexact Lost_digits Rounded -max109 max 12345678901 1 -> 1.23456789E+10 Inexact Lost_digits Rounded -max110 max 1 12345678901 -> 1.23456789E+10 Inexact Lost_digits Rounded -max111 max 1234567896 1 -> 1.23456790E+9 Inexact Lost_digits Rounded -max112 max 1 1234567896 -> 1.23456790E+9 Inexact Lost_digits Rounded -max113 max -1234567891 1 -> 1 Inexact Lost_digits Rounded -max114 max 1 -1234567891 -> 1 Inexact Lost_digits Rounded -max115 max -12345678901 1 -> 1 Inexact Lost_digits Rounded -max116 max 1 -12345678901 -> 1 Inexact Lost_digits Rounded -max117 max -1234567896 1 -> 1 Inexact Lost_digits Rounded -max118 max 1 -1234567896 -> 1 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -max121 max 12345678000 1 -> 12345678000 -max122 max 1 12345678000 -> 12345678000 -max123 max 1234567800 1 -> 1234567800 -max124 max 1 1234567800 -> 1234567800 -max125 max 1234567890 1 -> 1234567890 -max126 max 1 1234567890 -> 1234567890 -max127 max 1234567891 1 -> 1234567891 -max128 max 1 1234567891 -> 1234567891 -max129 max 12345678901 1 -> 12345678901 -max130 max 1 12345678901 -> 12345678901 -max131 max 1234567896 1 -> 1234567896 -max132 max 1 1234567896 -> 1234567896 -max133 max -1234567891 1 -> 1 -max134 max 1 -1234567891 -> 1 -max135 max -12345678901 1 -> 1 -max136 max 1 -12345678901 -> 1 -max137 max -1234567896 1 -> 1 -max138 max 1 -1234567896 -> 1 - --- from examples -max180 max '3' '2' -> '3' -max181 max '-10' '3' -> '3' -max182 max '1.0' '1' -> '1.0' -max183 max '1' '1.0' -> '1' - --- Null tests -max900 max 10 # -> ? Invalid_operation -max901 max # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/min0.decTest b/qdecimal/test/tc_subset/min0.decTest deleted file mode 100644 index 7951760..0000000 --- a/qdecimal/test/tc_subset/min0.decTest +++ /dev/null @@ -1,111 +0,0 @@ ------------------------------------------------------------------------- --- min0.decTest -- decimal minimum (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- we assume that base comparison is tested in compare.decTest, so --- these mainly cover special cases, lost digits, and rounding - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- sanity checks -mnm001 min -2 -2 -> -2 -mnm002 min -2 -1 -> -2 -mnm003 min -2 0 -> -2 -mnm004 min -2 1 -> -2 -mnm005 min -2 2 -> -2 -mnm006 min -1 -2 -> -2 -mnm007 min -1 -1 -> -1 -mnm008 min -1 0 -> -1 -mnm009 min -1 1 -> -1 -mnm010 min -1 2 -> -1 -mnm011 min 0 -2 -> -2 -mnm012 min 0 -1 -> -1 -mnm013 min 0 0 -> 0 -mnm014 min 0 1 -> 0 -mnm015 min 0 2 -> 0 -mnm016 min 1 -2 -> -2 -mnm017 min 1 -1 -> -1 -mnm018 min 1 0 -> 0 -mnm019 min 1 1 -> 1 -mnm020 min 1 2 -> 1 -mnm021 min 2 -2 -> -2 -mnm022 min 2 -1 -> -1 -mnm023 min 2 0 -> 0 -mnm025 min 2 1 -> 1 -mnm026 min 2 2 -> 2 - --- lostDigits and input rounding checks -maxExponent: 999 -minexponent: -999 -precision: 9 -mnm101 min -12345678000 1 -> -1.23456780E+10 Rounded -mnm102 min 1 -12345678000 -> -1.23456780E+10 Rounded -mnm103 min -1234567800 1 -> -1.23456780E+9 Rounded -mnm104 min 1 -1234567800 -> -1.23456780E+9 Rounded -mnm105 min -1234567890 1 -> -1.23456789E+9 Rounded -mnm106 min 1 -1234567890 -> -1.23456789E+9 Rounded -mnm107 min -1234567891 1 -> -1.23456789E+9 Inexact Lost_digits Rounded -mnm108 min 1 -1234567891 -> -1.23456789E+9 Inexact Lost_digits Rounded -mnm109 min -12345678901 1 -> -1.23456789E+10 Inexact Lost_digits Rounded -mnm110 min 1 -12345678901 -> -1.23456789E+10 Inexact Lost_digits Rounded -mnm111 min -1234567896 1 -> -1.23456790E+9 Inexact Lost_digits Rounded -mnm112 min 1 -1234567896 -> -1.23456790E+9 Inexact Lost_digits Rounded -mnm113 min 1234567891 1 -> 1 Inexact Lost_digits Rounded -mnm114 min 1 1234567891 -> 1 Inexact Lost_digits Rounded -mnm115 min 12345678901 1 -> 1 Inexact Lost_digits Rounded -mnm116 min 1 12345678901 -> 1 Inexact Lost_digits Rounded -mnm117 min 1234567896 1 -> 1 Inexact Lost_digits Rounded -mnm118 min 1 1234567896 -> 1 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -mnm121 min -12345678000 1 -> -12345678000 -mnm122 min 1 -12345678000 -> -12345678000 -mnm123 min -1234567800 1 -> -1234567800 -mnm124 min 1 -1234567800 -> -1234567800 -mnm125 min -1234567890 1 -> -1234567890 -mnm126 min 1 -1234567890 -> -1234567890 -mnm127 min -1234567891 1 -> -1234567891 -mnm128 min 1 -1234567891 -> -1234567891 -mnm129 min -12345678901 1 -> -12345678901 -mnm130 min 1 -12345678901 -> -12345678901 -mnm131 min -1234567896 1 -> -1234567896 -mnm132 min 1 -1234567896 -> -1234567896 -mnm133 min 1234567891 1 -> 1 -mnm134 min 1 1234567891 -> 1 -mnm135 min 12345678901 1 -> 1 -mnm136 min 1 12345678901 -> 1 -mnm137 min 1234567896 1 -> 1 -mnm138 min 1 1234567896 -> 1 - --- from examples -mnm180 min '3' '2' -> '2' -mnm181 min '-10' '3' -> '-10' -mnm182 min '1.0' '1' -> '1.0' -mnm183 min '1' '1.0' -> '1' - --- Null tests -mnm900 min 10 # -> ? Invalid_operation -mnm901 min # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/minus0.decTest b/qdecimal/test/tc_subset/minus0.decTest deleted file mode 100644 index 13a97a7..0000000 --- a/qdecimal/test/tc_subset/minus0.decTest +++ /dev/null @@ -1,99 +0,0 @@ ------------------------------------------------------------------------- --- minus0.decTest -- decimal negation (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests primarily tests the existence of the operator. --- Subtraction, rounding, and more overflows are tested elsewhere. - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -min001 minus '1' -> '-1' -min002 minus '-1' -> '1' -min003 minus '1.00' -> '-1.00' -min004 minus '-1.00' -> '1.00' -min005 minus '0' -> '0' -min006 minus '0.00' -> '0' -min007 minus '00.0' -> '0' -min008 minus '00.00' -> '0' -min009 minus '00' -> '0' - -min010 minus '-2' -> '2' -min011 minus '2' -> '-2' -min012 minus '-2.00' -> '2.00' -min013 minus '2.00' -> '-2.00' -min014 minus '-0' -> '0' -min015 minus '-0.00' -> '0' -min016 minus '-00.0' -> '0' -min017 minus '-00.00' -> '0' -min018 minus '-00' -> '0' - -min020 minus '-2000000' -> '2000000' -min021 minus '2000000' -> '-2000000' -precision: 7 -min022 minus '-2000000' -> '2000000' -min023 minus '2000000' -> '-2000000' -precision: 6 -min024 minus '-2000000' -> '2.00000E+6' Rounded -min025 minus '2000000' -> '-2.00000E+6' Rounded -precision: 3 -min026 minus '-2000000' -> '2.00E+6' Rounded -min027 minus '2000000' -> '-2.00E+6' Rounded - --- more fixed, potential LHS swaps/overlays if done by subtract 0 -precision: 9 -min060 minus '-56267E-10' -> '0.0000056267' -min061 minus '-56267E-5' -> '0.56267' -min062 minus '-56267E-2' -> '562.67' -min063 minus '-56267E-1' -> '5626.7' -min065 minus '-56267E-0' -> '56267' - --- overflow tests [underflow not possible] -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -min120 minus 9.999E+999999999 -> ? Inexact Lost_digits Overflow Rounded - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -min301 minus 12345678000 -> -1.23456780E+10 Rounded -min302 minus 1234567800 -> -1.23456780E+9 Rounded -min303 minus 1234567890 -> -1.23456789E+9 Rounded -min304 minus 1234567891 -> -1.23456789E+9 Inexact Lost_digits Rounded -min305 minus 12345678901 -> -1.23456789E+10 Inexact Lost_digits Rounded -min306 minus 1234567896 -> -1.23456790E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -min321 minus 12345678000 -> -12345678000 -min322 minus 1234567800 -> -1234567800 -min323 minus 1234567890 -> -1234567890 -min324 minus 1234567891 -> -1234567891 -min325 minus 12345678901 -> -12345678901 -min326 minus 1234567896 -> -1234567896 - --- Null tests -min400 minus # -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/multiply0.decTest b/qdecimal/test/tc_subset/multiply0.decTest deleted file mode 100644 index d8b8338..0000000 --- a/qdecimal/test/tc_subset/multiply0.decTest +++ /dev/null @@ -1,277 +0,0 @@ ------------------------------------------------------------------------- --- multiply0.decTest -- decimal multiplication (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -mul000 multiply 2 2 -> 4 -mul001 multiply 2 3 -> 6 -mul002 multiply 5 1 -> 5 -mul003 multiply 5 2 -> 10 -mul004 multiply 1.20 2 -> 2.40 -mul005 multiply 1.20 0 -> 0 -mul006 multiply 1.20 -2 -> -2.40 -mul007 multiply -1.20 2 -> -2.40 -mul008 multiply -1.20 0 -> 0 -mul009 multiply -1.20 -2 -> 2.40 -mul010 multiply 5.09 7.1 -> 36.139 -mul011 multiply 2.5 4 -> 10.0 -mul012 multiply 2.50 4 -> 10.00 -mul013 multiply 1.23456789 1.00000000 -> 1.23456789 Rounded -mul014 multiply 9.999999999 9.999999999 -> 100.000000 Inexact Lost_digits Rounded -mul015 multiply 2.50 4 -> 10.00 - -precision: 6 -mul016 multiply 2.50 4 -> 10.00 -mul017 multiply 9.999999999 9.999999999 -> 100.000 Inexact Lost_digits Rounded - -precision: 9 -mul031 multiply 5.00 1E-3 -> 0.00500 -mul032 multiply 00.00 0.000 -> 0 -mul033 multiply 00.00 0E-3 -> 0 -- rhs is 0 -mul034 multiply 0E-3 00.00 -> 0 -- lhs is 0 - --- 1999.12.21: next one is a edge case if intermediate longs are used -precision: 15 -mul039 multiply 999999999999 9765625 -> 9.76562499999023E+18 Inexact Rounded -precision: 9 - -mul050 multiply 123.45 1e7 -> 1.2345E+9 -mul051 multiply 123.45 1e8 -> 1.2345E+10 -mul052 multiply 123.45 1e+9 -> 1.2345E+11 -mul053 multiply 123.45 1e10 -> 1.2345E+12 -mul054 multiply 123.45 1e11 -> 1.2345E+13 -mul055 multiply 123.45 1e12 -> 1.2345E+14 -mul056 multiply 123.45 1e13 -> 1.2345E+15 - - --- test some intermediate lengths -precision: 9 -mul080 multiply 0.1 123456789 -> 12345678.9 -mul081 multiply 0.1 1234567891 -> 123456789 Inexact Lost_digits Rounded -mul082 multiply 0.1 12345678912 -> 1.23456789E+9 Inexact Lost_digits Rounded -mul083 multiply 0.1 12345678912345 -> 1.23456789E+12 Inexact Lost_digits Rounded -mul084 multiply 0.1 123456789 -> 12345678.9 -precision: 8 -mul085 multiply 0.1 12345678912 -> 1.2345679E+9 Inexact Lost_digits Rounded -mul086 multiply 0.1 12345678912345 -> 1.2345679E+12 Inexact Lost_digits Rounded -precision: 7 -mul087 multiply 0.1 12345678912 -> 1.234568E+9 Inexact Lost_digits Rounded -mul088 multiply 0.1 12345678912345 -> 1.234568E+12 Inexact Lost_digits Rounded - -precision: 9 -mul090 multiply 123456789 0.1 -> 12345678.9 -mul091 multiply 1234567891 0.1 -> 123456789 Inexact Lost_digits Rounded -mul092 multiply 12345678912 0.1 -> 1.23456789E+9 Inexact Lost_digits Rounded -mul093 multiply 12345678912345 0.1 -> 1.23456789E+12 Inexact Lost_digits Rounded -mul094 multiply 123456789 0.1 -> 12345678.9 -precision: 8 -mul095 multiply 12345678912 0.1 -> 1.2345679E+9 Inexact Lost_digits Rounded -mul096 multiply 12345678912345 0.1 -> 1.2345679E+12 Inexact Lost_digits Rounded -precision: 7 -mul097 multiply 12345678912 0.1 -> 1.234568E+9 Inexact Lost_digits Rounded -mul098 multiply 12345678912345 0.1 -> 1.234568E+12 Inexact Lost_digits Rounded - --- test some more edge cases and carries -maxexponent: 9999 -minexponent: -9999 -precision: 33 -mul101 multiply 9 9 -> 81 -mul102 multiply 9 90 -> 810 -mul103 multiply 9 900 -> 8100 -mul104 multiply 9 9000 -> 81000 -mul105 multiply 9 90000 -> 810000 -mul106 multiply 9 900000 -> 8100000 -mul107 multiply 9 9000000 -> 81000000 -mul108 multiply 9 90000000 -> 810000000 -mul109 multiply 9 900000000 -> 8100000000 -mul110 multiply 9 9000000000 -> 81000000000 -mul111 multiply 9 90000000000 -> 810000000000 -mul112 multiply 9 900000000000 -> 8100000000000 -mul113 multiply 9 9000000000000 -> 81000000000000 -mul114 multiply 9 90000000000000 -> 810000000000000 -mul115 multiply 9 900000000000000 -> 8100000000000000 -mul116 multiply 9 9000000000000000 -> 81000000000000000 -mul117 multiply 9 90000000000000000 -> 810000000000000000 -mul118 multiply 9 900000000000000000 -> 8100000000000000000 -mul119 multiply 9 9000000000000000000 -> 81000000000000000000 -mul120 multiply 9 90000000000000000000 -> 810000000000000000000 -mul121 multiply 9 900000000000000000000 -> 8100000000000000000000 -mul122 multiply 9 9000000000000000000000 -> 81000000000000000000000 -mul123 multiply 9 90000000000000000000000 -> 810000000000000000000000 --- test some more edge cases without carries -mul131 multiply 3 3 -> 9 -mul132 multiply 3 30 -> 90 -mul133 multiply 3 300 -> 900 -mul134 multiply 3 3000 -> 9000 -mul135 multiply 3 30000 -> 90000 -mul136 multiply 3 300000 -> 900000 -mul137 multiply 3 3000000 -> 9000000 -mul138 multiply 3 30000000 -> 90000000 -mul139 multiply 3 300000000 -> 900000000 -mul140 multiply 3 3000000000 -> 9000000000 -mul141 multiply 3 30000000000 -> 90000000000 -mul142 multiply 3 300000000000 -> 900000000000 -mul143 multiply 3 3000000000000 -> 9000000000000 -mul144 multiply 3 30000000000000 -> 90000000000000 -mul145 multiply 3 300000000000000 -> 900000000000000 -mul146 multiply 3 3000000000000000 -> 9000000000000000 -mul147 multiply 3 30000000000000000 -> 90000000000000000 -mul148 multiply 3 300000000000000000 -> 900000000000000000 -mul149 multiply 3 3000000000000000000 -> 9000000000000000000 -mul150 multiply 3 30000000000000000000 -> 90000000000000000000 -mul151 multiply 3 300000000000000000000 -> 900000000000000000000 -mul152 multiply 3 3000000000000000000000 -> 9000000000000000000000 -mul153 multiply 3 30000000000000000000000 -> 90000000000000000000000 - --- 1999.12.21: next one is a edge case if intermediate longs are used -precision: 30 -mul160 multiply 999999999999 9765625 -> 9765624999990234375 -precision: 9 ------ - -maxexponent: 999999999 -minexponent: -999999999 --- test some cases that are close to exponent overflow/underflow -mul170 multiply 1 9e999999999 -> 9E+999999999 -mul171 multiply 1 9.9e999999999 -> 9.9E+999999999 -mul172 multiply 1 9.99e999999999 -> 9.99E+999999999 -mul173 multiply 9e999999999 1 -> 9E+999999999 -mul174 multiply 9.9e999999999 1 -> 9.9E+999999999 -mul176 multiply 9.99e999999999 1 -> 9.99E+999999999 -mul177 multiply 1 9.99999999e999999999 -> 9.99999999E+999999999 -mul178 multiply 9.99999999e999999999 1 -> 9.99999999E+999999999 - -mul180 multiply 0.1 9e-999999998 -> 9E-999999999 -mul181 multiply 0.1 99e-999999998 -> 9.9E-999999998 -mul182 multiply 0.1 999e-999999998 -> 9.99E-999999997 - -mul183 multiply 0.1 9e-999999998 -> 9E-999999999 -mul184 multiply 0.1 99e-999999998 -> 9.9E-999999998 -mul185 multiply 0.1 999e-999999998 -> 9.99E-999999997 -mul186 multiply 0.1 999e-999999997 -> 9.99E-999999996 -mul187 multiply 0.1 9999e-999999997 -> 9.999E-999999995 -mul188 multiply 0.1 99999e-999999997 -> 9.9999E-999999994 - -mul190 multiply 1 9e-999999998 -> 9E-999999998 -mul191 multiply 1 99e-999999998 -> 9.9E-999999997 -mul192 multiply 1 999e-999999998 -> 9.99E-999999996 -mul193 multiply 9e-999999998 1 -> 9E-999999998 -mul194 multiply 99e-999999998 1 -> 9.9E-999999997 -mul195 multiply 999e-999999998 1 -> 9.99E-999999996 - -mul196 multiply 1e-599999999 1e-400000000 -> 1E-999999999 -mul197 multiply 1e-600000000 1e-399999999 -> 1E-999999999 -mul198 multiply 1.2e-599999999 1.2e-400000000 -> 1.44E-999999999 -mul199 multiply 1.2e-600000000 1.2e-399999999 -> 1.44E-999999999 - -mul201 multiply 1e599999999 1e400000000 -> 1E+999999999 -mul202 multiply 1e600000000 1e399999999 -> 1E+999999999 -mul203 multiply 1.2e599999999 1.2e400000000 -> 1.44E+999999999 -mul204 multiply 1.2e600000000 1.2e399999999 -> 1.44E+999999999 - --- overflow and underflow tests -maxexponent: 999999999 -minexponent: -999999999 -mul230 multiply +1.23456789012345E-0 9E+999999999 -> ? Inexact Lost_digits Overflow Rounded -mul231 multiply 9E+999999999 +1.23456789012345E-0 -> ? Inexact Lost_digits Overflow Rounded -mul232 multiply +0.100 9E-999999999 -> ? Underflow Subnormal Inexact Rounded -mul233 multiply 9E-999999999 +0.100 -> ? Underflow Subnormal Inexact Rounded -mul235 multiply -1.23456789012345E-0 9E+999999999 -> ? Inexact Lost_digits Overflow Rounded -mul236 multiply 9E+999999999 -1.23456789012345E-0 -> ? Inexact Lost_digits Overflow Rounded -mul237 multiply -0.100 9E-999999999 -> ? Underflow Subnormal Inexact Rounded -mul238 multiply 9E-999999999 -0.100 -> ? Underflow Subnormal Inexact Rounded - -mul239 multiply 1e-599999999 1e-400000001 -> ? Underflow Subnormal Inexact Rounded -mul240 multiply 1e-599999999 1e-400000000 -> 1E-999999999 -mul241 multiply 1e-600000000 1e-400000000 -> ? Underflow Subnormal Inexact Rounded -mul242 multiply 9e-999999998 0.01 -> ? Underflow Subnormal Inexact Rounded -mul243 multiply 9e-999999998 0.1 -> 9E-999999999 -mul244 multiply 0.01 9e-999999998 -> ? Underflow Subnormal Inexact Rounded -mul245 multiply 1e599999999 1e400000001 -> ? Overflow Inexact Rounded -mul246 multiply 1e599999999 1e400000000 -> 1E+999999999 -mul247 multiply 1e600000000 1e400000000 -> ? Overflow Inexact Rounded -mul248 multiply 9e999999998 100 -> ? Overflow Inexact Rounded -mul249 multiply 9e999999998 10 -> 9.0E+999999999 -mul250 multiply 100 9e999999998 -> ? Overflow Inexact Rounded - --- 'subnormal' results (all underflow or overflow in base arithemtic) -precision: 9 -mul260 multiply 1e-600000000 1e-400000001 -> ? Underflow Subnormal Inexact Rounded -mul261 multiply 1e-600000000 1e-400000002 -> ? Underflow Subnormal Inexact Rounded -mul262 multiply 1e-600000000 1e-400000003 -> ? Underflow Subnormal Inexact Rounded -mul263 multiply 1e-600000000 1e-400000004 -> ? Underflow Subnormal Inexact Rounded -mul264 multiply 1e-600000000 1e-400000005 -> ? Underflow Subnormal Inexact Rounded -mul265 multiply 1e-600000000 1e-400000006 -> ? Underflow Subnormal Inexact Rounded -mul266 multiply 1e-600000000 1e-400000007 -> ? Underflow Subnormal Inexact Rounded -mul267 multiply 1e-600000000 1e-400000008 -> ? Underflow Subnormal Inexact Rounded -mul268 multiply 1e-600000000 1e-400000009 -> ? Underflow Subnormal Inexact Rounded -mul269 multiply 1e-600000000 1e-400000010 -> ? Underflow Subnormal Inexact Rounded -mul270 multiply 1e+600000000 1e+400000001 -> ? Overflow Inexact Rounded -mul271 multiply 1e+600000000 1e+400000002 -> ? Overflow Inexact Rounded -mul272 multiply 1e+600000000 1e+400000003 -> ? Overflow Inexact Rounded -mul273 multiply 1e+600000000 1e+400000004 -> ? Overflow Inexact Rounded -mul274 multiply 1e+600000000 1e+400000005 -> ? Overflow Inexact Rounded -mul275 multiply 1e+600000000 1e+400000006 -> ? Overflow Inexact Rounded -mul276 multiply 1e+600000000 1e+400000007 -> ? Overflow Inexact Rounded -mul277 multiply 1e+600000000 1e+400000008 -> ? Overflow Inexact Rounded -mul278 multiply 1e+600000000 1e+400000009 -> ? Overflow Inexact Rounded -mul279 multiply 1e+600000000 1e+400000010 -> ? Overflow Inexact Rounded - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -mul301 multiply 12345678000 1 -> 1.23456780E+10 Rounded -mul302 multiply 1 12345678000 -> 1.23456780E+10 Rounded -mul303 multiply 1234567800 1 -> 1.23456780E+9 Rounded -mul304 multiply 1 1234567800 -> 1.23456780E+9 Rounded -mul305 multiply 1234567890 1 -> 1.23456789E+9 Rounded -mul306 multiply 1 1234567890 -> 1.23456789E+9 Rounded -mul307 multiply 1234567891 1 -> 1.23456789E+9 Inexact Lost_digits Rounded -mul308 multiply 1 1234567891 -> 1.23456789E+9 Inexact Lost_digits Rounded -mul309 multiply 12345678901 1 -> 1.23456789E+10 Inexact Lost_digits Rounded -mul310 multiply 1 12345678901 -> 1.23456789E+10 Inexact Lost_digits Rounded -mul311 multiply 1234567896 1 -> 1.23456790E+9 Inexact Lost_digits Rounded -mul312 multiply 1 1234567896 -> 1.23456790E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -mul341 multiply 12345678000 1 -> 12345678000 -mul342 multiply 1 12345678000 -> 12345678000 -mul343 multiply 1234567800 1 -> 1234567800 -mul344 multiply 1 1234567800 -> 1234567800 -mul345 multiply 1234567890 1 -> 1234567890 -mul346 multiply 1 1234567890 -> 1234567890 -mul347 multiply 1234567891 1 -> 1234567891 -mul348 multiply 1 1234567891 -> 1234567891 -mul349 multiply 12345678901 1 -> 12345678901 -mul350 multiply 1 12345678901 -> 12345678901 -mul351 multiply 1234567896 1 -> 1234567896 -mul352 multiply 1 1234567896 -> 1234567896 - --- Null tests -mul400 multiply 10 # -> ? Invalid_operation -mul401 multiply # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/plus0.decTest b/qdecimal/test/tc_subset/plus0.decTest deleted file mode 100644 index 22962c5..0000000 --- a/qdecimal/test/tc_subset/plus0.decTest +++ /dev/null @@ -1,118 +0,0 @@ ------------------------------------------------------------------------- --- plus0.decTest -- decimal monadic addition (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests primarily tests the existence of the operator. --- Addition and rounding, and most overflows, are tested elsewhere. - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -plu001 plus '1' -> '1' -plu002 plus '-1' -> '-1' -plu003 plus '1.00' -> '1.00' -plu004 plus '-1.00' -> '-1.00' -plu005 plus '0' -> '0' -plu006 plus '0.00' -> '0' -plu007 plus '00.0' -> '0' -plu008 plus '00.00' -> '0' -plu009 plus '00' -> '0' - -plu010 plus '-2' -> '-2' -plu011 plus '2' -> '2' -plu012 plus '-2.00' -> '-2.00' -plu013 plus '2.00' -> '2.00' -plu014 plus '-0' -> '0' -plu015 plus '-0.00' -> '0' -plu016 plus '-00.0' -> '0' -plu017 plus '-00.00' -> '0' -plu018 plus '-00' -> '0' - -plu020 plus '-2000000' -> '-2000000' -plu021 plus '2000000' -> '2000000' -precision: 7 -plu022 plus '-2000000' -> '-2000000' -plu023 plus '2000000' -> '2000000' -precision: 6 -plu024 plus '-2000000' -> '-2.00000E+6' Rounded -plu025 plus '2000000' -> '2.00000E+6' Rounded -precision: 3 -plu026 plus '-2000000' -> '-2.00E+6' Rounded -plu027 plus '2000000' -> '2.00E+6' Rounded - --- more fixed, potential LHS swaps if done by add 0 -precision: 9 -plu060 plus '56267E-10' -> '0.0000056267' -plu061 plus '56267E-5' -> '0.56267' -plu062 plus '56267E-2' -> '562.67' -plu063 plus '56267E-1' -> '5626.7' -plu065 plus '56267E-0' -> '56267' -plu066 plus '56267E+0' -> '56267' -plu067 plus '56267E+1' -> '562670' -plu068 plus '56267E+2' -> '5626700' -plu069 plus '56267E+3' -> '56267000' -plu070 plus '56267E+4' -> '562670000' -plu071 plus '56267E+5' -> '5.6267E+9' -plu072 plus '56267E+6' -> '5.6267E+10' -plu080 plus '-56267E-10' -> '-0.0000056267' -plu081 plus '-56267E-5' -> '-0.56267' -plu082 plus '-56267E-2' -> '-562.67' -plu083 plus '-56267E-1' -> '-5626.7' -plu085 plus '-56267E-0' -> '-56267' -plu086 plus '-56267E+0' -> '-56267' -plu087 plus '-56267E+1' -> '-562670' -plu088 plus '-56267E+2' -> '-5626700' -plu089 plus '-56267E+3' -> '-56267000' -plu090 plus '-56267E+4' -> '-562670000' -plu091 plus '-56267E+5' -> '-5.6267E+9' -plu092 plus '-56267E+6' -> '-5.6267E+10' - --- overflow tests [underflow not possible] -maxexponent: 999999999 -minexponent: -999999999 -precision: 3 -plu120 plus 9.999E+999999999 -> ? Inexact Lost_digits Overflow Rounded - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -plu301 plus 12345678000 -> 1.23456780E+10 Rounded -plu302 plus 1234567800 -> 1.23456780E+9 Rounded -plu303 plus 1234567890 -> 1.23456789E+9 Rounded -plu304 plus 1234567891 -> 1.23456789E+9 Inexact Lost_digits Rounded -plu305 plus 12345678901 -> 1.23456789E+10 Inexact Lost_digits Rounded -plu306 plus 1234567896 -> 1.23456790E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -plu321 plus 12345678000 -> 12345678000 -plu322 plus 1234567800 -> 1234567800 -plu323 plus 1234567890 -> 1234567890 -plu324 plus 1234567891 -> 1234567891 -plu325 plus 12345678901 -> 12345678901 -plu326 plus 1234567896 -> 1234567896 - --- Null tests -plu400 plus # -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/power0.decTest b/qdecimal/test/tc_subset/power0.decTest deleted file mode 100644 index 3b33ea5..0000000 --- a/qdecimal/test/tc_subset/power0.decTest +++ /dev/null @@ -1,391 +0,0 @@ ------------------------------------------------------------------------- --- power0.decTest -- decimal exponentiation (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of testcases tests raising numbers to an integer power only. --- If arbitrary powers were supported, 1 ulp differences would be --- permitted. - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -pow001 power '0' '0' -> '1' -pow002 power '0' '1' -> '0' -pow003 power '0' '2' -> '0' -pow004 power '1' '0' -> '1' -pow005 power '1' '1' -> '1' -pow006 power '1' '2' -> '1' - -pow010 power '2' '0' -> '1' -pow011 power '2' '1' -> '2' -pow012 power '2' '2' -> '4' -pow013 power '2' '3' -> '8' -pow014 power '2' '4' -> '16' -pow015 power '2' '5' -> '32' -pow016 power '2' '6' -> '64' -pow017 power '2' '7' -> '128' -pow018 power '2' '8' -> '256' -pow019 power '2' '9' -> '512' -pow020 power '2' '10' -> '1024' -pow021 power '2' '11' -> '2048' -pow022 power '2' '12' -> '4096' -pow023 power '2' '15' -> '32768' -pow024 power '2' '16' -> '65536' -pow025 power '2' '31' -> '2.14748365E+9' Inexact Rounded --- NB 0 stripped in next -pow026 power '2' '32' -> '4.2949673E+9' Inexact Rounded -precision: 10 -pow027 power '2' '31' -> '2147483648' -pow028 power '2' '32' -> '4294967296' -precision: 9 - -pow030 power '3' '2' -> 9 -pow031 power '4' '2' -> 16 -pow032 power '5' '2' -> 25 -pow033 power '6' '2' -> 36 -pow034 power '7' '2' -> 49 -pow035 power '8' '2' -> 64 -pow036 power '9' '2' -> 81 -pow037 power '10' '2' -> 100 -pow038 power '11' '2' -> 121 -pow039 power '12' '2' -> 144 - -pow040 power '3' '3' -> 27 -pow041 power '4' '3' -> 64 -pow042 power '5' '3' -> 125 -pow043 power '6' '3' -> 216 -pow044 power '7' '3' -> 343 - -pow050 power '10' '0' -> 1 -pow051 power '10' '1' -> 10 -pow052 power '10' '2' -> 100 -pow053 power '10' '3' -> 1000 -pow054 power '10' '4' -> 10000 -pow055 power '10' '5' -> 100000 -pow056 power '10' '6' -> 1000000 -pow057 power '10' '7' -> 10000000 -pow058 power '10' '8' -> 100000000 -pow059 power '10' '9' -> 1E+9 Rounded -pow060 power '10' '22' -> 1E+22 Rounded -pow061 power '10' '77' -> 1E+77 Rounded -pow062 power '10' '99' -> 1E+99 Rounded - -maxexponent: 999999999 -minexponent: -999999999 -pow063 power '10' '999999999' -> '1E+999999999' Rounded -pow064 power '10' '999999998' -> '1E+999999998' Rounded -pow065 power '10' '999999997' -> '1E+999999997' Rounded -pow066 power '10' '333333333' -> '1E+333333333' Rounded -maxexponent: 999999 -minexponent: -999999 - -pow070 power '0.3' '0' -> '1' -pow071 power '0.3' '1' -> '0.3' -pow072 power '0.3' '1.00' -> '0.3' -pow073 power '0.3' '2.00' -> '0.09' -pow074 power '0.3' '2.000000000' -> '0.09' Rounded -pow075 power '6.0' '2' -> '36' -pow076 power '-3' '2' -> '9' -- from NetRexx book -pow077 power '4' '3' -> '64' -- .. (sort of) - -pow080 power 0.1 0 -> 1 -pow081 power 0.1 1 -> 0.1 -pow082 power 0.1 2 -> 0.01 -pow083 power 0.1 3 -> 0.001 -pow084 power 0.1 4 -> 0.0001 -pow085 power 0.1 5 -> 0.00001 -pow086 power 0.1 6 -> 0.000001 -pow087 power 0.1 7 -> 1E-7 -pow088 power 0.1 8 -> 1E-8 -pow089 power 0.1 9 -> 1E-9 - -pow090 power 101 2 -> 10201 -pow091 power 101 3 -> 1030301 -pow092 power 101 4 -> 104060401 -pow093 power 101 5 -> 1.05101005E+10 Inexact Rounded -pow094 power 101 6 -> 1.06152015E+12 Inexact Rounded -pow095 power 101 7 -> 1.07213535E+14 Inexact Rounded - --- negative powers -pow100 power '0' '-1' -> ? Invalid_operation -pow101 power '2' '-1' -> 0.5 -pow102 power '2' '-2' -> 0.25 -pow103 power '2' '-4' -> 0.0625 -pow104 power '2' '-8' -> 0.00390625 -pow105 power '2' '-16' -> 0.0000152587891 Inexact Rounded -pow106 power '2' '-32' -> 2.32830644E-10 Inexact Rounded -pow108 power '2' '-64' -> 5.42101086E-20 Inexact Rounded -pow110 power '10' '-8' -> 1E-8 -pow111 power '10' '-7' -> 1E-7 -pow112 power '10' '-6' -> 0.000001 -pow113 power '10' '-5' -> 0.00001 -pow114 power '10' '-4' -> 0.0001 -pow115 power '10' '-3' -> 0.001 -pow116 power '10' '-2' -> 0.01 -pow117 power '10' '-1' -> 0.1 -maxexponent: 999999999 -minexponent: -999999999 -pow118 power '10' '-333333333' -> 1E-333333333 Rounded -pow119 power '10' '-999999998' -> 1E-999999998 Rounded -pow120 power '10' '-999999999' -> 1E-999999999 Rounded -maxexponent: 999999 -minexponent: -999999 -pow121 power '10' '-77' -> '1E-77' Rounded -pow122 power '10' '-22' -> '1E-22' Rounded -pow123 power '2' '-1' -> '0.5' -pow124 power '2' '-2' -> '0.25' -pow125 power '2' '-4' -> '0.0625' -pow126 power '0' '-1' -> ? Invalid_operation -pow127 power '0' '-2' -> ? Invalid_operation - --- out-of-range edge cases -maxexponent: 999999999 -minexponent: -999999999 -pow181 power '7' '999999998' -> 2.10892313E+845098038 Inexact Rounded -pow182 power '7' '999999999' -> 1.47624619E+845098039 Inexact Rounded -pow183 power '7' '1000000000' -> ? Invalid_context Rounded -pow184 power '7' '1000000001' -> ? Invalid_context Inexact Lost_digits Rounded -pow186 power '7' '-1000000001' -> 9.67705411E-845098041 Inexact Lost_digits Rounded -pow187 power '7' '-1000000000' -> 9.67705411E-845098041 Inexact Rounded -pow189 power '7' '-999999999' -> 6.77393787E-845098040 Inexact Rounded -pow190 power '7' '-999999998' -> 4.74175651E-845098039 Inexact Rounded - -maxexponent: 999999 -minexponent: -999999 - --- "0.5" tests from original Rexx diagnostics [loop unrolled] -pow200 power 0.5 0 -> 1 -pow201 power 0.5 1 -> 0.5 -pow202 power 0.5 2 -> 0.25 -pow203 power 0.5 3 -> 0.125 -pow204 power 0.5 4 -> 0.0625 -pow205 power 0.5 5 -> 0.03125 -pow206 power 0.5 6 -> 0.015625 -pow207 power 0.5 7 -> 0.0078125 -pow208 power 0.5 8 -> 0.00390625 -pow209 power 0.5 9 -> 0.001953125 -pow210 power 0.5 10 -> 0.0009765625 - --- A (rare) case where the last digit is not within 0.5 ULP -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -pow215 power "-21971575.0E+31454441" "-7" -> "-4.04549502E-220181139" Inexact Rounded -precision: 20 -pow216 power "-21971575.0E+31454441" "-7" -> "-4.0454950249324891788E-220181139" Inexact Rounded -maxexponent: 999999 -minexponent: -999999 - --- The Vienna case. Checks both setup and 1/acc working precision --- Modified 1998.12.14 as RHS no longer rounded before use (must fit) --- Modified 1990.02.04 as LHS is now rounded (instead of truncated to guard) --- '123456789E+10' -- lhs .. rounded to 1.23E+18 --- '-1.23000e+2' -- rhs .. [was: -1.23455e+2, rounds to -123] --- Without the input rounding, result would be 5.54E-2226 -precision: 3 -pow220 power '123456789E+10' '-1.23000e+2' -> '8.74E-2226' Inexact Lost_digits Rounded - -precision: 5 -pow240 power 1 99999 -> 1 -pow241 power 1 100000 -> 1 Rounded -pow242 power 1 100001 -> 1 Inexact Rounded Lost_digits -pow243 power 1 1000000000 -> 1 Rounded -pow244 power 1 9999999999 -> 1 Inexact Rounded Lost_digits - --- Checks for 'Too much precision needed' --- For x^12, digits+elength+1 = digits+3 -precision: 999999999 ---SSC: pow249 add 1 1 -> 2 -- check basic operation at this precision -pow250 power 2 12 -> ? Overflow -precision: 999999998 -pow251 power 2 12 -> ? Overflow -precision: 999999997 -pow252 power 2 12 -> ? Overflow -precision: 999999996 -pow253 power 2 12 -> 4096 -precision: 999999995 -pow254 power 2 12 -> 4096 - - --- overflow and underflow tests -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -pow260 power 9 999999999 -> 3.05550054E+954242508 Inexact Rounded -pow261 power 10 999999999 -> 1E+999999999 Rounded -pow262 power 10.0001 999999999 -> ? Overflow Inexact Rounded -pow263 power 10.1 999999999 -> ? Overflow Inexact Rounded -pow264 power 11 999999999 -> ? Overflow Inexact Rounded -pow265 power 12 999999999 -> ? Overflow Inexact Rounded -pow266 power 999 999999999 -> ? Overflow Inexact Rounded -pow267 power 999999 999999999 -> ? Overflow Inexact Rounded -pow268 power 999999999 999999999 -> ? Overflow Inexact Rounded -pow269 power 9.9E999999999 999999999 -> ? Overflow Inexact Rounded - -pow270 power 0.5 999999999 -> 4.33559594E-301029996 Inexact Rounded -pow271 power 0.1 999999999 -> 1E-999999999 -pow272 power 0.09 999999999 -> ? Underflow Subnormal Inexact Rounded -pow273 power 0.05 999999999 -> ? Underflow Subnormal Inexact Rounded -pow274 power 0.01 999999999 -> ? Underflow Subnormal Inexact Rounded -pow275 power 0.0001 999999999 -> ? Underflow Subnormal Inexact Rounded -pow277 power 0.0000001 999999999 -> ? Underflow Subnormal Inexact Rounded -pow278 power 0.0000000001 999999999 -> ? Underflow Subnormal Inexact Rounded -pow279 power 1E-999999999 999999999 -> ? Underflow Subnormal Inexact Rounded - -pow310 power -9 999999999 -> -3.05550054E+954242508 Inexact Rounded -pow311 power -10 999999999 -> -1E+999999999 Rounded -pow312 power -10.0001 999999999 -> ? Overflow Inexact Rounded -pow313 power -10.1 999999999 -> ? Overflow Inexact Rounded -pow314 power -11 999999999 -> ? Overflow Inexact Rounded -pow315 power -12 999999999 -> ? Overflow Inexact Rounded -pow316 power -999 999999999 -> ? Overflow Inexact Rounded -pow317 power -999999 999999999 -> ? Overflow Inexact Rounded -pow318 power -999999999 999999999 -> ? Overflow Inexact Rounded -pow319 power -9.9E999999999 999999999 -> ? Overflow Inexact Rounded - -pow320 power -0.5 999999999 -> -4.33559594E-301029996 Inexact Rounded -pow321 power -0.1 999999999 -> -1E-999999999 -pow322 power -0.09 999999999 -> ? Underflow Subnormal Inexact Rounded -pow323 power -0.05 999999999 -> ? Underflow Subnormal Inexact Rounded -pow324 power -0.01 999999999 -> ? Underflow Subnormal Inexact Rounded -pow325 power -0.0001 999999999 -> ? Underflow Subnormal Inexact Rounded -pow327 power -0.0000001 999999999 -> ? Underflow Subnormal Inexact Rounded -pow328 power -0.0000000001 999999999 -> ? Underflow Subnormal Inexact Rounded -pow329 power -1E-999999999 999999999 -> ? Underflow Subnormal Inexact Rounded - -pow330 power -9 999999998 -> 3.3950006E+954242507 Inexact Rounded -pow331 power -10 999999998 -> 1E+999999998 Rounded -pow332 power -10.0001 999999998 -> ? Overflow Inexact Rounded -pow333 power -10.1 999999998 -> ? Overflow Inexact Rounded -pow334 power -11 999999998 -> ? Overflow Inexact Rounded -pow335 power -12 999999998 -> ? Overflow Inexact Rounded -pow336 power -999 999999998 -> ? Overflow Inexact Rounded -pow337 power -999999 999999998 -> ? Overflow Inexact Rounded -pow338 power -999999999 999999998 -> ? Overflow Inexact Rounded -pow339 power -9.9E999999999 999999998 -> ? Overflow Inexact Rounded - -pow340 power -0.5 999999998 -> 8.67119187E-301029996 Inexact Rounded -pow341 power -0.1 999999998 -> 1E-999999998 -pow342 power -0.09 999999998 -> ? Underflow Subnormal Inexact Rounded -pow343 power -0.05 999999998 -> ? Underflow Subnormal Inexact Rounded -pow344 power -0.01 999999998 -> ? Underflow Subnormal Inexact Rounded -pow345 power -0.0001 999999998 -> ? Underflow Subnormal Inexact Rounded -pow347 power -0.0000001 999999998 -> ? Underflow Subnormal Inexact Rounded -pow348 power -0.0000000001 999999998 -> ? Underflow Subnormal Inexact Rounded -pow349 power -1E-999999999 999999998 -> ? Underflow Subnormal Inexact Rounded - --- lostDigits and RHS range checks -maxexponent: 999 -minexponent: -999 -precision: 9 -pow401 power 12345678000 1 -> 1.2345678E+10 Rounded -pow402 power 1234567800 1 -> 1.2345678E+9 Rounded -pow403 power 1234567890 1 -> 1.23456789E+9 Rounded -pow404 power 1234567891 1 -> 1.23456789E+9 Inexact Lost_digits Rounded -pow405 power 12345678901 1 -> 1.23456789E+10 Inexact Lost_digits Rounded -pow406 power 1234567896 1 -> 1.2345679E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -pow441 power 12345678000 1 -> 12345678000 -pow442 power 1234567800 1 -> 1234567800 -pow443 power 1234567890 1 -> 1234567890 -pow444 power 1234567891 1 -> 1234567891 -pow445 power 12345678901 1 -> 12345678901 -pow446 power 1234567896 1 -> 1234567896 -pow447 power 1 12345678000 -> 1 -pow448 power 1 -1234567896 -> 1 -pow449 power 1 1000000000 -> 1 -pow440 power 1 -1000000000 -> 1 - --- Null tests -pow500 power 1 # -> ? Invalid_operation -pow501 power # 1 -> ? Invalid_operation - ----------------------------------------------------------------------- --- Below here are the tests with a non-integer rhs, including the -- --- tests that previously caused Invalid operation. An integer-only -- --- (on rhs) implementation should handle all the tests above as -- --- shown, and flag most of the following tests as Invalid. -- ----------------------------------------------------------------------- -precision: 16 -rounding: half_up -maxExponent: 384 -minExponent: -383 - -pow2000 power 7 '10000000000' -> ? Overflow Inexact Rounded -pow2001 power 2 '2.000001' -> 4.000002772589683 Inexact Rounded -pow2002 power 2 '2.00000000' -> 4 -pow2003 power 2 '2.000000001' -> 4.000000002772589 Inexact Rounded -pow2004 power 2 '2.0000000001' -> 4.000000000277259 Inexact Rounded -pow2005 power 2 '2.00000000001' -> 4.000000000027726 Inexact Rounded -pow2006 power 2 '2.000000000001' -> 4.000000000002773 Inexact Rounded -pow2007 power 2 '2.0000000000001' -> 4.000000000000277 Inexact Rounded -pow2008 power 2 '2.00000000000001' -> 4.000000000000028 Inexact Rounded -pow2009 power 2 '2.000000000000001' -> 4.000000000000003 Inexact Rounded -pow2010 power 2 '2.0000000000000001' -> 4 Inexact Rounded Lost_digits --- 1 234567890123456 - -pow2011 power 1 1234 -> 1 -precision: 4 -pow2012 power 1 1234 -> 1 -precision: 3 -pow2013 power 1 1234 -> 1 Inexact Rounded Lost_digits -pow2014 power 1 12.34e+2 -> 1 Inexact Rounded Lost_digits -pow2015 power 1 12.3 -> 1 Inexact Rounded -pow2016 power 1 12.0 -> 1 -pow2017 power 1 1.01 -> 1 Inexact Rounded -pow2018 power 2 1.00 -> 2 -pow2019 power 2 2.00 -> 4 -precision: 9 -pow2030 power 1 1.0001 -> 1 Inexact Rounded -pow2031 power 1 1.0000001 -> 1 Inexact Rounded -pow2032 power 1 1.0000000001 -> 1 Inexact Rounded Lost_digits -pow2033 power 1 1.0000000000001 -> 1 Inexact Rounded Lost_digits -precision: 5 -pow2034 power 1 1.0001 -> 1 Inexact Rounded -pow2035 power 1 1.0000001 -> 1 Inexact Rounded Lost_digits -pow2036 power 1 1.0000000001 -> 1 Inexact Rounded Lost_digits -pow2037 power 1 1.0000000000001 -> 1 Inexact Rounded Lost_digits -pow2038 power 1 1.0000000000001 -> 1 Inexact Rounded Lost_digits - --- 1 ** big integer should be exact if no input rounding -precision: 15 -pow2041 power 1 1000000000 -> 1 -pow2042 power 1 9999999999 -> 1 -pow2043 power 1 12345678000 -> 1 -pow2044 power 1 1234567800 -> 1 -pow2045 power 1 1234567890 -> 1 -pow2046 power 1 11234567891 -> 1 -pow2047 power 1 12345678901 -> 1 -pow2048 power 1 1234567896 -> 1 -pow2049 power 1 -1234567896 -> 1 -pow2051 power 1 1000000000 -> 1 -pow2052 power 1 -1000000000 -> 1 -pow2053 power 1 12345678000 -> 1 -pow2054 power 1 -1234567896 -> 1 -pow2055 power 1 1000000000 -> 1 -pow2056 power 1 -1000000000 -> 1 - --- (Other x**y results tested in power.decTest) - diff --git a/qdecimal/test/tc_subset/quantize0.decTest b/qdecimal/test/tc_subset/quantize0.decTest deleted file mode 100644 index e42713b..0000000 --- a/qdecimal/test/tc_subset/quantize0.decTest +++ /dev/null @@ -1,536 +0,0 @@ ------------------------------------------------------------------------- --- quantize0.decTest -- decimal quantize operation -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- Most of the tests here assume a "regular pattern", where the --- sign and coefficient are +1. - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- sanity checks -qua001 quantize 0 1e0 -> 0 -qua002 quantize 1 1e0 -> 1 -qua003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded -qua005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded -qua006 quantize 0.1 1e0 -> 0 Inexact Rounded -qua007 quantize 0.1 1e-1 -> 0.1 -qua008 quantize 0.1 1e-2 -> 0.10 -qua009 quantize 0.1 1e-3 -> 0.100 -qua010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded -qua011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded -qua012 quantize 0.9 1e+0 -> 1 Inexact Rounded -qua013 quantize 0.9 1e-1 -> 0.9 -qua014 quantize 0.9 1e-2 -> 0.90 -qua015 quantize 0.9 1e-3 -> 0.900 --- negatives -qua021 quantize -0 1e0 -> 0 -qua022 quantize -1 1e0 -> -1 -qua023 quantize -0.1 1e+2 -> 0E+2 Inexact Rounded -qua025 quantize -0.1 1e+1 -> 0E+1 Inexact Rounded -qua026 quantize -0.1 1e0 -> 0 Inexact Rounded -qua027 quantize -0.1 1e-1 -> -0.1 -qua028 quantize -0.1 1e-2 -> -0.10 -qua029 quantize -0.1 1e-3 -> -0.100 -qua030 quantize -0.9 1e+2 -> 0E+2 Inexact Rounded -qua031 quantize -0.9 1e+1 -> 0E+1 Inexact Rounded -qua032 quantize -0.9 1e+0 -> -1 Inexact Rounded -qua033 quantize -0.9 1e-1 -> -0.9 -qua034 quantize -0.9 1e-2 -> -0.90 -qua035 quantize -0.9 1e-3 -> -0.900 -qua036 quantize -0.5 1e+2 -> 0E+2 Inexact Rounded -qua037 quantize -0.5 1e+1 -> 0E+1 Inexact Rounded -qua038 quantize -0.5 1e+0 -> -1 Inexact Rounded -qua039 quantize -0.5 1e-1 -> -0.5 -qua040 quantize -0.5 1e-2 -> -0.50 -qua041 quantize -0.5 1e-3 -> -0.500 -qua042 quantize -0.9 1e+2 -> 0E+2 Inexact Rounded -qua043 quantize -0.9 1e+1 -> 0E+1 Inexact Rounded -qua044 quantize -0.9 1e+0 -> -1 Inexact Rounded -qua045 quantize -0.9 1e-1 -> -0.9 -qua046 quantize -0.9 1e-2 -> -0.90 -qua047 quantize -0.9 1e-3 -> -0.900 - --- examples from Specification -qua060 quantize 2.17 0.001 -> 2.170 -qua061 quantize 2.17 0.01 -> 2.17 -qua062 quantize 2.17 0.1 -> 2.2 Inexact Rounded -qua063 quantize 2.17 1e+0 -> 2 Inexact Rounded -qua064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded -qua066 quantize -0.1 1 -> 0 Inexact Rounded -qua067 quantize -0 1e+5 -> 0E+5 -qua068 quantize +35236450.6 1e-2 -> ? Invalid_operation -qua069 quantize -35236450.6 1e-2 -> ? Invalid_operation -qua070 quantize 217 1e-1 -> 217.0 -qua071 quantize 217 1e+0 -> 217 -qua072 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded -qua073 quantize 217 1e+2 -> 2E+2 Inexact Rounded - --- general tests .. -qua089 quantize 12 1e+4 -> 0E+4 Inexact Rounded -qua090 quantize 12 1e+3 -> 0E+3 Inexact Rounded -qua091 quantize 12 1e+2 -> 0E+2 Inexact Rounded -qua092 quantize 12 1e+1 -> 1E+1 Inexact Rounded -qua093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded -qua094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded -qua095 quantize 1.2345 1e-6 -> 1.234500 -qua096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded -qua097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded -qua098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded -qua099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded -qua100 quantize 92 1e+2 -> 1E+2 Inexact Rounded - -qua101 quantize -1 1e0 -> -1 -qua102 quantize -1 1e-1 -> -1.0 -qua103 quantize -1 1e-2 -> -1.00 -qua104 quantize 0 1e0 -> 0 -qua105 quantize 0 1e-1 -> 0.0 -qua106 quantize 0 1e-2 -> 0.00 -qua107 quantize 0.00 1e0 -> 0 -qua108 quantize 0 1e+1 -> 0E+1 -qua109 quantize 0 1e+2 -> 0E+2 -qua110 quantize +1 1e0 -> 1 -qua111 quantize +1 1e-1 -> 1.0 -qua112 quantize +1 1e-2 -> 1.00 - -qua120 quantize 1.04 1e-3 -> 1.040 -qua121 quantize 1.04 1e-2 -> 1.04 -qua122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded -qua123 quantize 1.04 1e0 -> 1 Inexact Rounded -qua124 quantize 1.05 1e-3 -> 1.050 -qua125 quantize 1.05 1e-2 -> 1.05 -qua126 quantize 1.05 1e-1 -> 1.1 Inexact Rounded -qua127 quantize 1.05 1e0 -> 1 Inexact Rounded -qua128 quantize 1.05 1e-3 -> 1.050 -qua129 quantize 1.05 1e-2 -> 1.05 -qua130 quantize 1.05 1e-1 -> 1.1 Inexact Rounded -qua131 quantize 1.05 1e0 -> 1 Inexact Rounded -qua132 quantize 1.06 1e-3 -> 1.060 -qua133 quantize 1.06 1e-2 -> 1.06 -qua134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded -qua135 quantize 1.06 1e0 -> 1 Inexact Rounded - -qua140 quantize -10 1e-2 -> -10.00 -qua141 quantize +1 1e-2 -> 1.00 -qua142 quantize +10 1e-2 -> 10.00 -qua143 quantize 1E+10 1e-2 -> ? Invalid_operation -qua144 quantize 1E-10 1e-2 -> 0.00 Inexact Rounded -qua145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded -qua146 quantize 1E-2 1e-2 -> 0.01 -qua147 quantize 1E-1 1e-2 -> 0.10 -qua148 quantize 0E-10 1e-2 -> 0.00 - -qua150 quantize 1.0600 1e-5 -> 1.06000 -qua151 quantize 1.0600 1e-4 -> 1.0600 -qua152 quantize 1.0600 1e-3 -> 1.060 Rounded -qua153 quantize 1.0600 1e-2 -> 1.06 Rounded -qua154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded -qua155 quantize 1.0600 1e0 -> 1 Inexact Rounded - --- base tests with non-1 coefficients -qua161 quantize 0 -9e0 -> 0 -qua162 quantize 1 -7e0 -> 1 -qua163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded -qua165 quantize 0.1 7e+1 -> 0E+1 Inexact Rounded -qua166 quantize 0.1 2e0 -> 0 Inexact Rounded -qua167 quantize 0.1 3e-1 -> 0.1 -qua168 quantize 0.1 44e-2 -> 0.10 -qua169 quantize 0.1 555e-3 -> 0.100 -qua170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded -qua171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded -qua172 quantize 0.9 -88e+0 -> 1 Inexact Rounded -qua173 quantize 0.9 -9e-1 -> 0.9 -qua174 quantize 0.9 7e-2 -> 0.90 -qua175 quantize 0.9 1.1e-3 -> 0.9000 --- negatives -qua181 quantize -0 1.1e0 -> 0.0 -qua182 quantize -1 -1e0 -> -1 -qua183 quantize -0.1 11e+2 -> 0E+2 Inexact Rounded -qua185 quantize -0.1 111e+1 -> 0E+1 Inexact Rounded -qua186 quantize -0.1 71e0 -> 0 Inexact Rounded -qua187 quantize -0.1 -91e-1 -> -0.1 -qua188 quantize -0.1 -.1e-2 -> -0.100 -qua189 quantize -0.1 -1e-3 -> -0.100 -qua190 quantize -0.9 4e+2 -> 0E+2 Inexact Rounded -qua191 quantize -0.9 -4e+1 -> 0E+1 Inexact Rounded -qua192 quantize -0.9 -10e+0 -> -1 Inexact Rounded -qua193 quantize -0.9 100e-1 -> -0.9 -qua194 quantize -0.9 999e-2 -> -0.90 - --- +ve exponents .. -qua201 quantize -1 1e+0 -> -1 -qua202 quantize -1 1e+1 -> 0E+1 Inexact Rounded -qua203 quantize -1 1e+2 -> 0E+2 Inexact Rounded -qua204 quantize 0 1e+0 -> 0 -qua205 quantize 0 1e+1 -> 0E+1 -qua206 quantize 0 1e+2 -> 0E+2 -qua207 quantize +1 1e+0 -> 1 -qua208 quantize +1 1e+1 -> 0E+1 Inexact Rounded -qua209 quantize +1 1e+2 -> 0E+2 Inexact Rounded - -qua220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded -qua221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded -qua222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded -qua223 quantize 1.04 1e+0 -> 1 Inexact Rounded -qua224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -qua225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -qua226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -qua227 quantize 1.05 1e+0 -> 1 Inexact Rounded -qua228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded -qua229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded -qua230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded -qua231 quantize 1.05 1e+0 -> 1 Inexact Rounded -qua232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded -qua233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded -qua234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded -qua235 quantize 1.06 1e+0 -> 1 Inexact Rounded - -qua240 quantize -10 1e+1 -> -1E+1 Rounded -qua241 quantize +1 1e+1 -> 0E+1 Inexact Rounded -qua242 quantize +10 1e+1 -> 1E+1 Rounded -qua243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1 -qua244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1 -qua245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1 -qua246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1 -qua247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1 -qua248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1 -qua249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1 -qua250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1 -qua251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1 --- next one tries to add 9 zeros -qua252 quantize 1E+10 1e+1 -> ? Invalid_operation -qua253 quantize 1E-10 1e+1 -> 0E+1 Inexact Rounded -qua254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded -qua255 quantize 0E-10 1e+1 -> 0E+1 -qua256 quantize -0E-10 1e+1 -> 0E+1 -qua257 quantize -0E-1 1e+1 -> 0E+1 -qua258 quantize -0 1e+1 -> 0E+1 -qua259 quantize -0E+1 1e+1 -> 0E+1 - -qua260 quantize -10 1e+2 -> 0E+2 Inexact Rounded -qua261 quantize +1 1e+2 -> 0E+2 Inexact Rounded -qua262 quantize +10 1e+2 -> 0E+2 Inexact Rounded -qua263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded -qua264 quantize 1E+2 1e+2 -> 1E+2 -qua265 quantize 1E+3 1e+2 -> 1.0E+3 -qua266 quantize 1E+4 1e+2 -> 1.00E+4 -qua267 quantize 1E+5 1e+2 -> 1.000E+5 -qua268 quantize 1E+6 1e+2 -> 1.0000E+6 -qua269 quantize 1E+7 1e+2 -> 1.00000E+7 -qua270 quantize 1E+8 1e+2 -> 1.000000E+8 -qua271 quantize 1E+9 1e+2 -> 1.0000000E+9 -qua272 quantize 1E+10 1e+2 -> 1.00000000E+10 -qua273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded -qua274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded -qua275 quantize 0E-10 1e+2 -> 0E+2 - -qua280 quantize -10 1e+3 -> 0E+3 Inexact Rounded -qua281 quantize +1 1e+3 -> 0E+3 Inexact Rounded -qua282 quantize +10 1e+3 -> 0E+3 Inexact Rounded -qua283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded -qua284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded -qua285 quantize 1E+3 1e+3 -> 1E+3 -qua286 quantize 1E+4 1e+3 -> 1.0E+4 -qua287 quantize 1E+5 1e+3 -> 1.00E+5 -qua288 quantize 1E+6 1e+3 -> 1.000E+6 -qua289 quantize 1E+7 1e+3 -> 1.0000E+7 -qua290 quantize 1E+8 1e+3 -> 1.00000E+8 -qua291 quantize 1E+9 1e+3 -> 1.000000E+9 -qua292 quantize 1E+10 1e+3 -> 1.0000000E+10 -qua293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded -qua294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded -qua295 quantize 0E-10 1e+3 -> 0E+3 - --- round up from below [sign wrong in JIT compiler once] -qua300 quantize 0.0078 1e-5 -> 0.00780 -qua301 quantize 0.0078 1e-4 -> 0.0078 -qua302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded -qua303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded -qua304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded -qua305 quantize 0.0078 1e0 -> 0 Inexact Rounded -qua306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded -qua307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded - -qua310 quantize -0.0078 1e-5 -> -0.00780 -qua311 quantize -0.0078 1e-4 -> -0.0078 -qua312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded -qua313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded -qua314 quantize -0.0078 1e-1 -> 0.0 Inexact Rounded -qua315 quantize -0.0078 1e0 -> 0 Inexact Rounded -qua316 quantize -0.0078 1e+1 -> 0E+1 Inexact Rounded -qua317 quantize -0.0078 1e+2 -> 0E+2 Inexact Rounded - -qua320 quantize 0.078 1e-5 -> 0.07800 -qua321 quantize 0.078 1e-4 -> 0.0780 -qua322 quantize 0.078 1e-3 -> 0.078 -qua323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded -qua324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded -qua325 quantize 0.078 1e0 -> 0 Inexact Rounded -qua326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded -qua327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded - -qua330 quantize -0.078 1e-5 -> -0.07800 -qua331 quantize -0.078 1e-4 -> -0.0780 -qua332 quantize -0.078 1e-3 -> -0.078 -qua333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded -qua334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded -qua335 quantize -0.078 1e0 -> 0 Inexact Rounded -qua336 quantize -0.078 1e+1 -> 0E+1 Inexact Rounded -qua337 quantize -0.078 1e+2 -> 0E+2 Inexact Rounded - -qua340 quantize 0.78 1e-5 -> 0.78000 -qua341 quantize 0.78 1e-4 -> 0.7800 -qua342 quantize 0.78 1e-3 -> 0.780 -qua343 quantize 0.78 1e-2 -> 0.78 -qua344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded -qua345 quantize 0.78 1e0 -> 1 Inexact Rounded -qua346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded -qua347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded - -qua350 quantize -0.78 1e-5 -> -0.78000 -qua351 quantize -0.78 1e-4 -> -0.7800 -qua352 quantize -0.78 1e-3 -> -0.780 -qua353 quantize -0.78 1e-2 -> -0.78 -qua354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded -qua355 quantize -0.78 1e0 -> -1 Inexact Rounded -qua356 quantize -0.78 1e+1 -> 0E+1 Inexact Rounded -qua357 quantize -0.78 1e+2 -> 0E+2 Inexact Rounded - -qua360 quantize 7.8 1e-5 -> 7.80000 -qua361 quantize 7.8 1e-4 -> 7.8000 -qua362 quantize 7.8 1e-3 -> 7.800 -qua363 quantize 7.8 1e-2 -> 7.80 -qua364 quantize 7.8 1e-1 -> 7.8 -qua365 quantize 7.8 1e0 -> 8 Inexact Rounded -qua366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded -qua367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded -qua368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded - -qua370 quantize -7.8 1e-5 -> -7.80000 -qua371 quantize -7.8 1e-4 -> -7.8000 -qua372 quantize -7.8 1e-3 -> -7.800 -qua373 quantize -7.8 1e-2 -> -7.80 -qua374 quantize -7.8 1e-1 -> -7.8 -qua375 quantize -7.8 1e0 -> -8 Inexact Rounded -qua376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded -qua377 quantize -7.8 1e+2 -> 0E+2 Inexact Rounded -qua378 quantize -7.8 1e+3 -> 0E+3 Inexact Rounded - --- some individuals -precision: 9 -qua380 quantize 352364.506 1e-2 -> 352364.51 Inexact Rounded -qua381 quantize 3523645.06 1e-2 -> 3523645.06 -qua382 quantize 35236450.6 1e-2 -> ? Invalid_operation -qua383 quantize 352364506 1e-2 -> ? Invalid_operation -qua384 quantize -352364.506 1e-2 -> -352364.51 Inexact Rounded -qua385 quantize -3523645.06 1e-2 -> -3523645.06 -qua386 quantize -35236450.6 1e-2 -> ? Invalid_operation -qua387 quantize -352364506 1e-2 -> ? Invalid_operation - -rounding: down -qua389 quantize 35236450.6 1e-2 -> ? Invalid_operation --- ? should that one instead have been: --- qua389 quantize 35236450.6 1e-2 -> ? Invalid_operation -rounding: half_up - --- and a few more from e-mail discussions -precision: 7 -qua391 quantize 12.34567 1e-3 -> 12.346 Inexact Rounded -qua392 quantize 123.4567 1e-3 -> 123.457 Inexact Rounded -qua393 quantize 1234.567 1e-3 -> 1234.567 -qua394 quantize 12345.67 1e-3 -> ? Invalid_operation -qua395 quantize 123456.7 1e-3 -> ? Invalid_operation -qua396 quantize 1234567. 1e-3 -> ? Invalid_operation - --- some 9999 round-up cases -precision: 9 -qua400 quantize 9.999 1e-5 -> 9.99900 -qua401 quantize 9.999 1e-4 -> 9.9990 -qua402 quantize 9.999 1e-3 -> 9.999 -qua403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded -qua404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded -qua405 quantize 9.999 1e0 -> 10 Inexact Rounded -qua406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded -qua407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded - -qua410 quantize 0.999 1e-5 -> 0.99900 -qua411 quantize 0.999 1e-4 -> 0.9990 -qua412 quantize 0.999 1e-3 -> 0.999 -qua413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded -qua414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded -qua415 quantize 0.999 1e0 -> 1 Inexact Rounded -qua416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded - -qua420 quantize 0.0999 1e-5 -> 0.09990 -qua421 quantize 0.0999 1e-4 -> 0.0999 -qua422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded -qua423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded -qua424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded -qua425 quantize 0.0999 1e0 -> 0 Inexact Rounded -qua426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded - -qua430 quantize 0.00999 1e-5 -> 0.00999 -qua431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded -qua432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded -qua433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded -qua434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded -qua435 quantize 0.00999 1e0 -> 0 Inexact Rounded -qua436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded - -qua440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded -qua441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded -qua442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded -qua443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded -qua444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded -qua445 quantize 0.000999 1e0 -> 0 Inexact Rounded -qua446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded - -precision: 8 -qua449 quantize 9.999E-15 1e-23 -> ? Invalid_operation -qua450 quantize 9.999E-15 1e-22 -> 9.9990000E-15 -qua451 quantize 9.999E-15 1e-21 -> 9.999000E-15 -qua452 quantize 9.999E-15 1e-20 -> 9.99900E-15 -qua453 quantize 9.999E-15 1e-19 -> 9.9990E-15 -qua454 quantize 9.999E-15 1e-18 -> 9.999E-15 -qua455 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded -qua456 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded -qua457 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded -qua458 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded -qua459 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded -qua460 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded -qua461 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded -qua462 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded -qua463 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded -qua464 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded -qua465 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded -qua466 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded -qua467 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded -qua468 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded -qua469 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded -qua470 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded -qua471 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded -qua472 quantize 9.999E-15 1e0 -> 0 Inexact Rounded -qua473 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded - --- long operand checks [rhs checks removed] -maxexponent: 999 -minexponent: -999 -precision: 9 -qua481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -qua482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -qua483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -qua484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded Lost_digits -qua485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded Lost_digits -qua486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded Lost_digits --- a potential double-round [seen in subset] -qua487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded Lost_digits -qua488 quantize 1234.987647 1e-4 -> 1234.9877 Inexact Rounded Lost_digits - -precision: 15 -qua491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded -qua492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded -qua493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded -qua494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded -qua495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded -qua496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded -qua497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded -qua498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded - --- Zeros -qua500 quantize 0 1e1 -> 0E+1 -qua501 quantize 0 1e0 -> 0 -qua502 quantize 0 1e-1 -> 0.0 -qua503 quantize 0.0 1e-1 -> 0.0 -qua504 quantize 0.0 1e0 -> 0 -qua505 quantize 0.0 1e+1 -> 0E+1 -qua506 quantize 0E+1 1e-1 -> 0.0 -qua507 quantize 0E+1 1e0 -> 0 -qua508 quantize 0E+1 1e+1 -> 0E+1 -qua509 quantize -0 1e1 -> 0E+1 -qua510 quantize -0 1e0 -> 0 -qua511 quantize -0 1e-1 -> 0.0 -qua512 quantize -0.0 1e-1 -> 0.0 -qua513 quantize -0.0 1e0 -> 0 -qua514 quantize -0.0 1e+1 -> 0E+1 -qua515 quantize -0E+1 1e-1 -> 0.0 -qua516 quantize -0E+1 1e0 -> 0 -qua517 quantize -0E+1 1e+1 -> 0E+1 - --- Suspicious RHS values -maxexponent: 999999999 -minexponent: -999999999 -precision: 15 -qua520 quantize 1.234 1e999999000 -> 0E+999999000 Inexact Rounded -qua521 quantize 123.456 1e999999000 -> 0E+999999000 Inexact Rounded -qua522 quantize 1.234 1e999999999 -> 0E+999999999 Inexact Rounded -qua523 quantize 123.456 1e999999999 -> 0E+999999999 Inexact Rounded -qua524 quantize 123.456 1e1000000000 -> ? Invalid_operation -qua525 quantize 123.456 1e12345678903 -> ? Invalid_operation --- next four are "won't fit" overflows -qua526 quantize 1.234 1e-999999000 -> ? Invalid_operation -qua527 quantize 123.456 1e-999999000 -> ? Invalid_operation -qua528 quantize 1.234 1e-999999999 -> ? Invalid_operation -qua529 quantize 123.456 1e-999999999 -> ? Invalid_operation --- next two input-round rhs to 0 -qua530 quantize 123.456 1e-1000000014 -> 123 Inexact Rounded -qua531 quantize 123.456 1e-12345678903 -> 123 Inexact Rounded - -maxexponent: 999 -minexponent: -999 -precision: 15 -qua532 quantize 1.234E+999 1e999 -> 1E+999 Inexact Rounded -qua533 quantize 1.234E+998 1e999 -> 0E+999 Inexact Rounded -qua534 quantize 1.234 1e999 -> 0E+999 Inexact Rounded -qua535 quantize 1.234 1e1000 -> ? Invalid_operation -qua536 quantize 1.234 1e5000 -> ? Invalid_operation -qua537 quantize 0 1e-999 -> 0E-999 --- next two are "won't fit" overflows -qua538 quantize 1.234 1e-999 -> ? Invalid_operation -qua539 quantize 1.234 1e-1000 -> ? Invalid_operation -qua540 quantize 1.234 1e-5000 -> ? Invalid_operation --- [more below] - --- check bounds (lhs maybe out of range for destination, etc.) -precision: 7 -qua541 quantize 1E+999 1e+999 -> 1E+999 -qua542 quantize 1E+1000 1e+999 -> ? Invalid_operation -qua543 quantize 1E+999 1e+1000 -> ? Invalid_operation -qua544 quantize 1E-999 1e-999 -> 1E-999 -qua545 quantize 1E-1000 1e-999 -> 0E-999 Inexact Rounded -qua546 quantize 1E-999 1e-1000 -> ? Invalid_operation -qua547 quantize 1E-1005 1e-999 -> 0E-999 Inexact Rounded -qua548 quantize 1E-1006 1e-999 -> 0E-999 Inexact Rounded -qua549 quantize 1E-1007 1e-999 -> 0E-999 Inexact Rounded -qua550 quantize 1E-998 1e-1005 -> ? Invalid_operation -- won't fit -qua551 quantize 1E-999 1e-1005 -> ? Invalid_operation -qua552 quantize 1E-1000 1e-1005 -> ? Invalid_operation -qua553 quantize 1E-999 1e-1006 -> ? Invalid_operation -qua554 quantize 1E-999 1e-1007 -> ? Invalid_operation --- related subnormal rounding -qua555 quantize 1.666666E-999 1e-1005 -> ? Invalid_operation -qua556 quantize 1.666666E-1000 1e-1005 -> ? Invalid_operation -qua557 quantize 1.666666E-1001 1e-1005 -> ? Invalid_operation - --- Null tests -qua900 quantize 10 # -> ? Invalid_operation -qua901 quantize # 1e10 -> ? Invalid_operation diff --git a/qdecimal/test/tc_subset/randombound320.decTest b/qdecimal/test/tc_subset/randombound320.decTest deleted file mode 100644 index 4fd76de..0000000 --- a/qdecimal/test/tc_subset/randombound320.decTest +++ /dev/null @@ -1,2443 +0,0 @@ ------------------------------------------------------------------------- --- randomBound320.decTest -- decimal testcases -- boundaries (simpl.) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- These testcases test calculations at precisions 31, 32, and 33, to --- exercise the boundaries around 2**5 - --- randomly generated testcases [26 Sep 2001] -extended: 0 -precision: 31 -rounding: half_up -maxExponent: 9999 -minexponent: -9999 - -addr001 add 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 2.189320103965343717049307148600E+799 Inexact Rounded -comr001 compare 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> -1 -divr001 divide 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 2.262681764507965005284080800438E-787 Inexact Rounded -dvir001 divideint 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 0 -mulr001 multiply 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 1.084531091568672041923151632066E+812 Inexact Rounded -powr001 power 4953734675913.065314738743322579 2 -> 24539487239343522246155890.99495 Inexact Rounded -remr001 remainder 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> 4953734675913.065314738743322579 -subr001 subtract 4953734675913.065314738743322579 0218.932010396534371704930714860E+797 -> -2.189320103965343717049307148600E+799 Inexact Rounded -addr002 add 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> -7.886453204712287484430980636798E+944 Inexact Rounded -comr002 compare 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> 1 -divr002 divide 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> -1.222562801441069667849402782716E-1785 Inexact Rounded -dvir002 divideint 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> 0 -mulr002 multiply 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> -7.603869223099928141659831589905E+104 Inexact Rounded -powr002 power 9641.684323386955881595490347910E-844 -8 -> 1.338988152067180337738955757587E+6720 Inexact Rounded -remr002 remainder 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> 9.641684323386955881595490347910E-841 -subr002 subtract 9641.684323386955881595490347910E-844 -78864532047.12287484430980636798E+934 -> 7.886453204712287484430980636798E+944 Inexact Rounded -addr003 add -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -1.028048571628326871054964307774E+529 Inexact Rounded -comr003 compare -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -1 -divr003 divide -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -2.089529249946971482861843692465E+515 Inexact Rounded -dvir003 divideint -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> ? Division_impossible -mulr003 multiply -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -5.057999861231255549283737861207E+542 Inexact Rounded -powr003 power -1.028048571628326871054964307774E+529 5 -> -1.148333858253704284232780819739E+2645 Inexact Rounded -remr003 remainder -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> ? Division_impossible -subr003 subtract -1.028048571628326871054964307774E+529 49200008645699.35577937582714739 -> -1.028048571628326871054964307774E+529 Inexact Rounded -addr004 add 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 84158050139.12535935915094076662 Inexact Rounded -comr004 compare 479084.8561808930525417735205519 084157571054.2691784660983989931 -> -1 -divr004 divide 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 0.000005692712493709617905493710207969 Inexact Rounded -dvir004 divideint 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 0 -mulr004 multiply 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 40318617825067837.47317700523687 Inexact Rounded -powr004 power 479084.8561808930525417735205519 8 -> 2.775233598021235973545933045837E+45 Inexact Rounded -remr004 remainder 479084.8561808930525417735205519 084157571054.2691784660983989931 -> 479084.8561808930525417735205519 -subr004 subtract 479084.8561808930525417735205519 084157571054.2691784660983989931 -> -84157091969.41299757304585721958 Inexact Rounded -addr005 add -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -363753960.6547166697980414728370 Inexact Rounded -comr005 compare -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -1 -divr005 divide -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> 114672.606433742016709629529089 Inexact Rounded -dvir005 divideint -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> 114672 -mulr005 multiply -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> 1153846941331.188583292239230818 Inexact Rounded -powr005 power -0363750788.573782205664349562931 -3172 -> ? Underflow Subnormal Inexact Rounded -remr005 remainder -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -1923.656911066945656824381431488 -subr005 subtract -0363750788.573782205664349562931 -3172.080934464133691909905980096 -> -363747616.4928477415306576530250 Inexact Rounded -addr006 add 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 1381026551423669919010191878366 Inexact Rounded -comr006 compare 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 1 -divr006 divide 1381026551423669919010191878449 -82.66614775445371254999357800739 -> -16706071214613552377376639557.9 Inexact Rounded -dvir006 divideint 1381026551423669919010191878449 -82.66614775445371254999357800739 -> -16706071214613552377376639557 -mulr006 multiply 1381026551423669919010191878449 -82.66614775445371254999357800739 -> -1.141641449528127656560770057228E+32 Inexact Rounded -powr006 power 1381026551423669919010191878449 -83 -> 2.307977908106564299925193011052E-2502 Inexact Rounded -remr006 remainder 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 74.22115953553602036042168767377 -subr006 subtract 1381026551423669919010191878449 -82.66614775445371254999357800739 -> 1381026551423669919010191878532 Inexact Rounded -addr007 add 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> -4410583128274.803057056669103177 Inexact Rounded -comr007 compare 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> 1 -divr007 divide 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> -1.049073743992404570569003129346E-9 Inexact Rounded -dvir007 divideint 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> 0 -mulr007 multiply 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> -20407887067124025.31576887565113 Inexact Rounded -powr007 power 4627.026960423072127953556635585 -4 -> 2.181684167222334934221407781701E-15 Inexact Rounded -remr007 remainder 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> 4627.026960423072127953556635585 -subr007 subtract 4627.026960423072127953556635585 -4410583132901.830017479741231131 -> 4410583137528.856977902813359085 Inexact Rounded -addr008 add 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -8684111695095849922187690616727 Inexact Rounded -comr008 compare 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 1 -divr008 divide 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -8.677177026223536475531592432118E-21 Inexact Rounded -dvir008 divideint 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 0 -mulr008 multiply 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -6.543788575292743281456830701127E+41 Inexact Rounded -powr008 power 75353574493.84484153484918212042 -9 -> 1.276630670287906925570645490707E-98 Inexact Rounded -remr008 remainder 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 75353574493.84484153484918212042 -subr008 subtract 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 8684111695095849922338397765715 Inexact Rounded -addr009 add 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 6907061.073440802792400108035410 Inexact Rounded -comr009 compare 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 1 -divr009 divide 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 2417586.646146283856436864121104 Inexact Rounded -dvir009 divideint 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 2417586 -mulr009 multiply 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 19733502.94653326211623698034717 Inexact Rounded -powr009 power 6907058.216435355874729592373011 3 -> 329518156646369505494.897135324 Inexact Rounded -remr009 remainder 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 1.846043452483451396449034189630 -subr009 subtract 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 6907055.359429908957059076710612 Inexact Rounded -addr010 add -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -38949530427253.24030680468677190 Inexact Rounded -comr010 compare -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -1 -divr010 divide -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -5.469149031100999700489221122509E+996 Inexact Rounded -dvir010 divideint -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> ? Division_impossible -mulr010 multiply -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -2.773861000818483769292240109417E-970 Inexact Rounded -powr010 power -38949530427253.24030680468677190 7 -> -1.359926959823071332599817363877E+95 Inexact Rounded -remr010 remainder -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> ? Division_impossible -subr010 subtract -38949530427253.24030680468677190 712168021.1265384466442576619064E-992 -> -38949530427253.24030680468677190 Inexact Rounded -addr011 add -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -1270911.495819550779479954702829 Inexact Rounded -comr011 compare -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -1 -divr011 divide -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> 1.258023449218665608349145394069 Inexact Rounded -dvir011 divideint -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> 1 -mulr011 multiply -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> 398531319444.8556128729086112205 Inexact Rounded -powr011 power -0708069.025667471996378081482549 -562842 -> ? Underflow Subnormal Inexact Rounded -remr011 remainder -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -145226.5555153932132762082622686 -subr011 subtract -0708069.025667471996378081482549 -562842.4701520787831018732202804 -> -145226.5555153932132762082622686 -addr012 add 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> -4.318314692189767383476104084575E+224 Inexact Rounded -comr012 compare 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> 1 -divr012 divide 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> -9.390439409913307906923909630247E-219 Inexact Rounded -dvir012 divideint 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> 0 -mulr012 multiply 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> -1.751114283680833039197637874453E+231 Inexact Rounded -powr012 power 4055087.246994644709729942673976 -4 -> 3.698274893849241116195795515302E-27 Inexact Rounded -remr012 remainder 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> 4055087.246994644709729942673976 -subr012 subtract 4055087.246994644709729942673976 -43183146921897.67383476104084575E+211 -> 4.318314692189767383476104084575E+224 Inexact Rounded -addr013 add 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> -815.9047305921862348263521876034 Inexact Rounded -comr013 compare 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> 1 -divr013 divide 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> -5.518899111238367862234798433551E-503 Inexact Rounded -dvir013 divideint 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> 0 -mulr013 multiply 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> -3.673934060071516156604453756541E-497 Inexact Rounded -powr013 power 4502895892520.396581348110906909E-512 -816 -> ? Overflow Inexact Rounded -remr013 remainder 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> 4.502895892520396581348110906909E-500 -subr013 subtract 4502895892520.396581348110906909E-512 -815.9047305921862348263521876034 -> 815.9047305921862348263521876034 Inexact Rounded -addr014 add 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 465.6005787733070743275007572563 Inexact Rounded -comr014 compare 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 1 -divr014 divide 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> -225.7594380101027705997496045999 Inexact Rounded -dvir014 divideint 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> -225 -mulr014 multiply 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> -968.8065431314121523074875069807 Inexact Rounded -powr014 power 467.6721295072628100260239179865 -2 -> 0.000004572113694193221810609836080931 Inexact Rounded -remr014 remainder 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 1.57321436722227785831275368025 -subr014 subtract 467.6721295072628100260239179865 -02.07155073395573569852316073025 -> 469.7436802412185457245470787168 Inexact Rounded -addr015 add 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> -8677147.586389401682712180146855 Inexact Rounded -comr015 compare 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> 1 -divr015 divide 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> -2.485604044230163799604243529005E-578 Inexact Rounded -dvir015 divideint 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> 0 -mulr015 multiply 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> -1.871483124723381986272837942577E-564 Inexact Rounded -powr015 power 2.156795313311150143949997552501E-571 -8677148 -> ? Overflow Inexact Rounded -remr015 remainder 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> 2.156795313311150143949997552501E-571 -subr015 subtract 2.156795313311150143949997552501E-571 -8677147.586389401682712180146855 -> 8677147.586389401682712180146855 Inexact Rounded -addr016 add -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> -694070746.6469215276170700777068 Inexact Rounded -comr016 compare -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 1 -divr016 divide -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 0.001406664546942092941961075608769 Inexact Rounded -dvir016 divideint -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 0 -mulr016 multiply -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 675736017210596.9899587749991363 Inexact Rounded -powr016 power -974953.2801637208368002585822457 -693095793 -> ? Underflow Subnormal Inexact Rounded -remr016 remainder -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> -974953.2801637208368002585822457 -subr016 subtract -974953.2801637208368002585822457 -693095793.3667578067802698191246 -> 692120840.0865940859434695605424 Inexact Rounded -addr017 add -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -7634680140009571846155654339781 Inexact Rounded -comr017 compare -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -1 -divr017 divide -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -2.536749610869326753741024659948E+508 Inexact Rounded -dvir017 divideint -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> ? Division_impossible -mulr017 multiply -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -2.297756963892134373657544025107E-447 Inexact Rounded -powr017 power -7634680140009571846155654339781 3 -> -4.450128382072157170207584847831E+92 Inexact Rounded -remr017 remainder -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> ? Division_impossible -subr017 subtract -7634680140009571846155654339781 3009630949502.035852433434214413E-490 -> -7634680140009571846155654339781 Inexact Rounded -addr018 add 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 74177.21073338090843145838835480 Inexact Rounded -comr018 compare 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> -1 -divr018 divide 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 3.535762799545274329358292065343E-624 Inexact Rounded -dvir018 divideint 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 0 -mulr018 multiply 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 1.945468124372395349192665031675E-614 Inexact Rounded -powr018 power 262273.0222851186523650889896428E-624 74177 -> ? Underflow Subnormal Inexact Rounded -remr018 remainder 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> 2.622730222851186523650889896428E-619 -subr018 subtract 262273.0222851186523650889896428E-624 74177.21073338090843145838835480 -> -74177.21073338090843145838835480 Inexact Rounded -addr019 add -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -8036052748815903177624783259089 Inexact Rounded -comr019 compare -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -1 -divr019 divide -8036052748815903177624716581732 -066677357.4438809548850966167573 -> 120521464210387351732732.6271469 Inexact Rounded -dvir019 divideint -8036052748815903177624716581732 -066677357.4438809548850966167573 -> 120521464210387351732732 -mulr019 multiply -8036052748815903177624716581732 -066677357.4438809548850966167573 -> 5.358227615706800711033262124598E+38 Inexact Rounded -powr019 power -8036052748815903177624716581732 -66677357 -> ? Underflow Subnormal Inexact Rounded -remr019 remainder -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -41816499.5048993028288978900564 -subr019 subtract -8036052748815903177624716581732 -066677357.4438809548850966167573 -> -8036052748815903177624649904375 Inexact Rounded -addr020 add 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> 8.834295928031498103637713570166E+770 Inexact Rounded -comr020 compare 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> 1 -divr020 divide 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> -2.008754492913739633208672455025E+766 Inexact Rounded -dvir020 divideint 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> ? Division_impossible -mulr020 multiply 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> -3.885232606540600490321438191516E+775 Inexact Rounded -powr020 power 883429.5928031498103637713570166E+765 -43979 -> ? Underflow Subnormal Inexact Rounded -remr020 remainder 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> ? Division_impossible -subr020 subtract 883429.5928031498103637713570166E+765 -43978.97283712939198111043032726 -> 8.834295928031498103637713570166E+770 Inexact Rounded -addr021 add 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> -5588536565419.943265474528122494 Inexact Rounded -comr021 compare 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> 1 -divr021 divide 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> -0.004416506865458415275182120038399 Inexact Rounded -dvir021 divideint 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> 0 -mulr021 multiply 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> -139161701088530765925120.8408852 Inexact Rounded -powr021 power 24791301060.37938360567775506973 -6 -> 4.307289712375673028996126249656E-63 Inexact Rounded -remr021 remainder 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> 24791301060.37938360567775506973 -subr021 subtract 24791301060.37938360567775506973 -5613327866480.322649080205877564 -> 5638119167540.702032685883632634 Inexact Rounded -addr022 add -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -930712184.3335760878938383398937 Inexact Rounded -comr022 compare -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -1 -divr022 divide -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> 1257062.290270583507131602958799 Inexact Rounded -dvir022 divideint -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> 1257062 -mulr022 multiply -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> 689085814282.3968746911100154133 Inexact Rounded -powr022 power -930711443.9474781586162910776139 -740 -> 1.193603394165051899997226995178E-6637 Inexact Rounded -remr022 remainder -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -214.9123046664996750639167712140 -subr022 subtract -930711443.9474781586162910776139 -740.3860979292775472622798348030 -> -930710703.5613802293387438153341 Inexact Rounded -addr023 add 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 2358276428979.423170691006252127 Inexact Rounded -comr023 compare 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 1 -divr023 divide 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 11001528525.07089502152736489473 Inexact Rounded -dvir023 divideint 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 11001528525 -mulr023 multiply 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 505517728904226.6233443209659001 Inexact Rounded -powr023 power 2358276428765.064191082773385539 214 -> 5.435856480782850080741276939256E+2647 Inexact Rounded -remr023 remainder 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 15.1969844739096415643561521775 -subr023 subtract 2358276428765.064191082773385539 214.3589796082328665878602304469 -> 2358276428550.705211474540518951 Inexact Rounded -addr024 add -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -3.868744449795653651638308926987E+750 Inexact Rounded -comr024 compare -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -1 -divr024 divide -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -4.677779235812959233092739433453E+746 Inexact Rounded -dvir024 divideint -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> ? Division_impossible -mulr024 multiply -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -3.199634455434813294426505526063E+754 Inexact Rounded -powr024 power -3.868744449795653651638308926987E+750 8270 -> ? Overflow Inexact Rounded -remr024 remainder -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> ? Division_impossible -subr024 subtract -3.868744449795653651638308926987E+750 8270.472492965559872384018329418 -> -3.868744449795653651638308926987E+750 Inexact Rounded -addr025 add 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> -567195652586.2454217069003186487 Inexact Rounded -comr025 compare 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> 1 -divr025 divide 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> -2.475725421131866851190640203633E-451 Inexact Rounded -dvir025 divideint 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> 0 -mulr025 multiply 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> -7.964678739652657498503799559950E-428 Inexact Rounded -powr025 power 140422069.5863246490180206814374E-447 -6 -> 1.304330899731988395473578425854E+2633 Inexact Rounded -remr025 remainder 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> 1.404220695863246490180206814374E-439 -subr025 subtract 140422069.5863246490180206814374E-447 -567195652586.2454217069003186487 -> 567195652586.2454217069003186487 Inexact Rounded -addr026 add 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> -9.452601935038035195726041512900E+467 Inexact Rounded -comr026 compare 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> 1 -divr026 divide 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> -8.032613347885465805613265604973E-305 Inexact Rounded -dvir026 divideint 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> 0 -mulr026 multiply 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> -7.177275242712723733041569606882E+631 Inexact Rounded -powr026 power 75929096475.63450425339472559646E+153 -9 -> 1.192136299657177324051477375561E-1475 Inexact Rounded -remr026 remainder 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> 7.592909647563450425339472559646E+163 -subr026 subtract 75929096475.63450425339472559646E+153 -0945260193.503803519572604151290E+459 -> 9.452601935038035195726041512900E+467 Inexact Rounded -addr027 add 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> -5.641317823202274083982487558514E+637 Inexact Rounded -comr027 compare 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> 1 -divr027 divide 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> -1.118943925332481944765809682502E-628 Inexact Rounded -dvir027 divideint 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> 0 -mulr027 multiply 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> -3.560979378308906043783023726787E+647 Inexact Rounded -powr027 power 6312318309.142044953357460463732 -6 -> 1.580762611512787720076533747265E-59 Inexact Rounded -remr027 remainder 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> 6312318309.142044953357460463732 -subr027 subtract 6312318309.142044953357460463732 -5641317823.202274083982487558514E+628 -> 5.641317823202274083982487558514E+637 Inexact Rounded -addr028 add 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 93793652428100.52105928239469937 Inexact Rounded -comr028 compare 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 1 -divr028 divide 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 1.022544815694674972559924997256E+723 Inexact Rounded -dvir028 divideint 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> ? Division_impossible -mulr028 multiply 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 8.603289656137796526769786965341E-696 Inexact Rounded -powr028 power 93793652428100.52105928239469937 9 -> 5.617732206663136654187263964365E+125 Inexact Rounded -remr028 remainder 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> ? Division_impossible -subr028 subtract 93793652428100.52105928239469937 917.2571313109730433369594936416E-712 -> 93793652428100.52105928239469937 Inexact Rounded -addr029 add 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337115 Inexact Rounded -comr029 compare 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 1 -divr029 divide 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> -4103968.106336710126241266685434 Inexact Rounded -dvir029 divideint 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> -4103968 -mulr029 multiply 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> -2362732023235112.375960528304974 Inexact Rounded -powr029 power 98471198160.56524417578665886060 -23994 -> ? Underflow Subnormal Inexact Rounded -remr029 remainder 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 2551.45824316125588493249246784 -subr029 subtract 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471222154.70837811518409435005 Inexact Rounded -addr030 add 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 329324100.9201858301191681987940 Inexact Rounded -comr030 compare 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 1 -divr030 divide 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> -134358.6406732917173739187421978 Inexact Rounded -dvir030 divideint 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> -134358 -mulr030 multiply 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> -807212527028.0005401736893474430 Inexact Rounded -powr030 power 329326552.0208398002250836592043 -2451 -> ? Underflow Subnormal Inexact Rounded -remr030 remainder 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 1570.35472430963565384668749322 -subr030 subtract 329326552.0208398002250836592043 -02451.10065397010591546041034041 -> 329329003.1214937703309991196146 Inexact Rounded -addr031 add -92980.68431371090354435763218439 -2282178507046019721925800997065 -> -2282178507046019721925801090046 Inexact Rounded -comr031 compare -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 1 -divr031 divide -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 4.074207342968196863070496994457E-26 Inexact Rounded -dvir031 divideint -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 0 -mulr031 multiply -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 2.121985193111820147170707717938E+35 Inexact Rounded -powr031 power -92980.68431371090354435763218439 -2 -> 1.156683455371909793870207184337E-10 Inexact Rounded -remr031 remainder -92980.68431371090354435763218439 -2282178507046019721925800997065 -> -92980.68431371090354435763218439 -subr031 subtract -92980.68431371090354435763218439 -2282178507046019721925800997065 -> 2282178507046019721925800904084 Inexact Rounded -addr032 add 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.213581776227858606259822256987E+748 Inexact Rounded -comr032 compare 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1 -divr032 divide 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.233860374149945561886955398724E+1648 Inexact Rounded -dvir032 divideint 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> ? Division_impossible -mulr032 multiply 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.193636458750059340733188876015E-152 Inexact Rounded -powr032 power 12135817762.27858606259822256987E+738 10 -> 6.929317520577437720457517499936E+7480 Inexact Rounded -remr032 remainder 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> ? Division_impossible -subr032 subtract 12135817762.27858606259822256987E+738 98.35649167872356132249561021910E-902 -> 1.213581776227858606259822256987E+748 Inexact Rounded -addr033 add 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> -392513.2044337156627881674596002 Inexact Rounded -comr033 compare 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> 1 -divr033 divide 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> -0.00009495486002714264641177211062199 Inexact Rounded -dvir033 divideint 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> 0 -mulr033 multiply 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> -14632152.58043001234518095997140 Inexact Rounded -powr033 power 37.27457578793521166809739140081 -392550 -> ? Underflow Subnormal Inexact Rounded -remr033 remainder 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> 37.27457578793521166809739140081 -subr033 subtract 37.27457578793521166809739140081 -392550.4790095035979998355569916 -> 392587.7535852915332115036543830 Inexact Rounded -addr034 add -2787.980590304199878755265273703 7117631179305319208210387565324 -> 7117631179305319208210387562536 Inexact Rounded -comr034 compare -2787.980590304199878755265273703 7117631179305319208210387565324 -> -1 -divr034 divide -2787.980590304199878755265273703 7117631179305319208210387565324 -> -3.91700626243506309347514025087E-28 Inexact Rounded -dvir034 divideint -2787.980590304199878755265273703 7117631179305319208210387565324 -> 0 -mulr034 multiply -2787.980590304199878755265273703 7117631179305319208210387565324 -> -1.984381757684722217801410305714E+34 Inexact Rounded -powr034 power -2787.980590304199878755265273703 7 -> -1309266999233099220127139.440082 Inexact Rounded -remr034 remainder -2787.980590304199878755265273703 7117631179305319208210387565324 -> -2787.980590304199878755265273703 -subr034 subtract -2787.980590304199878755265273703 7117631179305319208210387565324 -> -7117631179305319208210387568112 Inexact Rounded -addr035 add -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> -9.890633854609434943559831911276E+977 Inexact Rounded -comr035 compare -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> -1 -divr035 divide -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> 5.098302376420396260404821158158E+968 Inexact Rounded -dvir035 divideint -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> ? Division_impossible -mulr035 multiply -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> 1.918768853302706825964087702307E+987 Inexact Rounded -powr035 power -9890633.854609434943559831911276E+971 -2 -> 1.022237362667592867768511487814E-1956 Inexact Rounded -remr035 remainder -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> ? Division_impossible -subr035 subtract -9890633.854609434943559831911276E+971 -1939985729.436827777055699361237 -> -9.890633854609434943559831911276E+977 Inexact Rounded -addr036 add 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 3927209601.042340294247970850347 Inexact Rounded -comr036 compare 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 1 -divr036 divide 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> -227.2123393091837706827708196101 Inexact Rounded -dvir036 divideint 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> -227 -mulr036 multiply 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> -68480589931920481.56020043213767 Inexact Rounded -powr036 power 3944570323.331121750661920475191 -17360722 -> ? Underflow Subnormal Inexact Rounded -remr036 remainder 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 3686363.77773114469535563568018 -subr036 subtract 3944570323.331121750661920475191 -17360722.28878145641394962484366 -> 3961931045.619903207075870100035 Inexact Rounded -addr037 add 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 1786717307.025364028452423865075 Inexact Rounded -comr037 compare 19544.14018503427029002552872707 1786697762.885178994182133839546 -> -1 -divr037 divide 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 0.00001093869404832867759234359871991 Inexact Rounded -dvir037 divideint 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 0 -mulr037 multiply 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 34919471546115.05897163496162290 Inexact Rounded -powr037 power 19544.14018503427029002552872707 2 -> 381973415.572271400929880255794 Inexact Rounded -remr037 remainder 19544.14018503427029002552872707 1786697762.885178994182133839546 -> 19544.14018503427029002552872707 -subr037 subtract 19544.14018503427029002552872707 1786697762.885178994182133839546 -> -1786678218.744993959911843814017 Inexact Rounded -addr038 add -05.75485957937617757983513662981 5564476875.989640431173694372083 -> 5564476870.234780851797516792248 Inexact Rounded -comr038 compare -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -1 -divr038 divide -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -1.034213944568271324841608825136E-9 Inexact Rounded -dvir038 divideint -05.75485957937617757983513662981 5564476875.989640431173694372083 -> 0 -mulr038 multiply -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -32022783054.00620878436398990135 Inexact Rounded -powr038 power -05.75485957937617757983513662981 6 -> 36325.23118223611421303238908472 Inexact Rounded -remr038 remainder -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -5.75485957937617757983513662981 -subr038 subtract -05.75485957937617757983513662981 5564476875.989640431173694372083 -> -5564476881.744500010549871951918 Inexact Rounded -addr039 add -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> 6.268877553774705678201112845462E+211 Inexact Rounded -comr039 compare -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -1 -divr039 divide -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -6.713834913211527184907421856434E-206 Inexact Rounded -dvir039 divideint -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> 0 -mulr039 multiply -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -2.638458285983158789458925170267E+218 Inexact Rounded -powr039 power -4208820.898718069194008526302746 6 -> 5.558564783291260359142223337994E+39 Inexact Rounded -remr039 remainder -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -4208820.898718069194008526302746 -subr039 subtract -4208820.898718069194008526302746 626887.7553774705678201112845462E+206 -> -6.268877553774705678201112845462E+211 Inexact Rounded -addr040 add -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -7.007719547806630896979085821269E+562 Inexact Rounded -comr040 compare -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -1 -divr040 divide -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -1.521048673498997627360230078306E+559 Inexact Rounded -dvir040 divideint -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> ? Division_impossible -mulr040 multiply -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -3.228570795682925509478191397878E+566 Inexact Rounded -powr040 power -70077195478066.30896979085821269E+549 4607 -> ? Overflow Inexact Rounded -remr040 remainder -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> ? Division_impossible -subr040 subtract -70077195478066.30896979085821269E+549 4607.163248554155483681430013073 -> -7.007719547806630896979085821269E+562 Inexact Rounded -addr041 add -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> -68569709.81053713470972973953995 Inexact Rounded -comr041 compare -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 1 -divr041 divide -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 0.006501728568934042143913111768557 Inexact Rounded -dvir041 divideint -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 0 -mulr041 multiply -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 30176190149574.84386395947593970 Inexact Rounded -powr041 power -442941.7541811527940918244383454 -68126768 -> ? Underflow Subnormal Inexact Rounded -remr041 remainder -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> -442941.7541811527940918244383454 -subr041 subtract -442941.7541811527940918244383454 -068126768.0563559819156379151016 -> 67683826.30217482912154609066325 Inexact Rounded -addr042 add -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -40726479019.92472703575370611619 Inexact Rounded -comr042 compare -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -1 -divr042 divide -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -135895.4741975690872548233111888 Inexact Rounded -dvir042 divideint -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -135895 -mulr042 multiply -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -12205487445696816.02175665622242 Inexact Rounded -powr042 power -040726778711.8677615616711676159 299692 -> ? Overflow Inexact Rounded -remr042 remainder -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -142113.1908620082406650022240180 -subr042 subtract -040726778711.8677615616711676159 299691.9430345259174614997064916 -> -40727078403.81079608758862911561 Inexact Rounded -addr043 add -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -1934197516.927615489663964685661 Inexact Rounded -comr043 compare -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -1 -divr043 divide -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -507563287.7312566071537233697473 Inexact Rounded -dvir043 divideint -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -507563287 -mulr043 multiply -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -7370745953.579062985130438309023 Inexact Rounded -powr043 power -1934197520.738366912179143085955 4 -> 1.399597922275400947497855539475E+37 Inexact Rounded -remr043 remainder -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -2.786637155934674312936704177047 -subr043 subtract -1934197520.738366912179143085955 3.810751422515178400293693371519 -> -1934197524.549118334694321486249 Inexact Rounded -addr044 add 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> -303284009454.0558644298079356347 Inexact Rounded -comr044 compare 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> 1 -divr044 divide 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> -0.000002681514904267770294213381485108 Inexact Rounded -dvir044 divideint 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> 0 -mulr044 multiply 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> -246650255735392080.1357404280431 Inexact Rounded -powr044 power 813262.7723533833038829559646830 -3 -> 1.859119568310997605545914895133E-18 Inexact Rounded -remr044 remainder 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> 813262.7723533833038829559646830 -subr044 subtract 813262.7723533833038829559646830 -303284822716.8282178131118185907 -> 303285635979.6005711964157015467 Inexact Rounded -addr045 add 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 36105954884.94621434979365589311 Inexact Rounded -comr045 compare 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 1 -divr045 divide 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 4.842808328786805821411674302686E+953 Inexact Rounded -dvir045 divideint 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> ? Division_impossible -mulr045 multiply 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 2.691909094160561673391352743869E-933 Inexact Rounded -powr045 power 36105954884.94621434979365589311 7 -> 7.999297449713301719582732447386E+73 Inexact Rounded -remr045 remainder 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> ? Division_impossible -subr045 subtract 36105954884.94621434979365589311 745558205.7692397481313005659523E-952 -> 36105954884.94621434979365589311 Inexact Rounded -addr046 add -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -48556402282.66602309736499370002 -comr046 compare -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -1 -divr046 divide -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -2.799666682029089956269018541649 Inexact Rounded -dvir046 divideint -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -2 -mulr046 multiply -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -2038051610593641947717.268652175 Inexact Rounded -powr046 power -075537177538.1814516621962185490 3 -> -4.310049518987988084595264617727E+32 Inexact Rounded -remr046 remainder -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -21575627027.15059453253376885104 -subr046 subtract -075537177538.1814516621962185490 26980775255.51542856483122484898 -> -102517952793.6968802270274433980 Inexact Rounded -addr047 add -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> -4223765.415319564898840040697647 Inexact Rounded -comr047 compare -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> -1 -divr047 divide -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> 1.630425855588347356570076909053E+191 Inexact Rounded -dvir047 divideint -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> ? Division_impossible -mulr047 multiply -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> 1.094204573762229308798604845395E-178 Inexact Rounded -powr047 power -4223765.415319564898840040697647 -3 -> -1.327090775863616939309569791138E-20 Inexact Rounded -remr047 remainder -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> ? Division_impossible -subr047 subtract -4223765.415319564898840040697647 -2590590305497454185455459149918E-215 -> -4223765.415319564898840040697647 Inexact Rounded -addr048 add -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> -7.877324314273694312164407794939E+270 Inexact Rounded -comr048 compare -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 1 -divr048 divide -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 8.212057140774706874666307246628E-268 Inexact Rounded -dvir048 divideint -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 0 -mulr048 multiply -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 5.095765270616284455922747530676E+274 Inexact Rounded -powr048 power -6468.903738522951259063099946195 -8 -> 3.261027724982089298030362367616E-31 Inexact Rounded -remr048 remainder -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> -6468.903738522951259063099946195 -subr048 subtract -6468.903738522951259063099946195 -7877.324314273694312164407794939E+267 -> 7.877324314273694312164407794939E+270 Inexact Rounded -addr049 add -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> 1650.198961256061165362319471264 Inexact Rounded -comr049 compare -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -1 -divr049 divide -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -5.797616777301250711985729776957E-200 Inexact Rounded -dvir049 divideint -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> 0 -mulr049 multiply -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -1.578781845938805737527304303976E-193 Inexact Rounded -powr049 power -9567221.183663236817239254783372E-203 1650 -> ? Underflow Subnormal Inexact Rounded -remr049 remainder -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -9.567221183663236817239254783372E-197 -subr049 subtract -9567221.183663236817239254783372E-203 1650.198961256061165362319471264 -> -1650.198961256061165362319471264 Inexact Rounded -addr050 add 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 2.679017380163975186972720427030E+572 Inexact Rounded -comr050 compare 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> -1 -divr050 divide 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 3.289379965960065573444140749635E-988 Inexact Rounded -dvir050 divideint 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 0 -mulr050 multiply 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 2.360832119793036398127652187732E+157 Inexact Rounded -powr050 power 8812306098770.200752139142033569E-428 3 -> 6.843349527476967274129043949969E-1246 Inexact Rounded -remr050 remainder 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> 8.812306098770200752139142033569E-416 -subr050 subtract 8812306098770.200752139142033569E-428 26790.17380163975186972720427030E+568 -> -2.679017380163975186972720427030E+572 Inexact Rounded -addr051 add 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> -706127147059.6372708438205200619 Inexact Rounded -comr051 compare 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> 1 -divr051 divide 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> -0.0001134341690057060105325397863996 Inexact Rounded -dvir051 divideint 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> 0 -mulr051 multiply 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> -56572874185674332398.36004114372 Inexact Rounded -powr051 power 80108033.12724838718736922500904 -7 -> 4.723539145042336483008674060324E-56 Inexact Rounded -remr051 remainder 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> 80108033.12724838718736922500904 -subr051 subtract 80108033.12724838718736922500904 -706207255092.7645192310078892869 -> 706287363125.8917676181952585119 Inexact Rounded -addr052 add -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -37942846288.41047269183344038636 Inexact Rounded -comr052 compare -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -1 -divr052 divide -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> 6716194607.13922473503256632896 Inexact Rounded -dvir052 divideint -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> 6716194607 -mulr052 multiply -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> 214356442635.9672009449140933366 Inexact Rounded -powr052 power -37942846282.76101663789059003505 -6 -> 3.351355986382646046773008753885E-64 Inexact Rounded -remr052 remainder -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -0.786544022188321089603127981421 -subr052 subtract -37942846282.76101663789059003505 -5.649456053942850351313869983197 -> -37942846277.11156058394773968374 Inexact Rounded -addr053 add 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 92659632115305.13735437728445541 Inexact Rounded -comr053 compare 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 1 -divr053 divide 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 1.429174267919135710410529211791E+146 Inexact Rounded -dvir053 divideint 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> ? Division_impossible -mulr053 multiply 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 6.007530093754446085819255987878E-119 Inexact Rounded -powr053 power 92659632115305.13735437728445541 6 -> 6.329121451953461546696051563323E+83 Inexact Rounded -remr053 remainder 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> ? Division_impossible -subr053 subtract 92659632115305.13735437728445541 6483438.317862851676468094261410E-139 -> 92659632115305.13735437728445541 Inexact Rounded -addr054 add 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 569549865196.1367939656357237466 Inexact Rounded -comr054 compare 2838948.589837595494152150647194 569547026247.5469563701415715960 -> -1 -divr054 divide 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 0.000004984572755198057481907281080406 Inexact Rounded -dvir054 divideint 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 0 -mulr054 multiply 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 1616914727011669419.390959984273 Inexact Rounded -powr054 power 2838948.589837595494152150647194 6 -> 5.235343334986059753096884080673E+38 Inexact Rounded -remr054 remainder 2838948.589837595494152150647194 569547026247.5469563701415715960 -> 2838948.589837595494152150647194 -subr054 subtract 2838948.589837595494152150647194 569547026247.5469563701415715960 -> -569544187298.9571187746474194454 Inexact Rounded -addr055 add 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 5.249952045236053307941775794287E+705 Inexact Rounded -comr055 compare 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 1 -divr055 divide 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 3.302685669286670708554753139233E+675 Inexact Rounded -dvir055 divideint 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> ? Division_impossible -mulr055 multiply 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 8.345328389435009812933599889447E+735 Inexact Rounded -powr055 power 524995204523.6053307941775794287E+694 2 -> 2.756199647727821911857160230849E+1411 Inexact Rounded -remr055 remainder 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> ? Division_impossible -subr055 subtract 524995204523.6053307941775794287E+694 1589600879689517100527293028553 -> 5.249952045236053307941775794287E+705 Inexact Rounded -addr056 add -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -52461892246715.82764070853532913 Inexact Rounded -comr056 compare -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -1 -divr056 divide -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -12.23457628210057733643575143694 Inexact Rounded -dvir056 divideint -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -12 -mulr056 multiply -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -266786248710342647746063322.0544 Inexact Rounded -powr056 power -57131573677452.15449921725097290 5 -> -6.086686503752679375430019503679E+68 Inexact Rounded -remr056 remainder -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -1095396508616.232197112663247672 -subr056 subtract -57131573677452.15449921725097290 4669681430736.326858508715643769 -> -61801255108188.48135772596661667 Inexact Rounded -addr057 add 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 90794821.08377791746707352380646 Inexact Rounded -comr057 compare 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 1 -divr057 divide 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> -16594131.20365054928428313232246 Inexact Rounded -dvir057 divideint 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> -16594131 -mulr057 multiply 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> -496784099.6333617958496589124964 Inexact Rounded -powr057 power 90794826.55528018781830463383411 -5 -> 1.620669590532856523565742953997E-40 Inexact Rounded -remr057 remainder 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 1.114274442767230442307896655232 -subr057 subtract 90794826.55528018781830463383411 -5.471502270351231110027647216128 -> 90794832.02678245816953574386176 Inexact Rounded -addr058 add 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 58461733862.10202881160156091690 Inexact Rounded -comr058 compare 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 1 -divr058 divide 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> -1243.257894477021678809337875304 Inexact Rounded -dvir058 divideint 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> -1243 -mulr058 multiply 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> -2753474621708672573.249029643967 Inexact Rounded -powr058 power 58508794729.35191160840980489138 -47060867 -> ? Underflow Subnormal Inexact Rounded -remr058 remainder 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 12136737.74759517576254461832107 -subr058 subtract 58508794729.35191160840980489138 -47060867.24988279680824397447551 -> 58555855596.60179440521804886586 Inexact Rounded -addr059 add -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> 9.595418300613754556671852801667E+391 Inexact Rounded -comr059 compare -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -1 -divr059 divide -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -7.775628465932789700547872511745E-381 Inexact Rounded -dvir059 divideint -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> 0 -mulr059 multiply -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -7.159180712764549711669939947084E+403 Inexact Rounded -powr059 power -746104.0768078474426464219416332E+006 10 -> 5.345571346302582882805035996696E+118 Inexact Rounded -remr059 remainder -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -746104076807.8474426464219416332 -subr059 subtract -746104.0768078474426464219416332E+006 9595418.300613754556671852801667E+385 -> -9.595418300613754556671852801667E+391 Inexact Rounded -addr060 add 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> 5.599427632688387400403789659459E+120 Inexact Rounded -comr060 compare 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> 1 -divr060 divide 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> -6.105892851759828176655685111491E+119 Inexact Rounded -dvir060 divideint 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> ? Division_impossible -mulr060 multiply 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> -5.134972161307679939281170944556E+121 Inexact Rounded -powr060 power 55.99427632688387400403789659459E+119 -9 -> 1.848022584764384077672041056396E-1087 Inexact Rounded -remr060 remainder 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> ? Division_impossible -subr060 subtract 55.99427632688387400403789659459E+119 -9.170530450881612853998489340127 -> 5.599427632688387400403789659459E+120 Inexact Rounded -addr061 add -41214265628.83801241467317270595 1015336323798389903361978271354 -> 1015336323798389903320764005725 Inexact Rounded -comr061 compare -41214265628.83801241467317270595 1015336323798389903361978271354 -> -1 -divr061 divide -41214265628.83801241467317270595 1015336323798389903361978271354 -> -4.059173759750342247620706384027E-20 Inexact Rounded -dvir061 divideint -41214265628.83801241467317270595 1015336323798389903361978271354 -> 0 -mulr061 multiply -41214265628.83801241467317270595 1015336323798389903361978271354 -> -4.184634095163472384028549378392E+40 Inexact Rounded -powr061 power -41214265628.83801241467317270595 1 -> -41214265628.83801241467317270595 -remr061 remainder -41214265628.83801241467317270595 1015336323798389903361978271354 -> -41214265628.83801241467317270595 -subr061 subtract -41214265628.83801241467317270595 1015336323798389903361978271354 -> -1015336323798389903403192536983 Inexact Rounded -addr062 add 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 82351554300031.00628677123370689 Inexact Rounded -comr062 compare 89937.39749201095570357557430822 82351554210093.60879476027800331 -> -1 -divr062 divide 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 1.092115362662913415592930982129E-9 Inexact Rounded -dvir062 divideint 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 0 -mulr062 multiply 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 7406484465078077191.920015793662 Inexact Rounded -powr062 power 89937.39749201095570357557430822 8 -> 4.280776267723913043050100934291E+39 Inexact Rounded -remr062 remainder 89937.39749201095570357557430822 82351554210093.60879476027800331 -> 89937.39749201095570357557430822 -subr062 subtract 89937.39749201095570357557430822 82351554210093.60879476027800331 -> -82351554120156.21130274932229973 Inexact Rounded -addr063 add 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 1.712661646770821562841254869430E+365 Inexact Rounded -comr063 compare 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 1 -divr063 divide 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 2.956290925475414185960999788848E+397 Inexact Rounded -dvir063 divideint 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> ? Division_impossible -mulr063 multiply 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 9.921925785595813587655312307930E+332 Inexact Rounded -powr063 power 01712661.64677082156284125486943E+359 6 -> 2.523651803323047711735501944959E+2191 Inexact Rounded -remr063 remainder 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> ? Division_impossible -subr063 subtract 01712661.64677082156284125486943E+359 57932.78435529483241552042115837E-037 -> 1.712661646770821562841254869430E+365 Inexact Rounded -addr064 add -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> -658179152015.9868345843925715053 Inexact Rounded -comr064 compare -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 1 -divr064 divide -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 0.004038849497560303158639192895544 Inexact Rounded -dvir064 divideint -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 0 -mulr064 multiply -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 1735580967057433153120.099643641 Inexact Rounded -powr064 power -2647593306.528617691373470059213 -7 -> -1.096581914005902583413810201571E-66 Inexact Rounded -remr064 remainder -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> -2647593306.528617691373470059213 -subr064 subtract -2647593306.528617691373470059213 -655531558709.4582168930191014461 -> 652883965402.9295992016456313869 Inexact Rounded -addr065 add 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> -7.145586619176091599264717047885E+788 Inexact Rounded -comr065 compare 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> 1 -divr065 divide 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> -4.064157144036712325084472022316E-1088 Inexact Rounded -dvir065 divideint 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> 0 -mulr065 multiply 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> -2.075134583305571527962710017262E+490 Inexact Rounded -powr065 power 2904078690665765116603253099668E-329 -7 -> 5.740389208842895561250128407803E+2089 Inexact Rounded -remr065 remainder 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> 2.904078690665765116603253099668E-299 -subr065 subtract 2904078690665765116603253099668E-329 -71.45586619176091599264717047885E+787 -> 7.145586619176091599264717047885E+788 Inexact Rounded -addr066 add 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> 22094338972.39109726522477999515 Inexact Rounded -comr066 compare 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> 1 -divr066 divide 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> -5.390880808019174194010224736965E+497 Inexact Rounded -dvir066 divideint 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> ? Division_impossible -mulr066 multiply 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> -9.055288588476315822113975426730E-478 Inexact Rounded -powr066 power 22094338972.39109726522477999515 -4 -> 4.196391022354122686725315209967E-42 Inexact Rounded -remr066 remainder 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> ? Division_impossible -subr066 subtract 22094338972.39109726522477999515 -409846549371.3900805039668417203E-499 -> 22094338972.39109726522477999515 Inexact Rounded -addr067 add -3374988581607586061255542201048 82293895124.90045271504836568681 -> -3374988581607586061173248305923 Inexact Rounded -comr067 compare -3374988581607586061255542201048 82293895124.90045271504836568681 -> -1 -divr067 divide -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797.81310977038 Inexact Rounded -dvir067 divideint -3374988581607586061255542201048 82293895124.90045271504836568681 -> -41011408883796817797 -mulr067 multiply -3374988581607586061255542201048 82293895124.90045271504836568681 -> -2.777409563825512202793336132310E+41 Inexact Rounded -powr067 power -3374988581607586061255542201048 8 -> 1.683365657238878057620634207267E+244 Inexact Rounded -remr067 remainder -3374988581607586061255542201048 82293895124.90045271504836568681 -> -66913970168.62046257175566384243 -subr067 subtract -3374988581607586061255542201048 82293895124.90045271504836568681 -> -3374988581607586061337836096173 Inexact Rounded -addr068 add -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -84172558171932.94780431960508260 Inexact Rounded -comr068 compare -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -1 -divr068 divide -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> 7467674426.467986736459678347587 Inexact Rounded -dvir068 divideint -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> 7467674426 -mulr068 multiply -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> 948758494638999235.1953022970755 Inexact Rounded -powr068 power -84172558160661.35863831029352323 -11272 -> ? Underflow Subnormal Inexact Rounded -remr068 remainder -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -5274.95422851496534479122656860 -subr068 subtract -84172558160661.35863831029352323 -11271.58916600931155937291904890 -> -84172558149389.76947230098196386 Inexact Rounded -addr069 add -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -7.004693232461490596396237508541E-555 Inexact Rounded -comr069 compare -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -1 -divr069 divide -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -2.082768876995463487926920072359E+362 Inexact Rounded -dvir069 divideint -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> ? Division_impossible -mulr069 multiply -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -2.355793185832144388285949021738E-1471 Inexact Rounded -powr069 power -70046932324614.90596396237508541E-568 3 -> -3.436903678302639677280508409829E-1663 Inexact Rounded -remr069 remainder -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> ? Division_impossible -subr069 subtract -70046932324614.90596396237508541E-568 33.63163964004608865836577297698E-918 -> -7.004693232461490596396237508541E-555 Inexact Rounded -addr070 add 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> 4125384407.053782660115680886000 Inexact Rounded -comr070 compare 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> 1 -divr070 divide 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> -1.053928941287132717250540955457E+649 Inexact Rounded -dvir070 divideint 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> ? Division_impossible -mulr070 multiply 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> -1.614795442013190139080634449273E-630 Inexact Rounded -powr070 power 0004125384407.053782660115680886 -4 -> 3.452568541597450106266555783362E-39 Inexact Rounded -remr070 remainder 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> ? Division_impossible -subr070 subtract 0004125384407.053782660115680886 -391429084.5847321402514385603223E-648 -> 4125384407.053782660115680886000 Inexact Rounded -addr071 add -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> 9.291391582947237200286427030028E+775 Inexact Rounded -comr071 compare -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -1 -divr071 divide -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -3.425012375468251447194400841658E-1209 Inexact Rounded -dvir071 divideint -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> 0 -mulr071 multiply -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -2.956811729743937541973845029816E+343 Inexact Rounded -powr071 power -31823131.15691583393820628480997E-440 9 -> -3.347234803487575870321338308655E-3893 Inexact Rounded -remr071 remainder -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -3.182313115691583393820628480997E-433 -subr071 subtract -31823131.15691583393820628480997E-440 92913.91582947237200286427030028E+771 -> -9.291391582947237200286427030028E+775 Inexact Rounded -addr072 add 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 55573868488.43891477926020011694 Inexact Rounded -comr072 compare 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 1 -divr072 divide 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 92696782.14318796763098335498657 Inexact Rounded -dvir072 divideint 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 92696782 -mulr072 multiply 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 33317820972080.24347717542221477 Inexact Rounded -powr072 power 55573867888.91575330563698128150 600 -> 8.363240671070136278221965616973E+6446 Inexact Rounded -remr072 remainder 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 85.8445030391099686478265169012 -subr072 subtract 55573867888.91575330563698128150 599.5231614736232188354393212234 -> 55573867289.39259183201376244606 Inexact Rounded -addr073 add -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> 5.487207142687001607026665515349E-356 Inexact Rounded -comr073 compare -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -1 -divr073 divide -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -9.928051387110587327889009363069E-415 Inexact Rounded -dvir073 divideint -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> 0 -mulr073 multiply -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -2.989280896644635352838087864373E-1125 Inexact Rounded -powr073 power -5447727448431680878699555714796E-800 5 -> -4.798183553278543065204833300725E-3847 Inexact Rounded -remr073 remainder -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -5.447727448431680878699555714796E-770 -subr073 subtract -5447727448431680878699555714796E-800 5487207.142687001607026665515349E-362 -> -5.487207142687001607026665515349E-356 Inexact Rounded -addr074 add 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 418359224750.4711631202083513795 Inexact Rounded -comr074 compare 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 1 -divr074 divide 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 42602.13713335803513874339309132 Inexact Rounded -dvir074 divideint 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 42602 -mulr074 multiply 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 4108155982352814348.343441299082 Inexact Rounded -powr074 power 0418349404834.547110239542290134 9819916 -> ? Overflow Inexact Rounded -remr074 remainder 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 1346638.04628810400110728063718 -subr074 subtract 0418349404834.547110239542290134 09819915.92405288066606124554841 -> 418339584918.6230573588762288885 Inexact Rounded -addr075 add -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> -7.983992600094836304387324162042E+420 Inexact Rounded -comr075 compare -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 1 -divr075 divide -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 3.281838669494274896180376328433E-416 Inexact Rounded -dvir075 divideint -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 0 -mulr075 multiply -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 2.091979765115329268275803385534E+426 Inexact Rounded -powr075 power -262021.7565194737396448014286436 -8 -> 4.500918721033033032706782304195E-44 Inexact Rounded -remr075 remainder -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> -262021.7565194737396448014286436 -subr075 subtract -262021.7565194737396448014286436 -7983992600094836304387324162042E+390 -> 7.983992600094836304387324162042E+420 Inexact Rounded -addr076 add 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> -3.386875233985057267609967806187E+831 Inexact Rounded -comr076 compare 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> 1 -divr076 divide 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> -1.43778696489297658200995217242E-1326 Inexact Rounded -dvir076 divideint 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> 0 -mulr076 multiply 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> -1.649274478764579569246425611629E+337 Inexact Rounded -powr076 power 48696050631.42565380301204592392E-505 -3 -> 8.660017688773759463020340778853E+1482 Inexact Rounded -remr076 remainder 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> 4.869605063142565380301204592392E-495 -subr076 subtract 48696050631.42565380301204592392E-505 -33868752339.85057267609967806187E+821 -> 3.386875233985057267609967806187E+831 Inexact Rounded -addr077 add 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 95256207.85635086953625240702318 Inexact Rounded -comr077 compare 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 1 -divr077 divide 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> -1567.937180706641856870286122623 Inexact Rounded -dvir077 divideint 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> -1567 -mulr077 multiply 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> -5794447919993.150493301061195714 Inexact Rounded -powr077 power 95316999.19440144356471126680708 -60791 -> ? Underflow Subnormal Inexact Rounded -remr077 remainder 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 56972.46915194096967798542896355 -subr077 subtract 95316999.19440144356471126680708 -60791.33805057402845885978390435 -> 95377790.53245201759317012659098 Inexact Rounded -addr078 add -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> 8032459.450998820205916538543258 Inexact Rounded -comr078 compare -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -1 -divr078 divide -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -6.631471131473117487839243582873E-113 Inexact Rounded -dvir078 divideint -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> 0 -mulr078 multiply -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -4.278652020339705265013632757349E-99 Inexact Rounded -powr078 power -5326702296402708234722215224979E-136 8032459 -> ? Underflow Subnormal Inexact Rounded -remr078 remainder -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -5.326702296402708234722215224979E-106 -subr078 subtract -5326702296402708234722215224979E-136 8032459.450998820205916538543258 -> -8032459.450998820205916538543258 Inexact Rounded -addr079 add 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 6.718750684079501575335482615780E-280 Inexact Rounded -comr079 compare 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 1 -divr079 divide 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 9.152153872187460598958616592442E+571 Inexact Rounded -dvir079 divideint 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> ? Division_impossible -mulr079 multiply 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 4.932348317700372401849231767007E-1131 Inexact Rounded -powr079 power 67.18750684079501575335482615780E-281 7 -> 6.18044407102311130081751840955E-1955 Inexact Rounded -remr079 remainder 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> ? Division_impossible -subr079 subtract 67.18750684079501575335482615780E-281 734.1168841683438410314843011541E-854 -> 6.718750684079501575335482615780E-280 Inexact Rounded -addr080 add -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -8738791762039.358125211204773930 Inexact Rounded -comr080 compare -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -1 -divr080 divide -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -17216.5601257767373161213006813 Inexact Rounded -dvir080 divideint -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -17216 -mulr080 multiply -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -4436156407404759833857.580707024 Inexact Rounded -powr080 power -8739299372114.092482914139281669 507610075 -> ? Overflow Inexact Rounded -remr080 remainder -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -284325487.3902691936540542102992 -subr080 subtract -8739299372114.092482914139281669 507610074.7343577029345077385838 -> -8739806982188.826840617073789408 Inexact Rounded -addr081 add 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 2454.002078468928665008217727731 Inexact Rounded -comr081 compare 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 1 -divr081 divide 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 4.205327278123112611006652533618E+141 Inexact Rounded -dvir081 divideint 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> ? Division_impossible -mulr081 multiply 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 1.432023194118096842806010293027E-135 Inexact Rounded -powr081 power 2454.002078468928665008217727731 6 -> 218398452792293853786.926305442 Inexact Rounded -remr081 remainder 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> ? Division_impossible -subr081 subtract 2454.002078468928665008217727731 583546039.6233842869119950982009E-147 -> 2454.002078468928665008217727731 Inexact Rounded -addr082 add 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 829181.6561975853393326976860680 Inexact Rounded -comr082 compare 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 1 -divr082 divide 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 11.83500633601553578851124281417 Inexact Rounded -dvir082 divideint 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 11 -mulr082 multiply 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 49394169921.82458094138096628957 Inexact Rounded -powr082 power 764578.5204849936912066033177429 64603 -> ? Overflow Inexact Rounded -remr082 remainder 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 53944.02764648556181956526616724 -subr082 subtract 764578.5204849936912066033177429 64603.13571259164812609436832506 -> 699975.3847724020430805089494178 Inexact Rounded -addr083 add 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 846389013551.3654139910676568223 Inexact Rounded -comr083 compare 079203.7330103777716903518367560 846388934347.6324036132959664705 -> -1 -divr083 divide 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 9.357841270860339858146471876044E-8 Inexact Rounded -dvir083 divideint 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 0 -mulr083 multiply 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 67037163179008037.19983564789203 Inexact Rounded -powr083 power 079203.7330103777716903518367560 8 -> 1.548692549503356788115682996756E+39 Inexact Rounded -remr083 remainder 079203.7330103777716903518367560 846388934347.6324036132959664705 -> 79203.7330103777716903518367560 -subr083 subtract 079203.7330103777716903518367560 846388934347.6324036132959664705 -> -846388855143.8993932355242761187 Inexact Rounded -addr084 add -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> 5.474973992953902631890208360829 Inexact Rounded -comr084 compare -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -1 -divr084 divide -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -7.814797878848469282033896969532E-327 Inexact Rounded -dvir084 divideint -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> 0 -mulr084 multiply -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -2.342512251965378028433584538870E-325 Inexact Rounded -powr084 power -4278.581514688669249247007127899E-329 5 -> -1.433834587801771244104676682986E-1627 Inexact Rounded -remr084 remainder -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -4.278581514688669249247007127899E-326 -subr084 subtract -4278.581514688669249247007127899E-329 5.474973992953902631890208360829 -> -5.474973992953902631890208360829 Inexact Rounded -addr085 add 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 6.149612565404080501157093851895E+817 Inexact Rounded -comr085 compare 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> -1 -divr085 divide 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 9.897699923417617920996187420968E-160 Inexact Rounded -dvir085 divideint 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 0 -mulr085 multiply 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 3.743085898893072544197564013497E+1476 Inexact Rounded -powr085 power 60867019.81764798845468445196869E+651 6 -> 5.085014897388871736767602086646E+3952 Inexact Rounded -remr085 remainder 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> 6.086701981764798845468445196869E+658 -subr085 subtract 60867019.81764798845468445196869E+651 6.149612565404080501157093851895E+817 -> -6.149612565404080501157093851895E+817 Inexact Rounded -addr086 add 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> -8.945059095290523784746184357820E+538 Inexact Rounded -comr086 compare 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> 1 -divr086 divide 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> -2.074264411286709228674841672954E-908 Inexact Rounded -dvir086 divideint 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> 0 -mulr086 multiply 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> -1.659703631470633700884136887614E+170 Inexact Rounded -powr086 power 18554417738217.62218590965803605E-382 -9 -> 3.836842998295531899082688721531E+3318 Inexact Rounded -remr086 remainder 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> 1.855441773821762218590965803605E-369 -subr086 subtract 18554417738217.62218590965803605E-382 -0894505909529.052378474618435782E+527 -> 8.945059095290523784746184357820E+538 Inexact Rounded -addr087 add 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 9.977847825356104634823627327033E+127 Inexact Rounded -comr087 compare 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> -1 -divr087 divide 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 6.922670772910807388395384866884E-115 Inexact Rounded -dvir087 divideint 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 0 -mulr087 multiply 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 6.892034301367879802693422066425E+141 Inexact Rounded -powr087 power 69073355517144.36356688642213839 10 -> 2.472324890841334302628435461516E+138 Inexact Rounded -remr087 remainder 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> 69073355517144.36356688642213839 -subr087 subtract 69073355517144.36356688642213839 997784782535.6104634823627327033E+116 -> -9.977847825356104634823627327033E+127 Inexact Rounded -addr088 add 450282259072.8657099359104277477 -1791307965314309175477911369824 -> -1791307965314309175027629110751 Inexact Rounded -comr088 compare 450282259072.8657099359104277477 -1791307965314309175477911369824 -> 1 -divr088 divide 450282259072.8657099359104277477 -1791307965314309175477911369824 -> -2.513706564096350714213771006483E-19 Inexact Rounded -dvir088 divideint 450282259072.8657099359104277477 -1791307965314309175477911369824 -> 0 -mulr088 multiply 450282259072.8657099359104277477 -1791307965314309175477911369824 -> -8.065941973169457071650996861677E+41 Inexact Rounded -powr088 power 450282259072.8657099359104277477 -2 -> 4.932082442194544671633570348838E-24 Inexact Rounded -remr088 remainder 450282259072.8657099359104277477 -1791307965314309175477911369824 -> 450282259072.8657099359104277477 -subr088 subtract 450282259072.8657099359104277477 -1791307965314309175477911369824 -> 1791307965314309175928193628897 Inexact Rounded -addr089 add 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 954821400.4934353520984462184316 Inexact Rounded -comr089 compare 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 1 -divr089 divide 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 6676.599951968811589335427770046 Inexact Rounded -dvir089 divideint 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 6676 -mulr089 multiply 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 136508234203444.8694879431412375 Inexact Rounded -powr089 power 954678411.7838149266455177850037 142989 -> ? Overflow Inexact Rounded -remr089 remainder 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 85786.3578546028952962204808256 -subr089 subtract 954678411.7838149266455177850037 142988.7096204254529284334278794 -> 954535423.0741945011925893515758 Inexact Rounded -addr090 add -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -9.244530976220812127155852389807E+566 Inexact Rounded -comr090 compare -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -1 -divr090 divide -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -1.708503207395591002370649848757E+561 Inexact Rounded -dvir090 divideint -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> ? Division_impossible -mulr090 multiply -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -5.002118380601798392363043558941E+572 Inexact Rounded -powr090 power -9244530976.220812127155852389807E+557 541089 -> ? Overflow Inexact Rounded -remr090 remainder -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> ? Division_impossible -subr090 subtract -9244530976.220812127155852389807E+557 541089.4715446858896619078627941 -> -9.244530976220812127155852389807E+566 Inexact Rounded -addr091 add -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> -14760496803372.56259241638975169 Inexact Rounded -comr091 compare -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 1 -divr091 divide -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 0.000005114489797920668836278344635108 Inexact Rounded -dvir091 divideint -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 0 -mulr091 multiply -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 1114294082984662825831.464787487 Inexact Rounded -powr091 power -75492024.20990197005974241975449 -1 -> -1.324643246046162082348970735576E-8 Inexact Rounded -remr091 remainder -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> -75492024.20990197005974241975449 -subr091 subtract -75492024.20990197005974241975449 -14760421311348.35269044633000927 -> 14760345819324.14278847627026685 Inexact Rounded -addr092 add 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 2.475976333144824613591228097330E+99 Inexact Rounded -comr092 compare 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> -1 -divr092 divide 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 1.283322837007852247594216151634E-546 Inexact Rounded -dvir092 divideint 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 0 -mulr092 multiply 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 7.867357782318786860404997647513E-348 Inexact Rounded -powr092 power 317747.6972215715434186596178036E-452 2 -> 1.009635990896115043331231496209E-893 Inexact Rounded -remr092 remainder 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> 3.177476972215715434186596178036E-447 -subr092 subtract 317747.6972215715434186596178036E-452 24759763.33144824613591228097330E+092 -> -2.475976333144824613591228097330E+99 Inexact Rounded -addr093 add -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> -17.87120645617324368279740020695 Inexact Rounded -comr093 compare -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 1 -divr093 divide -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 0.8390040956188859972044344532019 Inexact Rounded -dvir093 divideint -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 0 -mulr093 multiply -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 79.23306057789328578902960605222 Inexact Rounded -powr093 power -8.153334430358647134334545353427 -10 -> 7.702778966876727056635952801162E-10 Inexact Rounded -remr093 remainder -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> -8.153334430358647134334545353427 -subr093 subtract -8.153334430358647134334545353427 -9.717872025814596548462854853522 -> 1.564537595455949414128309500095 -addr094 add 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 5054015481833.263541189916208065 Inexact Rounded -comr094 compare 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> -1 -divr094 divide 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 1.437934890309606594895299558654E-490 Inexact Rounded -dvir094 divideint 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 0 -mulr094 multiply 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 3.672927513995607308048737751972E-465 Inexact Rounded -powr094 power 7.267345197492967332320456062961E-478 5 -> 2.027117616846668568108096583897E-2386 Inexact Rounded -remr094 remainder 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> 7.267345197492967332320456062961E-478 -subr094 subtract 7.267345197492967332320456062961E-478 5054015481833.263541189916208065 -> -5054015481833.263541189916208065 Inexact Rounded -addr095 add -1223354029.862567054230912271171 8135774223401322785475014855625 -> 8135774223401322785473791501595 Inexact Rounded -comr095 compare -1223354029.862567054230912271171 8135774223401322785475014855625 -> -1 -divr095 divide -1223354029.862567054230912271171 8135774223401322785475014855625 -> -1.503672540892020337688277553692E-22 Inexact Rounded -dvir095 divideint -1223354029.862567054230912271171 8135774223401322785475014855625 -> 0 -mulr095 multiply -1223354029.862567054230912271171 8135774223401322785475014855625 -> -9.952932182250005119307429060894E+39 Inexact Rounded -powr095 power -1223354029.862567054230912271171 8 -> 5.016689887192830666848068841227E+72 Inexact Rounded -remr095 remainder -1223354029.862567054230912271171 8135774223401322785475014855625 -> -1223354029.862567054230912271171 -subr095 subtract -1223354029.862567054230912271171 8135774223401322785475014855625 -> -8135774223401322785476238209655 Inexact Rounded -addr096 add 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> 2.853976441115655679961211349982E+656 Inexact Rounded -comr096 compare 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> 1 -divr096 divide 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> -1.151029280076495626421134733122E+626 Inexact Rounded -dvir096 divideint 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> ? Division_impossible -mulr096 multiply 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> -7.076432952167704614138411740001E+686 Inexact Rounded -powr096 power 285397644111.5655679961211349982E+645 -2 -> 1.227719722087860401233030479451E-1313 Inexact Rounded -remr096 remainder 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> ? Division_impossible -subr096 subtract 285397644111.5655679961211349982E+645 -2479499427613157519359627280704 -> 2.853976441115655679961211349982E+656 Inexact Rounded -addr097 add -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -4676542.661845508839813784891890 Inexact Rounded -comr097 compare -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -1 -divr097 divide -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> 1362.424151323477505064686589716 Inexact Rounded -dvir097 divideint -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> 1362 -mulr097 multiply -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> 16028768973.31252639476148371361 Inexact Rounded -powr097 power -4673112.663442366293812346653429 -3430 -> ? Underflow Subnormal Inexact Rounded -remr097 remainder -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -1454.838362218639853465869604204 -subr097 subtract -4673112.663442366293812346653429 -3429.998403142546001438238460958 -> -4669682.665039223747810908414968 Inexact Rounded -addr098 add 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 3.869394621006514751889096510923E+144 Inexact Rounded -comr098 compare 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> -1 -divr098 divide 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 2.299194926095985647821385937618E-143 Inexact Rounded -dvir098 divideint 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 0 -mulr098 multiply 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 3.442404014670364763780946297856E+146 Inexact Rounded -powr098 power 88.96492479681278079861456051103 4 -> 62643391.7307829022647475885897 Inexact Rounded -remr098 remainder 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> 88.96492479681278079861456051103 -subr098 subtract 88.96492479681278079861456051103 386939.4621006514751889096510923E+139 -> -3.869394621006514751889096510923E+144 Inexact Rounded -addr099 add 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 92.23649942010862087149015091350 Inexact Rounded -comr099 compare 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> -1 -divr099 divide 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 6.974120530708230229344349531719E-937 Inexact Rounded -dvir099 divideint 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 0 -mulr099 multiply 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 5.933283133313013755814405436342E-933 Inexact Rounded -powr099 power 064326846.4286437304788069444326E-942 92 -> ? Underflow Subnormal Inexact Rounded -remr099 remainder 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> 6.43268464286437304788069444326E-935 -subr099 subtract 064326846.4286437304788069444326E-942 92.23649942010862087149015091350 -> -92.23649942010862087149015091350 Inexact Rounded -addr100 add 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 1109894.721947227977782971677146 Inexact Rounded -comr100 compare 504507.0043949324433170405699360 605387.7175522955344659311072099 -> -1 -divr100 divide 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 0.8333618105678718895216067463832 Inexact Rounded -dvir100 divideint 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 0 -mulr100 multiply 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 305422343879.7940838630401656585 Inexact Rounded -powr100 power 504507.0043949324433170405699360 605388 -> ? Overflow Inexact Rounded -remr100 remainder 504507.0043949324433170405699360 605387.7175522955344659311072099 -> 504507.0043949324433170405699360 -subr100 subtract 504507.0043949324433170405699360 605387.7175522955344659311072099 -> -100880.7131573630911488905372739 - --- randomly generated testcases [26 Sep 2001] -precision: 32 -rounding: half_up -maxExponent: 9999 - -addr201 add 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> -0.1294608320983180201262861125848 -comr201 compare 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> 1 -divr201 divide 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> -0.9219087981232431363028298011028 Inexact Rounded -dvir201 divideint 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> 0 -mulr201 multiply 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> -2.5337311682687808926633910761614 Inexact Rounded -powr201 power 1.5283550163839789319142430253644 -2 -> 0.42810618916584924451466691603128 Inexact Rounded -remr201 remainder 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> 1.5283550163839789319142430253644 -subr201 subtract 1.5283550163839789319142430253644 -1.6578158484822969520405291379492 -> 3.1861708648662758839547721633136 -addr202 add -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -616383641998.15356482333651785302 Inexact Rounded -comr202 compare -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -1 -divr202 divide -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -95.54623418578511049167689415351 Inexact Rounded -dvir202 divideint -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -95 -mulr202 multiply -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -4060946921076840449949.6988828486 Inexact Rounded -powr202 power -622903030605.2867503937836507326 7 -> -3.63867365977024043528133080643E+82 Inexact Rounded -remr202 remainder -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -3561112927.6341212013060271723005 -subr202 subtract -622903030605.2867503937836507326 6519388607.1331855704471328795821 -> -629422419212.41993596423078361218 Inexact Rounded -addr203 add -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> 73908233965.134822146441861002895 Inexact Rounded -comr203 compare -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -1 -divr203 divide -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -0.000076790894376056827552388054657082 Inexact Rounded -dvir203 divideint -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> 0 -mulr203 multiply -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -419529088021865067.23307352973589 Inexact Rounded -powr203 power -5675915.2465457487632250245209054 7 -> -1.8978038060207777231389234721908E+47 Inexact Rounded -remr203 remainder -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -5675915.2465457487632250245209054 -subr203 subtract -5675915.2465457487632250245209054 73913909880.381367895205086027416 -> -73919585795.627913643968311051937 Inexact Rounded -addr204 add 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 102.50941233130989977580658947572 Inexact Rounded -comr204 compare 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 1 -divr204 divide 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 20.083399916665466374741708949621 Inexact Rounded -dvir204 divideint 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 20 -mulr204 multiply 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 474.77017694916635398652276042175 Inexact Rounded -powr204 power 97.647321172555144900685605318635 5 -> 8877724578.7935312939231828719842 Inexact Rounded -remr204 remainder 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 0.4054979974600473982659221768650 -subr204 subtract 97.647321172555144900685605318635 4.8620911587547548751209841570885 -> 92.785230013800390025564621161547 Inexact Rounded -addr205 add -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> -2.6692539695193820424002013488480E+366 Inexact Rounded -comr205 compare -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 1 -divr205 divide -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 3.6404378818903462695633337631098E-354 Inexact Rounded -dvir205 divideint -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 0 -mulr205 multiply -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 2.5937816855830431899123217912144E+379 Inexact Rounded -powr205 power -9717253267024.5380651435435603552 -3 -> -1.089856788008533778004132866133E-39 Inexact Rounded -remr205 remainder -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> -9717253267024.5380651435435603552 -subr205 subtract -9717253267024.5380651435435603552 -2669.2539695193820424002013488480E+363 -> 2.6692539695193820424002013488480E+366 Inexact Rounded -addr206 add -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> 12772.807105920712660991033689206 Inexact Rounded -comr206 compare -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -1 -divr206 divide -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -3.1956477052150593175206769891434E-771 Inexact Rounded -dvir206 divideint -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> 0 -mulr206 multiply -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -5.2135267097047531336100750110314E-763 Inexact Rounded -powr206 power -4.0817391717190128506083001702335E-767 12773 -> ? Underflow Subnormal Inexact Rounded -remr206 remainder -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -4.0817391717190128506083001702335E-767 -subr206 subtract -4.0817391717190128506083001702335E-767 12772.807105920712660991033689206 -> -12772.807105920712660991033689206 Inexact Rounded -addr207 add 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 68625322655934146845003028928587 Inexact Rounded -comr207 compare 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 1 -divr207 divide 68625322655934146845003028928647 -59.634169944840280159782488098700 -> -1150771826276954946844322988192.5 Inexact Rounded -dvir207 divideint 68625322655934146845003028928647 -59.634169944840280159782488098700 -> -1150771826276954946844322988192 -mulr207 multiply 68625322655934146845003028928647 -59.634169944840280159782488098700 -> -4.0924141537834748501140151997778E+33 Inexact Rounded -powr207 power 68625322655934146845003028928647 -60 -> 6.4704731111943370171711131942603E-1911 Inexact Rounded -remr207 remainder 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 28.201254004897257552939369449600 -subr207 subtract 68625322655934146845003028928647 -59.634169944840280159782488098700 -> 68625322655934146845003028928707 Inexact Rounded -addr208 add 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> -92134479103305.554299334115573170 Inexact Rounded -comr208 compare 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> 1 -divr208 divide 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> -7.9505063318943846655593887991914E-9 Inexact Rounded -dvir208 divideint 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> 0 -mulr208 multiply 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> -67489959009342175728.710494356322 Inexact Rounded -powr208 power 732515.76532049290815665856727641 -9 -> 1.6468241050443471359358016585877E-53 Inexact Rounded -remr208 remainder 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> 732515.76532049290815665856727641 -subr208 subtract 732515.76532049290815665856727641 -92134479835821.319619827023729829 -> 92134480568337.084940319931886488 Inexact Rounded -addr209 add -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> -5.0233720245976651023364304104030E+861 Inexact Rounded -comr209 compare -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 1 -divr209 divide -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 6.063260255031141082148300130501E-861 Inexact Rounded -dvir209 divideint -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 0 -mulr209 multiply -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 1.5300192511921895929031818638961E+863 Inexact Rounded -powr209 power -30.458011942978338421676454778733 -5 -> -3.8149797481405136042487643253109E-8 Inexact Rounded -remr209 remainder -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> -30.458011942978338421676454778733 -subr209 subtract -30.458011942978338421676454778733 -5023372024597665102336430410403E+831 -> 5.0233720245976651023364304104030E+861 Inexact Rounded -addr210 add -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> -58703509398.895039317872169695760 Inexact Rounded -comr210 compare -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 1 -divr210 divide -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 0.0000015269995260536025237167199970238 Inexact Rounded -dvir210 divideint -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 0 -mulr210 multiply -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 5262180074071519.7018252171579753 Inexact Rounded -powr210 power -89640.094149414644660480286430462 -6 -> 1.9274635591165405888724595165741E-30 Inexact Rounded -remr210 remainder -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> -89640.094149414644660480286430462 -subr210 subtract -89640.094149414644660480286430462 -58703419758.800889903227509215474 -> 58703330118.706740488582848735188 Inexact Rounded -addr211 add 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 458653.15678700818100529177142590 Inexact Rounded -comr211 compare 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 1 -divr211 divide 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 2.4990492117594160215641311760498E+33 Inexact Rounded -dvir211 divideint 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> ? Division_impossible -mulr211 multiply 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 8.4177101131428047497998594379593E-23 Inexact Rounded -powr211 power 458653.1567870081810052917714259 2 -> 210362718230.6879086511745242999 Inexact Rounded -remr211 remainder 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> ? Division_impossible -subr211 subtract 458653.1567870081810052917714259 18353106238.516235116080449814053E-038 -> 458653.15678700818100529177142590 Inexact Rounded -addr212 add 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> -2.1051638816432817393202262710630E+439 Inexact Rounded -comr212 compare 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> 1 -divr212 divide 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> -4.3388138824102151127273259092613E-434 Inexact Rounded -dvir212 divideint 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> 0 -mulr212 multiply 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> -1.9228386428540135340600836707270E+445 Inexact Rounded -powr212 power 913391.42744224458216174967853722 -2 -> 1.1986327439971532470297300128074E-12 Inexact Rounded -remr212 remainder 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> 913391.42744224458216174967853722 -subr212 subtract 913391.42744224458216174967853722 -21051638.816432817393202262710630E+432 -> 2.1051638816432817393202262710630E+439 Inexact Rounded -addr213 add -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> -2.8892177726858026955513438843371E+739 Inexact Rounded -comr213 compare -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 1 -divr213 divide -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 3.1759165595057674196644927106447E-728 Inexact Rounded -dvir213 divideint -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 0 -mulr213 multiply -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 2.6511215451353541156703914721725E+751 Inexact Rounded -powr213 power -917591456829.12109027484399536567 -3 -> -1.2943505591853739240003453341911E-36 Inexact Rounded -remr213 remainder -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> -917591456829.12109027484399536567 -subr213 subtract -917591456829.12109027484399536567 -28892177726858026955513438843371E+708 -> 2.8892177726858026955513438843371E+739 Inexact Rounded -addr214 add 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 34938410840676.731620092461631064 Inexact Rounded -comr214 compare 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1 -divr214 divide 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1133693327999.7879503260098666966 Inexact Rounded -dvir214 divideint 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1133693327999 -mulr214 multiply 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 1076739645476675.3318519289128961 Inexact Rounded -powr214 power 34938410840645.913399699219228218 31 -> 6.9566085958798732786509909683267E+419 Inexact Rounded -remr214 remainder 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 24.283226805899273551376371736548 -subr214 subtract 34938410840645.913399699219228218 30.818220393242402846077755480548 -> 34938410840615.095179305976825372 Inexact Rounded -addr215 add 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 29771833428054709077850588904653 Inexact Rounded -comr215 compare 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> -1 -divr215 divide 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 2.0269955680376683526099444523691E-545 Inexact Rounded -dvir215 divideint 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 0 -mulr215 multiply 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 1.7966519787854159464382359411642E-482 Inexact Rounded -powr215 power 6034.7374411022598081745006769023E-517 3 -> 2.1977340597301840681528507640032E-1540 Inexact Rounded -remr215 remainder 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> 6.0347374411022598081745006769023E-514 -subr215 subtract 6034.7374411022598081745006769023E-517 29771833428054709077850588904653 -> -29771833428054709077850588904653 Inexact Rounded -addr216 add -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -5565747672224.4775959193681631431 Inexact Rounded -comr216 compare -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -1 -divr216 divide -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> 11351510433.365074871574519756245 Inexact Rounded -dvir216 divideint -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> 11351510433 -mulr216 multiply -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> 2728936147066663.4580064428639745 Inexact Rounded -powr216 power -5565747671734.1686009705574503152 -490 -> 4.9371745297619526113991728953197E-6246 Inexact Rounded -remr216 remainder -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -178.99949336276892685183308348801 -subr216 subtract -5565747671734.1686009705574503152 -490.30899494881071282787487030303 -> -5565747671243.8596060217467374873 Inexact Rounded -addr217 add 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 3.1954551189203199952335879232538E+44 Inexact Rounded -comr217 compare 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 1 -divr217 divide 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> -108102711781422.68663084859902931 Inexact Rounded -dvir217 divideint 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> -108102711781422 -mulr217 multiply 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> -9.4455848967786959996525702197139E+74 Inexact Rounded -powr217 power 319545511.89203495546689273564728E+036 -3 -> 3.0647978448946294457985223953472E-134 Inexact Rounded -remr217 remainder 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 2029642017122316721531728309258 -subr217 subtract 319545511.89203495546689273564728E+036 -2955943533943321899150310192061 -> 3.1954551189203791141042667896918E+44 Inexact Rounded -addr218 add -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -42682764.676651465089307430325104 Rounded -comr218 compare -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -1 -divr218 divide -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> 6.320438080731865547545904741016 Inexact Rounded -dvir218 divideint -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> 6 -mulr218 multiply -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> 214871156882133.34437417534873098 Inexact Rounded -powr218 power -36852134.84194296250843579428931 -5830630 -> ? Underflow Subnormal Inexact Rounded -remr218 remainder -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -1868355.8336919470232059780745460 -subr218 subtract -36852134.84194296250843579428931 -5830629.8347085025808716360357940 -> -31021505.007234459927564158253516 Rounded -addr219 add 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> -39505285344943.729681835377530908 Inexact Rounded -comr219 compare 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> 1 -divr219 divide 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> -2.1774783867700502002511486885272E-387 Inexact Rounded -dvir219 divideint 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> 0 -mulr219 multiply 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> -3.3983199030116951081865430362053E-360 Inexact Rounded -powr219 power 8.6021905001798578659275880018221E-374 -4 -> 1.8262649155820433126240754123257E+1492 Inexact Rounded -remr219 remainder 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> 8.6021905001798578659275880018221E-374 -subr219 subtract 8.6021905001798578659275880018221E-374 -39505285344943.729681835377530908 -> 39505285344943.729681835377530908 Inexact Rounded -addr220 add -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -54862429.012326453703398777272191 Inexact Rounded -comr220 compare -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -1 -divr220 divide -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -74528.182826764384088602813142847 Inexact Rounded -dvir220 divideint -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -74528 -mulr220 multiply -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -40386962037.048345148338122539405 Inexact Rounded -powr220 power -54863165.152174109720312887805017 736 -> 1.2903643981679111625370174573639E+5696 Inexact Rounded -remr220 remainder -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -134.5860664811454830973740198416 -subr220 subtract -54863165.152174109720312887805017 736.1398476560169141105328256628 -> -54863901.292021765737226998337843 Inexact Rounded -addr221 add -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -3263743464517851012531706353100.8 Inexact Rounded -comr221 compare -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1 -divr221 divide -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1328233422952076975055082.5768082 Inexact Rounded -dvir221 divideint -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1328233422952076975055082 -mulr221 multiply -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -8.0196908300261262548565838031943E+36 Inexact Rounded -powr221 power -3263743464517851012531708810307 2457206 -> ? Overflow Inexact Rounded -remr221 remainder -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -1417336.7573398366062994535940062 -subr221 subtract -3263743464517851012531708810307 2457206.2471248382136273643208109 -> -3263743464517851012531711267513.2 Inexact Rounded -addr222 add 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 9.5354563764657694835860339582821E+91 Inexact Rounded -comr222 compare 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> -1 -divr222 divide 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 2.99575251700079800087128289683E-978 Inexact Rounded -dvir222 divideint 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 0 -mulr222 multiply 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 2.7238858283525541854826594343954E-794 Inexact Rounded -powr222 power 2856586744.0548637797291151154902E-895 10 -> 3.6180466753307072256807593988336E-8856 Inexact Rounded -remr222 remainder 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> 2.8565867440548637797291151154902E-886 -subr222 subtract 2856586744.0548637797291151154902E-895 953545637646.57694835860339582821E+080 -> -9.5354563764657694835860339582821E+91 Inexact Rounded -addr223 add 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 631722566499.28075196842125460014 Inexact Rounded -comr223 compare 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> -1 -divr223 divide 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 0.0089828645946207580492752544218316 Inexact Rounded -dvir223 divideint 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 0 -mulr223 multiply 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 3521275897257796938833.8975037909 Inexact Rounded -powr223 power 5624157233.3433661009203529937625 6 -> 3.164788719630326254015832845903E+58 Inexact Rounded -remr223 remainder 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> 5624157233.3433661009203529937625 -subr223 subtract 5624157233.3433661009203529937625 626098409265.93738586750090160638 -> -620474252032.59401976658054861262 Inexact Rounded -addr224 add -213499362.91476998701834067092611 419272438.02555757699863022643444 -> 205773075.11078758998028955550833 -comr224 compare -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -1 -divr224 divide -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -0.50921392286166855779828061147786 Inexact Rounded -dvir224 divideint -213499362.91476998701834067092611 419272438.02555757699863022643444 -> 0 -mulr224 multiply -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -89514398406178925.073260776410672 Inexact Rounded -powr224 power -213499362.91476998701834067092611 419272438 -> ? Overflow Inexact Rounded -remr224 remainder -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -213499362.91476998701834067092611 -subr224 subtract -213499362.91476998701834067092611 419272438.02555757699863022643444 -> -632771800.94032756401697089736055 -addr225 add 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 30274.392356614101238316845401518 Inexact Rounded -comr225 compare 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1 -divr225 divide 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 6300.1252178837655359831527173832 Inexact Rounded -dvir225 divideint 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 6300 -mulr225 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651199283 Inexact Rounded -powr225 power 30269.587755640502150977251770554 5 -> 25411630481547464128383.220368208 Inexact Rounded -remr225 remainder 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 0.6016219662519115373766970119100 -subr225 subtract 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 30264.783154666903063637658139590 Inexact Rounded -addr226 add 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> 4.7525676459351505682005359699680E+705 Inexact Rounded -comr226 compare 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> 1 -divr226 divide 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> -8.1057651538555854520994438038537E+673 Inexact Rounded -dvir226 divideint 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> ? Division_impossible -mulr226 multiply 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> -2.7865227773649353769876975366506E+737 Inexact Rounded -powr226 power 47.525676459351505682005359699680E+704 -6 -> 8.6782100393941226535150385475464E-4235 Inexact Rounded -remr226 remainder 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> ? Division_impossible -subr226 subtract 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> 4.7525676459351505682005359699680E+705 Inexact Rounded -addr227 add -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -74396977890406.153948943614775470 Inexact Rounded -comr227 compare -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -1 -divr227 divide -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> 643479.03948459716424778005613112 Inexact Rounded -dvir227 divideint -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> 643479 -mulr227 multiply -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> 8601512678051025297297.7169654467 Inexact Rounded -powr227 power -74396862273800.625679130772935550 -115616606 -> ? Underflow Subnormal Inexact Rounded -remr227 remainder -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -4565075.09478147646296920746797 -subr227 subtract -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -74396746657195.097409317931095630 Inexact Rounded -addr228 add 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 67586387.525464115583388327481014 Inexact Rounded -comr228 compare 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 1 -divr228 divide 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 81727.43943735424878985271558651 Inexact Rounded -dvir228 divideint 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 81727 -mulr228 multiply 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 55890751355.998983433895910295596 Inexact Rounded -powr228 power 67585560.562561229497720955705979 827 -> 1.9462204583352191108781197788255E+6475 Inexact Rounded -remr228 remainder 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 363.39839010616042789746007924349 -subr228 subtract 67585560.562561229497720955705979 826.96290288608566737177503451613 -> 67584733.599658343412053583930944 Inexact Rounded -addr229 add 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 390.31542898606435093937697545510 Inexact Rounded -comr229 compare 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> -1 -divr229 divide 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 1.7620074325054038174571564409871E-225 Inexact Rounded -dvir229 divideint 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 0 -mulr229 multiply 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 2.6843502060572691408091663822732E-220 Inexact Rounded -powr229 power 6877386868.9498051860742298735156E-232 390 -> ? Underflow Subnormal Inexact Rounded -remr229 remainder 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> 6.8773868689498051860742298735156E-223 -subr229 subtract 6877386868.9498051860742298735156E-232 390.3154289860643509393769754551 -> -390.31542898606435093937697545510 Inexact Rounded -addr230 add -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> -186656471117.70574263160637723440 Inexact Rounded -comr230 compare -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 1 -divr230 divide -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 0.0000088255699357876233458660331146583 Inexact Rounded -dvir230 divideint -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 0 -mulr230 multiply -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 307483061680363807.48775619333285 Inexact Rounded -powr230 power -1647335.201144609256134925838937 -2 -> 3.6849876990439502152784389237891E-13 Inexact Rounded -remr230 remainder -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> -1647335.201144609256134925838937 -subr230 subtract -1647335.201144609256134925838937 -186654823782.50459802235024230856 -> 186653176447.30345341309410738272 Inexact Rounded -addr231 add 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> 41407818140948.866630923934138155 Inexact Rounded -comr231 compare 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> 1 -divr231 divide 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> -8.0298091128179204076796507697517E+972 Inexact Rounded -dvir231 divideint 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> ? Division_impossible -mulr231 multiply 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> -2.1353028186646179369220834691156E-946 Inexact Rounded -powr231 power 41407818140948.866630923934138155 -5 -> 8.2146348556648547525693528004081E-69 Inexact Rounded -remr231 remainder 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> ? Division_impossible -subr231 subtract 41407818140948.866630923934138155 -5156.7624534000311342310106671627E-963 -> 41407818140948.866630923934138155 Inexact Rounded -addr232 add -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> -574454585586.71690214265053093061 Inexact Rounded -comr232 compare -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 1 -divr232 divide -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 1.1584453442097568745411568037078E-11 Inexact Rounded -dvir232 divideint -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 0 -mulr232 multiply -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 3822847288253.1035559206691532826 Inexact Rounded -powr232 power -6.6547424012516834662011706165297 -6 -> 0.000011513636283388791488128239232906 Inexact Rounded -remr232 remainder -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> -6.6547424012516834662011706165297 -subr232 subtract -6.6547424012516834662011706165297 -574454585580.06215974139884746441 -> 574454585573.40741734014716399821 Inexact Rounded -addr233 add -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> -23385972217069.468331815025891947 Inexact Rounded -comr233 compare -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 1 -divr233 divide -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 1.1813816642548920194709898111624E-9 Inexact Rounded -dvir233 divideint -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 0 -mulr233 multiply -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 646101997676091306.41485393678655 Inexact Rounded -powr233 power -27627.758745381267780885067447671 -2 -> 1.3101128009560812529198521922269E-9 Inexact Rounded -remr233 remainder -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> -27627.758745381267780885067447671 -subr233 subtract -27627.758745381267780885067447671 -23385972189441.709586433758111062 -> 23385972161813.950841052490330177 Inexact Rounded -addr234 add 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> 2.0981974379099914752963711944307E-223 Inexact Rounded -comr234 compare 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> 1 -divr234 divide 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> -4.7661318949867060595545765053187E+731 Inexact Rounded -dvir234 divideint 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> ? Division_impossible -mulr234 multiply 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> -9.2369086409102239573726316593648E-1178 Inexact Rounded -powr234 power 209819.74379099914752963711944307E-228 -4 -> 5.1595828494111690910650919776705E+890 Inexact Rounded -remr234 remainder 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> ? Division_impossible -subr234 subtract 209819.74379099914752963711944307E-228 -440230.6700989532467831370320266E-960 -> 2.0981974379099914752963711944307E-223 Inexact Rounded -addr235 add 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.3488457600415474270259330865184 Inexact Rounded -comr235 compare 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 1 -divr235 divide 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.5579771002708402753412266574941E+605 Inexact Rounded -dvir235 divideint 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> ? Division_impossible -mulr235 multiply 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.1568122732142531556215204459407E-605 Inexact Rounded -powr235 power 2.3488457600415474270259330865184 9 -> 2176.1583446147511579113022622255 Inexact Rounded -remr235 remainder 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> ? Division_impossible -subr235 subtract 2.3488457600415474270259330865184 9182434.6660212482500376220508605E-612 -> 2.3488457600415474270259330865184 Inexact Rounded -addr236 add -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -5107586300197.9703941034404557409 Inexact Rounded -comr236 compare -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -1 -divr236 divide -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -9.0225606358909877855326357402242E+775 Inexact Rounded -dvir236 divideint -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> ? Division_impossible -mulr236 multiply -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -2.8913563307290346152596212593532E-751 Inexact Rounded -powr236 power -5107586300197.9703941034404557409 6 -> 1.7753920894188022125919559565029E+76 Inexact Rounded -remr236 remainder -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> ? Division_impossible -subr236 subtract -5107586300197.9703941034404557409 56609.05486055057838678039496686E-768 -> -5107586300197.9703941034404557409 Inexact Rounded -addr237 add -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -70454076296048.077427972135182788 Inexact Rounded -comr237 compare -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -1 -divr237 divide -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> 11363232.779549422490548997517194 Inexact Rounded -dvir237 divideint -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> 11363232 -mulr237 multiply -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> 436827801504436566945.76663687924 Inexact Rounded -powr237 power -70454070095869.70717871212601390 -6200178 -> ? Underflow Subnormal Inexact Rounded -remr237 remainder -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -4833345.467866203920028883583808 -subr237 subtract -70454070095869.70717871212601390 -6200178.370249260009168888392406 -> -70454063895691.336929452116845012 Inexact Rounded -addr238 add 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 29119.220621511046558757900645228 Inexact Rounded -comr238 compare 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 1 -divr238 divide 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 8.2781197380089684063239752337467E+219 Inexact Rounded -dvir238 divideint 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> ? Division_impossible -mulr238 multiply 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 1.0243014554512542440592768088600E-211 Inexact Rounded -powr238 power 29119.220621511046558757900645228 4 -> 718983605328417461.32835984217255 Inexact Rounded -remr238 remainder 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> ? Division_impossible -subr238 subtract 29119.220621511046558757900645228 3517612.8810761470018676311863010E-222 -> 29119.220621511046558757900645228 Inexact Rounded -addr239 add -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> -5695442.3185284567660037344669935 Inexact Rounded -comr239 compare -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 1 -divr239 divide -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 0.00090825526554639915580539316714451 Inexact Rounded -dvir239 divideint -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 0 -mulr239 multiply -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 29408596423.801454053855793898323 Inexact Rounded -powr239 power -5168.2214111091132913776042214525 -5690274 -> ? Underflow Subnormal Inexact Rounded -remr239 remainder -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> -5168.2214111091132913776042214525 -subr239 subtract -5168.2214111091132913776042214525 -5690274.0971173476527123568627720 -> 5685105.8757062385394209792585505 Inexact Rounded -addr240 add 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 31712.980161250558571611312236423 Inexact Rounded -comr240 compare 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 1 -divr240 divide 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> -16.31968305551989288139435844922 Inexact Rounded -dvir240 divideint 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> -16 -mulr240 multiply 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> -69933662.130469766080574235843448 Inexact Rounded -powr240 power 33783.060857197067391462144517964 -2070 -> 3.9181336001803008597293818984406E-9375 Inexact Rounded -remr240 remainder 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 661.7697220529262738488280133144 -subr240 subtract 33783.060857197067391462144517964 -2070.0806959465088198508322815406 -> 35853.141553143576211312976799505 Inexact Rounded -addr241 add 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 7.3330633078828216018536326743325E+986 Inexact Rounded -comr241 compare 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> -1 -divr241 divide 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 5.7557712676064206636178247554056E-1879 Inexact Rounded -dvir241 divideint 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 0 -mulr241 multiply 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 3.0950979358603075650592433398939E+95 Inexact Rounded -powr241 power 42207435091050.840296353874733169E-905 7 -> 2.3862872940615283599573082966642E-6240 Inexact Rounded -remr241 remainder 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> 4.2207435091050840296353874733169E-892 -subr241 subtract 42207435091050.840296353874733169E-905 73330633078.828216018536326743325E+976 -> -7.3330633078828216018536326743325E+986 Inexact Rounded -addr242 add -71800.806700868784841045406679641 -39617456964250697902519150526701 -> -39617456964250697902519150598502 Inexact Rounded -comr242 compare -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 1 -divr242 divide -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 1.8123527405017220178579049964126E-27 Inexact Rounded -dvir242 divideint -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 0 -mulr242 multiply -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 2.8445653694701522164901827524538E+36 Inexact Rounded -powr242 power -71800.806700868784841045406679641 -4 -> 3.7625536850895480882178599428774E-20 Inexact Rounded -remr242 remainder -71800.806700868784841045406679641 -39617456964250697902519150526701 -> -71800.806700868784841045406679641 -subr242 subtract -71800.806700868784841045406679641 -39617456964250697902519150526701 -> 39617456964250697902519150454900 Inexact Rounded -addr243 add 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 53627809061.200981502803149181991 Inexact Rounded -comr243 compare 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 1 -divr243 divide 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 163369.13159039717901500465109839 Inexact Rounded -dvir243 divideint 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 163369 -mulr243 multiply 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 17603733760058752.363123585224369 Inexact Rounded -powr243 power 53627480801.631504892310016062160 328260 -> ? Overflow Inexact Rounded -remr243 remainder 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 43195.80712523964536237599604393 -subr243 subtract 53627480801.631504892310016062160 328259.56947661049313311983109503 -> 53627152542.062028281816882942329 Inexact Rounded -addr244 add -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -5150456970.7802587986281516264289 Inexact Rounded -comr244 compare -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -1 -divr244 divide -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> 51.633359351732432283879274192947 Inexact Rounded -dvir244 divideint -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> 51 -mulr244 multiply -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> 494424210127893893.12581512954787 Inexact Rounded -powr244 power -5052601598.5559371338428368438728 -97855372 -> ? Underflow Subnormal Inexact Rounded -remr244 remainder -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -61977615.115532229791782933513536 -subr244 subtract -5052601598.5559371338428368438728 -97855372.224321664785314782556064 -> -4954746226.3316154690575220613167 Inexact Rounded -addr245 add 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 4.2708691760149477598920960628392E+477 Inexact Rounded -comr245 compare 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> -1 -divr245 divide 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 9.8531098643021951048744078027283E-320 Inexact Rounded -dvir245 divideint 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 0 -mulr245 multiply 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 1.7972391158952189002169082753183E+636 Inexact Rounded -powr245 power 4208134320733.7069742988228068191E+146 4 -> 3.1358723439830872127129821963857E+634 Inexact Rounded -remr245 remainder 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> 4.2081343207337069742988228068191E+158 -subr245 subtract 4208134320733.7069742988228068191E+146 4270869.1760149477598920960628392E+471 -> -4.2708691760149477598920960628392E+477 Inexact Rounded -addr246 add -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.5077009657942581515590471189084E+308 Inexact Rounded -comr246 compare -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -1 -divr246 divide -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.814311045723608997807041904797E+548 Inexact Rounded -dvir246 divideint -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> ? Division_impossible -mulr246 multiply -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.2117564660363596283732942091852E+68 Inexact Rounded -powr246 power -8.5077009657942581515590471189084E+308 10 -> 1.9866536812573207868350640760678E+3089 Inexact Rounded -remr246 remainder -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> ? Division_impossible -subr246 subtract -8.5077009657942581515590471189084E+308 9652145155.374217047842114042376E-250 -> -8.5077009657942581515590471189084E+308 Inexact Rounded -addr247 add -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> -9.5049703032286960790904181078063E+622 Inexact Rounded -comr247 compare -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> -1 -divr247 divide -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> 1.1020772033225707125391212519421E+621 Inexact Rounded -dvir247 divideint -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> ? Division_impossible -mulr247 multiply -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> 8.1976525957425311427858087117655E+624 Inexact Rounded -powr247 power -9504.9703032286960790904181078063E+619 -86 -> ? Underflow Subnormal Inexact Rounded -remr247 remainder -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> ? Division_impossible -subr247 subtract -9504.9703032286960790904181078063E+619 -86.245956949049186533469206485003 -> -9.5049703032286960790904181078063E+622 Inexact Rounded -addr248 add -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -440323641.68311120898457496019108 Inexact Rounded -comr248 compare -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -1 -divr248 divide -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> 4285.4305022264473269770246126234 Inexact Rounded -dvir248 divideint -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> 4285 -mulr248 multiply -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> 45221700683419.655596771711603505 Inexact Rounded -powr248 power -440220916.66716743026896931194749 -102725 -> ? Underflow Subnormal Inexact Rounded -remr248 remainder -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -44223.34807563389876658817398125 -subr248 subtract -440220916.66716743026896931194749 -102725.01594377871560564824358775 -> -440118191.65122365155336366370390 Inexact Rounded -addr249 add -46.250735086006350517943464758019 14656357555174.263295266074908024 -> 14656357555128.012560180068557506 Inexact Rounded -comr249 compare -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -1 -divr249 divide -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -3.1556773169523313932207725522866E-12 Inexact Rounded -dvir249 divideint -46.250735086006350517943464758019 14656357555174.263295266074908024 -> 0 -mulr249 multiply -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -677867310610152.55569620459788530 Inexact Rounded -powr249 power -46.250735086006350517943464758019 1 -> -46.250735086006350517943464758019 -remr249 remainder -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -46.250735086006350517943464758019 -subr249 subtract -46.250735086006350517943464758019 14656357555174.263295266074908024 -> -14656357555220.514030352081258542 Inexact Rounded -addr250 add -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> -6.1641121299391316420647102699627E+776 Inexact Rounded -comr250 compare -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> -1 -divr250 divide -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> 6.7076702065897819604716946852581E+291 Inexact Rounded -dvir250 divideint -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> ? Division_impossible -mulr250 multiply -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> 5.6646014458394584921579417504939E+1261 Inexact Rounded -powr250 power -61641121299391.316420647102699627E+763 -9 -> -7.7833261179975532508748150708605E-6992 Inexact Rounded -remr250 remainder -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> ? Division_impossible -subr250 subtract -61641121299391.316420647102699627E+763 -91896469863.461006903590004188187E+474 -> -6.1641121299391316420647102699627E+776 Inexact Rounded -addr251 add 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> -1.9498732131365824921639467044927E-511 Inexact Rounded -comr251 compare 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> 1 -divr251 divide 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> -4.9576772044192514715453215933704E-314 Inexact Rounded -dvir251 divideint 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> 0 -mulr251 multiply 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> -1.8849116232962331617140676274611E-1335 Inexact Rounded -powr251 power 96668419802749.555738010239087449E-838 -2 -> 1.0701157625268896323611633350003E+1648 Inexact Rounded -remr251 remainder 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> 9.6668419802749555738010239087449E-825 -subr251 subtract 96668419802749.555738010239087449E-838 -19498732131365824921639467044927E-542 -> 1.9498732131365824921639467044927E-511 Inexact Rounded -addr252 add -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -8.5345439111979959060312457195190E+154 Inexact Rounded -comr252 compare -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -1 -divr252 divide -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -5.1764925822381062287959523371316E+141 Inexact Rounded -dvir252 divideint -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> ? Division_impossible -mulr252 multiply -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -1.4071002443255581217471698731240E+168 Inexact Rounded -powr252 power -8534543911197995906031245719519E+124 2 -> 7.2838439772166785429482995041337E+309 Inexact Rounded -remr252 remainder -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> ? Division_impossible -subr252 subtract -8534543911197995906031245719519E+124 16487117050031.594886541650897974 -> -8.5345439111979959060312457195190E+154 Inexact Rounded -addr253 add -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> 9.2570938837239134052589184917186E+916 Inexact Rounded -comr253 compare -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -1 -divr253 divide -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -6.7692307720384142592597124956951E-907 Inexact Rounded -dvir253 divideint -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> 0 -mulr253 multiply -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -5.8008102109774576654709018012876E+927 Inexact Rounded -powr253 power -62663404777.352508979582846931050 9 -> -1.4897928814133059615670462753825E+97 Inexact Rounded -remr253 remainder -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -62663404777.352508979582846931050 -subr253 subtract -62663404777.352508979582846931050 9.2570938837239134052589184917186E+916 -> -9.2570938837239134052589184917186E+916 Inexact Rounded -addr254 add 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> -1.7353669504253419489494030651507E-630 Inexact Rounded -comr254 compare 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> 1 -divr254 divide 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> -1.0053212169604565230497117966004E-197 Inexact Rounded -dvir254 divideint 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> 0 -mulr254 multiply 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> -3.0275232892710668432895049546233E-1457 Inexact Rounded -powr254 power 1.744601214474560992754529320172E-827 -2 -> 3.285546809961528239499254251598E+1653 Inexact Rounded -remr254 remainder 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> 1.744601214474560992754529320172E-827 -subr254 subtract 1.744601214474560992754529320172E-827 -17.353669504253419489494030651507E-631 -> 1.7353669504253419489494030651507E-630 Inexact Rounded -addr255 add 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 4.4103206624152665337631438377420E+751 Inexact Rounded -comr255 compare 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> -1 -divr255 divide 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 8.3257335949720619093963917942525E-723 Inexact Rounded -dvir255 divideint 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 0 -mulr255 multiply 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 1.6194324757808363802947192054966E+781 Inexact Rounded -powr255 power 0367191549036702224827734853471 4 -> 1.8179030119354318182493703269258E+118 Inexact Rounded -remr255 remainder 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> 367191549036702224827734853471 -subr255 subtract 0367191549036702224827734853471 4410320662415266533763143837742E+721 -> -4.4103206624152665337631438377420E+751 Inexact Rounded -addr256 add 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 97607380.048316862763014969003011 Inexact Rounded -comr256 compare 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 1 -divr256 divide 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> -1010.0036335861757252324592571874 Inexact Rounded -dvir256 divideint 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> -1010 -mulr256 multiply 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> -9451544582305.1234805483449772252 Inexact Rounded -powr256 power 097704116.4492566721965710365073 -96736 -> ? Underflow Subnormal Inexact Rounded -remr256 remainder 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 351.500049144304942857175263550 -subr256 subtract 097704116.4492566721965710365073 -96736.400939809433556067504289145 -> 97800852.850196481630127104011589 Inexact Rounded -addr257 add 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 19533298.147150158931958733807878 Inexact Rounded -comr257 compare 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 1 -divr257 divide 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 2.4373460837728485395672882395171E+646 Inexact Rounded -dvir257 divideint 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> ? Division_impossible -mulr257 multiply 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 1.5654311016630284502459158971272E-632 Inexact Rounded -powr257 power 19533298.147150158931958733807878 8 -> 2.1193595047638230427530063654613E+58 Inexact Rounded -remr257 remainder 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> ? Division_impossible -subr257 subtract 19533298.147150158931958733807878 80.141668338350708476637377647025E-641 -> 19533298.147150158931958733807878 Inexact Rounded -addr258 add -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> -23765003221220177430797028997378 Inexact Rounded -comr258 compare -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> -1 -divr258 divide -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> 1.5631405336020930064824135669541E+966 Inexact Rounded -dvir258 divideint -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> ? Division_impossible -mulr258 multiply -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> 3.6130812678955994625210007005216E-904 Inexact Rounded -powr258 power -23765003221220177430797028997378 -2 -> 1.7706154318483481190364979209436E-63 Inexact Rounded -remr258 remainder -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> ? Division_impossible -subr258 subtract -23765003221220177430797028997378 -15203369569.373411506379096871224E-945 -> -23765003221220177430797028997378 Inexact Rounded -addr259 add 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> 1.2925541937932433359193338910552E+937 Inexact Rounded -comr259 compare 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> 1 -divr259 divide 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> -4.5956836453828213050223260551064E+928 Inexact Rounded -dvir259 divideint 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> ? Division_impossible -mulr259 multiply 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> -3.6353597697504958096931088780367E+945 Inexact Rounded -powr259 power 129255.41937932433359193338910552E+932 -281253953 -> ? Underflow Subnormal Inexact Rounded -remr259 remainder 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> ? Division_impossible -subr259 subtract 129255.41937932433359193338910552E+932 -281253953.38990382799508873560320 -> 1.2925541937932433359193338910552E+937 Inexact Rounded -addr260 add -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -86331.770222938687407130786425993 Inexact Rounded -comr260 compare -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -1 -divr260 divide -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -163.42858201815891408475902229649 Inexact Rounded -dvir260 divideint -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -163 -mulr260 multiply -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -46168354.810498682140456143534524 Inexact Rounded -powr260 power -86863.276249466008289214762980838 532 -> 2.889757918417383951985971021751E+2627 Inexact Rounded -remr260 remainder -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -227.79392551270450952658454114212 -subr260 subtract -86863.276249466008289214762980838 531.50602652732088208397655484476 -> -87394.782275993329171298739535683 Inexact Rounded -addr261 add -40707.169006771111855573524157083 -68795521421321853333274411827749 -> -68795521421321853333274411868456 Inexact Rounded -comr261 compare -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 1 -divr261 divide -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 5.9171248601300236694386185513139E-28 Inexact Rounded -dvir261 divideint -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 0 -mulr261 multiply -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 2.8004709174066910577370895499575E+36 Inexact Rounded -powr261 power -40707.169006771111855573524157083 -7 -> -5.3988802915897595722440392884051E-33 Inexact Rounded -remr261 remainder -40707.169006771111855573524157083 -68795521421321853333274411827749 -> -40707.169006771111855573524157083 -subr261 subtract -40707.169006771111855573524157083 -68795521421321853333274411827749 -> 68795521421321853333274411787042 Inexact Rounded -addr262 add -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> -9.0838752568673728630494658778003E+108 Inexact Rounded -comr262 compare -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> -1 -divr262 divide -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> 1.2308545518588430875268553851424E+106 Inexact Rounded -dvir262 divideint -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> ? Division_impossible -mulr262 multiply -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> 6.7040244160213718891633678248127E+111 Inexact Rounded -powr262 power -90838752568673.728630494658778003E+095 -738 -> ? Underflow Subnormal Inexact Rounded -remr262 remainder -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> ? Division_impossible -subr262 subtract -90838752568673.728630494658778003E+095 -738.01370301217606577533107981431 -> -9.0838752568673728630494658778003E+108 Inexact Rounded -addr263 add -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> -3.1196062390425302071032035080570 Inexact Rounded -comr263 compare -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 1 -divr263 divide -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 1.3608643662980066356437236081969E-670 Inexact Rounded -dvir263 divideint -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 0 -mulr263 multiply -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 1.3243854561493627844105290415330E-669 Inexact Rounded -powr263 power -4245360967593.9206771555839718158E-682 -3 -> -1.3069414504933253288042820429894E+2008 Inexact Rounded -remr263 remainder -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> -4.2453609675939206771555839718158E-670 -subr263 subtract -4245360967593.9206771555839718158E-682 -3.119606239042530207103203508057 -> 3.1196062390425302071032035080570 Inexact Rounded -addr264 add -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> -60810.964656409685060465379447110 Inexact Rounded -comr264 compare -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 1 -divr264 divide -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 5.627513763528788287591412474265E-16 Inexact Rounded -dvir264 divideint -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 0 -mulr264 multiply -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 0.0000020810396331962224323288744910607 Inexact Rounded -powr264 power -3422145405774.0800213000547612240E-023 -60811 -> ? Overflow Inexact Rounded -remr264 remainder -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> -3.4221454057740800213000547612240E-11 -subr264 subtract -3422145405774.0800213000547612240E-023 -60810.964656409650839011321706310 -> 60810.964656409616617557263965510 Inexact Rounded -addr265 add -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> -94860846133404815410816234000694 Inexact Rounded -comr265 compare -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 1 -divr265 divide -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 2.5850297647576657819483988845904E-686 Inexact Rounded -dvir265 divideint -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 0 -mulr265 multiply -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 2.3261597474398006215017751785104E-622 Inexact Rounded -powr265 power -24521811.07649485796598387627478E-661 -9 -> -3.1190843559949184618590264246586E+5882 Inexact Rounded -remr265 remainder -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> -2.452181107649485796598387627478E-654 -subr265 subtract -24521811.07649485796598387627478E-661 -94860846133404815410816234000694 -> 94860846133404815410816234000694 Inexact Rounded -addr266 add -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -5038638032824.4395321279731805825 Inexact Rounded -comr266 compare -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -1 -divr266 divide -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -1295.6457979549894351378127413283 Inexact Rounded -dvir266 divideint -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -1295 -mulr266 multiply -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -19625045834830808256871.952659048 Inexact Rounded -powr266 power -5042529937498.8944492248538951438 4 -> 6.4653782991800009492580180960839E+50 Inexact Rounded -remr266 remainder -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -2513384079.7768087643285383187045 -subr266 subtract -5042529937498.8944492248538951438 3891904674.4549170968807145612549 -> -5046421842173.3493663217346097051 Inexact Rounded -addr267 add -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> 2732988.5891363639325008206099712 Inexact Rounded -comr267 compare -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -1 -divr267 divide -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -1.9605795855687791246611683328346E-663 Inexact Rounded -dvir267 divideint -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> 0 -mulr267 multiply -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -1.4644013247528895376254850705597E-650 Inexact Rounded -powr267 power -535824163.54531747646293693868651E-665 2732989 -> ? Underflow Subnormal Inexact Rounded -remr267 remainder -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -5.3582416354531747646293693868651E-657 -subr267 subtract -535824163.54531747646293693868651E-665 2732988.5891363639325008206099712 -> -2732988.5891363639325008206099712 Inexact Rounded -addr268 add 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 52864854.899420632375589206704068 Inexact Rounded -comr268 compare 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> -1 -divr268 divide 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 4.5460641203455697917573431961511E-513 Inexact Rounded -dvir268 divideint 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 0 -mulr268 multiply 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 1.2704853045231735885074945710576E-497 Inexact Rounded -powr268 power 24032.702008553084252925140858134E-509 52864855 -> ? Underflow Subnormal Inexact Rounded -remr268 remainder 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> 2.4032702008553084252925140858134E-505 -subr268 subtract 24032.702008553084252925140858134E-509 52864854.899420632375589206704068 -> -52864854.899420632375589206704068 Inexact Rounded -addr269 add 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 754.44220417415325444943566016062 Inexact Rounded -comr269 compare 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> -1 -divr269 divide 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 9.4842547068617879794218050008353E-489 Inexact Rounded -dvir269 divideint 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 0 -mulr269 multiply 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 5.3982769208667021044675146787248E-483 Inexact Rounded -powr269 power 71553220259.938950698030519906727E-496 754 -> ? Underflow Subnormal Inexact Rounded -remr269 remainder 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> 7.1553220259938950698030519906727E-486 -subr269 subtract 71553220259.938950698030519906727E-496 754.44220417415325444943566016062 -> -754.44220417415325444943566016062 Inexact Rounded -addr270 add 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 35572.960284795962697740953932508 Inexact Rounded -comr270 compare 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 1 -divr270 divide 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 6.8357605153869556504869061469852E+732 Inexact Rounded -dvir270 divideint 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> ? Division_impossible -mulr270 multiply 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 1.8511992931514185102474609686066E-724 Inexact Rounded -powr270 power 35572.960284795962697740953932508 5 -> 56963942247985404337401.149353169 Inexact Rounded -remr270 remainder 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> ? Division_impossible -subr270 subtract 35572.960284795962697740953932508 520.39506364687594082725754878910E-731 -> 35572.960284795962697740953932508 Inexact Rounded -addr271 add 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> 5.3035405018123760598334895413057E+849 Inexact Rounded -comr271 compare 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> 1 -divr271 divide 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> -5.5485278436266802470202487233285E+836 Inexact Rounded -dvir271 divideint 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> ? Division_impossible -mulr271 multiply 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> -5.0693702270365259274203181894613E+862 Inexact Rounded -powr271 power 53035405018123760598334895413057E+818 -10 -> 5.6799053935427267944455848135618E-8498 Inexact Rounded -remr271 remainder 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> ? Division_impossible -subr271 subtract 53035405018123760598334895413057E+818 -9558464247240.4476790042911379151 -> 5.3035405018123760598334895413057E+849 Inexact Rounded -addr272 add 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 9.8701498316307365714167410690192E+135 Inexact Rounded -comr272 compare 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> -1 -divr272 divide 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 9.6747012716293341927566515915016E-135 Inexact Rounded -dvir272 divideint 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 0 -mulr272 multiply 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 9.4250802116091862185764800227004E+137 Inexact Rounded -powr272 power 95.490751127249945886828257312118 10 -> 63039548646186864162.847491534337 Inexact Rounded -remr272 remainder 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> 95.490751127249945886828257312118 -subr272 subtract 95.490751127249945886828257312118 987.01498316307365714167410690192E+133 -> -9.8701498316307365714167410690192E+135 Inexact Rounded -addr273 add 69434850287.460788550936730296153 -35119136549015044241569827542264 -> -35119136549015044241500392691977 Inexact Rounded -comr273 compare 69434850287.460788550936730296153 -35119136549015044241569827542264 -> 1 -divr273 divide 69434850287.460788550936730296153 -35119136549015044241569827542264 -> -1.9771229338327273644129394734299E-21 Inexact Rounded -dvir273 divideint 69434850287.460788550936730296153 -35119136549015044241569827542264 -> 0 -mulr273 multiply 69434850287.460788550936730296153 -35119136549015044241569827542264 -> -2.4384919885057519302646522425980E+42 Inexact Rounded -powr273 power 69434850287.460788550936730296153 -4 -> 4.3021939605842038995370443743844E-44 Inexact Rounded -remr273 remainder 69434850287.460788550936730296153 -35119136549015044241569827542264 -> 69434850287.460788550936730296153 -subr273 subtract 69434850287.460788550936730296153 -35119136549015044241569827542264 -> 35119136549015044241639262392551 Inexact Rounded -addr274 add -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> -65551667.214560244414938327003123 Inexact Rounded -comr274 compare -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 1 -divr274 divide -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 0.0000059835205237890809449684317245033 Inexact Rounded -dvir274 divideint -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 0 -mulr274 multiply -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 25711006105.487929108329637701882 Inexact Rounded -powr274 power -392.22739924621965621739098725407 -65551275 -> ? Underflow Subnormal Inexact Rounded -remr274 remainder -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> -392.22739924621965621739098725407 -subr274 subtract -392.22739924621965621739098725407 -65551274.987160998195282109612136 -> 65550882.759761751975625892221149 Inexact Rounded -addr275 add 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 6437779.6650608333186472347196668 Inexact Rounded -comr275 compare 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 1 -divr275 divide 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 261.61406460270241498757868681883 Inexact Rounded -dvir275 divideint 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 261 -mulr275 multiply 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 157216217318.36494525300694583138 Inexact Rounded -powr275 power 6413265.4423561191792972085539457 24514 -> ? Overflow Inexact Rounded -remr275 remainder 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 15053.316425728808940379300726594 -subr275 subtract 6413265.4423561191792972085539457 24514.222704714139350026165721146 -> 6388751.2196514050399471823882246 Inexact Rounded -addr276 add -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -6.9667706389122107760046184064057E+487 Inexact Rounded -comr276 compare -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -1 -divr276 divide -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -2.1498522911689997341347293419761E+486 Inexact Rounded -dvir276 divideint -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> ? Division_impossible -mulr276 multiply -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -2.2576385054257595259511556258470E+489 Inexact Rounded -powr276 power -6.9667706389122107760046184064057E+487 32 -> ? Overflow Inexact Rounded -remr276 remainder -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> ? Division_impossible -subr276 subtract -6.9667706389122107760046184064057E+487 32.405810703971538278419625527234 -> -6.9667706389122107760046184064057E+487 Inexact Rounded -addr277 add 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 77986002255.07800973642274406015 -comr277 compare 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 1 -divr277 divide 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> -1.2597639604731753284599748820876 Inexact Rounded -dvir277 divideint 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> -1 -mulr277 multiply 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> -113544133799497082075557.21180430 Inexact Rounded -powr277 power 378204716633.40024100602896057615 -3 -> 1.8484988212401886887562779996737E-35 Inexact Rounded -remr277 remainder 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 77986002255.07800973642274406015 -subr277 subtract 378204716633.40024100602896057615 -0300218714378.322231269606216516 -> 678423431011.72247227563517709215 -addr278 add -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -4.4234512012457148027685282969235E+505 Inexact Rounded -comr278 compare -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -1 -divr278 divide -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -2.0742325477916347193181603963257E+499 Inexact Rounded -dvir278 divideint -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> ? Division_impossible -mulr278 multiply -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -9.4333301975395170465982968019915E+511 Inexact Rounded -powr278 power -44234.512012457148027685282969235E+501 2132572 -> ? Overflow Inexact Rounded -remr278 remainder -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> ? Division_impossible -subr278 subtract -44234.512012457148027685282969235E+501 2132572.4571987908375002100894927 -> -4.4234512012457148027685282969235E+505 Inexact Rounded -addr279 add -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> 9.7520428746722497621936998533848E+519 Inexact Rounded -comr279 compare -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -1 -divr279 divide -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -3.6449692061227100572768330912162E-590 Inexact Rounded -dvir279 divideint -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> 0 -mulr279 multiply -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -3.4664510156653491769901435777060E+450 Inexact Rounded -powr279 power -3554.5895974968741465654022772100E-073 10 -> 3.2202875716019266933215387456197E-695 Inexact Rounded -remr279 remainder -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -3.5545895974968741465654022772100E-70 -subr279 subtract -3554.5895974968741465654022772100E-073 9752.0428746722497621936998533848E+516 -> -9.7520428746722497621936998533848E+519 Inexact Rounded -addr280 add 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 4633944440549.3093886865008969464 Inexact Rounded -comr280 compare 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> -1 -divr280 divide 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 0.00016191587157664541463871807382759 Inexact Rounded -dvir280 divideint 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 0 -mulr280 multiply 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 3475765273659325895012.7612107556 Inexact Rounded -powr280 power 750187685.63632608923397234391668 5 -> 2.3760176068829529745152188798557E+44 Inexact Rounded -remr280 remainder 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> 750187685.63632608923397234391668 -subr280 subtract 750187685.63632608923397234391668 4633194252863.6730625972669246025 -> -4632444065178.0367365080329522586 Inexact Rounded -addr281 add 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 8038885676320423832297608779.9751 Inexact Rounded -comr281 compare 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> -1 -divr281 divide 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 3.755499886231980729590334896028E-43 Inexact Rounded -dvir281 divideint 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 0 -mulr281 multiply 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 24269423384249.611263728854793731 Inexact Rounded -powr281 power 30190034242853.251165951457589386E-028 8 -> 6.9009494305612589578332690692113E-117 Inexact Rounded -remr281 remainder 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> 3.0190034242853251165951457589386E-15 -subr281 subtract 30190034242853.251165951457589386E-028 8038885676.3204238322976087799751E+018 -> -8038885676320423832297608779.9751 Inexact Rounded -addr282 add 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 125946917326.41330773874663377538 Inexact Rounded -comr282 compare 65.537942676774715953400768803539 125946917260.87536506197191782198 -> -1 -divr282 divide 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 5.2036162616846894920389414735878E-10 Inexact Rounded -dvir282 divideint 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 0 -mulr282 multiply 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 8254301843759.7376990957355411370 Inexact Rounded -powr282 power 65.537942676774715953400768803539 1 -> 65.537942676774715953400768803539 -remr282 remainder 65.537942676774715953400768803539 125946917260.87536506197191782198 -> 65.537942676774715953400768803539 -subr282 subtract 65.537942676774715953400768803539 125946917260.87536506197191782198 -> -125946917195.33742238519720186858 Inexact Rounded -addr283 add 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8015272349626.7792105333859739528 Inexact Rounded -comr283 compare 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 1 -divr283 divide 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8443970438.556010797879008443011 Inexact Rounded -dvir283 divideint 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8443970438 -mulr283 multiply 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 7608339144595734.8984281431471741 Inexact Rounded -powr283 power 8015272348677.5489394183881813700 949 -> ? Overflow Inexact Rounded -remr283 remainder 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 527.78228041355742397895303690364 -subr283 subtract 8015272348677.5489394183881813700 949.23027111499779258284877920022 -> 8015272347728.3186683033903887872 Inexact Rounded -addr284 add -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -32595333982.670686221204518042250 Inexact Rounded -comr284 compare -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -1 -divr284 divide -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -4.7150744038935574574681609457727E+867 Inexact Rounded -dvir284 divideint -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> ? Division_impossible -mulr284 multiply -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -2.2533171407952851885446213697715E-847 Inexact Rounded -powr284 power -32595333982.67068622120451804225 7 -> -3.9092014148031739666525606093306E+73 Inexact Rounded -remr284 remainder -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> ? Division_impossible -subr284 subtract -32595333982.67068622120451804225 69130.052233649808750113141502465E-862 -> -32595333982.670686221204518042250 Inexact Rounded -addr285 add -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> 292178000.06450804618299520094843 Inexact Rounded -comr285 compare -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -1 -divr285 divide -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -6.0046235559392715334668277026896E-533 Inexact Rounded -dvir285 divideint -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> 0 -mulr285 multiply -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -5.1260260597833406461110136952456E-516 Inexact Rounded -powr285 power -17544189017145.710117633021800426E-537 292178000 -> ? Underflow Subnormal Inexact Rounded -remr285 remainder -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -1.7544189017145710117633021800426E-524 -subr285 subtract -17544189017145.710117633021800426E-537 292178000.06450804618299520094843 -> -292178000.06450804618299520094843 Inexact Rounded -addr286 add -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -506639.97552899703974189156234893 Inexact Rounded -comr286 compare -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -1 -divr286 divide -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -45982.150707356329027698717189104 Inexact Rounded -dvir286 divideint -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -45982 -mulr286 multiply -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -5582497.2457419607392940234271222 Inexact Rounded -powr286 power -506650.99395649907139204052441630 11 -> -5.6467412678809885333313818078829E+62 Inexact Rounded -remr286 remainder -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -1.660558079734242466742739640844 -subr286 subtract -506650.99395649907139204052441630 11.018427502031650148962067367158 -> -506662.01238400110304218948648367 Inexact Rounded -addr287 add 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> -84.001893040865864590122330800768 Inexact Rounded -comr287 compare 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> 1 -divr287 divide 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> -5.7699118247660357814641813260524E-234 Inexact Rounded -dvir287 divideint 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> 0 -mulr287 multiply 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> -4.0714332866277514481192856925775E-230 Inexact Rounded -powr287 power 4846835159.5922372307656000769395E-241 -84 -> ? Overflow Inexact Rounded -remr287 remainder 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> 4.8468351595922372307656000769395E-232 -subr287 subtract 4846835159.5922372307656000769395E-241 -84.001893040865864590122330800768 -> 84.001893040865864590122330800768 Inexact Rounded -addr288 add -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> -3994308913.2287755451637127790293 Inexact Rounded -comr288 compare -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 1 -divr288 divide -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 8.7698052609323004543538163061774E-9 Inexact Rounded -dvir288 divideint -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 0 -mulr288 multiply -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 139917887979.72053637272961120639 Inexact Rounded -powr288 power -35.029311013822259358116556164908 -4 -> 6.6416138040522124693495178218096E-7 Inexact Rounded -remr288 remainder -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> -35.029311013822259358116556164908 -subr288 subtract -35.029311013822259358116556164908 -3994308878.1994645313414534209127 -> 3994308843.1701535175191940627961 Inexact Rounded -addr289 add 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> -5.4918146394484565418284686127552E+374 Inexact Rounded -comr289 compare 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> 1 -divr289 divide 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> -1.3850911310869487895947733090204E-199 Inexact Rounded -dvir289 divideint 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> 0 -mulr289 multiply 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> -4.1774387343310777190917128006589E+550 Inexact Rounded -powr289 power 7606663750.6735265233044420887018E+166 -5 -> 3.9267106978887346373957314818178E-880 Inexact Rounded -remr289 remainder 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> 7.6066637506735265233044420887018E+175 -subr289 subtract 7606663750.6735265233044420887018E+166 -5491814639.4484565418284686127552E+365 -> 5.4918146394484565418284686127552E+374 Inexact Rounded -addr290 add -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> -2.5677829660831741274207326697052E-159 Inexact Rounded -comr290 compare -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> -1 -divr290 divide -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> 2.7277550199853009708493167299838E+671 Inexact Rounded -dvir290 divideint -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> ? Division_impossible -mulr290 multiply -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> 2.4171926410541199393728294762559E-989 Inexact Rounded -powr290 power -25677.829660831741274207326697052E-163 -9 -> -2.0605121420682764897867221992174E+1427 Inexact Rounded -remr290 remainder -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> ? Division_impossible -subr290 subtract -25677.829660831741274207326697052E-163 -94135395124193048560172705082029E-862 -> -2.5677829660831741274207326697052E-159 Inexact Rounded -addr291 add 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> -1.5412563837540810793697955063295E+554 Inexact Rounded -comr291 compare 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> 1 -divr291 divide 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> -6.311187231389064614447365264503E-544 Inexact Rounded -dvir291 divideint 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> 0 -mulr291 multiply 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> -1.4992043761340180288065959300090E+565 Inexact Rounded -powr291 power 97271576094.456406729671729224827 -2 -> 1.0568858765852073181352309401343E-22 Inexact Rounded -remr291 remainder 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> 97271576094.456406729671729224827 -subr291 subtract 97271576094.456406729671729224827 -1.5412563837540810793697955063295E+554 -> 1.5412563837540810793697955063295E+554 Inexact Rounded -addr292 add 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 41139789894.401826915757391777544 Inexact Rounded -comr292 compare 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 1 -divr292 divide 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> -2196474369511625389289506461551 Inexact Rounded -dvir292 divideint 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> -2196474369511625389289506461551 -mulr292 multiply 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> -7.7054498611419776714291080928601E-10 Inexact Rounded -powr292 power 41139789894.401826915757391777563 -2 -> 5.9084812442741091550891451069919E-22 Inexact Rounded -remr292 remainder 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 6.98141022640544018935102953527E-22 -subr292 subtract 41139789894.401826915757391777563 -1.8729920305671057957156159690823E-020 -> 41139789894.401826915757391777582 Inexact Rounded -addr293 add -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> -83310831287241.777598696853498149 Inexact Rounded -comr293 compare -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> -1 -divr293 divide -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> 1.5202754978845438636605170857478E+333 Inexact Rounded -dvir293 divideint -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> ? Division_impossible -mulr293 multiply -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> 4.5654189779610386760330527839588E-306 Inexact Rounded -powr293 power -83310831287241.777598696853498149 -5 -> -2.4916822606682624827900581728387E-70 Inexact Rounded -remr293 remainder -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> ? Division_impossible -subr293 subtract -83310831287241.777598696853498149 -54799825033.797100418162985103519E-330 -> -83310831287241.777598696853498149 Inexact Rounded -addr294 add 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> 4506653461.4414974233678331771169 Inexact Rounded -comr294 compare 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> 1 -divr294 divide 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> -6.0124409901781490054438220048629E+888 Inexact Rounded -dvir294 divideint 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> ? Division_impossible -mulr294 multiply 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> -3.3779833273541776470902903512949E-870 Inexact Rounded -powr294 power 4506653461.4414974233678331771169 -7 -> 2.6486272911486461102735412463189E-68 Inexact Rounded -remr294 remainder 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> ? Division_impossible -subr294 subtract 4506653461.4414974233678331771169 -74955470.977653038010031457181957E-887 -> 4506653461.4414974233678331771169 Inexact Rounded -addr295 add 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 744537.89692255653780778146167691 Inexact Rounded -comr295 compare 23777.857951114967684767609401626 720760.03897144157012301385227528 -> -1 -divr295 divide 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 0.032989978169498808275308039034795 Inexact Rounded -dvir295 divideint 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 0 -mulr295 multiply 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 17138129823.503025913034987537096 Inexact Rounded -powr295 power 23777.857951114967684767609401626 720760 -> ? Overflow Inexact Rounded -remr295 remainder 23777.857951114967684767609401626 720760.03897144157012301385227528 -> 23777.857951114967684767609401626 -subr295 subtract 23777.857951114967684767609401626 720760.03897144157012301385227528 -> -696982.18102032660243824624287365 Inexact Rounded -addr296 add -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> 6.0802728403071490445256786982100E+541 Inexact Rounded -comr296 compare -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -1 -divr296 divide -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -3.5093578667274020123788514069885E-511 Inexact Rounded -dvir296 divideint -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> 0 -mulr296 multiply -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -1.2973997003625843317417981902198E+573 Inexact Rounded -powr296 power -21337853323980858055292469611948 6 -> 9.4385298321304970306180652097874E+187 Inexact Rounded -remr296 remainder -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -21337853323980858055292469611948 -subr296 subtract -21337853323980858055292469611948 6080272840.3071490445256786982100E+532 -> -6.0802728403071490445256786982100E+541 Inexact Rounded -addr297 add -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -818408481.65082668425744179302401 Inexact Rounded -comr297 compare -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -1 -divr297 divide -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -1081991.4954690752676494129493403 Inexact Rounded -dvir297 divideint -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -1081991 -mulr297 multiply -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -619037842458.03980537370328252817 Inexact Rounded -powr297 power -818409238.0423893439849743856947 756 -> 1.6058883946373232750995543573461E+6738 Inexact Rounded -remr297 remainder -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -374.76862809126749803143314108840 -subr297 subtract -818409238.0423893439849743856947 756.39156265972753259267069158760 -> -818409994.43395200371250697836539 Inexact Rounded -addr298 add 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 47567380385008.954845377769826287 Inexact Rounded -comr298 compare 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 1 -divr298 divide 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 730853388480.86247690474303493972 Inexact Rounded -dvir298 divideint 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 730853388480 -mulr298 multiply 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 3095909128079784.3348591472999468 Inexact Rounded -powr298 power 47567380384943.87013600286155046 65 -> 1.0594982876763214301042437482634E+889 Inexact Rounded -remr298 remainder 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 56.134058687770878126430844955520 -subr298 subtract 47567380384943.87013600286155046 65.084709374908275826942076480326 -> 47567380384878.785426627953274633 Inexact Rounded -addr299 add -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -302031659.49048519905267279799984 Inexact Rounded -comr299 compare -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -1 -divr299 divide -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> 54.765366028496664530688259272591 Inexact Rounded -dvir299 divideint -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> 54 -mulr299 multiply -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> 1606504025402196.8484885386501478 Inexact Rounded -powr299 power -296615544.05897984545127115290251 -5416115 -> ? Underflow Subnormal Inexact Rounded -remr299 remainder -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -4145310.7576907509755823176468844 -subr299 subtract -296615544.05897984545127115290251 -5416115.4315053536014016450973264 -> -291199428.62747449184986950780518 Inexact Rounded -addr300 add 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> 6.1391705914046707180652185247584E+749 Inexact Rounded -comr300 compare 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> 1 -divr300 divide 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> -9.0818539468906248593699700040068E+737 Inexact Rounded -dvir300 divideint 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> ? Division_impossible -mulr300 multiply 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> -4.1499693532587347944890300176290E+761 Inexact Rounded -powr300 power 61391705914.046707180652185247584E+739 -7 -> 3.0425105291210947473420999890124E-5249 Inexact Rounded -remr300 remainder 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> ? Division_impossible -subr300 subtract 61391705914.046707180652185247584E+739 -675982087721.91856456125242297346 -> 6.1391705914046707180652185247584E+749 Inexact Rounded - --- randomly generated testcases [26 Sep 2001] -precision: 33 -rounding: half_up -maxExponent: 9999 - -addr401 add 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> -1364112374596.82605557115996067822 Inexact Rounded -comr401 compare 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> 1 -divr401 divide 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> -3.12789896373176963160811150593867E-11 Inexact Rounded -dvir401 divideint 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> 0 -mulr401 multiply 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> -58204024324286.5595453066065234923 Inexact Rounded -powr401 power 042.668056830485571428877212944418 -1 -> 0.0234367363850869744523417227148909 Inexact Rounded -remr401 remainder 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> 42.668056830485571428877212944418 -subr401 subtract 042.668056830485571428877212944418 -01364112374639.4941124016455321071 -> 1364112374682.16216923213110353598 Inexact Rounded -addr402 add -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -3.27179426341653256363531809227344E+455 Inexact Rounded -comr402 compare -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -1 -divr402 divide -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -4.31028129684803083255704680611589E+446 Inexact Rounded -dvir402 divideint -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> ? Division_impossible -mulr402 multiply -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -2.48351255171055445110558613627379E+464 Inexact Rounded -powr402 power -327.179426341653256363531809227344E+453 759067457 -> ? Overflow Inexact Rounded -remr402 remainder -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> ? Division_impossible -subr402 subtract -327.179426341653256363531809227344E+453 759067457.107518663444899356760793 -> -3.27179426341653256363531809227344E+455 Inexact Rounded -addr403 add 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 900181194.826119246619069527471177 Inexact Rounded -comr403 compare 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> -1 -divr403 divide 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 0.0000907917210693679220610511319812826 Inexact Rounded -dvir403 divideint 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 0 -mulr403 multiply 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 73557551389502.7779979042453102926 Inexact Rounded -powr403 power 81721.5803096185422787702538493471 900099473 -> ? Overflow Inexact Rounded -remr403 remainder 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> 81721.5803096185422787702538493471 -subr403 subtract 81721.5803096185422787702538493471 900099473.245809628076790757217328 -> -900017751.665500009534511986963479 Inexact Rounded -addr404 add 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 72.3239822255871305731314565069132 Inexact Rounded -comr404 compare 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> -1 -divr404 divide 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 5.5190093569539066498459824811529E-806 Inexact Rounded -dvir404 divideint 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 0 -mulr404 multiply 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 2.88686045809784034794803928177854E-802 Inexact Rounded -powr404 power 3991.56734635183403814636354392163E-807 72 -> ? Underflow Subnormal Inexact Rounded -remr404 remainder 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> 3.99156734635183403814636354392163E-804 -subr404 subtract 3991.56734635183403814636354392163E-807 72.3239822255871305731314565069132 -> -72.3239822255871305731314565069132 Inexact Rounded -addr405 add -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -61.2544651290911805069948520197050 Inexact Rounded -comr405 compare -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -1 -divr405 divide -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -13.046427256007927669474992491585 Inexact Rounded -dvir405 divideint -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -13 -mulr405 multiply -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -337.326590072564290813539036280205 Inexact Rounded -powr405 power -66.3393308595957726456416979163306 5 -> -1284858888.2728582225918489666799 Inexact Rounded -remr405 remainder -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -0.23607636303607484323270126019793 -subr405 subtract -66.3393308595957726456416979163306 5.08486573050459213864684589662559 -> -71.4241965901003647842885438129562 Inexact Rounded -addr406 add -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> -3.93606873703567753255097095208112E+116 Inexact Rounded -comr406 compare -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> -1 -divr406 divide -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> 1.85284350396137075010428736564737E+107 Inexact Rounded -dvir406 divideint -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> ? Division_impossible -mulr406 multiply -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> 8.36154649302353269818801263275941E+125 Inexact Rounded -powr406 power -393606.873703567753255097095208112E+111 -2 -> 6.45467904123103560528919747688443E-234 Inexact Rounded -remr406 remainder -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> ? Division_impossible -subr406 subtract -393606.873703567753255097095208112E+111 -2124339550.86891093200758095660557 -> -3.93606873703567753255097095208112E+116 Inexact Rounded -addr407 add -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> -877573445.238180259264773343614397 -comr407 compare -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 1 -divr407 divide -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 0.022288805307631256579746065031107 Inexact Rounded -dvir407 divideint -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 0 -mulr407 multiply -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 16425043456056213.7395191514029288 Inexact Rounded -powr407 power -019133598.609812524622150421584346 -858439847 -> ? Underflow Subnormal Inexact Rounded -remr407 remainder -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> -19133598.609812524622150421584346 -subr407 subtract -019133598.609812524622150421584346 -858439846.628367734642622922030051 -> 839306248.018555210020472500445705 -addr408 add 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 240910.327926825971183391888394542 Inexact Rounded -comr408 compare 465.351982159046525762715549761814 240444.975944666924657629172844780 -> -1 -divr408 divide 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 0.00193537827243326122782974132829095 Inexact Rounded -dvir408 divideint 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 0 -mulr408 multiply 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 111891546.156035013780371395668674 Inexact Rounded -powr408 power 465.351982159046525762715549761814 240445 -> ? Overflow Inexact Rounded -remr408 remainder 465.351982159046525762715549761814 240444.975944666924657629172844780 -> 465.351982159046525762715549761814 -subr408 subtract 465.351982159046525762715549761814 240444.975944666924657629172844780 -> -239979.623962507878131866457295018 Inexact Rounded -addr409 add 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 28066955004783.1076824222873384828 Inexact Rounded -comr409 compare 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 1 -divr409 divide 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 4.90938543219432390013656968123815E+722 Inexact Rounded -dvir409 divideint 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> ? Division_impossible -mulr409 multiply 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 1.60458773123547770690452195569223E-696 Inexact Rounded -powr409 power 28066955004783.1076824222873384828 6 -> 4.88845689938951583020171325568218E+80 Inexact Rounded -remr409 remainder 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> ? Division_impossible -subr409 subtract 28066955004783.1076824222873384828 571699969.220753535758504907561016E-718 -> 28066955004783.1076824222873384828 Inexact Rounded -addr410 add 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 2.82120384825243127096613158419270E+429 Inexact Rounded -comr410 compare 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> -1 -divr410 divide 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 1.00224012330435927467559203688861E-416 Inexact Rounded -dvir410 divideint 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 0 -mulr410 multiply 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 7.97702072298089605706798770013561E+442 Inexact Rounded -powr410 power 28275236927392.4960902824105246047 3 -> 2.26057415546622161347322061281516E+40 Inexact Rounded -remr410 remainder 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> 28275236927392.4960902824105246047 -subr410 subtract 28275236927392.4960902824105246047 28212038.4825243127096613158419270E+422 -> -2.82120384825243127096613158419270E+429 Inexact Rounded -addr411 add 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 11783.4098484281593848173575655680 Inexact Rounded -comr411 compare 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 1 -divr411 divide 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> -1394.73214754836418731335761858151 Inexact Rounded -dvir411 divideint 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> -1394 -mulr411 multiply 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> -99695.1757167732926302533138186716 Inexact Rounded -powr411 power 11791.8644211874630234271801789996 -8 -> 2.67510099318723516565332928253711E-33 Inexact Rounded -remr411 remainder 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 6.18999471819080133445705535281046 -subr411 subtract 11791.8644211874630234271801789996 -8.45457275930363860982261343159741 -> 11800.3189939467666620370027924312 Inexact Rounded -addr412 add 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> -9292.34554725628103950730533220061 Inexact Rounded -comr412 compare 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> 1 -divr412 divide 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> -0.00478829121953512281527242631775613 Inexact Rounded -dvir412 divideint 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> 0 -mulr412 multiply 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> -417446.000545543168866158913077419 Inexact Rounded -powr412 power 44.7085340739581668975502342787578 -9337 -> ? Underflow Subnormal Inexact Rounded -remr412 remainder 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> 44.7085340739581668975502342787578 -subr412 subtract 44.7085340739581668975502342787578 -9337.05408133023920640485556647937 -> 9381.76261540419737330240580075813 Inexact Rounded -addr413 add 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> 9.33545274288045458053295581965867E+589 Inexact Rounded -comr413 compare 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> 1 -divr413 divide 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> -1.08992064752484400353231056271614E+578 Inexact Rounded -dvir413 divideint 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> ? Division_impossible -mulr413 multiply 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> -7.99605715447900642683774360731254E+601 Inexact Rounded -powr413 power 93354527428804.5458053295581965867E+576 -9 -> 1.85687015691763406448005521221518E-5310 Inexact Rounded -remr413 remainder 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> ? Division_impossible -subr413 subtract 93354527428804.5458053295581965867E+576 -856525909852.318790321300941615314 -> 9.33545274288045458053295581965867E+589 Inexact Rounded -addr414 add -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -367399415798804503177950095289166 Inexact Rounded -comr414 compare -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -1 -divr414 divide -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> 6698784465980529140072174.30474769 Inexact Rounded -dvir414 divideint -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> 6698784465980529140072174 -mulr414 multiply -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> 2.01502722493617222018040789291414E+40 Inexact Rounded -powr414 power -367399415798804503177950040443482 -54845684 -> ? Underflow Subnormal Inexact Rounded -remr414 remainder -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -16714095.6549657189177857892292804 -subr414 subtract -367399415798804503177950040443482 -54845683.9691776397285506712812754 -> -367399415798804503177949985597798 Inexact Rounded -addr415 add -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> 89529730127.7712289354674386343440 Inexact Rounded -comr415 compare -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -1 -divr415 divide -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -3.2073806026445401317483592875443E-11 Inexact Rounded -dvir415 divideint -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> 0 -mulr415 multiply -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -257089920034.115975469931085527642 Inexact Rounded -powr415 power -2.87155919781024108503670175443740 9 -> -13275.7774683251354527310820885737 Inexact Rounded -remr415 remainder -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -2.87155919781024108503670175443740 -subr415 subtract -2.87155919781024108503670175443740 89529730130.6427881332776797193807 -> -89529730133.5143473310879208044174 Inexact Rounded -addr416 add -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -1.06939343381794796521780572792040E+189 Inexact Rounded -comr416 compare -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -1 -divr416 divide -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -4.03774938598259547575707503087638E+184 Inexact Rounded -dvir416 divideint -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> ? Division_impossible -mulr416 multiply -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -2.83227661494558963558481633880647E+193 Inexact Rounded -powr416 power -010.693934338179479652178057279204E+188 26485 -> ? Overflow Inexact Rounded -remr416 remainder -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> ? Division_impossible -subr416 subtract -010.693934338179479652178057279204E+188 26484.8887731973153745666514260684 -> -1.06939343381794796521780572792040E+189 Inexact Rounded -addr417 add 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 621838312788.308537943268041906168 -comr417 compare 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 1 -divr417 divide 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 60.0678575886074367081836436812959 Inexact Rounded -dvir417 divideint 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 60 -mulr417 multiply 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 6228331603681663511826.60450280350 Inexact Rounded -powr417 power 611655569568.832698912762075889186 1 -> 611655569568.832698912762075889186 -remr417 remainder 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 690976400.282357082404114870266 -subr417 subtract 611655569568.832698912762075889186 010182743219.475839030505966016982 -> 601472826349.356859882256109872204 -addr418 add 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 3457945.39110674985794181949638944 Inexact Rounded -comr418 compare 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 1 -divr418 divide 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> -1729387.11663991852426428263230475 Inexact Rounded -dvir418 divideint 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> -1729387 -mulr418 multiply 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> -6914241.49127918361259252956576654 Inexact Rounded -powr418 power 3457947.39062863674882672518304442 -2 -> 8.36302195229701913376802373659526E-14 Inexact Rounded -remr418 remainder 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 0.2332240699744359979851713353525 -subr418 subtract 3457947.39062863674882672518304442 -01.9995218868908849056866549811425 -> 3457949.39015052363971163086969940 Inexact Rounded -addr419 add -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> -53308666960535.7393391289364591513 Inexact Rounded -comr419 compare -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> -1 -divr419 divide -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> 8.16740037282731870883136714441204E+451 Inexact Rounded -dvir419 divideint -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> ? Division_impossible -mulr419 multiply -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> 3.47945961185390084641156250100085E-425 Inexact Rounded -powr419 power -53308666960535.7393391289364591513 -7 -> -8.17363502380497033342380498988958E-97 Inexact Rounded -remr419 remainder -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> ? Division_impossible -subr419 subtract -53308666960535.7393391289364591513 -6527.00547629475578694521436764596E-442 -> -53308666960535.7393391289364591513 Inexact Rounded -addr420 add -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> -413474500.320043571235254629529038 Inexact Rounded -comr420 compare -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 1 -divr420 divide -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 0.0136503290701197094953429018013146 Inexact Rounded -dvir420 divideint -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 0 -mulr420 multiply -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 2271246398971702.91169807728132089 Inexact Rounded -powr420 power -5568057.17870139549478277980540034 -407906443 -> ? Underflow Subnormal Inexact Rounded -remr420 remainder -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> -5568057.17870139549478277980540034 -subr420 subtract -5568057.17870139549478277980540034 -407906443.141342175740471849723638 -> 402338385.962640780245689069918238 Inexact Rounded -addr421 add 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 9804385357.63872821851861785530505 Inexact Rounded -comr421 compare 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 1 -divr421 divide 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 116519965.821719977402398190558439 Inexact Rounded -dvir421 divideint 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 116519965 -mulr421 multiply 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 824974242939.691780798621180901714 Inexact Rounded -powr421 power 9804385273.49533524416415189990857 84 -> 1.90244010779692739037080418507909E+839 Inexact Rounded -remr421 remainder 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 69.1423069734476624350435642749915 -subr421 subtract 9804385273.49533524416415189990857 84.1433929743544659553964804646569 -> 9804385189.35194226980968594451209 Inexact Rounded -addr422 add -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> -5874220715892.91440069210512515154 Inexact Rounded -comr422 compare -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 1 -divr422 divide -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 8.91166886601477021757439826903776E-548 Inexact Rounded -dvir422 divideint -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 0 -mulr422 multiply -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 3.07510225632952455144944282925583E-522 Inexact Rounded -powr422 power -5234910986592.18801727046580014273E-547 -6 -> 4.85896970703117149235935037271084E+3205 Inexact Rounded -remr422 remainder -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> -5.23491098659218801727046580014273E-535 -subr422 subtract -5234910986592.18801727046580014273E-547 -5874220715892.91440069210512515154 -> 5874220715892.91440069210512515154 Inexact Rounded -addr423 add 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 5.17546816784872628933218985216916E-259 Inexact Rounded -comr423 compare 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> -1 -divr423 divide 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 1.34947513442491971488363250398908E-204 Inexact Rounded -dvir423 divideint 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 0 -mulr423 multiply 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 3.61463267496484976064271305679796E-721 Inexact Rounded -powr423 power 698416560151955285929747633786867E-495 5 -> 1.66177661007189430761396979787413E-2311 Inexact Rounded -remr423 remainder 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> 6.98416560151955285929747633786867E-463 -subr423 subtract 698416560151955285929747633786867E-495 51754681.6784872628933218985216916E-266 -> -5.17546816784872628933218985216916E-259 Inexact Rounded -addr424 add 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> 107635.497735316515080720330536027 Inexact Rounded -comr424 compare 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> 1 -divr424 divide 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> -2.70980469844599888443309571235597E+603 Inexact Rounded -dvir424 divideint 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> ? Division_impossible -mulr424 multiply 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> -4.27536360069537352698066408021773E-594 Inexact Rounded -powr424 power 107635.497735316515080720330536027 -4 -> 7.45037111502910487803432806334714E-21 Inexact Rounded -remr424 remainder 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> ? Division_impossible -subr424 subtract 107635.497735316515080720330536027 -3972075.83989512668362609609006425E-605 -> 107635.497735316515080720330536027 Inexact Rounded -addr425 add -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> 7.95188637593855925052747867099091E+421 Inexact Rounded -comr425 compare -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -1 -divr425 divide -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -4.04612060894658007715621807881076E-409 Inexact Rounded -dvir425 divideint -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> 0 -mulr425 multiply -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -2.55846309007242668513226814043593E+435 Inexact Rounded -powr425 power -32174291345686.5371446616670961807 8 -> 1.14834377656109143210058690590666E+108 Inexact Rounded -remr425 remainder -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -32174291345686.5371446616670961807 -subr425 subtract -32174291345686.5371446616670961807 79518863759385.5925052747867099091E+408 -> -7.95188637593855925052747867099091E+421 Inexact Rounded -addr426 add -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> -9.31730631474527142307644239919480E+904 Inexact Rounded -comr426 compare -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 1 -divr426 divide -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 8.74902060655796717043678441884283E-208 Inexact Rounded -dvir426 divideint -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 0 -mulr426 multiply -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 7.59521700128037149179751467730962E+1602 Inexact Rounded -powr426 power -8151730494.53190523620899410544099E+688 -9 -> -6.291463527748424483752752821837E-6282 Inexact Rounded -remr426 remainder -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> -8.15173049453190523620899410544099E+697 -subr426 subtract -8151730494.53190523620899410544099E+688 -93173.0631474527142307644239919480E+900 -> 9.31730631474527142307644239919480E+904 Inexact Rounded -addr427 add 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> -5.66230530039528969825480755159562E+463 Inexact Rounded -comr427 compare 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> 1 -divr427 divide 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> -2.36034255052700900395787131334608E-464 Inexact Rounded -dvir427 divideint 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> 0 -mulr427 multiply 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> -7.56765978558098558928268129700052E+463 Inexact Rounded -powr427 power 1.33649801345976199708341799505220 -6 -> 0.175464835912284900180305028965188 Inexact Rounded -remr427 remainder 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> 1.33649801345976199708341799505220 -subr427 subtract 1.33649801345976199708341799505220 -56623.0530039528969825480755159562E+459 -> 5.66230530039528969825480755159562E+463 Inexact Rounded -addr428 add 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> 67762238162788.6551061476018185196 Inexact Rounded -comr428 compare 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> 1 -divr428 divide 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> -1.10348321777294157014941951870409E+832 Inexact Rounded -dvir428 divideint 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> ? Division_impossible -mulr428 multiply 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> -4.16111531818085838717201828773857E-805 Inexact Rounded -powr428 power 67762238162788.6551061476018185196 -6 -> 1.03293631708006509074972764670281E-83 Inexact Rounded -remr428 remainder 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> ? Division_impossible -subr428 subtract 67762238162788.6551061476018185196 -6140.75837959248100352788853809376E-822 -> 67762238162788.6551061476018185196 Inexact Rounded -addr429 add 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 6.28677291578497580015557979349893E+823 Inexact Rounded -comr429 compare 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> -1 -divr429 divide 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 6.81838333133660025740681459349372E-818 Inexact Rounded -dvir429 divideint 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 0 -mulr429 multiply 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 2.69486466971438542975159893306219E+830 Inexact Rounded -powr429 power 4286562.76568866751577306056498271 6 -> 6.20376193064412081058181881805108E+39 Inexact Rounded -remr429 remainder 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> 4286562.76568866751577306056498271 -subr429 subtract 4286562.76568866751577306056498271 6286.77291578497580015557979349893E+820 -> -6.28677291578497580015557979349893E+823 Inexact Rounded -addr430 add -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -765715.663995796739622174820554104 Inexact Rounded -comr430 compare -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -1 -divr430 divide -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -11401.7814363639478774761697650867 Inexact Rounded -dvir430 divideint -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -11401 -mulr430 multiply -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -51432606.5679912088468256122315944 Inexact Rounded -powr430 power -765782.827432642697305644096365566 67 -> -1.71821200770749773595473594136582E+394 Inexact Rounded -remr430 remainder -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -52.4839518791480724305698888408548 -subr430 subtract -765782.827432642697305644096365566 67.1634368459576834692758114618652 -> -765849.990869488654989113372177028 Inexact Rounded -addr431 add 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 105.582516975019937108929234216907 Inexact Rounded -comr431 compare 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> -1 -divr431 divide 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 0.780513207299722975882416995140701 Inexact Rounded -dvir431 divideint 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 0 -mulr431 multiply 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 2744.56726509164060561370653286614 Inexact Rounded -powr431 power 46.2835931916106252756465724211276 59 -> 1.82052645780601002671007943923993E+98 Inexact Rounded -remr431 remainder 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> 46.2835931916106252756465724211276 -subr431 subtract 46.2835931916106252756465724211276 59.2989237834093118332826617957791 -> -13.0153305917986865576360893746515 -addr432 add -3029555.82298840234029474459694644 857535844655004737373089601128532 -> 857535844655004737373089598098976 Inexact Rounded -comr432 compare -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -1 -divr432 divide -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -3.53286202771759704502126811323937E-27 Inexact Rounded -dvir432 divideint -3029555.82298840234029474459694644 857535844655004737373089601128532 -> 0 -mulr432 multiply -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -2.59795271159584761928986181925721E+39 Inexact Rounded -powr432 power -3029555.82298840234029474459694644 9 -> -2.1498622479043130256134010074636E+58 Inexact Rounded -remr432 remainder -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -3029555.82298840234029474459694644 -subr432 subtract -3029555.82298840234029474459694644 857535844655004737373089601128532 -> -857535844655004737373089604158088 Inexact Rounded -addr433 add -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> 481026979918882487383654367924619 Inexact Rounded -comr433 compare -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -1 -divr433 divide -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -2.87856597038397207797777811199804E-970 Inexact Rounded -dvir433 divideint -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> 0 -mulr433 multiply -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -6.66062615833636908683785283687416E-905 Inexact Rounded -powr433 power -0138466789523.10694176543700501945E-948 5 -> -5.09012109092637525843636056746667E-4685 Inexact Rounded -remr433 remainder -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -1.3846678952310694176543700501945E-937 -subr433 subtract -0138466789523.10694176543700501945E-948 481026979918882487383654367924619 -> -481026979918882487383654367924619 Inexact Rounded -addr434 add -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> -8.76320343474845477961976776833770E+779 Inexact Rounded -comr434 compare -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 1 -divr434 divide -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 1.09475564939253134070730299863765E-770 Inexact Rounded -dvir434 divideint -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 0 -mulr434 multiply -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 8.40703746148119867711463485065336E+789 Inexact Rounded -powr434 power -9593566466.96690575714244442109870 -9 -> -1.45271091841882960010964421066745E-90 Inexact Rounded -remr434 remainder -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> -9593566466.96690575714244442109870 -subr434 subtract -9593566466.96690575714244442109870 -87632034347.4845477961976776833770E+769 -> 8.76320343474845477961976776833770E+779 Inexact Rounded -addr435 add -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> 5.65688889355241946154894311253202E-458 Inexact Rounded -comr435 compare -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -1 -divr435 divide -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -5.63791814686655486612569970629128E-438 Inexact Rounded -dvir435 divideint -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> 0 -mulr435 multiply -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -1.80415590504280580443565448126548E-1352 Inexact Rounded -powr435 power -3189.30765477670526823106100241863E-898 6 -> 1.05239431027683904514311527228736E-5367 Inexact Rounded -remr435 remainder -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -3.18930765477670526823106100241863E-895 -subr435 subtract -3189.30765477670526823106100241863E-898 565688889.355241946154894311253202E-466 -> -5.65688889355241946154894311253202E-458 Inexact Rounded -addr436 add -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> -6.31925802672685034379197328370812E+538 Inexact Rounded -comr436 compare -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 1 -divr436 divide -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 2.70356936263934622050341328519534E-529 Inexact Rounded -dvir436 divideint -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 0 -mulr436 multiply -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 1.07961694859382462346866817306769E+549 Inexact Rounded -powr436 power -17084552395.6714834680088150543965 -6 -> 4.02141014977177984123011868387622E-62 Inexact Rounded -remr436 remainder -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> -17084552395.6714834680088150543965 -subr436 subtract -17084552395.6714834680088150543965 -631925802672.685034379197328370812E+527 -> 6.31925802672685034379197328370812E+538 Inexact Rounded -addr437 add 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> 34956830.3498233068159118874697600 Inexact Rounded -comr437 compare 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> 1 -divr437 divide 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> -5.67473494371787737607169979602343E+666 Inexact Rounded -dvir437 divideint 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> ? Division_impossible -mulr437 multiply 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> -2.15336927667273841617128781173293E-652 Inexact Rounded -powr437 power 034956830.349823306815911887469760 -6 -> 5.48034272566098493462169431762597E-46 Inexact Rounded -remr437 remainder 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> ? Division_impossible -subr437 subtract 034956830.349823306815911887469760 -61600816.0672274126966042956781665E-667 -> 34956830.3498233068159118874697600 Inexact Rounded -addr438 add -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -743.513686646195531912469919819067 Inexact Rounded -comr438 compare -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -1 -divr438 divide -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -38.3130314835722766807703585435688 Inexact Rounded -dvir438 divideint -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -38 -mulr438 multiply -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -15212.5977643862002585039364868883 Inexact Rounded -powr438 power -763.440067781256632695791981893608 20 -> 4.52375407727336769552481661250924E+57 Inexact Rounded -remr438 remainder -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -6.2375846489348029295536230610386 -subr438 subtract -763.440067781256632695791981893608 19.9263811350611007833220620745413 -> -783.366448916317733479114043968149 Inexact Rounded -addr439 add -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -5.10472027868440667684575147556654E+821 Inexact Rounded -comr439 compare -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -1 -divr439 divide -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -6.11437198047603754107526874071737E+788 Inexact Rounded -dvir439 divideint -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> ? Division_impossible -mulr439 multiply -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -4.26178996090176289115594057419892E+854 Inexact Rounded -powr439 power -510472027868440667684575147556654E+789 8 -> 4.61079266619522147262600755274182E+6573 Inexact Rounded -remr439 remainder -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> ? Division_impossible -subr439 subtract -510472027868440667684575147556654E+789 834872378550801889983927148587909 -> -5.10472027868440667684575147556654E+821 Inexact Rounded -addr440 add 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> 7.03047615605170866769935030348280E-87 Inexact Rounded -comr440 compare 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> 1 -divr440 divide 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> -3.95554019499502537743883483402608E+670 Inexact Rounded -dvir440 divideint 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> ? Division_impossible -mulr440 multiply 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> -1.24957888288817581538108991453732E-843 Inexact Rounded -powr440 power 070304761.560517086676993503034828E-094 -2 -> 2.02316135427631488479902919959627E+172 Inexact Rounded -remr440 remainder 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> ? Division_impossible -subr440 subtract 070304761.560517086676993503034828E-094 -17773.7446959771077104057845273992E-761 -> 7.03047615605170866769935030348280E-87 Inexact Rounded -addr441 add -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -970725702203.695030010334183533769 Inexact Rounded -comr441 compare -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -1 -divr441 divide -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> 213749425.654447811698884007553614 Inexact Rounded -dvir441 divideint -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> 213749425 -mulr441 multiply -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> 4408472103336875.21161867891724392 Inexact Rounded -powr441 power -0970725697662.27605454336231195463 -4541 -> ? Underflow Subnormal Inexact Rounded -remr441 remainder -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -2972.12171050214753770792631747550 -subr441 subtract -0970725697662.27605454336231195463 -4541.41897546697187157913886433474 -> -970725693120.857079076390440375491 Inexact Rounded -addr442 add -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -808178238631844268316111260157075 Inexact Rounded -comr442 compare -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -1 -divr442 divide -808178238631844268316111259558675 -598400.265108644514211244980426520 -> 1350564640015847635178945884.97836 Inexact Rounded -dvir442 divideint -808178238631844268316111259558675 -598400.265108644514211244980426520 -> 1350564640015847635178945884 -mulr442 multiply -808178238631844268316111259558675 -598400.265108644514211244980426520 -> 4.83614072252332979731348423145208E+38 Inexact Rounded -powr442 power -808178238631844268316111259558675 -598400 -> ? Underflow Subnormal Inexact Rounded -remr442 remainder -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -585452.097764536570956813681556320 -subr442 subtract -808178238631844268316111259558675 -598400.265108644514211244980426520 -> -808178238631844268316111258960275 Inexact Rounded -addr443 add -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> -41.5341827319983835079860474697980 Rounded -comr443 compare -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 1 -divr443 divide -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 0.313295770023233218639213140599856 Inexact Rounded -dvir443 divideint -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 0 -mulr443 multiply -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 313.357994403604968250936036978086 Inexact Rounded -powr443 power -9.90826595069053564311371766315200 -32 -> 1.34299698259038003011439568004625E-32 Inexact Rounded -remr443 remainder -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> -9.90826595069053564311371766315200 -subr443 subtract -9.90826595069053564311371766315200 -031.625916781307847864872329806646 -> 21.7176508306173122217586121434940 Rounded -addr444 add -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -238194.467436351098567470879626885 Inexact Rounded -comr444 compare -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -1 -divr444 divide -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> 4.77175317088274715226553516820589 Inexact Rounded -dvir444 divideint -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> 4 -mulr444 multiply -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> 8126916733.40905487026003135987472 Inexact Rounded -powr444 power -196925.469891897719160698483752907 -41269 -> ? Underflow Subnormal Inexact Rounded -remr444 remainder -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -31849.4797140842015336089002569958 -subr444 subtract -196925.469891897719160698483752907 -41268.9975444533794067723958739778 -> -155656.472347444339753926087878929 Inexact Rounded -addr445 add 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 421071135212152225162086005824310 Inexact Rounded -comr445 compare 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 1 -divr445 divide 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 3.15333426537349744281860005497304E+627 Inexact Rounded -dvir445 divideint 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> ? Division_impossible -mulr445 multiply 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 5.62264847262712040027311932121460E-563 Inexact Rounded -powr445 power 421071135212152225162086005824310 1 -> 421071135212152225162086005824310 -remr445 remainder 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> ? Division_impossible -subr445 subtract 421071135212152225162086005824310 1335320330.08964354845796510145246E-604 -> 421071135212152225162086005824310 Inexact Rounded -addr446 add 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> 1249441.46421514282301182772247227 Inexact Rounded -comr446 compare 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> 1 -divr446 divide 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> -4.31066764178328992440635387255816E+676 Inexact Rounded -dvir446 divideint 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> ? Division_impossible -mulr446 multiply 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> -3.62148999233506984566620611700349E-665 Inexact Rounded -powr446 power 1249441.46421514282301182772247227 -3 -> 5.12686942572191282348415024932322E-19 Inexact Rounded -remr446 remainder 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> ? Division_impossible -subr446 subtract 1249441.46421514282301182772247227 -0289848.71208912281976374705180836E-676 -> 1249441.46421514282301182772247227 Inexact Rounded -addr447 add 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> -6.90425401708167622194241915195001E+923 Inexact Rounded -comr447 compare 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> 1 -divr447 divide 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> -1.08360729901578455109968388309079E-916 Inexact Rounded -dvir447 divideint 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> 0 -mulr447 multiply 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> -5.16541767544616308732028810026275E+931 Inexact Rounded -powr447 power 74815000.4716875558358937279052903 -7 -> 7.62218032252683815537906972439985E-56 Inexact Rounded -remr447 remainder 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> 74815000.4716875558358937279052903 -subr447 subtract 74815000.4716875558358937279052903 -690425401708167622194241915195001E+891 -> 6.90425401708167622194241915195001E+923 Inexact Rounded -addr448 add -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> -72394386611338.3523609383834372430 Inexact Rounded -comr448 compare -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 1 -divr448 divide -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 2.32613829621244113284301004158794E-8 Inexact Rounded -dvir448 divideint -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 0 -mulr448 multiply -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 121911674530293613615.441384822381 Inexact Rounded -powr448 power -1683993.51210241555668790556759021 -7 -> -2.60385683509956889000676113860292E-44 Inexact Rounded -remr448 remainder -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> -1683993.51210241555668790556759021 -subr448 subtract -1683993.51210241555668790556759021 -72394384927344.8402585228267493374 -> 72394383243351.3281561072700614318 Inexact Rounded -addr449 add -763.148530974741766171756970448158 517370.808956957601473642272664647 -> 516607.660425982859707470515694199 Inexact Rounded -comr449 compare -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -1 -divr449 divide -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -0.00147505139014951946381155525173867 Inexact Rounded -dvir449 divideint -763.148530974741766171756970448158 517370.808956957601473642272664647 -> 0 -mulr449 multiply -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -394830772.824715962925351447322187 Inexact Rounded -powr449 power -763.148530974741766171756970448158 517371 -> ? Overflow Inexact Rounded -remr449 remainder -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -763.148530974741766171756970448158 -subr449 subtract -763.148530974741766171756970448158 517370.808956957601473642272664647 -> -518133.957487932343239814029635095 Inexact Rounded -addr450 add -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> -9.27540422641025050968830154578151E+532 Inexact Rounded -comr450 compare -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 1 -divr450 divide -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 8.36450164191471769978415758342237E-532 Inexact Rounded -dvir450 divideint -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 0 -mulr450 multiply -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 7.19624203304351070562409746475943E+534 Inexact Rounded -powr450 power -77.5841338812312523460591226178754 -9 -> -9.81846856873938549466341693997829E-18 Inexact Rounded -remr450 remainder -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> -77.5841338812312523460591226178754 -subr450 subtract -77.5841338812312523460591226178754 -927540422.641025050968830154578151E+524 -> 9.27540422641025050968830154578151E+532 Inexact Rounded -addr451 add 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 5176165576.79580866488385418967956 Inexact Rounded -comr451 compare 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 1 -divr451 divide 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> -39899.5720067736855444089432524094 Inexact Rounded -dvir451 divideint 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> -39899 -mulr451 multiply 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> -671536855852442.071887385512001794 Inexact Rounded -powr451 power 5176295309.89943746236102209837813 -129733 -> ? Underflow Subnormal Inexact Rounded -remr451 remainder 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 74208.214046920838632934314641965 -subr451 subtract 5176295309.89943746236102209837813 -129733.103628797477167908698565465 -> 5176425043.00306625983819000707670 Inexact Rounded -addr452 add 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 4.47163484116690197229286530307326E+184 Inexact Rounded -comr452 compare 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 1 -divr452 divide 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 1.41906636616314987705536737025932E+1129 Inexact Rounded -dvir452 divideint 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> ? Division_impossible -mulr452 multiply 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 1.40906152309150441010046222214810E-760 Inexact Rounded -powr452 power 4471634841166.90197229286530307326E+172 3 -> 8.94126556389673498386397569249516E+553 Inexact Rounded -remr452 remainder 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> ? Division_impossible -subr452 subtract 4471634841166.90197229286530307326E+172 31511104397.8671727003201890825879E-955 -> 4.47163484116690197229286530307326E+184 Inexact Rounded -addr453 add -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -8189130.15945231049670285726774317 Inexact Rounded -comr453 compare -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -1 -divr453 divide -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -3.17515949922556778343526099830093E+372 Inexact Rounded -dvir453 divideint -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> ? Division_impossible -mulr453 multiply -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -2.11207823685103185039979144161848E-359 Inexact Rounded -powr453 power -8189130.15945231049670285726774317 3 -> -549178241054875982731.000937875885 Inexact Rounded -remr453 remainder -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> ? Division_impossible -subr453 subtract -8189130.15945231049670285726774317 2.57912402871404325831670923864936E-366 -> -8189130.15945231049670285726774317 Inexact Rounded -addr454 add -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -254346232981353293392888785644009 Inexact Rounded -comr454 compare -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -1 -divr454 divide -254346232981353293392888785643245 -764.416902486152093758287929678445 -> 332732350833857889204406356900.665 Inexact Rounded -dvir454 divideint -254346232981353293392888785643245 -764.416902486152093758287929678445 -> 332732350833857889204406356900 -mulr454 multiply -254346232981353293392888785643245 -764.416902486152093758287929678445 -> 1.94426559574627262006307326336289E+35 Inexact Rounded -powr454 power -254346232981353293392888785643245 -764 -> ? Underflow Subnormal Inexact Rounded -remr454 remainder -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -508.299323962538610580669092979500 -subr454 subtract -254346232981353293392888785643245 -764.416902486152093758287929678445 -> -254346232981353293392888785642481 Inexact Rounded -addr455 add -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> -16063.2166595009220002171676000611 Inexact Rounded -comr455 compare -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 1 -divr455 divide -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 0.218031569091122520391599541575615 Inexact Rounded -dvir455 divideint -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 0 -mulr455 multiply -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 37919912.4040225840727281633024665 Inexact Rounded -powr455 power -2875.36745499544177964804277329726 -13188 -> ? Underflow Subnormal Inexact Rounded -remr455 remainder -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> -2875.36745499544177964804277329726 -subr455 subtract -2875.36745499544177964804277329726 -13187.8492045054802205691248267638 -> 10312.4817495100384409210820534665 Inexact Rounded -addr456 add -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -7.26927570984219944693602140223103 Inexact Rounded -comr456 compare -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -1 -divr456 divide -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -4.51836100553039917574557235275173E+427 Inexact Rounded -dvir456 divideint -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> ? Division_impossible -mulr456 multiply -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -1.16950304061635681891361504442479E-426 Inexact Rounded -powr456 power -7.26927570984219944693602140223103 2 -> 52.8423693457018126451998096211036 Inexact Rounded -remr456 remainder -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> ? Division_impossible -subr456 subtract -7.26927570984219944693602140223103 0160883021541.32275286769110003971E-438 -> -7.26927570984219944693602140223103 Inexact Rounded -addr457 add -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> -2.85671516868762752241056540028515E+505 Inexact Rounded -comr457 compare -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> -1 -divr457 divide -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> 6.39064071690455919792707589054106E+501 Inexact Rounded -dvir457 divideint -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> ? Division_impossible -mulr457 multiply -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> 1.27699583132923253605397736797000E+509 Inexact Rounded -powr457 power -28567151.6868762752241056540028515E+498 -4470 -> ? Underflow Subnormal Inexact Rounded -remr457 remainder -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> ? Division_impossible -subr457 subtract -28567151.6868762752241056540028515E+498 -4470.15455137546427645290210989675 -> -2.85671516868762752241056540028515E+505 Inexact Rounded -addr458 add 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 7191835.18758398207642347765831492 Inexact Rounded -comr458 compare 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 1 -divr458 divide 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 88363.98125861881867339355698741 Inexact Rounded -dvir458 divideint 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 88363 -mulr458 multiply 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 585321326.397904638863485891524555 Inexact Rounded -powr458 power 7191753.79974136447257468282073718 81 -> 2.5329098313856148261255740414876E+555 Inexact Rounded -remr458 remainder 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 79.8625220355815164499390351500273 -subr458 subtract 7191753.79974136447257468282073718 81.3878426176038487948375777384429 -> 7191672.41189874686872588798315944 Inexact Rounded -addr459 add 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 502976488.859892968179149660674285 Inexact Rounded -comr459 compare 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 1 -divr459 divide 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 734496.390406706323899801641278933 Inexact Rounded -dvir459 divideint 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 734496 -mulr459 multiply 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 344432815169.648082754214631086270 Inexact Rounded -powr459 power 502975804.069864536104621700404770 685 -> 3.62876716573623552761739177592677E+5960 Inexact Rounded -remr459 remainder 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 267.346619523615915582548420925472 -subr459 subtract 502975804.069864536104621700404770 684.790028432074527960269515227243 -> 502975119.279836104030093740135255 Inexact Rounded -addr460 add 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 1040125.74219736715313697451377660 Inexact Rounded -comr460 compare 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 1 -divr460 divide 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> -3.23566278503319947059213001405065 Inexact Rounded -dvir460 divideint 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> -3 -mulr460 multiply 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> -700361636056.225618266296899048765 Inexact Rounded -powr460 power 1505368.42063731861590460453659570 -465243 -> ? Underflow Subnormal Inexact Rounded -remr460 remainder 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 109640.385317464227601714468138385 -subr460 subtract 1505368.42063731861590460453659570 -465242.678439951462767630022819105 -> 1970611.09907727007867223455941481 Inexact Rounded -addr461 add 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 77809073.3514961963946898136677398 Inexact Rounded -comr461 compare 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 1 -divr461 divide 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 8.06437785764050431295652411163382 Inexact Rounded -dvir461 divideint 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 8 -mulr461 multiply 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 594231065731939.137329770485497261 Inexact Rounded -powr461 power 69225023.2850142784063416137144829 8584050 -> ? Overflow Inexact Rounded -remr461 remainder 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 552622.75315893449955601408842746 -subr461 subtract 69225023.2850142784063416137144829 8584050.06648191798834819995325693 -> 60640973.2185323604179934137612260 Inexact Rounded -addr462 add -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -5.56695018537751006841940471339310E+624 Inexact Rounded -comr462 compare -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -1 -divr462 divide -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -9.06661464189378059067792554300676E+616 Inexact Rounded -dvir462 divideint -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> ? Division_impossible -mulr462 multiply -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -3.41813737437080390787865389703565E+632 Inexact Rounded -powr462 power -55669501853.7751006841940471339310E+614 61400538 -> ? Overflow Inexact Rounded -remr462 remainder -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> ? Division_impossible -subr462 subtract -55669501853.7751006841940471339310E+614 061400538.186044693233816566977189 -> -5.56695018537751006841940471339310E+624 Inexact Rounded -addr463 add -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> -834662.599983953345718523807123972 Inexact Rounded -comr463 compare -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 1 -divr463 divide -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 6.32071595497552015656909892339226E-409 Inexact Rounded -dvir463 divideint -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 0 -mulr463 multiply -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 4.40340044311040151960763108019957E-397 Inexact Rounded -powr463 power -527566.521273992424649346837337602E-408 -834663 -> ? Overflow Inexact Rounded -remr463 remainder -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> -5.27566521273992424649346837337602E-403 -subr463 subtract -527566.521273992424649346837337602E-408 -834662.599983953345718523807123972 -> 834662.599983953345718523807123972 Inexact Rounded -addr464 add 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 69065510.0459653699418083455335366 Inexact Rounded -comr464 compare 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 1 -divr464 divide 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 9.93964810285396646889830919492683E+827 Inexact Rounded -dvir464 divideint 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> ? Division_impossible -mulr464 multiply 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 4.79900759921241352562381181332720E-813 Inexact Rounded -powr464 power 69065510.0459653699418083455335366 7 -> 7.49598249763416483824919118973567E+54 Inexact Rounded -remr464 remainder 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> ? Division_impossible -subr464 subtract 69065510.0459653699418083455335366 694848643848212520086960886818157E-853 -> 69065510.0459653699418083455335366 Inexact Rounded -addr465 add -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> -2921982.82411285505229122890041841 Inexact Rounded -comr465 compare -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> -1 -divr465 divide -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> 4.00300943792444663467732029501716E+764 Inexact Rounded -dvir465 divideint -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> ? Division_impossible -mulr465 multiply -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> 2.13289120518223547921212412642411E-752 Inexact Rounded -powr465 power -2921982.82411285505229122890041841 -7 -> -5.49865394870631248479668782154131E-46 Inexact Rounded -remr465 remainder -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> ? Division_impossible -subr465 subtract -2921982.82411285505229122890041841 -72994.6523840298017471962569778803E-763 -> -2921982.82411285505229122890041841 Inexact Rounded -addr466 add 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 3873389.71099271106554595739922987 Inexact Rounded -comr466 compare 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> -1 -divr466 divide 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 0.00000116465942888322776753062580106351 Inexact Rounded -dvir466 divideint 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 0 -mulr466 multiply 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 17473516.9087705701652062546164705 Inexact Rounded -powr466 power 4.51117459466491451401835756593793 3873385 -> ? Overflow Inexact Rounded -remr466 remainder 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> 4.51117459466491451401835756593793 -subr466 subtract 4.51117459466491451401835756593793 3873385.19981811640063144338087230 -> -3873380.68864352173571692936251473 Inexact Rounded -addr467 add 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 3.61713861293896216593840817950781E+411 Inexact Rounded -comr467 compare 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> -1 -divr467 divide 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 1.36997137177543416190811827685231E-398 Inexact Rounded -dvir467 divideint 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 0 -mulr467 multiply 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 1.79242831280777466554271332425735E+425 Inexact Rounded -powr467 power 49553763474698.8118661758811091120 4 -> 6.02985091099730236635954801474802E+54 Inexact Rounded -remr467 remainder 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> 49553763474698.8118661758811091120 -subr467 subtract 49553763474698.8118661758811091120 36.1713861293896216593840817950781E+410 -> -3.61713861293896216593840817950781E+411 Inexact Rounded -addr468 add 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 7.55985583344379951506071499170749E+967 Inexact Rounded -comr468 compare 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 1 -divr468 divide 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 1.01213580367212873025671916758669E+935 Inexact Rounded -dvir468 divideint 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> ? Division_impossible -mulr468 multiply 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 5.64661580146688255286933753616580E+1000 Inexact Rounded -powr468 power 755985583344.379951506071499170749E+956 7 -> 1.41121958516547725677142981375469E+6775 Inexact Rounded -remr468 remainder 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> ? Division_impossible -subr468 subtract 755985583344.379951506071499170749E+956 746921095569971477373643487285780 -> 7.55985583344379951506071499170749E+967 Inexact Rounded -addr469 add -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -20497230690.0922299809209551116556 Inexact Rounded -comr469 compare -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -1 -divr469 divide -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> 50.8179779735012053661447873666816 Inexact Rounded -dvir469 divideint -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> 50 -mulr469 multiply -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> 7951459193692715079.09328760016914 Inexact Rounded -powr469 power -20101668541.7472260497594230105456 -395562148 -> ? Underflow Subnormal Inexact Rounded -remr469 remainder -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -323561124.497029491682817955047400 -subr469 subtract -20101668541.7472260497594230105456 -395562148.345003931161532101109964 -> -19706106393.4022221185978909094356 Inexact Rounded -addr470 add 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 460874498597.269108074612032613370 Inexact Rounded -comr470 compare 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> -1 -divr470 divide 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 0.0000121160334374633240168068405467307 Inexact Rounded -dvir470 divideint 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 0 -mulr470 multiply 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 2573447398655758659.39475672905225 Inexact Rounded -powr470 power 5583903.18072100716072011264668631 5 -> 5.42861943589418603298670454702901E+33 Inexact Rounded -remr470 remainder 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> 5583903.18072100716072011264668631 -subr470 subtract 5583903.18072100716072011264668631 460868914694.088387067451312500723 -> -460863330790.907666060290592388076 Inexact Rounded -addr471 add -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> -5.08580148958769104511751975720470E+667 Inexact Rounded -comr471 compare -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 1 -divr471 divide -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 1.87903204624039476408191264564568E-615 Inexact Rounded -dvir471 divideint -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 0 -mulr471 multiply -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 4.86018718792967378985838739820108E+720 Inexact Rounded -powr471 power -955638397975240685017992436116257E+020 -5 -> -1.25467730420304189161768408462414E-265 Inexact Rounded -remr471 remainder -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> -9.55638397975240685017992436116257E+52 -subr471 subtract -955638397975240685017992436116257E+020 -508580.148958769104511751975720470E+662 -> 5.08580148958769104511751975720470E+667 Inexact Rounded -addr472 add -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -1.36243796098020983814115584402407E+828 Inexact Rounded -comr472 compare -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -1 -divr472 divide -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -2.0677122663825560063493937136592E+818 Inexact Rounded -dvir472 divideint -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> ? Division_impossible -mulr472 multiply -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -8.97725098263977535966921696143011E+837 Inexact Rounded -powr472 power -136243796098020983814115584402407E+796 7 -> -8.71399185551742199752832286984005E+5796 Inexact Rounded -remr472 remainder -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> ? Division_impossible -subr472 subtract -136243796098020983814115584402407E+796 6589108083.99750311651581032447390 -> -1.36243796098020983814115584402407E+828 Inexact Rounded -addr473 add -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -8.08498482718304598213092937543934E+526 Inexact Rounded -comr473 compare -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -1 -divr473 divide -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -1.68419126177106468565397017107736E+522 Inexact Rounded -dvir473 divideint -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> ? Division_impossible -mulr473 multiply -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -3.88120881158362912220132691803539E+531 Inexact Rounded -powr473 power -808498.482718304598213092937543934E+521 48005 -> ? Overflow Inexact Rounded -remr473 remainder -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> ? Division_impossible -subr473 subtract -808498.482718304598213092937543934E+521 48005.1465097914355096301483788905 -> -8.08498482718304598213092937543934E+526 Inexact Rounded -addr474 add -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> -3.19563111559114001594257448970812E+989 Inexact Rounded -comr474 compare -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 1 -divr474 divide -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 2.5418025772477972144848478105604E-591 Inexact Rounded -dvir474 divideint -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 0 -mulr474 multiply -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 2.59570359202261082537505332325404E+1388 Inexact Rounded -powr474 power -812.266340554281305985524813074211E+396 -3 -> -1.86596988030914616216741808216469E-1197 Inexact Rounded -remr474 remainder -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> -8.12266340554281305985524813074211E+398 -subr474 subtract -812.266340554281305985524813074211E+396 -3195.63111559114001594257448970812E+986 -> 3.19563111559114001594257448970812E+989 Inexact Rounded -addr475 add -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> -9.29889720905183397678866648217793E+139 Inexact Rounded -comr475 compare -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> -1 -divr475 divide -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> 3.31747801646964399331556971055197E+128 Inexact Rounded -dvir475 divideint -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> ? Division_impossible -mulr475 multiply -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> 2.60648266168558079957349074609920E+151 Inexact Rounded -powr475 power -929889.720905183397678866648217793E+134 -3 -> -1.24367143370300189518778505830181E-420 Inexact Rounded -remr475 remainder -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> ? Division_impossible -subr475 subtract -929889.720905183397678866648217793E+134 -280300190774.057595671079264841349 -> -9.29889720905183397678866648217793E+139 Inexact Rounded -addr476 add 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 492754319.251171861122327008214092 Inexact Rounded -comr476 compare 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> -1 -divr476 divide 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 0.000170389819117633485695890041185782 Inexact Rounded -dvir476 divideint 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 0 -mulr476 multiply 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 41357714926052.9282985560380064649 Inexact Rounded -powr476 power 83946.0157801953636255078996185540 492670373 -> ? Overflow Inexact Rounded -remr476 remainder 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> 83946.0157801953636255078996185540 -subr476 subtract 83946.0157801953636255078996185540 492670373.235391665758701500314473 -> -492586427.219611470395075992414854 Inexact Rounded -addr477 add 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 7812758113817.99135851825223122508 Inexact Rounded -comr477 compare 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 1 -divr477 divide 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 2.57210790001590171809512871857381E+163 Inexact Rounded -dvir477 divideint 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> ? Division_impossible -mulr477 multiply 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 2.37311931372130583136091717093935E-138 Inexact Rounded -powr477 power 7812758113817.99135851825223122508 3 -> 4.76884421816246896090414314934253E+38 Inexact Rounded -remr477 remainder 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> ? Division_impossible -subr477 subtract 7812758113817.99135851825223122508 3037492.36716301443309571918002123E-157 -> 7812758113817.99135851825223122508 Inexact Rounded -addr478 add 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 490328689.266902084767070133475071 Inexact Rounded -comr478 compare 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 1 -divr478 divide 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 430.269702657525223124148258641358 Inexact Rounded -dvir478 divideint 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 430 -mulr478 multiply 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 556182701222751.588454129518830550 Inexact Rounded -powr478 power 489191747.148674326757767356626016 1136942 -> ? Overflow Inexact Rounded -remr478 remainder 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 306636.3107383827575733115325810 -subr478 subtract 489191747.148674326757767356626016 01136942.1182277580093027768490545 -> 488054805.030446568748464579776962 Inexact Rounded -addr479 add -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> -5.99369540373174482335865567937853E+297 Inexact Rounded -comr479 compare -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> -1 -divr479 divide -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> 1.56540833065089684132688143737586E+287 Inexact Rounded -dvir479 divideint -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> ? Division_impossible -mulr479 multiply -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> 2.29488906436173641324091638963715E+308 Inexact Rounded -powr479 power -599369540.373174482335865567937853E+289 -4 -> 7.74856580646291366270329165540958E-1192 Inexact Rounded -remr479 remainder -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> ? Division_impossible -subr479 subtract -599369540.373174482335865567937853E+289 -38288383205.6749439588707955585209 -> -5.99369540373174482335865567937853E+297 Inexact Rounded -addr480 add -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> -68624373320.5930758945974232604298 Inexact Rounded -comr480 compare -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 1 -divr480 divide -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 0.0517550008335747813596332404664731 Inexact Rounded -dvir480 divideint -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 0 -mulr480 multiply -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 220333194736887939420.719579906257 Inexact Rounded -powr480 power -3376883870.85961692148022521960139 -7 -> -1.9970416371836115312573575617928E-67 Inexact Rounded -remr480 remainder -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> -3376883870.85961692148022521960139 -subr480 subtract -3376883870.85961692148022521960139 -65247489449.7334589731171980408284 -> 61870605578.8738420516369728212270 Inexact Rounded -addr481 add 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 60.2702299236537409084931002396185 -comr481 compare 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 1 -divr481 divide 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 36.8450651616286048437498576613622 Inexact Rounded -dvir481 divideint 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 36 -mulr481 multiply 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 93.4472468622373769590900258060029 Inexact Rounded -powr481 power 58.6776780370008364590621772421025 2 -> 3443.0698998139303363200831350523 Inexact Rounded -remr481 remainder 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 1.3458101174962762795489493315265 -subr481 subtract 58.6776780370008364590621772421025 01.5925518866529044494309229975160 -> 57.0851261503479320096312542445865 -addr482 add 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 4099616630.75768235660057557396732 Inexact Rounded -comr482 compare 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 1 -divr482 divide 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 14097951.1289920788134209002390834 Inexact Rounded -dvir482 divideint 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 14097951 -mulr482 multiply 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 1192148701687.90798437501397900174 Inexact Rounded -powr482 power 4099616339.96249499552808575717579 291 -> 2.03364757877800497409765979877258E+2797 Inexact Rounded -remr482 remainder 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 37.510275726642959858538282144855 -subr482 subtract 4099616339.96249499552808575717579 290.795187361072489816791525139895 -> 4099616049.16730763445559594038426 Inexact Rounded -addr483 add 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> -2140306990376.46573014981378406578 Inexact Rounded -comr483 compare 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> 1 -divr483 divide 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> -0.0000401191663393971853092748263233128 Inexact Rounded -dvir483 divideint 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> 0 -mulr483 multiply 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> -183797198561136797328.508878254848 Inexact Rounded -powr483 power 85870777.2282833141709970713739108 -2 -> 1.35615463448707573424578785973269E-16 Inexact Rounded -remr483 remainder 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> 85870777.2282833141709970713739108 -subr483 subtract 85870777.2282833141709970713739108 -2140392861153.69401346398478113715 -> 2140478731930.92229677815577820852 Inexact Rounded -addr484 add 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 20862.2147613905641948547078989489 Inexact Rounded -comr484 compare 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 1 -divr484 divide 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> -539.315627388386430188627412639767 Inexact Rounded -dvir484 divideint 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> -539 -mulr484 multiply 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> -810009.016386974103738622793670566 Inexact Rounded -powr484 power 20900.9693761555165742010339929779 -39 -> 3.26219014701526335296044439989665E-169 Inexact Rounded -remr484 remainder 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 12.2320178461841065312693113692685 -subr484 subtract 20900.9693761555165742010339929779 -38.7546147649523793463260940289585 -> 20939.7239909204689535473600870069 Inexact Rounded -addr485 add 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 379130602.210390198240885543797232 Inexact Rounded -comr485 compare 448.827596155587910947511170319456 379130153.382794042652974596286062 -> -1 -divr485 divide 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 0.00000118383513458615061394140895596979 Inexact Rounded -dvir485 divideint 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 0 -mulr485 multiply 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 170164075372.898786469094460692097 Inexact Rounded -powr485 power 448.827596155587910947511170319456 379130153 -> ? Overflow Inexact Rounded -remr485 remainder 448.827596155587910947511170319456 379130153.382794042652974596286062 -> 448.827596155587910947511170319456 -subr485 subtract 448.827596155587910947511170319456 379130153.382794042652974596286062 -> -379129704.555197887065063648774892 Inexact Rounded -addr486 add 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 3404725642.18381024654682525116780 Inexact Rounded -comr486 compare 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> -1 -divr486 divide 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 2.89049673833970863420201979291523E-8 Inexact Rounded -dvir486 divideint 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 0 -mulr486 multiply 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 335070891904.214504811798212040413 Inexact Rounded -powr486 power 98.4134807921002817357000140482039 3 -> 953155.543384739667965055839894682 Inexact Rounded -remr486 remainder 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> 98.4134807921002817357000140482039 -subr486 subtract 98.4134807921002817357000140482039 3404725543.77032945444654351546779 -> -3404725445.35684866234626177976778 Inexact Rounded -addr487 add 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> -5.14995709970912830072802043560650E-425 Inexact Rounded -comr487 compare 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> 1 -divr487 divide 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> -1.05971064046375011086850722752614E-354 Inexact Rounded -dvir487 divideint 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> 0 -mulr487 multiply 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> -2.81057072061345688074304873033317E-1203 Inexact Rounded -powr487 power 545746433.649359734136476718176330E-787 -5 -> 2.06559640092667166976186801348662E+3891 Inexact Rounded -remr487 remainder 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> 5.45746433649359734136476718176330E-779 -subr487 subtract 545746433.649359734136476718176330E-787 -5149957099709.12830072802043560650E-437 -> 5.14995709970912830072802043560650E-425 Inexact Rounded -addr488 add 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 741304513547.273820525801608231737 Inexact Rounded -comr488 compare 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 1 -divr488 divide 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 1.87090281565101612623398174727653E+839 Inexact Rounded -dvir488 divideint 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> ? Division_impossible -mulr488 multiply 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 2.93725776244737788947443361076095E-816 Inexact Rounded -powr488 power 741304513547.273820525801608231737 4 -> 3.01985838652892073903194846668712E+47 Inexact Rounded -remr488 remainder 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> ? Division_impossible -subr488 subtract 741304513547.273820525801608231737 0396.22823128272584928019323186355E-830 -> 741304513547.273820525801608231737 Inexact Rounded -addr489 add -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> 4033.67985686310526747345220908179 Inexact Rounded -comr489 compare -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -1 -divr489 divide -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -0.148981244172527671907534117771626 Inexact Rounded -dvir489 divideint -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> 0 -mulr489 multiply -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -3347003.65129295988793454267973464 Inexact Rounded -powr489 power -706.145005094292315613907254240553 4740 -> ? Overflow Inexact Rounded -remr489 remainder -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -706.145005094292315613907254240553 -subr489 subtract -706.145005094292315613907254240553 4739.82486195739758308735946332234 -> -5445.96986705168989870126671756289 Inexact Rounded -addr490 add -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -769956988.821146059252782194757952 Inexact Rounded -comr490 compare -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -1 -divr490 divide -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> 24675.5283319978698932292028650803 Inexact Rounded -dvir490 divideint -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> 24675 -mulr490 multiply -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> 24023222896770.8161787236737395477 Inexact Rounded -powr490 power -769925786.823099083228795187975893 -31202 -> ? Underflow Subnormal Inexact Rounded -remr490 remainder -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -16485.0139656913494028406582486750 -subr490 subtract -769925786.823099083228795187975893 -31201.9980469760239870067820594790 -> -769894584.825052107204808181193834 Inexact Rounded -addr491 add 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 8.44386105460497256507419289692857E+919 Inexact Rounded -comr491 compare 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 1 -divr491 divide 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 1.60516736512701978695559003341922E+888 Inexact Rounded -dvir491 divideint 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> ? Division_impossible -mulr491 multiply 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 4.44182899917309231779837668210610E+951 Inexact Rounded -powr491 power 84438610546049.7256507419289692857E+906 5 -> 4.29245144719689283247342866988213E+4599 Inexact Rounded -remr491 remainder 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> ? Division_impossible -subr491 subtract 84438610546049.7256507419289692857E+906 052604240766736461898844111790311 -> 8.44386105460497256507419289692857E+919 Inexact Rounded -addr492 add 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 549926.071394341400088797374170467 Inexact Rounded -comr492 compare 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 1 -divr492 divide 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 3328.65471667062107598395714348089 Inexact Rounded -dvir492 divideint 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 3328 -mulr492 multiply 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 90798561.3782451425861113694732484 Inexact Rounded -powr492 power 549760.911304725795164589619286514 165 -> 1.34488925442386544028875603347654E+947 Inexact Rounded -remr492 remainder 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 108.133063992607401181365489319248 -subr492 subtract 549760.911304725795164589619286514 165.160089615604924207754883953484 -> 549595.751215110190240381864402561 Inexact Rounded -addr493 add 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 11737235.5901860743933857728701908 Inexact Rounded -comr493 compare 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> -1 -divr493 divide 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 0.451420792712387250865423208234291 Inexact Rounded -dvir493 divideint 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 0 -mulr493 multiply 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 29520691206417.5831886752808745421 Inexact Rounded -powr493 power 3650514.18649737956855828939662794 8086721 -> ? Overflow Inexact Rounded -remr493 remainder 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> 3650514.18649737956855828939662794 -subr493 subtract 3650514.18649737956855828939662794 08086721.4036886948248274834735629 -> -4436207.21719131525626919407693496 -addr494 add 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 55067723881941.2298810010885806451 Inexact Rounded -comr494 compare 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 1 -divr494 divide 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> -6184039198391.19853088419484117054 Inexact Rounded -dvir494 divideint 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> -6184039198391 -mulr494 multiply 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> -490367883555396.250365158593373279 Inexact Rounded -powr494 power 55067723881950.1346958179604099594 -9 -> 2.14746386538529270173788457887121E-124 Inexact Rounded -remr494 remainder 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 1.76788075918488693086347720461547 -subr494 subtract 55067723881950.1346958179604099594 -8.90481481687182931431054785192083 -> 55067723881959.0395106348322392737 Inexact Rounded -addr495 add 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 5.57966504537858308541154858567656E+140 Inexact Rounded -comr495 compare 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> -1 -divr495 divide 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 1.55609900657590706155251902725027E-113 Inexact Rounded -dvir495 divideint 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 0 -mulr495 multiply 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 4.84455044392374106106966779322483E+168 Inexact Rounded -powr495 power 868251123.413992653362860637541060E+019 6 -> 4.28422354304291884802690733853227E+167 Inexact Rounded -remr495 remainder 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> 8682511234139926533628606375.41060 -subr495 subtract 868251123.413992653362860637541060E+019 5579665045.37858308541154858567656E+131 -> -5.57966504537858308541154858567656E+140 Inexact Rounded -addr496 add -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> -646.464431574014407536004990059069 Inexact Rounded -comr496 compare -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> -1 -divr496 divide -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> 8.09416521887063886613527228353543E+36 Inexact Rounded -dvir496 divideint -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> ? Division_impossible -mulr496 multiply -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> 5.16317927778381197995451363439626E-32 Inexact Rounded -powr496 power -646.464431574014407536004990059069 -8 -> 3.27825641569860861774700548035691E-23 Inexact Rounded -remr496 remainder -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> ? Division_impossible -subr496 subtract -646.464431574014407536004990059069 -798.679560020414523841321724649594E-037 -> -646.464431574014407536004990059069 Inexact Rounded -addr497 add 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> 354.546679975219753598558273421556 Inexact Rounded -comr497 compare 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> 1 -divr497 divide 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> -5.03655799102477192579414523352028E+446 Inexact Rounded -dvir497 divideint 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> ? Division_impossible -mulr497 multiply 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> -2.49581854324831161267369292071408E-442 Inexact Rounded -powr497 power 354.546679975219753598558273421556 -7 -> 1.41999246365875617298270414304233E-18 Inexact Rounded -remr497 remainder 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> ? Division_impossible -subr497 subtract 354.546679975219753598558273421556 -7039.46386812239015144581761752927E-448 -> 354.546679975219753598558273421556 Inexact Rounded -addr498 add 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> 91936087917435.5974889495278215874 Inexact Rounded -comr498 compare 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> 1 -divr498 divide 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> -1.37052712434303366569304688993783E+760 Inexact Rounded -dvir498 divideint 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> ? Division_impossible -mulr498 multiply 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> -6.16714847260980448099292763939423E-733 Inexact Rounded -powr498 power 91936087917435.5974889495278215874 -7 -> 1.8013489993903570871965906508263E-98 Inexact Rounded -remr498 remainder 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> ? Division_impossible -subr498 subtract 91936087917435.5974889495278215874 -67080823344.8903392584327136082486E-757 -> 91936087917435.5974889495278215874 Inexact Rounded -addr499 add -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -7.34564225185285561365214172598110E-597 Inexact Rounded -comr499 compare -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -1 -divr499 divide -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -1.78342822299163842247184303878022E+159 Inexact Rounded -dvir499 divideint -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> ? Division_impossible -mulr499 multiply -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -3.02554705575380338274126867655676E-1352 Inexact Rounded -powr499 power -07345.6422518528556136521417259811E-600 4 -> 2.91151541552217582082937236255996E-2385 Inexact Rounded -remr499 remainder -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> ? Division_impossible -subr499 subtract -07345.6422518528556136521417259811E-600 41188325.7041362608934957584583381E-763 -> -7.34564225185285561365214172598110E-597 Inexact Rounded -addr500 add -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> 6.16988426425908872398170896375634E+401 Inexact Rounded -comr500 compare -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -1 -divr500 divide -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -4.1051130635733775335165551186617E-394 Inexact Rounded -dvir500 divideint -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> 0 -mulr500 multiply -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -1.56271275924409657991913620522315E+410 Inexact Rounded -powr500 power -253280724.939458021588167965038184 6 -> 2.64005420221406808782284459794424E+50 Inexact Rounded -remr500 remainder -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -253280724.939458021588167965038184 -subr500 subtract -253280724.939458021588167965038184 616988.426425908872398170896375634E+396 -> -6.16988426425908872398170896375634E+401 Inexact Rounded diff --git a/qdecimal/test/tc_subset/randoms0.decTest b/qdecimal/test/tc_subset/randoms0.decTest deleted file mode 100644 index 8203267..0000000 --- a/qdecimal/test/tc_subset/randoms0.decTest +++ /dev/null @@ -1,4029 +0,0 @@ ------------------------------------------------------------------------- --- randoms0.decTest -- decimal random testcases (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -maxexponent: 999999999 -minexponent: -999999999 -precision: 9 -rounding: half_up - --- Randomly generated testcases [31 Dec 2000] -radd001 add 905.67402 -202896611.E-780472620 -> 905.674020 Inexact Rounded -rcom001 compare 905.67402 -202896611.E-780472620 -> 1 -rdiv001 divide 905.67402 -202896611.E-780472620 -> -4.46372177E+780472614 Inexact Rounded -rdvi001 divideint 905.67402 -202896611.E-780472620 -> ? Division_impossible -rmul001 multiply 905.67402 -202896611.E-780472620 -> -1.83758189E-780472609 Inexact Rounded -rpow001 power 905.67402 -2 -> 0.0000012191473 Inexact Rounded -rrem001 remainder 905.67402 -202896611.E-780472620 -> ? Division_impossible -rsub001 subtract 905.67402 -202896611.E-780472620 -> 905.674020 Inexact Rounded -radd002 add 3915134.7 -597164907. -> -593249772 Inexact Rounded -rcom002 compare 3915134.7 -597164907. -> 1 -rdiv002 divide 3915134.7 -597164907. -> -0.00655620358 Inexact Rounded -rdvi002 divideint 3915134.7 -597164907. -> 0 -rmul002 multiply 3915134.7 -597164907. -> -2.33798105E+15 Inexact Rounded -rpow002 power 3915134.7 -597164907 -> ? Underflow Subnormal Inexact Rounded -rrem002 remainder 3915134.7 -597164907. -> 3915134.7 -rsub002 subtract 3915134.7 -597164907. -> 601080042 Inexact Rounded -radd003 add 309759261 62663.487 -> 309821924 Inexact Rounded -rcom003 compare 309759261 62663.487 -> 1 -rdiv003 divide 309759261 62663.487 -> 4943.21775 Inexact Rounded -rdvi003 divideint 309759261 62663.487 -> 4943 -rmul003 multiply 309759261 62663.487 -> 1.94105954E+13 Inexact Rounded -rpow003 power 309759261 62663 -> 1.13679199E+532073 Inexact Rounded -rrem003 remainder 309759261 62663.487 -> 13644.759 -rsub003 subtract 309759261 62663.487 -> 309696598 Inexact Rounded -radd004 add 3.93591888E-236595626 7242375.00 -> 7242375.00 Inexact Rounded -rcom004 compare 3.93591888E-236595626 7242375.00 -> -1 -rdiv004 divide 3.93591888E-236595626 7242375.00 -> 5.4345693E-236595633 Inexact Rounded -rdvi004 divideint 3.93591888E-236595626 7242375.00 -> 0 -rmul004 multiply 3.93591888E-236595626 7242375.00 -> 2.85054005E-236595619 Inexact Rounded -rpow004 power 3.93591888E-236595626 7242375 -> ? Underflow Subnormal Inexact Rounded -rrem004 remainder 3.93591888E-236595626 7242375.00 -> 3.93591888E-236595626 -rsub004 subtract 3.93591888E-236595626 7242375.00 -> -7242375.00 Inexact Rounded -radd005 add 323902.714 -608669.607E-657060568 -> 323902.714 Inexact Rounded -rcom005 compare 323902.714 -608669.607E-657060568 -> 1 -rdiv005 divide 323902.714 -608669.607E-657060568 -> -5.32148657E+657060567 Inexact Rounded -rdvi005 divideint 323902.714 -608669.607E-657060568 -> ? Division_impossible -rmul005 multiply 323902.714 -608669.607E-657060568 -> -1.97149738E-657060557 Inexact Rounded -rpow005 power 323902.714 -6 -> 8.65989204E-34 Inexact Rounded -rrem005 remainder 323902.714 -608669.607E-657060568 -> ? Division_impossible -rsub005 subtract 323902.714 -608669.607E-657060568 -> 323902.714 Inexact Rounded -radd006 add 5.11970092 -8807.22036 -> -8802.10066 Inexact Rounded -rcom006 compare 5.11970092 -8807.22036 -> 1 -rdiv006 divide 5.11970092 -8807.22036 -> -0.000581307236 Inexact Rounded -rdvi006 divideint 5.11970092 -8807.22036 -> 0 -rmul006 multiply 5.11970092 -8807.22036 -> -45090.3342 Inexact Rounded -rpow006 power 5.11970092 -8807 -> 4.81819262E-6247 Inexact Rounded -rrem006 remainder 5.11970092 -8807.22036 -> 5.11970092 -rsub006 subtract 5.11970092 -8807.22036 -> 8812.34006 Inexact Rounded -radd007 add -7.99874516 4561.83758 -> 4553.83883 Inexact Rounded -rcom007 compare -7.99874516 4561.83758 -> -1 -rdiv007 divide -7.99874516 4561.83758 -> -0.0017534042 Inexact Rounded -rdvi007 divideint -7.99874516 4561.83758 -> 0 -rmul007 multiply -7.99874516 4561.83758 -> -36488.9763 Inexact Rounded -rpow007 power -7.99874516 4562 -> 3.85236199E+4119 Inexact Rounded -rrem007 remainder -7.99874516 4561.83758 -> -7.99874516 -rsub007 subtract -7.99874516 4561.83758 -> -4569.83633 Inexact Rounded -radd008 add 297802878 -927206.324 -> 296875672 Inexact Rounded -rcom008 compare 297802878 -927206.324 -> 1 -rdiv008 divide 297802878 -927206.324 -> -321.182967 Inexact Rounded -rdvi008 divideint 297802878 -927206.324 -> -321 -rmul008 multiply 297802878 -927206.324 -> -2.76124712E+14 Inexact Rounded -rpow008 power 297802878 -927206 -> 1.9460281E-7857078 Inexact Rounded -rrem008 remainder 297802878 -927206.324 -> 169647.996 -rsub008 subtract 297802878 -927206.324 -> 298730084 Inexact Rounded -radd009 add -766.651824 31300.3619 -> 30533.7101 Inexact Rounded -rcom009 compare -766.651824 31300.3619 -> -1 -rdiv009 divide -766.651824 31300.3619 -> -0.0244933853 Inexact Rounded -rdvi009 divideint -766.651824 31300.3619 -> 0 -rmul009 multiply -766.651824 31300.3619 -> -23996479.5 Inexact Rounded -rpow009 power -766.651824 31300 -> 8.37189011E+90287 Inexact Rounded -rrem009 remainder -766.651824 31300.3619 -> -766.651824 -rsub009 subtract -766.651824 31300.3619 -> -32067.0137 Inexact Rounded -radd010 add -56746.8689E+934981942 471002521. -> -5.67468689E+934981946 Inexact Rounded -rcom010 compare -56746.8689E+934981942 471002521. -> -1 -rdiv010 divide -56746.8689E+934981942 471002521. -> -1.2048103E+934981938 Inexact Rounded -rdvi010 divideint -56746.8689E+934981942 471002521. -> ? Division_impossible -rmul010 multiply -56746.8689E+934981942 471002521. -> -2.67279183E+934981955 Inexact Rounded -rpow010 power -56746.8689E+934981942 471002521 -> ? Overflow Inexact Rounded -rrem010 remainder -56746.8689E+934981942 471002521. -> ? Division_impossible -rsub010 subtract -56746.8689E+934981942 471002521. -> -5.67468689E+934981946 Inexact Rounded -radd011 add 456417160 -41346.1024 -> 456375814 Inexact Rounded -rcom011 compare 456417160 -41346.1024 -> 1 -rdiv011 divide 456417160 -41346.1024 -> -11038.9404 Inexact Rounded -rdvi011 divideint 456417160 -41346.1024 -> -11038 -rmul011 multiply 456417160 -41346.1024 -> -1.88710706E+13 Inexact Rounded -rpow011 power 456417160 -41346 -> 1.04766863E-358030 Inexact Rounded -rrem011 remainder 456417160 -41346.1024 -> 38881.7088 -rsub011 subtract 456417160 -41346.1024 -> 456458506 Inexact Rounded -radd012 add 102895.722 -2.62214826 -> 102893.100 Inexact Rounded -rcom012 compare 102895.722 -2.62214826 -> 1 -rdiv012 divide 102895.722 -2.62214826 -> -39241.0008 Inexact Rounded -rdvi012 divideint 102895.722 -2.62214826 -> -39241 -rmul012 multiply 102895.722 -2.62214826 -> -269807.838 Inexact Rounded -rpow012 power 102895.722 -3 -> 9.17926786E-16 Inexact Rounded -rrem012 remainder 102895.722 -2.62214826 -> 0.00212934 -rsub012 subtract 102895.722 -2.62214826 -> 102898.344 Inexact Rounded -radd013 add 61.3033331E+157644141 -567740.918E-893439456 -> 6.13033331E+157644142 Inexact Rounded -rcom013 compare 61.3033331E+157644141 -567740.918E-893439456 -> 1 -rdiv013 divide 61.3033331E+157644141 -567740.918E-893439456 -> ? Inexact Overflow Rounded -rdvi013 divideint 61.3033331E+157644141 -567740.918E-893439456 -> ? Division_impossible -rmul013 multiply 61.3033331E+157644141 -567740.918E-893439456 -> -3.48044106E-735795308 Inexact Rounded -rpow013 power 61.3033331E+157644141 -6 -> 1.88406322E-945864857 Inexact Rounded -rrem013 remainder 61.3033331E+157644141 -567740.918E-893439456 -> ? Division_impossible -rsub013 subtract 61.3033331E+157644141 -567740.918E-893439456 -> 6.13033331E+157644142 Inexact Rounded -radd014 add 80223.3897 73921.0383E-467772675 -> 80223.3897 Inexact Rounded -rcom014 compare 80223.3897 73921.0383E-467772675 -> 1 -rdiv014 divide 80223.3897 73921.0383E-467772675 -> 1.08525789E+467772675 Inexact Rounded -rdvi014 divideint 80223.3897 73921.0383E-467772675 -> ? Division_impossible -rmul014 multiply 80223.3897 73921.0383E-467772675 -> 5.93019626E-467772666 Inexact Rounded -rpow014 power 80223.3897 7 -> 2.13848919E+34 Inexact Rounded -rrem014 remainder 80223.3897 73921.0383E-467772675 -> ? Division_impossible -rsub014 subtract 80223.3897 73921.0383E-467772675 -> 80223.3897 Inexact Rounded -radd015 add -654645.954 -9.12535752 -> -654655.079 Inexact Rounded -rcom015 compare -654645.954 -9.12535752 -> -1 -rdiv015 divide -654645.954 -9.12535752 -> 71739.2116 Inexact Rounded -rdvi015 divideint -654645.954 -9.12535752 -> 71739 -rmul015 multiply -654645.954 -9.12535752 -> 5973878.38 Inexact Rounded -rpow015 power -654645.954 -9 -> -4.5283669E-53 Inexact Rounded -rrem015 remainder -654645.954 -9.12535752 -> -1.93087272 -rsub015 subtract -654645.954 -9.12535752 -> -654636.829 Inexact Rounded -radd016 add 63.1917772E-706014634 -7.56253257E-138579234 -> -7.56253257E-138579234 Inexact Rounded -rcom016 compare 63.1917772E-706014634 -7.56253257E-138579234 -> 1 -rdiv016 divide 63.1917772E-706014634 -7.56253257E-138579234 -> -8.35590149E-567435400 Inexact Rounded -rdvi016 divideint 63.1917772E-706014634 -7.56253257E-138579234 -> 0 -rmul016 multiply 63.1917772E-706014634 -7.56253257E-138579234 -> -4.77889873E-844593866 Inexact Rounded -rpow016 power 63.1917772E-706014634 -8 -> ? Overflow Inexact Rounded -rrem016 remainder 63.1917772E-706014634 -7.56253257E-138579234 -> 6.31917772E-706014633 -rsub016 subtract 63.1917772E-706014634 -7.56253257E-138579234 -> 7.56253257E-138579234 Inexact Rounded -radd017 add -39674.7190 2490607.78 -> 2450933.06 Inexact Rounded -rcom017 compare -39674.7190 2490607.78 -> -1 -rdiv017 divide -39674.7190 2490607.78 -> -0.0159297338 Inexact Rounded -rdvi017 divideint -39674.7190 2490607.78 -> 0 -rmul017 multiply -39674.7190 2490607.78 -> -9.88141638E+10 Inexact Rounded -rpow017 power -39674.7190 2490608 -> 2.55032329E+11453095 Inexact Rounded -rrem017 remainder -39674.7190 2490607.78 -> -39674.7190 -rsub017 subtract -39674.7190 2490607.78 -> -2530282.50 Inexact Rounded -radd018 add -3364.59737E-600363681 896487.451 -> 896487.451 Inexact Rounded -rcom018 compare -3364.59737E-600363681 896487.451 -> -1 -rdiv018 divide -3364.59737E-600363681 896487.451 -> -3.7530892E-600363684 Inexact Rounded -rdvi018 divideint -3364.59737E-600363681 896487.451 -> 0 -rmul018 multiply -3364.59737E-600363681 896487.451 -> -3.01631932E-600363672 Inexact Rounded -rpow018 power -3364.59737E-600363681 896487 -> ? Underflow Subnormal Inexact Rounded -rrem018 remainder -3364.59737E-600363681 896487.451 -> -3.36459737E-600363678 -rsub018 subtract -3364.59737E-600363681 896487.451 -> -896487.451 Inexact Rounded -radd019 add -64138.0578 31759011.3E+697488342 -> 3.17590113E+697488349 Inexact Rounded -rcom019 compare -64138.0578 31759011.3E+697488342 -> -1 -rdiv019 divide -64138.0578 31759011.3E+697488342 -> -2.01952313E-697488345 Inexact Rounded -rdvi019 divideint -64138.0578 31759011.3E+697488342 -> 0 -rmul019 multiply -64138.0578 31759011.3E+697488342 -> -2.03696130E+697488354 Inexact Rounded -rpow019 power -64138.0578 3 -> -2.63844116E+14 Inexact Rounded -rrem019 remainder -64138.0578 31759011.3E+697488342 -> -64138.0578 -rsub019 subtract -64138.0578 31759011.3E+697488342 -> -3.17590113E+697488349 Inexact Rounded -radd020 add 61399.8527 -64344484.5 -> -64283084.6 Inexact Rounded -rcom020 compare 61399.8527 -64344484.5 -> 1 -rdiv020 divide 61399.8527 -64344484.5 -> -0.000954236454 Inexact Rounded -rdvi020 divideint 61399.8527 -64344484.5 -> 0 -rmul020 multiply 61399.8527 -64344484.5 -> -3.95074187E+12 Inexact Rounded -rpow020 power 61399.8527 -64344485 -> 1.27378842E-308092161 Inexact Rounded -rrem020 remainder 61399.8527 -64344484.5 -> 61399.8527 -rsub020 subtract 61399.8527 -64344484.5 -> 64405884.4 Inexact Rounded -radd021 add -722960.204 -26154599.8 -> -26877560.0 Inexact Rounded -rcom021 compare -722960.204 -26154599.8 -> 1 -rdiv021 divide -722960.204 -26154599.8 -> 0.0276417995 Inexact Rounded -rdvi021 divideint -722960.204 -26154599.8 -> 0 -rmul021 multiply -722960.204 -26154599.8 -> 1.89087348E+13 Inexact Rounded -rpow021 power -722960.204 -26154600 -> 5.34236139E-153242794 Inexact Rounded -rrem021 remainder -722960.204 -26154599.8 -> -722960.204 -rsub021 subtract -722960.204 -26154599.8 -> 25431639.6 Inexact Rounded -radd022 add 9.47109959E+230565093 73354723.2 -> 9.47109959E+230565093 Inexact Rounded -rcom022 compare 9.47109959E+230565093 73354723.2 -> 1 -rdiv022 divide 9.47109959E+230565093 73354723.2 -> 1.29113698E+230565086 Inexact Rounded -rdvi022 divideint 9.47109959E+230565093 73354723.2 -> ? Division_impossible -rmul022 multiply 9.47109959E+230565093 73354723.2 -> 6.94749889E+230565101 Inexact Rounded -rpow022 power 9.47109959E+230565093 73354723 -> ? Overflow Inexact Rounded -rrem022 remainder 9.47109959E+230565093 73354723.2 -> ? Division_impossible -rsub022 subtract 9.47109959E+230565093 73354723.2 -> 9.47109959E+230565093 Inexact Rounded -radd023 add 43.7456245 547441956. -> 547442000 Inexact Rounded -rcom023 compare 43.7456245 547441956. -> -1 -rdiv023 divide 43.7456245 547441956. -> 7.99091557E-8 Inexact Rounded -rdvi023 divideint 43.7456245 547441956. -> 0 -rmul023 multiply 43.7456245 547441956. -> 2.39481902E+10 Inexact Rounded -rpow023 power 43.7456245 547441956 -> 2.91742391E+898316458 Inexact Rounded -rrem023 remainder 43.7456245 547441956. -> 43.7456245 -rsub023 subtract 43.7456245 547441956. -> -547441912 Inexact Rounded -radd024 add -73150542E-242017390 -8.15869954 -> -8.15869954 Inexact Rounded -rcom024 compare -73150542E-242017390 -8.15869954 -> 1 -rdiv024 divide -73150542E-242017390 -8.15869954 -> 8.96595611E-242017384 Inexact Rounded -rdvi024 divideint -73150542E-242017390 -8.15869954 -> 0 -rmul024 multiply -73150542E-242017390 -8.15869954 -> 5.96813293E-242017382 Inexact Rounded -rpow024 power -73150542E-242017390 -8 -> ? Overflow Inexact Rounded -rrem024 remainder -73150542E-242017390 -8.15869954 -> -7.3150542E-242017383 -rsub024 subtract -73150542E-242017390 -8.15869954 -> 8.15869954 Inexact Rounded -radd025 add 2015.62109E+299897596 -11788916.1 -> 2.01562109E+299897599 Inexact Rounded -rcom025 compare 2015.62109E+299897596 -11788916.1 -> 1 -rdiv025 divide 2015.62109E+299897596 -11788916.1 -> -1.70975947E+299897592 Inexact Rounded -rdvi025 divideint 2015.62109E+299897596 -11788916.1 -> ? Division_impossible -rmul025 multiply 2015.62109E+299897596 -11788916.1 -> -2.37619879E+299897606 Inexact Rounded -rpow025 power 2015.62109E+299897596 -11788916 -> ? Underflow Subnormal Inexact Rounded -rrem025 remainder 2015.62109E+299897596 -11788916.1 -> ? Division_impossible -rsub025 subtract 2015.62109E+299897596 -11788916.1 -> 2.01562109E+299897599 Inexact Rounded -radd026 add 29.498114 -26486451 -> -26486421.5 Inexact Rounded -rcom026 compare 29.498114 -26486451 -> 1 -rdiv026 divide 29.498114 -26486451 -> -0.0000011137058 Inexact Rounded -rdvi026 divideint 29.498114 -26486451 -> 0 -rmul026 multiply 29.498114 -26486451 -> -781300351 Inexact Rounded -rpow026 power 29.498114 -26486451 -> 4.22252513E-38929634 Inexact Rounded -rrem026 remainder 29.498114 -26486451 -> 29.498114 -rsub026 subtract 29.498114 -26486451 -> 26486480.5 Inexact Rounded -radd027 add 244375043.E+130840878 -9.44522029 -> 2.44375043E+130840886 Inexact Rounded -rcom027 compare 244375043.E+130840878 -9.44522029 -> 1 -rdiv027 divide 244375043.E+130840878 -9.44522029 -> -2.58728791E+130840885 Inexact Rounded -rdvi027 divideint 244375043.E+130840878 -9.44522029 -> ? Division_impossible -rmul027 multiply 244375043.E+130840878 -9.44522029 -> -2.30817611E+130840887 Inexact Rounded -rpow027 power 244375043.E+130840878 -9 -> ? Underflow Subnormal Inexact Rounded -rrem027 remainder 244375043.E+130840878 -9.44522029 -> ? Division_impossible -rsub027 subtract 244375043.E+130840878 -9.44522029 -> 2.44375043E+130840886 Inexact Rounded -radd028 add -349388.759 -196215.776 -> -545604.535 -rcom028 compare -349388.759 -196215.776 -> -1 -rdiv028 divide -349388.759 -196215.776 -> 1.78063541 Inexact Rounded -rdvi028 divideint -349388.759 -196215.776 -> 1 -rmul028 multiply -349388.759 -196215.776 -> 6.85555865E+10 Inexact Rounded -rpow028 power -349388.759 -196216 -> 1.24551752E-1087686 Inexact Rounded -rrem028 remainder -349388.759 -196215.776 -> -153172.983 -rsub028 subtract -349388.759 -196215.776 -> -153172.983 -radd029 add -70905112.4 -91353968.8 -> -162259081 Inexact Rounded -rcom029 compare -70905112.4 -91353968.8 -> 1 -rdiv029 divide -70905112.4 -91353968.8 -> 0.776157986 Inexact Rounded -rdvi029 divideint -70905112.4 -91353968.8 -> 0 -rmul029 multiply -70905112.4 -91353968.8 -> 6.47746343E+15 Inexact Rounded -rpow029 power -70905112.4 -91353969 -> -3.05944741E-717190554 Inexact Rounded -rrem029 remainder -70905112.4 -91353968.8 -> -70905112.4 -rsub029 subtract -70905112.4 -91353968.8 -> 20448856.4 -radd030 add -225094.28 -88.7723542 -> -225183.052 Inexact Rounded -rcom030 compare -225094.28 -88.7723542 -> -1 -rdiv030 divide -225094.28 -88.7723542 -> 2535.63491 Inexact Rounded -rdvi030 divideint -225094.28 -88.7723542 -> 2535 -rmul030 multiply -225094.28 -88.7723542 -> 19982149.2 Inexact Rounded -rpow030 power -225094.28 -89 -> -4.36076965E-477 Inexact Rounded -rrem030 remainder -225094.28 -88.7723542 -> -56.3621030 -rsub030 subtract -225094.28 -88.7723542 -> -225005.508 Inexact Rounded -radd031 add 50.4442340 82.7952169E+880120759 -> 8.27952169E+880120760 Inexact Rounded -rcom031 compare 50.4442340 82.7952169E+880120759 -> -1 -rdiv031 divide 50.4442340 82.7952169E+880120759 -> 6.09265075E-880120760 Inexact Rounded -rdvi031 divideint 50.4442340 82.7952169E+880120759 -> 0 -rmul031 multiply 50.4442340 82.7952169E+880120759 -> 4.17654130E+880120762 Inexact Rounded -rpow031 power 50.4442340 8 -> 4.19268518E+13 Inexact Rounded -rrem031 remainder 50.4442340 82.7952169E+880120759 -> 50.4442340 -rsub031 subtract 50.4442340 82.7952169E+880120759 -> -8.27952169E+880120760 Inexact Rounded -radd032 add -32311.9037 8.36379449 -> -32303.5399 Inexact Rounded -rcom032 compare -32311.9037 8.36379449 -> -1 -rdiv032 divide -32311.9037 8.36379449 -> -3863.30675 Inexact Rounded -rdvi032 divideint -32311.9037 8.36379449 -> -3863 -rmul032 multiply -32311.9037 8.36379449 -> -270250.122 Inexact Rounded -rpow032 power -32311.9037 8 -> 1.1882296E+36 Inexact Rounded -rrem032 remainder -32311.9037 8.36379449 -> -2.56558513 -rsub032 subtract -32311.9037 8.36379449 -> -32320.2675 Inexact Rounded -radd033 add 615396156.E+549895291 -29530247.4 -> 6.15396156E+549895299 Inexact Rounded -rcom033 compare 615396156.E+549895291 -29530247.4 -> 1 -rdiv033 divide 615396156.E+549895291 -29530247.4 -> -2.08395191E+549895292 Inexact Rounded -rdvi033 divideint 615396156.E+549895291 -29530247.4 -> ? Division_impossible -rmul033 multiply 615396156.E+549895291 -29530247.4 -> -1.81728007E+549895307 Inexact Rounded -rpow033 power 615396156.E+549895291 -29530247 -> ? Underflow Subnormal Inexact Rounded -rrem033 remainder 615396156.E+549895291 -29530247.4 -> ? Division_impossible -rsub033 subtract 615396156.E+549895291 -29530247.4 -> 6.15396156E+549895299 Inexact Rounded -radd034 add 592.142173E-419941416 -3.46079109E-844011845 -> 5.92142173E-419941414 Inexact Rounded -rcom034 compare 592.142173E-419941416 -3.46079109E-844011845 -> 1 -rdiv034 divide 592.142173E-419941416 -3.46079109E-844011845 -> -1.71100236E+424070431 Inexact Rounded -rdvi034 divideint 592.142173E-419941416 -3.46079109E-844011845 -> ? Division_impossible -rmul034 multiply 592.142173E-419941416 -3.46079109E-844011845 -> ? Underflow Subnormal Inexact Rounded -rpow034 power 592.142173E-419941416 -3 -> ? Overflow Inexact Rounded -rrem034 remainder 592.142173E-419941416 -3.46079109E-844011845 -> ? Division_impossible -rsub034 subtract 592.142173E-419941416 -3.46079109E-844011845 -> 5.92142173E-419941414 Inexact Rounded -radd035 add 849.515993E-878446473 -1039.08778 -> -1039.08778 Inexact Rounded -rcom035 compare 849.515993E-878446473 -1039.08778 -> 1 -rdiv035 divide 849.515993E-878446473 -1039.08778 -> -8.17559411E-878446474 Inexact Rounded -rdvi035 divideint 849.515993E-878446473 -1039.08778 -> 0 -rmul035 multiply 849.515993E-878446473 -1039.08778 -> -8.82721687E-878446468 Inexact Rounded -rpow035 power 849.515993E-878446473 -1039 -> ? Overflow Inexact Rounded -rrem035 remainder 849.515993E-878446473 -1039.08778 -> 8.49515993E-878446471 -rsub035 subtract 849.515993E-878446473 -1039.08778 -> 1039.08778 Inexact Rounded -radd036 add 213361789 -599.644851 -> 213361189 Inexact Rounded -rcom036 compare 213361789 -599.644851 -> 1 -rdiv036 divide 213361789 -599.644851 -> -355813.593 Inexact Rounded -rdvi036 divideint 213361789 -599.644851 -> -355813 -rmul036 multiply 213361789 -599.644851 -> -1.27941298E+11 Inexact Rounded -rpow036 power 213361789 -600 -> 3.38854684E-4998 Inexact Rounded -rrem036 remainder 213361789 -599.644851 -> 355.631137 -rsub036 subtract 213361789 -599.644851 -> 213362389 Inexact Rounded -radd037 add -795522555. -298.037702 -> -795522853 Inexact Rounded -rcom037 compare -795522555. -298.037702 -> -1 -rdiv037 divide -795522555. -298.037702 -> 2669201.08 Inexact Rounded -rdvi037 divideint -795522555. -298.037702 -> 2669201 -rmul037 multiply -795522555. -298.037702 -> 2.37095714E+11 Inexact Rounded -rpow037 power -795522555. -298 -> 4.03232712E-2653 Inexact Rounded -rrem037 remainder -795522555. -298.037702 -> -22.783898 -rsub037 subtract -795522555. -298.037702 -> -795522257 Inexact Rounded -radd038 add -501260651. -8761893.0E-689281479 -> -501260651 Inexact Rounded -rcom038 compare -501260651. -8761893.0E-689281479 -> -1 -rdiv038 divide -501260651. -8761893.0E-689281479 -> 5.72091728E+689281480 Inexact Rounded -rdvi038 divideint -501260651. -8761893.0E-689281479 -> ? Division_impossible -rmul038 multiply -501260651. -8761893.0E-689281479 -> 4.39199219E-689281464 Inexact Rounded -rpow038 power -501260651. -9 -> -5.00526961E-79 Inexact Rounded -rrem038 remainder -501260651. -8761893.0E-689281479 -> ? Division_impossible -rsub038 subtract -501260651. -8761893.0E-689281479 -> -501260651 Inexact Rounded -radd039 add -1.70781105E-848889023 36504769.4 -> 36504769.4 Inexact Rounded -rcom039 compare -1.70781105E-848889023 36504769.4 -> -1 -rdiv039 divide -1.70781105E-848889023 36504769.4 -> -4.67832307E-848889031 Inexact Rounded -rdvi039 divideint -1.70781105E-848889023 36504769.4 -> 0 -rmul039 multiply -1.70781105E-848889023 36504769.4 -> -6.23432486E-848889016 Inexact Rounded -rpow039 power -1.70781105E-848889023 36504769 -> ? Underflow Subnormal Inexact Rounded -rrem039 remainder -1.70781105E-848889023 36504769.4 -> -1.70781105E-848889023 -rsub039 subtract -1.70781105E-848889023 36504769.4 -> -36504769.4 Inexact Rounded -radd040 add -5290.54984E-490626676 842535254 -> 842535254 Inexact Rounded -rcom040 compare -5290.54984E-490626676 842535254 -> -1 -rdiv040 divide -5290.54984E-490626676 842535254 -> -6.27932162E-490626682 Inexact Rounded -rdvi040 divideint -5290.54984E-490626676 842535254 -> 0 -rmul040 multiply -5290.54984E-490626676 842535254 -> -4.45747475E-490626664 Inexact Rounded -rpow040 power -5290.54984E-490626676 842535254 -> ? Underflow Subnormal Inexact Rounded -rrem040 remainder -5290.54984E-490626676 842535254 -> -5.29054984E-490626673 -rsub040 subtract -5290.54984E-490626676 842535254 -> -842535254 Inexact Rounded -radd041 add 608.31825E+535268120 -59609.0993 -> 6.08318250E+535268122 Inexact Rounded -rcom041 compare 608.31825E+535268120 -59609.0993 -> 1 -rdiv041 divide 608.31825E+535268120 -59609.0993 -> -1.0205124E+535268118 Inexact Rounded -rdvi041 divideint 608.31825E+535268120 -59609.0993 -> ? Division_impossible -rmul041 multiply 608.31825E+535268120 -59609.0993 -> -3.62613030E+535268127 Inexact Rounded -rpow041 power 608.31825E+535268120 -59609 -> ? Underflow Subnormal Inexact Rounded -rrem041 remainder 608.31825E+535268120 -59609.0993 -> ? Division_impossible -rsub041 subtract 608.31825E+535268120 -59609.0993 -> 6.08318250E+535268122 Inexact Rounded -radd042 add -4629035.31 -167.884398 -> -4629203.19 Inexact Rounded -rcom042 compare -4629035.31 -167.884398 -> -1 -rdiv042 divide -4629035.31 -167.884398 -> 27572.7546 Inexact Rounded -rdvi042 divideint -4629035.31 -167.884398 -> 27572 -rmul042 multiply -4629035.31 -167.884398 -> 777142806 Inexact Rounded -rpow042 power -4629035.31 -168 -> 1.57614831E-1120 Inexact Rounded -rrem042 remainder -4629035.31 -167.884398 -> -126.688344 -rsub042 subtract -4629035.31 -167.884398 -> -4628867.43 Inexact Rounded -radd043 add -66527378. -706400268. -> -772927646 -rcom043 compare -66527378. -706400268. -> 1 -rdiv043 divide -66527378. -706400268. -> 0.0941780192 Inexact Rounded -rdvi043 divideint -66527378. -706400268. -> 0 -rmul043 multiply -66527378. -706400268. -> 4.69949576E+16 Inexact Rounded -rpow043 power -66527378. -706400268 -> ? Underflow Subnormal Inexact Rounded -rrem043 remainder -66527378. -706400268. -> -66527378 -rsub043 subtract -66527378. -706400268. -> 639872890 -radd044 add -2510497.53 372882462. -> 370371964 Inexact Rounded -rcom044 compare -2510497.53 372882462. -> -1 -rdiv044 divide -2510497.53 372882462. -> -0.00673267795 Inexact Rounded -rdvi044 divideint -2510497.53 372882462. -> 0 -rmul044 multiply -2510497.53 372882462. -> -9.36120500E+14 Inexact Rounded -rpow044 power -2510497.53 372882462 -> ? Overflow Inexact Rounded -rrem044 remainder -2510497.53 372882462. -> -2510497.53 -rsub044 subtract -2510497.53 372882462. -> -375392960 Inexact Rounded -radd045 add 136.255393E+53329961 -53494.7201E+720058060 -> -5.34947201E+720058064 Inexact Rounded -rcom045 compare 136.255393E+53329961 -53494.7201E+720058060 -> 1 -rdiv045 divide 136.255393E+53329961 -53494.7201E+720058060 -> -2.54708115E-666728102 Inexact Rounded -rdvi045 divideint 136.255393E+53329961 -53494.7201E+720058060 -> 0 -rmul045 multiply 136.255393E+53329961 -53494.7201E+720058060 -> -7.28894411E+773388027 Inexact Rounded -rpow045 power 136.255393E+53329961 -5 -> 2.12927373E-266649816 Inexact Rounded -rrem045 remainder 136.255393E+53329961 -53494.7201E+720058060 -> 1.36255393E+53329963 -rsub045 subtract 136.255393E+53329961 -53494.7201E+720058060 -> 5.34947201E+720058064 Inexact Rounded -radd046 add -876673.100 -6150.92266 -> -882824.023 Inexact Rounded -rcom046 compare -876673.100 -6150.92266 -> -1 -rdiv046 divide -876673.100 -6150.92266 -> 142.527089 Inexact Rounded -rdvi046 divideint -876673.100 -6150.92266 -> 142 -rmul046 multiply -876673.100 -6150.92266 -> 5.39234844E+9 Inexact Rounded -rpow046 power -876673.100 -6151 -> -4.03111774E-36555 Inexact Rounded -rrem046 remainder -876673.100 -6150.92266 -> -3242.08228 -rsub046 subtract -876673.100 -6150.92266 -> -870522.177 Inexact Rounded -radd047 add -2.45151797E+911306117 27235771 -> -2.45151797E+911306117 Inexact Rounded -rcom047 compare -2.45151797E+911306117 27235771 -> -1 -rdiv047 divide -2.45151797E+911306117 27235771 -> -9.00109628E+911306109 Inexact Rounded -rdvi047 divideint -2.45151797E+911306117 27235771 -> ? Division_impossible -rmul047 multiply -2.45151797E+911306117 27235771 -> -6.67689820E+911306124 Inexact Rounded -rpow047 power -2.45151797E+911306117 27235771 -> ? Overflow Inexact Rounded -rrem047 remainder -2.45151797E+911306117 27235771 -> ? Division_impossible -rsub047 subtract -2.45151797E+911306117 27235771 -> -2.45151797E+911306117 Inexact Rounded -radd048 add -9.15117551 -4.95100733E-314511326 -> -9.15117551 Inexact Rounded -rcom048 compare -9.15117551 -4.95100733E-314511326 -> -1 -rdiv048 divide -9.15117551 -4.95100733E-314511326 -> 1.84834618E+314511326 Inexact Rounded -rdvi048 divideint -9.15117551 -4.95100733E-314511326 -> ? Division_impossible -rmul048 multiply -9.15117551 -4.95100733E-314511326 -> 4.53075370E-314511325 Inexact Rounded -rpow048 power -9.15117551 -5 -> -0.0000155817265 Inexact Rounded -rrem048 remainder -9.15117551 -4.95100733E-314511326 -> ? Division_impossible -rsub048 subtract -9.15117551 -4.95100733E-314511326 -> -9.15117551 Inexact Rounded -radd049 add 3.61890453E-985606128 30664416. -> 30664416.0 Inexact Rounded -rcom049 compare 3.61890453E-985606128 30664416. -> -1 -rdiv049 divide 3.61890453E-985606128 30664416. -> 1.18016418E-985606135 Inexact Rounded -rdvi049 divideint 3.61890453E-985606128 30664416. -> 0 -rmul049 multiply 3.61890453E-985606128 30664416. -> 1.10971594E-985606120 Inexact Rounded -rpow049 power 3.61890453E-985606128 30664416 -> ? Underflow Subnormal Inexact Rounded -rrem049 remainder 3.61890453E-985606128 30664416. -> 3.61890453E-985606128 -rsub049 subtract 3.61890453E-985606128 30664416. -> -30664416.0 Inexact Rounded -radd050 add -257674602E+216723382 -70820959.4 -> -2.57674602E+216723390 Inexact Rounded -rcom050 compare -257674602E+216723382 -70820959.4 -> -1 -rdiv050 divide -257674602E+216723382 -70820959.4 -> 3.63839468E+216723382 Inexact Rounded -rdvi050 divideint -257674602E+216723382 -70820959.4 -> ? Division_impossible -rmul050 multiply -257674602E+216723382 -70820959.4 -> 1.82487625E+216723398 Inexact Rounded -rpow050 power -257674602E+216723382 -70820959 -> ? Underflow Subnormal Inexact Rounded -rrem050 remainder -257674602E+216723382 -70820959.4 -> ? Division_impossible -rsub050 subtract -257674602E+216723382 -70820959.4 -> -2.57674602E+216723390 Inexact Rounded -radd051 add 218699.206 556944241. -> 557162940 Inexact Rounded -rcom051 compare 218699.206 556944241. -> -1 -rdiv051 divide 218699.206 556944241. -> 0.000392677022 Inexact Rounded -rdvi051 divideint 218699.206 556944241. -> 0 -rmul051 multiply 218699.206 556944241. -> 1.21803263E+14 Inexact Rounded -rpow051 power 218699.206 556944241 -> ? Overflow Inexact Rounded -rrem051 remainder 218699.206 556944241. -> 218699.206 -rsub051 subtract 218699.206 556944241. -> -556725542 Inexact Rounded -radd052 add 106211716. -3456793.74 -> 102754922 Inexact Rounded -rcom052 compare 106211716. -3456793.74 -> 1 -rdiv052 divide 106211716. -3456793.74 -> -30.7255 Inexact Rounded -rdvi052 divideint 106211716. -3456793.74 -> -30 -rmul052 multiply 106211716. -3456793.74 -> -3.67151995E+14 Inexact Rounded -rpow052 power 106211716. -3456794 -> 2.07225581E-27744825 Inexact Rounded -rrem052 remainder 106211716. -3456793.74 -> 2507903.80 -rsub052 subtract 106211716. -3456793.74 -> 109668510 Inexact Rounded -radd053 add 1.25018078 399856.763E-726816740 -> 1.25018078 Inexact Rounded -rcom053 compare 1.25018078 399856.763E-726816740 -> 1 -rdiv053 divide 1.25018078 399856.763E-726816740 -> 3.12657155E+726816734 Inexact Rounded -rdvi053 divideint 1.25018078 399856.763E-726816740 -> ? Division_impossible -rmul053 multiply 1.25018078 399856.763E-726816740 -> 4.99893240E-726816735 Inexact Rounded -rpow053 power 1.25018078 4 -> 2.4428189 Inexact Rounded -rrem053 remainder 1.25018078 399856.763E-726816740 -> ? Division_impossible -rsub053 subtract 1.25018078 399856.763E-726816740 -> 1.25018078 Inexact Rounded -radd054 add 364.99811 -46222.0505 -> -45857.0524 Inexact Rounded -rcom054 compare 364.99811 -46222.0505 -> 1 -rdiv054 divide 364.99811 -46222.0505 -> -0.00789662306 Inexact Rounded -rdvi054 divideint 364.99811 -46222.0505 -> 0 -rmul054 multiply 364.99811 -46222.0505 -> -16870961.1 Inexact Rounded -rpow054 power 364.99811 -46222 -> 6.35570856E-118435 Inexact Rounded -rrem054 remainder 364.99811 -46222.0505 -> 364.99811 -rsub054 subtract 364.99811 -46222.0505 -> 46587.0486 Inexact Rounded -radd055 add -392217576. -958364096 -> -1.35058167E+9 Inexact Rounded -rcom055 compare -392217576. -958364096 -> 1 -rdiv055 divide -392217576. -958364096 -> 0.409257377 Inexact Rounded -rdvi055 divideint -392217576. -958364096 -> 0 -rmul055 multiply -392217576. -958364096 -> 3.75887243E+17 Inexact Rounded -rpow055 power -392217576. -958364096 -> ? Underflow Subnormal Inexact Rounded -rrem055 remainder -392217576. -958364096 -> -392217576 -rsub055 subtract -392217576. -958364096 -> 566146520 -radd056 add 169601285 714526.639 -> 170315812 Inexact Rounded -rcom056 compare 169601285 714526.639 -> 1 -rdiv056 divide 169601285 714526.639 -> 237.361738 Inexact Rounded -rdvi056 divideint 169601285 714526.639 -> 237 -rmul056 multiply 169601285 714526.639 -> 1.21184636E+14 Inexact Rounded -rpow056 power 169601285 714527 -> 2.06052444E+5880149 Inexact Rounded -rrem056 remainder 169601285 714526.639 -> 258471.557 -rsub056 subtract 169601285 714526.639 -> 168886758 Inexact Rounded -radd057 add -674.094552E+586944319 6354.2668E+589657266 -> 6.35426680E+589657269 Inexact Rounded -rcom057 compare -674.094552E+586944319 6354.2668E+589657266 -> -1 -rdiv057 divide -674.094552E+586944319 6354.2668E+589657266 -> -1.0608534E-2712948 Inexact Rounded -rdvi057 divideint -674.094552E+586944319 6354.2668E+589657266 -> 0 -rmul057 multiply -674.094552E+586944319 6354.2668E+589657266 -> ? Inexact Overflow Rounded -rpow057 power -674.094552E+586944319 6 -> ? Overflow Inexact Rounded -rrem057 remainder -674.094552E+586944319 6354.2668E+589657266 -> -6.74094552E+586944321 -rsub057 subtract -674.094552E+586944319 6354.2668E+589657266 -> -6.35426680E+589657269 Inexact Rounded -radd058 add 151795163E-371727182 -488.09788E-738852245 -> 1.51795163E-371727174 Inexact Rounded -rcom058 compare 151795163E-371727182 -488.09788E-738852245 -> 1 -rdiv058 divide 151795163E-371727182 -488.09788E-738852245 -> -3.10993285E+367125068 Inexact Rounded -rdvi058 divideint 151795163E-371727182 -488.09788E-738852245 -> ? Division_impossible -rmul058 multiply 151795163E-371727182 -488.09788E-738852245 -> ? Underflow Subnormal Inexact Rounded -rpow058 power 151795163E-371727182 -5 -> ? Overflow Inexact Rounded -rrem058 remainder 151795163E-371727182 -488.09788E-738852245 -> ? Division_impossible -rsub058 subtract 151795163E-371727182 -488.09788E-738852245 -> 1.51795163E-371727174 Inexact Rounded -radd059 add -746.293386 927749.647 -> 927003.354 Inexact Rounded -rcom059 compare -746.293386 927749.647 -> -1 -rdiv059 divide -746.293386 927749.647 -> -0.000804412471 Inexact Rounded -rdvi059 divideint -746.293386 927749.647 -> 0 -rmul059 multiply -746.293386 927749.647 -> -692373425 Inexact Rounded -rpow059 power -746.293386 927750 -> 7.49278741E+2665341 Inexact Rounded -rrem059 remainder -746.293386 927749.647 -> -746.293386 -rsub059 subtract -746.293386 927749.647 -> -928495.940 Inexact Rounded -radd060 add 888946471E+241331592 -235739.595 -> 8.88946471E+241331600 Inexact Rounded -rcom060 compare 888946471E+241331592 -235739.595 -> 1 -rdiv060 divide 888946471E+241331592 -235739.595 -> -3.77088317E+241331595 Inexact Rounded -rdvi060 divideint 888946471E+241331592 -235739.595 -> ? Division_impossible -rmul060 multiply 888946471E+241331592 -235739.595 -> -2.09559881E+241331606 Inexact Rounded -rpow060 power 888946471E+241331592 -235740 -> ? Underflow Subnormal Inexact Rounded -rrem060 remainder 888946471E+241331592 -235739.595 -> ? Division_impossible -rsub060 subtract 888946471E+241331592 -235739.595 -> 8.88946471E+241331600 Inexact Rounded -radd061 add 6.64377249 79161.1070E+619453776 -> 7.91611070E+619453780 Inexact Rounded -rcom061 compare 6.64377249 79161.1070E+619453776 -> -1 -rdiv061 divide 6.64377249 79161.1070E+619453776 -> 8.39272307E-619453781 Inexact Rounded -rdvi061 divideint 6.64377249 79161.1070E+619453776 -> 0 -rmul061 multiply 6.64377249 79161.1070E+619453776 -> 5.25928385E+619453781 Inexact Rounded -rpow061 power 6.64377249 8 -> 3795928.44 Inexact Rounded -rrem061 remainder 6.64377249 79161.1070E+619453776 -> 6.64377249 -rsub061 subtract 6.64377249 79161.1070E+619453776 -> -7.91611070E+619453780 Inexact Rounded -radd062 add 3146.66571E-313373366 88.5282010 -> 88.5282010 Inexact Rounded -rcom062 compare 3146.66571E-313373366 88.5282010 -> -1 -rdiv062 divide 3146.66571E-313373366 88.5282010 -> 3.55442184E-313373365 Inexact Rounded -rdvi062 divideint 3146.66571E-313373366 88.5282010 -> 0 -rmul062 multiply 3146.66571E-313373366 88.5282010 -> 2.78568654E-313373361 Inexact Rounded -rpow062 power 3146.66571E-313373366 89 -> ? Underflow Subnormal Inexact Rounded -rrem062 remainder 3146.66571E-313373366 88.5282010 -> 3.14666571E-313373363 -rsub062 subtract 3146.66571E-313373366 88.5282010 -> -88.5282010 Inexact Rounded -radd063 add 6.44693097 -87195.8711 -> -87189.4242 Inexact Rounded -rcom063 compare 6.44693097 -87195.8711 -> 1 -rdiv063 divide 6.44693097 -87195.8711 -> -0.0000739361955 Inexact Rounded -rdvi063 divideint 6.44693097 -87195.8711 -> 0 -rmul063 multiply 6.44693097 -87195.8711 -> -562145.762 Inexact Rounded -rpow063 power 6.44693097 -87196 -> 4.5088173E-70573 Inexact Rounded -rrem063 remainder 6.44693097 -87195.8711 -> 6.44693097 -rsub063 subtract 6.44693097 -87195.8711 -> 87202.3180 Inexact Rounded -radd064 add -2113132.56E+577957840 981125821 -> -2.11313256E+577957846 Inexact Rounded -rcom064 compare -2113132.56E+577957840 981125821 -> -1 -rdiv064 divide -2113132.56E+577957840 981125821 -> -2.15378345E+577957837 Inexact Rounded -rdvi064 divideint -2113132.56E+577957840 981125821 -> ? Division_impossible -rmul064 multiply -2113132.56E+577957840 981125821 -> -2.07324892E+577957855 Inexact Rounded -rpow064 power -2113132.56E+577957840 981125821 -> ? Overflow Inexact Rounded -rrem064 remainder -2113132.56E+577957840 981125821 -> ? Division_impossible -rsub064 subtract -2113132.56E+577957840 981125821 -> -2.11313256E+577957846 Inexact Rounded -radd065 add -7701.42814 72667.5181 -> 64966.0900 Inexact Rounded -rcom065 compare -7701.42814 72667.5181 -> -1 -rdiv065 divide -7701.42814 72667.5181 -> -0.105981714 Inexact Rounded -rdvi065 divideint -7701.42814 72667.5181 -> 0 -rmul065 multiply -7701.42814 72667.5181 -> -559643669 Inexact Rounded -rpow065 power -7701.42814 72668 -> 2.29543837E+282429 Inexact Rounded -rrem065 remainder -7701.42814 72667.5181 -> -7701.42814 -rsub065 subtract -7701.42814 72667.5181 -> -80368.9462 Inexact Rounded -radd066 add -851.754789 -582659.149 -> -583510.904 Inexact Rounded -rcom066 compare -851.754789 -582659.149 -> 1 -rdiv066 divide -851.754789 -582659.149 -> 0.00146184058 Inexact Rounded -rdvi066 divideint -851.754789 -582659.149 -> 0 -rmul066 multiply -851.754789 -582659.149 -> 496282721 Inexact Rounded -rpow066 power -851.754789 -582659 -> -6.83532593E-1707375 Inexact Rounded -rrem066 remainder -851.754789 -582659.149 -> -851.754789 -rsub066 subtract -851.754789 -582659.149 -> 581807.394 Inexact Rounded -radd067 add -5.01992943 7852.16531 -> 7847.14538 Inexact Rounded -rcom067 compare -5.01992943 7852.16531 -> -1 -rdiv067 divide -5.01992943 7852.16531 -> -0.000639305113 Inexact Rounded -rdvi067 divideint -5.01992943 7852.16531 -> 0 -rmul067 multiply -5.01992943 7852.16531 -> -39417.3157 Inexact Rounded -rpow067 power -5.01992943 7852 -> 7.54481448E+5501 Inexact Rounded -rrem067 remainder -5.01992943 7852.16531 -> -5.01992943 -rsub067 subtract -5.01992943 7852.16531 -> -7857.18524 Inexact Rounded -radd068 add -12393257.2 76803689E+949125770 -> 7.68036890E+949125777 Inexact Rounded -rcom068 compare -12393257.2 76803689E+949125770 -> -1 -rdiv068 divide -12393257.2 76803689E+949125770 -> -1.61362786E-949125771 Inexact Rounded -rdvi068 divideint -12393257.2 76803689E+949125770 -> 0 -rmul068 multiply -12393257.2 76803689E+949125770 -> -9.51847872E+949125784 Inexact Rounded -rpow068 power -12393257.2 8 -> 5.5652375E+56 Inexact Rounded -rrem068 remainder -12393257.2 76803689E+949125770 -> -12393257.2 -rsub068 subtract -12393257.2 76803689E+949125770 -> -7.68036890E+949125777 Inexact Rounded -radd069 add -754771634.E+716555026 -292336.311 -> -7.54771634E+716555034 Inexact Rounded -rcom069 compare -754771634.E+716555026 -292336.311 -> -1 -rdiv069 divide -754771634.E+716555026 -292336.311 -> 2.5818607E+716555029 Inexact Rounded -rdvi069 divideint -754771634.E+716555026 -292336.311 -> ? Division_impossible -rmul069 multiply -754771634.E+716555026 -292336.311 -> 2.20647155E+716555040 Inexact Rounded -rpow069 power -754771634.E+716555026 -292336 -> ? Underflow Subnormal Inexact Rounded -rrem069 remainder -754771634.E+716555026 -292336.311 -> ? Division_impossible -rsub069 subtract -754771634.E+716555026 -292336.311 -> -7.54771634E+716555034 Inexact Rounded -radd070 add -915006.171E+614548652 -314086965. -> -9.15006171E+614548657 Inexact Rounded -rcom070 compare -915006.171E+614548652 -314086965. -> -1 -rdiv070 divide -915006.171E+614548652 -314086965. -> 2.91322555E+614548649 Inexact Rounded -rdvi070 divideint -915006.171E+614548652 -314086965. -> ? Division_impossible -rmul070 multiply -915006.171E+614548652 -314086965. -> 2.87391511E+614548666 Inexact Rounded -rpow070 power -915006.171E+614548652 -314086965 -> ? Underflow Subnormal Inexact Rounded -rrem070 remainder -915006.171E+614548652 -314086965. -> ? Division_impossible -rsub070 subtract -915006.171E+614548652 -314086965. -> -9.15006171E+614548657 Inexact Rounded -radd071 add -296590035 -481734529 -> -778324564 -rcom071 compare -296590035 -481734529 -> 1 -rdiv071 divide -296590035 -481734529 -> 0.615671116 Inexact Rounded -rdvi071 divideint -296590035 -481734529 -> 0 -rmul071 multiply -296590035 -481734529 -> 1.42877661E+17 Inexact Rounded -rpow071 power -296590035 -481734529 -> ? Underflow Subnormal Inexact Rounded -rrem071 remainder -296590035 -481734529 -> -296590035 -rsub071 subtract -296590035 -481734529 -> 185144494 -radd072 add 8.27822605 9241557.19 -> 9241565.47 Inexact Rounded -rcom072 compare 8.27822605 9241557.19 -> -1 -rdiv072 divide 8.27822605 9241557.19 -> 8.9576095E-7 Inexact Rounded -rdvi072 divideint 8.27822605 9241557.19 -> 0 -rmul072 multiply 8.27822605 9241557.19 -> 76503699.5 Inexact Rounded -rpow072 power 8.27822605 9241557 -> 5.10219969E+8483169 Inexact Rounded -rrem072 remainder 8.27822605 9241557.19 -> 8.27822605 -rsub072 subtract 8.27822605 9241557.19 -> -9241548.91 Inexact Rounded -radd073 add -1.43581098 7286313.54 -> 7286312.10 Inexact Rounded -rcom073 compare -1.43581098 7286313.54 -> -1 -rdiv073 divide -1.43581098 7286313.54 -> -1.97055887E-7 Inexact Rounded -rdvi073 divideint -1.43581098 7286313.54 -> 0 -rmul073 multiply -1.43581098 7286313.54 -> -10461769.0 Inexact Rounded -rpow073 power -1.43581098 7286314 -> 1.09389741E+1144660 Inexact Rounded -rrem073 remainder -1.43581098 7286313.54 -> -1.43581098 -rsub073 subtract -1.43581098 7286313.54 -> -7286314.98 Inexact Rounded -radd074 add -699036193. 759263.509E+533543625 -> 7.59263509E+533543630 Inexact Rounded -rcom074 compare -699036193. 759263.509E+533543625 -> -1 -rdiv074 divide -699036193. 759263.509E+533543625 -> -9.20676662E-533543623 Inexact Rounded -rdvi074 divideint -699036193. 759263.509E+533543625 -> 0 -rmul074 multiply -699036193. 759263.509E+533543625 -> -5.30752673E+533543639 Inexact Rounded -rpow074 power -699036193. 8 -> 5.70160724E+70 Inexact Rounded -rrem074 remainder -699036193. 759263.509E+533543625 -> -699036193 -rsub074 subtract -699036193. 759263.509E+533543625 -> -7.59263509E+533543630 Inexact Rounded -radd075 add -83.7273615E-305281957 -287779593.E+458777774 -> -2.87779593E+458777782 Inexact Rounded -rcom075 compare -83.7273615E-305281957 -287779593.E+458777774 -> 1 -rdiv075 divide -83.7273615E-305281957 -287779593.E+458777774 -> 2.90942664E-764059738 Inexact Rounded -rdvi075 divideint -83.7273615E-305281957 -287779593.E+458777774 -> 0 -rmul075 multiply -83.7273615E-305281957 -287779593.E+458777774 -> 2.40950260E+153495827 Inexact Rounded -rpow075 power -83.7273615E-305281957 -3 -> -1.70371828E+915845865 Inexact Rounded -rrem075 remainder -83.7273615E-305281957 -287779593.E+458777774 -> -8.37273615E-305281956 -rsub075 subtract -83.7273615E-305281957 -287779593.E+458777774 -> 2.87779593E+458777782 Inexact Rounded -radd076 add 8.48503224 6522.03316 -> 6530.51819 Inexact Rounded -rcom076 compare 8.48503224 6522.03316 -> -1 -rdiv076 divide 8.48503224 6522.03316 -> 0.00130097962 Inexact Rounded -rdvi076 divideint 8.48503224 6522.03316 -> 0 -rmul076 multiply 8.48503224 6522.03316 -> 55339.6616 Inexact Rounded -rpow076 power 8.48503224 6522 -> 4.76547542E+6056 Inexact Rounded -rrem076 remainder 8.48503224 6522.03316 -> 8.48503224 -rsub076 subtract 8.48503224 6522.03316 -> -6513.54813 Inexact Rounded -radd077 add 527916091 -809.054070 -> 527915282 Inexact Rounded -rcom077 compare 527916091 -809.054070 -> 1 -rdiv077 divide 527916091 -809.054070 -> -652510.272 Inexact Rounded -rdvi077 divideint 527916091 -809.054070 -> -652510 -rmul077 multiply 527916091 -809.054070 -> -4.27112662E+11 Inexact Rounded -rpow077 power 527916091 -809 -> 2.78609697E-7057 Inexact Rounded -rrem077 remainder 527916091 -809.054070 -> 219.784300 -rsub077 subtract 527916091 -809.054070 -> 527916900 Inexact Rounded -radd078 add 3857058.60 5792997.58E+881077409 -> 5.79299758E+881077415 Inexact Rounded -rcom078 compare 3857058.60 5792997.58E+881077409 -> -1 -rdiv078 divide 3857058.60 5792997.58E+881077409 -> 6.6581395E-881077410 Inexact Rounded -rdvi078 divideint 3857058.60 5792997.58E+881077409 -> 0 -rmul078 multiply 3857058.60 5792997.58E+881077409 -> 2.23439311E+881077422 Inexact Rounded -rpow078 power 3857058.60 6 -> 3.29258824E+39 Inexact Rounded -rrem078 remainder 3857058.60 5792997.58E+881077409 -> 3857058.60 -rsub078 subtract 3857058.60 5792997.58E+881077409 -> -5.79299758E+881077415 Inexact Rounded -radd079 add -66587363.E+556538173 -551902402E+357309146 -> -6.65873630E+556538180 Inexact Rounded -rcom079 compare -66587363.E+556538173 -551902402E+357309146 -> -1 -rdiv079 divide -66587363.E+556538173 -551902402E+357309146 -> 1.20650613E+199229026 Inexact Rounded -rdvi079 divideint -66587363.E+556538173 -551902402E+357309146 -> ? Division_impossible -rmul079 multiply -66587363.E+556538173 -551902402E+357309146 -> 3.67497256E+913847335 Inexact Rounded -rpow079 power -66587363.E+556538173 -6 -> ? Underflow Subnormal Inexact Rounded -rrem079 remainder -66587363.E+556538173 -551902402E+357309146 -> ? Division_impossible -rsub079 subtract -66587363.E+556538173 -551902402E+357309146 -> -6.65873630E+556538180 Inexact Rounded -radd080 add -580.502955 38125521.7 -> 38124941.2 Inexact Rounded -rcom080 compare -580.502955 38125521.7 -> -1 -rdiv080 divide -580.502955 38125521.7 -> -0.0000152260987 Inexact Rounded -rdvi080 divideint -580.502955 38125521.7 -> 0 -rmul080 multiply -580.502955 38125521.7 -> -2.21319780E+10 Inexact Rounded -rpow080 power -580.502955 38125522 -> 6.07262078E+105371486 Inexact Rounded -rrem080 remainder -580.502955 38125521.7 -> -580.502955 -rsub080 subtract -580.502955 38125521.7 -> -38126102.2 Inexact Rounded -radd081 add -9627363.00 -80616885E-749891394 -> -9627363.00 Inexact Rounded -rcom081 compare -9627363.00 -80616885E-749891394 -> -1 -rdiv081 divide -9627363.00 -80616885E-749891394 -> 1.19421173E+749891393 Inexact Rounded -rdvi081 divideint -9627363.00 -80616885E-749891394 -> ? Division_impossible -rmul081 multiply -9627363.00 -80616885E-749891394 -> 7.76128016E-749891380 Inexact Rounded -rpow081 power -9627363.00 -8 -> 1.35500601E-56 Inexact Rounded -rrem081 remainder -9627363.00 -80616885E-749891394 -> ? Division_impossible -rsub081 subtract -9627363.00 -80616885E-749891394 -> -9627363.00 Inexact Rounded -radd082 add -526.594855E+803110107 -64.5451639 -> -5.26594855E+803110109 Inexact Rounded -rcom082 compare -526.594855E+803110107 -64.5451639 -> -1 -rdiv082 divide -526.594855E+803110107 -64.5451639 -> 8.15854858E+803110107 Inexact Rounded -rdvi082 divideint -526.594855E+803110107 -64.5451639 -> ? Division_impossible -rmul082 multiply -526.594855E+803110107 -64.5451639 -> 3.39891512E+803110111 Inexact Rounded -rpow082 power -526.594855E+803110107 -65 -> ? Underflow Subnormal Inexact Rounded -rrem082 remainder -526.594855E+803110107 -64.5451639 -> ? Division_impossible -rsub082 subtract -526.594855E+803110107 -64.5451639 -> -5.26594855E+803110109 Inexact Rounded -radd083 add -8378.55499 760.131257 -> -7618.42373 Inexact Rounded -rcom083 compare -8378.55499 760.131257 -> -1 -rdiv083 divide -8378.55499 760.131257 -> -11.0225108 Inexact Rounded -rdvi083 divideint -8378.55499 760.131257 -> -11 -rmul083 multiply -8378.55499 760.131257 -> -6368801.54 Inexact Rounded -rpow083 power -8378.55499 760 -> 4.06007928E+2981 Inexact Rounded -rrem083 remainder -8378.55499 760.131257 -> -17.111163 -rsub083 subtract -8378.55499 760.131257 -> -9138.68625 Inexact Rounded -radd084 add -717.697718 984304413 -> 984303695 Inexact Rounded -rcom084 compare -717.697718 984304413 -> -1 -rdiv084 divide -717.697718 984304413 -> -7.2914203E-7 Inexact Rounded -rdvi084 divideint -717.697718 984304413 -> 0 -rmul084 multiply -717.697718 984304413 -> -7.06433031E+11 Inexact Rounded -rpow084 power -717.697718 984304413 -> ? Overflow Inexact Rounded -rrem084 remainder -717.697718 984304413 -> -717.697718 -rsub084 subtract -717.697718 984304413 -> -984305131 Inexact Rounded -radd085 add -76762243.4E-741100094 -273.706674 -> -273.706674 Inexact Rounded -rcom085 compare -76762243.4E-741100094 -273.706674 -> 1 -rdiv085 divide -76762243.4E-741100094 -273.706674 -> 2.80454409E-741100089 Inexact Rounded -rdvi085 divideint -76762243.4E-741100094 -273.706674 -> 0 -rmul085 multiply -76762243.4E-741100094 -273.706674 -> 2.10103383E-741100084 Inexact Rounded -rpow085 power -76762243.4E-741100094 -274 -> ? Overflow Inexact Rounded -rrem085 remainder -76762243.4E-741100094 -273.706674 -> -7.67622434E-741100087 -rsub085 subtract -76762243.4E-741100094 -273.706674 -> 273.706674 Inexact Rounded -radd086 add -701.518354E+786274918 8822750.68E+243052107 -> -7.01518354E+786274920 Inexact Rounded -rcom086 compare -701.518354E+786274918 8822750.68E+243052107 -> -1 -rdiv086 divide -701.518354E+786274918 8822750.68E+243052107 -> -7.95124309E+543222806 Inexact Rounded -rdvi086 divideint -701.518354E+786274918 8822750.68E+243052107 -> ? Division_impossible -rmul086 multiply -701.518354E+786274918 8822750.68E+243052107 -> ? Inexact Overflow Rounded -rpow086 power -701.518354E+786274918 9 -> ? Overflow Inexact Rounded -rrem086 remainder -701.518354E+786274918 8822750.68E+243052107 -> ? Division_impossible -rsub086 subtract -701.518354E+786274918 8822750.68E+243052107 -> -7.01518354E+786274920 Inexact Rounded -radd087 add -359866845. -4.57434117 -> -359866850 Inexact Rounded -rcom087 compare -359866845. -4.57434117 -> -1 -rdiv087 divide -359866845. -4.57434117 -> 78670748.8 Inexact Rounded -rdvi087 divideint -359866845. -4.57434117 -> 78670748 -rmul087 multiply -359866845. -4.57434117 -> 1.64615372E+9 Inexact Rounded -rpow087 power -359866845. -5 -> -1.65687909E-43 Inexact Rounded -rrem087 remainder -359866845. -4.57434117 -> -3.54890484 -rsub087 subtract -359866845. -4.57434117 -> -359866840 Inexact Rounded -radd088 add 779934536. -76562645.7 -> 703371890 Inexact Rounded -rcom088 compare 779934536. -76562645.7 -> 1 -rdiv088 divide 779934536. -76562645.7 -> -10.1868807 Inexact Rounded -rdvi088 divideint 779934536. -76562645.7 -> -10 -rmul088 multiply 779934536. -76562645.7 -> -5.97138515E+16 Inexact Rounded -rpow088 power 779934536. -76562646 -> 3.36739063E-680799501 Inexact Rounded -rrem088 remainder 779934536. -76562645.7 -> 14308079.0 -rsub088 subtract 779934536. -76562645.7 -> 856497182 Inexact Rounded -radd089 add -4820.95451 3516234.99E+303303176 -> 3.51623499E+303303182 Inexact Rounded -rcom089 compare -4820.95451 3516234.99E+303303176 -> -1 -rdiv089 divide -4820.95451 3516234.99E+303303176 -> -1.37105584E-303303179 Inexact Rounded -rdvi089 divideint -4820.95451 3516234.99E+303303176 -> 0 -rmul089 multiply -4820.95451 3516234.99E+303303176 -> -1.69516089E+303303186 Inexact Rounded -rpow089 power -4820.95451 4 -> 5.40172082E+14 Inexact Rounded -rrem089 remainder -4820.95451 3516234.99E+303303176 -> -4820.95451 -rsub089 subtract -4820.95451 3516234.99E+303303176 -> -3.51623499E+303303182 Inexact Rounded -radd090 add 69355976.9 -9.57838562E+758804984 -> -9.57838562E+758804984 Inexact Rounded -rcom090 compare 69355976.9 -9.57838562E+758804984 -> 1 -rdiv090 divide 69355976.9 -9.57838562E+758804984 -> -7.24088376E-758804978 Inexact Rounded -rdvi090 divideint 69355976.9 -9.57838562E+758804984 -> 0 -rmul090 multiply 69355976.9 -9.57838562E+758804984 -> -6.64318292E+758804992 Inexact Rounded -rpow090 power 69355976.9 -10 -> 3.88294346E-79 Inexact Rounded -rrem090 remainder 69355976.9 -9.57838562E+758804984 -> 69355976.9 -rsub090 subtract 69355976.9 -9.57838562E+758804984 -> 9.57838562E+758804984 Inexact Rounded -radd091 add -12672093.1 8569.78255E-382866025 -> -12672093.1 Inexact Rounded -rcom091 compare -12672093.1 8569.78255E-382866025 -> -1 -rdiv091 divide -12672093.1 8569.78255E-382866025 -> -1.47869482E+382866028 Inexact Rounded -rdvi091 divideint -12672093.1 8569.78255E-382866025 -> ? Division_impossible -rmul091 multiply -12672093.1 8569.78255E-382866025 -> -1.08597082E-382866014 Inexact Rounded -rpow091 power -12672093.1 9 -> -8.42626658E+63 Inexact Rounded -rrem091 remainder -12672093.1 8569.78255E-382866025 -> ? Division_impossible -rsub091 subtract -12672093.1 8569.78255E-382866025 -> -12672093.1 Inexact Rounded -radd092 add -5910750.2 66150383E-662459241 -> -5910750.20 Inexact Rounded -rcom092 compare -5910750.2 66150383E-662459241 -> -1 -rdiv092 divide -5910750.2 66150383E-662459241 -> -8.93532272E+662459239 Inexact Rounded -rdvi092 divideint -5910750.2 66150383E-662459241 -> ? Division_impossible -rmul092 multiply -5910750.2 66150383E-662459241 -> -3.90998390E-662459227 Inexact Rounded -rpow092 power -5910750.2 7 -> -2.52056696E+47 Inexact Rounded -rrem092 remainder -5910750.2 66150383E-662459241 -> ? Division_impossible -rsub092 subtract -5910750.2 66150383E-662459241 -> -5910750.20 Inexact Rounded -radd093 add -532577268.E-163806629 -240650398E-650110558 -> -5.32577268E-163806621 Inexact Rounded -rcom093 compare -532577268.E-163806629 -240650398E-650110558 -> -1 -rdiv093 divide -532577268.E-163806629 -240650398E-650110558 -> 2.21307454E+486303929 Inexact Rounded -rdvi093 divideint -532577268.E-163806629 -240650398E-650110558 -> ? Division_impossible -rmul093 multiply -532577268.E-163806629 -240650398E-650110558 -> 1.28164932E-813917170 Inexact Rounded -rpow093 power -532577268.E-163806629 -2 -> 3.52561389E+327613240 Inexact Rounded -rrem093 remainder -532577268.E-163806629 -240650398E-650110558 -> ? Division_impossible -rsub093 subtract -532577268.E-163806629 -240650398E-650110558 -> -5.32577268E-163806621 Inexact Rounded -radd094 add -671.507198E-908587890 3057429.32E-555230623 -> 3.05742932E-555230617 Inexact Rounded -rcom094 compare -671.507198E-908587890 3057429.32E-555230623 -> -1 -rdiv094 divide -671.507198E-908587890 3057429.32E-555230623 -> -2.19631307E-353357271 Inexact Rounded -rdvi094 divideint -671.507198E-908587890 3057429.32E-555230623 -> 0 -rmul094 multiply -671.507198E-908587890 3057429.32E-555230623 -> ? Underflow Subnormal Inexact Rounded -rpow094 power -671.507198E-908587890 3 -> ? Underflow Subnormal Inexact Rounded -rrem094 remainder -671.507198E-908587890 3057429.32E-555230623 -> -6.71507198E-908587888 -rsub094 subtract -671.507198E-908587890 3057429.32E-555230623 -> -3.05742932E-555230617 Inexact Rounded -radd095 add -294.994352E+346452027 -6061853.0 -> -2.94994352E+346452029 Inexact Rounded -rcom095 compare -294.994352E+346452027 -6061853.0 -> -1 -rdiv095 divide -294.994352E+346452027 -6061853.0 -> 4.86640557E+346452022 Inexact Rounded -rdvi095 divideint -294.994352E+346452027 -6061853.0 -> ? Division_impossible -rmul095 multiply -294.994352E+346452027 -6061853.0 -> 1.78821240E+346452036 Inexact Rounded -rpow095 power -294.994352E+346452027 -6061853 -> ? Underflow Subnormal Inexact Rounded -rrem095 remainder -294.994352E+346452027 -6061853.0 -> ? Division_impossible -rsub095 subtract -294.994352E+346452027 -6061853.0 -> -2.94994352E+346452029 Inexact Rounded -radd096 add 329579114 146780548. -> 476359662 -rcom096 compare 329579114 146780548. -> 1 -rdiv096 divide 329579114 146780548. -> 2.24538686 Inexact Rounded -rdvi096 divideint 329579114 146780548. -> 2 -rmul096 multiply 329579114 146780548. -> 4.83758030E+16 Inexact Rounded -rpow096 power 329579114 146780548 -> ? Overflow Inexact Rounded -rrem096 remainder 329579114 146780548. -> 36018018 -rsub096 subtract 329579114 146780548. -> 182798566 -radd097 add -789904.686E-217225000 -1991.07181E-84080059 -> -1.99107181E-84080056 Inexact Rounded -rcom097 compare -789904.686E-217225000 -1991.07181E-84080059 -> 1 -rdiv097 divide -789904.686E-217225000 -1991.07181E-84080059 -> 3.96723354E-133144939 Inexact Rounded -rdvi097 divideint -789904.686E-217225000 -1991.07181E-84080059 -> 0 -rmul097 multiply -789904.686E-217225000 -1991.07181E-84080059 -> 1.57275695E-301305050 Inexact Rounded -rpow097 power -789904.686E-217225000 -2 -> 1.60269403E+434449988 Inexact Rounded -rrem097 remainder -789904.686E-217225000 -1991.07181E-84080059 -> -7.89904686E-217224995 -rsub097 subtract -789904.686E-217225000 -1991.07181E-84080059 -> 1.99107181E-84080056 Inexact Rounded -radd098 add 59893.3544 -408595868 -> -408535975 Inexact Rounded -rcom098 compare 59893.3544 -408595868 -> 1 -rdiv098 divide 59893.3544 -408595868 -> -0.000146583358 Inexact Rounded -rdvi098 divideint 59893.3544 -408595868 -> 0 -rmul098 multiply 59893.3544 -408595868 -> -2.44721771E+13 Inexact Rounded -rpow098 power 59893.3544 -408595868 -> ? Underflow Subnormal Inexact Rounded -rrem098 remainder 59893.3544 -408595868 -> 59893.3544 -rsub098 subtract 59893.3544 -408595868 -> 408655761 Inexact Rounded -radd099 add 129.878613 -54652.7288E-963564940 -> 129.878613 Inexact Rounded -rcom099 compare 129.878613 -54652.7288E-963564940 -> 1 -rdiv099 divide 129.878613 -54652.7288E-963564940 -> -2.37643418E+963564937 Inexact Rounded -rdvi099 divideint 129.878613 -54652.7288E-963564940 -> ? Division_impossible -rmul099 multiply 129.878613 -54652.7288E-963564940 -> -7.09822061E-963564934 Inexact Rounded -rpow099 power 129.878613 -5 -> 2.70590029E-11 Inexact Rounded -rrem099 remainder 129.878613 -54652.7288E-963564940 -> ? Division_impossible -rsub099 subtract 129.878613 -54652.7288E-963564940 -> 129.878613 Inexact Rounded -radd100 add 9866.99208 708756501. -> 708766368 Inexact Rounded -rcom100 compare 9866.99208 708756501. -> -1 -rdiv100 divide 9866.99208 708756501. -> 0.0000139215543 Inexact Rounded -rdvi100 divideint 9866.99208 708756501. -> 0 -rmul100 multiply 9866.99208 708756501. -> 6.99329478E+12 Inexact Rounded -rpow100 power 9866.99208 708756501 -> ? Overflow Inexact Rounded -rrem100 remainder 9866.99208 708756501. -> 9866.99208 -rsub100 subtract 9866.99208 708756501. -> -708746634 Inexact Rounded -radd101 add -78810.6297 -399884.68 -> -478695.310 Inexact Rounded -rcom101 compare -78810.6297 -399884.68 -> 1 -rdiv101 divide -78810.6297 -399884.68 -> 0.197083393 Inexact Rounded -rdvi101 divideint -78810.6297 -399884.68 -> 0 -rmul101 multiply -78810.6297 -399884.68 -> 3.15151634E+10 Inexact Rounded -rpow101 power -78810.6297 -399885 -> -1.54252408E-1958071 Inexact Rounded -rrem101 remainder -78810.6297 -399884.68 -> -78810.6297 -rsub101 subtract -78810.6297 -399884.68 -> 321074.050 Inexact Rounded -radd102 add 409189761 -771.471460 -> 409188990 Inexact Rounded -rcom102 compare 409189761 -771.471460 -> 1 -rdiv102 divide 409189761 -771.471460 -> -530401.683 Inexact Rounded -rdvi102 divideint 409189761 -771.471460 -> -530401 -rmul102 multiply 409189761 -771.471460 -> -3.15678222E+11 Inexact Rounded -rpow102 power 409189761 -771 -> 1.60698414E-6640 Inexact Rounded -rrem102 remainder 409189761 -771.471460 -> 527.144540 -rsub102 subtract 409189761 -771.471460 -> 409190532 Inexact Rounded -radd103 add -1.68748838 460.46924 -> 458.781752 Inexact Rounded -rcom103 compare -1.68748838 460.46924 -> -1 -rdiv103 divide -1.68748838 460.46924 -> -0.00366471467 Inexact Rounded -rdvi103 divideint -1.68748838 460.46924 -> 0 -rmul103 multiply -1.68748838 460.46924 -> -777.036492 Inexact Rounded -rpow103 power -1.68748838 460 -> 3.39440648E+104 Inexact Rounded -rrem103 remainder -1.68748838 460.46924 -> -1.68748838 -rsub103 subtract -1.68748838 460.46924 -> -462.156728 Inexact Rounded -radd104 add 553527296. -7924.40185 -> 553519372 Inexact Rounded -rcom104 compare 553527296. -7924.40185 -> 1 -rdiv104 divide 553527296. -7924.40185 -> -69850.9877 Inexact Rounded -rdvi104 divideint 553527296. -7924.40185 -> -69850 -rmul104 multiply 553527296. -7924.40185 -> -4.38637273E+12 Inexact Rounded -rpow104 power 553527296. -7924 -> 2.32397214E-69281 Inexact Rounded -rrem104 remainder 553527296. -7924.40185 -> 7826.77750 -rsub104 subtract 553527296. -7924.40185 -> 553535220 Inexact Rounded -radd105 add -38.7465207 64936.2942 -> 64897.5477 Inexact Rounded -rcom105 compare -38.7465207 64936.2942 -> -1 -rdiv105 divide -38.7465207 64936.2942 -> -0.000596685123 Inexact Rounded -rdvi105 divideint -38.7465207 64936.2942 -> 0 -rmul105 multiply -38.7465207 64936.2942 -> -2516055.47 Inexact Rounded -rpow105 power -38.7465207 64936 -> 3.01500762E+103133 Inexact Rounded -rrem105 remainder -38.7465207 64936.2942 -> -38.7465207 -rsub105 subtract -38.7465207 64936.2942 -> -64975.0407 Inexact Rounded -radd106 add -201075.248 845.663928 -> -200229.584 Inexact Rounded -rcom106 compare -201075.248 845.663928 -> -1 -rdiv106 divide -201075.248 845.663928 -> -237.772053 Inexact Rounded -rdvi106 divideint -201075.248 845.663928 -> -237 -rmul106 multiply -201075.248 845.663928 -> -170042084 Inexact Rounded -rpow106 power -201075.248 846 -> 4.37911767E+4486 Inexact Rounded -rrem106 remainder -201075.248 845.663928 -> -652.897064 -rsub106 subtract -201075.248 845.663928 -> -201920.912 Inexact Rounded -radd107 add 91048.4559 75953609.3 -> 76044657.8 Inexact Rounded -rcom107 compare 91048.4559 75953609.3 -> -1 -rdiv107 divide 91048.4559 75953609.3 -> 0.00119873771 Inexact Rounded -rdvi107 divideint 91048.4559 75953609.3 -> 0 -rmul107 multiply 91048.4559 75953609.3 -> 6.91545885E+12 Inexact Rounded -rpow107 power 91048.4559 75953609 -> 6.94467746E+376674650 Inexact Rounded -rrem107 remainder 91048.4559 75953609.3 -> 91048.4559 -rsub107 subtract 91048.4559 75953609.3 -> -75862560.8 Inexact Rounded -radd108 add 6898273.86E-252097460 15.3456196 -> 15.3456196 Inexact Rounded -rcom108 compare 6898273.86E-252097460 15.3456196 -> -1 -rdiv108 divide 6898273.86E-252097460 15.3456196 -> 4.49527229E-252097455 Inexact Rounded -rdvi108 divideint 6898273.86E-252097460 15.3456196 -> 0 -rmul108 multiply 6898273.86E-252097460 15.3456196 -> 1.05858287E-252097452 Inexact Rounded -rpow108 power 6898273.86E-252097460 15 -> ? Underflow Subnormal Inexact Rounded -rrem108 remainder 6898273.86E-252097460 15.3456196 -> 6.89827386E-252097454 -rsub108 subtract 6898273.86E-252097460 15.3456196 -> -15.3456196 Inexact Rounded -radd109 add 88.4370343 -980709105E-869899289 -> 88.4370343 Inexact Rounded -rcom109 compare 88.4370343 -980709105E-869899289 -> 1 -rdiv109 divide 88.4370343 -980709105E-869899289 -> -9.0176622E+869899281 Inexact Rounded -rdvi109 divideint 88.4370343 -980709105E-869899289 -> ? Division_impossible -rmul109 multiply 88.4370343 -980709105E-869899289 -> -8.67310048E-869899279 Inexact Rounded -rpow109 power 88.4370343 -10 -> 3.41710479E-20 Inexact Rounded -rrem109 remainder 88.4370343 -980709105E-869899289 -> ? Division_impossible -rsub109 subtract 88.4370343 -980709105E-869899289 -> 88.4370343 Inexact Rounded -radd110 add -17643.39 2.0352568E+304871331 -> 2.03525680E+304871331 Inexact Rounded -rcom110 compare -17643.39 2.0352568E+304871331 -> -1 -rdiv110 divide -17643.39 2.0352568E+304871331 -> -8.66887658E-304871328 Inexact Rounded -rdvi110 divideint -17643.39 2.0352568E+304871331 -> 0 -rmul110 multiply -17643.39 2.0352568E+304871331 -> -3.59088295E+304871335 Inexact Rounded -rpow110 power -17643.39 2 -> 311289211 Inexact Rounded -rrem110 remainder -17643.39 2.0352568E+304871331 -> -17643.39 -rsub110 subtract -17643.39 2.0352568E+304871331 -> -2.03525680E+304871331 Inexact Rounded -radd111 add 4589785.16 7459.04237 -> 4597244.20 Inexact Rounded -rcom111 compare 4589785.16 7459.04237 -> 1 -rdiv111 divide 4589785.16 7459.04237 -> 615.331692 Inexact Rounded -rdvi111 divideint 4589785.16 7459.04237 -> 615 -rmul111 multiply 4589785.16 7459.04237 -> 3.42354020E+10 Inexact Rounded -rpow111 power 4589785.16 7459 -> 2.03795258E+49690 Inexact Rounded -rrem111 remainder 4589785.16 7459.04237 -> 2474.10245 -rsub111 subtract 4589785.16 7459.04237 -> 4582326.12 Inexact Rounded -radd112 add -51.1632090E-753968082 8.96207471E-585797887 -> 8.96207471E-585797887 Inexact Rounded -rcom112 compare -51.1632090E-753968082 8.96207471E-585797887 -> -1 -rdiv112 divide -51.1632090E-753968082 8.96207471E-585797887 -> -5.70885768E-168170195 Inexact Rounded -rdvi112 divideint -51.1632090E-753968082 8.96207471E-585797887 -> 0 -rmul112 multiply -51.1632090E-753968082 8.96207471E-585797887 -> ? Underflow Subnormal Inexact Rounded -rpow112 power -51.1632090E-753968082 9 -> ? Underflow Subnormal Inexact Rounded -rrem112 remainder -51.1632090E-753968082 8.96207471E-585797887 -> -5.11632090E-753968081 -rsub112 subtract -51.1632090E-753968082 8.96207471E-585797887 -> -8.96207471E-585797887 Inexact Rounded -radd113 add 982.217817 7224909.4E-45243816 -> 982.217817 Inexact Rounded -rcom113 compare 982.217817 7224909.4E-45243816 -> 1 -rdiv113 divide 982.217817 7224909.4E-45243816 -> 1.35948807E+45243812 Inexact Rounded -rdvi113 divideint 982.217817 7224909.4E-45243816 -> ? Division_impossible -rmul113 multiply 982.217817 7224909.4E-45243816 -> 7.09643474E-45243807 Inexact Rounded -rpow113 power 982.217817 7 -> 8.81971709E+20 Inexact Rounded -rrem113 remainder 982.217817 7224909.4E-45243816 -> ? Division_impossible -rsub113 subtract 982.217817 7224909.4E-45243816 -> 982.217817 Inexact Rounded -radd114 add 503712056. -57490703.5E+924890183 -> -5.74907035E+924890190 Inexact Rounded -rcom114 compare 503712056. -57490703.5E+924890183 -> 1 -rdiv114 divide 503712056. -57490703.5E+924890183 -> -8.76162623E-924890183 Inexact Rounded -rdvi114 divideint 503712056. -57490703.5E+924890183 -> 0 -rmul114 multiply 503712056. -57490703.5E+924890183 -> -2.89587605E+924890199 Inexact Rounded -rpow114 power 503712056. -6 -> 6.12217764E-53 Inexact Rounded -rrem114 remainder 503712056. -57490703.5E+924890183 -> 503712056 -rsub114 subtract 503712056. -57490703.5E+924890183 -> 5.74907035E+924890190 Inexact Rounded -radd115 add 883.849223 249259171 -> 249260055 Inexact Rounded -rcom115 compare 883.849223 249259171 -> -1 -rdiv115 divide 883.849223 249259171 -> 0.00000354590453 Inexact Rounded -rdvi115 divideint 883.849223 249259171 -> 0 -rmul115 multiply 883.849223 249259171 -> 2.20307525E+11 Inexact Rounded -rpow115 power 883.849223 249259171 -> 5.15642844E+734411783 Inexact Rounded -rrem115 remainder 883.849223 249259171 -> 883.849223 -rsub115 subtract 883.849223 249259171 -> -249258287 Inexact Rounded -radd116 add 245.092853E+872642874 828195.152E+419771532 -> 2.45092853E+872642876 Inexact Rounded -rcom116 compare 245.092853E+872642874 828195.152E+419771532 -> 1 -rdiv116 divide 245.092853E+872642874 828195.152E+419771532 -> 2.95936112E+452871338 Inexact Rounded -rdvi116 divideint 245.092853E+872642874 828195.152E+419771532 -> ? Division_impossible -rmul116 multiply 245.092853E+872642874 828195.152E+419771532 -> ? Inexact Overflow Rounded -rpow116 power 245.092853E+872642874 8 -> ? Overflow Inexact Rounded -rrem116 remainder 245.092853E+872642874 828195.152E+419771532 -> ? Division_impossible -rsub116 subtract 245.092853E+872642874 828195.152E+419771532 -> 2.45092853E+872642876 Inexact Rounded -radd117 add -83658638.6E+728551928 2952478.42 -> -8.36586386E+728551935 Inexact Rounded -rcom117 compare -83658638.6E+728551928 2952478.42 -> -1 -rdiv117 divide -83658638.6E+728551928 2952478.42 -> -2.83350551E+728551929 Inexact Rounded -rdvi117 divideint -83658638.6E+728551928 2952478.42 -> ? Division_impossible -rmul117 multiply -83658638.6E+728551928 2952478.42 -> -2.47000325E+728551942 Inexact Rounded -rpow117 power -83658638.6E+728551928 2952478 -> ? Overflow Inexact Rounded -rrem117 remainder -83658638.6E+728551928 2952478.42 -> ? Division_impossible -rsub117 subtract -83658638.6E+728551928 2952478.42 -> -8.36586386E+728551935 Inexact Rounded -radd118 add -6291780.97 269967.394E-22000817 -> -6291780.97 Inexact Rounded -rcom118 compare -6291780.97 269967.394E-22000817 -> -1 -rdiv118 divide -6291780.97 269967.394E-22000817 -> -2.33057069E+22000818 Inexact Rounded -rdvi118 divideint -6291780.97 269967.394E-22000817 -> ? Division_impossible -rmul118 multiply -6291780.97 269967.394E-22000817 -> -1.69857571E-22000805 Inexact Rounded -rpow118 power -6291780.97 3 -> -2.49069636E+20 Inexact Rounded -rrem118 remainder -6291780.97 269967.394E-22000817 -> ? Division_impossible -rsub118 subtract -6291780.97 269967.394E-22000817 -> -6291780.97 Inexact Rounded -radd119 add 978571348.E+222382547 6006.19370 -> 9.78571348E+222382555 Inexact Rounded -rcom119 compare 978571348.E+222382547 6006.19370 -> 1 -rdiv119 divide 978571348.E+222382547 6006.19370 -> 1.62927038E+222382552 Inexact Rounded -rdvi119 divideint 978571348.E+222382547 6006.19370 -> ? Division_impossible -rmul119 multiply 978571348.E+222382547 6006.19370 -> 5.87748907E+222382559 Inexact Rounded -rpow119 power 978571348.E+222382547 6006 -> ? Overflow Inexact Rounded -rrem119 remainder 978571348.E+222382547 6006.19370 -> ? Division_impossible -rsub119 subtract 978571348.E+222382547 6006.19370 -> 9.78571348E+222382555 Inexact Rounded -radd120 add 14239029. -36527.2221 -> 14202501.8 Inexact Rounded -rcom120 compare 14239029. -36527.2221 -> 1 -rdiv120 divide 14239029. -36527.2221 -> -389.819652 Inexact Rounded -rdvi120 divideint 14239029. -36527.2221 -> -389 -rmul120 multiply 14239029. -36527.2221 -> -5.20112175E+11 Inexact Rounded -rpow120 power 14239029. -36527 -> 6.64292731E-261296 Inexact Rounded -rrem120 remainder 14239029. -36527.2221 -> 29939.6031 -rsub120 subtract 14239029. -36527.2221 -> 14275556.2 Inexact Rounded -radd121 add 72333.2654E-544425548 -690.664836E+662155120 -> -6.90664836E+662155122 Inexact Rounded -rcom121 compare 72333.2654E-544425548 -690.664836E+662155120 -> 1 -rdiv121 divide 72333.2654E-544425548 -690.664836E+662155120 -> ? Inexact Rounded Underflow Subnormal -rdvi121 divideint 72333.2654E-544425548 -690.664836E+662155120 -> 0 -rmul121 multiply 72333.2654E-544425548 -690.664836E+662155120 -> -4.99580429E+117729579 Inexact Rounded -rpow121 power 72333.2654E-544425548 -7 -> ? Overflow Inexact Rounded -rrem121 remainder 72333.2654E-544425548 -690.664836E+662155120 -> 7.23332654E-544425544 -rsub121 subtract 72333.2654E-544425548 -690.664836E+662155120 -> 6.90664836E+662155122 Inexact Rounded -radd122 add -37721.1567E-115787341 -828949864E-76251747 -> -8.28949864E-76251739 Inexact Rounded -rcom122 compare -37721.1567E-115787341 -828949864E-76251747 -> 1 -rdiv122 divide -37721.1567E-115787341 -828949864E-76251747 -> 4.55047505E-39535599 Inexact Rounded -rdvi122 divideint -37721.1567E-115787341 -828949864E-76251747 -> 0 -rmul122 multiply -37721.1567E-115787341 -828949864E-76251747 -> 3.12689477E-192039075 Inexact Rounded -rpow122 power -37721.1567E-115787341 -8 -> 2.43960765E+926298691 Inexact Rounded -rrem122 remainder -37721.1567E-115787341 -828949864E-76251747 -> -3.77211567E-115787337 -rsub122 subtract -37721.1567E-115787341 -828949864E-76251747 -> 8.28949864E-76251739 Inexact Rounded -radd123 add -2078852.83E-647080089 -119779858.E+734665461 -> -1.19779858E+734665469 Inexact Rounded -rcom123 compare -2078852.83E-647080089 -119779858.E+734665461 -> 1 -rdiv123 divide -2078852.83E-647080089 -119779858.E+734665461 -> ? Inexact Rounded Underflow Subnormal -rdvi123 divideint -2078852.83E-647080089 -119779858.E+734665461 -> 0 -rmul123 multiply -2078852.83E-647080089 -119779858.E+734665461 -> 2.49004697E+87585386 Inexact Rounded -rpow123 power -2078852.83E-647080089 -1 -> -4.81034533E+647080082 Inexact Rounded -rrem123 remainder -2078852.83E-647080089 -119779858.E+734665461 -> -2.07885283E-647080083 -rsub123 subtract -2078852.83E-647080089 -119779858.E+734665461 -> 1.19779858E+734665469 Inexact Rounded -radd124 add -79145.3625 -7718.57307 -> -86863.9356 Inexact Rounded -rcom124 compare -79145.3625 -7718.57307 -> -1 -rdiv124 divide -79145.3625 -7718.57307 -> 10.2538852 Inexact Rounded -rdvi124 divideint -79145.3625 -7718.57307 -> 10 -rmul124 multiply -79145.3625 -7718.57307 -> 610889264 Inexact Rounded -rpow124 power -79145.3625 -7719 -> -1.13181941E-37811 Inexact Rounded -rrem124 remainder -79145.3625 -7718.57307 -> -1959.63180 -rsub124 subtract -79145.3625 -7718.57307 -> -71426.7894 Inexact Rounded -radd125 add 2103890.49E+959247237 20024.3017 -> 2.10389049E+959247243 Inexact Rounded -rcom125 compare 2103890.49E+959247237 20024.3017 -> 1 -rdiv125 divide 2103890.49E+959247237 20024.3017 -> 1.05066859E+959247239 Inexact Rounded -rdvi125 divideint 2103890.49E+959247237 20024.3017 -> ? Division_impossible -rmul125 multiply 2103890.49E+959247237 20024.3017 -> 4.21289379E+959247247 Inexact Rounded -rpow125 power 2103890.49E+959247237 20024 -> ? Overflow Inexact Rounded -rrem125 remainder 2103890.49E+959247237 20024.3017 -> ? Division_impossible -rsub125 subtract 2103890.49E+959247237 20024.3017 -> 2.10389049E+959247243 Inexact Rounded -radd126 add 911249557 79810804.9 -> 991060362 Inexact Rounded -rcom126 compare 911249557 79810804.9 -> 1 -rdiv126 divide 911249557 79810804.9 -> 11.4176214 Inexact Rounded -rdvi126 divideint 911249557 79810804.9 -> 11 -rmul126 multiply 911249557 79810804.9 -> 7.27275606E+16 Inexact Rounded -rpow126 power 911249557 79810805 -> 6.77595741E+715075867 Inexact Rounded -rrem126 remainder 911249557 79810804.9 -> 33330703.1 -rsub126 subtract 911249557 79810804.9 -> 831438752 Inexact Rounded -radd127 add 341134.994 3.37486292 -> 341138.369 Inexact Rounded -rcom127 compare 341134.994 3.37486292 -> 1 -rdiv127 divide 341134.994 3.37486292 -> 101081.141 Inexact Rounded -rdvi127 divideint 341134.994 3.37486292 -> 101081 -rmul127 multiply 341134.994 3.37486292 -> 1151283.84 Inexact Rounded -rpow127 power 341134.994 3 -> 3.96989314E+16 Inexact Rounded -rrem127 remainder 341134.994 3.37486292 -> 0.47518348 -rsub127 subtract 341134.994 3.37486292 -> 341131.619 Inexact Rounded -radd128 add 244.23634 512706190E-341459836 -> 244.236340 Inexact Rounded -rcom128 compare 244.23634 512706190E-341459836 -> 1 -rdiv128 divide 244.23634 512706190E-341459836 -> 4.76367059E+341459829 Inexact Rounded -rdvi128 divideint 244.23634 512706190E-341459836 -> ? Division_impossible -rmul128 multiply 244.23634 512706190E-341459836 -> 1.25221483E-341459825 Inexact Rounded -rpow128 power 244.23634 5 -> 8.69063312E+11 Inexact Rounded -rrem128 remainder 244.23634 512706190E-341459836 -> ? Division_impossible -rsub128 subtract 244.23634 512706190E-341459836 -> 244.236340 Inexact Rounded -radd129 add -9.22783849E+171585954 -99.0946800 -> -9.22783849E+171585954 Inexact Rounded -rcom129 compare -9.22783849E+171585954 -99.0946800 -> -1 -rdiv129 divide -9.22783849E+171585954 -99.0946800 -> 9.31214318E+171585952 Inexact Rounded -rdvi129 divideint -9.22783849E+171585954 -99.0946800 -> ? Division_impossible -rmul129 multiply -9.22783849E+171585954 -99.0946800 -> 9.14429702E+171585956 Inexact Rounded -rpow129 power -9.22783849E+171585954 -99 -> ? Underflow Subnormal Inexact Rounded -rrem129 remainder -9.22783849E+171585954 -99.0946800 -> ? Division_impossible -rsub129 subtract -9.22783849E+171585954 -99.0946800 -> -9.22783849E+171585954 Inexact Rounded -radd130 add 699631.893 -226.423958 -> 699405.469 Inexact Rounded -rcom130 compare 699631.893 -226.423958 -> 1 -rdiv130 divide 699631.893 -226.423958 -> -3089.9199 Inexact Rounded -rdvi130 divideint 699631.893 -226.423958 -> -3089 -rmul130 multiply 699631.893 -226.423958 -> -158413422 Inexact Rounded -rpow130 power 699631.893 -226 -> 1.14675511E-1321 Inexact Rounded -rrem130 remainder 699631.893 -226.423958 -> 208.286738 -rsub130 subtract 699631.893 -226.423958 -> 699858.317 Inexact Rounded -radd131 add -249350139.E-571793673 775732428. -> 775732428 Inexact Rounded -rcom131 compare -249350139.E-571793673 775732428. -> -1 -rdiv131 divide -249350139.E-571793673 775732428. -> -3.21438334E-571793674 Inexact Rounded -rdvi131 divideint -249350139.E-571793673 775732428. -> 0 -rmul131 multiply -249350139.E-571793673 775732428. -> -1.93428989E-571793656 Inexact Rounded -rpow131 power -249350139.E-571793673 775732428 -> ? Underflow Subnormal Inexact Rounded -rrem131 remainder -249350139.E-571793673 775732428. -> -2.49350139E-571793665 -rsub131 subtract -249350139.E-571793673 775732428. -> -775732428 Inexact Rounded -radd132 add 5.11629020 -480.53194 -> -475.415650 Inexact Rounded -rcom132 compare 5.11629020 -480.53194 -> 1 -rdiv132 divide 5.11629020 -480.53194 -> -0.0106471387 Inexact Rounded -rdvi132 divideint 5.11629020 -480.53194 -> 0 -rmul132 multiply 5.11629020 -480.53194 -> -2458.54086 Inexact Rounded -rpow132 power 5.11629020 -481 -> 9.83021951E-342 Inexact Rounded -rrem132 remainder 5.11629020 -480.53194 -> 5.11629020 -rsub132 subtract 5.11629020 -480.53194 -> 485.648230 Inexact Rounded -radd133 add -8.23352673E-446723147 -530710.866 -> -530710.866 Inexact Rounded -rcom133 compare -8.23352673E-446723147 -530710.866 -> 1 -rdiv133 divide -8.23352673E-446723147 -530710.866 -> 1.55141476E-446723152 Inexact Rounded -rdvi133 divideint -8.23352673E-446723147 -530710.866 -> 0 -rmul133 multiply -8.23352673E-446723147 -530710.866 -> 4.36962210E-446723141 Inexact Rounded -rpow133 power -8.23352673E-446723147 -530711 -> ? Overflow Inexact Rounded -rrem133 remainder -8.23352673E-446723147 -530710.866 -> -8.23352673E-446723147 -rsub133 subtract -8.23352673E-446723147 -530710.866 -> 530710.866 Inexact Rounded -radd134 add 7.0598608 -95908.35 -> -95901.2901 Inexact Rounded -rcom134 compare 7.0598608 -95908.35 -> 1 -rdiv134 divide 7.0598608 -95908.35 -> -0.0000736104917 Inexact Rounded -rdvi134 divideint 7.0598608 -95908.35 -> 0 -rmul134 multiply 7.0598608 -95908.35 -> -677099.601 Inexact Rounded -rpow134 power 7.0598608 -95908 -> 4.57073877E-81407 Inexact Rounded -rrem134 remainder 7.0598608 -95908.35 -> 7.0598608 -rsub134 subtract 7.0598608 -95908.35 -> 95915.4099 Inexact Rounded -radd135 add -7.91189845E+207202706 1532.71847E+509944335 -> 1.53271847E+509944338 Inexact Rounded -rcom135 compare -7.91189845E+207202706 1532.71847E+509944335 -> -1 -rdiv135 divide -7.91189845E+207202706 1532.71847E+509944335 -> -5.16200372E-302741632 Inexact Rounded -rdvi135 divideint -7.91189845E+207202706 1532.71847E+509944335 -> 0 -rmul135 multiply -7.91189845E+207202706 1532.71847E+509944335 -> -1.21267129E+717147045 Inexact Rounded -rpow135 power -7.91189845E+207202706 2 -> 6.25981371E+414405413 Inexact Rounded -rrem135 remainder -7.91189845E+207202706 1532.71847E+509944335 -> -7.91189845E+207202706 -rsub135 subtract -7.91189845E+207202706 1532.71847E+509944335 -> -1.53271847E+509944338 Inexact Rounded -radd136 add 208839370.E-215147432 -75.9420559 -> -75.9420559 Inexact Rounded -rcom136 compare 208839370.E-215147432 -75.9420559 -> 1 -rdiv136 divide 208839370.E-215147432 -75.9420559 -> -2.7499831E-215147426 Inexact Rounded -rdvi136 divideint 208839370.E-215147432 -75.9420559 -> 0 -rmul136 multiply 208839370.E-215147432 -75.9420559 -> -1.58596911E-215147422 Inexact Rounded -rpow136 power 208839370.E-215147432 -76 -> ? Overflow Inexact Rounded -rrem136 remainder 208839370.E-215147432 -75.9420559 -> 2.08839370E-215147424 -rsub136 subtract 208839370.E-215147432 -75.9420559 -> 75.9420559 Inexact Rounded -radd137 add 427.754244E-353328369 4705.0796 -> 4705.07960 Inexact Rounded -rcom137 compare 427.754244E-353328369 4705.0796 -> -1 -rdiv137 divide 427.754244E-353328369 4705.0796 -> 9.09132853E-353328371 Inexact Rounded -rdvi137 divideint 427.754244E-353328369 4705.0796 -> 0 -rmul137 multiply 427.754244E-353328369 4705.0796 -> 2.01261777E-353328363 Inexact Rounded -rpow137 power 427.754244E-353328369 4705 -> ? Underflow Subnormal Inexact Rounded -rrem137 remainder 427.754244E-353328369 4705.0796 -> 4.27754244E-353328367 -rsub137 subtract 427.754244E-353328369 4705.0796 -> -4705.07960 Inexact Rounded -radd138 add 44911.089 -95.1733605E-313081848 -> 44911.0890 Inexact Rounded -rcom138 compare 44911.089 -95.1733605E-313081848 -> 1 -rdiv138 divide 44911.089 -95.1733605E-313081848 -> -4.71887183E+313081850 Inexact Rounded -rdvi138 divideint 44911.089 -95.1733605E-313081848 -> ? Division_impossible -rmul138 multiply 44911.089 -95.1733605E-313081848 -> -4.27433926E-313081842 Inexact Rounded -rpow138 power 44911.089 -10 -> 2.99546425E-47 Inexact Rounded -rrem138 remainder 44911.089 -95.1733605E-313081848 -> ? Division_impossible -rsub138 subtract 44911.089 -95.1733605E-313081848 -> 44911.0890 Inexact Rounded -radd139 add 452371821. -4109709.19 -> 448262112 Inexact Rounded -rcom139 compare 452371821. -4109709.19 -> 1 -rdiv139 divide 452371821. -4109709.19 -> -110.073925 Inexact Rounded -rdvi139 divideint 452371821. -4109709.19 -> -110 -rmul139 multiply 452371821. -4109709.19 -> -1.85911663E+15 Inexact Rounded -rpow139 power 452371821. -4109709 -> 1.15528807E-35571568 Inexact Rounded -rrem139 remainder 452371821. -4109709.19 -> 303810.10 -rsub139 subtract 452371821. -4109709.19 -> 456481530 Inexact Rounded -radd140 add 94007.4392 -9467725.5E+681898234 -> -9.46772550E+681898240 Inexact Rounded -rcom140 compare 94007.4392 -9467725.5E+681898234 -> 1 -rdiv140 divide 94007.4392 -9467725.5E+681898234 -> -9.92925272E-681898237 Inexact Rounded -rdvi140 divideint 94007.4392 -9467725.5E+681898234 -> 0 -rmul140 multiply 94007.4392 -9467725.5E+681898234 -> -8.90036629E+681898245 Inexact Rounded -rpow140 power 94007.4392 -9 -> 1.74397397E-45 Inexact Rounded -rrem140 remainder 94007.4392 -9467725.5E+681898234 -> 94007.4392 -rsub140 subtract 94007.4392 -9467725.5E+681898234 -> 9.46772550E+681898240 Inexact Rounded -radd141 add 99147554.0E-751410586 38313.6423 -> 38313.6423 Inexact Rounded -rcom141 compare 99147554.0E-751410586 38313.6423 -> -1 -rdiv141 divide 99147554.0E-751410586 38313.6423 -> 2.58778722E-751410583 Inexact Rounded -rdvi141 divideint 99147554.0E-751410586 38313.6423 -> 0 -rmul141 multiply 99147554.0E-751410586 38313.6423 -> 3.79870392E-751410574 Inexact Rounded -rpow141 power 99147554.0E-751410586 38314 -> ? Underflow Subnormal Inexact Rounded -rrem141 remainder 99147554.0E-751410586 38313.6423 -> 9.91475540E-751410579 -rsub141 subtract 99147554.0E-751410586 38313.6423 -> -38313.6423 Inexact Rounded -radd142 add -7919.30254 -669.607854 -> -8588.91039 Inexact Rounded -rcom142 compare -7919.30254 -669.607854 -> -1 -rdiv142 divide -7919.30254 -669.607854 -> 11.8267767 Inexact Rounded -rdvi142 divideint -7919.30254 -669.607854 -> 11 -rmul142 multiply -7919.30254 -669.607854 -> 5302827.18 Inexact Rounded -rpow142 power -7919.30254 -670 -> 7.58147724E-2613 Inexact Rounded -rrem142 remainder -7919.30254 -669.607854 -> -553.616146 -rsub142 subtract -7919.30254 -669.607854 -> -7249.69469 Inexact Rounded -radd143 add 461.58280E+136110821 710666052.E-383754231 -> 4.61582800E+136110823 Inexact Rounded -rcom143 compare 461.58280E+136110821 710666052.E-383754231 -> 1 -rdiv143 divide 461.58280E+136110821 710666052.E-383754231 -> 6.49507316E+519865045 Inexact Rounded -rdvi143 divideint 461.58280E+136110821 710666052.E-383754231 -> ? Division_impossible -rmul143 multiply 461.58280E+136110821 710666052.E-383754231 -> 3.28031226E-247643399 Inexact Rounded -rpow143 power 461.58280E+136110821 7 -> 4.46423781E+952775765 Inexact Rounded -rrem143 remainder 461.58280E+136110821 710666052.E-383754231 -> ? Division_impossible -rsub143 subtract 461.58280E+136110821 710666052.E-383754231 -> 4.61582800E+136110823 Inexact Rounded -radd144 add 3455755.47E-112465506 771.674306 -> 771.674306 Inexact Rounded -rcom144 compare 3455755.47E-112465506 771.674306 -> -1 -rdiv144 divide 3455755.47E-112465506 771.674306 -> 4.47825649E-112465503 Inexact Rounded -rdvi144 divideint 3455755.47E-112465506 771.674306 -> 0 -rmul144 multiply 3455755.47E-112465506 771.674306 -> 2.66671770E-112465497 Inexact Rounded -rpow144 power 3455755.47E-112465506 772 -> ? Underflow Subnormal Inexact Rounded -rrem144 remainder 3455755.47E-112465506 771.674306 -> 3.45575547E-112465500 -rsub144 subtract 3455755.47E-112465506 771.674306 -> -771.674306 Inexact Rounded -radd145 add -477067757.E-961684940 7.70122608E-741072245 -> 7.70122608E-741072245 Inexact Rounded -rcom145 compare -477067757.E-961684940 7.70122608E-741072245 -> -1 -rdiv145 divide -477067757.E-961684940 7.70122608E-741072245 -> -6.19469877E-220612688 Inexact Rounded -rdvi145 divideint -477067757.E-961684940 7.70122608E-741072245 -> 0 -rmul145 multiply -477067757.E-961684940 7.70122608E-741072245 -> ? Underflow Subnormal Inexact Rounded -rpow145 power -477067757.E-961684940 8 -> ? Underflow Subnormal Inexact Rounded -rrem145 remainder -477067757.E-961684940 7.70122608E-741072245 -> -4.77067757E-961684932 -rsub145 subtract -477067757.E-961684940 7.70122608E-741072245 -> -7.70122608E-741072245 Inexact Rounded -radd146 add 76482.352 8237806.8 -> 8314289.15 Inexact Rounded -rcom146 compare 76482.352 8237806.8 -> -1 -rdiv146 divide 76482.352 8237806.8 -> 0.00928430999 Inexact Rounded -rdvi146 divideint 76482.352 8237806.8 -> 0 -rmul146 multiply 76482.352 8237806.8 -> 6.30046839E+11 Inexact Rounded -rpow146 power 76482.352 8237807 -> 8.44216559E+40229834 Inexact Rounded -rrem146 remainder 76482.352 8237806.8 -> 76482.352 -rsub146 subtract 76482.352 8237806.8 -> -8161324.45 Inexact Rounded -radd147 add 1.21505164E-565556504 9.26146573 -> 9.26146573 Inexact Rounded -rcom147 compare 1.21505164E-565556504 9.26146573 -> -1 -rdiv147 divide 1.21505164E-565556504 9.26146573 -> 1.31194314E-565556505 Inexact Rounded -rdvi147 divideint 1.21505164E-565556504 9.26146573 -> 0 -rmul147 multiply 1.21505164E-565556504 9.26146573 -> 1.12531591E-565556503 Inexact Rounded -rpow147 power 1.21505164E-565556504 9 -> ? Underflow Subnormal Inexact Rounded -rrem147 remainder 1.21505164E-565556504 9.26146573 -> 1.21505164E-565556504 -rsub147 subtract 1.21505164E-565556504 9.26146573 -> -9.26146573 Inexact Rounded -radd148 add -8303060.25E-169894883 901561.985 -> 901561.985 Inexact Rounded -rcom148 compare -8303060.25E-169894883 901561.985 -> -1 -rdiv148 divide -8303060.25E-169894883 901561.985 -> -9.20963881E-169894883 Inexact Rounded -rdvi148 divideint -8303060.25E-169894883 901561.985 -> 0 -rmul148 multiply -8303060.25E-169894883 901561.985 -> -7.48572348E-169894871 Inexact Rounded -rpow148 power -8303060.25E-169894883 901562 -> ? Underflow Subnormal Inexact Rounded -rrem148 remainder -8303060.25E-169894883 901561.985 -> -8.30306025E-169894877 -rsub148 subtract -8303060.25E-169894883 901561.985 -> -901561.985 Inexact Rounded -radd149 add -592464.92 71445510.7 -> 70853045.8 Inexact Rounded -rcom149 compare -592464.92 71445510.7 -> -1 -rdiv149 divide -592464.92 71445510.7 -> -0.00829254231 Inexact Rounded -rdvi149 divideint -592464.92 71445510.7 -> 0 -rmul149 multiply -592464.92 71445510.7 -> -4.23289588E+13 Inexact Rounded -rpow149 power -592464.92 71445511 -> -1.58269108E+412430832 Inexact Rounded -rrem149 remainder -592464.92 71445510.7 -> -592464.92 -rsub149 subtract -592464.92 71445510.7 -> -72037975.6 Inexact Rounded -radd150 add -73774.4165 -39.8243027 -> -73814.2408 Inexact Rounded -rcom150 compare -73774.4165 -39.8243027 -> -1 -rdiv150 divide -73774.4165 -39.8243027 -> 1852.49738 Inexact Rounded -rdvi150 divideint -73774.4165 -39.8243027 -> 1852 -rmul150 multiply -73774.4165 -39.8243027 -> 2938014.69 Inexact Rounded -rpow150 power -73774.4165 -40 -> 1.92206765E-195 Inexact Rounded -rrem150 remainder -73774.4165 -39.8243027 -> -19.8078996 -rsub150 subtract -73774.4165 -39.8243027 -> -73734.5922 Inexact Rounded -radd151 add -524724715. -55763.7937 -> -524780479 Inexact Rounded -rcom151 compare -524724715. -55763.7937 -> -1 -rdiv151 divide -524724715. -55763.7937 -> 9409.77434 Inexact Rounded -rdvi151 divideint -524724715. -55763.7937 -> 9409 -rmul151 multiply -524724715. -55763.7937 -> 2.92606408E+13 Inexact Rounded -rpow151 power -524724715. -55764 -> 5.47898351E-486259 Inexact Rounded -rrem151 remainder -524724715. -55763.7937 -> -43180.0767 -rsub151 subtract -524724715. -55763.7937 -> -524668951 Inexact Rounded -radd152 add 7.53800427 784873768E-9981146 -> 7.53800427 Inexact Rounded -rcom152 compare 7.53800427 784873768E-9981146 -> 1 -rdiv152 divide 7.53800427 784873768E-9981146 -> 9.6040976E+9981137 Inexact Rounded -rdvi152 divideint 7.53800427 784873768E-9981146 -> ? Division_impossible -rmul152 multiply 7.53800427 784873768E-9981146 -> 5.91638181E-9981137 Inexact Rounded -rpow152 power 7.53800427 8 -> 10424399.2 Inexact Rounded -rrem152 remainder 7.53800427 784873768E-9981146 -> ? Division_impossible -rsub152 subtract 7.53800427 784873768E-9981146 -> 7.53800427 Inexact Rounded -radd153 add 37.6027452 7.22454233 -> 44.8272875 Inexact Rounded -rcom153 compare 37.6027452 7.22454233 -> 1 -rdiv153 divide 37.6027452 7.22454233 -> 5.20486191 Inexact Rounded -rdvi153 divideint 37.6027452 7.22454233 -> 5 -rmul153 multiply 37.6027452 7.22454233 -> 271.662624 Inexact Rounded -rpow153 power 37.6027452 7 -> 1.06300881E+11 Inexact Rounded -rrem153 remainder 37.6027452 7.22454233 -> 1.48003355 -rsub153 subtract 37.6027452 7.22454233 -> 30.3782029 Inexact Rounded -radd154 add 2447660.39 -36981.4253 -> 2410678.96 Inexact Rounded -rcom154 compare 2447660.39 -36981.4253 -> 1 -rdiv154 divide 2447660.39 -36981.4253 -> -66.1862102 Inexact Rounded -rdvi154 divideint 2447660.39 -36981.4253 -> -66 -rmul154 multiply 2447660.39 -36981.4253 -> -9.05179699E+10 Inexact Rounded -rpow154 power 2447660.39 -36981 -> 3.92066064E-236263 Inexact Rounded -rrem154 remainder 2447660.39 -36981.4253 -> 6886.3202 -rsub154 subtract 2447660.39 -36981.4253 -> 2484641.82 Inexact Rounded -radd155 add 2160.36419 1418.33574E+656265382 -> 1.41833574E+656265385 Inexact Rounded -rcom155 compare 2160.36419 1418.33574E+656265382 -> -1 -rdiv155 divide 2160.36419 1418.33574E+656265382 -> 1.52316841E-656265382 Inexact Rounded -rdvi155 divideint 2160.36419 1418.33574E+656265382 -> 0 -rmul155 multiply 2160.36419 1418.33574E+656265382 -> 3.06412174E+656265388 Inexact Rounded -rpow155 power 2160.36419 1 -> 2160.36419 -rrem155 remainder 2160.36419 1418.33574E+656265382 -> 2160.36419 -rsub155 subtract 2160.36419 1418.33574E+656265382 -> -1.41833574E+656265385 Inexact Rounded -radd156 add 8926.44939 54.9430027 -> 8981.39239 Inexact Rounded -rcom156 compare 8926.44939 54.9430027 -> 1 -rdiv156 divide 8926.44939 54.9430027 -> 162.467447 Inexact Rounded -rdvi156 divideint 8926.44939 54.9430027 -> 162 -rmul156 multiply 8926.44939 54.9430027 -> 490445.933 Inexact Rounded -rpow156 power 8926.44939 55 -> 1.93789877E+217 Inexact Rounded -rrem156 remainder 8926.44939 54.9430027 -> 25.6829526 -rsub156 subtract 8926.44939 54.9430027 -> 8871.50639 Inexact Rounded -radd157 add 861588029 -41657398E+77955925 -> -4.16573980E+77955932 Inexact Rounded -rcom157 compare 861588029 -41657398E+77955925 -> 1 -rdiv157 divide 861588029 -41657398E+77955925 -> -2.06827135E-77955924 Inexact Rounded -rdvi157 divideint 861588029 -41657398E+77955925 -> 0 -rmul157 multiply 861588029 -41657398E+77955925 -> -3.58915154E+77955941 Inexact Rounded -rpow157 power 861588029 -4 -> 1.81468553E-36 Inexact Rounded -rrem157 remainder 861588029 -41657398E+77955925 -> 861588029 -rsub157 subtract 861588029 -41657398E+77955925 -> 4.16573980E+77955932 Inexact Rounded -radd158 add -34.5253062 52.6722019 -> 18.1468957 -rcom158 compare -34.5253062 52.6722019 -> -1 -rdiv158 divide -34.5253062 52.6722019 -> -0.655474899 Inexact Rounded -rdvi158 divideint -34.5253062 52.6722019 -> 0 -rmul158 multiply -34.5253062 52.6722019 -> -1818.52390 Inexact Rounded -rpow158 power -34.5253062 53 -> -3.32115821E+81 Inexact Rounded -rrem158 remainder -34.5253062 52.6722019 -> -34.5253062 -rsub158 subtract -34.5253062 52.6722019 -> -87.1975081 -radd159 add -18861647. 99794586.7 -> 80932939.7 -rcom159 compare -18861647. 99794586.7 -> -1 -rdiv159 divide -18861647. 99794586.7 -> -0.189004711 Inexact Rounded -rdvi159 divideint -18861647. 99794586.7 -> 0 -rmul159 multiply -18861647. 99794586.7 -> -1.88229027E+15 Inexact Rounded -rpow159 power -18861647. 99794587 -> -4.2895746E+726063462 Inexact Rounded -rrem159 remainder -18861647. 99794586.7 -> -18861647.0 -rsub159 subtract -18861647. 99794586.7 -> -118656234 Inexact Rounded -radd160 add 322192.407 461.67044 -> 322654.077 Inexact Rounded -rcom160 compare 322192.407 461.67044 -> 1 -rdiv160 divide 322192.407 461.67044 -> 697.883986 Inexact Rounded -rdvi160 divideint 322192.407 461.67044 -> 697 -rmul160 multiply 322192.407 461.67044 -> 148746710 Inexact Rounded -rpow160 power 322192.407 462 -> 5.61395873E+2544 Inexact Rounded -rrem160 remainder 322192.407 461.67044 -> 408.11032 -rsub160 subtract 322192.407 461.67044 -> 321730.737 Inexact Rounded -radd161 add -896298518E+61412314 78873.8049 -> -8.96298518E+61412322 Inexact Rounded -rcom161 compare -896298518E+61412314 78873.8049 -> -1 -rdiv161 divide -896298518E+61412314 78873.8049 -> -1.13637033E+61412318 Inexact Rounded -rdvi161 divideint -896298518E+61412314 78873.8049 -> ? Division_impossible -rmul161 multiply -896298518E+61412314 78873.8049 -> -7.06944744E+61412327 Inexact Rounded -rpow161 power -896298518E+61412314 78874 -> ? Overflow Inexact Rounded -rrem161 remainder -896298518E+61412314 78873.8049 -> ? Division_impossible -rsub161 subtract -896298518E+61412314 78873.8049 -> -8.96298518E+61412322 Inexact Rounded -radd162 add 293.773732 479899052E+789950177 -> 4.79899052E+789950185 Inexact Rounded -rcom162 compare 293.773732 479899052E+789950177 -> -1 -rdiv162 divide 293.773732 479899052E+789950177 -> 6.1215735E-789950184 Inexact Rounded -rdvi162 divideint 293.773732 479899052E+789950177 -> 0 -rmul162 multiply 293.773732 479899052E+789950177 -> 1.40981735E+789950188 Inexact Rounded -rpow162 power 293.773732 5 -> 2.18808809E+12 Inexact Rounded -rrem162 remainder 293.773732 479899052E+789950177 -> 293.773732 -rsub162 subtract 293.773732 479899052E+789950177 -> -4.79899052E+789950185 Inexact Rounded -radd163 add -103519362 51897955.3 -> -51621407 Inexact Rounded -rcom163 compare -103519362 51897955.3 -> -1 -rdiv163 divide -103519362 51897955.3 -> -1.9946713 Inexact Rounded -rdvi163 divideint -103519362 51897955.3 -> -1 -rmul163 multiply -103519362 51897955.3 -> -5.37244322E+15 Inexact Rounded -rpow163 power -103519362 51897955 -> -4.28858229E+415963229 Inexact Rounded -rrem163 remainder -103519362 51897955.3 -> -51621406.7 -rsub163 subtract -103519362 51897955.3 -> -155417317 Inexact Rounded -radd164 add 37380.7802 -277719788. -> -277682407 Inexact Rounded -rcom164 compare 37380.7802 -277719788. -> 1 -rdiv164 divide 37380.7802 -277719788. -> -0.000134598908 Inexact Rounded -rdvi164 divideint 37380.7802 -277719788. -> 0 -rmul164 multiply 37380.7802 -277719788. -> -1.03813824E+13 Inexact Rounded -rpow164 power 37380.7802 -277719788 -> ? Underflow Subnormal Inexact Rounded -rrem164 remainder 37380.7802 -277719788. -> 37380.7802 -rsub164 subtract 37380.7802 -277719788. -> 277757169 Inexact Rounded -radd165 add 320133844. -977517477 -> -657383633 -rcom165 compare 320133844. -977517477 -> 1 -rdiv165 divide 320133844. -977517477 -> -0.327496798 Inexact Rounded -rdvi165 divideint 320133844. -977517477 -> 0 -rmul165 multiply 320133844. -977517477 -> -3.12936427E+17 Inexact Rounded -rpow165 power 320133844. -977517477 -> ? Underflow Subnormal Inexact Rounded -rrem165 remainder 320133844. -977517477 -> 320133844 -rsub165 subtract 320133844. -977517477 -> 1.29765132E+9 Inexact Rounded -radd166 add 721776701E+933646161 -5689279.64E+669903645 -> 7.21776701E+933646169 Inexact Rounded -rcom166 compare 721776701E+933646161 -5689279.64E+669903645 -> 1 -rdiv166 divide 721776701E+933646161 -5689279.64E+669903645 -> -1.26866097E+263742518 Inexact Rounded -rdvi166 divideint 721776701E+933646161 -5689279.64E+669903645 -> ? Division_impossible -rmul166 multiply 721776701E+933646161 -5689279.64E+669903645 -> ? Inexact Overflow Rounded -rpow166 power 721776701E+933646161 -6 -> ? Underflow Subnormal Inexact Rounded -rrem166 remainder 721776701E+933646161 -5689279.64E+669903645 -> ? Division_impossible -rsub166 subtract 721776701E+933646161 -5689279.64E+669903645 -> 7.21776701E+933646169 Inexact Rounded -radd167 add -5409.00482 -2.16149386 -> -5411.16631 Inexact Rounded -rcom167 compare -5409.00482 -2.16149386 -> -1 -rdiv167 divide -5409.00482 -2.16149386 -> 2502.43821 Inexact Rounded -rdvi167 divideint -5409.00482 -2.16149386 -> 2502 -rmul167 multiply -5409.00482 -2.16149386 -> 11691.5307 Inexact Rounded -rpow167 power -5409.00482 -2 -> 3.41794652E-8 Inexact Rounded -rrem167 remainder -5409.00482 -2.16149386 -> -0.94718228 -rsub167 subtract -5409.00482 -2.16149386 -> -5406.84333 Inexact Rounded -radd168 add -957960.367 322.858170 -> -957637.509 Inexact Rounded -rcom168 compare -957960.367 322.858170 -> -1 -rdiv168 divide -957960.367 322.858170 -> -2967.12444 Inexact Rounded -rdvi168 divideint -957960.367 322.858170 -> -2967 -rmul168 multiply -957960.367 322.858170 -> -309285331 Inexact Rounded -rpow168 power -957960.367 323 -> -9.4461746E+1931 Inexact Rounded -rrem168 remainder -957960.367 322.858170 -> -40.176610 -rsub168 subtract -957960.367 322.858170 -> -958283.225 Inexact Rounded -radd169 add -11817.8754E+613893442 -3.84735082E+888333249 -> -3.84735082E+888333249 Inexact Rounded -rcom169 compare -11817.8754E+613893442 -3.84735082E+888333249 -> 1 -rdiv169 divide -11817.8754E+613893442 -3.84735082E+888333249 -> 3.07169165E-274439804 Inexact Rounded -rdvi169 divideint -11817.8754E+613893442 -3.84735082E+888333249 -> 0 -rmul169 multiply -11817.8754E+613893442 -3.84735082E+888333249 -> ? Inexact Overflow Rounded -rpow169 power -11817.8754E+613893442 -4 -> ? Underflow Subnormal Inexact Rounded -rrem169 remainder -11817.8754E+613893442 -3.84735082E+888333249 -> -1.18178754E+613893446 -rsub169 subtract -11817.8754E+613893442 -3.84735082E+888333249 -> 3.84735082E+888333249 Inexact Rounded -radd170 add 840258203 58363.980E-906584723 -> 840258203 Inexact Rounded -rcom170 compare 840258203 58363.980E-906584723 -> 1 -rdiv170 divide 840258203 58363.980E-906584723 -> 1.43968626E+906584727 Inexact Rounded -rdvi170 divideint 840258203 58363.980E-906584723 -> ? Division_impossible -rmul170 multiply 840258203 58363.980E-906584723 -> 4.90408130E-906584710 Inexact Rounded -rpow170 power 840258203 6 -> 3.51946431E+53 Inexact Rounded -rrem170 remainder 840258203 58363.980E-906584723 -> ? Division_impossible -rsub170 subtract 840258203 58363.980E-906584723 -> 840258203 Inexact Rounded -radd171 add -205842096. -191342.721 -> -206033439 Inexact Rounded -rcom171 compare -205842096. -191342.721 -> -1 -rdiv171 divide -205842096. -191342.721 -> 1075.77699 Inexact Rounded -rdvi171 divideint -205842096. -191342.721 -> 1075 -rmul171 multiply -205842096. -191342.721 -> 3.93863867E+13 Inexact Rounded -rpow171 power -205842096. -191343 -> -2.66955553E-1590737 Inexact Rounded -rrem171 remainder -205842096. -191342.721 -> -148670.925 -rsub171 subtract -205842096. -191342.721 -> -205650753 Inexact Rounded -radd172 add 42501124. 884.938498E+123341480 -> 8.84938498E+123341482 Inexact Rounded -rcom172 compare 42501124. 884.938498E+123341480 -> -1 -rdiv172 divide 42501124. 884.938498E+123341480 -> 4.80272065E-123341476 Inexact Rounded -rdvi172 divideint 42501124. 884.938498E+123341480 -> 0 -rmul172 multiply 42501124. 884.938498E+123341480 -> 3.76108808E+123341490 Inexact Rounded -rpow172 power 42501124. 9 -> 4.52484536E+68 Inexact Rounded -rrem172 remainder 42501124. 884.938498E+123341480 -> 42501124 -rsub172 subtract 42501124. 884.938498E+123341480 -> -8.84938498E+123341482 Inexact Rounded -radd173 add -57809452. -620380746 -> -678190198 -rcom173 compare -57809452. -620380746 -> 1 -rdiv173 divide -57809452. -620380746 -> 0.0931838268 Inexact Rounded -rdvi173 divideint -57809452. -620380746 -> 0 -rmul173 multiply -57809452. -620380746 -> 3.58638710E+16 Inexact Rounded -rpow173 power -57809452. -620380746 -> ? Underflow Subnormal Inexact Rounded -rrem173 remainder -57809452. -620380746 -> -57809452 -rsub173 subtract -57809452. -620380746 -> 562571294 -radd174 add -8022370.31 9858581.6 -> 1836211.29 -rcom174 compare -8022370.31 9858581.6 -> -1 -rdiv174 divide -8022370.31 9858581.6 -> -0.813744881 Inexact Rounded -rdvi174 divideint -8022370.31 9858581.6 -> 0 -rmul174 multiply -8022370.31 9858581.6 -> -7.90891923E+13 Inexact Rounded -rpow174 power -8022370.31 9858582 -> 2.34458249E+68066634 Inexact Rounded -rrem174 remainder -8022370.31 9858581.6 -> -8022370.31 -rsub174 subtract -8022370.31 9858581.6 -> -17880951.9 Inexact Rounded -radd175 add 2.49065060E+592139141 -5432.72014E-419965357 -> 2.49065060E+592139141 Inexact Rounded -rcom175 compare 2.49065060E+592139141 -5432.72014E-419965357 -> 1 -rdiv175 divide 2.49065060E+592139141 -5432.72014E-419965357 -> ? Inexact Overflow Rounded -rdvi175 divideint 2.49065060E+592139141 -5432.72014E-419965357 -> ? Division_impossible -rmul175 multiply 2.49065060E+592139141 -5432.72014E-419965357 -> -1.35310077E+172173788 Inexact Rounded -rpow175 power 2.49065060E+592139141 -5 -> ? Underflow Subnormal Inexact Rounded -rrem175 remainder 2.49065060E+592139141 -5432.72014E-419965357 -> ? Division_impossible -rsub175 subtract 2.49065060E+592139141 -5432.72014E-419965357 -> 2.49065060E+592139141 Inexact Rounded -radd176 add -697273715E-242824870 -3.81757506 -> -3.81757506 Inexact Rounded -rcom176 compare -697273715E-242824870 -3.81757506 -> 1 -rdiv176 divide -697273715E-242824870 -3.81757506 -> 1.82648331E-242824862 Inexact Rounded -rdvi176 divideint -697273715E-242824870 -3.81757506 -> 0 -rmul176 multiply -697273715E-242824870 -3.81757506 -> 2.66189474E-242824861 Inexact Rounded -rpow176 power -697273715E-242824870 -4 -> 4.23045251E+971299444 Inexact Rounded -rrem176 remainder -697273715E-242824870 -3.81757506 -> -6.97273715E-242824862 -rsub176 subtract -697273715E-242824870 -3.81757506 -> 3.81757506 Inexact Rounded -radd177 add -7.42204403E-315716280 -8156111.67E+283261636 -> -8.15611167E+283261642 Inexact Rounded -rcom177 compare -7.42204403E-315716280 -8156111.67E+283261636 -> 1 -rdiv177 divide -7.42204403E-315716280 -8156111.67E+283261636 -> 9.09997843E-598977923 Inexact Rounded -rdvi177 divideint -7.42204403E-315716280 -8156111.67E+283261636 -> 0 -rmul177 multiply -7.42204403E-315716280 -8156111.67E+283261636 -> 6.05350199E-32454637 Inexact Rounded -rpow177 power -7.42204403E-315716280 -8 -> ? Overflow Inexact Rounded -rrem177 remainder -7.42204403E-315716280 -8156111.67E+283261636 -> -7.42204403E-315716280 -rsub177 subtract -7.42204403E-315716280 -8156111.67E+283261636 -> 8.15611167E+283261642 Inexact Rounded -radd178 add 738063892 89900467.8 -> 827964360 Inexact Rounded -rcom178 compare 738063892 89900467.8 -> 1 -rdiv178 divide 738063892 89900467.8 -> 8.20978923 Inexact Rounded -rdvi178 divideint 738063892 89900467.8 -> 8 -rmul178 multiply 738063892 89900467.8 -> 6.63522892E+16 Inexact Rounded -rpow178 power 738063892 89900468 -> 1.53166723E+797245797 Inexact Rounded -rrem178 remainder 738063892 89900467.8 -> 18860149.6 -rsub178 subtract 738063892 89900467.8 -> 648163424 Inexact Rounded -radd179 add -630309366 -884783.338E-21595410 -> -630309366 Inexact Rounded -rcom179 compare -630309366 -884783.338E-21595410 -> -1 -rdiv179 divide -630309366 -884783.338E-21595410 -> 7.12388377E+21595412 Inexact Rounded -rdvi179 divideint -630309366 -884783.338E-21595410 -> ? Division_impossible -rmul179 multiply -630309366 -884783.338E-21595410 -> 5.57687225E-21595396 Inexact Rounded -rpow179 power -630309366 -9 -> -6.3681921E-80 Inexact Rounded -rrem179 remainder -630309366 -884783.338E-21595410 -> ? Division_impossible -rsub179 subtract -630309366 -884783.338E-21595410 -> -630309366 Inexact Rounded -radd180 add 613.207774 -3007.78608 -> -2394.57831 Inexact Rounded -rcom180 compare 613.207774 -3007.78608 -> 1 -rdiv180 divide 613.207774 -3007.78608 -> -0.203873466 Inexact Rounded -rdvi180 divideint 613.207774 -3007.78608 -> 0 -rmul180 multiply 613.207774 -3007.78608 -> -1844397.81 Inexact Rounded -rpow180 power 613.207774 -3008 -> 7.5193916E-8386 Inexact Rounded -rrem180 remainder 613.207774 -3007.78608 -> 613.207774 -rsub180 subtract 613.207774 -3007.78608 -> 3620.99385 Inexact Rounded -radd181 add -93006222.3 -3.08964619 -> -93006225.4 Inexact Rounded -rcom181 compare -93006222.3 -3.08964619 -> -1 -rdiv181 divide -93006222.3 -3.08964619 -> 30102547.9 Inexact Rounded -rdvi181 divideint -93006222.3 -3.08964619 -> 30102547 -rmul181 multiply -93006222.3 -3.08964619 -> 287356320 Inexact Rounded -rpow181 power -93006222.3 -3 -> -1.24297956E-24 Inexact Rounded -rrem181 remainder -93006222.3 -3.08964619 -> -2.65215407 -rsub181 subtract -93006222.3 -3.08964619 -> -93006219.2 Inexact Rounded -radd182 add -18116.0621 34096.306E-270347092 -> -18116.0621 Inexact Rounded -rcom182 compare -18116.0621 34096.306E-270347092 -> -1 -rdiv182 divide -18116.0621 34096.306E-270347092 -> -5.31320375E+270347091 Inexact Rounded -rdvi182 divideint -18116.0621 34096.306E-270347092 -> ? Division_impossible -rmul182 multiply -18116.0621 34096.306E-270347092 -> -6.17690797E-270347084 Inexact Rounded -rpow182 power -18116.0621 3 -> -5.94554133E+12 Inexact Rounded -rrem182 remainder -18116.0621 34096.306E-270347092 -> ? Division_impossible -rsub182 subtract -18116.0621 34096.306E-270347092 -> -18116.0621 Inexact Rounded -radd183 add 19272386.9 -410442379. -> -391169992 Inexact Rounded -rcom183 compare 19272386.9 -410442379. -> 1 -rdiv183 divide 19272386.9 -410442379. -> -0.0469551584 Inexact Rounded -rdvi183 divideint 19272386.9 -410442379. -> 0 -rmul183 multiply 19272386.9 -410442379. -> -7.91020433E+15 Inexact Rounded -rpow183 power 19272386.9 -410442379 -> ? Underflow Subnormal Inexact Rounded -rrem183 remainder 19272386.9 -410442379. -> 19272386.9 -rsub183 subtract 19272386.9 -410442379. -> 429714766 Inexact Rounded -radd184 add 4180.30821 -1.6439543E-624759104 -> 4180.30821 Inexact Rounded -rcom184 compare 4180.30821 -1.6439543E-624759104 -> 1 -rdiv184 divide 4180.30821 -1.6439543E-624759104 -> -2.54283724E+624759107 Inexact Rounded -rdvi184 divideint 4180.30821 -1.6439543E-624759104 -> ? Division_impossible -rmul184 multiply 4180.30821 -1.6439543E-624759104 -> -6.87223566E-624759101 Inexact Rounded -rpow184 power 4180.30821 -2 -> 5.72246828E-8 Inexact Rounded -rrem184 remainder 4180.30821 -1.6439543E-624759104 -> ? Division_impossible -rsub184 subtract 4180.30821 -1.6439543E-624759104 -> 4180.30821 Inexact Rounded -radd185 add 571.536725 389.899220 -> 961.435945 -rcom185 compare 571.536725 389.899220 -> 1 -rdiv185 divide 571.536725 389.899220 -> 1.46585757 Inexact Rounded -rdvi185 divideint 571.536725 389.899220 -> 1 -rmul185 multiply 571.536725 389.899220 -> 222841.723 Inexact Rounded -rpow185 power 571.536725 390 -> 1.76691373E+1075 Inexact Rounded -rrem185 remainder 571.536725 389.899220 -> 181.637505 -rsub185 subtract 571.536725 389.899220 -> 181.637505 -radd186 add -622007306.E+159924886 -126.971745 -> -6.22007306E+159924894 Inexact Rounded -rcom186 compare -622007306.E+159924886 -126.971745 -> -1 -rdiv186 divide -622007306.E+159924886 -126.971745 -> 4.89878521E+159924892 Inexact Rounded -rdvi186 divideint -622007306.E+159924886 -126.971745 -> ? Division_impossible -rmul186 multiply -622007306.E+159924886 -126.971745 -> 7.89773530E+159924896 Inexact Rounded -rpow186 power -622007306.E+159924886 -127 -> ? Underflow Subnormal Inexact Rounded -rrem186 remainder -622007306.E+159924886 -126.971745 -> ? Division_impossible -rsub186 subtract -622007306.E+159924886 -126.971745 -> -6.22007306E+159924894 Inexact Rounded -radd187 add -29.356551E-282816139 37141748E-903397821 -> -2.93565510E-282816138 Inexact Rounded -rcom187 compare -29.356551E-282816139 37141748E-903397821 -> -1 -rdiv187 divide -29.356551E-282816139 37141748E-903397821 -> -7.90392283E+620581675 Inexact Rounded -rdvi187 divideint -29.356551E-282816139 37141748E-903397821 -> ? Division_impossible -rmul187 multiply -29.356551E-282816139 37141748E-903397821 -> ? Underflow Subnormal Inexact Rounded -rpow187 power -29.356551E-282816139 4 -> ? Underflow Subnormal Inexact Rounded -rrem187 remainder -29.356551E-282816139 37141748E-903397821 -> ? Division_impossible -rsub187 subtract -29.356551E-282816139 37141748E-903397821 -> -2.93565510E-282816138 Inexact Rounded -radd188 add 92427442.4 674334898. -> 766762340 Inexact Rounded -rcom188 compare 92427442.4 674334898. -> -1 -rdiv188 divide 92427442.4 674334898. -> 0.137064599 Inexact Rounded -rdvi188 divideint 92427442.4 674334898. -> 0 -rmul188 multiply 92427442.4 674334898. -> 6.23270499E+16 Inexact Rounded -rpow188 power 92427442.4 674334898 -> ? Overflow Inexact Rounded -rrem188 remainder 92427442.4 674334898. -> 92427442.4 -rsub188 subtract 92427442.4 674334898. -> -581907456 Inexact Rounded -radd189 add 44651895.7 -910508.438 -> 43741387.3 Inexact Rounded -rcom189 compare 44651895.7 -910508.438 -> 1 -rdiv189 divide 44651895.7 -910508.438 -> -49.0406171 Inexact Rounded -rdvi189 divideint 44651895.7 -910508.438 -> -49 -rmul189 multiply 44651895.7 -910508.438 -> -4.06559278E+13 Inexact Rounded -rpow189 power 44651895.7 -910508 -> 3.72264277E-6965241 Inexact Rounded -rrem189 remainder 44651895.7 -910508.438 -> 36982.238 -rsub189 subtract 44651895.7 -910508.438 -> 45562404.1 Inexact Rounded -radd190 add 647897872.E+374021790 -467.423029 -> 6.47897872E+374021798 Inexact Rounded -rcom190 compare 647897872.E+374021790 -467.423029 -> 1 -rdiv190 divide 647897872.E+374021790 -467.423029 -> -1.38610601E+374021796 Inexact Rounded -rdvi190 divideint 647897872.E+374021790 -467.423029 -> ? Division_impossible -rmul190 multiply 647897872.E+374021790 -467.423029 -> -3.02842386E+374021801 Inexact Rounded -rpow190 power 647897872.E+374021790 -467 -> ? Underflow Subnormal Inexact Rounded -rrem190 remainder 647897872.E+374021790 -467.423029 -> ? Division_impossible -rsub190 subtract 647897872.E+374021790 -467.423029 -> 6.47897872E+374021798 Inexact Rounded -radd191 add 25.2592149 59.0436981 -> 84.3029130 -rcom191 compare 25.2592149 59.0436981 -> -1 -rdiv191 divide 25.2592149 59.0436981 -> 0.427805434 Inexact Rounded -rdvi191 divideint 25.2592149 59.0436981 -> 0 -rmul191 multiply 25.2592149 59.0436981 -> 1491.39746 Inexact Rounded -rpow191 power 25.2592149 59 -> 5.53058435E+82 Inexact Rounded -rrem191 remainder 25.2592149 59.0436981 -> 25.2592149 -rsub191 subtract 25.2592149 59.0436981 -> -33.7844832 -radd192 add -6.850835 -1273.48240 -> -1280.33324 Inexact Rounded -rcom192 compare -6.850835 -1273.48240 -> 1 -rdiv192 divide -6.850835 -1273.48240 -> 0.00537960713 Inexact Rounded -rdvi192 divideint -6.850835 -1273.48240 -> 0 -rmul192 multiply -6.850835 -1273.48240 -> 8724.41780 Inexact Rounded -rpow192 power -6.850835 -1273 -> -1.25462678E-1064 Inexact Rounded -rrem192 remainder -6.850835 -1273.48240 -> -6.850835 -rsub192 subtract -6.850835 -1273.48240 -> 1266.63157 Inexact Rounded -radd193 add 174.272325 5638.16229 -> 5812.43462 Inexact Rounded -rcom193 compare 174.272325 5638.16229 -> -1 -rdiv193 divide 174.272325 5638.16229 -> 0.0309094198 Inexact Rounded -rdvi193 divideint 174.272325 5638.16229 -> 0 -rmul193 multiply 174.272325 5638.16229 -> 982575.651 Inexact Rounded -rpow193 power 174.272325 5638 -> 1.11137724E+12636 Inexact Rounded -rrem193 remainder 174.272325 5638.16229 -> 174.272325 -rsub193 subtract 174.272325 5638.16229 -> -5463.88997 Inexact Rounded -radd194 add 3455629.76 -8.27332322 -> 3455621.49 Inexact Rounded -rcom194 compare 3455629.76 -8.27332322 -> 1 -rdiv194 divide 3455629.76 -8.27332322 -> -417683.399 Inexact Rounded -rdvi194 divideint 3455629.76 -8.27332322 -> -417683 -rmul194 multiply 3455629.76 -8.27332322 -> -28589541.9 Inexact Rounded -rpow194 power 3455629.76 -8 -> 4.91793015E-53 Inexact Rounded -rrem194 remainder 3455629.76 -8.27332322 -> 3.29750074 -rsub194 subtract 3455629.76 -8.27332322 -> 3455638.03 Inexact Rounded -radd195 add -924337723E-640771235 86639377.1 -> 86639377.1 Inexact Rounded -rcom195 compare -924337723E-640771235 86639377.1 -> -1 -rdiv195 divide -924337723E-640771235 86639377.1 -> -1.06687947E-640771234 Inexact Rounded -rdvi195 divideint -924337723E-640771235 86639377.1 -> 0 -rmul195 multiply -924337723E-640771235 86639377.1 -> -8.00840446E-640771219 Inexact Rounded -rpow195 power -924337723E-640771235 86639377 -> ? Underflow Subnormal Inexact Rounded -rrem195 remainder -924337723E-640771235 86639377.1 -> -9.24337723E-640771227 -rsub195 subtract -924337723E-640771235 86639377.1 -> -86639377.1 Inexact Rounded -radd196 add -620236932.E+656823969 3364722.73 -> -6.20236932E+656823977 Inexact Rounded -rcom196 compare -620236932.E+656823969 3364722.73 -> -1 -rdiv196 divide -620236932.E+656823969 3364722.73 -> -1.84335228E+656823971 Inexact Rounded -rdvi196 divideint -620236932.E+656823969 3364722.73 -> ? Division_impossible -rmul196 multiply -620236932.E+656823969 3364722.73 -> -2.08692530E+656823984 Inexact Rounded -rpow196 power -620236932.E+656823969 3364723 -> ? Overflow Inexact Rounded -rrem196 remainder -620236932.E+656823969 3364722.73 -> ? Division_impossible -rsub196 subtract -620236932.E+656823969 3364722.73 -> -6.20236932E+656823977 Inexact Rounded -radd197 add 9.10025079 702777882E-8192234 -> 9.10025079 Inexact Rounded -rcom197 compare 9.10025079 702777882E-8192234 -> 1 -rdiv197 divide 9.10025079 702777882E-8192234 -> 1.29489715E+8192226 Inexact Rounded -rdvi197 divideint 9.10025079 702777882E-8192234 -> ? Division_impossible -rmul197 multiply 9.10025079 702777882E-8192234 -> 6.39545498E-8192225 Inexact Rounded -rpow197 power 9.10025079 7 -> 5168607.19 Inexact Rounded -rrem197 remainder 9.10025079 702777882E-8192234 -> ? Division_impossible -rsub197 subtract 9.10025079 702777882E-8192234 -> 9.10025079 Inexact Rounded -radd198 add -18857539.9 813013129. -> 794155589 Inexact Rounded -rcom198 compare -18857539.9 813013129. -> -1 -rdiv198 divide -18857539.9 813013129. -> -0.0231946315 Inexact Rounded -rdvi198 divideint -18857539.9 813013129. -> 0 -rmul198 multiply -18857539.9 813013129. -> -1.53314275E+16 Inexact Rounded -rpow198 power -18857539.9 813013129 -> ? Overflow Inexact Rounded -rrem198 remainder -18857539.9 813013129. -> -18857539.9 -rsub198 subtract -18857539.9 813013129. -> -831870669 Inexact Rounded -radd199 add -8.29530327 3243419.57E+35688332 -> 3.24341957E+35688338 Inexact Rounded -rcom199 compare -8.29530327 3243419.57E+35688332 -> -1 -rdiv199 divide -8.29530327 3243419.57E+35688332 -> -2.55757946E-35688338 Inexact Rounded -rdvi199 divideint -8.29530327 3243419.57E+35688332 -> 0 -rmul199 multiply -8.29530327 3243419.57E+35688332 -> -2.69051490E+35688339 Inexact Rounded -rpow199 power -8.29530327 3 -> -570.816876 Inexact Rounded -rrem199 remainder -8.29530327 3243419.57E+35688332 -> -8.29530327 -rsub199 subtract -8.29530327 3243419.57E+35688332 -> -3.24341957E+35688338 Inexact Rounded -radd200 add -57101683.5 763551341E+991491712 -> 7.63551341E+991491720 Inexact Rounded -rcom200 compare -57101683.5 763551341E+991491712 -> -1 -rdiv200 divide -57101683.5 763551341E+991491712 -> -7.47843405E-991491714 Inexact Rounded -rdvi200 divideint -57101683.5 763551341E+991491712 -> 0 -rmul200 multiply -57101683.5 763551341E+991491712 -> -4.36000670E+991491728 Inexact Rounded -rpow200 power -57101683.5 8 -> 1.13029368E+62 Inexact Rounded -rrem200 remainder -57101683.5 763551341E+991491712 -> -57101683.5 -rsub200 subtract -57101683.5 763551341E+991491712 -> -7.63551341E+991491720 Inexact Rounded -radd201 add -603326.740 1710.95183 -> -601615.788 Inexact Rounded -rcom201 compare -603326.740 1710.95183 -> -1 -rdiv201 divide -603326.740 1710.95183 -> -352.626374 Inexact Rounded -rdvi201 divideint -603326.740 1710.95183 -> -352 -rmul201 multiply -603326.740 1710.95183 -> -1.03226299E+9 Inexact Rounded -rpow201 power -603326.740 1711 -> -3.35315976E+9890 Inexact Rounded -rrem201 remainder -603326.740 1710.95183 -> -1071.69584 -rsub201 subtract -603326.740 1710.95183 -> -605037.692 Inexact Rounded -radd202 add -48142763.3 -943434114 -> -991576877 Inexact Rounded -rcom202 compare -48142763.3 -943434114 -> 1 -rdiv202 divide -48142763.3 -943434114 -> 0.0510292797 Inexact Rounded -rdvi202 divideint -48142763.3 -943434114 -> 0 -rmul202 multiply -48142763.3 -943434114 -> 4.54195252E+16 Inexact Rounded -rpow202 power -48142763.3 -943434114 -> ? Underflow Subnormal Inexact Rounded -rrem202 remainder -48142763.3 -943434114 -> -48142763.3 -rsub202 subtract -48142763.3 -943434114 -> 895291351 Inexact Rounded -radd203 add -204.586767 -235.531847 -> -440.118614 -rcom203 compare -204.586767 -235.531847 -> 1 -rdiv203 divide -204.586767 -235.531847 -> 0.868616154 Inexact Rounded -rdvi203 divideint -204.586767 -235.531847 -> 0 -rmul203 multiply -204.586767 -235.531847 -> 48186.6991 Inexact Rounded -rpow203 power -204.586767 -236 -> 4.29438222E-546 Inexact Rounded -rrem203 remainder -204.586767 -235.531847 -> -204.586767 -rsub203 subtract -204.586767 -235.531847 -> 30.945080 -radd204 add -70.3805581 830137.913 -> 830067.532 Inexact Rounded -rcom204 compare -70.3805581 830137.913 -> -1 -rdiv204 divide -70.3805581 830137.913 -> -0.0000847817658 Inexact Rounded -rdvi204 divideint -70.3805581 830137.913 -> 0 -rmul204 multiply -70.3805581 830137.913 -> -58425569.6 Inexact Rounded -rpow204 power -70.3805581 830138 -> 4.95165841E+1533640 Inexact Rounded -rrem204 remainder -70.3805581 830137.913 -> -70.3805581 -rsub204 subtract -70.3805581 830137.913 -> -830208.294 Inexact Rounded -radd205 add -8818.47606 -60766.4571 -> -69584.9332 Inexact Rounded -rcom205 compare -8818.47606 -60766.4571 -> 1 -rdiv205 divide -8818.47606 -60766.4571 -> 0.145120787 Inexact Rounded -rdvi205 divideint -8818.47606 -60766.4571 -> 0 -rmul205 multiply -8818.47606 -60766.4571 -> 535867547 Inexact Rounded -rpow205 power -8818.47606 -60766 -> 1.64487755E-239746 Inexact Rounded -rrem205 remainder -8818.47606 -60766.4571 -> -8818.47606 -rsub205 subtract -8818.47606 -60766.4571 -> 51947.9810 Inexact Rounded -radd206 add 37060929.3E-168439509 -79576717.1 -> -79576717.1 Inexact Rounded -rcom206 compare 37060929.3E-168439509 -79576717.1 -> 1 -rdiv206 divide 37060929.3E-168439509 -79576717.1 -> -4.65725788E-168439510 Inexact Rounded -rdvi206 divideint 37060929.3E-168439509 -79576717.1 -> 0 -rmul206 multiply 37060929.3E-168439509 -79576717.1 -> -2.94918709E-168439494 Inexact Rounded -rpow206 power 37060929.3E-168439509 -79576717 -> ? Overflow Inexact Rounded -rrem206 remainder 37060929.3E-168439509 -79576717.1 -> 3.70609293E-168439502 -rsub206 subtract 37060929.3E-168439509 -79576717.1 -> 79576717.1 Inexact Rounded -radd207 add -656285310. -107221462. -> -763506772 -rcom207 compare -656285310. -107221462. -> -1 -rdiv207 divide -656285310. -107221462. -> 6.12083904 Inexact Rounded -rdvi207 divideint -656285310. -107221462. -> 6 -rmul207 multiply -656285310. -107221462. -> 7.03678704E+16 Inexact Rounded -rpow207 power -656285310. -107221462 -> 8.0533808E-945381569 Inexact Rounded -rrem207 remainder -656285310. -107221462. -> -12956538 -rsub207 subtract -656285310. -107221462. -> -549063848 -radd208 add 653397.125 7195.30990 -> 660592.435 Inexact Rounded -rcom208 compare 653397.125 7195.30990 -> 1 -rdiv208 divide 653397.125 7195.30990 -> 90.8087538 Inexact Rounded -rdvi208 divideint 653397.125 7195.30990 -> 90 -rmul208 multiply 653397.125 7195.30990 -> 4.70139480E+9 Inexact Rounded -rpow208 power 653397.125 7195 -> 1.58522983E+41840 Inexact Rounded -rrem208 remainder 653397.125 7195.30990 -> 5819.23400 -rsub208 subtract 653397.125 7195.30990 -> 646201.815 Inexact Rounded -radd209 add 56221910.0E+857909374 -58.7247929 -> 5.62219100E+857909381 Inexact Rounded -rcom209 compare 56221910.0E+857909374 -58.7247929 -> 1 -rdiv209 divide 56221910.0E+857909374 -58.7247929 -> -9.57379451E+857909379 Inexact Rounded -rdvi209 divideint 56221910.0E+857909374 -58.7247929 -> ? Division_impossible -rmul209 multiply 56221910.0E+857909374 -58.7247929 -> -3.30162002E+857909383 Inexact Rounded -rpow209 power 56221910.0E+857909374 -59 -> ? Underflow Subnormal Inexact Rounded -rrem209 remainder 56221910.0E+857909374 -58.7247929 -> ? Division_impossible -rsub209 subtract 56221910.0E+857909374 -58.7247929 -> 5.62219100E+857909381 Inexact Rounded -radd210 add 809862859E+643769974 -5.06784016 -> 8.09862859E+643769982 Inexact Rounded -rcom210 compare 809862859E+643769974 -5.06784016 -> 1 -rdiv210 divide 809862859E+643769974 -5.06784016 -> -1.59804341E+643769982 Inexact Rounded -rdvi210 divideint 809862859E+643769974 -5.06784016 -> ? Division_impossible -rmul210 multiply 809862859E+643769974 -5.06784016 -> -4.10425552E+643769983 Inexact Rounded -rpow210 power 809862859E+643769974 -5 -> ? Underflow Subnormal Inexact Rounded -rrem210 remainder 809862859E+643769974 -5.06784016 -> ? Division_impossible -rsub210 subtract 809862859E+643769974 -5.06784016 -> 8.09862859E+643769982 Inexact Rounded -radd211 add -62011.4563E-117563240 -57.1731586E+115657204 -> -5.71731586E+115657205 Inexact Rounded -rcom211 compare -62011.4563E-117563240 -57.1731586E+115657204 -> 1 -rdiv211 divide -62011.4563E-117563240 -57.1731586E+115657204 -> 1.08462534E-233220441 Inexact Rounded -rdvi211 divideint -62011.4563E-117563240 -57.1731586E+115657204 -> 0 -rmul211 multiply -62011.4563E-117563240 -57.1731586E+115657204 -> 3.54539083E-1906030 Inexact Rounded -rpow211 power -62011.4563E-117563240 -6 -> 1.75860546E+705379411 Inexact Rounded -rrem211 remainder -62011.4563E-117563240 -57.1731586E+115657204 -> -6.20114563E-117563236 -rsub211 subtract -62011.4563E-117563240 -57.1731586E+115657204 -> 5.71731586E+115657205 Inexact Rounded -radd212 add 315.33351 91588.837E-536020149 -> 315.333510 Inexact Rounded -rcom212 compare 315.33351 91588.837E-536020149 -> 1 -rdiv212 divide 315.33351 91588.837E-536020149 -> 3.44292515E+536020146 Inexact Rounded -rdvi212 divideint 315.33351 91588.837E-536020149 -> ? Division_impossible -rmul212 multiply 315.33351 91588.837E-536020149 -> 2.88810294E-536020142 Inexact Rounded -rpow212 power 315.33351 9 -> 3.08269902E+22 Inexact Rounded -rrem212 remainder 315.33351 91588.837E-536020149 -> ? Division_impossible -rsub212 subtract 315.33351 91588.837E-536020149 -> 315.333510 Inexact Rounded -radd213 add 739.944710 202949.175 -> 203689.120 Inexact Rounded -rcom213 compare 739.944710 202949.175 -> -1 -rdiv213 divide 739.944710 202949.175 -> 0.00364596067 Inexact Rounded -rdvi213 divideint 739.944710 202949.175 -> 0 -rmul213 multiply 739.944710 202949.175 -> 150171168 Inexact Rounded -rpow213 power 739.944710 202949 -> 1.32611729E+582301 Inexact Rounded -rrem213 remainder 739.944710 202949.175 -> 739.944710 -rsub213 subtract 739.944710 202949.175 -> -202209.230 Inexact Rounded -radd214 add 87686.8016 4204890.40 -> 4292577.20 Inexact Rounded -rcom214 compare 87686.8016 4204890.40 -> -1 -rdiv214 divide 87686.8016 4204890.40 -> 0.0208535285 Inexact Rounded -rdvi214 divideint 87686.8016 4204890.40 -> 0 -rmul214 multiply 87686.8016 4204890.40 -> 3.68713390E+11 Inexact Rounded -rpow214 power 87686.8016 4204890 -> 5.14846981E+20784494 Inexact Rounded -rrem214 remainder 87686.8016 4204890.40 -> 87686.8016 -rsub214 subtract 87686.8016 4204890.40 -> -4117203.60 Inexact Rounded -radd215 add 987126721.E-725794834 4874166.23 -> 4874166.23 Inexact Rounded -rcom215 compare 987126721.E-725794834 4874166.23 -> -1 -rdiv215 divide 987126721.E-725794834 4874166.23 -> 2.0252217E-725794832 Inexact Rounded -rdvi215 divideint 987126721.E-725794834 4874166.23 -> 0 -rmul215 multiply 987126721.E-725794834 4874166.23 -> 4.81141973E-725794819 Inexact Rounded -rpow215 power 987126721.E-725794834 4874166 -> ? Underflow Subnormal Inexact Rounded -rrem215 remainder 987126721.E-725794834 4874166.23 -> 9.87126721E-725794826 -rsub215 subtract 987126721.E-725794834 4874166.23 -> -4874166.23 Inexact Rounded -radd216 add 728148726.E-661695938 32798.5202 -> 32798.5202 Inexact Rounded -rcom216 compare 728148726.E-661695938 32798.5202 -> -1 -rdiv216 divide 728148726.E-661695938 32798.5202 -> 2.22006579E-661695934 Inexact Rounded -rdvi216 divideint 728148726.E-661695938 32798.5202 -> 0 -rmul216 multiply 728148726.E-661695938 32798.5202 -> 2.38822007E-661695925 Inexact Rounded -rpow216 power 728148726.E-661695938 32799 -> ? Underflow Subnormal Inexact Rounded -rrem216 remainder 728148726.E-661695938 32798.5202 -> 7.28148726E-661695930 -rsub216 subtract 728148726.E-661695938 32798.5202 -> -32798.5202 Inexact Rounded -radd217 add 7428219.97 667.326760 -> 7428887.30 Inexact Rounded -rcom217 compare 7428219.97 667.326760 -> 1 -rdiv217 divide 7428219.97 667.326760 -> 11131.3084 Inexact Rounded -rdvi217 divideint 7428219.97 667.326760 -> 11131 -rmul217 multiply 7428219.97 667.326760 -> 4.95704997E+9 Inexact Rounded -rpow217 power 7428219.97 667 -> 7.5880851E+4582 Inexact Rounded -rrem217 remainder 7428219.97 667.326760 -> 205.804440 -rsub217 subtract 7428219.97 667.326760 -> 7427552.64 Inexact Rounded -radd218 add -7291.19212 209.64966E-588526476 -> -7291.19212 Inexact Rounded -rcom218 compare -7291.19212 209.64966E-588526476 -> -1 -rdiv218 divide -7291.19212 209.64966E-588526476 -> -3.47779821E+588526477 Inexact Rounded -rdvi218 divideint -7291.19212 209.64966E-588526476 -> ? Division_impossible -rmul218 multiply -7291.19212 209.64966E-588526476 -> -1.52859595E-588526470 Inexact Rounded -rpow218 power -7291.19212 2 -> 53161482.5 Inexact Rounded -rrem218 remainder -7291.19212 209.64966E-588526476 -> ? Division_impossible -rsub218 subtract -7291.19212 209.64966E-588526476 -> -7291.19212 Inexact Rounded -radd219 add -358.24550 -4447.78675E+601402509 -> -4.44778675E+601402512 Inexact Rounded -rcom219 compare -358.24550 -4447.78675E+601402509 -> 1 -rdiv219 divide -358.24550 -4447.78675E+601402509 -> 8.05446664E-601402511 Inexact Rounded -rdvi219 divideint -358.24550 -4447.78675E+601402509 -> 0 -rmul219 multiply -358.24550 -4447.78675E+601402509 -> 1.59339959E+601402515 Inexact Rounded -rpow219 power -358.24550 -4 -> 6.07123474E-11 Inexact Rounded -rrem219 remainder -358.24550 -4447.78675E+601402509 -> -358.24550 -rsub219 subtract -358.24550 -4447.78675E+601402509 -> 4.44778675E+601402512 Inexact Rounded -radd220 add 118.621826 -2.72010038 -> 115.901726 Inexact Rounded -rcom220 compare 118.621826 -2.72010038 -> 1 -rdiv220 divide 118.621826 -2.72010038 -> -43.6093561 Inexact Rounded -rdvi220 divideint 118.621826 -2.72010038 -> -43 -rmul220 multiply 118.621826 -2.72010038 -> -322.663274 Inexact Rounded -rpow220 power 118.621826 -3 -> 5.99109471E-7 Inexact Rounded -rrem220 remainder 118.621826 -2.72010038 -> 1.65750966 -rsub220 subtract 118.621826 -2.72010038 -> 121.341926 Inexact Rounded -radd221 add 8071961.94 -135533740.E-102451543 -> 8071961.94 Inexact Rounded -rcom221 compare 8071961.94 -135533740.E-102451543 -> 1 -rdiv221 divide 8071961.94 -135533740.E-102451543 -> -5.9556845E+102451541 Inexact Rounded -rdvi221 divideint 8071961.94 -135533740.E-102451543 -> ? Division_impossible -rmul221 multiply 8071961.94 -135533740.E-102451543 -> -1.09402319E-102451528 Inexact Rounded -rpow221 power 8071961.94 -1 -> 1.23885619E-7 Inexact Rounded -rrem221 remainder 8071961.94 -135533740.E-102451543 -> ? Division_impossible -rsub221 subtract 8071961.94 -135533740.E-102451543 -> 8071961.94 Inexact Rounded -radd222 add 64262528.5E+812118682 -8692.94447E-732186947 -> 6.42625285E+812118689 Inexact Rounded -rcom222 compare 64262528.5E+812118682 -8692.94447E-732186947 -> 1 -rdiv222 divide 64262528.5E+812118682 -8692.94447E-732186947 -> ? Inexact Overflow Rounded -rdvi222 divideint 64262528.5E+812118682 -8692.94447E-732186947 -> ? Division_impossible -rmul222 multiply 64262528.5E+812118682 -8692.94447E-732186947 -> -5.58630592E+79931746 Inexact Rounded -rpow222 power 64262528.5E+812118682 -9 -> ? Underflow Subnormal Inexact Rounded -rrem222 remainder 64262528.5E+812118682 -8692.94447E-732186947 -> ? Division_impossible -rsub222 subtract 64262528.5E+812118682 -8692.94447E-732186947 -> 6.42625285E+812118689 Inexact Rounded -radd223 add -35544.4029 -567830.130 -> -603374.533 Inexact Rounded -rcom223 compare -35544.4029 -567830.130 -> 1 -rdiv223 divide -35544.4029 -567830.130 -> 0.0625968948 Inexact Rounded -rdvi223 divideint -35544.4029 -567830.130 -> 0 -rmul223 multiply -35544.4029 -567830.130 -> 2.01831829E+10 Inexact Rounded -rpow223 power -35544.4029 -567830 -> 3.77069368E-2584065 Inexact Rounded -rrem223 remainder -35544.4029 -567830.130 -> -35544.4029 -rsub223 subtract -35544.4029 -567830.130 -> 532285.727 Inexact Rounded -radd224 add -7.16513047E+59297103 87767.8211 -> -7.16513047E+59297103 Inexact Rounded -rcom224 compare -7.16513047E+59297103 87767.8211 -> -1 -rdiv224 divide -7.16513047E+59297103 87767.8211 -> -8.16373288E+59297098 Inexact Rounded -rdvi224 divideint -7.16513047E+59297103 87767.8211 -> ? Division_impossible -rmul224 multiply -7.16513047E+59297103 87767.8211 -> -6.28867889E+59297108 Inexact Rounded -rpow224 power -7.16513047E+59297103 87768 -> ? Overflow Inexact Rounded -rrem224 remainder -7.16513047E+59297103 87767.8211 -> ? Division_impossible -rsub224 subtract -7.16513047E+59297103 87767.8211 -> -7.16513047E+59297103 Inexact Rounded -radd225 add -509.483395 -147242915. -> -147243424 Inexact Rounded -rcom225 compare -509.483395 -147242915. -> 1 -rdiv225 divide -509.483395 -147242915. -> 0.00000346015559 Inexact Rounded -rdvi225 divideint -509.483395 -147242915. -> 0 -rmul225 multiply -509.483395 -147242915. -> 7.50178202E+10 Inexact Rounded -rpow225 power -509.483395 -147242915 -> -3.10760519E-398605718 Inexact Rounded -rrem225 remainder -509.483395 -147242915. -> -509.483395 -rsub225 subtract -509.483395 -147242915. -> 147242406 Inexact Rounded -radd226 add -7919047.28E+956041629 -367667329 -> -7.91904728E+956041635 Inexact Rounded -rcom226 compare -7919047.28E+956041629 -367667329 -> -1 -rdiv226 divide -7919047.28E+956041629 -367667329 -> 2.15386211E+956041627 Inexact Rounded -rdvi226 divideint -7919047.28E+956041629 -367667329 -> ? Division_impossible -rmul226 multiply -7919047.28E+956041629 -367667329 -> 2.91157496E+956041644 Inexact Rounded -rpow226 power -7919047.28E+956041629 -367667329 -> ? Underflow Subnormal Inexact Rounded -rrem226 remainder -7919047.28E+956041629 -367667329 -> ? Division_impossible -rsub226 subtract -7919047.28E+956041629 -367667329 -> -7.91904728E+956041635 Inexact Rounded -radd227 add 895612630. -36.4104040 -> 895612594 Inexact Rounded -rcom227 compare 895612630. -36.4104040 -> 1 -rdiv227 divide 895612630. -36.4104040 -> -24597712 Inexact Rounded -rdvi227 divideint 895612630. -36.4104040 -> -24597711 -rmul227 multiply 895612630. -36.4104040 -> -3.26096177E+10 Inexact Rounded -rpow227 power 895612630. -36 -> 5.2926413E-323 Inexact Rounded -rrem227 remainder 895612630. -36.4104040 -> 35.0147560 -rsub227 subtract 895612630. -36.4104040 -> 895612666 Inexact Rounded -radd228 add 25455.4973 2955.00006E+528196218 -> 2.95500006E+528196221 Inexact Rounded -rcom228 compare 25455.4973 2955.00006E+528196218 -> -1 -rdiv228 divide 25455.4973 2955.00006E+528196218 -> 8.61438131E-528196218 Inexact Rounded -rdvi228 divideint 25455.4973 2955.00006E+528196218 -> 0 -rmul228 multiply 25455.4973 2955.00006E+528196218 -> 7.52209960E+528196225 Inexact Rounded -rpow228 power 25455.4973 3 -> 1.64947128E+13 Inexact Rounded -rrem228 remainder 25455.4973 2955.00006E+528196218 -> 25455.4973 -rsub228 subtract 25455.4973 2955.00006E+528196218 -> -2.95500006E+528196221 Inexact Rounded -radd229 add -112.294144E+273414172 -71448007.7 -> -1.12294144E+273414174 Inexact Rounded -rcom229 compare -112.294144E+273414172 -71448007.7 -> -1 -rdiv229 divide -112.294144E+273414172 -71448007.7 -> 1.57169035E+273414166 Inexact Rounded -rdvi229 divideint -112.294144E+273414172 -71448007.7 -> ? Division_impossible -rmul229 multiply -112.294144E+273414172 -71448007.7 -> 8.02319287E+273414181 Inexact Rounded -rpow229 power -112.294144E+273414172 -71448008 -> ? Underflow Subnormal Inexact Rounded -rrem229 remainder -112.294144E+273414172 -71448007.7 -> ? Division_impossible -rsub229 subtract -112.294144E+273414172 -71448007.7 -> -1.12294144E+273414174 Inexact Rounded -radd230 add 62871.2202 2484.0382E+211662557 -> 2.48403820E+211662560 Inexact Rounded -rcom230 compare 62871.2202 2484.0382E+211662557 -> -1 -rdiv230 divide 62871.2202 2484.0382E+211662557 -> 2.53100859E-211662556 Inexact Rounded -rdvi230 divideint 62871.2202 2484.0382E+211662557 -> 0 -rmul230 multiply 62871.2202 2484.0382E+211662557 -> 1.56174513E+211662565 Inexact Rounded -rpow230 power 62871.2202 2 -> 3.95279033E+9 Inexact Rounded -rrem230 remainder 62871.2202 2484.0382E+211662557 -> 62871.2202 -rsub230 subtract 62871.2202 2484.0382E+211662557 -> -2.48403820E+211662560 Inexact Rounded -radd231 add 71.9281575 -9810012.5 -> -9809940.57 Inexact Rounded -rcom231 compare 71.9281575 -9810012.5 -> 1 -rdiv231 divide 71.9281575 -9810012.5 -> -0.0000073321168 Inexact Rounded -rdvi231 divideint 71.9281575 -9810012.5 -> 0 -rmul231 multiply 71.9281575 -9810012.5 -> -705616124 Inexact Rounded -rpow231 power 71.9281575 -9810013 -> 2.00363798E-18216203 Inexact Rounded -rrem231 remainder 71.9281575 -9810012.5 -> 71.9281575 -rsub231 subtract 71.9281575 -9810012.5 -> 9810084.43 Inexact Rounded -radd232 add -6388022. -88.042967 -> -6388110.04 Inexact Rounded -rcom232 compare -6388022. -88.042967 -> -1 -rdiv232 divide -6388022. -88.042967 -> 72555.7329 Inexact Rounded -rdvi232 divideint -6388022. -88.042967 -> 72555 -rmul232 multiply -6388022. -88.042967 -> 562420410 Inexact Rounded -rpow232 power -6388022. -88 -> 1.34201238E-599 Inexact Rounded -rrem232 remainder -6388022. -88.042967 -> -64.529315 -rsub232 subtract -6388022. -88.042967 -> -6387933.96 Inexact Rounded -radd233 add 372567445. 96.0992141 -> 372567541 Inexact Rounded -rcom233 compare 372567445. 96.0992141 -> 1 -rdiv233 divide 372567445. 96.0992141 -> 3876904.18 Inexact Rounded -rdvi233 divideint 372567445. 96.0992141 -> 3876904 -rmul233 multiply 372567445. 96.0992141 -> 3.58034387E+10 Inexact Rounded -rpow233 power 372567445. 96 -> 6.84968715E+822 Inexact Rounded -rrem233 remainder 372567445. 96.0992141 -> 17.4588536 -rsub233 subtract 372567445. 96.0992141 -> 372567349 Inexact Rounded -radd234 add 802.156517 -174409310.E-255338020 -> 802.156517 Inexact Rounded -rcom234 compare 802.156517 -174409310.E-255338020 -> 1 -rdiv234 divide 802.156517 -174409310.E-255338020 -> -4.59927579E+255338014 Inexact Rounded -rdvi234 divideint 802.156517 -174409310.E-255338020 -> ? Division_impossible -rmul234 multiply 802.156517 -174409310.E-255338020 -> -1.39903565E-255338009 Inexact Rounded -rpow234 power 802.156517 -2 -> 0.00000155411005 Inexact Rounded -rrem234 remainder 802.156517 -174409310.E-255338020 -> ? Division_impossible -rsub234 subtract 802.156517 -174409310.E-255338020 -> 802.156517 Inexact Rounded -radd235 add -3.65207541 74501982.0 -> 74501978.3 Inexact Rounded -rcom235 compare -3.65207541 74501982.0 -> -1 -rdiv235 divide -3.65207541 74501982.0 -> -4.90198423E-8 Inexact Rounded -rdvi235 divideint -3.65207541 74501982.0 -> 0 -rmul235 multiply -3.65207541 74501982.0 -> -272086856 Inexact Rounded -rpow235 power -3.65207541 74501982 -> 2.10339452E+41910325 Inexact Rounded -rrem235 remainder -3.65207541 74501982.0 -> -3.65207541 -rsub235 subtract -3.65207541 74501982.0 -> -74501985.7 Inexact Rounded -radd236 add -5297.76981 -859.719404 -> -6157.48921 Inexact Rounded -rcom236 compare -5297.76981 -859.719404 -> -1 -rdiv236 divide -5297.76981 -859.719404 -> 6.16220802 Inexact Rounded -rdvi236 divideint -5297.76981 -859.719404 -> 6 -rmul236 multiply -5297.76981 -859.719404 -> 4554595.50 Inexact Rounded -rpow236 power -5297.76981 -860 -> 1.90523108E-3203 Inexact Rounded -rrem236 remainder -5297.76981 -859.719404 -> -139.453386 -rsub236 subtract -5297.76981 -859.719404 -> -4438.05041 Inexact Rounded -radd237 add -684172.592 766.448597E+288361959 -> 7.66448597E+288361961 Inexact Rounded -rcom237 compare -684172.592 766.448597E+288361959 -> -1 -rdiv237 divide -684172.592 766.448597E+288361959 -> -8.92652938E-288361957 Inexact Rounded -rdvi237 divideint -684172.592 766.448597E+288361959 -> 0 -rmul237 multiply -684172.592 766.448597E+288361959 -> -5.24383123E+288361967 Inexact Rounded -rpow237 power -684172.592 8 -> 4.80093005E+46 Inexact Rounded -rrem237 remainder -684172.592 766.448597E+288361959 -> -684172.592 -rsub237 subtract -684172.592 766.448597E+288361959 -> -7.66448597E+288361961 Inexact Rounded -radd238 add 626919.219 57469.8727E+13188610 -> 5.74698727E+13188614 Inexact Rounded -rcom238 compare 626919.219 57469.8727E+13188610 -> -1 -rdiv238 divide 626919.219 57469.8727E+13188610 -> 1.09086586E-13188609 Inexact Rounded -rdvi238 divideint 626919.219 57469.8727E+13188610 -> 0 -rmul238 multiply 626919.219 57469.8727E+13188610 -> 3.60289677E+13188620 Inexact Rounded -rpow238 power 626919.219 6 -> 6.07112959E+34 Inexact Rounded -rrem238 remainder 626919.219 57469.8727E+13188610 -> 626919.219 -rsub238 subtract 626919.219 57469.8727E+13188610 -> -5.74698727E+13188614 Inexact Rounded -radd239 add -77480.5840 893265.594E+287982552 -> 8.93265594E+287982557 Inexact Rounded -rcom239 compare -77480.5840 893265.594E+287982552 -> -1 -rdiv239 divide -77480.5840 893265.594E+287982552 -> -8.67385742E-287982554 Inexact Rounded -rdvi239 divideint -77480.5840 893265.594E+287982552 -> 0 -rmul239 multiply -77480.5840 893265.594E+287982552 -> -6.92107399E+287982562 Inexact Rounded -rpow239 power -77480.5840 9 -> -1.00631969E+44 Inexact Rounded -rrem239 remainder -77480.5840 893265.594E+287982552 -> -77480.5840 -rsub239 subtract -77480.5840 893265.594E+287982552 -> -8.93265594E+287982557 Inexact Rounded -radd240 add -7177620.29 7786343.83 -> 608723.54 -rcom240 compare -7177620.29 7786343.83 -> -1 -rdiv240 divide -7177620.29 7786343.83 -> -0.921821647 Inexact Rounded -rdvi240 divideint -7177620.29 7786343.83 -> 0 -rmul240 multiply -7177620.29 7786343.83 -> -5.58874195E+13 Inexact Rounded -rpow240 power -7177620.29 7786344 -> 2.96037074E+53383022 Inexact Rounded -rrem240 remainder -7177620.29 7786343.83 -> -7177620.29 -rsub240 subtract -7177620.29 7786343.83 -> -14963964.1 Inexact Rounded -radd241 add 9.6224130 4.50355112 -> 14.1259641 Inexact Rounded -rcom241 compare 9.6224130 4.50355112 -> 1 -rdiv241 divide 9.6224130 4.50355112 -> 2.13662791 Inexact Rounded -rdvi241 divideint 9.6224130 4.50355112 -> 2 -rmul241 multiply 9.6224130 4.50355112 -> 43.3350288 Inexact Rounded -rpow241 power 9.6224130 5 -> 82493.5448 Inexact Rounded -rrem241 remainder 9.6224130 4.50355112 -> 0.61531076 -rsub241 subtract 9.6224130 4.50355112 -> 5.11886188 -radd242 add -66.6337347E-597410086 -818812885 -> -818812885 Inexact Rounded -rcom242 compare -66.6337347E-597410086 -818812885 -> 1 -rdiv242 divide -66.6337347E-597410086 -818812885 -> 8.13784638E-597410094 Inexact Rounded -rdvi242 divideint -66.6337347E-597410086 -818812885 -> 0 -rmul242 multiply -66.6337347E-597410086 -818812885 -> 5.45605605E-597410076 Inexact Rounded -rpow242 power -66.6337347E-597410086 -818812885 -> ? Overflow Inexact Rounded -rrem242 remainder -66.6337347E-597410086 -818812885 -> -6.66337347E-597410085 -rsub242 subtract -66.6337347E-597410086 -818812885 -> 818812885 Inexact Rounded -radd243 add 65587553.7 600574.736 -> 66188128.4 Inexact Rounded -rcom243 compare 65587553.7 600574.736 -> 1 -rdiv243 divide 65587553.7 600574.736 -> 109.20798 Inexact Rounded -rdvi243 divideint 65587553.7 600574.736 -> 109 -rmul243 multiply 65587553.7 600574.736 -> 3.93902277E+13 Inexact Rounded -rpow243 power 65587553.7 600575 -> 3.40404817E+4694587 Inexact Rounded -rrem243 remainder 65587553.7 600574.736 -> 124907.476 -rsub243 subtract 65587553.7 600574.736 -> 64986979.0 Inexact Rounded -radd244 add -32401.939 -585200217. -> -585232619 Inexact Rounded -rcom244 compare -32401.939 -585200217. -> 1 -rdiv244 divide -32401.939 -585200217. -> 0.0000553689798 Inexact Rounded -rdvi244 divideint -32401.939 -585200217. -> 0 -rmul244 multiply -32401.939 -585200217. -> 1.89616217E+13 Inexact Rounded -rpow244 power -32401.939 -585200217 -> ? Underflow Subnormal Inexact Rounded -rrem244 remainder -32401.939 -585200217. -> -32401.939 -rsub244 subtract -32401.939 -585200217. -> 585167815 Inexact Rounded -radd245 add 69573.988 -9.77003465E+740933668 -> -9.77003465E+740933668 Inexact Rounded -rcom245 compare 69573.988 -9.77003465E+740933668 -> 1 -rdiv245 divide 69573.988 -9.77003465E+740933668 -> -7.12116082E-740933665 Inexact Rounded -rdvi245 divideint 69573.988 -9.77003465E+740933668 -> 0 -rmul245 multiply 69573.988 -9.77003465E+740933668 -> -6.79740273E+740933673 Inexact Rounded -rpow245 power 69573.988 -10 -> 3.76297229E-49 Inexact Rounded -rrem245 remainder 69573.988 -9.77003465E+740933668 -> 69573.988 -rsub245 subtract 69573.988 -9.77003465E+740933668 -> 9.77003465E+740933668 Inexact Rounded -radd246 add 2362.06251 -433149546.E-152643629 -> 2362.06251 Inexact Rounded -rcom246 compare 2362.06251 -433149546.E-152643629 -> 1 -rdiv246 divide 2362.06251 -433149546.E-152643629 -> -5.45322633E+152643623 Inexact Rounded -rdvi246 divideint 2362.06251 -433149546.E-152643629 -> ? Division_impossible -rmul246 multiply 2362.06251 -433149546.E-152643629 -> -1.02312630E-152643617 Inexact Rounded -rpow246 power 2362.06251 -4 -> 3.21243577E-14 Inexact Rounded -rrem246 remainder 2362.06251 -433149546.E-152643629 -> ? Division_impossible -rsub246 subtract 2362.06251 -433149546.E-152643629 -> 2362.06251 Inexact Rounded -radd247 add -615.23488E+249953452 -21437483.7 -> -6.15234880E+249953454 Inexact Rounded -rcom247 compare -615.23488E+249953452 -21437483.7 -> -1 -rdiv247 divide -615.23488E+249953452 -21437483.7 -> 2.8699025E+249953447 Inexact Rounded -rdvi247 divideint -615.23488E+249953452 -21437483.7 -> ? Division_impossible -rmul247 multiply -615.23488E+249953452 -21437483.7 -> 1.31890877E+249953462 Inexact Rounded -rpow247 power -615.23488E+249953452 -21437484 -> ? Underflow Subnormal Inexact Rounded -rrem247 remainder -615.23488E+249953452 -21437483.7 -> ? Division_impossible -rsub247 subtract -615.23488E+249953452 -21437483.7 -> -6.15234880E+249953454 Inexact Rounded -radd248 add 216741082. 250290244 -> 467031326 -rcom248 compare 216741082. 250290244 -> -1 -rdiv248 divide 216741082. 250290244 -> 0.86595897 Inexact Rounded -rdvi248 divideint 216741082. 250290244 -> 0 -rmul248 multiply 216741082. 250290244 -> 5.42481783E+16 Inexact Rounded -rpow248 power 216741082. 250290244 -> ? Overflow Inexact Rounded -rrem248 remainder 216741082. 250290244 -> 216741082 -rsub248 subtract 216741082. 250290244 -> -33549162 -radd249 add -6364720.49 5539245.64 -> -825474.85 -rcom249 compare -6364720.49 5539245.64 -> -1 -rdiv249 divide -6364720.49 5539245.64 -> -1.14902297 Inexact Rounded -rdvi249 divideint -6364720.49 5539245.64 -> -1 -rmul249 multiply -6364720.49 5539245.64 -> -3.52557502E+13 Inexact Rounded -rpow249 power -6364720.49 5539246 -> 2.96894641E+37687807 Inexact Rounded -rrem249 remainder -6364720.49 5539245.64 -> -825474.85 -rsub249 subtract -6364720.49 5539245.64 -> -11903966.1 Inexact Rounded -radd250 add -814599.475 -14.5431191 -> -814614.018 Inexact Rounded -rcom250 compare -814599.475 -14.5431191 -> -1 -rdiv250 divide -814599.475 -14.5431191 -> 56012.7074 Inexact Rounded -rdvi250 divideint -814599.475 -14.5431191 -> 56012 -rmul250 multiply -814599.475 -14.5431191 -> 11846817.2 Inexact Rounded -rpow250 power -814599.475 -15 -> -2.16689622E-89 Inexact Rounded -rrem250 remainder -814599.475 -14.5431191 -> -10.2879708 -rsub250 subtract -814599.475 -14.5431191 -> -814584.932 Inexact Rounded -radd251 add -877498.755 507408724E-168628106 -> -877498.755 Inexact Rounded -rcom251 compare -877498.755 507408724E-168628106 -> -1 -rdiv251 divide -877498.755 507408724E-168628106 -> -1.72937262E+168628103 Inexact Rounded -rdvi251 divideint -877498.755 507408724E-168628106 -> ? Division_impossible -rmul251 multiply -877498.755 507408724E-168628106 -> -4.45250524E-168628092 Inexact Rounded -rpow251 power -877498.755 5 -> -5.20274505E+29 Inexact Rounded -rrem251 remainder -877498.755 507408724E-168628106 -> ? Division_impossible -rsub251 subtract -877498.755 507408724E-168628106 -> -877498.755 Inexact Rounded -radd252 add 10634446.5E+475783861 50.7213056E+17807809 -> 1.06344465E+475783868 Inexact Rounded -rcom252 compare 10634446.5E+475783861 50.7213056E+17807809 -> 1 -rdiv252 divide 10634446.5E+475783861 50.7213056E+17807809 -> 2.09664289E+457976057 Inexact Rounded -rdvi252 divideint 10634446.5E+475783861 50.7213056E+17807809 -> ? Division_impossible -rmul252 multiply 10634446.5E+475783861 50.7213056E+17807809 -> 5.39393011E+493591678 Inexact Rounded -rpow252 power 10634446.5E+475783861 5 -> ? Overflow Inexact Rounded -rrem252 remainder 10634446.5E+475783861 50.7213056E+17807809 -> ? Division_impossible -rsub252 subtract 10634446.5E+475783861 50.7213056E+17807809 -> 1.06344465E+475783868 Inexact Rounded -radd253 add -162726.257E-597285918 -4391.54799 -> -4391.54799 Inexact Rounded -rcom253 compare -162726.257E-597285918 -4391.54799 -> 1 -rdiv253 divide -162726.257E-597285918 -4391.54799 -> 3.70544185E-597285917 Inexact Rounded -rdvi253 divideint -162726.257E-597285918 -4391.54799 -> 0 -rmul253 multiply -162726.257E-597285918 -4391.54799 -> 7.14620167E-597285910 Inexact Rounded -rpow253 power -162726.257E-597285918 -4392 -> ? Overflow Inexact Rounded -rrem253 remainder -162726.257E-597285918 -4391.54799 -> -1.62726257E-597285913 -rsub253 subtract -162726.257E-597285918 -4391.54799 -> 4391.54799 Inexact Rounded -radd254 add 700354586.E-99856707 7198.0493E+436250299 -> 7.19804930E+436250302 Inexact Rounded -rcom254 compare 700354586.E-99856707 7198.0493E+436250299 -> -1 -rdiv254 divide 700354586.E-99856707 7198.0493E+436250299 -> 9.72978312E-536107002 Inexact Rounded -rdvi254 divideint 700354586.E-99856707 7198.0493E+436250299 -> 0 -rmul254 multiply 700354586.E-99856707 7198.0493E+436250299 -> 5.04118684E+336393604 Inexact Rounded -rpow254 power 700354586.E-99856707 7 -> 8.2646761E-698996888 Inexact Rounded -rrem254 remainder 700354586.E-99856707 7198.0493E+436250299 -> 7.00354586E-99856699 -rsub254 subtract 700354586.E-99856707 7198.0493E+436250299 -> -7.19804930E+436250302 Inexact Rounded -radd255 add 39617663E-463704664 -895.290346 -> -895.290346 Inexact Rounded -rcom255 compare 39617663E-463704664 -895.290346 -> 1 -rdiv255 divide 39617663E-463704664 -895.290346 -> -4.42511898E-463704660 Inexact Rounded -rdvi255 divideint 39617663E-463704664 -895.290346 -> 0 -rmul255 multiply 39617663E-463704664 -895.290346 -> -3.54693112E-463704654 Inexact Rounded -rpow255 power 39617663E-463704664 -895 -> ? Overflow Inexact Rounded -rrem255 remainder 39617663E-463704664 -895.290346 -> 3.9617663E-463704657 -rsub255 subtract 39617663E-463704664 -895.290346 -> 895.290346 Inexact Rounded -radd256 add 5350882.59 -36329829 -> -30978946.4 Inexact Rounded -rcom256 compare 5350882.59 -36329829 -> 1 -rdiv256 divide 5350882.59 -36329829 -> -0.147286204 Inexact Rounded -rdvi256 divideint 5350882.59 -36329829 -> 0 -rmul256 multiply 5350882.59 -36329829 -> -1.94396649E+14 Inexact Rounded -rpow256 power 5350882.59 -36329829 -> 9.77006107E-244442546 Inexact Rounded -rrem256 remainder 5350882.59 -36329829 -> 5350882.59 -rsub256 subtract 5350882.59 -36329829 -> 41680711.6 Inexact Rounded -radd257 add 91966.4084E+210382952 166740.46E-42001390 -> 9.19664084E+210382956 Inexact Rounded -rcom257 compare 91966.4084E+210382952 166740.46E-42001390 -> 1 -rdiv257 divide 91966.4084E+210382952 166740.46E-42001390 -> 5.51554244E+252384341 Inexact Rounded -rdvi257 divideint 91966.4084E+210382952 166740.46E-42001390 -> ? Division_impossible -rmul257 multiply 91966.4084E+210382952 166740.46E-42001390 -> 1.53345212E+168381572 Inexact Rounded -rpow257 power 91966.4084E+210382952 2 -> 8.45782027E+420765913 Inexact Rounded -rrem257 remainder 91966.4084E+210382952 166740.46E-42001390 -> ? Division_impossible -rsub257 subtract 91966.4084E+210382952 166740.46E-42001390 -> 9.19664084E+210382956 Inexact Rounded -radd258 add 231899031.E-481759076 726.337100 -> 726.337100 Inexact Rounded -rcom258 compare 231899031.E-481759076 726.337100 -> -1 -rdiv258 divide 231899031.E-481759076 726.337100 -> 3.19271907E-481759071 Inexact Rounded -rdvi258 divideint 231899031.E-481759076 726.337100 -> 0 -rmul258 multiply 231899031.E-481759076 726.337100 -> 1.68436870E-481759065 Inexact Rounded -rpow258 power 231899031.E-481759076 726 -> ? Underflow Subnormal Inexact Rounded -rrem258 remainder 231899031.E-481759076 726.337100 -> 2.31899031E-481759068 -rsub258 subtract 231899031.E-481759076 726.337100 -> -726.337100 Inexact Rounded -radd259 add -9611312.33 22109735.9 -> 12498423.6 Inexact Rounded -rcom259 compare -9611312.33 22109735.9 -> -1 -rdiv259 divide -9611312.33 22109735.9 -> -0.434709504 Inexact Rounded -rdvi259 divideint -9611312.33 22109735.9 -> 0 -rmul259 multiply -9611312.33 22109735.9 -> -2.12503577E+14 Inexact Rounded -rpow259 power -9611312.33 22109736 -> 6.74530828E+154387481 Inexact Rounded -rrem259 remainder -9611312.33 22109735.9 -> -9611312.33 -rsub259 subtract -9611312.33 22109735.9 -> -31721048.2 Inexact Rounded -radd260 add -5604938.15E-36812542 735937577. -> 735937577 Inexact Rounded -rcom260 compare -5604938.15E-36812542 735937577. -> -1 -rdiv260 divide -5604938.15E-36812542 735937577. -> -7.61605104E-36812545 Inexact Rounded -rdvi260 divideint -5604938.15E-36812542 735937577. -> 0 -rmul260 multiply -5604938.15E-36812542 735937577. -> -4.12488460E-36812527 Inexact Rounded -rpow260 power -5604938.15E-36812542 735937577 -> ? Underflow Subnormal Inexact Rounded -rrem260 remainder -5604938.15E-36812542 735937577. -> -5.60493815E-36812536 -rsub260 subtract -5604938.15E-36812542 735937577. -> -735937577 Inexact Rounded -radd261 add 693881413. 260547224E-480281418 -> 693881413 Inexact Rounded -rcom261 compare 693881413. 260547224E-480281418 -> 1 -rdiv261 divide 693881413. 260547224E-480281418 -> 2.66316947E+480281418 Inexact Rounded -rdvi261 divideint 693881413. 260547224E-480281418 -> ? Division_impossible -rmul261 multiply 693881413. 260547224E-480281418 -> 1.80788876E-480281401 Inexact Rounded -rpow261 power 693881413. 3 -> 3.34084066E+26 Inexact Rounded -rrem261 remainder 693881413. 260547224E-480281418 -> ? Division_impossible -rsub261 subtract 693881413. 260547224E-480281418 -> 693881413 Inexact Rounded -radd262 add -34865.7378E-368768024 2297117.88 -> 2297117.88 Inexact Rounded -rcom262 compare -34865.7378E-368768024 2297117.88 -> -1 -rdiv262 divide -34865.7378E-368768024 2297117.88 -> -1.5178036E-368768026 Inexact Rounded -rdvi262 divideint -34865.7378E-368768024 2297117.88 -> 0 -rmul262 multiply -34865.7378E-368768024 2297117.88 -> -8.00907097E-368768014 Inexact Rounded -rpow262 power -34865.7378E-368768024 2297118 -> ? Underflow Subnormal Inexact Rounded -rrem262 remainder -34865.7378E-368768024 2297117.88 -> -3.48657378E-368768020 -rsub262 subtract -34865.7378E-368768024 2297117.88 -> -2297117.88 Inexact Rounded -radd263 add 1123.32456 7.86747918E+930888796 -> 7.86747918E+930888796 Inexact Rounded -rcom263 compare 1123.32456 7.86747918E+930888796 -> -1 -rdiv263 divide 1123.32456 7.86747918E+930888796 -> 1.42780748E-930888794 Inexact Rounded -rdvi263 divideint 1123.32456 7.86747918E+930888796 -> 0 -rmul263 multiply 1123.32456 7.86747918E+930888796 -> 8.83773259E+930888799 Inexact Rounded -rpow263 power 1123.32456 8 -> 2.53537401E+24 Inexact Rounded -rrem263 remainder 1123.32456 7.86747918E+930888796 -> 1123.32456 -rsub263 subtract 1123.32456 7.86747918E+930888796 -> -7.86747918E+930888796 Inexact Rounded -radd264 add 56.6607465E+467812565 909552512E+764516200 -> 9.09552512E+764516208 Inexact Rounded -rcom264 compare 56.6607465E+467812565 909552512E+764516200 -> -1 -rdiv264 divide 56.6607465E+467812565 909552512E+764516200 -> 6.22951899E-296703643 Inexact Rounded -rdvi264 divideint 56.6607465E+467812565 909552512E+764516200 -> 0 -rmul264 multiply 56.6607465E+467812565 909552512E+764516200 -> ? Inexact Overflow Rounded -rpow264 power 56.6607465E+467812565 9 -> ? Overflow Inexact Rounded -rrem264 remainder 56.6607465E+467812565 909552512E+764516200 -> 5.66607465E+467812566 -rsub264 subtract 56.6607465E+467812565 909552512E+764516200 -> -9.09552512E+764516208 Inexact Rounded -radd265 add -1.85771840E+365552540 -73028339.7 -> -1.85771840E+365552540 Inexact Rounded -rcom265 compare -1.85771840E+365552540 -73028339.7 -> -1 -rdiv265 divide -1.85771840E+365552540 -73028339.7 -> 2.54383217E+365552532 Inexact Rounded -rdvi265 divideint -1.85771840E+365552540 -73028339.7 -> ? Division_impossible -rmul265 multiply -1.85771840E+365552540 -73028339.7 -> 1.35666090E+365552548 Inexact Rounded -rpow265 power -1.85771840E+365552540 -73028340 -> ? Underflow Subnormal Inexact Rounded -rrem265 remainder -1.85771840E+365552540 -73028339.7 -> ? Division_impossible -rsub265 subtract -1.85771840E+365552540 -73028339.7 -> -1.85771840E+365552540 Inexact Rounded -radd266 add 34.1935525 -40767.6450 -> -40733.4514 Inexact Rounded -rcom266 compare 34.1935525 -40767.6450 -> 1 -rdiv266 divide 34.1935525 -40767.6450 -> -0.000838742402 Inexact Rounded -rdvi266 divideint 34.1935525 -40767.6450 -> 0 -rmul266 multiply 34.1935525 -40767.6450 -> -1393990.61 Inexact Rounded -rpow266 power 34.1935525 -40768 -> 1.4517421E-62536 Inexact Rounded -rrem266 remainder 34.1935525 -40767.6450 -> 34.1935525 -rsub266 subtract 34.1935525 -40767.6450 -> 40801.8386 Inexact Rounded -radd267 add 26.0009168E+751618294 -304019.929 -> 2.60009168E+751618295 Inexact Rounded -rcom267 compare 26.0009168E+751618294 -304019.929 -> 1 -rdiv267 divide 26.0009168E+751618294 -304019.929 -> -8.5523725E+751618289 Inexact Rounded -rdvi267 divideint 26.0009168E+751618294 -304019.929 -> ? Division_impossible -rmul267 multiply 26.0009168E+751618294 -304019.929 -> -7.90479688E+751618300 Inexact Rounded -rpow267 power 26.0009168E+751618294 -304020 -> ? Underflow Subnormal Inexact Rounded -rrem267 remainder 26.0009168E+751618294 -304019.929 -> ? Division_impossible -rsub267 subtract 26.0009168E+751618294 -304019.929 -> 2.60009168E+751618295 Inexact Rounded -radd268 add -58.4853072E+588540055 -4647.3205 -> -5.84853072E+588540056 Inexact Rounded -rcom268 compare -58.4853072E+588540055 -4647.3205 -> -1 -rdiv268 divide -58.4853072E+588540055 -4647.3205 -> 1.25847372E+588540053 Inexact Rounded -rdvi268 divideint -58.4853072E+588540055 -4647.3205 -> ? Division_impossible -rmul268 multiply -58.4853072E+588540055 -4647.3205 -> 2.71799967E+588540060 Inexact Rounded -rpow268 power -58.4853072E+588540055 -4647 -> ? Underflow Subnormal Inexact Rounded -rrem268 remainder -58.4853072E+588540055 -4647.3205 -> ? Division_impossible -rsub268 subtract -58.4853072E+588540055 -4647.3205 -> -5.84853072E+588540056 Inexact Rounded -radd269 add 51.025101 -4467691.57 -> -4467640.54 Inexact Rounded -rcom269 compare 51.025101 -4467691.57 -> 1 -rdiv269 divide 51.025101 -4467691.57 -> -0.0000114209095 Inexact Rounded -rdvi269 divideint 51.025101 -4467691.57 -> 0 -rmul269 multiply 51.025101 -4467691.57 -> -227964414 Inexact Rounded -rpow269 power 51.025101 -4467692 -> 4.49462589E-7629853 Inexact Rounded -rrem269 remainder 51.025101 -4467691.57 -> 51.025101 -rsub269 subtract 51.025101 -4467691.57 -> 4467742.60 Inexact Rounded -radd270 add -2214.76582 379785372E+223117572 -> 3.79785372E+223117580 Inexact Rounded -rcom270 compare -2214.76582 379785372E+223117572 -> -1 -rdiv270 divide -2214.76582 379785372E+223117572 -> -5.83162487E-223117578 Inexact Rounded -rdvi270 divideint -2214.76582 379785372E+223117572 -> 0 -rmul270 multiply -2214.76582 379785372E+223117572 -> -8.41135661E+223117583 Inexact Rounded -rpow270 power -2214.76582 4 -> 2.40608658E+13 Inexact Rounded -rrem270 remainder -2214.76582 379785372E+223117572 -> -2214.76582 -rsub270 subtract -2214.76582 379785372E+223117572 -> -3.79785372E+223117580 Inexact Rounded -radd271 add -2564.75207E-841443929 -653498187 -> -653498187 Inexact Rounded -rcom271 compare -2564.75207E-841443929 -653498187 -> 1 -rdiv271 divide -2564.75207E-841443929 -653498187 -> 3.92465063E-841443935 Inexact Rounded -rdvi271 divideint -2564.75207E-841443929 -653498187 -> 0 -rmul271 multiply -2564.75207E-841443929 -653498187 -> 1.67606083E-841443917 Inexact Rounded -rpow271 power -2564.75207E-841443929 -653498187 -> ? Overflow Inexact Rounded -rrem271 remainder -2564.75207E-841443929 -653498187 -> -2.56475207E-841443926 -rsub271 subtract -2564.75207E-841443929 -653498187 -> 653498187 Inexact Rounded -radd272 add 513115529. 27775075.6E+217133352 -> 2.77750756E+217133359 Inexact Rounded -rcom272 compare 513115529. 27775075.6E+217133352 -> -1 -rdiv272 divide 513115529. 27775075.6E+217133352 -> 1.84739562E-217133351 Inexact Rounded -rdvi272 divideint 513115529. 27775075.6E+217133352 -> 0 -rmul272 multiply 513115529. 27775075.6E+217133352 -> 1.42518226E+217133368 Inexact Rounded -rpow272 power 513115529. 3 -> 1.35096929E+26 Inexact Rounded -rrem272 remainder 513115529. 27775075.6E+217133352 -> 513115529 -rsub272 subtract 513115529. 27775075.6E+217133352 -> -2.77750756E+217133359 Inexact Rounded -radd273 add -247157.208 -532990.453 -> -780147.661 -rcom273 compare -247157.208 -532990.453 -> 1 -rdiv273 divide -247157.208 -532990.453 -> 0.46371789 Inexact Rounded -rdvi273 divideint -247157.208 -532990.453 -> 0 -rmul273 multiply -247157.208 -532990.453 -> 1.31732432E+11 Inexact Rounded -rpow273 power -247157.208 -532990 -> 1.48314033E-2874401 Inexact Rounded -rrem273 remainder -247157.208 -532990.453 -> -247157.208 -rsub273 subtract -247157.208 -532990.453 -> 285833.245 -radd274 add 40.2490764E-339482253 7626.85442E+594264540 -> 7.62685442E+594264543 Inexact Rounded -rcom274 compare 40.2490764E-339482253 7626.85442E+594264540 -> -1 -rdiv274 divide 40.2490764E-339482253 7626.85442E+594264540 -> 5.27728395E-933746796 Inexact Rounded -rdvi274 divideint 40.2490764E-339482253 7626.85442E+594264540 -> 0 -rmul274 multiply 40.2490764E-339482253 7626.85442E+594264540 -> 3.06973846E+254782292 Inexact Rounded -rpow274 power 40.2490764E-339482253 8 -> ? Underflow Subnormal Inexact Rounded -rrem274 remainder 40.2490764E-339482253 7626.85442E+594264540 -> 4.02490764E-339482252 -rsub274 subtract 40.2490764E-339482253 7626.85442E+594264540 -> -7.62685442E+594264543 Inexact Rounded -radd275 add -1156008.8 -8870382.36 -> -10026391.2 Inexact Rounded -rcom275 compare -1156008.8 -8870382.36 -> 1 -rdiv275 divide -1156008.8 -8870382.36 -> 0.130322319 Inexact Rounded -rdvi275 divideint -1156008.8 -8870382.36 -> 0 -rmul275 multiply -1156008.8 -8870382.36 -> 1.02542401E+13 Inexact Rounded -rpow275 power -1156008.8 -8870382 -> 4.32494996E-53780782 Inexact Rounded -rrem275 remainder -1156008.8 -8870382.36 -> -1156008.80 -rsub275 subtract -1156008.8 -8870382.36 -> 7714373.56 -radd276 add 880097928. -52455011.1E+204538218 -> -5.24550111E+204538225 Inexact Rounded -rcom276 compare 880097928. -52455011.1E+204538218 -> 1 -rdiv276 divide 880097928. -52455011.1E+204538218 -> -1.67781478E-204538217 Inexact Rounded -rdvi276 divideint 880097928. -52455011.1E+204538218 -> 0 -rmul276 multiply 880097928. -52455011.1E+204538218 -> -4.61655466E+204538234 Inexact Rounded -rpow276 power 880097928. -5 -> 1.89384751E-45 Inexact Rounded -rrem276 remainder 880097928. -52455011.1E+204538218 -> 880097928 -rsub276 subtract 880097928. -52455011.1E+204538218 -> 5.24550111E+204538225 Inexact Rounded -radd277 add 5796.2524 34458329.7E+832129426 -> 3.44583297E+832129433 Inexact Rounded -rcom277 compare 5796.2524 34458329.7E+832129426 -> -1 -rdiv277 divide 5796.2524 34458329.7E+832129426 -> 1.68210486E-832129430 Inexact Rounded -rdvi277 divideint 5796.2524 34458329.7E+832129426 -> 0 -rmul277 multiply 5796.2524 34458329.7E+832129426 -> 1.99729176E+832129437 Inexact Rounded -rpow277 power 5796.2524 3 -> 1.94734037E+11 Inexact Rounded -rrem277 remainder 5796.2524 34458329.7E+832129426 -> 5796.2524 -rsub277 subtract 5796.2524 34458329.7E+832129426 -> -3.44583297E+832129433 Inexact Rounded -radd278 add 27.1000923E-218032223 -45.0198341 -> -45.0198341 Inexact Rounded -rcom278 compare 27.1000923E-218032223 -45.0198341 -> 1 -rdiv278 divide 27.1000923E-218032223 -45.0198341 -> -6.01958955E-218032224 Inexact Rounded -rdvi278 divideint 27.1000923E-218032223 -45.0198341 -> 0 -rmul278 multiply 27.1000923E-218032223 -45.0198341 -> -1.22004166E-218032220 Inexact Rounded -rpow278 power 27.1000923E-218032223 -45 -> ? Overflow Inexact Rounded -rrem278 remainder 27.1000923E-218032223 -45.0198341 -> 2.71000923E-218032222 -rsub278 subtract 27.1000923E-218032223 -45.0198341 -> 45.0198341 Inexact Rounded -radd279 add 42643477.8 26118465E-730390549 -> 42643477.8 Inexact Rounded -rcom279 compare 42643477.8 26118465E-730390549 -> 1 -rdiv279 divide 42643477.8 26118465E-730390549 -> 1.63269464E+730390549 Inexact Rounded -rdvi279 divideint 42643477.8 26118465E-730390549 -> ? Division_impossible -rmul279 multiply 42643477.8 26118465E-730390549 -> 1.11378218E-730390534 Inexact Rounded -rpow279 power 42643477.8 3 -> 7.7545723E+22 Inexact Rounded -rrem279 remainder 42643477.8 26118465E-730390549 -> ? Division_impossible -rsub279 subtract 42643477.8 26118465E-730390549 -> 42643477.8 Inexact Rounded -radd280 add -31918.9176E-163031657 -21.5422824E-807317258 -> -3.19189176E-163031653 Inexact Rounded -rcom280 compare -31918.9176E-163031657 -21.5422824E-807317258 -> -1 -rdiv280 divide -31918.9176E-163031657 -21.5422824E-807317258 -> 1.4816869E+644285604 Inexact Rounded -rdvi280 divideint -31918.9176E-163031657 -21.5422824E-807317258 -> ? Division_impossible -rmul280 multiply -31918.9176E-163031657 -21.5422824E-807317258 -> 6.87606337E-970348910 Inexact Rounded -rpow280 power -31918.9176E-163031657 -2 -> 9.8153025E+326063304 Inexact Rounded -rrem280 remainder -31918.9176E-163031657 -21.5422824E-807317258 -> ? Division_impossible -rsub280 subtract -31918.9176E-163031657 -21.5422824E-807317258 -> -3.19189176E-163031653 Inexact Rounded -radd281 add 84224841.0 2.62548255E+647087608 -> 2.62548255E+647087608 Inexact Rounded -rcom281 compare 84224841.0 2.62548255E+647087608 -> -1 -rdiv281 divide 84224841.0 2.62548255E+647087608 -> 3.20797565E-647087601 Inexact Rounded -rdvi281 divideint 84224841.0 2.62548255E+647087608 -> 0 -rmul281 multiply 84224841.0 2.62548255E+647087608 -> 2.21130850E+647087616 Inexact Rounded -rpow281 power 84224841.0 3 -> 5.97476185E+23 Inexact Rounded -rrem281 remainder 84224841.0 2.62548255E+647087608 -> 84224841.0 -rsub281 subtract 84224841.0 2.62548255E+647087608 -> -2.62548255E+647087608 Inexact Rounded -radd282 add -64413698.9 -6674.1055E-701047852 -> -64413698.9 Inexact Rounded -rcom282 compare -64413698.9 -6674.1055E-701047852 -> -1 -rdiv282 divide -64413698.9 -6674.1055E-701047852 -> 9.65128569E+701047855 Inexact Rounded -rdvi282 divideint -64413698.9 -6674.1055E-701047852 -> ? Division_impossible -rmul282 multiply -64413698.9 -6674.1055E-701047852 -> 4.29903822E-701047841 Inexact Rounded -rpow282 power -64413698.9 -7 -> -2.17346338E-55 Inexact Rounded -rrem282 remainder -64413698.9 -6674.1055E-701047852 -> ? Division_impossible -rsub282 subtract -64413698.9 -6674.1055E-701047852 -> -64413698.9 Inexact Rounded -radd283 add -62.5059208 9.5795779E-898350012 -> -62.5059208 Inexact Rounded -rcom283 compare -62.5059208 9.5795779E-898350012 -> -1 -rdiv283 divide -62.5059208 9.5795779E-898350012 -> -6.52491388E+898350012 Inexact Rounded -rdvi283 divideint -62.5059208 9.5795779E-898350012 -> ? Division_impossible -rmul283 multiply -62.5059208 9.5795779E-898350012 -> -5.98780338E-898350010 Inexact Rounded -rpow283 power -62.5059208 10 -> 9.10356659E+17 Inexact Rounded -rrem283 remainder -62.5059208 9.5795779E-898350012 -> ? Division_impossible -rsub283 subtract -62.5059208 9.5795779E-898350012 -> -62.5059208 Inexact Rounded -radd284 add 9090950.80 436.400932 -> 9091387.20 Inexact Rounded -rcom284 compare 9090950.80 436.400932 -> 1 -rdiv284 divide 9090950.80 436.400932 -> 20831.6485 Inexact Rounded -rdvi284 divideint 9090950.80 436.400932 -> 20831 -rmul284 multiply 9090950.80 436.400932 -> 3.96729940E+9 Inexact Rounded -rpow284 power 9090950.80 436 -> 8.98789557E+3033 Inexact Rounded -rrem284 remainder 9090950.80 436.400932 -> 282.985508 -rsub284 subtract 9090950.80 436.400932 -> 9090514.40 Inexact Rounded -radd285 add -89833825.7E+329205393 -779430.194 -> -8.98338257E+329205400 Inexact Rounded -rcom285 compare -89833825.7E+329205393 -779430.194 -> -1 -rdiv285 divide -89833825.7E+329205393 -779430.194 -> 1.15255768E+329205395 Inexact Rounded -rdvi285 divideint -89833825.7E+329205393 -779430.194 -> ? Division_impossible -rmul285 multiply -89833825.7E+329205393 -779430.194 -> 7.00191962E+329205406 Inexact Rounded -rpow285 power -89833825.7E+329205393 -779430 -> ? Underflow Subnormal Inexact Rounded -rrem285 remainder -89833825.7E+329205393 -779430.194 -> ? Division_impossible -rsub285 subtract -89833825.7E+329205393 -779430.194 -> -8.98338257E+329205400 Inexact Rounded -radd286 add -714562.019E+750205688 704079764 -> -7.14562019E+750205693 Inexact Rounded -rcom286 compare -714562.019E+750205688 704079764 -> -1 -rdiv286 divide -714562.019E+750205688 704079764 -> -1.01488788E+750205685 Inexact Rounded -rdvi286 divideint -714562.019E+750205688 704079764 -> ? Division_impossible -rmul286 multiply -714562.019E+750205688 704079764 -> -5.03108658E+750205702 Inexact Rounded -rpow286 power -714562.019E+750205688 704079764 -> ? Overflow Inexact Rounded -rrem286 remainder -714562.019E+750205688 704079764 -> ? Division_impossible -rsub286 subtract -714562.019E+750205688 704079764 -> -7.14562019E+750205693 Inexact Rounded -radd287 add -584537670. 31139.7737E-146687560 -> -584537670 Inexact Rounded -rcom287 compare -584537670. 31139.7737E-146687560 -> -1 -rdiv287 divide -584537670. 31139.7737E-146687560 -> -1.87714168E+146687564 Inexact Rounded -rdvi287 divideint -584537670. 31139.7737E-146687560 -> ? Division_impossible -rmul287 multiply -584537670. 31139.7737E-146687560 -> -1.82023708E-146687547 Inexact Rounded -rpow287 power -584537670. 3 -> -1.99727337E+26 Inexact Rounded -rrem287 remainder -584537670. 31139.7737E-146687560 -> ? Division_impossible -rsub287 subtract -584537670. 31139.7737E-146687560 -> -584537670 Inexact Rounded -radd288 add -4.18074650E-858746879 571035.277E-279409165 -> 5.71035277E-279409160 Inexact Rounded -rcom288 compare -4.18074650E-858746879 571035.277E-279409165 -> -1 -rdiv288 divide -4.18074650E-858746879 571035.277E-279409165 -> -7.3213454E-579337720 Inexact Rounded -rdvi288 divideint -4.18074650E-858746879 571035.277E-279409165 -> 0 -rmul288 multiply -4.18074650E-858746879 571035.277E-279409165 -> ? Underflow Subnormal Inexact Rounded -rpow288 power -4.18074650E-858746879 6 -> ? Underflow Subnormal Inexact Rounded -rrem288 remainder -4.18074650E-858746879 571035.277E-279409165 -> -4.18074650E-858746879 -rsub288 subtract -4.18074650E-858746879 571035.277E-279409165 -> -5.71035277E-279409160 Inexact Rounded -radd289 add 5.15309635 -695649.219E+451948183 -> -6.95649219E+451948188 Inexact Rounded -rcom289 compare 5.15309635 -695649.219E+451948183 -> 1 -rdiv289 divide 5.15309635 -695649.219E+451948183 -> -7.40760747E-451948189 Inexact Rounded -rdvi289 divideint 5.15309635 -695649.219E+451948183 -> 0 -rmul289 multiply 5.15309635 -695649.219E+451948183 -> -3.58474745E+451948189 Inexact Rounded -rpow289 power 5.15309635 -7 -> 0.0000103638749 Inexact Rounded -rrem289 remainder 5.15309635 -695649.219E+451948183 -> 5.15309635 -rsub289 subtract 5.15309635 -695649.219E+451948183 -> 6.95649219E+451948188 Inexact Rounded -radd290 add -940030153.E+83797657 -4.11510193 -> -9.40030153E+83797665 Inexact Rounded -rcom290 compare -940030153.E+83797657 -4.11510193 -> -1 -rdiv290 divide -940030153.E+83797657 -4.11510193 -> 2.28434233E+83797665 Inexact Rounded -rdvi290 divideint -940030153.E+83797657 -4.11510193 -> ? Division_impossible -rmul290 multiply -940030153.E+83797657 -4.11510193 -> 3.86831990E+83797666 Inexact Rounded -rpow290 power -940030153.E+83797657 -4 -> 1.2806571E-335190664 Inexact Rounded -rrem290 remainder -940030153.E+83797657 -4.11510193 -> ? Division_impossible -rsub290 subtract -940030153.E+83797657 -4.11510193 -> -9.40030153E+83797665 Inexact Rounded -radd291 add 89088.9683E+587739290 1.31932110 -> 8.90889683E+587739294 Inexact Rounded -rcom291 compare 89088.9683E+587739290 1.31932110 -> 1 -rdiv291 divide 89088.9683E+587739290 1.31932110 -> 6.75263727E+587739294 Inexact Rounded -rdvi291 divideint 89088.9683E+587739290 1.31932110 -> ? Division_impossible -rmul291 multiply 89088.9683E+587739290 1.31932110 -> 1.17536956E+587739295 Inexact Rounded -rpow291 power 89088.9683E+587739290 1 -> 8.90889683E+587739294 -rrem291 remainder 89088.9683E+587739290 1.31932110 -> ? Division_impossible -rsub291 subtract 89088.9683E+587739290 1.31932110 -> 8.90889683E+587739294 Inexact Rounded -radd292 add 3336750 6.47961126 -> 3336756.48 Inexact Rounded -rcom292 compare 3336750 6.47961126 -> 1 -rdiv292 divide 3336750 6.47961126 -> 514961.448 Inexact Rounded -rdvi292 divideint 3336750 6.47961126 -> 514961 -rmul292 multiply 3336750 6.47961126 -> 21620842.9 Inexact Rounded -rpow292 power 3336750 6 -> 1.38019997E+39 Inexact Rounded -rrem292 remainder 3336750 6.47961126 -> 2.90593914 -rsub292 subtract 3336750 6.47961126 -> 3336743.52 Inexact Rounded -radd293 add 904654622. 692065270.E+329081915 -> 6.92065270E+329081923 Inexact Rounded -rcom293 compare 904654622. 692065270.E+329081915 -> -1 -rdiv293 divide 904654622. 692065270.E+329081915 -> 1.30718107E-329081915 Inexact Rounded -rdvi293 divideint 904654622. 692065270.E+329081915 -> 0 -rmul293 multiply 904654622. 692065270.E+329081915 -> 6.26080045E+329081932 Inexact Rounded -rpow293 power 904654622. 7 -> 4.95883485E+62 Inexact Rounded -rrem293 remainder 904654622. 692065270.E+329081915 -> 904654622 -rsub293 subtract 904654622. 692065270.E+329081915 -> -6.92065270E+329081923 Inexact Rounded -radd294 add 304804380 -4681.23698 -> 304799699 Inexact Rounded -rcom294 compare 304804380 -4681.23698 -> 1 -rdiv294 divide 304804380 -4681.23698 -> -65111.9312 Inexact Rounded -rdvi294 divideint 304804380 -4681.23698 -> -65111 -rmul294 multiply 304804380 -4681.23698 -> -1.42686154E+12 Inexact Rounded -rpow294 power 304804380 -4681 -> 1.98037102E-39714 Inexact Rounded -rrem294 remainder 304804380 -4681.23698 -> 4358.99522 -rsub294 subtract 304804380 -4681.23698 -> 304809061 Inexact Rounded -radd295 add 674.55569 -82981.2684E+852890752 -> -8.29812684E+852890756 Inexact Rounded -rcom295 compare 674.55569 -82981.2684E+852890752 -> 1 -rdiv295 divide 674.55569 -82981.2684E+852890752 -> -8.12901156E-852890755 Inexact Rounded -rdvi295 divideint 674.55569 -82981.2684E+852890752 -> 0 -rmul295 multiply 674.55569 -82981.2684E+852890752 -> -5.59754868E+852890759 Inexact Rounded -rpow295 power 674.55569 -8 -> 2.33269265E-23 Inexact Rounded -rrem295 remainder 674.55569 -82981.2684E+852890752 -> 674.55569 -rsub295 subtract 674.55569 -82981.2684E+852890752 -> 8.29812684E+852890756 Inexact Rounded -radd296 add -5111.51025E-108006096 5448870.4E+279212255 -> 5.44887040E+279212261 Inexact Rounded -rcom296 compare -5111.51025E-108006096 5448870.4E+279212255 -> -1 -rdiv296 divide -5111.51025E-108006096 5448870.4E+279212255 -> -9.38086222E-387218355 Inexact Rounded -rdvi296 divideint -5111.51025E-108006096 5448870.4E+279212255 -> 0 -rmul296 multiply -5111.51025E-108006096 5448870.4E+279212255 -> -2.78519569E+171206169 Inexact Rounded -rpow296 power -5111.51025E-108006096 5 -> -3.48936323E-540030462 Inexact Rounded -rrem296 remainder -5111.51025E-108006096 5448870.4E+279212255 -> -5.11151025E-108006093 -rsub296 subtract -5111.51025E-108006096 5448870.4E+279212255 -> -5.44887040E+279212261 Inexact Rounded -radd297 add -2623.45068 -466463938. -> -466466561 Inexact Rounded -rcom297 compare -2623.45068 -466463938. -> 1 -rdiv297 divide -2623.45068 -466463938. -> 0.00000562412325 Inexact Rounded -rdvi297 divideint -2623.45068 -466463938. -> 0 -rmul297 multiply -2623.45068 -466463938. -> 1.22374514E+12 Inexact Rounded -rpow297 power -2623.45068 -466463938 -> ? Underflow Subnormal Inexact Rounded -rrem297 remainder -2623.45068 -466463938. -> -2623.45068 -rsub297 subtract -2623.45068 -466463938. -> 466461315 Inexact Rounded -radd298 add 299350.435 3373.33551 -> 302723.771 Inexact Rounded -rcom298 compare 299350.435 3373.33551 -> 1 -rdiv298 divide 299350.435 3373.33551 -> 88.7401903 Inexact Rounded -rdvi298 divideint 299350.435 3373.33551 -> 88 -rmul298 multiply 299350.435 3373.33551 -> 1.00980945E+9 Inexact Rounded -rpow298 power 299350.435 3373 -> 1.4281737E+18471 Inexact Rounded -rrem298 remainder 299350.435 3373.33551 -> 2496.91012 -rsub298 subtract 299350.435 3373.33551 -> 295977.099 Inexact Rounded -radd299 add -6589947.80 -2448.75933E-591549734 -> -6589947.80 Inexact Rounded -rcom299 compare -6589947.80 -2448.75933E-591549734 -> -1 -rdiv299 divide -6589947.80 -2448.75933E-591549734 -> 2.69113739E+591549737 Inexact Rounded -rdvi299 divideint -6589947.80 -2448.75933E-591549734 -> ? Division_impossible -rmul299 multiply -6589947.80 -2448.75933E-591549734 -> 1.61371962E-591549724 Inexact Rounded -rpow299 power -6589947.80 -2 -> 2.30269305E-14 Inexact Rounded -rrem299 remainder -6589947.80 -2448.75933E-591549734 -> ? Division_impossible -rsub299 subtract -6589947.80 -2448.75933E-591549734 -> -6589947.80 Inexact Rounded -radd300 add 3774.5358E-491090520 173.060090 -> 173.060090 Inexact Rounded -rcom300 compare 3774.5358E-491090520 173.060090 -> -1 -rdiv300 divide 3774.5358E-491090520 173.060090 -> 2.18105503E-491090519 Inexact Rounded -rdvi300 divideint 3774.5358E-491090520 173.060090 -> 0 -rmul300 multiply 3774.5358E-491090520 173.060090 -> 6.53221505E-491090515 Inexact Rounded -rpow300 power 3774.5358E-491090520 173 -> ? Underflow Subnormal Inexact Rounded -rrem300 remainder 3774.5358E-491090520 173.060090 -> 3.7745358E-491090517 -rsub300 subtract 3774.5358E-491090520 173.060090 -> -173.060090 Inexact Rounded -radd301 add -13.6783690 -453.610117 -> -467.288486 Rounded -rcom301 compare -13.6783690 -453.610117 -> 1 -rdiv301 divide -13.6783690 -453.610117 -> 0.0301544619 Inexact Rounded -rdvi301 divideint -13.6783690 -453.610117 -> 0 -rmul301 multiply -13.6783690 -453.610117 -> 6204.64656 Inexact Rounded -rpow301 power -13.6783690 -454 -> 1.73948535E-516 Inexact Rounded -rrem301 remainder -13.6783690 -453.610117 -> -13.6783690 -rsub301 subtract -13.6783690 -453.610117 -> 439.931748 Rounded -radd302 add -990100927.E-615244634 223801.421E+247632618 -> 2.23801421E+247632623 Inexact Rounded -rcom302 compare -990100927.E-615244634 223801.421E+247632618 -> -1 -rdiv302 divide -990100927.E-615244634 223801.421E+247632618 -> -4.42401537E-862877249 Inexact Rounded -rdvi302 divideint -990100927.E-615244634 223801.421E+247632618 -> 0 -rmul302 multiply -990100927.E-615244634 223801.421E+247632618 -> -2.21585994E-367612002 Inexact Rounded -rpow302 power -990100927.E-615244634 2 -> ? Underflow Subnormal Inexact Rounded -rrem302 remainder -990100927.E-615244634 223801.421E+247632618 -> -9.90100927E-615244626 -rsub302 subtract -990100927.E-615244634 223801.421E+247632618 -> -2.23801421E+247632623 Inexact Rounded -radd303 add 1275.10292 -667965353 -> -667964078 Inexact Rounded -rcom303 compare 1275.10292 -667965353 -> 1 -rdiv303 divide 1275.10292 -667965353 -> -0.00000190893572 Inexact Rounded -rdvi303 divideint 1275.10292 -667965353 -> 0 -rmul303 multiply 1275.10292 -667965353 -> -8.51724572E+11 Inexact Rounded -rpow303 power 1275.10292 -667965353 -> ? Underflow Subnormal Inexact Rounded -rrem303 remainder 1275.10292 -667965353 -> 1275.10292 -rsub303 subtract 1275.10292 -667965353 -> 667966628 Inexact Rounded -radd304 add -8.76375480E-596792197 992.077361 -> 992.077361 Inexact Rounded -rcom304 compare -8.76375480E-596792197 992.077361 -> -1 -rdiv304 divide -8.76375480E-596792197 992.077361 -> -8.83374134E-596792200 Inexact Rounded -rdvi304 divideint -8.76375480E-596792197 992.077361 -> 0 -rmul304 multiply -8.76375480E-596792197 992.077361 -> -8.69432273E-596792194 Inexact Rounded -rpow304 power -8.76375480E-596792197 992 -> ? Underflow Subnormal Inexact Rounded -rrem304 remainder -8.76375480E-596792197 992.077361 -> -8.76375480E-596792197 -rsub304 subtract -8.76375480E-596792197 992.077361 -> -992.077361 Inexact Rounded -radd305 add 953.976935E+385444720 96503.3378 -> 9.53976935E+385444722 Inexact Rounded -rcom305 compare 953.976935E+385444720 96503.3378 -> 1 -rdiv305 divide 953.976935E+385444720 96503.3378 -> 9.88542942E+385444717 Inexact Rounded -rdvi305 divideint 953.976935E+385444720 96503.3378 -> ? Division_impossible -rmul305 multiply 953.976935E+385444720 96503.3378 -> 9.20619584E+385444727 Inexact Rounded -rpow305 power 953.976935E+385444720 96503 -> ? Overflow Inexact Rounded -rrem305 remainder 953.976935E+385444720 96503.3378 -> ? Division_impossible -rsub305 subtract 953.976935E+385444720 96503.3378 -> 9.53976935E+385444722 Inexact Rounded -radd306 add 213577152 -986710073E+31900046 -> -9.86710073E+31900054 Inexact Rounded -rcom306 compare 213577152 -986710073E+31900046 -> 1 -rdiv306 divide 213577152 -986710073E+31900046 -> -2.16453807E-31900047 Inexact Rounded -rdvi306 divideint 213577152 -986710073E+31900046 -> 0 -rmul306 multiply 213577152 -986710073E+31900046 -> -2.10738727E+31900063 Inexact Rounded -rpow306 power 213577152 -10 -> 5.06351487E-84 Inexact Rounded -rrem306 remainder 213577152 -986710073E+31900046 -> 213577152 -rsub306 subtract 213577152 -986710073E+31900046 -> 9.86710073E+31900054 Inexact Rounded -radd307 add 91393.9398E-323439228 -135.701000 -> -135.701000 Inexact Rounded -rcom307 compare 91393.9398E-323439228 -135.701000 -> 1 -rdiv307 divide 91393.9398E-323439228 -135.701000 -> -6.73494962E-323439226 Inexact Rounded -rdvi307 divideint 91393.9398E-323439228 -135.701000 -> 0 -rmul307 multiply 91393.9398E-323439228 -135.701000 -> -1.24022490E-323439221 Inexact Rounded -rpow307 power 91393.9398E-323439228 -136 -> ? Overflow Inexact Rounded -rrem307 remainder 91393.9398E-323439228 -135.701000 -> 9.13939398E-323439224 -rsub307 subtract 91393.9398E-323439228 -135.701000 -> 135.701000 Inexact Rounded -radd308 add -396.503557 45757264.E-254363788 -> -396.503557 Inexact Rounded -rcom308 compare -396.503557 45757264.E-254363788 -> -1 -rdiv308 divide -396.503557 45757264.E-254363788 -> -8.66536856E+254363782 Inexact Rounded -rdvi308 divideint -396.503557 45757264.E-254363788 -> ? Division_impossible -rmul308 multiply -396.503557 45757264.E-254363788 -> -1.81429179E-254363778 Inexact Rounded -rpow308 power -396.503557 5 -> -9.80021128E+12 Inexact Rounded -rrem308 remainder -396.503557 45757264.E-254363788 -> ? Division_impossible -rsub308 subtract -396.503557 45757264.E-254363788 -> -396.503557 Inexact Rounded -radd309 add 59807846.1 1.53345254 -> 59807847.6 Inexact Rounded -rcom309 compare 59807846.1 1.53345254 -> 1 -rdiv309 divide 59807846.1 1.53345254 -> 39002084.9 Inexact Rounded -rdvi309 divideint 59807846.1 1.53345254 -> 39002084 -rmul309 multiply 59807846.1 1.53345254 -> 91712493.5 Inexact Rounded -rpow309 power 59807846.1 2 -> 3.57697846E+15 Inexact Rounded -rrem309 remainder 59807846.1 1.53345254 -> 1.32490664 -rsub309 subtract 59807846.1 1.53345254 -> 59807844.6 Inexact Rounded -radd310 add -8046158.45 8.3635397 -> -8046150.09 Inexact Rounded -rcom310 compare -8046158.45 8.3635397 -> -1 -rdiv310 divide -8046158.45 8.3635397 -> -962051.803 Inexact Rounded -rdvi310 divideint -8046158.45 8.3635397 -> -962051 -rmul310 multiply -8046158.45 8.3635397 -> -67294365.6 Inexact Rounded -rpow310 power -8046158.45 8 -> 1.75674467E+55 Inexact Rounded -rrem310 remainder -8046158.45 8.3635397 -> -6.7180753 -rsub310 subtract -8046158.45 8.3635397 -> -8046166.81 Inexact Rounded -radd311 add 55.1123381E+50627250 -94.0355047E-162540316 -> 5.51123381E+50627251 Inexact Rounded -rcom311 compare 55.1123381E+50627250 -94.0355047E-162540316 -> 1 -rdiv311 divide 55.1123381E+50627250 -94.0355047E-162540316 -> -5.86080101E+213167565 Inexact Rounded -rdvi311 divideint 55.1123381E+50627250 -94.0355047E-162540316 -> ? Division_impossible -rmul311 multiply 55.1123381E+50627250 -94.0355047E-162540316 -> -5.18251653E-111913063 Inexact Rounded -rpow311 power 55.1123381E+50627250 -9 -> 2.13186881E-455645266 Inexact Rounded -rrem311 remainder 55.1123381E+50627250 -94.0355047E-162540316 -> ? Division_impossible -rsub311 subtract 55.1123381E+50627250 -94.0355047E-162540316 -> 5.51123381E+50627251 Inexact Rounded -radd312 add -948.038054 3580.84510 -> 2632.80705 Inexact Rounded -rcom312 compare -948.038054 3580.84510 -> -1 -rdiv312 divide -948.038054 3580.84510 -> -0.264752601 Inexact Rounded -rdvi312 divideint -948.038054 3580.84510 -> 0 -rmul312 multiply -948.038054 3580.84510 -> -3394777.42 Inexact Rounded -rpow312 power -948.038054 3581 -> -1.03058288E+10660 Inexact Rounded -rrem312 remainder -948.038054 3580.84510 -> -948.038054 -rsub312 subtract -948.038054 3580.84510 -> -4528.88315 Inexact Rounded -radd313 add -6026.42752 -14.2286406E-334921364 -> -6026.42752 Inexact Rounded -rcom313 compare -6026.42752 -14.2286406E-334921364 -> -1 -rdiv313 divide -6026.42752 -14.2286406E-334921364 -> 4.23542044E+334921366 Inexact Rounded -rdvi313 divideint -6026.42752 -14.2286406E-334921364 -> ? Division_impossible -rmul313 multiply -6026.42752 -14.2286406E-334921364 -> 8.57478713E-334921360 Inexact Rounded -rpow313 power -6026.42752 -1 -> -0.000165935788 Inexact Rounded -rrem313 remainder -6026.42752 -14.2286406E-334921364 -> ? Division_impossible -rsub313 subtract -6026.42752 -14.2286406E-334921364 -> -6026.42752 Inexact Rounded -radd314 add 79551.5014 -538.186229 -> 79013.3152 Inexact Rounded -rcom314 compare 79551.5014 -538.186229 -> 1 -rdiv314 divide 79551.5014 -538.186229 -> -147.814078 Inexact Rounded -rdvi314 divideint 79551.5014 -538.186229 -> -147 -rmul314 multiply 79551.5014 -538.186229 -> -42813522.5 Inexact Rounded -rpow314 power 79551.5014 -538 -> 2.82599389E-2637 Inexact Rounded -rrem314 remainder 79551.5014 -538.186229 -> 438.125737 -rsub314 subtract 79551.5014 -538.186229 -> 80089.6876 Inexact Rounded -radd315 add 42706056.E+623578292 -690.327745 -> 4.27060560E+623578299 Inexact Rounded -rcom315 compare 42706056.E+623578292 -690.327745 -> 1 -rdiv315 divide 42706056.E+623578292 -690.327745 -> -6.18634501E+623578296 Inexact Rounded -rdvi315 divideint 42706056.E+623578292 -690.327745 -> ? Division_impossible -rmul315 multiply 42706056.E+623578292 -690.327745 -> -2.94811753E+623578302 Inexact Rounded -rpow315 power 42706056.E+623578292 -690 -> ? Underflow Subnormal Inexact Rounded -rrem315 remainder 42706056.E+623578292 -690.327745 -> ? Division_impossible -rsub315 subtract 42706056.E+623578292 -690.327745 -> 4.27060560E+623578299 Inexact Rounded -radd316 add 2454136.08E+502374077 856268.795E-356664934 -> 2.45413608E+502374083 Inexact Rounded -rcom316 compare 2454136.08E+502374077 856268.795E-356664934 -> 1 -rdiv316 divide 2454136.08E+502374077 856268.795E-356664934 -> 2.86608142E+859039011 Inexact Rounded -rdvi316 divideint 2454136.08E+502374077 856268.795E-356664934 -> ? Division_impossible -rmul316 multiply 2454136.08E+502374077 856268.795E-356664934 -> 2.10140014E+145709155 Inexact Rounded -rpow316 power 2454136.08E+502374077 9 -> ? Overflow Inexact Rounded -rrem316 remainder 2454136.08E+502374077 856268.795E-356664934 -> ? Division_impossible -rsub316 subtract 2454136.08E+502374077 856268.795E-356664934 -> 2.45413608E+502374083 Inexact Rounded -radd317 add -3264204.54 -42704.501 -> -3306909.04 Inexact Rounded -rcom317 compare -3264204.54 -42704.501 -> -1 -rdiv317 divide -3264204.54 -42704.501 -> 76.437014 Inexact Rounded -rdvi317 divideint -3264204.54 -42704.501 -> 76 -rmul317 multiply -3264204.54 -42704.501 -> 1.39396226E+11 Inexact Rounded -rpow317 power -3264204.54 -42705 -> -1.3729341E-278171 Inexact Rounded -rrem317 remainder -3264204.54 -42704.501 -> -18662.464 -rsub317 subtract -3264204.54 -42704.501 -> -3221500.04 Inexact Rounded -radd318 add 1.21265492 44102.6073 -> 44103.8200 Inexact Rounded -rcom318 compare 1.21265492 44102.6073 -> -1 -rdiv318 divide 1.21265492 44102.6073 -> 0.0000274962183 Inexact Rounded -rdvi318 divideint 1.21265492 44102.6073 -> 0 -rmul318 multiply 1.21265492 44102.6073 -> 53481.2437 Inexact Rounded -rpow318 power 1.21265492 44103 -> 1.15662573E+3693 Inexact Rounded -rrem318 remainder 1.21265492 44102.6073 -> 1.21265492 -rsub318 subtract 1.21265492 44102.6073 -> -44101.3946 Inexact Rounded -radd319 add -19.054711E+975514652 -22144.0822 -> -1.90547110E+975514653 Inexact Rounded -rcom319 compare -19.054711E+975514652 -22144.0822 -> -1 -rdiv319 divide -19.054711E+975514652 -22144.0822 -> 8.60487729E+975514648 Inexact Rounded -rdvi319 divideint -19.054711E+975514652 -22144.0822 -> ? Division_impossible -rmul319 multiply -19.054711E+975514652 -22144.0822 -> 4.21949087E+975514657 Inexact Rounded -rpow319 power -19.054711E+975514652 -22144 -> ? Underflow Subnormal Inexact Rounded -rrem319 remainder -19.054711E+975514652 -22144.0822 -> ? Division_impossible -rsub319 subtract -19.054711E+975514652 -22144.0822 -> -1.90547110E+975514653 Inexact Rounded -radd320 add 745.78452 -1922.00670E+375923302 -> -1.92200670E+375923305 Inexact Rounded -rcom320 compare 745.78452 -1922.00670E+375923302 -> 1 -rdiv320 divide 745.78452 -1922.00670E+375923302 -> -3.88023892E-375923303 Inexact Rounded -rdvi320 divideint 745.78452 -1922.00670E+375923302 -> 0 -rmul320 multiply 745.78452 -1922.00670E+375923302 -> -1.43340284E+375923308 Inexact Rounded -rpow320 power 745.78452 -2 -> 0.00000179793204 Inexact Rounded -rrem320 remainder 745.78452 -1922.00670E+375923302 -> 745.78452 -rsub320 subtract 745.78452 -1922.00670E+375923302 -> 1.92200670E+375923305 Inexact Rounded -radd321 add -963717836 -823989308 -> -1.78770714E+9 Inexact Rounded -rcom321 compare -963717836 -823989308 -> -1 -rdiv321 divide -963717836 -823989308 -> 1.16957566 Inexact Rounded -rdvi321 divideint -963717836 -823989308 -> 1 -rmul321 multiply -963717836 -823989308 -> 7.94093193E+17 Inexact Rounded -rpow321 power -963717836 -823989308 -> ? Underflow Subnormal Inexact Rounded -rrem321 remainder -963717836 -823989308 -> -139728528 -rsub321 subtract -963717836 -823989308 -> -139728528 -radd322 add 82.4185291E-321919303 -215747737.E-995147400 -> 8.24185291E-321919302 Inexact Rounded -rcom322 compare 82.4185291E-321919303 -215747737.E-995147400 -> 1 -rdiv322 divide 82.4185291E-321919303 -215747737.E-995147400 -> -3.82013412E+673228090 Inexact Rounded -rdvi322 divideint 82.4185291E-321919303 -215747737.E-995147400 -> ? Division_impossible -rmul322 multiply 82.4185291E-321919303 -215747737.E-995147400 -> ? Underflow Subnormal Inexact Rounded -rpow322 power 82.4185291E-321919303 -2 -> 1.47214396E+643838602 Inexact Rounded -rrem322 remainder 82.4185291E-321919303 -215747737.E-995147400 -> ? Division_impossible -rsub322 subtract 82.4185291E-321919303 -215747737.E-995147400 -> 8.24185291E-321919302 Inexact Rounded -radd323 add -808328.607E-790810342 53075.7082 -> 53075.7082 Inexact Rounded -rcom323 compare -808328.607E-790810342 53075.7082 -> -1 -rdiv323 divide -808328.607E-790810342 53075.7082 -> -1.52297281E-790810341 Inexact Rounded -rdvi323 divideint -808328.607E-790810342 53075.7082 -> 0 -rmul323 multiply -808328.607E-790810342 53075.7082 -> -4.29026133E-790810332 Inexact Rounded -rpow323 power -808328.607E-790810342 53076 -> ? Underflow Subnormal Inexact Rounded -rrem323 remainder -808328.607E-790810342 53075.7082 -> -8.08328607E-790810337 -rsub323 subtract -808328.607E-790810342 53075.7082 -> -53075.7082 Inexact Rounded -radd324 add 700592.720 -698485.085 -> 2107.635 -rcom324 compare 700592.720 -698485.085 -> 1 -rdiv324 divide 700592.720 -698485.085 -> -1.00301744 Inexact Rounded -rdvi324 divideint 700592.720 -698485.085 -> -1 -rmul324 multiply 700592.720 -698485.085 -> -4.89353566E+11 Inexact Rounded -rpow324 power 700592.720 -698485 -> 8.83690001E-4082971 Inexact Rounded -rrem324 remainder 700592.720 -698485.085 -> 2107.635 -rsub324 subtract 700592.720 -698485.085 -> 1399077.81 Inexact Rounded -radd325 add -80273928.0 661346.239 -> -79612581.8 Inexact Rounded -rcom325 compare -80273928.0 661346.239 -> -1 -rdiv325 divide -80273928.0 661346.239 -> -121.379579 Inexact Rounded -rdvi325 divideint -80273928.0 661346.239 -> -121 -rmul325 multiply -80273928.0 661346.239 -> -5.30888604E+13 Inexact Rounded -rpow325 power -80273928.0 661346 -> 5.45664856E+5227658 Inexact Rounded -rrem325 remainder -80273928.0 661346.239 -> -251033.081 -rsub325 subtract -80273928.0 661346.239 -> -80935274.2 Inexact Rounded -radd326 add -24018251.0E+819786764 59141.9600E-167165065 -> -2.40182510E+819786771 Inexact Rounded -rcom326 compare -24018251.0E+819786764 59141.9600E-167165065 -> -1 -rdiv326 divide -24018251.0E+819786764 59141.9600E-167165065 -> -4.06111854E+986951831 Inexact Rounded -rdvi326 divideint -24018251.0E+819786764 59141.9600E-167165065 -> ? Division_impossible -rmul326 multiply -24018251.0E+819786764 59141.9600E-167165065 -> -1.42048644E+652621711 Inexact Rounded -rpow326 power -24018251.0E+819786764 6 -> ? Overflow Inexact Rounded -rrem326 remainder -24018251.0E+819786764 59141.9600E-167165065 -> ? Division_impossible -rsub326 subtract -24018251.0E+819786764 59141.9600E-167165065 -> -2.40182510E+819786771 Inexact Rounded -radd327 add 2512953.3 -3769170.35E-993621645 -> 2512953.30 Inexact Rounded -rcom327 compare 2512953.3 -3769170.35E-993621645 -> 1 -rdiv327 divide 2512953.3 -3769170.35E-993621645 -> -6.66712583E+993621644 Inexact Rounded -rdvi327 divideint 2512953.3 -3769170.35E-993621645 -> ? Division_impossible -rmul327 multiply 2512953.3 -3769170.35E-993621645 -> -9.47174907E-993621633 Inexact Rounded -rpow327 power 2512953.3 -4 -> 2.50762349E-26 Inexact Rounded -rrem327 remainder 2512953.3 -3769170.35E-993621645 -> ? Division_impossible -rsub327 subtract 2512953.3 -3769170.35E-993621645 -> 2512953.30 Inexact Rounded -radd328 add -682.796370 71131.0224 -> 70448.2260 Inexact Rounded -rcom328 compare -682.796370 71131.0224 -> -1 -rdiv328 divide -682.796370 71131.0224 -> -0.00959913617 Inexact Rounded -rdvi328 divideint -682.796370 71131.0224 -> 0 -rmul328 multiply -682.796370 71131.0224 -> -48568003.9 Inexact Rounded -rpow328 power -682.796370 71131 -> -9.28114741E+201605 Inexact Rounded -rrem328 remainder -682.796370 71131.0224 -> -682.796370 -rsub328 subtract -682.796370 71131.0224 -> -71813.8188 Inexact Rounded -radd329 add 89.9997490 -4993.69831 -> -4903.69856 Inexact Rounded -rcom329 compare 89.9997490 -4993.69831 -> 1 -rdiv329 divide 89.9997490 -4993.69831 -> -0.0180226644 Inexact Rounded -rdvi329 divideint 89.9997490 -4993.69831 -> 0 -rmul329 multiply 89.9997490 -4993.69831 -> -449431.594 Inexact Rounded -rpow329 power 89.9997490 -4994 -> 3.30336525E-9760 Inexact Rounded -rrem329 remainder 89.9997490 -4993.69831 -> 89.9997490 -rsub329 subtract 89.9997490 -4993.69831 -> 5083.69806 Inexact Rounded -radd330 add 76563354.6E-112338836 278271.585E-511481095 -> 7.65633546E-112338829 Inexact Rounded -rcom330 compare 76563354.6E-112338836 278271.585E-511481095 -> 1 -rdiv330 divide 76563354.6E-112338836 278271.585E-511481095 -> 2.7513896E+399142261 Inexact Rounded -rdvi330 divideint 76563354.6E-112338836 278271.585E-511481095 -> ? Division_impossible -rmul330 multiply 76563354.6E-112338836 278271.585E-511481095 -> 2.13054060E-623819918 Inexact Rounded -rpow330 power 76563354.6E-112338836 3 -> 4.48810347E-337016485 Inexact Rounded -rrem330 remainder 76563354.6E-112338836 278271.585E-511481095 -> ? Division_impossible -rsub330 subtract 76563354.6E-112338836 278271.585E-511481095 -> 7.65633546E-112338829 Inexact Rounded -radd331 add -932499.010 873.377701E-502190452 -> -932499.010 Inexact Rounded -rcom331 compare -932499.010 873.377701E-502190452 -> -1 -rdiv331 divide -932499.010 873.377701E-502190452 -> -1.06769272E+502190455 Inexact Rounded -rdvi331 divideint -932499.010 873.377701E-502190452 -> ? Division_impossible -rmul331 multiply -932499.010 873.377701E-502190452 -> -8.14423842E-502190444 Inexact Rounded -rpow331 power -932499.010 9 -> -5.33132815E+53 Inexact Rounded -rrem331 remainder -932499.010 873.377701E-502190452 -> ? Division_impossible -rsub331 subtract -932499.010 873.377701E-502190452 -> -932499.010 Inexact Rounded -radd332 add -7735918.21E+799514797 -7748.78023 -> -7.73591821E+799514803 Inexact Rounded -rcom332 compare -7735918.21E+799514797 -7748.78023 -> -1 -rdiv332 divide -7735918.21E+799514797 -7748.78023 -> 9.98340123E+799514799 Inexact Rounded -rdvi332 divideint -7735918.21E+799514797 -7748.78023 -> ? Division_impossible -rmul332 multiply -7735918.21E+799514797 -7748.78023 -> 5.99439301E+799514807 Inexact Rounded -rpow332 power -7735918.21E+799514797 -7749 -> ? Underflow Subnormal Inexact Rounded -rrem332 remainder -7735918.21E+799514797 -7748.78023 -> ? Division_impossible -rsub332 subtract -7735918.21E+799514797 -7748.78023 -> -7.73591821E+799514803 Inexact Rounded -radd333 add -3708780.75E+445232787 980.006567E-780728623 -> -3.70878075E+445232793 Inexact Rounded -rcom333 compare -3708780.75E+445232787 980.006567E-780728623 -> -1 -rdiv333 divide -3708780.75E+445232787 980.006567E-780728623 -> ? Inexact Overflow Rounded -rdvi333 divideint -3708780.75E+445232787 980.006567E-780728623 -> ? Division_impossible -rmul333 multiply -3708780.75E+445232787 980.006567E-780728623 -> -3.63462949E-335495827 Inexact Rounded -rpow333 power -3708780.75E+445232787 10 -> ? Overflow Inexact Rounded -rrem333 remainder -3708780.75E+445232787 980.006567E-780728623 -> ? Division_impossible -rsub333 subtract -3708780.75E+445232787 980.006567E-780728623 -> -3.70878075E+445232793 Inexact Rounded -radd334 add -5205124.44E-140588661 -495394029.E-620856313 -> -5.20512444E-140588655 Inexact Rounded -rcom334 compare -5205124.44E-140588661 -495394029.E-620856313 -> -1 -rdiv334 divide -5205124.44E-140588661 -495394029.E-620856313 -> 1.05070391E+480267650 Inexact Rounded -rdvi334 divideint -5205124.44E-140588661 -495394029.E-620856313 -> ? Division_impossible -rmul334 multiply -5205124.44E-140588661 -495394029.E-620856313 -> 2.57858757E-761444959 Inexact Rounded -rpow334 power -5205124.44E-140588661 -5 -> -2.61724523E+702943271 Inexact Rounded -rrem334 remainder -5205124.44E-140588661 -495394029.E-620856313 -> ? Division_impossible -rsub334 subtract -5205124.44E-140588661 -495394029.E-620856313 -> -5.20512444E-140588655 Inexact Rounded -radd335 add -8868.72074 5592399.93 -> 5583531.21 Inexact Rounded -rcom335 compare -8868.72074 5592399.93 -> -1 -rdiv335 divide -8868.72074 5592399.93 -> -0.00158585238 Inexact Rounded -rdvi335 divideint -8868.72074 5592399.93 -> 0 -rmul335 multiply -8868.72074 5592399.93 -> -4.95974332E+10 Inexact Rounded -rpow335 power -8868.72074 5592400 -> 5.55074142E+22078017 Inexact Rounded -rrem335 remainder -8868.72074 5592399.93 -> -8868.72074 -rsub335 subtract -8868.72074 5592399.93 -> -5601268.65 Inexact Rounded -radd336 add -74.7852037E-175205809 4.14316542 -> 4.14316542 Inexact Rounded -rcom336 compare -74.7852037E-175205809 4.14316542 -> -1 -rdiv336 divide -74.7852037E-175205809 4.14316542 -> -1.80502577E-175205808 Inexact Rounded -rdvi336 divideint -74.7852037E-175205809 4.14316542 -> 0 -rmul336 multiply -74.7852037E-175205809 4.14316542 -> -3.09847470E-175205807 Inexact Rounded -rpow336 power -74.7852037E-175205809 4 -> 3.12797104E-700823229 Inexact Rounded -rrem336 remainder -74.7852037E-175205809 4.14316542 -> -7.47852037E-175205808 -rsub336 subtract -74.7852037E-175205809 4.14316542 -> -4.14316542 Inexact Rounded -radd337 add 84196.1091E+242628748 8.07523036E-288231467 -> 8.41961091E+242628752 Inexact Rounded -rcom337 compare 84196.1091E+242628748 8.07523036E-288231467 -> 1 -rdiv337 divide 84196.1091E+242628748 8.07523036E-288231467 -> 1.04264653E+530860219 Inexact Rounded -rdvi337 divideint 84196.1091E+242628748 8.07523036E-288231467 -> ? Division_impossible -rmul337 multiply 84196.1091E+242628748 8.07523036E-288231467 -> 6.79902976E-45602714 Inexact Rounded -rpow337 power 84196.1091E+242628748 8 -> ? Overflow Inexact Rounded -rrem337 remainder 84196.1091E+242628748 8.07523036E-288231467 -> ? Division_impossible -rsub337 subtract 84196.1091E+242628748 8.07523036E-288231467 -> 8.41961091E+242628752 Inexact Rounded -radd338 add 38660103.1 -6671.73085E+900998477 -> -6.67173085E+900998480 Inexact Rounded -rcom338 compare 38660103.1 -6671.73085E+900998477 -> 1 -rdiv338 divide 38660103.1 -6671.73085E+900998477 -> -5.79461372E-900998474 Inexact Rounded -rdvi338 divideint 38660103.1 -6671.73085E+900998477 -> 0 -rmul338 multiply 38660103.1 -6671.73085E+900998477 -> -2.57929803E+900998488 Inexact Rounded -rpow338 power 38660103.1 -7 -> 7.7474529E-54 Inexact Rounded -rrem338 remainder 38660103.1 -6671.73085E+900998477 -> 38660103.1 -rsub338 subtract 38660103.1 -6671.73085E+900998477 -> 6.67173085E+900998480 Inexact Rounded -radd339 add -52.2659460 -296404199E+372050476 -> -2.96404199E+372050484 Inexact Rounded -rcom339 compare -52.2659460 -296404199E+372050476 -> 1 -rdiv339 divide -52.2659460 -296404199E+372050476 -> 1.76333352E-372050483 Inexact Rounded -rdvi339 divideint -52.2659460 -296404199E+372050476 -> 0 -rmul339 multiply -52.2659460 -296404199E+372050476 -> 1.54918459E+372050486 Inexact Rounded -rpow339 power -52.2659460 -3 -> -0.00000700395833 Inexact Rounded -rrem339 remainder -52.2659460 -296404199E+372050476 -> -52.2659460 -rsub339 subtract -52.2659460 -296404199E+372050476 -> 2.96404199E+372050484 Inexact Rounded -radd340 add 6.06625013 -276.359186 -> -270.292936 Inexact Rounded -rcom340 compare 6.06625013 -276.359186 -> 1 -rdiv340 divide 6.06625013 -276.359186 -> -0.0219506007 Inexact Rounded -rdvi340 divideint 6.06625013 -276.359186 -> 0 -rmul340 multiply 6.06625013 -276.359186 -> -1676.46395 Inexact Rounded -rpow340 power 6.06625013 -276 -> 8.20339149E-217 Inexact Rounded -rrem340 remainder 6.06625013 -276.359186 -> 6.06625013 -rsub340 subtract 6.06625013 -276.359186 -> 282.425436 Inexact Rounded -radd341 add -62971617.5E-241444744 46266799.3 -> 46266799.3 Inexact Rounded -rcom341 compare -62971617.5E-241444744 46266799.3 -> -1 -rdiv341 divide -62971617.5E-241444744 46266799.3 -> -1.36105411E-241444744 Inexact Rounded -rdvi341 divideint -62971617.5E-241444744 46266799.3 -> 0 -rmul341 multiply -62971617.5E-241444744 46266799.3 -> -2.91349519E-241444729 Inexact Rounded -rpow341 power -62971617.5E-241444744 46266799 -> ? Underflow Subnormal Inexact Rounded -rrem341 remainder -62971617.5E-241444744 46266799.3 -> -6.29716175E-241444737 -rsub341 subtract -62971617.5E-241444744 46266799.3 -> -46266799.3 Inexact Rounded -radd342 add -5.36917800 -311124593.E-976066491 -> -5.36917800 Inexact Rounded -rcom342 compare -5.36917800 -311124593.E-976066491 -> -1 -rdiv342 divide -5.36917800 -311124593.E-976066491 -> 1.72573243E+976066483 Inexact Rounded -rdvi342 divideint -5.36917800 -311124593.E-976066491 -> ? Division_impossible -rmul342 multiply -5.36917800 -311124593.E-976066491 -> 1.67048332E-976066482 Inexact Rounded -rpow342 power -5.36917800 -3 -> -0.00646065565 Inexact Rounded -rrem342 remainder -5.36917800 -311124593.E-976066491 -> ? Division_impossible -rsub342 subtract -5.36917800 -311124593.E-976066491 -> -5.36917800 Inexact Rounded -radd343 add 2467915.01 -92.5558322 -> 2467822.45 Inexact Rounded -rcom343 compare 2467915.01 -92.5558322 -> 1 -rdiv343 divide 2467915.01 -92.5558322 -> -26664.0681 Inexact Rounded -rdvi343 divideint 2467915.01 -92.5558322 -> -26664 -rmul343 multiply 2467915.01 -92.5558322 -> -228419928 Inexact Rounded -rpow343 power 2467915.01 -93 -> 3.26055444E-595 Inexact Rounded -rrem343 remainder 2467915.01 -92.5558322 -> 6.3002192 -rsub343 subtract 2467915.01 -92.5558322 -> 2468007.57 Inexact Rounded -radd344 add 187.232671 -840.469347 -> -653.236676 -rcom344 compare 187.232671 -840.469347 -> 1 -rdiv344 divide 187.232671 -840.469347 -> -0.222771564 Inexact Rounded -rdvi344 divideint 187.232671 -840.469347 -> 0 -rmul344 multiply 187.232671 -840.469347 -> -157363.321 Inexact Rounded -rpow344 power 187.232671 -840 -> 1.58280862E-1909 Inexact Rounded -rrem344 remainder 187.232671 -840.469347 -> 187.232671 -rsub344 subtract 187.232671 -840.469347 -> 1027.70202 Inexact Rounded -radd345 add 81233.6823 -5192.21666E+309315093 -> -5.19221666E+309315096 Inexact Rounded -rcom345 compare 81233.6823 -5192.21666E+309315093 -> 1 -rdiv345 divide 81233.6823 -5192.21666E+309315093 -> -1.56452798E-309315092 Inexact Rounded -rdvi345 divideint 81233.6823 -5192.21666E+309315093 -> 0 -rmul345 multiply 81233.6823 -5192.21666E+309315093 -> -4.21782879E+309315101 Inexact Rounded -rpow345 power 81233.6823 -5 -> 2.82695763E-25 Inexact Rounded -rrem345 remainder 81233.6823 -5192.21666E+309315093 -> 81233.6823 -rsub345 subtract 81233.6823 -5192.21666E+309315093 -> 5.19221666E+309315096 Inexact Rounded -radd346 add -854.586113 -79.8715762E-853065103 -> -854.586113 Inexact Rounded -rcom346 compare -854.586113 -79.8715762E-853065103 -> -1 -rdiv346 divide -854.586113 -79.8715762E-853065103 -> 1.06995023E+853065104 Inexact Rounded -rdvi346 divideint -854.586113 -79.8715762E-853065103 -> ? Division_impossible -rmul346 multiply -854.586113 -79.8715762E-853065103 -> 6.82571398E-853065099 Inexact Rounded -rpow346 power -854.586113 -8 -> 3.51522679E-24 Inexact Rounded -rrem346 remainder -854.586113 -79.8715762E-853065103 -> ? Division_impossible -rsub346 subtract -854.586113 -79.8715762E-853065103 -> -854.586113 Inexact Rounded -radd347 add 78872665.3 172.102119 -> 78872837.4 Inexact Rounded -rcom347 compare 78872665.3 172.102119 -> 1 -rdiv347 divide 78872665.3 172.102119 -> 458289.914 Inexact Rounded -rdvi347 divideint 78872665.3 172.102119 -> 458289 -rmul347 multiply 78872665.3 172.102119 -> 1.35741528E+10 Inexact Rounded -rpow347 power 78872665.3 172 -> 1.86793137E+1358 Inexact Rounded -rrem347 remainder 78872665.3 172.102119 -> 157.285609 -rsub347 subtract 78872665.3 172.102119 -> 78872493.2 Inexact Rounded -radd348 add 328268.1E-436315617 -204.522245 -> -204.522245 Inexact Rounded -rcom348 compare 328268.1E-436315617 -204.522245 -> 1 -rdiv348 divide 328268.1E-436315617 -204.522245 -> -1.60504839E-436315614 Inexact Rounded -rdvi348 divideint 328268.1E-436315617 -204.522245 -> 0 -rmul348 multiply 328268.1E-436315617 -204.522245 -> -6.71381288E-436315610 Inexact Rounded -rpow348 power 328268.1E-436315617 -205 -> ? Overflow Inexact Rounded -rrem348 remainder 328268.1E-436315617 -204.522245 -> 3.282681E-436315612 -rsub348 subtract 328268.1E-436315617 -204.522245 -> 204.522245 Inexact Rounded -radd349 add -4037911.02E+641367645 29.5713010 -> -4.03791102E+641367651 Inexact Rounded -rcom349 compare -4037911.02E+641367645 29.5713010 -> -1 -rdiv349 divide -4037911.02E+641367645 29.5713010 -> -1.36548305E+641367650 Inexact Rounded -rdvi349 divideint -4037911.02E+641367645 29.5713010 -> ? Division_impossible -rmul349 multiply -4037911.02E+641367645 29.5713010 -> -1.19406282E+641367653 Inexact Rounded -rpow349 power -4037911.02E+641367645 30 -> ? Overflow Inexact Rounded -rrem349 remainder -4037911.02E+641367645 29.5713010 -> ? Division_impossible -rsub349 subtract -4037911.02E+641367645 29.5713010 -> -4.03791102E+641367651 Inexact Rounded -radd350 add -688755561.E-95301699 978.275312E+913812609 -> 9.78275312E+913812611 Inexact Rounded -rcom350 compare -688755561.E-95301699 978.275312E+913812609 -> -1 -rdiv350 divide -688755561.E-95301699 978.275312E+913812609 -> ? Inexact Rounded Underflow Subnormal -rdvi350 divideint -688755561.E-95301699 978.275312E+913812609 -> 0 -rmul350 multiply -688755561.E-95301699 978.275312E+913812609 -> -6.73792561E+818510921 Inexact Rounded -rpow350 power -688755561.E-95301699 10 -> 2.40243244E-953016902 Inexact Rounded -rrem350 remainder -688755561.E-95301699 978.275312E+913812609 -> -6.88755561E-95301691 -rsub350 subtract -688755561.E-95301699 978.275312E+913812609 -> -9.78275312E+913812611 Inexact Rounded -radd351 add -5.47345502 59818.7580 -> 59813.2845 Inexact Rounded -rcom351 compare -5.47345502 59818.7580 -> -1 -rdiv351 divide -5.47345502 59818.7580 -> -0.0000915006463 Inexact Rounded -rdvi351 divideint -5.47345502 59818.7580 -> 0 -rmul351 multiply -5.47345502 59818.7580 -> -327415.281 Inexact Rounded -rpow351 power -5.47345502 59819 -> -1.16914146E+44162 Inexact Rounded -rrem351 remainder -5.47345502 59818.7580 -> -5.47345502 -rsub351 subtract -5.47345502 59818.7580 -> -59824.2315 Inexact Rounded -radd352 add 563891620E-361354567 -845900362. -> -845900362 Inexact Rounded -rcom352 compare 563891620E-361354567 -845900362. -> 1 -rdiv352 divide 563891620E-361354567 -845900362. -> -6.66617069E-361354568 Inexact Rounded -rdvi352 divideint 563891620E-361354567 -845900362. -> 0 -rmul352 multiply 563891620E-361354567 -845900362. -> -4.76996125E-361354550 Inexact Rounded -rpow352 power 563891620E-361354567 -845900362 -> ? Overflow Inexact Rounded -rrem352 remainder 563891620E-361354567 -845900362. -> 5.63891620E-361354559 -rsub352 subtract 563891620E-361354567 -845900362. -> 845900362 Inexact Rounded -radd353 add -69.7231286 85773.7504 -> 85704.0273 Inexact Rounded -rcom353 compare -69.7231286 85773.7504 -> -1 -rdiv353 divide -69.7231286 85773.7504 -> -0.000812872566 Inexact Rounded -rdvi353 divideint -69.7231286 85773.7504 -> 0 -rmul353 multiply -69.7231286 85773.7504 -> -5980414.23 Inexact Rounded -rpow353 power -69.7231286 85774 -> 6.41714261E+158113 Inexact Rounded -rrem353 remainder -69.7231286 85773.7504 -> -69.7231286 -rsub353 subtract -69.7231286 85773.7504 -> -85843.4735 Inexact Rounded -radd354 add 5125.51188 73814638.4E-500934741 -> 5125.51188 Inexact Rounded -rcom354 compare 5125.51188 73814638.4E-500934741 -> 1 -rdiv354 divide 5125.51188 73814638.4E-500934741 -> 6.94376074E+500934736 Inexact Rounded -rdvi354 divideint 5125.51188 73814638.4E-500934741 -> ? Division_impossible -rmul354 multiply 5125.51188 73814638.4E-500934741 -> 3.78337806E-500934730 Inexact Rounded -rpow354 power 5125.51188 7 -> 9.29310216E+25 Inexact Rounded -rrem354 remainder 5125.51188 73814638.4E-500934741 -> ? Division_impossible -rsub354 subtract 5125.51188 73814638.4E-500934741 -> 5125.51188 Inexact Rounded -radd355 add -54.6254096 -332921899. -> -332921954 Inexact Rounded -rcom355 compare -54.6254096 -332921899. -> 1 -rdiv355 divide -54.6254096 -332921899. -> 1.64078752E-7 Inexact Rounded -rdvi355 divideint -54.6254096 -332921899. -> 0 -rmul355 multiply -54.6254096 -332921899. -> 1.81859951E+10 Inexact Rounded -rpow355 power -54.6254096 -332921899 -> -1.01482569E-578416745 Inexact Rounded -rrem355 remainder -54.6254096 -332921899. -> -54.6254096 -rsub355 subtract -54.6254096 -332921899. -> 332921844 Inexact Rounded -radd356 add -9.04778095E-591874079 8719.40286 -> 8719.40286 Inexact Rounded -rcom356 compare -9.04778095E-591874079 8719.40286 -> -1 -rdiv356 divide -9.04778095E-591874079 8719.40286 -> -1.03766062E-591874082 Inexact Rounded -rdvi356 divideint -9.04778095E-591874079 8719.40286 -> 0 -rmul356 multiply -9.04778095E-591874079 8719.40286 -> -7.88912471E-591874075 Inexact Rounded -rpow356 power -9.04778095E-591874079 8719 -> ? Underflow Subnormal Inexact Rounded -rrem356 remainder -9.04778095E-591874079 8719.40286 -> -9.04778095E-591874079 -rsub356 subtract -9.04778095E-591874079 8719.40286 -> -8719.40286 Inexact Rounded -radd357 add -21006.1733E+884684431 -48872.9175 -> -2.10061733E+884684435 Inexact Rounded -rcom357 compare -21006.1733E+884684431 -48872.9175 -> -1 -rdiv357 divide -21006.1733E+884684431 -48872.9175 -> 4.29812141E+884684430 Inexact Rounded -rdvi357 divideint -21006.1733E+884684431 -48872.9175 -> ? Division_impossible -rmul357 multiply -21006.1733E+884684431 -48872.9175 -> 1.02663297E+884684440 Inexact Rounded -rpow357 power -21006.1733E+884684431 -48873 -> ? Underflow Subnormal Inexact Rounded -rrem357 remainder -21006.1733E+884684431 -48872.9175 -> ? Division_impossible -rsub357 subtract -21006.1733E+884684431 -48872.9175 -> -2.10061733E+884684435 Inexact Rounded -radd358 add -1546783 -51935370.4 -> -53482153.4 -rcom358 compare -1546783 -51935370.4 -> 1 -rdiv358 divide -1546783 -51935370.4 -> 0.0297828433 Inexact Rounded -rdvi358 divideint -1546783 -51935370.4 -> 0 -rmul358 multiply -1546783 -51935370.4 -> 8.03327480E+13 Inexact Rounded -rpow358 power -1546783 -51935370 -> 3.36022461E-321450306 Inexact Rounded -rrem358 remainder -1546783 -51935370.4 -> -1546783.0 -rsub358 subtract -1546783 -51935370.4 -> 50388587.4 -radd359 add 61302486.8 205.490417 -> 61302692.3 Inexact Rounded -rcom359 compare 61302486.8 205.490417 -> 1 -rdiv359 divide 61302486.8 205.490417 -> 298322.85 Inexact Rounded -rdvi359 divideint 61302486.8 205.490417 -> 298322 -rmul359 multiply 61302486.8 205.490417 -> 1.25970736E+10 Inexact Rounded -rpow359 power 61302486.8 205 -> 2.71024755E+1596 Inexact Rounded -rrem359 remainder 61302486.8 205.490417 -> 174.619726 -rsub359 subtract 61302486.8 205.490417 -> 61302281.3 Inexact Rounded -radd360 add -318180109. -54008744.6E-170931002 -> -318180109 Inexact Rounded -rcom360 compare -318180109. -54008744.6E-170931002 -> -1 -rdiv360 divide -318180109. -54008744.6E-170931002 -> 5.89127023E+170931002 Inexact Rounded -rdvi360 divideint -318180109. -54008744.6E-170931002 -> ? Division_impossible -rmul360 multiply -318180109. -54008744.6E-170931002 -> 1.71845082E-170930986 Inexact Rounded -rpow360 power -318180109. -5 -> -3.0664428E-43 Inexact Rounded -rrem360 remainder -318180109. -54008744.6E-170931002 -> ? Division_impossible -rsub360 subtract -318180109. -54008744.6E-170931002 -> -318180109 Inexact Rounded -radd361 add -28486137.1E+901441714 -42454.940 -> -2.84861371E+901441721 Inexact Rounded -rcom361 compare -28486137.1E+901441714 -42454.940 -> -1 -rdiv361 divide -28486137.1E+901441714 -42454.940 -> 6.70973439E+901441716 Inexact Rounded -rdvi361 divideint -28486137.1E+901441714 -42454.940 -> ? Division_impossible -rmul361 multiply -28486137.1E+901441714 -42454.940 -> 1.20937724E+901441726 Inexact Rounded -rpow361 power -28486137.1E+901441714 -42455 -> ? Underflow Subnormal Inexact Rounded -rrem361 remainder -28486137.1E+901441714 -42454.940 -> ? Division_impossible -rsub361 subtract -28486137.1E+901441714 -42454.940 -> -2.84861371E+901441721 Inexact Rounded -radd362 add -546398328. -27.9149712 -> -546398356 Inexact Rounded -rcom362 compare -546398328. -27.9149712 -> -1 -rdiv362 divide -546398328. -27.9149712 -> 19573666.2 Inexact Rounded -rdvi362 divideint -546398328. -27.9149712 -> 19573666 -rmul362 multiply -546398328. -27.9149712 -> 1.52526936E+10 Inexact Rounded -rpow362 power -546398328. -28 -> 2.23737032E-245 Inexact Rounded -rrem362 remainder -546398328. -27.9149712 -> -5.3315808 -rsub362 subtract -546398328. -27.9149712 -> -546398300 Inexact Rounded -radd363 add 5402066.1E-284978216 622.751128 -> 622.751128 Inexact Rounded -rcom363 compare 5402066.1E-284978216 622.751128 -> -1 -rdiv363 divide 5402066.1E-284978216 622.751128 -> 8.67451837E-284978213 Inexact Rounded -rdvi363 divideint 5402066.1E-284978216 622.751128 -> 0 -rmul363 multiply 5402066.1E-284978216 622.751128 -> 3.36414276E-284978207 Inexact Rounded -rpow363 power 5402066.1E-284978216 623 -> ? Underflow Subnormal Inexact Rounded -rrem363 remainder 5402066.1E-284978216 622.751128 -> 5.4020661E-284978210 -rsub363 subtract 5402066.1E-284978216 622.751128 -> -622.751128 Inexact Rounded -radd364 add 18845620 3129.43753 -> 18848749.4 Inexact Rounded -rcom364 compare 18845620 3129.43753 -> 1 -rdiv364 divide 18845620 3129.43753 -> 6022.04704 Inexact Rounded -rdvi364 divideint 18845620 3129.43753 -> 6022 -rmul364 multiply 18845620 3129.43753 -> 5.89761905E+10 Inexact Rounded -rpow364 power 18845620 3129 -> 1.35967443E+22764 Inexact Rounded -rrem364 remainder 18845620 3129.43753 -> 147.19434 -rsub364 subtract 18845620 3129.43753 -> 18842490.6 Inexact Rounded -radd365 add 50707.1412E+912475670 -198098.186E+701407524 -> 5.07071412E+912475674 Inexact Rounded -rcom365 compare 50707.1412E+912475670 -198098.186E+701407524 -> 1 -rdiv365 divide 50707.1412E+912475670 -198098.186E+701407524 -> -2.5596974E+211068145 Inexact Rounded -rdvi365 divideint 50707.1412E+912475670 -198098.186E+701407524 -> ? Division_impossible -rmul365 multiply 50707.1412E+912475670 -198098.186E+701407524 -> ? Inexact Overflow Rounded -rpow365 power 50707.1412E+912475670 -2 -> ? Underflow Subnormal Inexact Rounded -rrem365 remainder 50707.1412E+912475670 -198098.186E+701407524 -> ? Division_impossible -rsub365 subtract 50707.1412E+912475670 -198098.186E+701407524 -> 5.07071412E+912475674 Inexact Rounded -radd366 add 55.8245006E+928885991 99170843.9E-47402167 -> 5.58245006E+928885992 Inexact Rounded -rcom366 compare 55.8245006E+928885991 99170843.9E-47402167 -> 1 -rdiv366 divide 55.8245006E+928885991 99170843.9E-47402167 -> 5.62912429E+976288151 Inexact Rounded -rdvi366 divideint 55.8245006E+928885991 99170843.9E-47402167 -> ? Division_impossible -rmul366 multiply 55.8245006E+928885991 99170843.9E-47402167 -> 5.53616283E+881483833 Inexact Rounded -rpow366 power 55.8245006E+928885991 10 -> ? Overflow Inexact Rounded -rrem366 remainder 55.8245006E+928885991 99170843.9E-47402167 -> ? Division_impossible -rsub366 subtract 55.8245006E+928885991 99170843.9E-47402167 -> 5.58245006E+928885992 Inexact Rounded -radd367 add 13.8003883E-386224921 -84126481.9E-296378341 -> -8.41264819E-296378334 Inexact Rounded -rcom367 compare 13.8003883E-386224921 -84126481.9E-296378341 -> 1 -rdiv367 divide 13.8003883E-386224921 -84126481.9E-296378341 -> -1.64043331E-89846587 Inexact Rounded -rdvi367 divideint 13.8003883E-386224921 -84126481.9E-296378341 -> 0 -rmul367 multiply 13.8003883E-386224921 -84126481.9E-296378341 -> -1.16097812E-682603253 Inexact Rounded -rpow367 power 13.8003883E-386224921 -8 -> ? Overflow Inexact Rounded -rrem367 remainder 13.8003883E-386224921 -84126481.9E-296378341 -> 1.38003883E-386224920 -rsub367 subtract 13.8003883E-386224921 -84126481.9E-296378341 -> 8.41264819E-296378334 Inexact Rounded -radd368 add 9820.90457 46671.5915 -> 56492.4961 Inexact Rounded -rcom368 compare 9820.90457 46671.5915 -> -1 -rdiv368 divide 9820.90457 46671.5915 -> 0.210425748 Inexact Rounded -rdvi368 divideint 9820.90457 46671.5915 -> 0 -rmul368 multiply 9820.90457 46671.5915 -> 458357246 Inexact Rounded -rpow368 power 9820.90457 46672 -> 4.9475307E+186321 Inexact Rounded -rrem368 remainder 9820.90457 46671.5915 -> 9820.90457 -rsub368 subtract 9820.90457 46671.5915 -> -36850.6869 Inexact Rounded -radd369 add 7.22436006E+831949153 -11168830E+322331045 -> 7.22436006E+831949153 Inexact Rounded -rcom369 compare 7.22436006E+831949153 -11168830E+322331045 -> 1 -rdiv369 divide 7.22436006E+831949153 -11168830E+322331045 -> -6.46832306E+509618101 Inexact Rounded -rdvi369 divideint 7.22436006E+831949153 -11168830E+322331045 -> ? Division_impossible -rmul369 multiply 7.22436006E+831949153 -11168830E+322331045 -> ? Inexact Overflow Rounded -rpow369 power 7.22436006E+831949153 -1 -> 1.38420565E-831949154 Inexact Rounded -rrem369 remainder 7.22436006E+831949153 -11168830E+322331045 -> ? Division_impossible -rsub369 subtract 7.22436006E+831949153 -11168830E+322331045 -> 7.22436006E+831949153 Inexact Rounded -radd370 add 472648900 -207.784153 -> 472648692 Inexact Rounded -rcom370 compare 472648900 -207.784153 -> 1 -rdiv370 divide 472648900 -207.784153 -> -2274711.01 Inexact Rounded -rdvi370 divideint 472648900 -207.784153 -> -2274711 -rmul370 multiply 472648900 -207.784153 -> -9.82089514E+10 Inexact Rounded -rpow370 power 472648900 -208 -> 4.96547145E-1805 Inexact Rounded -rrem370 remainder 472648900 -207.784153 -> 1.545217 -rsub370 subtract 472648900 -207.784153 -> 472649108 Inexact Rounded -radd371 add -8754.49306 -818.165153E+631475457 -> -8.18165153E+631475459 Inexact Rounded -rcom371 compare -8754.49306 -818.165153E+631475457 -> 1 -rdiv371 divide -8754.49306 -818.165153E+631475457 -> 1.07001539E-631475456 Inexact Rounded -rdvi371 divideint -8754.49306 -818.165153E+631475457 -> 0 -rmul371 multiply -8754.49306 -818.165153E+631475457 -> 7.16262115E+631475463 Inexact Rounded -rpow371 power -8754.49306 -8 -> 2.89835767E-32 Inexact Rounded -rrem371 remainder -8754.49306 -818.165153E+631475457 -> -8754.49306 -rsub371 subtract -8754.49306 -818.165153E+631475457 -> 8.18165153E+631475459 Inexact Rounded -radd372 add 98750864 191380.551 -> 98942244.6 Inexact Rounded -rcom372 compare 98750864 191380.551 -> 1 -rdiv372 divide 98750864 191380.551 -> 515.992161 Inexact Rounded -rdvi372 divideint 98750864 191380.551 -> 515 -rmul372 multiply 98750864 191380.551 -> 1.88989948E+13 Inexact Rounded -rpow372 power 98750864 191381 -> 1.70908809E+1530003 Inexact Rounded -rrem372 remainder 98750864 191380.551 -> 189880.235 -rsub372 subtract 98750864 191380.551 -> 98559483.4 Inexact Rounded -radd373 add 725292561. -768963606.E+340762986 -> -7.68963606E+340762994 Inexact Rounded -rcom373 compare 725292561. -768963606.E+340762986 -> 1 -rdiv373 divide 725292561. -768963606.E+340762986 -> -9.43207917E-340762987 Inexact Rounded -rdvi373 divideint 725292561. -768963606.E+340762986 -> 0 -rmul373 multiply 725292561. -768963606.E+340762986 -> -5.57723583E+340763003 Inexact Rounded -rpow373 power 725292561. -8 -> 1.30585277E-71 Inexact Rounded -rrem373 remainder 725292561. -768963606.E+340762986 -> 725292561 -rsub373 subtract 725292561. -768963606.E+340762986 -> 7.68963606E+340762994 Inexact Rounded -radd374 add 1862.80445 648254483. -> 648256346 Inexact Rounded -rcom374 compare 1862.80445 648254483. -> -1 -rdiv374 divide 1862.80445 648254483. -> 0.00000287356972 Inexact Rounded -rdvi374 divideint 1862.80445 648254483. -> 0 -rmul374 multiply 1862.80445 648254483. -> 1.20757134E+12 Inexact Rounded -rpow374 power 1862.80445 648254483 -> ? Overflow Inexact Rounded -rrem374 remainder 1862.80445 648254483. -> 1862.80445 -rsub374 subtract 1862.80445 648254483. -> -648252620 Inexact Rounded -radd375 add -5549320.1 -93580684.1 -> -99130004.2 -rcom375 compare -5549320.1 -93580684.1 -> 1 -rdiv375 divide -5549320.1 -93580684.1 -> 0.0592998454 Inexact Rounded -rdvi375 divideint -5549320.1 -93580684.1 -> 0 -rmul375 multiply -5549320.1 -93580684.1 -> 5.19309171E+14 Inexact Rounded -rpow375 power -5549320.1 -93580684 -> 4.20662079E-631130572 Inexact Rounded -rrem375 remainder -5549320.1 -93580684.1 -> -5549320.1 -rsub375 subtract -5549320.1 -93580684.1 -> 88031364.0 -radd376 add -14677053.1 -25784.7358 -> -14702837.8 Inexact Rounded -rcom376 compare -14677053.1 -25784.7358 -> -1 -rdiv376 divide -14677053.1 -25784.7358 -> 569.214795 Inexact Rounded -rdvi376 divideint -14677053.1 -25784.7358 -> 569 -rmul376 multiply -14677053.1 -25784.7358 -> 3.78443937E+11 Inexact Rounded -rpow376 power -14677053.1 -25785 -> -1.64760831E-184792 Inexact Rounded -rrem376 remainder -14677053.1 -25784.7358 -> -5538.4298 -rsub376 subtract -14677053.1 -25784.7358 -> -14651268.4 Inexact Rounded -radd377 add 547402.308E+571687617 -7835797.01E+500067364 -> 5.47402308E+571687622 Inexact Rounded -rcom377 compare 547402.308E+571687617 -7835797.01E+500067364 -> 1 -rdiv377 divide 547402.308E+571687617 -7835797.01E+500067364 -> -6.98591742E+71620251 Inexact Rounded -rdvi377 divideint 547402.308E+571687617 -7835797.01E+500067364 -> ? Division_impossible -rmul377 multiply 547402.308E+571687617 -7835797.01E+500067364 -> ? Inexact Overflow Rounded -rpow377 power 547402.308E+571687617 -8 -> ? Underflow Subnormal Inexact Rounded -rrem377 remainder 547402.308E+571687617 -7835797.01E+500067364 -> ? Division_impossible -rsub377 subtract 547402.308E+571687617 -7835797.01E+500067364 -> 5.47402308E+571687622 Inexact Rounded -radd378 add -4131738.09 7579.07566 -> -4124159.01 Inexact Rounded -rcom378 compare -4131738.09 7579.07566 -> -1 -rdiv378 divide -4131738.09 7579.07566 -> -545.150659 Inexact Rounded -rdvi378 divideint -4131738.09 7579.07566 -> -545 -rmul378 multiply -4131738.09 7579.07566 -> -3.13147556E+10 Inexact Rounded -rpow378 power -4131738.09 7579 -> -4.68132794E+50143 Inexact Rounded -rrem378 remainder -4131738.09 7579.07566 -> -1141.85530 -rsub378 subtract -4131738.09 7579.07566 -> -4139317.17 Inexact Rounded -radd379 add 504544.648 -7678.96133E-662143268 -> 504544.648 Inexact Rounded -rcom379 compare 504544.648 -7678.96133E-662143268 -> 1 -rdiv379 divide 504544.648 -7678.96133E-662143268 -> -6.57048039E+662143269 Inexact Rounded -rdvi379 divideint 504544.648 -7678.96133E-662143268 -> ? Division_impossible -rmul379 multiply 504544.648 -7678.96133E-662143268 -> -3.87437884E-662143259 Inexact Rounded -rpow379 power 504544.648 -8 -> 2.38124001E-46 Inexact Rounded -rrem379 remainder 504544.648 -7678.96133E-662143268 -> ? Division_impossible -rsub379 subtract 504544.648 -7678.96133E-662143268 -> 504544.648 Inexact Rounded -radd380 add 829898241 8912.99114E+929228149 -> 8.91299114E+929228152 Inexact Rounded -rcom380 compare 829898241 8912.99114E+929228149 -> -1 -rdiv380 divide 829898241 8912.99114E+929228149 -> 9.31110811E-929228145 Inexact Rounded -rdvi380 divideint 829898241 8912.99114E+929228149 -> 0 -rmul380 multiply 829898241 8912.99114E+929228149 -> 7.39687567E+929228161 Inexact Rounded -rpow380 power 829898241 9 -> 1.86734084E+80 Inexact Rounded -rrem380 remainder 829898241 8912.99114E+929228149 -> 829898241 -rsub380 subtract 829898241 8912.99114E+929228149 -> -8.91299114E+929228152 Inexact Rounded -radd381 add 53.6891691 -11.2371140 -> 42.4520551 -rcom381 compare 53.6891691 -11.2371140 -> 1 -rdiv381 divide 53.6891691 -11.2371140 -> -4.77784323 Inexact Rounded -rdvi381 divideint 53.6891691 -11.2371140 -> -4 -rmul381 multiply 53.6891691 -11.2371140 -> -603.311314 Inexact Rounded -rpow381 power 53.6891691 -11 -> 9.35936725E-20 Inexact Rounded -rrem381 remainder 53.6891691 -11.2371140 -> 8.7407131 -rsub381 subtract 53.6891691 -11.2371140 -> 64.9262831 -radd382 add -93951823.4 -25317.8645 -> -93977141.3 Inexact Rounded -rcom382 compare -93951823.4 -25317.8645 -> -1 -rdiv382 divide -93951823.4 -25317.8645 -> 3710.89052 Inexact Rounded -rdvi382 divideint -93951823.4 -25317.8645 -> 3710 -rmul382 multiply -93951823.4 -25317.8645 -> 2.37865953E+12 Inexact Rounded -rpow382 power -93951823.4 -25318 -> 9.67857714E-201859 Inexact Rounded -rrem382 remainder -93951823.4 -25317.8645 -> -22546.1050 -rsub382 subtract -93951823.4 -25317.8645 -> -93926505.5 Inexact Rounded -radd383 add 446919.123 951338490. -> 951785409 Inexact Rounded -rcom383 compare 446919.123 951338490. -> -1 -rdiv383 divide 446919.123 951338490. -> 0.000469779293 Inexact Rounded -rdvi383 divideint 446919.123 951338490. -> 0 -rmul383 multiply 446919.123 951338490. -> 4.25171364E+14 Inexact Rounded -rpow383 power 446919.123 951338490 -> ? Overflow Inexact Rounded -rrem383 remainder 446919.123 951338490. -> 446919.123 -rsub383 subtract 446919.123 951338490. -> -950891571 Inexact Rounded -radd384 add -8.01787748 -88.3076852 -> -96.3255627 Inexact Rounded -rcom384 compare -8.01787748 -88.3076852 -> 1 -rdiv384 divide -8.01787748 -88.3076852 -> 0.0907947871 Inexact Rounded -rdvi384 divideint -8.01787748 -88.3076852 -> 0 -rmul384 multiply -8.01787748 -88.3076852 -> 708.040200 Inexact Rounded -rpow384 power -8.01787748 -88 -> 2.77186088E-80 Inexact Rounded -rrem384 remainder -8.01787748 -88.3076852 -> -8.01787748 -rsub384 subtract -8.01787748 -88.3076852 -> 80.2898077 Inexact Rounded -radd385 add 517458139 -999731.548 -> 516458407 Inexact Rounded -rcom385 compare 517458139 -999731.548 -> 1 -rdiv385 divide 517458139 -999731.548 -> -517.597089 Inexact Rounded -rdvi385 divideint 517458139 -999731.548 -> -517 -rmul385 multiply 517458139 -999731.548 -> -5.17319226E+14 Inexact Rounded -rpow385 power 517458139 -999732 -> 1.24821346E-8711540 Inexact Rounded -rrem385 remainder 517458139 -999731.548 -> 596928.684 -rsub385 subtract 517458139 -999731.548 -> 518457871 Inexact Rounded -radd386 add -405543440 -4013.18295 -> -405547453 Inexact Rounded -rcom386 compare -405543440 -4013.18295 -> -1 -rdiv386 divide -405543440 -4013.18295 -> 101052.816 Inexact Rounded -rdvi386 divideint -405543440 -4013.18295 -> 101052 -rmul386 multiply -405543440 -4013.18295 -> 1.62752002E+12 Inexact Rounded -rpow386 power -405543440 -4013 -> -8.83061932E-34545 Inexact Rounded -rrem386 remainder -405543440 -4013.18295 -> -3276.53660 -rsub386 subtract -405543440 -4013.18295 -> -405539427 Inexact Rounded -radd387 add -49245250.1E+682760825 -848776.637 -> -4.92452501E+682760832 Inexact Rounded -rcom387 compare -49245250.1E+682760825 -848776.637 -> -1 -rdiv387 divide -49245250.1E+682760825 -848776.637 -> 5.80190924E+682760826 Inexact Rounded -rdvi387 divideint -49245250.1E+682760825 -848776.637 -> ? Division_impossible -rmul387 multiply -49245250.1E+682760825 -848776.637 -> 4.17982178E+682760838 Inexact Rounded -rpow387 power -49245250.1E+682760825 -848777 -> ? Underflow Subnormal Inexact Rounded -rrem387 remainder -49245250.1E+682760825 -848776.637 -> ? Division_impossible -rsub387 subtract -49245250.1E+682760825 -848776.637 -> -4.92452501E+682760832 Inexact Rounded -radd388 add -151144455 -170371.29 -> -151314826 Inexact Rounded -rcom388 compare -151144455 -170371.29 -> -1 -rdiv388 divide -151144455 -170371.29 -> 887.147447 Inexact Rounded -rdvi388 divideint -151144455 -170371.29 -> 887 -rmul388 multiply -151144455 -170371.29 -> 2.57506758E+13 Inexact Rounded -rpow388 power -151144455 -170371 -> -5.86496369E-1393532 Inexact Rounded -rrem388 remainder -151144455 -170371.29 -> -25120.77 -rsub388 subtract -151144455 -170371.29 -> -150974084 Inexact Rounded -radd389 add -729236746.E+662737067 9.10823602 -> -7.29236746E+662737075 Inexact Rounded -rcom389 compare -729236746.E+662737067 9.10823602 -> -1 -rdiv389 divide -729236746.E+662737067 9.10823602 -> -8.00634442E+662737074 Inexact Rounded -rdvi389 divideint -729236746.E+662737067 9.10823602 -> ? Division_impossible -rmul389 multiply -729236746.E+662737067 9.10823602 -> -6.64206040E+662737076 Inexact Rounded -rpow389 power -729236746.E+662737067 9 -> ? Overflow Inexact Rounded -rrem389 remainder -729236746.E+662737067 9.10823602 -> ? Division_impossible -rsub389 subtract -729236746.E+662737067 9.10823602 -> -7.29236746E+662737075 Inexact Rounded -radd390 add 534.394729 -2369839.37 -> -2369304.98 Inexact Rounded -rcom390 compare 534.394729 -2369839.37 -> 1 -rdiv390 divide 534.394729 -2369839.37 -> -0.000225498291 Inexact Rounded -rdvi390 divideint 534.394729 -2369839.37 -> 0 -rmul390 multiply 534.394729 -2369839.37 -> -1.26642967E+9 Inexact Rounded -rpow390 power 534.394729 -2369839 -> 7.12522896E-6464595 Inexact Rounded -rrem390 remainder 534.394729 -2369839.37 -> 534.394729 -rsub390 subtract 534.394729 -2369839.37 -> 2370373.76 Inexact Rounded -radd391 add 89100.1797 224.370309 -> 89324.5500 Inexact Rounded -rcom391 compare 89100.1797 224.370309 -> 1 -rdiv391 divide 89100.1797 224.370309 -> 397.112167 Inexact Rounded -rdvi391 divideint 89100.1797 224.370309 -> 397 -rmul391 multiply 89100.1797 224.370309 -> 19991434.9 Inexact Rounded -rpow391 power 89100.1797 224 -> 5.92654936E+1108 Inexact Rounded -rrem391 remainder 89100.1797 224.370309 -> 25.167027 -rsub391 subtract 89100.1797 224.370309 -> 88875.8094 Inexact Rounded -radd392 add -821377.777 38.552821 -> -821339.224 Inexact Rounded -rcom392 compare -821377.777 38.552821 -> -1 -rdiv392 divide -821377.777 38.552821 -> -21305.2575 Inexact Rounded -rdvi392 divideint -821377.777 38.552821 -> -21305 -rmul392 multiply -821377.777 38.552821 -> -31666430.4 Inexact Rounded -rpow392 power -821377.777 39 -> -4.64702482E+230 Inexact Rounded -rrem392 remainder -821377.777 38.552821 -> -9.925595 -rsub392 subtract -821377.777 38.552821 -> -821416.330 Inexact Rounded -radd393 add -392640.782 -2571619.5E+113237865 -> -2.57161950E+113237871 Inexact Rounded -rcom393 compare -392640.782 -2571619.5E+113237865 -> 1 -rdiv393 divide -392640.782 -2571619.5E+113237865 -> 1.52682301E-113237866 Inexact Rounded -rdvi393 divideint -392640.782 -2571619.5E+113237865 -> 0 -rmul393 multiply -392640.782 -2571619.5E+113237865 -> 1.00972269E+113237877 Inexact Rounded -rpow393 power -392640.782 -3 -> -1.65201422E-17 Inexact Rounded -rrem393 remainder -392640.782 -2571619.5E+113237865 -> -392640.782 -rsub393 subtract -392640.782 -2571619.5E+113237865 -> 2.57161950E+113237871 Inexact Rounded -radd394 add -651397.712 -723.59673 -> -652121.309 Inexact Rounded -rcom394 compare -651397.712 -723.59673 -> -1 -rdiv394 divide -651397.712 -723.59673 -> 900.222023 Inexact Rounded -rdvi394 divideint -651397.712 -723.59673 -> 900 -rmul394 multiply -651397.712 -723.59673 -> 471349254 Inexact Rounded -rpow394 power -651397.712 -724 -> 5.96115415E-4210 Inexact Rounded -rrem394 remainder -651397.712 -723.59673 -> -160.65500 -rsub394 subtract -651397.712 -723.59673 -> -650674.115 Inexact Rounded -radd395 add 86.6890892 940380864 -> 940380951 Inexact Rounded -rcom395 compare 86.6890892 940380864 -> -1 -rdiv395 divide 86.6890892 940380864 -> 9.21850843E-8 Inexact Rounded -rdvi395 divideint 86.6890892 940380864 -> 0 -rmul395 multiply 86.6890892 940380864 -> 8.15207606E+10 Inexact Rounded -rpow395 power 86.6890892 940380864 -> ? Overflow Inexact Rounded -rrem395 remainder 86.6890892 940380864 -> 86.6890892 -rsub395 subtract 86.6890892 940380864 -> -940380777 Inexact Rounded -radd396 add 4880.06442E-382222621 -115627239E-912834031 -> 4.88006442E-382222618 Inexact Rounded -rcom396 compare 4880.06442E-382222621 -115627239E-912834031 -> 1 -rdiv396 divide 4880.06442E-382222621 -115627239E-912834031 -> -4.22051453E+530611405 Inexact Rounded -rdvi396 divideint 4880.06442E-382222621 -115627239E-912834031 -> ? Division_impossible -rmul396 multiply 4880.06442E-382222621 -115627239E-912834031 -> ? Underflow Subnormal Inexact Rounded -rpow396 power 4880.06442E-382222621 -1 -> 2.04915328E+382222617 Inexact Rounded -rrem396 remainder 4880.06442E-382222621 -115627239E-912834031 -> ? Division_impossible -rsub396 subtract 4880.06442E-382222621 -115627239E-912834031 -> 4.88006442E-382222618 Inexact Rounded -radd397 add 173398265E-532383158 3462.51450E+80986915 -> 3.46251450E+80986918 Inexact Rounded -rcom397 compare 173398265E-532383158 3462.51450E+80986915 -> -1 -rdiv397 divide 173398265E-532383158 3462.51450E+80986915 -> 5.00787116E-613370069 Inexact Rounded -rdvi397 divideint 173398265E-532383158 3462.51450E+80986915 -> 0 -rmul397 multiply 173398265E-532383158 3462.51450E+80986915 -> 6.00394007E-451396232 Inexact Rounded -rpow397 power 173398265E-532383158 3 -> ? Underflow Subnormal Inexact Rounded -rrem397 remainder 173398265E-532383158 3462.51450E+80986915 -> 1.73398265E-532383150 -rsub397 subtract 173398265E-532383158 3462.51450E+80986915 -> -3.46251450E+80986918 Inexact Rounded -radd398 add -1522176.78 -6631061.77 -> -8153238.55 -rcom398 compare -1522176.78 -6631061.77 -> 1 -rdiv398 divide -1522176.78 -6631061.77 -> 0.229552496 Inexact Rounded -rdvi398 divideint -1522176.78 -6631061.77 -> 0 -rmul398 multiply -1522176.78 -6631061.77 -> 1.00936483E+13 Inexact Rounded -rpow398 power -1522176.78 -6631062 -> 4.54268854E-40996310 Inexact Rounded -rrem398 remainder -1522176.78 -6631061.77 -> -1522176.78 -rsub398 subtract -1522176.78 -6631061.77 -> 5108884.99 -radd399 add 538.10453 522934310 -> 522934848 Inexact Rounded -rcom399 compare 538.10453 522934310 -> -1 -rdiv399 divide 538.10453 522934310 -> 0.0000010290098 Inexact Rounded -rdvi399 divideint 538.10453 522934310 -> 0 -rmul399 multiply 538.10453 522934310 -> 2.81393321E+11 Inexact Rounded -rpow399 power 538.10453 522934310 -> ? Overflow Inexact Rounded -rrem399 remainder 538.10453 522934310 -> 538.10453 -rsub399 subtract 538.10453 522934310 -> -522933772 Inexact Rounded -radd400 add 880243.444E-750940977 -354.601578E-204943740 -> -3.54601578E-204943738 Inexact Rounded -rcom400 compare 880243.444E-750940977 -354.601578E-204943740 -> 1 -rdiv400 divide 880243.444E-750940977 -354.601578E-204943740 -> -2.48234497E-545997234 Inexact Rounded -rdvi400 divideint 880243.444E-750940977 -354.601578E-204943740 -> 0 -rmul400 multiply 880243.444E-750940977 -354.601578E-204943740 -> -3.12135714E-955884709 Inexact Rounded -rpow400 power 880243.444E-750940977 -4 -> ? Overflow Inexact Rounded -rrem400 remainder 880243.444E-750940977 -354.601578E-204943740 -> 8.80243444E-750940972 -rsub400 subtract 880243.444E-750940977 -354.601578E-204943740 -> 3.54601578E-204943738 Inexact Rounded -radd401 add 968370.780 6677268.73 -> 7645639.51 Rounded -rcom401 compare 968370.780 6677268.73 -> -1 -rdiv401 divide 968370.780 6677268.73 -> 0.145024982 Inexact Rounded -rdvi401 divideint 968370.780 6677268.73 -> 0 -rmul401 multiply 968370.780 6677268.73 -> 6.46607193E+12 Inexact Rounded -rpow401 power 968370.780 6677269 -> 3.29990931E+39970410 Inexact Rounded -rrem401 remainder 968370.780 6677268.73 -> 968370.780 -rsub401 subtract 968370.780 6677268.73 -> -5708897.95 Rounded -radd402 add -97.7474945 31248241.5 -> 31248143.8 Inexact Rounded -rcom402 compare -97.7474945 31248241.5 -> -1 -rdiv402 divide -97.7474945 31248241.5 -> -0.00000312809585 Inexact Rounded -rdvi402 divideint -97.7474945 31248241.5 -> 0 -rmul402 multiply -97.7474945 31248241.5 -> -3.05443731E+9 Inexact Rounded -rpow402 power -97.7474945 31248242 -> 2.90714257E+62187302 Inexact Rounded -rrem402 remainder -97.7474945 31248241.5 -> -97.7474945 -rsub402 subtract -97.7474945 31248241.5 -> -31248339.2 Inexact Rounded -radd403 add -187582786.E+369916952 957840435E+744365567 -> 9.57840435E+744365575 Inexact Rounded -rcom403 compare -187582786.E+369916952 957840435E+744365567 -> -1 -rdiv403 divide -187582786.E+369916952 957840435E+744365567 -> -1.95839285E-374448616 Inexact Rounded -rdvi403 divideint -187582786.E+369916952 957840435E+744365567 -> 0 -rmul403 multiply -187582786.E+369916952 957840435E+744365567 -> ? Inexact Overflow Rounded -rpow403 power -187582786.E+369916952 10 -> ? Overflow Inexact Rounded -rrem403 remainder -187582786.E+369916952 957840435E+744365567 -> -1.87582786E+369916960 -rsub403 subtract -187582786.E+369916952 957840435E+744365567 -> -9.57840435E+744365575 Inexact Rounded -radd404 add -328026144. -125499735. -> -453525879 -rcom404 compare -328026144. -125499735. -> -1 -rdiv404 divide -328026144. -125499735. -> 2.61375965 Inexact Rounded -rdvi404 divideint -328026144. -125499735. -> 2 -rmul404 multiply -328026144. -125499735. -> 4.11671941E+16 Inexact Rounded -rpow404 power -328026144. -125499735 -> ? Underflow Subnormal Inexact Rounded -rrem404 remainder -328026144. -125499735. -> -77026674 -rsub404 subtract -328026144. -125499735. -> -202526409 -radd405 add -99424150.2E-523662102 3712.35030 -> 3712.35030 Inexact Rounded -rcom405 compare -99424150.2E-523662102 3712.35030 -> -1 -rdiv405 divide -99424150.2E-523662102 3712.35030 -> -2.67819958E-523662098 Inexact Rounded -rdvi405 divideint -99424150.2E-523662102 3712.35030 -> 0 -rmul405 multiply -99424150.2E-523662102 3712.35030 -> -3.69097274E-523662091 Inexact Rounded -rpow405 power -99424150.2E-523662102 3712 -> ? Underflow Subnormal Inexact Rounded -rrem405 remainder -99424150.2E-523662102 3712.35030 -> -9.94241502E-523662095 -rsub405 subtract -99424150.2E-523662102 3712.35030 -> -3712.35030 Inexact Rounded -radd406 add 14838.0718 9489893.28E+830631266 -> 9.48989328E+830631272 Inexact Rounded -rcom406 compare 14838.0718 9489893.28E+830631266 -> -1 -rdiv406 divide 14838.0718 9489893.28E+830631266 -> 1.56356572E-830631269 Inexact Rounded -rdvi406 divideint 14838.0718 9489893.28E+830631266 -> 0 -rmul406 multiply 14838.0718 9489893.28E+830631266 -> 1.40811718E+830631277 Inexact Rounded -rpow406 power 14838.0718 9 -> 3.48656057E+37 Inexact Rounded -rrem406 remainder 14838.0718 9489893.28E+830631266 -> 14838.0718 -rsub406 subtract 14838.0718 9489893.28E+830631266 -> -9.48989328E+830631272 Inexact Rounded -radd407 add 71207472.8 -31835.0809 -> 71175637.7 Inexact Rounded -rcom407 compare 71207472.8 -31835.0809 -> 1 -rdiv407 divide 71207472.8 -31835.0809 -> -2236.76117 Inexact Rounded -rdvi407 divideint 71207472.8 -31835.0809 -> -2236 -rmul407 multiply 71207472.8 -31835.0809 -> -2.26689566E+12 Inexact Rounded -rpow407 power 71207472.8 -31835 -> 7.05333953E-249986 Inexact Rounded -rrem407 remainder 71207472.8 -31835.0809 -> 24231.9076 -rsub407 subtract 71207472.8 -31835.0809 -> 71239307.9 Inexact Rounded -radd408 add -20440.4394 -44.4064328E+511085806 -> -4.44064328E+511085807 Inexact Rounded -rcom408 compare -20440.4394 -44.4064328E+511085806 -> 1 -rdiv408 divide -20440.4394 -44.4064328E+511085806 -> 4.60303567E-511085804 Inexact Rounded -rdvi408 divideint -20440.4394 -44.4064328E+511085806 -> 0 -rmul408 multiply -20440.4394 -44.4064328E+511085806 -> 9.07686999E+511085811 Inexact Rounded -rpow408 power -20440.4394 -4 -> 5.7284759E-18 Inexact Rounded -rrem408 remainder -20440.4394 -44.4064328E+511085806 -> -20440.4394 -rsub408 subtract -20440.4394 -44.4064328E+511085806 -> 4.44064328E+511085807 Inexact Rounded -radd409 add -54.3684171E-807210192 1.04592973E-984041807 -> -5.43684171E-807210191 Inexact Rounded -rcom409 compare -54.3684171E-807210192 1.04592973E-984041807 -> -1 -rdiv409 divide -54.3684171E-807210192 1.04592973E-984041807 -> -5.19809463E+176831616 Inexact Rounded -rdvi409 divideint -54.3684171E-807210192 1.04592973E-984041807 -> ? Division_impossible -rmul409 multiply -54.3684171E-807210192 1.04592973E-984041807 -> ? Underflow Subnormal Inexact Rounded -rpow409 power -54.3684171E-807210192 1 -> -5.43684171E-807210191 -rrem409 remainder -54.3684171E-807210192 1.04592973E-984041807 -> ? Division_impossible -rsub409 subtract -54.3684171E-807210192 1.04592973E-984041807 -> -5.43684171E-807210191 Inexact Rounded -radd410 add 54310060.5E+948159739 274320701.E+205880484 -> 5.43100605E+948159746 Inexact Rounded -rcom410 compare 54310060.5E+948159739 274320701.E+205880484 -> 1 -rdiv410 divide 54310060.5E+948159739 274320701.E+205880484 -> 1.97980175E+742279254 Inexact Rounded -rdvi410 divideint 54310060.5E+948159739 274320701.E+205880484 -> ? Division_impossible -rmul410 multiply 54310060.5E+948159739 274320701.E+205880484 -> ? Inexact Overflow Rounded -rpow410 power 54310060.5E+948159739 3 -> ? Overflow Inexact Rounded -rrem410 remainder 54310060.5E+948159739 274320701.E+205880484 -> ? Division_impossible -rsub410 subtract 54310060.5E+948159739 274320701.E+205880484 -> 5.43100605E+948159746 Inexact Rounded -radd411 add -657.186702 426844.39 -> 426187.203 Inexact Rounded -rcom411 compare -657.186702 426844.39 -> -1 -rdiv411 divide -657.186702 426844.39 -> -0.00153964001 Inexact Rounded -rdvi411 divideint -657.186702 426844.39 -> 0 -rmul411 multiply -657.186702 426844.39 -> -280516457 Inexact Rounded -rpow411 power -657.186702 426844 -> 3.50000575E+1202713 Inexact Rounded -rrem411 remainder -657.186702 426844.39 -> -657.186702 -rsub411 subtract -657.186702 426844.39 -> -427501.577 Inexact Rounded -radd412 add -41593077.0 -688607.564 -> -42281684.6 Inexact Rounded -rcom412 compare -41593077.0 -688607.564 -> -1 -rdiv412 divide -41593077.0 -688607.564 -> 60.4017138 Inexact Rounded -rdvi412 divideint -41593077.0 -688607.564 -> 60 -rmul412 multiply -41593077.0 -688607.564 -> 2.86413074E+13 Inexact Rounded -rpow412 power -41593077.0 -688608 -> 1.4215075E-5246519 Inexact Rounded -rrem412 remainder -41593077.0 -688607.564 -> -276623.160 -rsub412 subtract -41593077.0 -688607.564 -> -40904469.4 Inexact Rounded -radd413 add -5786.38132 190556652.E+177045877 -> 1.90556652E+177045885 Inexact Rounded -rcom413 compare -5786.38132 190556652.E+177045877 -> -1 -rdiv413 divide -5786.38132 190556652.E+177045877 -> -3.03656748E-177045882 Inexact Rounded -rdvi413 divideint -5786.38132 190556652.E+177045877 -> 0 -rmul413 multiply -5786.38132 190556652.E+177045877 -> -1.10263345E+177045889 Inexact Rounded -rpow413 power -5786.38132 2 -> 33482208.8 Inexact Rounded -rrem413 remainder -5786.38132 190556652.E+177045877 -> -5786.38132 -rsub413 subtract -5786.38132 190556652.E+177045877 -> -1.90556652E+177045885 Inexact Rounded -radd414 add 737622.974 -241560693E+249506565 -> -2.41560693E+249506573 Inexact Rounded -rcom414 compare 737622.974 -241560693E+249506565 -> 1 -rdiv414 divide 737622.974 -241560693E+249506565 -> -3.05357202E-249506568 Inexact Rounded -rdvi414 divideint 737622.974 -241560693E+249506565 -> 0 -rmul414 multiply 737622.974 -241560693E+249506565 -> -1.78180717E+249506579 Inexact Rounded -rpow414 power 737622.974 -2 -> 1.83793916E-12 Inexact Rounded -rrem414 remainder 737622.974 -241560693E+249506565 -> 737622.974 -rsub414 subtract 737622.974 -241560693E+249506565 -> 2.41560693E+249506573 Inexact Rounded -radd415 add 5615373.52 -7.27583808E-949781048 -> 5615373.52 Inexact Rounded -rcom415 compare 5615373.52 -7.27583808E-949781048 -> 1 -rdiv415 divide 5615373.52 -7.27583808E-949781048 -> -7.71783739E+949781053 Inexact Rounded -rdvi415 divideint 5615373.52 -7.27583808E-949781048 -> ? Division_impossible -rmul415 multiply 5615373.52 -7.27583808E-949781048 -> -4.08565485E-949781041 Inexact Rounded -rpow415 power 5615373.52 -7 -> 5.6800146E-48 Inexact Rounded -rrem415 remainder 5615373.52 -7.27583808E-949781048 -> ? Division_impossible -rsub415 subtract 5615373.52 -7.27583808E-949781048 -> 5615373.52 Inexact Rounded -radd416 add 644136.179 -835708.103 -> -191571.924 -rcom416 compare 644136.179 -835708.103 -> 1 -rdiv416 divide 644136.179 -835708.103 -> -0.770766942 Inexact Rounded -rdvi416 divideint 644136.179 -835708.103 -> 0 -rmul416 multiply 644136.179 -835708.103 -> -5.38309824E+11 Inexact Rounded -rpow416 power 644136.179 -835708 -> 7.41936858E-4854610 Inexact Rounded -rrem416 remainder 644136.179 -835708.103 -> 644136.179 -rsub416 subtract 644136.179 -835708.103 -> 1479844.28 Inexact Rounded -radd417 add -307.419521E+466861843 -738689976.E-199032711 -> -3.07419521E+466861845 Inexact Rounded -rcom417 compare -307.419521E+466861843 -738689976.E-199032711 -> -1 -rdiv417 divide -307.419521E+466861843 -738689976.E-199032711 -> 4.16168529E+665894547 Inexact Rounded -rdvi417 divideint -307.419521E+466861843 -738689976.E-199032711 -> ? Division_impossible -rmul417 multiply -307.419521E+466861843 -738689976.E-199032711 -> 2.27087719E+267829143 Inexact Rounded -rpow417 power -307.419521E+466861843 -7 -> ? Underflow Subnormal Inexact Rounded -rrem417 remainder -307.419521E+466861843 -738689976.E-199032711 -> ? Division_impossible -rsub417 subtract -307.419521E+466861843 -738689976.E-199032711 -> -3.07419521E+466861845 Inexact Rounded -radd418 add -619642.130 -226740537.E-902590153 -> -619642.130 Inexact Rounded -rcom418 compare -619642.130 -226740537.E-902590153 -> -1 -rdiv418 divide -619642.130 -226740537.E-902590153 -> 2.73282466E+902590150 Inexact Rounded -rdvi418 divideint -619642.130 -226740537.E-902590153 -> ? Division_impossible -rmul418 multiply -619642.130 -226740537.E-902590153 -> 1.40497989E-902590139 Inexact Rounded -rpow418 power -619642.130 -2 -> 2.60446259E-12 Inexact Rounded -rrem418 remainder -619642.130 -226740537.E-902590153 -> ? Division_impossible -rsub418 subtract -619642.130 -226740537.E-902590153 -> -619642.130 Inexact Rounded -radd419 add -31068.7549 -3.41495042E+86001379 -> -3.41495042E+86001379 Inexact Rounded -rcom419 compare -31068.7549 -3.41495042E+86001379 -> 1 -rdiv419 divide -31068.7549 -3.41495042E+86001379 -> 9.09786412E-86001376 Inexact Rounded -rdvi419 divideint -31068.7549 -3.41495042E+86001379 -> 0 -rmul419 multiply -31068.7549 -3.41495042E+86001379 -> 1.06098258E+86001384 Inexact Rounded -rpow419 power -31068.7549 -3 -> -3.33448258E-14 Inexact Rounded -rrem419 remainder -31068.7549 -3.41495042E+86001379 -> -31068.7549 -rsub419 subtract -31068.7549 -3.41495042E+86001379 -> 3.41495042E+86001379 Inexact Rounded -radd420 add -68951173. -211804977.E-97318126 -> -68951173.0 Inexact Rounded -rcom420 compare -68951173. -211804977.E-97318126 -> -1 -rdiv420 divide -68951173. -211804977.E-97318126 -> 3.25540854E+97318125 Inexact Rounded -rdvi420 divideint -68951173. -211804977.E-97318126 -> ? Division_impossible -rmul420 multiply -68951173. -211804977.E-97318126 -> 1.46042016E-97318110 Inexact Rounded -rpow420 power -68951173. -2 -> 2.10337488E-16 Inexact Rounded -rrem420 remainder -68951173. -211804977.E-97318126 -> ? Division_impossible -rsub420 subtract -68951173. -211804977.E-97318126 -> -68951173.0 Inexact Rounded -radd421 add -4.09492571E-301749490 434.20199E-749390952 -> -4.09492571E-301749490 Inexact Rounded -rcom421 compare -4.09492571E-301749490 434.20199E-749390952 -> -1 -rdiv421 divide -4.09492571E-301749490 434.20199E-749390952 -> -9.43092341E+447641459 Inexact Rounded -rdvi421 divideint -4.09492571E-301749490 434.20199E-749390952 -> ? Division_impossible -rmul421 multiply -4.09492571E-301749490 434.20199E-749390952 -> ? Underflow Subnormal Inexact Rounded -rpow421 power -4.09492571E-301749490 4 -> ? Underflow Subnormal Inexact Rounded -rrem421 remainder -4.09492571E-301749490 434.20199E-749390952 -> ? Division_impossible -rsub421 subtract -4.09492571E-301749490 434.20199E-749390952 -> -4.09492571E-301749490 Inexact Rounded -radd422 add 3898.03188 -82572.615 -> -78674.5831 Inexact Rounded -rcom422 compare 3898.03188 -82572.615 -> 1 -rdiv422 divide 3898.03188 -82572.615 -> -0.0472073202 Inexact Rounded -rdvi422 divideint 3898.03188 -82572.615 -> 0 -rmul422 multiply 3898.03188 -82572.615 -> -321870686 Inexact Rounded -rpow422 power 3898.03188 -82573 -> 1.33010737E-296507 Inexact Rounded -rrem422 remainder 3898.03188 -82572.615 -> 3898.03188 -rsub422 subtract 3898.03188 -82572.615 -> 86470.6469 Inexact Rounded -radd423 add -1.7619356 -2546.64043 -> -2548.40237 Inexact Rounded -rcom423 compare -1.7619356 -2546.64043 -> 1 -rdiv423 divide -1.7619356 -2546.64043 -> 0.000691866657 Inexact Rounded -rdvi423 divideint -1.7619356 -2546.64043 -> 0 -rmul423 multiply -1.7619356 -2546.64043 -> 4487.01643 Inexact Rounded -rpow423 power -1.7619356 -2547 -> -2.90664557E-627 Inexact Rounded -rrem423 remainder -1.7619356 -2546.64043 -> -1.7619356 -rsub423 subtract -1.7619356 -2546.64043 -> 2544.87849 Inexact Rounded -radd424 add 59714.1968 29734388.6E-564525525 -> 59714.1968 Inexact Rounded -rcom424 compare 59714.1968 29734388.6E-564525525 -> 1 -rdiv424 divide 59714.1968 29734388.6E-564525525 -> 2.00825373E+564525522 Inexact Rounded -rdvi424 divideint 59714.1968 29734388.6E-564525525 -> ? Division_impossible -rmul424 multiply 59714.1968 29734388.6E-564525525 -> 1.77556513E-564525513 Inexact Rounded -rpow424 power 59714.1968 3 -> 2.12928005E+14 Inexact Rounded -rrem424 remainder 59714.1968 29734388.6E-564525525 -> ? Division_impossible -rsub424 subtract 59714.1968 29734388.6E-564525525 -> 59714.1968 Inexact Rounded -radd425 add 6.88891136E-935467395 -785049.562E-741671442 -> -7.85049562E-741671437 Inexact Rounded -rcom425 compare 6.88891136E-935467395 -785049.562E-741671442 -> 1 -rdiv425 divide 6.88891136E-935467395 -785049.562E-741671442 -> -8.77512923E-193795959 Inexact Rounded -rdvi425 divideint 6.88891136E-935467395 -785049.562E-741671442 -> 0 -rmul425 multiply 6.88891136E-935467395 -785049.562E-741671442 -> ? Underflow Subnormal Inexact Rounded -rpow425 power 6.88891136E-935467395 -8 -> ? Overflow Inexact Rounded -rrem425 remainder 6.88891136E-935467395 -785049.562E-741671442 -> 6.88891136E-935467395 -rsub425 subtract 6.88891136E-935467395 -785049.562E-741671442 -> 7.85049562E-741671437 Inexact Rounded -radd426 add 975566251 -519.858530 -> 975565731 Inexact Rounded -rcom426 compare 975566251 -519.858530 -> 1 -rdiv426 divide 975566251 -519.858530 -> -1876599.49 Inexact Rounded -rdvi426 divideint 975566251 -519.858530 -> -1876599 -rmul426 multiply 975566251 -519.858530 -> -5.07156437E+11 Inexact Rounded -rpow426 power 975566251 -520 -> 3.859053E-4675 Inexact Rounded -rrem426 remainder 975566251 -519.858530 -> 253.460530 -rsub426 subtract 975566251 -519.858530 -> 975566771 Inexact Rounded -radd427 add 307401954 -231481582. -> 75920372 -rcom427 compare 307401954 -231481582. -> 1 -rdiv427 divide 307401954 -231481582. -> -1.32797586 Inexact Rounded -rdvi427 divideint 307401954 -231481582. -> -1 -rmul427 multiply 307401954 -231481582. -> -7.11578906E+16 Inexact Rounded -rpow427 power 307401954 -231481582 -> ? Underflow Subnormal Inexact Rounded -rrem427 remainder 307401954 -231481582. -> 75920372 -rsub427 subtract 307401954 -231481582. -> 538883536 -radd428 add 2237645.48E+992947388 -60618055.3E-857316706 -> 2.23764548E+992947394 Inexact Rounded -rcom428 compare 2237645.48E+992947388 -60618055.3E-857316706 -> 1 -rdiv428 divide 2237645.48E+992947388 -60618055.3E-857316706 -> ? Inexact Overflow Rounded -rdvi428 divideint 2237645.48E+992947388 -60618055.3E-857316706 -> ? Division_impossible -rmul428 multiply 2237645.48E+992947388 -60618055.3E-857316706 -> -1.35641717E+135630696 Inexact Rounded -rpow428 power 2237645.48E+992947388 -6 -> ? Underflow Subnormal Inexact Rounded -rrem428 remainder 2237645.48E+992947388 -60618055.3E-857316706 -> ? Division_impossible -rsub428 subtract 2237645.48E+992947388 -60618055.3E-857316706 -> 2.23764548E+992947394 Inexact Rounded -radd429 add -403903.851 35.5049687E-72095155 -> -403903.851 Inexact Rounded -rcom429 compare -403903.851 35.5049687E-72095155 -> -1 -rdiv429 divide -403903.851 35.5049687E-72095155 -> -1.1375981E+72095159 Inexact Rounded -rdvi429 divideint -403903.851 35.5049687E-72095155 -> ? Division_impossible -rmul429 multiply -403903.851 35.5049687E-72095155 -> -1.43405936E-72095148 Inexact Rounded -rpow429 power -403903.851 4 -> 2.66141117E+22 Inexact Rounded -rrem429 remainder -403903.851 35.5049687E-72095155 -> ? Division_impossible -rsub429 subtract -403903.851 35.5049687E-72095155 -> -403903.851 Inexact Rounded -radd430 add 6.48674979 -621732.532E+422575800 -> -6.21732532E+422575805 Inexact Rounded -rcom430 compare 6.48674979 -621732.532E+422575800 -> 1 -rdiv430 divide 6.48674979 -621732.532E+422575800 -> -1.04333447E-422575805 Inexact Rounded -rdvi430 divideint 6.48674979 -621732.532E+422575800 -> 0 -rmul430 multiply 6.48674979 -621732.532E+422575800 -> -4.03302337E+422575806 Inexact Rounded -rpow430 power 6.48674979 -6 -> 0.0000134226146 Inexact Rounded -rrem430 remainder 6.48674979 -621732.532E+422575800 -> 6.48674979 -rsub430 subtract 6.48674979 -621732.532E+422575800 -> 6.21732532E+422575805 Inexact Rounded -radd431 add -31401.9418 36.3960679 -> -31365.5457 Inexact Rounded -rcom431 compare -31401.9418 36.3960679 -> -1 -rdiv431 divide -31401.9418 36.3960679 -> -862.783911 Inexact Rounded -rdvi431 divideint -31401.9418 36.3960679 -> -862 -rmul431 multiply -31401.9418 36.3960679 -> -1142907.21 Inexact Rounded -rpow431 power -31401.9418 36 -> 7.77023505E+161 Inexact Rounded -rrem431 remainder -31401.9418 36.3960679 -> -28.5312702 -rsub431 subtract -31401.9418 36.3960679 -> -31438.3379 Inexact Rounded -radd432 add 31345321.1 51.5482191 -> 31345372.6 Inexact Rounded -rcom432 compare 31345321.1 51.5482191 -> 1 -rdiv432 divide 31345321.1 51.5482191 -> 608077.673 Inexact Rounded -rdvi432 divideint 31345321.1 51.5482191 -> 608077 -rmul432 multiply 31345321.1 51.5482191 -> 1.61579548E+9 Inexact Rounded -rpow432 power 31345321.1 52 -> 6.32385059E+389 Inexact Rounded -rrem432 remainder 31345321.1 51.5482191 -> 34.6743293 -rsub432 subtract 31345321.1 51.5482191 -> 31345269.6 Inexact Rounded -radd433 add -64.172844 -28506227.2E-767965800 -> -64.1728440 Inexact Rounded -rcom433 compare -64.172844 -28506227.2E-767965800 -> -1 -rdiv433 divide -64.172844 -28506227.2E-767965800 -> 2.25118686E+767965794 Inexact Rounded -rdvi433 divideint -64.172844 -28506227.2E-767965800 -> ? Division_impossible -rmul433 multiply -64.172844 -28506227.2E-767965800 -> 1.82932567E-767965791 Inexact Rounded -rpow433 power -64.172844 -3 -> -0.00000378395654 Inexact Rounded -rrem433 remainder -64.172844 -28506227.2E-767965800 -> ? Division_impossible -rsub433 subtract -64.172844 -28506227.2E-767965800 -> -64.1728440 Inexact Rounded -radd434 add 70437.1551 -62916.1233 -> 7521.0318 -rcom434 compare 70437.1551 -62916.1233 -> 1 -rdiv434 divide 70437.1551 -62916.1233 -> -1.11954061 Inexact Rounded -rdvi434 divideint 70437.1551 -62916.1233 -> -1 -rmul434 multiply 70437.1551 -62916.1233 -> -4.43163274E+9 Inexact Rounded -rpow434 power 70437.1551 -62916 -> 5.0294506E-305005 Inexact Rounded -rrem434 remainder 70437.1551 -62916.1233 -> 7521.0318 -rsub434 subtract 70437.1551 -62916.1233 -> 133353.278 Inexact Rounded -radd435 add 916260164 -58.4017325 -> 916260106 Inexact Rounded -rcom435 compare 916260164 -58.4017325 -> 1 -rdiv435 divide 916260164 -58.4017325 -> -15688920.9 Inexact Rounded -rdvi435 divideint 916260164 -58.4017325 -> -15688920 -rmul435 multiply 916260164 -58.4017325 -> -5.35111810E+10 Inexact Rounded -rpow435 power 916260164 -58 -> 1.59554587E-520 Inexact Rounded -rrem435 remainder 916260164 -58.4017325 -> 54.9461000 -rsub435 subtract 916260164 -58.4017325 -> 916260222 Inexact Rounded -radd436 add 19889085.3E-46816480 1581683.94 -> 1581683.94 Inexact Rounded -rcom436 compare 19889085.3E-46816480 1581683.94 -> -1 -rdiv436 divide 19889085.3E-46816480 1581683.94 -> 1.25746268E-46816479 Inexact Rounded -rdvi436 divideint 19889085.3E-46816480 1581683.94 -> 0 -rmul436 multiply 19889085.3E-46816480 1581683.94 -> 3.14582468E-46816467 Inexact Rounded -rpow436 power 19889085.3E-46816480 1581684 -> ? Underflow Subnormal Inexact Rounded -rrem436 remainder 19889085.3E-46816480 1581683.94 -> 1.98890853E-46816473 -rsub436 subtract 19889085.3E-46816480 1581683.94 -> -1581683.94 Inexact Rounded -radd437 add -56312.3383 789.466064 -> -55522.8722 Inexact Rounded -rcom437 compare -56312.3383 789.466064 -> -1 -rdiv437 divide -56312.3383 789.466064 -> -71.3296503 Inexact Rounded -rdvi437 divideint -56312.3383 789.466064 -> -71 -rmul437 multiply -56312.3383 789.466064 -> -44456680.1 Inexact Rounded -rpow437 power -56312.3383 789 -> -1.68348724E+3748 Inexact Rounded -rrem437 remainder -56312.3383 789.466064 -> -260.247756 -rsub437 subtract -56312.3383 789.466064 -> -57101.8044 Inexact Rounded -radd438 add 183442.849 -925876106 -> -925692663 Inexact Rounded -rcom438 compare 183442.849 -925876106 -> 1 -rdiv438 divide 183442.849 -925876106 -> -0.000198128937 Inexact Rounded -rdvi438 divideint 183442.849 -925876106 -> 0 -rmul438 multiply 183442.849 -925876106 -> -1.69845351E+14 Inexact Rounded -rpow438 power 183442.849 -925876106 -> ? Underflow Subnormal Inexact Rounded -rrem438 remainder 183442.849 -925876106 -> 183442.849 -rsub438 subtract 183442.849 -925876106 -> 926059549 Inexact Rounded -radd439 add 971113.655E-695540249 -419351120E-977743823 -> 9.71113655E-695540244 Inexact Rounded -rcom439 compare 971113.655E-695540249 -419351120E-977743823 -> 1 -rdiv439 divide 971113.655E-695540249 -419351120E-977743823 -> -2.3157531E+282203571 Inexact Rounded -rdvi439 divideint 971113.655E-695540249 -419351120E-977743823 -> ? Division_impossible -rmul439 multiply 971113.655E-695540249 -419351120E-977743823 -> ? Underflow Subnormal Inexact Rounded -rpow439 power 971113.655E-695540249 -4 -> ? Overflow Inexact Rounded -rrem439 remainder 971113.655E-695540249 -419351120E-977743823 -> ? Division_impossible -rsub439 subtract 971113.655E-695540249 -419351120E-977743823 -> 9.71113655E-695540244 Inexact Rounded -radd440 add 859658551. 72338.2054 -> 859730889 Inexact Rounded -rcom440 compare 859658551. 72338.2054 -> 1 -rdiv440 divide 859658551. 72338.2054 -> 11883.88 Inexact Rounded -rdvi440 divideint 859658551. 72338.2054 -> 11883 -rmul440 multiply 859658551. 72338.2054 -> 6.21861568E+13 Inexact Rounded -rpow440 power 859658551. 72338 -> 1.8762045E+646291 Inexact Rounded -rrem440 remainder 859658551. 72338.2054 -> 63656.2318 -rsub440 subtract 859658551. 72338.2054 -> 859586213 Inexact Rounded -radd441 add -3.86446630E+426816068 -664.534737 -> -3.86446630E+426816068 Inexact Rounded -rcom441 compare -3.86446630E+426816068 -664.534737 -> -1 -rdiv441 divide -3.86446630E+426816068 -664.534737 -> 5.81529615E+426816065 Inexact Rounded -rdvi441 divideint -3.86446630E+426816068 -664.534737 -> ? Division_impossible -rmul441 multiply -3.86446630E+426816068 -664.534737 -> 2.56807210E+426816071 Inexact Rounded -rpow441 power -3.86446630E+426816068 -665 -> ? Underflow Subnormal Inexact Rounded -rrem441 remainder -3.86446630E+426816068 -664.534737 -> ? Division_impossible -rsub441 subtract -3.86446630E+426816068 -664.534737 -> -3.86446630E+426816068 Inexact Rounded -radd442 add -969.881818 31170.8555 -> 30200.9737 Inexact Rounded -rcom442 compare -969.881818 31170.8555 -> -1 -rdiv442 divide -969.881818 31170.8555 -> -0.0311150208 Inexact Rounded -rdvi442 divideint -969.881818 31170.8555 -> 0 -rmul442 multiply -969.881818 31170.8555 -> -30232046.0 Inexact Rounded -rpow442 power -969.881818 31171 -> -1.02865894E+93099 Inexact Rounded -rrem442 remainder -969.881818 31170.8555 -> -969.881818 -rsub442 subtract -969.881818 31170.8555 -> -32140.7373 Inexact Rounded -radd443 add 7980537.27 85.4040512 -> 7980622.67 Inexact Rounded -rcom443 compare 7980537.27 85.4040512 -> 1 -rdiv443 divide 7980537.27 85.4040512 -> 93444.4814 Inexact Rounded -rdvi443 divideint 7980537.27 85.4040512 -> 93444 -rmul443 multiply 7980537.27 85.4040512 -> 681570214 Inexact Rounded -rpow443 power 7980537.27 85 -> 4.70685763E+586 Inexact Rounded -rrem443 remainder 7980537.27 85.4040512 -> 41.1096672 -rsub443 subtract 7980537.27 85.4040512 -> 7980451.87 Inexact Rounded -radd444 add -114609916. 7525.14981 -> -114602391 Inexact Rounded -rcom444 compare -114609916. 7525.14981 -> -1 -rdiv444 divide -114609916. 7525.14981 -> -15230.2504 Inexact Rounded -rdvi444 divideint -114609916. 7525.14981 -> -15230 -rmul444 multiply -114609916. 7525.14981 -> -8.62456788E+11 Inexact Rounded -rpow444 power -114609916. 7525 -> -4.43620445E+60645 Inexact Rounded -rrem444 remainder -114609916. 7525.14981 -> -1884.39370 -rsub444 subtract -114609916. 7525.14981 -> -114617441 Inexact Rounded -radd445 add 8.43404682E-500572568 474526719 -> 474526719 Inexact Rounded -rcom445 compare 8.43404682E-500572568 474526719 -> -1 -rdiv445 divide 8.43404682E-500572568 474526719 -> 1.77735973E-500572576 Inexact Rounded -rdvi445 divideint 8.43404682E-500572568 474526719 -> 0 -rmul445 multiply 8.43404682E-500572568 474526719 -> 4.00218057E-500572559 Inexact Rounded -rpow445 power 8.43404682E-500572568 474526719 -> ? Underflow Subnormal Inexact Rounded -rrem445 remainder 8.43404682E-500572568 474526719 -> 8.43404682E-500572568 -rsub445 subtract 8.43404682E-500572568 474526719 -> -474526719 Inexact Rounded -radd446 add 188006433 2260.17037E-978192525 -> 188006433 Inexact Rounded -rcom446 compare 188006433 2260.17037E-978192525 -> 1 -rdiv446 divide 188006433 2260.17037E-978192525 -> 8.31824165E+978192529 Inexact Rounded -rdvi446 divideint 188006433 2260.17037E-978192525 -> ? Division_impossible -rmul446 multiply 188006433 2260.17037E-978192525 -> 4.24926569E-978192514 Inexact Rounded -rpow446 power 188006433 2 -> 3.53464188E+16 Inexact Rounded -rrem446 remainder 188006433 2260.17037E-978192525 -> ? Division_impossible -rsub446 subtract 188006433 2260.17037E-978192525 -> 188006433 Inexact Rounded -radd447 add -9.95836312 -866466703 -> -866466713 Inexact Rounded -rcom447 compare -9.95836312 -866466703 -> 1 -rdiv447 divide -9.95836312 -866466703 -> 1.14930707E-8 Inexact Rounded -rdvi447 divideint -9.95836312 -866466703 -> 0 -rmul447 multiply -9.95836312 -866466703 -> 8.62859006E+9 Inexact Rounded -rpow447 power -9.95836312 -866466703 -> -6.71744369E-864896630 Inexact Rounded -rrem447 remainder -9.95836312 -866466703 -> -9.95836312 -rsub447 subtract -9.95836312 -866466703 -> 866466693 Inexact Rounded -radd448 add 80919339.2E-967231586 219.824266 -> 219.824266 Inexact Rounded -rcom448 compare 80919339.2E-967231586 219.824266 -> -1 -rdiv448 divide 80919339.2E-967231586 219.824266 -> 3.6810922E-967231581 Inexact Rounded -rdvi448 divideint 80919339.2E-967231586 219.824266 -> 0 -rmul448 multiply 80919339.2E-967231586 219.824266 -> 1.77880343E-967231576 Inexact Rounded -rpow448 power 80919339.2E-967231586 220 -> ? Underflow Subnormal Inexact Rounded -rrem448 remainder 80919339.2E-967231586 219.824266 -> 8.09193392E-967231579 -rsub448 subtract 80919339.2E-967231586 219.824266 -> -219.824266 Inexact Rounded -radd449 add 159579.444 -89827.5229 -> 69751.921 Inexact Rounded -rcom449 compare 159579.444 -89827.5229 -> 1 -rdiv449 divide 159579.444 -89827.5229 -> -1.77650946 Inexact Rounded -rdvi449 divideint 159579.444 -89827.5229 -> -1 -rmul449 multiply 159579.444 -89827.5229 -> -1.43346262E+10 Inexact Rounded -rpow449 power 159579.444 -89828 -> 9.6995585E-467374 Inexact Rounded -rrem449 remainder 159579.444 -89827.5229 -> 69751.9211 -rsub449 subtract 159579.444 -89827.5229 -> 249406.967 Inexact Rounded -radd450 add -4.54000153 6966333.74 -> 6966329.20 Inexact Rounded -rcom450 compare -4.54000153 6966333.74 -> -1 -rdiv450 divide -4.54000153 6966333.74 -> -6.51706005E-7 Inexact Rounded -rdvi450 divideint -4.54000153 6966333.74 -> 0 -rmul450 multiply -4.54000153 6966333.74 -> -31627165.8 Inexact Rounded -rpow450 power -4.54000153 6966334 -> 3.52568913E+4577271 Inexact Rounded -rrem450 remainder -4.54000153 6966333.74 -> -4.54000153 -rsub450 subtract -4.54000153 6966333.74 -> -6966338.28 Inexact Rounded -radd451 add 28701538.7E-391015649 -920999192. -> -920999192 Inexact Rounded -rcom451 compare 28701538.7E-391015649 -920999192. -> 1 -rdiv451 divide 28701538.7E-391015649 -920999192. -> -3.11634787E-391015651 Inexact Rounded -rdvi451 divideint 28701538.7E-391015649 -920999192. -> 0 -rmul451 multiply 28701538.7E-391015649 -920999192. -> -2.64340940E-391015633 Inexact Rounded -rpow451 power 28701538.7E-391015649 -920999192 -> ? Overflow Inexact Rounded -rrem451 remainder 28701538.7E-391015649 -920999192. -> 2.87015387E-391015642 -rsub451 subtract 28701538.7E-391015649 -920999192. -> 920999192 Inexact Rounded -radd452 add -361382575. -7976.15286E+898491169 -> -7.97615286E+898491172 Inexact Rounded -rcom452 compare -361382575. -7976.15286E+898491169 -> 1 -rdiv452 divide -361382575. -7976.15286E+898491169 -> 4.53078798E-898491165 Inexact Rounded -rdvi452 divideint -361382575. -7976.15286E+898491169 -> 0 -rmul452 multiply -361382575. -7976.15286E+898491169 -> 2.88244266E+898491181 Inexact Rounded -rpow452 power -361382575. -8 -> 3.43765537E-69 Inexact Rounded -rrem452 remainder -361382575. -7976.15286E+898491169 -> -361382575 -rsub452 subtract -361382575. -7976.15286E+898491169 -> 7.97615286E+898491172 Inexact Rounded -radd453 add 7021805.61 1222952.83 -> 8244758.44 -rcom453 compare 7021805.61 1222952.83 -> 1 -rdiv453 divide 7021805.61 1222952.83 -> 5.74168148 Inexact Rounded -rdvi453 divideint 7021805.61 1222952.83 -> 5 -rmul453 multiply 7021805.61 1222952.83 -> 8.58733704E+12 Inexact Rounded -rpow453 power 7021805.61 1222953 -> 1.26540553E+8372885 Inexact Rounded -rrem453 remainder 7021805.61 1222952.83 -> 907041.46 -rsub453 subtract 7021805.61 1222952.83 -> 5798852.78 -radd454 add -40.4811667 -79655.5635 -> -79696.0447 Inexact Rounded -rcom454 compare -40.4811667 -79655.5635 -> 1 -rdiv454 divide -40.4811667 -79655.5635 -> 0.000508202628 Inexact Rounded -rdvi454 divideint -40.4811667 -79655.5635 -> 0 -rmul454 multiply -40.4811667 -79655.5635 -> 3224550.14 Inexact Rounded -rpow454 power -40.4811667 -79656 -> 4.50174275E-128028 Inexact Rounded -rrem454 remainder -40.4811667 -79655.5635 -> -40.4811667 -rsub454 subtract -40.4811667 -79655.5635 -> 79615.0823 Inexact Rounded -radd455 add -8755674.38E+117168177 148.903404 -> -8.75567438E+117168183 Inexact Rounded -rcom455 compare -8755674.38E+117168177 148.903404 -> -1 -rdiv455 divide -8755674.38E+117168177 148.903404 -> -5.88010357E+117168181 Inexact Rounded -rdvi455 divideint -8755674.38E+117168177 148.903404 -> ? Division_impossible -rmul455 multiply -8755674.38E+117168177 148.903404 -> -1.30374972E+117168186 Inexact Rounded -rpow455 power -8755674.38E+117168177 149 -> ? Overflow Inexact Rounded -rrem455 remainder -8755674.38E+117168177 148.903404 -> ? Division_impossible -rsub455 subtract -8755674.38E+117168177 148.903404 -> -8.75567438E+117168183 Inexact Rounded -radd456 add 34.5329781E+382829392 -45.2177309 -> 3.45329781E+382829393 Inexact Rounded -rcom456 compare 34.5329781E+382829392 -45.2177309 -> 1 -rdiv456 divide 34.5329781E+382829392 -45.2177309 -> -7.63704357E+382829391 Inexact Rounded -rdvi456 divideint 34.5329781E+382829392 -45.2177309 -> ? Division_impossible -rmul456 multiply 34.5329781E+382829392 -45.2177309 -> -1.56150291E+382829395 Inexact Rounded -rpow456 power 34.5329781E+382829392 -45 -> ? Underflow Subnormal Inexact Rounded -rrem456 remainder 34.5329781E+382829392 -45.2177309 -> ? Division_impossible -rsub456 subtract 34.5329781E+382829392 -45.2177309 -> 3.45329781E+382829393 Inexact Rounded -radd457 add -37958476.0 584367.935 -> -37374108.1 Inexact Rounded -rcom457 compare -37958476.0 584367.935 -> -1 -rdiv457 divide -37958476.0 584367.935 -> -64.9564662 Inexact Rounded -rdvi457 divideint -37958476.0 584367.935 -> -64 -rmul457 multiply -37958476.0 584367.935 -> -2.21817162E+13 Inexact Rounded -rpow457 power -37958476.0 584368 -> 3.20538268E+4429105 Inexact Rounded -rrem457 remainder -37958476.0 584367.935 -> -558928.160 -rsub457 subtract -37958476.0 584367.935 -> -38542843.9 Inexact Rounded -radd458 add 495233.553E-414152215 62352759.2 -> 62352759.2 Inexact Rounded -rcom458 compare 495233.553E-414152215 62352759.2 -> -1 -rdiv458 divide 495233.553E-414152215 62352759.2 -> 7.94244809E-414152218 Inexact Rounded -rdvi458 divideint 495233.553E-414152215 62352759.2 -> 0 -rmul458 multiply 495233.553E-414152215 62352759.2 -> 3.08791785E-414152202 Inexact Rounded -rpow458 power 495233.553E-414152215 62352759 -> ? Underflow Subnormal Inexact Rounded -rrem458 remainder 495233.553E-414152215 62352759.2 -> 4.95233553E-414152210 -rsub458 subtract 495233.553E-414152215 62352759.2 -> -62352759.2 Inexact Rounded -radd459 add -502343060 -96828.994 -> -502439889 Inexact Rounded -rcom459 compare -502343060 -96828.994 -> -1 -rdiv459 divide -502343060 -96828.994 -> 5187.9405 Inexact Rounded -rdvi459 divideint -502343060 -96828.994 -> 5187 -rmul459 multiply -502343060 -96828.994 -> 4.86413731E+13 Inexact Rounded -rpow459 power -502343060 -96829 -> -6.78602119E-842510 Inexact Rounded -rrem459 remainder -502343060 -96828.994 -> -91068.122 -rsub459 subtract -502343060 -96828.994 -> -502246231 Inexact Rounded -radd460 add -22.439639E+916362878 -39.4037681 -> -2.24396390E+916362879 Inexact Rounded -rcom460 compare -22.439639E+916362878 -39.4037681 -> -1 -rdiv460 divide -22.439639E+916362878 -39.4037681 -> 5.69479521E+916362877 Inexact Rounded -rdvi460 divideint -22.439639E+916362878 -39.4037681 -> ? Division_impossible -rmul460 multiply -22.439639E+916362878 -39.4037681 -> 8.84206331E+916362880 Inexact Rounded -rpow460 power -22.439639E+916362878 -39 -> ? Underflow Subnormal Inexact Rounded -rrem460 remainder -22.439639E+916362878 -39.4037681 -> ? Division_impossible -rsub460 subtract -22.439639E+916362878 -39.4037681 -> -2.24396390E+916362879 Inexact Rounded -radd461 add 718180.587E-957473722 1.66223443 -> 1.66223443 Inexact Rounded -rcom461 compare 718180.587E-957473722 1.66223443 -> -1 -rdiv461 divide 718180.587E-957473722 1.66223443 -> 4.3205734E-957473717 Inexact Rounded -rdvi461 divideint 718180.587E-957473722 1.66223443 -> 0 -rmul461 multiply 718180.587E-957473722 1.66223443 -> 1.19378450E-957473716 Inexact Rounded -rpow461 power 718180.587E-957473722 2 -> ? Underflow Subnormal Inexact Rounded -rrem461 remainder 718180.587E-957473722 1.66223443 -> 7.18180587E-957473717 -rsub461 subtract 718180.587E-957473722 1.66223443 -> -1.66223443 Inexact Rounded -radd462 add -51592.2698 -713885.741 -> -765478.011 Inexact Rounded -rcom462 compare -51592.2698 -713885.741 -> 1 -rdiv462 divide -51592.2698 -713885.741 -> 0.072269646 Inexact Rounded -rdvi462 divideint -51592.2698 -713885.741 -> 0 -rmul462 multiply -51592.2698 -713885.741 -> 3.68309858E+10 Inexact Rounded -rpow462 power -51592.2698 -713886 -> 6.3857692E-3364249 Inexact Rounded -rrem462 remainder -51592.2698 -713885.741 -> -51592.2698 -rsub462 subtract -51592.2698 -713885.741 -> 662293.471 Inexact Rounded -radd463 add 51.2279848E+80439745 207.55925E+865165070 -> 2.07559250E+865165072 Inexact Rounded -rcom463 compare 51.2279848E+80439745 207.55925E+865165070 -> -1 -rdiv463 divide 51.2279848E+80439745 207.55925E+865165070 -> 2.46811379E-784725326 Inexact Rounded -rdvi463 divideint 51.2279848E+80439745 207.55925E+865165070 -> 0 -rmul463 multiply 51.2279848E+80439745 207.55925E+865165070 -> 1.06328421E+945604819 Inexact Rounded -rpow463 power 51.2279848E+80439745 2 -> 2.62430643E+160879493 Inexact Rounded -rrem463 remainder 51.2279848E+80439745 207.55925E+865165070 -> 5.12279848E+80439746 -rsub463 subtract 51.2279848E+80439745 207.55925E+865165070 -> -2.07559250E+865165072 Inexact Rounded -radd464 add -5983.23468 -39.9544513 -> -6023.18913 Inexact Rounded -rcom464 compare -5983.23468 -39.9544513 -> -1 -rdiv464 divide -5983.23468 -39.9544513 -> 149.751392 Inexact Rounded -rdvi464 divideint -5983.23468 -39.9544513 -> 149 -rmul464 multiply -5983.23468 -39.9544513 -> 239056.859 Inexact Rounded -rpow464 power -5983.23468 -40 -> 8.36678291E-152 Inexact Rounded -rrem464 remainder -5983.23468 -39.9544513 -> -30.0214363 -rsub464 subtract -5983.23468 -39.9544513 -> -5943.28023 Inexact Rounded -radd465 add 921639332.E-917542963 287325.891 -> 287325.891 Inexact Rounded -rcom465 compare 921639332.E-917542963 287325.891 -> -1 -rdiv465 divide 921639332.E-917542963 287325.891 -> 3.20764456E-917542960 Inexact Rounded -rdvi465 divideint 921639332.E-917542963 287325.891 -> 0 -rmul465 multiply 921639332.E-917542963 287325.891 -> 2.64810842E-917542949 Inexact Rounded -rpow465 power 921639332.E-917542963 287326 -> ? Underflow Subnormal Inexact Rounded -rrem465 remainder 921639332.E-917542963 287325.891 -> 9.21639332E-917542955 -rsub465 subtract 921639332.E-917542963 287325.891 -> -287325.891 Inexact Rounded -radd466 add 91095916.8E-787312969 -58643.418E+58189880 -> -5.86434180E+58189884 Inexact Rounded -rcom466 compare 91095916.8E-787312969 -58643.418E+58189880 -> 1 -rdiv466 divide 91095916.8E-787312969 -58643.418E+58189880 -> -1.55338689E-845502846 Inexact Rounded -rdvi466 divideint 91095916.8E-787312969 -58643.418E+58189880 -> 0 -rmul466 multiply 91095916.8E-787312969 -58643.418E+58189880 -> -5.34217593E-729123077 Inexact Rounded -rpow466 power 91095916.8E-787312969 -6 -> ? Overflow Inexact Rounded -rrem466 remainder 91095916.8E-787312969 -58643.418E+58189880 -> 9.10959168E-787312962 -rsub466 subtract 91095916.8E-787312969 -58643.418E+58189880 -> 5.86434180E+58189884 Inexact Rounded -radd467 add -6410.5555 -234964259 -> -234970670 Inexact Rounded -rcom467 compare -6410.5555 -234964259 -> 1 -rdiv467 divide -6410.5555 -234964259 -> 0.000027283109 Inexact Rounded -rdvi467 divideint -6410.5555 -234964259 -> 0 -rmul467 multiply -6410.5555 -234964259 -> 1.50625142E+12 Inexact Rounded -rpow467 power -6410.5555 -234964259 -> -1.27064467E-894484419 Inexact Rounded -rrem467 remainder -6410.5555 -234964259 -> -6410.5555 -rsub467 subtract -6410.5555 -234964259 -> 234957848 Inexact Rounded -radd468 add -5.32711606 -8447286.21 -> -8447291.54 Inexact Rounded -rcom468 compare -5.32711606 -8447286.21 -> 1 -rdiv468 divide -5.32711606 -8447286.21 -> 6.30630468E-7 Inexact Rounded -rdvi468 divideint -5.32711606 -8447286.21 -> 0 -rmul468 multiply -5.32711606 -8447286.21 -> 44999674.0 Inexact Rounded -rpow468 power -5.32711606 -8447286 -> 9.09138728E-6136888 Inexact Rounded -rrem468 remainder -5.32711606 -8447286.21 -> -5.32711606 -rsub468 subtract -5.32711606 -8447286.21 -> 8447280.88 Inexact Rounded -radd469 add -82272171.8 -776.238587E-372690416 -> -82272171.8 Inexact Rounded -rcom469 compare -82272171.8 -776.238587E-372690416 -> -1 -rdiv469 divide -82272171.8 -776.238587E-372690416 -> 1.05988253E+372690421 Inexact Rounded -rdvi469 divideint -82272171.8 -776.238587E-372690416 -> ? Division_impossible -rmul469 multiply -82272171.8 -776.238587E-372690416 -> 6.38628344E-372690406 Inexact Rounded -rpow469 power -82272171.8 -8 -> 4.76404994E-64 Inexact Rounded -rrem469 remainder -82272171.8 -776.238587E-372690416 -> ? Division_impossible -rsub469 subtract -82272171.8 -776.238587E-372690416 -> -82272171.8 Inexact Rounded -radd470 add 412411244.E-774339264 866452.465 -> 866452.465 Inexact Rounded -rcom470 compare 412411244.E-774339264 866452.465 -> -1 -rdiv470 divide 412411244.E-774339264 866452.465 -> 4.75976768E-774339262 Inexact Rounded -rdvi470 divideint 412411244.E-774339264 866452.465 -> 0 -rmul470 multiply 412411244.E-774339264 866452.465 -> 3.57334739E-774339250 Inexact Rounded -rpow470 power 412411244.E-774339264 866452 -> ? Underflow Subnormal Inexact Rounded -rrem470 remainder 412411244.E-774339264 866452.465 -> 4.12411244E-774339256 -rsub470 subtract 412411244.E-774339264 866452.465 -> -866452.465 Inexact Rounded -radd471 add -103.474598 -3.01660661E-446661257 -> -103.474598 Inexact Rounded -rcom471 compare -103.474598 -3.01660661E-446661257 -> -1 -rdiv471 divide -103.474598 -3.01660661E-446661257 -> 3.43016546E+446661258 Inexact Rounded -rdvi471 divideint -103.474598 -3.01660661E-446661257 -> ? Division_impossible -rmul471 multiply -103.474598 -3.01660661E-446661257 -> 3.12142156E-446661255 Inexact Rounded -rpow471 power -103.474598 -3 -> -9.02607123E-7 Inexact Rounded -rrem471 remainder -103.474598 -3.01660661E-446661257 -> ? Division_impossible -rsub471 subtract -103.474598 -3.01660661E-446661257 -> -103.474598 Inexact Rounded -radd472 add -31027.8323 -475378186. -> -475409214 Inexact Rounded -rcom472 compare -31027.8323 -475378186. -> 1 -rdiv472 divide -31027.8323 -475378186. -> 0.0000652697856 Inexact Rounded -rdvi472 divideint -31027.8323 -475378186. -> 0 -rmul472 multiply -31027.8323 -475378186. -> 1.47499546E+13 Inexact Rounded -rpow472 power -31027.8323 -475378186 -> ? Underflow Subnormal Inexact Rounded -rrem472 remainder -31027.8323 -475378186. -> -31027.8323 -rsub472 subtract -31027.8323 -475378186. -> 475347158 Inexact Rounded -radd473 add -1199339.72 -5.73068392E+53774632 -> -5.73068392E+53774632 Inexact Rounded -rcom473 compare -1199339.72 -5.73068392E+53774632 -> 1 -rdiv473 divide -1199339.72 -5.73068392E+53774632 -> 2.09283872E-53774627 Inexact Rounded -rdvi473 divideint -1199339.72 -5.73068392E+53774632 -> 0 -rmul473 multiply -1199339.72 -5.73068392E+53774632 -> 6.87303685E+53774638 Inexact Rounded -rpow473 power -1199339.72 -6 -> 3.36005741E-37 Inexact Rounded -rrem473 remainder -1199339.72 -5.73068392E+53774632 -> -1199339.72 -rsub473 subtract -1199339.72 -5.73068392E+53774632 -> 5.73068392E+53774632 Inexact Rounded -radd474 add -732908.930E+364345433 -3486146.26 -> -7.32908930E+364345438 Inexact Rounded -rcom474 compare -732908.930E+364345433 -3486146.26 -> -1 -rdiv474 divide -732908.930E+364345433 -3486146.26 -> 2.10234705E+364345432 Inexact Rounded -rdvi474 divideint -732908.930E+364345433 -3486146.26 -> ? Division_impossible -rmul474 multiply -732908.930E+364345433 -3486146.26 -> 2.55502773E+364345445 Inexact Rounded -rpow474 power -732908.930E+364345433 -3486146 -> ? Underflow Subnormal Inexact Rounded -rrem474 remainder -732908.930E+364345433 -3486146.26 -> ? Division_impossible -rsub474 subtract -732908.930E+364345433 -3486146.26 -> -7.32908930E+364345438 Inexact Rounded -radd475 add -2376150.83 -46777583.3 -> -49153734.1 Inexact Rounded -rcom475 compare -2376150.83 -46777583.3 -> 1 -rdiv475 divide -2376150.83 -46777583.3 -> 0.0507967847 Inexact Rounded -rdvi475 divideint -2376150.83 -46777583.3 -> 0 -rmul475 multiply -2376150.83 -46777583.3 -> 1.11150593E+14 Inexact Rounded -rpow475 power -2376150.83 -46777583 -> -3.51886193E-298247976 Inexact Rounded -rrem475 remainder -2376150.83 -46777583.3 -> -2376150.83 -rsub475 subtract -2376150.83 -46777583.3 -> 44401432.5 Inexact Rounded -radd476 add 6.3664211 -140854908. -> -140854902 Inexact Rounded -rcom476 compare 6.3664211 -140854908. -> 1 -rdiv476 divide 6.3664211 -140854908. -> -4.51984328E-8 Inexact Rounded -rdvi476 divideint 6.3664211 -140854908. -> 0 -rmul476 multiply 6.3664211 -140854908. -> -896741658 Inexact Rounded -rpow476 power 6.3664211 -140854908 -> 7.25432803E-113232608 Inexact Rounded -rrem476 remainder 6.3664211 -140854908. -> 6.3664211 -rsub476 subtract 6.3664211 -140854908. -> 140854914 Inexact Rounded -radd477 add -15.791522 1902.30210E+90741844 -> 1.90230210E+90741847 Inexact Rounded -rcom477 compare -15.791522 1902.30210E+90741844 -> -1 -rdiv477 divide -15.791522 1902.30210E+90741844 -> -8.30126929E-90741847 Inexact Rounded -rdvi477 divideint -15.791522 1902.30210E+90741844 -> 0 -rmul477 multiply -15.791522 1902.30210E+90741844 -> -3.00402455E+90741848 Inexact Rounded -rpow477 power -15.791522 2 -> 249.372167 Inexact Rounded -rrem477 remainder -15.791522 1902.30210E+90741844 -> -15.791522 -rsub477 subtract -15.791522 1902.30210E+90741844 -> -1.90230210E+90741847 Inexact Rounded -radd478 add 15356.1505E+373950429 2.88020400 -> 1.53561505E+373950433 Inexact Rounded -rcom478 compare 15356.1505E+373950429 2.88020400 -> 1 -rdiv478 divide 15356.1505E+373950429 2.88020400 -> 5.33161905E+373950432 Inexact Rounded -rdvi478 divideint 15356.1505E+373950429 2.88020400 -> ? Division_impossible -rmul478 multiply 15356.1505E+373950429 2.88020400 -> 4.42288461E+373950433 Inexact Rounded -rpow478 power 15356.1505E+373950429 3 -> ? Overflow Inexact Rounded -rrem478 remainder 15356.1505E+373950429 2.88020400 -> ? Division_impossible -rsub478 subtract 15356.1505E+373950429 2.88020400 -> 1.53561505E+373950433 Inexact Rounded -radd479 add -3.12001326E+318884762 9567.21595 -> -3.12001326E+318884762 Inexact Rounded -rcom479 compare -3.12001326E+318884762 9567.21595 -> -1 -rdiv479 divide -3.12001326E+318884762 9567.21595 -> -3.26115066E+318884758 Inexact Rounded -rdvi479 divideint -3.12001326E+318884762 9567.21595 -> ? Division_impossible -rmul479 multiply -3.12001326E+318884762 9567.21595 -> -2.98498406E+318884766 Inexact Rounded -rpow479 power -3.12001326E+318884762 9567 -> ? Overflow Inexact Rounded -rrem479 remainder -3.12001326E+318884762 9567.21595 -> ? Division_impossible -rsub479 subtract -3.12001326E+318884762 9567.21595 -> -3.12001326E+318884762 Inexact Rounded -radd480 add 49436.6528 751.919517 -> 50188.5723 Inexact Rounded -rcom480 compare 49436.6528 751.919517 -> 1 -rdiv480 divide 49436.6528 751.919517 -> 65.7472664 Inexact Rounded -rdvi480 divideint 49436.6528 751.919517 -> 65 -rmul480 multiply 49436.6528 751.919517 -> 37172384.1 Inexact Rounded -rpow480 power 49436.6528 752 -> 8.41185718E+3529 Inexact Rounded -rrem480 remainder 49436.6528 751.919517 -> 561.884195 -rsub480 subtract 49436.6528 751.919517 -> 48684.7333 Inexact Rounded -radd481 add 552.669453 8.3725760E+16223526 -> 8.37257600E+16223526 Inexact Rounded -rcom481 compare 552.669453 8.3725760E+16223526 -> -1 -rdiv481 divide 552.669453 8.3725760E+16223526 -> 6.60094878E-16223525 Inexact Rounded -rdvi481 divideint 552.669453 8.3725760E+16223526 -> 0 -rmul481 multiply 552.669453 8.3725760E+16223526 -> 4.62726700E+16223529 Inexact Rounded -rpow481 power 552.669453 8 -> 8.70409632E+21 Inexact Rounded -rrem481 remainder 552.669453 8.3725760E+16223526 -> 552.669453 -rsub481 subtract 552.669453 8.3725760E+16223526 -> -8.37257600E+16223526 Inexact Rounded -radd482 add -3266303 453741.520 -> -2812561.48 Rounded -rcom482 compare -3266303 453741.520 -> -1 -rdiv482 divide -3266303 453741.520 -> -7.19859844 Inexact Rounded -rdvi482 divideint -3266303 453741.520 -> -7 -rmul482 multiply -3266303 453741.520 -> -1.48205729E+12 Inexact Rounded -rpow482 power -3266303 453742 -> 1.02497315E+2955701 Inexact Rounded -rrem482 remainder -3266303 453741.520 -> -90112.360 -rsub482 subtract -3266303 453741.520 -> -3720044.52 Rounded -radd483 add 12302757.4 542922.487E+414443353 -> 5.42922487E+414443358 Inexact Rounded -rcom483 compare 12302757.4 542922.487E+414443353 -> -1 -rdiv483 divide 12302757.4 542922.487E+414443353 -> 2.26602465E-414443352 Inexact Rounded -rdvi483 divideint 12302757.4 542922.487E+414443353 -> 0 -rmul483 multiply 12302757.4 542922.487E+414443353 -> 6.67944364E+414443365 Inexact Rounded -rpow483 power 12302757.4 5 -> 2.81846276E+35 Inexact Rounded -rrem483 remainder 12302757.4 542922.487E+414443353 -> 12302757.4 -rsub483 subtract 12302757.4 542922.487E+414443353 -> -5.42922487E+414443358 Inexact Rounded -radd484 add -5670757.79E-784754984 128144.503 -> 128144.503 Inexact Rounded -rcom484 compare -5670757.79E-784754984 128144.503 -> -1 -rdiv484 divide -5670757.79E-784754984 128144.503 -> -4.42528369E-784754983 Inexact Rounded -rdvi484 divideint -5670757.79E-784754984 128144.503 -> 0 -rmul484 multiply -5670757.79E-784754984 128144.503 -> -7.26676439E-784754973 Inexact Rounded -rpow484 power -5670757.79E-784754984 128145 -> ? Underflow Subnormal Inexact Rounded -rrem484 remainder -5670757.79E-784754984 128144.503 -> -5.67075779E-784754978 -rsub484 subtract -5670757.79E-784754984 128144.503 -> -128144.503 Inexact Rounded -radd485 add 22.7721968E+842530698 5223.70462 -> 2.27721968E+842530699 Inexact Rounded -rcom485 compare 22.7721968E+842530698 5223.70462 -> 1 -rdiv485 divide 22.7721968E+842530698 5223.70462 -> 4.35939596E+842530695 Inexact Rounded -rdvi485 divideint 22.7721968E+842530698 5223.70462 -> ? Division_impossible -rmul485 multiply 22.7721968E+842530698 5223.70462 -> 1.18955230E+842530703 Inexact Rounded -rpow485 power 22.7721968E+842530698 5224 -> ? Overflow Inexact Rounded -rrem485 remainder 22.7721968E+842530698 5223.70462 -> ? Division_impossible -rsub485 subtract 22.7721968E+842530698 5223.70462 -> 2.27721968E+842530699 Inexact Rounded -radd486 add 88.5158199E-980164357 325846116 -> 325846116 Inexact Rounded -rcom486 compare 88.5158199E-980164357 325846116 -> -1 -rdiv486 divide 88.5158199E-980164357 325846116 -> 2.71649148E-980164364 Inexact Rounded -rdvi486 divideint 88.5158199E-980164357 325846116 -> 0 -rmul486 multiply 88.5158199E-980164357 325846116 -> 2.88425361E-980164347 Inexact Rounded -rpow486 power 88.5158199E-980164357 325846116 -> ? Underflow Subnormal Inexact Rounded -rrem486 remainder 88.5158199E-980164357 325846116 -> 8.85158199E-980164356 -rsub486 subtract 88.5158199E-980164357 325846116 -> -325846116 Inexact Rounded -radd487 add -22881.0408 5.63661562 -> -22875.4042 Inexact Rounded -rcom487 compare -22881.0408 5.63661562 -> -1 -rdiv487 divide -22881.0408 5.63661562 -> -4059.35802 Inexact Rounded -rdvi487 divideint -22881.0408 5.63661562 -> -4059 -rmul487 multiply -22881.0408 5.63661562 -> -128971.632 Inexact Rounded -rpow487 power -22881.0408 6 -> 1.43500909E+26 Inexact Rounded -rrem487 remainder -22881.0408 5.63661562 -> -2.01799842 -rsub487 subtract -22881.0408 5.63661562 -> -22886.6774 Inexact Rounded -radd488 add -7157.57449 -76.4455519E-85647047 -> -7157.57449 Inexact Rounded -rcom488 compare -7157.57449 -76.4455519E-85647047 -> -1 -rdiv488 divide -7157.57449 -76.4455519E-85647047 -> 9.36297052E+85647048 Inexact Rounded -rdvi488 divideint -7157.57449 -76.4455519E-85647047 -> ? Division_impossible -rmul488 multiply -7157.57449 -76.4455519E-85647047 -> 5.47164732E-85647042 Inexact Rounded -rpow488 power -7157.57449 -8 -> 1.451687E-31 Inexact Rounded -rrem488 remainder -7157.57449 -76.4455519E-85647047 -> ? Division_impossible -rsub488 subtract -7157.57449 -76.4455519E-85647047 -> -7157.57449 Inexact Rounded -radd489 add -503113.801 -9715149.82E-612184422 -> -503113.801 Inexact Rounded -rcom489 compare -503113.801 -9715149.82E-612184422 -> -1 -rdiv489 divide -503113.801 -9715149.82E-612184422 -> 5.17865201E+612184420 Inexact Rounded -rdvi489 divideint -503113.801 -9715149.82E-612184422 -> ? Division_impossible -rmul489 multiply -503113.801 -9715149.82E-612184422 -> 4.88782595E-612184410 Inexact Rounded -rpow489 power -503113.801 -10 -> 9.62360287E-58 Inexact Rounded -rrem489 remainder -503113.801 -9715149.82E-612184422 -> ? Division_impossible -rsub489 subtract -503113.801 -9715149.82E-612184422 -> -503113.801 Inexact Rounded -radd490 add -3066962.41 -55.3096879 -> -3067017.72 Inexact Rounded -rcom490 compare -3066962.41 -55.3096879 -> -1 -rdiv490 divide -3066962.41 -55.3096879 -> 55450.7271 Inexact Rounded -rdvi490 divideint -3066962.41 -55.3096879 -> 55450 -rmul490 multiply -3066962.41 -55.3096879 -> 169632734 Inexact Rounded -rpow490 power -3066962.41 -55 -> -1.702296E-357 Inexact Rounded -rrem490 remainder -3066962.41 -55.3096879 -> -40.2159450 -rsub490 subtract -3066962.41 -55.3096879 -> -3066907.10 Inexact Rounded -radd491 add -53311.5738E+156608936 -7.45890666 -> -5.33115738E+156608940 Inexact Rounded -rcom491 compare -53311.5738E+156608936 -7.45890666 -> -1 -rdiv491 divide -53311.5738E+156608936 -7.45890666 -> 7.14737109E+156608939 Inexact Rounded -rdvi491 divideint -53311.5738E+156608936 -7.45890666 -> ? Division_impossible -rmul491 multiply -53311.5738E+156608936 -7.45890666 -> 3.97646053E+156608941 Inexact Rounded -rpow491 power -53311.5738E+156608936 -7 -> ? Underflow Subnormal Inexact Rounded -rrem491 remainder -53311.5738E+156608936 -7.45890666 -> ? Division_impossible -rsub491 subtract -53311.5738E+156608936 -7.45890666 -> -5.33115738E+156608940 Inexact Rounded -radd492 add 998890068. -92.057879 -> 998889976 Inexact Rounded -rcom492 compare 998890068. -92.057879 -> 1 -rdiv492 divide 998890068. -92.057879 -> -10850674.4 Inexact Rounded -rdvi492 divideint 998890068. -92.057879 -> -10850674 -rmul492 multiply 998890068. -92.057879 -> -9.19557010E+10 Inexact Rounded -rpow492 power 998890068. -92 -> 1.10757225E-828 Inexact Rounded -rrem492 remainder 998890068. -92.057879 -> 33.839554 -rsub492 subtract 998890068. -92.057879 -> 998890160 Inexact Rounded -radd493 add 122.495591 -407836028. -> -407835906 Inexact Rounded -rcom493 compare 122.495591 -407836028. -> 1 -rdiv493 divide 122.495591 -407836028. -> -3.00355002E-7 Inexact Rounded -rdvi493 divideint 122.495591 -407836028. -> 0 -rmul493 multiply 122.495591 -407836028. -> -4.99581153E+10 Inexact Rounded -rpow493 power 122.495591 -407836028 -> 4.82463773E-851610754 Inexact Rounded -rrem493 remainder 122.495591 -407836028. -> 122.495591 -rsub493 subtract 122.495591 -407836028. -> 407836150 Inexact Rounded -radd494 add 187098.488 6220.05584E-236541249 -> 187098.488 Inexact Rounded -rcom494 compare 187098.488 6220.05584E-236541249 -> 1 -rdiv494 divide 187098.488 6220.05584E-236541249 -> 3.00798727E+236541250 Inexact Rounded -rdvi494 divideint 187098.488 6220.05584E-236541249 -> ? Division_impossible -rmul494 multiply 187098.488 6220.05584E-236541249 -> 1.16376304E-236541240 Inexact Rounded -rpow494 power 187098.488 6 -> 4.28964811E+31 Inexact Rounded -rrem494 remainder 187098.488 6220.05584E-236541249 -> ? Division_impossible -rsub494 subtract 187098.488 6220.05584E-236541249 -> 187098.488 Inexact Rounded -radd495 add 4819899.21E+432982550 -727441917 -> 4.81989921E+432982556 Inexact Rounded -rcom495 compare 4819899.21E+432982550 -727441917 -> 1 -rdiv495 divide 4819899.21E+432982550 -727441917 -> -6.62582001E+432982547 Inexact Rounded -rdvi495 divideint 4819899.21E+432982550 -727441917 -> ? Division_impossible -rmul495 multiply 4819899.21E+432982550 -727441917 -> -3.50619672E+432982565 Inexact Rounded -rpow495 power 4819899.21E+432982550 -727441917 -> ? Underflow Subnormal Inexact Rounded -rrem495 remainder 4819899.21E+432982550 -727441917 -> ? Division_impossible -rsub495 subtract 4819899.21E+432982550 -727441917 -> 4.81989921E+432982556 Inexact Rounded -radd496 add 5770.01020E+507459752 -4208339.33E-129766680 -> 5.77001020E+507459755 Inexact Rounded -rcom496 compare 5770.01020E+507459752 -4208339.33E-129766680 -> 1 -rdiv496 divide 5770.01020E+507459752 -4208339.33E-129766680 -> -1.37108958E+637226429 Inexact Rounded -rdvi496 divideint 5770.01020E+507459752 -4208339.33E-129766680 -> ? Division_impossible -rmul496 multiply 5770.01020E+507459752 -4208339.33E-129766680 -> -2.42821609E+377693082 Inexact Rounded -rpow496 power 5770.01020E+507459752 -4 -> ? Underflow Subnormal Inexact Rounded -rrem496 remainder 5770.01020E+507459752 -4208339.33E-129766680 -> ? Division_impossible -rsub496 subtract 5770.01020E+507459752 -4208339.33E-129766680 -> 5.77001020E+507459755 Inexact Rounded -radd497 add -286.371320 710319152 -> 710318866 Inexact Rounded -rcom497 compare -286.371320 710319152 -> -1 -rdiv497 divide -286.371320 710319152 -> -4.03158664E-7 Inexact Rounded -rdvi497 divideint -286.371320 710319152 -> 0 -rmul497 multiply -286.371320 710319152 -> -2.03415033E+11 Inexact Rounded -rpow497 power -286.371320 710319152 -> ? Overflow Inexact Rounded -rrem497 remainder -286.371320 710319152 -> -286.371320 -rsub497 subtract -286.371320 710319152 -> -710319438 Inexact Rounded -radd498 add -7.27403536 -481469656E-835183700 -> -7.27403536 Inexact Rounded -rcom498 compare -7.27403536 -481469656E-835183700 -> -1 -rdiv498 divide -7.27403536 -481469656E-835183700 -> 1.5107983E+835183692 Inexact Rounded -rdvi498 divideint -7.27403536 -481469656E-835183700 -> ? Division_impossible -rmul498 multiply -7.27403536 -481469656E-835183700 -> 3.50222730E-835183691 Inexact Rounded -rpow498 power -7.27403536 -5 -> -0.0000491046885 Inexact Rounded -rrem498 remainder -7.27403536 -481469656E-835183700 -> ? Division_impossible -rsub498 subtract -7.27403536 -481469656E-835183700 -> -7.27403536 Inexact Rounded -radd499 add -6157.74292 -94075286.2E+92555877 -> -9.40752862E+92555884 Inexact Rounded -rcom499 compare -6157.74292 -94075286.2E+92555877 -> 1 -rdiv499 divide -6157.74292 -94075286.2E+92555877 -> 6.5455479E-92555882 Inexact Rounded -rdvi499 divideint -6157.74292 -94075286.2E+92555877 -> 0 -rmul499 multiply -6157.74292 -94075286.2E+92555877 -> 5.79291428E+92555888 Inexact Rounded -rpow499 power -6157.74292 -9 -> -7.85608218E-35 Inexact Rounded -rrem499 remainder -6157.74292 -94075286.2E+92555877 -> -6157.74292 -rsub499 subtract -6157.74292 -94075286.2E+92555877 -> 9.40752862E+92555884 Inexact Rounded -radd500 add -525445087.E+231529167 188227460 -> -5.25445087E+231529175 Inexact Rounded -rcom500 compare -525445087.E+231529167 188227460 -> -1 -rdiv500 divide -525445087.E+231529167 188227460 -> -2.79154321E+231529167 Inexact Rounded -rdvi500 divideint -525445087.E+231529167 188227460 -> ? Division_impossible -rmul500 multiply -525445087.E+231529167 188227460 -> -9.89031941E+231529183 Inexact Rounded -rpow500 power -525445087.E+231529167 188227460 -> ? Overflow Inexact Rounded -rrem500 remainder -525445087.E+231529167 188227460 -> ? Division_impossible -rsub500 subtract -525445087.E+231529167 188227460 -> -5.25445087E+231529175 Inexact Rounded - diff --git a/qdecimal/test/tc_subset/reduce0.decTest b/qdecimal/test/tc_subset/reduce0.decTest deleted file mode 100644 index 9e34122..0000000 --- a/qdecimal/test/tc_subset/reduce0.decTest +++ /dev/null @@ -1,148 +0,0 @@ ------------------------------------------------------------------------- --- reduce0.decTest -- remove trailing zeros -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- --- [This used to be called normalize0.] - -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -red001 reduce '1' -> '1' -red002 reduce '-1' -> '-1' -red003 reduce '1.00' -> '1' -red004 reduce '-1.00' -> '-1' -red005 reduce '0' -> '0' -red006 reduce '0.00' -> '0' -red007 reduce '00.0' -> '0' -red008 reduce '00.00' -> '0' -red009 reduce '00' -> '0' - -red010 reduce '-2' -> '-2' -red011 reduce '2' -> '2' -red012 reduce '-2.00' -> '-2' -red013 reduce '2.00' -> '2' -red014 reduce '-0' -> '0' -red015 reduce '-0.00' -> '0' -red016 reduce '-00.0' -> '0' -red017 reduce '-00.00' -> '0' -red018 reduce '-00' -> '0' -red019 reduce '0E+5' -> '0' -red020 reduce '-0E+1' -> '0' - -red030 reduce '+0.1' -> '0.1' -red031 reduce '-0.1' -> '-0.1' -red032 reduce '+0.01' -> '0.01' -red033 reduce '-0.01' -> '-0.01' -red034 reduce '+0.001' -> '0.001' -red035 reduce '-0.001' -> '-0.001' -red036 reduce '+0.000001' -> '0.000001' -red037 reduce '-0.000001' -> '-0.000001' -red038 reduce '+0.000000000001' -> '1E-12' -red039 reduce '-0.000000000001' -> '-1E-12' - -red041 reduce 1.1 -> 1.1 -red042 reduce 1.10 -> 1.1 -red043 reduce 1.100 -> 1.1 -red044 reduce 1.110 -> 1.11 -red045 reduce -1.1 -> -1.1 -red046 reduce -1.10 -> -1.1 -red047 reduce -1.100 -> -1.1 -red048 reduce -1.110 -> -1.11 -red049 reduce 9.9 -> 9.9 -red050 reduce 9.90 -> 9.9 -red051 reduce 9.900 -> 9.9 -red052 reduce 9.990 -> 9.99 -red053 reduce -9.9 -> -9.9 -red054 reduce -9.90 -> -9.9 -red055 reduce -9.900 -> -9.9 -red056 reduce -9.990 -> -9.99 - --- some trailing fractional zeros with zeros in units -red060 reduce 10.0 -> 1E+1 -red061 reduce 10.00 -> 1E+1 -red062 reduce 100.0 -> 1E+2 -red063 reduce 100.00 -> 1E+2 -red064 reduce 1.1000E+3 -> 1.1E+3 -red065 reduce 1.10000E+3 -> 1.1E+3 -red066 reduce -10.0 -> -1E+1 -red067 reduce -10.00 -> -1E+1 -red068 reduce -100.0 -> -1E+2 -red069 reduce -100.00 -> -1E+2 -red070 reduce -1.1000E+3 -> -1.1E+3 -red071 reduce -1.10000E+3 -> -1.1E+3 - --- some insignificant trailing zeros with positive exponent -red080 reduce 10E+1 -> 1E+2 -red081 reduce 100E+1 -> 1E+3 -red082 reduce 1.0E+2 -> 1E+2 -red083 reduce 1.0E+3 -> 1E+3 -red084 reduce 1.1E+3 -> 1.1E+3 -red085 reduce 1.00E+3 -> 1E+3 -red086 reduce 1.10E+3 -> 1.1E+3 -red087 reduce -10E+1 -> -1E+2 -red088 reduce -100E+1 -> -1E+3 -red089 reduce -1.0E+2 -> -1E+2 -red090 reduce -1.0E+3 -> -1E+3 -red091 reduce -1.1E+3 -> -1.1E+3 -red092 reduce -1.00E+3 -> -1E+3 -red093 reduce -1.10E+3 -> -1.1E+3 - --- some significant trailing zeros, were we to be trimming -red100 reduce 11 -> 11 -red101 reduce 10 -> 1E+1 -red102 reduce 10. -> 1E+1 -red103 reduce 1.1E+1 -> 11 -red104 reduce 1.0E+1 -> 1E+1 -red105 reduce 1.10E+2 -> 1.1E+2 -red106 reduce 1.00E+2 -> 1E+2 -red107 reduce 1.100E+3 -> 1.1E+3 -red108 reduce 1.000E+3 -> 1E+3 -red109 reduce 1.000000E+6 -> 1E+6 -red110 reduce -11 -> -11 -red111 reduce -10 -> -1E+1 -red112 reduce -10. -> -1E+1 -red113 reduce -1.1E+1 -> -11 -red114 reduce -1.0E+1 -> -1E+1 -red115 reduce -1.10E+2 -> -1.1E+2 -red116 reduce -1.00E+2 -> -1E+2 -red117 reduce -1.100E+3 -> -1.1E+3 -red118 reduce -1.000E+3 -> -1E+3 -red119 reduce -1.00000E+5 -> -1E+5 -red120 reduce -1.000000E+6 -> -1E+6 -red121 reduce -10.00000E+6 -> -1E+7 -red122 reduce -100.0000E+6 -> -1E+8 -red123 reduce -1000.000E+6 -> -1E+9 -red124 reduce -10000.00E+6 -> -1E+10 -red125 reduce -100000.0E+6 -> -1E+11 -red126 reduce -1000000.E+6 -> -1E+12 - --- examples from decArith -red140 reduce '2.1' -> '2.1' -red141 reduce '-2.0' -> '-2' -red142 reduce '1.200' -> '1.2' -red143 reduce '-120' -> '-1.2E+2' -red144 reduce '120.00' -> '1.2E+2' -red145 reduce '0.00' -> '0' - --- Null test -red900 reduce # -> ? Invalid_operation diff --git a/qdecimal/test/tc_subset/remainder0.decTest b/qdecimal/test/tc_subset/remainder0.decTest deleted file mode 100644 index 0ff0be1..0000000 --- a/qdecimal/test/tc_subset/remainder0.decTest +++ /dev/null @@ -1,326 +0,0 @@ ------------------------------------------------------------------------- --- remainder0.decTest -- decimal remainder (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -rem001 remainder 1 1 -> 0 -rem002 remainder 2 1 -> 0 -rem003 remainder 1 2 -> 1 -rem004 remainder 2 2 -> 0 -rem005 remainder 0 1 -> 0 -rem006 remainder 0 2 -> 0 -rem007 remainder 1 3 -> 1 -rem008 remainder 2 3 -> 2 -rem009 remainder 3 3 -> 0 - -rem010 remainder 2.4 1 -> 0.4 -rem011 remainder 2.4 -1 -> 0.4 -rem012 remainder -2.4 1 -> -0.4 -rem013 remainder -2.4 -1 -> -0.4 -rem014 remainder 2.40 1 -> 0.40 -rem015 remainder 2.400 1 -> 0.400 -rem016 remainder 2.4 2 -> 0.4 -rem017 remainder 2.400 2 -> 0.400 -rem018 remainder 2. 2 -> 0 -rem019 remainder 20 20 -> 0 - -rem020 remainder 187 187 -> 0 -rem021 remainder 5 2 -> 1 -rem022 remainder 5 2.0 -> 1.0 -rem023 remainder 5 2.000 -> 1.000 -rem024 remainder 5 0.200 -> 0 -rem025 remainder 5 0.200 -> 0 - -rem030 remainder 1 2 -> 1 -rem031 remainder 1 4 -> 1 -rem032 remainder 1 8 -> 1 -rem033 remainder 1 16 -> 1 -rem034 remainder 1 32 -> 1 -rem035 remainder 1 64 -> 1 -rem040 remainder 1 -2 -> 1 -rem041 remainder 1 -4 -> 1 -rem042 remainder 1 -8 -> 1 -rem043 remainder 1 -16 -> 1 -rem044 remainder 1 -32 -> 1 -rem045 remainder 1 -64 -> 1 -rem050 remainder -1 2 -> -1 -rem051 remainder -1 4 -> -1 -rem052 remainder -1 8 -> -1 -rem053 remainder -1 16 -> -1 -rem054 remainder -1 32 -> -1 -rem055 remainder -1 64 -> -1 -rem060 remainder -1 -2 -> -1 -rem061 remainder -1 -4 -> -1 -rem062 remainder -1 -8 -> -1 -rem063 remainder -1 -16 -> -1 -rem064 remainder -1 -32 -> -1 -rem065 remainder -1 -64 -> -1 - -rem070 remainder 999999999 1 -> 0 -rem071 remainder 999999999.4 1 -> 0 Inexact Lost_digits Rounded -rem072 remainder 999999999.5 1 -> ? Division_impossible Inexact Lost_digits Rounded -rem073 remainder 999999999.9 1 -> ? Division_impossible Inexact Lost_digits Rounded -rem074 remainder 999999999.999 1 -> ? Division_impossible Inexact Lost_digits Rounded -precision: 6 -rem080 remainder 999999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -rem081 remainder 99999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -rem082 remainder 9999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -rem083 remainder 999999 1 -> 0 -rem084 remainder 99999 1 -> 0 -rem085 remainder 9999 1 -> 0 -rem086 remainder 999 1 -> 0 -rem087 remainder 99 1 -> 0 -rem088 remainder 9 1 -> 0 - -precision: 9 -rem090 remainder 0. 1 -> 0 -rem091 remainder .0 1 -> 0 -rem092 remainder 0.00 1 -> 0 -rem093 remainder 0.00E+9 1 -> 0 -rem094 remainder 0.0000E-50 1 -> 0 - -rem100 remainder 1 1 -> 0 -rem101 remainder 1 2 -> 1 -rem102 remainder 1 3 -> 1 -rem103 remainder 1 4 -> 1 -rem104 remainder 1 5 -> 1 -rem105 remainder 1 6 -> 1 -rem106 remainder 1 7 -> 1 -rem107 remainder 1 8 -> 1 -rem108 remainder 1 9 -> 1 -rem109 remainder 1 10 -> 1 -rem110 remainder 1 1 -> 0 -rem111 remainder 2 1 -> 0 -rem112 remainder 3 1 -> 0 -rem113 remainder 4 1 -> 0 -rem114 remainder 5 1 -> 0 -rem115 remainder 6 1 -> 0 -rem116 remainder 7 1 -> 0 -rem117 remainder 8 1 -> 0 -rem118 remainder 9 1 -> 0 -rem119 remainder 10 1 -> 0 - --- Various flavours of remainder by 0 -maxexponent: 999999999 -minexponent: -999999999 -rem201 remainder 0 0 -> ? Division_undefined -rem202 remainder 0.0E5 0 -> ? Division_undefined -rem203 remainder 0.000 0 -> ? Division_undefined -rem204 remainder 0.0001 0 -> ? Invalid_operation -rem205 remainder 0.01 0 -> ? Invalid_operation -rem206 remainder 0.1 0 -> ? Invalid_operation -rem207 remainder 1 0 -> ? Invalid_operation -rem208 remainder 1 0.0 -> ? Invalid_operation -rem209 remainder 10 0.0 -> ? Invalid_operation -rem210 remainder 1E+100 0.0 -> ? Invalid_operation -rem211 remainder 1E+1000 0 -> ? Invalid_operation - --- some differences from remainderNear -rem231 remainder 0.4 1.020 -> 0.400 -rem232 remainder 0.50 1.020 -> 0.500 -rem233 remainder 0.51 1.020 -> 0.510 -rem234 remainder 0.52 1.020 -> 0.520 -rem235 remainder 0.6 1.020 -> 0.600 - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -rem270 remainder 1 1e999999999 -> 1 -rem271 remainder 1 0.9e999999999 -> 1 -rem272 remainder 1 0.99e999999999 -> 1 -rem273 remainder 1 0.999999999e999999999 -> 1 -rem274 remainder 9e999999999 1 -> ? Division_impossible -rem275 remainder 9.9e999999999 1 -> ? Division_impossible -rem276 remainder 9.99e999999999 1 -> ? Division_impossible -rem277 remainder 9.99999999e999999999 1 -> ? Division_impossible - -rem280 remainder 0.1 9e-999999999 -> ? Division_impossible -rem281 remainder 0.1 99e-999999999 -> ? Division_impossible -rem282 remainder 0.1 999e-999999999 -> ? Division_impossible - -rem283 remainder 0.1 9e-999999998 -> ? Division_impossible -rem284 remainder 0.1 99e-999999998 -> ? Division_impossible -rem285 remainder 0.1 999e-999999998 -> ? Division_impossible -rem286 remainder 0.1 999e-999999997 -> ? Division_impossible -rem287 remainder 0.1 9999e-999999997 -> ? Division_impossible -rem288 remainder 0.1 99999e-999999997 -> ? Division_impossible - --- rem3xx are from DiagBigDecimal -rem301 remainder 1 3 -> 1 -rem302 remainder 5 5 -> 0 -rem303 remainder 13 10 -> 3 -rem304 remainder 13 50 -> 13 -rem305 remainder 13 100 -> 13 -rem306 remainder 13 1000 -> 13 -rem307 remainder .13 1 -> 0.13 -rem308 remainder 0.133 1 -> 0.133 -rem309 remainder 0.1033 1 -> 0.1033 -rem310 remainder 1.033 1 -> 0.033 -rem311 remainder 10.33 1 -> 0.33 -rem312 remainder 10.33 10 -> 0.33 -rem313 remainder 103.3 1 -> 0.3 -rem314 remainder 133 10 -> 3 -rem315 remainder 1033 10 -> 3 -rem316 remainder 1033 50 -> 33 -rem317 remainder 101.0 3 -> 2.0 -rem318 remainder 102.0 3 -> 0 -rem319 remainder 103.0 3 -> 1.0 -rem320 remainder 2.40 1 -> 0.40 -rem321 remainder 2.400 1 -> 0.400 -rem322 remainder 2.4 1 -> 0.4 -rem323 remainder 2.4 2 -> 0.4 -rem324 remainder 2.400 2 -> 0.400 -rem325 remainder 1 0.3 -> 0.1 -rem326 remainder 1 0.30 -> 0.10 -rem327 remainder 1 0.300 -> 0.100 -rem328 remainder 1 0.3000 -> 0.1000 -rem329 remainder 1.0 0.3 -> 0.1 -rem330 remainder 1.00 0.3 -> 0.10 -rem331 remainder 1.000 0.3 -> 0.100 -rem332 remainder 1.0000 0.3 -> 0.1000 -rem333 remainder 0.5 2 -> 0.5 -rem334 remainder 0.5 2.1 -> 0.5 -rem335 remainder 0.5 2.01 -> 0.50 -rem336 remainder 0.5 2.001 -> 0.500 -rem337 remainder 0.50 2 -> 0.50 -rem338 remainder 0.50 2.01 -> 0.50 -rem339 remainder 0.50 2.001 -> 0.500 - -rem340 remainder 0.5 0.5000001 -> 0.5000000 -rem341 remainder 0.5 0.50000001 -> 0.50000000 -rem342 remainder 0.5 0.500000001 -> 0.500000000 -rem343 remainder 0.5 0.5000000001 -> 0 Inexact Lost_digits Rounded -rem344 remainder 0.5 0.50000000001 -> 0 Inexact Lost_digits Rounded -rem345 remainder 0.5 0.4999999 -> 1E-7 -rem346 remainder 0.5 0.49999999 -> 1E-8 -rem347 remainder 0.5 0.499999999 -> 1E-9 -rem348 remainder 0.5 0.4999999999 -> 0 Inexact Lost_digits Rounded -rem349 remainder 0.5 0.49999999999 -> 0 Inexact Lost_digits Rounded - -rem350 remainder 0.03 7 -> 0.03 -rem351 remainder 5 2 -> 1 -rem352 remainder 4.1 2 -> 0.1 -rem353 remainder 4.01 2 -> 0.01 -rem354 remainder 4.001 2 -> 0.001 -rem355 remainder 4.0001 2 -> 0.0001 -rem356 remainder 4.00001 2 -> 0.00001 -rem357 remainder 4.000001 2 -> 0.000001 -rem358 remainder 4.0000001 2 -> 1E-7 - -rem360 remainder 1.2 0.7345 -> 0.4655 -rem361 remainder 0.8 12 -> 0.8 -rem362 remainder 0.8 0.2 -> 0 -rem363 remainder 0.8 0.3 -> 0.2 -rem364 remainder 0.800 12 -> 0.800 -rem365 remainder 0.800 1.7 -> 0.800 -rem366 remainder 2.400 2 -> 0.400 - -precision: 6 -rem371 remainder 2.400 2 -> 0.400 -precision: 3 --- lostDigits in the next one -rem372 remainder 12345678900000 12e+12 -> 3E+11 Inexact Lost_digits Rounded - -precision: 5 -rem381 remainder 12345 1 -> 0 -rem382 remainder 12345 1.0001 -> 0.7657 -rem383 remainder 12345 1.001 -> 0.668 -rem384 remainder 12345 1.01 -> 0.78 -rem385 remainder 12345 1.1 -> 0.8 -rem386 remainder 12355 4 -> 3 -rem387 remainder 12345 4 -> 1 -rem388 remainder 12355 4.0001 -> 2.6912 -rem389 remainder 12345 4.0001 -> 0.6914 -rem390 remainder 12345 4.9 -> 1.9 -rem391 remainder 12345 4.99 -> 4.73 -rem392 remainder 12345 4.999 -> 2.469 -rem393 remainder 12345 4.9999 -> 0.2469 -rem394 remainder 12345 5 -> 0 -rem395 remainder 12345 5.0001 -> 4.7532 -rem396 remainder 12345 5.001 -> 2.532 -rem397 remainder 12345 5.01 -> 0.36 -rem398 remainder 12345 5.1 -> 3.0 - -precision: 9 --- some nasty division-by-1 cases [some similar above] -rem401 remainder 0.5 1 -> 0.5 -rem402 remainder 0.55 1 -> 0.55 -rem403 remainder 0.555 1 -> 0.555 -rem404 remainder 0.5555 1 -> 0.5555 -rem405 remainder 0.55555 1 -> 0.55555 -rem406 remainder 0.555555 1 -> 0.555555 -rem407 remainder 0.5555555 1 -> 0.5555555 -rem408 remainder 0.55555555 1 -> 0.55555555 -rem409 remainder 0.555555555 1 -> 0.555555555 - --- overflow and underflow tests [from divide] -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -rem430 remainder +1.23456789012345E-0 9E+999999999 -> 1.23456789 Inexact Lost_digits Rounded -rem431 remainder 9E+999999999 +0.23456789012345E-0 -> ? Division_impossible Inexact Lost_digits Rounded -rem432 remainder +0.100 9E+999999999 -> 0.100 -rem433 remainder 9E-999999999 +9.100 -> 9E-999999999 -rem435 remainder -1.23456789012345E-0 9E+999999999 -> -1.23456789 Inexact Lost_digits Rounded -rem436 remainder 9E+999999999 -0.83456789012345E-0 -> ? Division_impossible Inexact Lost_digits Rounded -rem437 remainder -0.100 9E+999999999 -> -0.100 -rem438 remainder 9E-999999999 -9.100 -> 9E-999999999 - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -rem501 remainder 12345678000 100 -> 0 Rounded -rem502 remainder 1 12345678000 -> 1 Rounded -rem503 remainder 1234567800 10 -> 0 Rounded -rem504 remainder 1 1234567800 -> 1 Rounded -rem505 remainder 1234567890 10 -> 0 Rounded -rem506 remainder 1 1234567890 -> 1 Rounded -rem507 remainder 1234567891 10 -> 0 Inexact Lost_digits Rounded -rem508 remainder 1 1234567891 -> 1 Inexact Lost_digits Rounded -rem509 remainder 12345678901 100 -> 0 Inexact Lost_digits Rounded -rem510 remainder 1 12345678901 -> 1 Inexact Lost_digits Rounded -rem511 remainder 1234567896 10 -> 0 Inexact Lost_digits Rounded -rem512 remainder 1 1234567896 -> 1 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -rem541 remainder 12345678000 100 -> 0 -rem542 remainder 1 12345678000 -> 1 -rem543 remainder 1234567800 10 -> 0 -rem544 remainder 1 1234567800 -> 1 -rem545 remainder 1234567890 10 -> 0 -rem546 remainder 1 1234567890 -> 1 -rem547 remainder 1234567891 10 -> 1 -rem548 remainder 1 1234567891 -> 1 -rem549 remainder 12345678901 100 -> 1 -rem550 remainder 1 12345678901 -> 1 -rem551 remainder 1234567896 10 -> 6 -rem552 remainder 1 1234567896 -> 1 - --- Null tests -rem900 remainder 10 # -> ? Invalid_operation -rem901 remainder # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/remaindernear0.decTest b/qdecimal/test/tc_subset/remaindernear0.decTest deleted file mode 100644 index bc4fc0c..0000000 --- a/qdecimal/test/tc_subset/remaindernear0.decTest +++ /dev/null @@ -1,344 +0,0 @@ ------------------------------------------------------------------------- --- remainderNear0.decTest -- decimal remainder-near (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -remn001 remaindernear 1 1 -> 0 -remn002 remaindernear 2 1 -> 0 -remn003 remaindernear 1 2 -> 1 -remn004 remaindernear 2 2 -> 0 -remn005 remaindernear 0 1 -> 0 -remn006 remaindernear 0 2 -> 0 -remn007 remaindernear 1 3 -> 1 -remn008 remaindernear 2 3 -> -1 -remn009 remaindernear 3 3 -> 0 - -remn010 remaindernear 2.4 1 -> 0.4 -remn011 remaindernear 2.4 -1 -> 0.4 -remn012 remaindernear -2.4 1 -> -0.4 -remn013 remaindernear -2.4 -1 -> -0.4 -remn014 remaindernear 2.40 1 -> 0.40 -remn015 remaindernear 2.400 1 -> 0.400 -remn016 remaindernear 2.4 2 -> 0.4 -remn017 remaindernear 2.400 2 -> 0.400 -remn018 remaindernear 2. 2 -> 0 -remn019 remaindernear 20 20 -> 0 - -remn020 remaindernear 187 187 -> 0 -remn021 remaindernear 5 2 -> 1 -remn022 remaindernear 5 2.0 -> 1.0 -remn023 remaindernear 5 2.000 -> 1.000 -remn024 remaindernear 5 0.200 -> 0 -remn025 remaindernear 5 0.200 -> 0 - -remn030 remaindernear 1 2 -> 1 -remn031 remaindernear 1 4 -> 1 -remn032 remaindernear 1 8 -> 1 -remn033 remaindernear 1 16 -> 1 -remn034 remaindernear 1 32 -> 1 -remn035 remaindernear 1 64 -> 1 -remn040 remaindernear 1 -2 -> 1 -remn041 remaindernear 1 -4 -> 1 -remn042 remaindernear 1 -8 -> 1 -remn043 remaindernear 1 -16 -> 1 -remn044 remaindernear 1 -32 -> 1 -remn045 remaindernear 1 -64 -> 1 -remn050 remaindernear -1 2 -> -1 -remn051 remaindernear -1 4 -> -1 -remn052 remaindernear -1 8 -> -1 -remn053 remaindernear -1 16 -> -1 -remn054 remaindernear -1 32 -> -1 -remn055 remaindernear -1 64 -> -1 -remn060 remaindernear -1 -2 -> -1 -remn061 remaindernear -1 -4 -> -1 -remn062 remaindernear -1 -8 -> -1 -remn063 remaindernear -1 -16 -> -1 -remn064 remaindernear -1 -32 -> -1 -remn065 remaindernear -1 -64 -> -1 - -remn070 remaindernear 999999999 1 -> 0 -remn071 remaindernear 999999999.4 1 -> 0 Inexact Lost_digits Rounded -remn072 remaindernear 999999999.5 1 -> ? Division_impossible Inexact Lost_digits Rounded -remn073 remaindernear 999999999.9 1 -> ? Division_impossible Inexact Lost_digits Rounded -remn074 remaindernear 999999999.999 1 -> ? Division_impossible Inexact Lost_digits Rounded -precision: 6 -remn080 remaindernear 999999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -remn081 remaindernear 99999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -remn082 remaindernear 9999999 1 -> ? Division_impossible Inexact Lost_digits Rounded -remn083 remaindernear 999999 1 -> 0 -remn084 remaindernear 99999 1 -> 0 -remn085 remaindernear 9999 1 -> 0 -remn086 remaindernear 999 1 -> 0 -remn087 remaindernear 99 1 -> 0 -remn088 remaindernear 9 1 -> 0 - -precision: 9 -remn090 remaindernear 0. 1 -> 0 -remn091 remaindernear .0 1 -> 0 -remn092 remaindernear 0.00 1 -> 0 -remn093 remaindernear 0.00E+9 1 -> 0 -remn094 remaindernear 0.0000E-50 1 -> 0 - -remn100 remaindernear 1 1 -> 0 -remn101 remaindernear 1 2 -> 1 -remn102 remaindernear 1 3 -> 1 -remn103 remaindernear 1 4 -> 1 -remn104 remaindernear 1 5 -> 1 -remn105 remaindernear 1 6 -> 1 -remn106 remaindernear 1 7 -> 1 -remn107 remaindernear 1 8 -> 1 -remn108 remaindernear 1 9 -> 1 -remn109 remaindernear 1 10 -> 1 -remn110 remaindernear 1 1 -> 0 -remn111 remaindernear 2 1 -> 0 -remn112 remaindernear 3 1 -> 0 -remn113 remaindernear 4 1 -> 0 -remn114 remaindernear 5 1 -> 0 -remn115 remaindernear 6 1 -> 0 -remn116 remaindernear 7 1 -> 0 -remn117 remaindernear 8 1 -> 0 -remn118 remaindernear 9 1 -> 0 -remn119 remaindernear 10 1 -> 0 - --- Various flavours of remaindernear by 0 -maxexponent: 999999999 -minexponent: -999999999 -remn201 remaindernear 0 0 -> ? Division_undefined -remn202 remaindernear 0.0E5 0 -> ? Division_undefined -remn203 remaindernear 0.000 0 -> ? Division_undefined -remn204 remaindernear 0.0001 0 -> ? Invalid_operation -remn205 remaindernear 0.01 0 -> ? Invalid_operation -remn206 remaindernear 0.1 0 -> ? Invalid_operation -remn207 remaindernear 1 0 -> ? Invalid_operation -remn208 remaindernear 1 0.0 -> ? Invalid_operation -remn209 remaindernear 10 0.0 -> ? Invalid_operation -remn210 remaindernear 1E+100 0.0 -> ? Invalid_operation -remn211 remaindernear 1E+1000 0 -> ? Invalid_operation - --- tests from the extended specification -remn221 remaindernear 2.1 3 -> -0.9 -remn222 remaindernear 10 6 -> -2 -remn223 remaindernear 10 3 -> 1 -remn224 remaindernear -10 3 -> -1 -remn225 remaindernear 10.2 1 -> 0.2 -remn226 remaindernear 10 0.3 -> 0.1 -remn227 remaindernear 3.6 1.3 -> -0.3 - --- some differences from remainder -remn231 remaindernear 0.4 1.020 -> 0.400 -remn232 remaindernear 0.50 1.020 -> 0.500 -remn233 remaindernear 0.51 1.020 -> 0.510 -remn234 remaindernear 0.52 1.020 -> -0.500 -remn235 remaindernear 0.6 1.020 -> -0.420 - --- test some cases that are close to exponent overflow -maxexponent: 999999999 -minexponent: -999999999 -remn270 remaindernear 1 1e999999999 -> 1 -remn271 remaindernear 1 0.9e999999999 -> 1 -remn272 remaindernear 1 0.99e999999999 -> 1 -remn273 remaindernear 1 0.999999999e999999999 -> 1 -remn274 remaindernear 9e999999999 1 -> ? Division_impossible -remn275 remaindernear 9.9e999999999 1 -> ? Division_impossible -remn276 remaindernear 9.99e999999999 1 -> ? Division_impossible -remn277 remaindernear 9.99999999e999999999 1 -> ? Division_impossible - -remn280 remaindernear 0.1 9e-999999999 -> ? Division_impossible -remn281 remaindernear 0.1 99e-999999999 -> ? Division_impossible -remn282 remaindernear 0.1 999e-999999999 -> ? Division_impossible - -remn283 remaindernear 0.1 9e-999999998 -> ? Division_impossible -remn284 remaindernear 0.1 99e-999999998 -> ? Division_impossible -remn285 remaindernear 0.1 999e-999999998 -> ? Division_impossible -remn286 remaindernear 0.1 999e-999999997 -> ? Division_impossible -remn287 remaindernear 0.1 9999e-999999997 -> ? Division_impossible -remn288 remaindernear 0.1 99999e-999999997 -> ? Division_impossible - --- remn3xx are from DiagBigDecimal -remn301 remaindernear 1 3 -> 1 -remn302 remaindernear 5 5 -> 0 -remn303 remaindernear 13 10 -> 3 -remn304 remaindernear 13 50 -> 13 -remn305 remaindernear 13 100 -> 13 -remn306 remaindernear 13 1000 -> 13 -remn307 remaindernear .13 1 -> 0.13 -remn308 remaindernear 0.133 1 -> 0.133 -remn309 remaindernear 0.1033 1 -> 0.1033 -remn310 remaindernear 1.033 1 -> 0.033 -remn311 remaindernear 10.33 1 -> 0.33 -remn312 remaindernear 10.33 10 -> 0.33 -remn313 remaindernear 103.3 1 -> 0.3 -remn314 remaindernear 133 10 -> 3 -remn315 remaindernear 1033 10 -> 3 -remn316 remaindernear 1033 50 -> -17 -remn317 remaindernear 101.0 3 -> -1.0 -remn318 remaindernear 102.0 3 -> 0 -remn319 remaindernear 103.0 3 -> 1.0 -remn320 remaindernear 2.40 1 -> 0.40 -remn321 remaindernear 2.400 1 -> 0.400 -remn322 remaindernear 2.4 1 -> 0.4 -remn323 remaindernear 2.4 2 -> 0.4 -remn324 remaindernear 2.400 2 -> 0.400 -remn325 remaindernear 1 0.3 -> 0.1 -remn326 remaindernear 1 0.30 -> 0.10 -remn327 remaindernear 1 0.300 -> 0.100 -remn328 remaindernear 1 0.3000 -> 0.1000 -remn329 remaindernear 1.0 0.3 -> 0.1 -remn330 remaindernear 1.00 0.3 -> 0.10 -remn331 remaindernear 1.000 0.3 -> 0.100 -remn332 remaindernear 1.0000 0.3 -> 0.1000 -remn333 remaindernear 0.5 2 -> 0.5 -remn334 remaindernear 0.5 2.1 -> 0.5 -remn335 remaindernear 0.5 2.01 -> 0.50 -remn336 remaindernear 0.5 2.001 -> 0.500 -remn337 remaindernear 0.50 2 -> 0.50 -remn338 remaindernear 0.50 2.01 -> 0.50 -remn339 remaindernear 0.50 2.001 -> 0.500 - -remn340 remaindernear 0.5 0.5000001 -> -1E-7 -remn341 remaindernear 0.5 0.50000001 -> -1E-8 -remn342 remaindernear 0.5 0.500000001 -> -1E-9 -remn343 remaindernear 0.5 0.5000000001 -> 0 Inexact Lost_digits Rounded -remn344 remaindernear 0.5 0.50000000001 -> 0 Inexact Lost_digits Rounded -remn345 remaindernear 0.5 0.4999999 -> 1E-7 -remn346 remaindernear 0.5 0.49999999 -> 1E-8 -remn347 remaindernear 0.5 0.499999999 -> 1E-9 -remn348 remaindernear 0.5 0.4999999999 -> 0 Inexact Lost_digits Rounded -remn349 remaindernear 0.5 0.49999999999 -> 0 Inexact Lost_digits Rounded - -remn350 remaindernear 0.03 7 -> 0.03 -remn351 remaindernear 5 2 -> 1 -remn352 remaindernear 4.1 2 -> 0.1 -remn353 remaindernear 4.01 2 -> 0.01 -remn354 remaindernear 4.001 2 -> 0.001 -remn355 remaindernear 4.0001 2 -> 0.0001 -remn356 remaindernear 4.00001 2 -> 0.00001 -remn357 remaindernear 4.000001 2 -> 0.000001 -remn358 remaindernear 4.0000001 2 -> 1E-7 - -remn360 remaindernear 1.2 0.7345 -> -0.2690 -remn361 remaindernear 0.8 12 -> 0.8 -remn362 remaindernear 0.8 0.2 -> 0 -remn363 remaindernear 0.8 0.3 -> -0.1 -remn364 remaindernear 0.800 12 -> 0.800 -remn365 remaindernear 0.800 1.7 -> 0.800 -remn366 remaindernear 2.400 2 -> 0.400 - -precision: 6 -remn371 remaindernear 2.400 2 -> 0.400 -precision: 3 --- lostDigits in the next one -remn372 remaindernear 12345678900000 12e+12 -> 3E+11 Inexact Lost_digits Rounded - -precision: 5 -remn381 remaindernear 12345 1 -> 0 -remn382 remaindernear 12345 1.0001 -> -0.2344 -remn383 remaindernear 12345 1.001 -> -0.333 -remn384 remaindernear 12345 1.01 -> -0.23 -remn385 remaindernear 12345 1.1 -> -0.3 -remn386 remaindernear 12355 4 -> -1 -remn387 remaindernear 12345 4 -> 1 -remn388 remaindernear 12355 4.0001 -> -1.3089 -remn389 remaindernear 12345 4.0001 -> 0.6914 -remn390 remaindernear 12345 4.9 -> 1.9 -remn391 remaindernear 12345 4.99 -> -0.26 -remn392 remaindernear 12345 4.999 -> 2.469 -remn393 remaindernear 12345 4.9999 -> 0.2469 -remn394 remaindernear 12345 5 -> 0 -remn395 remaindernear 12345 5.0001 -> -0.2469 -remn396 remaindernear 12345 5.001 -> -2.469 -remn397 remaindernear 12345 5.01 -> 0.36 -remn398 remaindernear 12345 5.1 -> -2.1 - -precision: 9 --- some nasty division-by-1 cases [some similar above] -remn401 remaindernear 0.4 1 -> 0.4 -remn402 remaindernear 0.45 1 -> 0.45 -remn403 remaindernear 0.455 1 -> 0.455 -remn404 remaindernear 0.4555 1 -> 0.4555 -remn405 remaindernear 0.45555 1 -> 0.45555 -remn406 remaindernear 0.455555 1 -> 0.455555 -remn407 remaindernear 0.4555555 1 -> 0.4555555 -remn408 remaindernear 0.45555555 1 -> 0.45555555 -remn409 remaindernear 0.455555555 1 -> 0.455555555 - --- overflow and underflow tests [from divide] -precision: 9 -maxexponent: 999999999 -minexponent: -999999999 -remn430 remaindernear +1.23456789012345E-0 9E+999999999 -> 1.23456789 Inexact Lost_digits Rounded -remn431 remaindernear 9E+999999999 +0.23456789012345E-0 -> ? Division_impossible Inexact Lost_digits Rounded -remn432 remaindernear +0.100 9E+999999999 -> 0.100 -remn433 remaindernear 9E-999999999 +9.100 -> 9E-999999999 -remn435 remaindernear -1.23456789012345E-0 9E+999999999 -> -1.23456789 Inexact Lost_digits Rounded -remn436 remaindernear 9E+999999999 -0.83456789012345E-0 -> ? Division_impossible Inexact Lost_digits Rounded -remn437 remaindernear -0.100 9E+999999999 -> -0.100 -remn438 remaindernear 9E-999999999 -9.100 -> 9E-999999999 - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -remn501 remaindernear 12345678000 100 -> 0 Rounded -remn502 remaindernear 1 12345678000 -> 1 Rounded -remn503 remaindernear 1234567800 10 -> 0 Rounded -remn504 remaindernear 1 1234567800 -> 1 Rounded -remn505 remaindernear 1234567890 10 -> 0 Rounded -remn506 remaindernear 1 1234567890 -> 1 Rounded -remn507 remaindernear 1234567891 10 -> 0 Inexact Lost_digits Rounded -remn508 remaindernear 1 1234567891 -> 1 Inexact Lost_digits Rounded -remn509 remaindernear 12345678901 100 -> 0 Inexact Lost_digits Rounded -remn510 remaindernear 1 12345678901 -> 1 Inexact Lost_digits Rounded -remn511 remaindernear 1234567896 10 -> 0 Inexact Lost_digits Rounded -remn512 remaindernear 1 1234567896 -> 1 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -remn541 remaindernear 12345678000 100 -> 0 -remn542 remaindernear 1 12345678000 -> 1 -remn543 remaindernear 1234567800 10 -> 0 -remn544 remaindernear 1 1234567800 -> 1 -remn545 remaindernear 1234567890 10 -> 0 -remn546 remaindernear 1 1234567890 -> 1 -remn547 remaindernear 1234567891 10 -> 1 -remn548 remaindernear 1 1234567891 -> 1 -remn549 remaindernear 12345678901 100 -> 1 -remn550 remaindernear 1 12345678901 -> 1 -remn551 remaindernear 1234567896 10 -> -4 -remn552 remaindernear 1 1234567896 -> 1 - --- early tests -remn601 remaindernear 10 6 -> -2 -remn602 remaindernear -10 6 -> 2 -remn603 remaindernear 11 3 -> -1 -remn604 remaindernear 11 5 -> 1 -remn605 remaindernear 7.7 8 -> -0.3 -remn606 remaindernear 31.5 3 -> 1.5 -- i=10 -remn607 remaindernear 34.5 3 -> -1.5 -- i=11 - --- Null tests -remn900 remaindernear 10 # -> ? Invalid_operation -remn901 remaindernear # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/rescale0.decTest b/qdecimal/test/tc_subset/rescale0.decTest deleted file mode 100644 index 71ae212..0000000 --- a/qdecimal/test/tc_subset/rescale0.decTest +++ /dev/null @@ -1,263 +0,0 @@ ------------------------------------------------------------------------- --- rescale0.decTest -- decimal rescale operation (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- [obsolete] Quantize0.decTest has the improved version - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -res001 rescale 0 0 -> 0 -res002 rescale 1 0 -> 1 -res003 rescale 0.1 +2 -> 0E+2 Inexact Rounded -res005 rescale 0.1 +1 -> 0E+1 Inexact Rounded -res006 rescale 0.1 0 -> 0 Inexact Rounded -res007 rescale 0.1 -1 -> 0.1 -res008 rescale 0.1 -2 -> 0.10 -res009 rescale 0.1 -3 -> 0.100 -res010 rescale 0.9 +2 -> 0E+2 Inexact Rounded -res011 rescale 0.9 +1 -> 0E+1 Inexact Rounded -res012 rescale 0.9 +0 -> 1 Inexact Rounded -res013 rescale 0.9 -1 -> 0.9 -res014 rescale 0.9 -2 -> 0.90 -res015 rescale 0.9 -3 -> 0.900 --- negatives -res021 rescale -0 0 -> 0 -res022 rescale -1 0 -> -1 -res023 rescale -0.1 +2 -> 0E+2 Inexact Rounded -res025 rescale -0.1 +1 -> 0E+1 Inexact Rounded -res026 rescale -0.1 0 -> 0 Inexact Rounded -res027 rescale -0.1 -1 -> -0.1 -res028 rescale -0.1 -2 -> -0.10 -res029 rescale -0.1 -3 -> -0.100 -res030 rescale -0.4 +2 -> 0E+2 Inexact Rounded -res031 rescale -0.4 +1 -> 0E+1 Inexact Rounded -res032 rescale -0.4 +0 -> 0 Inexact Rounded -res033 rescale -0.4 -1 -> -0.4 -res034 rescale -0.4 -2 -> -0.40 -res035 rescale -0.4 -3 -> -0.400 -res036 rescale -0.5 +2 -> 0E+2 Inexact Rounded -res037 rescale -0.5 +1 -> 0E+1 Inexact Rounded -res038 rescale -0.5 +0 -> -1 Inexact Rounded -res039 rescale -0.5 -1 -> -0.5 -res040 rescale -0.5 -2 -> -0.50 -res041 rescale -0.5 -3 -> -0.500 -res042 rescale -0.9 +2 -> 0E+2 Inexact Rounded -res043 rescale -0.9 +1 -> 0E+1 Inexact Rounded -res044 rescale -0.9 +0 -> -1 Inexact Rounded -res045 rescale -0.9 -1 -> -0.9 -res046 rescale -0.9 -2 -> -0.90 -res047 rescale -0.9 -3 -> -0.900 - --- examples from Base Specification -res080 rescale 2.17 -3 -> 2.170 -res081 rescale 2.17 -2 -> 2.17 -res082 rescale 2.17 -1 -> 2.2 Inexact Rounded -res083 rescale 2.17 -0 -> 2 Inexact Rounded -res084 rescale 2.17 +1 -> 0E+1 Inexact Rounded -res085 rescale 217 -1 -> 217.0 -res086 rescale 217 0 -> 217 -res087 rescale 217 +1 -> 2.2E+2 Inexact Rounded -res088 rescale 217 +2 -> 2E+2 Inexact Rounded - --- -ve exponents .. [mostly] -res089 rescale 12 +4 -> 0E+4 Inexact Rounded -res090 rescale 12 +3 -> 0E+3 Inexact Rounded -res091 rescale 12 +2 -> 0E+2 Inexact Rounded -res092 rescale 12 +1 -> 1E+1 Inexact Rounded -res093 rescale 1.2345 -2 -> 1.23 Inexact Rounded -res094 rescale 1.2355 -2 -> 1.24 Inexact Rounded -res095 rescale 1.2345 -6 -> 1.234500 -res096 rescale 9.9999 -2 -> 10.00 Inexact Rounded -res097 rescale 0.0001 -2 -> 0.00 Inexact Rounded -res098 rescale 0.001 -2 -> 0.00 Inexact Rounded -res099 rescale 0.009 -2 -> 0.01 Inexact Rounded -res100 rescale 92 +2 -> 1E+2 Inexact Rounded -res101 rescale -1 0 -> -1 -res102 rescale -1 -1 -> -1.0 -res103 rescale -1 -2 -> -1.00 -res104 rescale 0 0 -> 0 -res105 rescale 0 -1 -> 0.0 -res106 rescale 0 -2 -> 0.00 -res107 rescale 0.00 0 -> 0 -res108 rescale 0 +1 -> 0E+1 -res109 rescale 0 +2 -> 0E+2 -res110 rescale +1 0 -> 1 -res111 rescale +1 -1 -> 1.0 -res112 rescale +1 -2 -> 1.00 - -res120 rescale 1.04 -3 -> 1.040 -res121 rescale 1.04 -2 -> 1.04 -res122 rescale 1.04 -1 -> 1.0 Inexact Rounded -res123 rescale 1.04 0 -> 1 Inexact Rounded -res124 rescale 1.05 -3 -> 1.050 -res125 rescale 1.05 -2 -> 1.05 -res126 rescale 1.05 -1 -> 1.1 Inexact Rounded -res127 rescale 1.05 0 -> 1 Inexact Rounded -res128 rescale 1.05 -3 -> 1.050 -res129 rescale 1.05 -2 -> 1.05 -res130 rescale 1.05 -1 -> 1.1 Inexact Rounded -res131 rescale 1.05 0 -> 1 Inexact Rounded -res132 rescale 1.06 -3 -> 1.060 -res133 rescale 1.06 -2 -> 1.06 -res134 rescale 1.06 -1 -> 1.1 Inexact Rounded -res135 rescale 1.06 0 -> 1 Inexact Rounded - -res140 rescale -10 -2 -> -10.00 -res141 rescale +1 -2 -> 1.00 -res142 rescale +10 -2 -> 10.00 -res143 rescale 1E+10 -2 -> ? Invalid_operation -res144 rescale 1E-10 -2 -> 0.00 Inexact Rounded -res145 rescale 1E-2 -2 -> 0.01 -res146 rescale 0E-10 -2 -> 0.00 - -res150 rescale 1.0600 -5 -> 1.06000 -res151 rescale 1.0600 -4 -> 1.0600 -res152 rescale 1.0600 -3 -> 1.060 Rounded -res153 rescale 1.0600 -2 -> 1.06 Rounded -res154 rescale 1.0600 -1 -> 1.1 Inexact Rounded -res155 rescale 1.0600 0 -> 1 Inexact Rounded - --- +ve exponents .. -res201 rescale -1 +0 -> -1 -res202 rescale -1 +1 -> 0E+1 Inexact Rounded -res203 rescale -1 +2 -> 0E+2 Inexact Rounded -res204 rescale 0 +0 -> 0 -res205 rescale 0 +1 -> 0E+1 -res206 rescale 0 +2 -> 0E+2 -res207 rescale +1 +0 -> 1 -res208 rescale +1 +1 -> 0E+1 Inexact Rounded -res209 rescale +1 +2 -> 0E+2 Inexact Rounded - -res220 rescale 1.04 +3 -> 0E+3 Inexact Rounded -res221 rescale 1.04 +2 -> 0E+2 Inexact Rounded -res222 rescale 1.04 +1 -> 0E+1 Inexact Rounded -res223 rescale 1.04 +0 -> 1 Inexact Rounded -res224 rescale 1.05 +3 -> 0E+3 Inexact Rounded -res225 rescale 1.05 +2 -> 0E+2 Inexact Rounded -res226 rescale 1.05 +1 -> 0E+1 Inexact Rounded -res227 rescale 1.05 +0 -> 1 Inexact Rounded -res228 rescale 1.05 +3 -> 0E+3 Inexact Rounded -res229 rescale 1.05 +2 -> 0E+2 Inexact Rounded -res230 rescale 1.05 +1 -> 0E+1 Inexact Rounded -res231 rescale 1.05 +0 -> 1 Inexact Rounded -res232 rescale 1.06 +3 -> 0E+3 Inexact Rounded -res233 rescale 1.06 +2 -> 0E+2 Inexact Rounded -res234 rescale 1.06 +1 -> 0E+1 Inexact Rounded -res235 rescale 1.06 +0 -> 1 Inexact Rounded - -res240 rescale -10 +1 -> -1E+1 Rounded -res241 rescale +1 +1 -> 0E+1 Inexact Rounded -res242 rescale +10 +1 -> 1E+1 Rounded -res243 rescale 1E+1 +1 -> 1E+1 -- underneath this is E+1 -res244 rescale 1E+2 +1 -> 1.0E+2 -- underneath this is E+1 -res245 rescale 1E+3 +1 -> 1.00E+3 -- underneath this is E+1 -res246 rescale 1E+4 +1 -> 1.000E+4 -- underneath this is E+1 -res247 rescale 1E+5 +1 -> 1.0000E+5 -- underneath this is E+1 -res248 rescale 1E+6 +1 -> 1.00000E+6 -- underneath this is E+1 -res249 rescale 1E+7 +1 -> 1.000000E+7 -- underneath this is E+1 -res250 rescale 1E+8 +1 -> 1.0000000E+8 -- underneath this is E+1 -res251 rescale 1E+9 +1 -> 1.00000000E+9 -- underneath this is E+1 --- next one tries to add 9 zeros -res252 rescale 1E+10 +1 -> ? Invalid_operation -res253 rescale 1E-10 +1 -> 0E+1 Inexact Rounded -res254 rescale 1E-2 +1 -> 0E+1 Inexact Rounded -res255 rescale 0E-10 +1 -> 0E+1 - -res260 rescale -10 +2 -> 0E+2 Inexact Rounded -res261 rescale +1 +2 -> 0E+2 Inexact Rounded -res262 rescale +10 +2 -> 0E+2 Inexact Rounded -res263 rescale 1E+1 +2 -> 0E+2 Inexact Rounded -res264 rescale 1E+2 +2 -> 1E+2 -res265 rescale 1E+3 +2 -> 1.0E+3 -res266 rescale 1E+4 +2 -> 1.00E+4 -res267 rescale 1E+5 +2 -> 1.000E+5 -res268 rescale 1E+6 +2 -> 1.0000E+6 -res269 rescale 1E+7 +2 -> 1.00000E+7 -res270 rescale 1E+8 +2 -> 1.000000E+8 -res271 rescale 1E+9 +2 -> 1.0000000E+9 -res272 rescale 1E+10 +2 -> 1.00000000E+10 -res273 rescale 1E-10 +2 -> 0E+2 Inexact Rounded -res274 rescale 1E-2 +2 -> 0E+2 Inexact Rounded -res275 rescale 0E-10 +2 -> 0E+2 - -res280 rescale -10 +3 -> 0E+3 Inexact Rounded -res281 rescale +1 +3 -> 0E+3 Inexact Rounded -res282 rescale +10 +3 -> 0E+3 Inexact Rounded -res283 rescale 1E+1 +3 -> 0E+3 Inexact Rounded -res284 rescale 1E+2 +3 -> 0E+3 Inexact Rounded -res285 rescale 1E+3 +3 -> 1E+3 -res286 rescale 1E+4 +3 -> 1.0E+4 -res287 rescale 1E+5 +3 -> 1.00E+5 -res288 rescale 1E+6 +3 -> 1.000E+6 -res289 rescale 1E+7 +3 -> 1.0000E+7 -res290 rescale 1E+8 +3 -> 1.00000E+8 -res291 rescale 1E+9 +3 -> 1.000000E+9 -res292 rescale 1E+10 +3 -> 1.0000000E+10 -res293 rescale 1E-10 +3 -> 0E+3 Inexact Rounded -res294 rescale 1E-2 +3 -> 0E+3 Inexact Rounded -res295 rescale 0E-10 +3 -> 0E+3 - --- some individuals -precision: 9 -res380 rescale 352364.506 -2 -> 352364.51 Inexact Rounded -res381 rescale 3523645.06 -2 -> 3523645.06 -res382 rescale 35236450.6 -2 -> ? Invalid_operation -res383 rescale 352364506 -2 -> ? Invalid_operation -res384 rescale -352364.506 -2 -> -352364.51 Inexact Rounded -res385 rescale -3523645.06 -2 -> -3523645.06 -res386 rescale -35236450.6 -2 -> ? Invalid_operation -res387 rescale -352364506 -2 -> ? Invalid_operation - --- some baddies -res394 rescale 222 +2.00100000000 -> ? Invalid_operation Rounded -res395 rescale 222 +2.000001 -> ? Invalid_operation -res396 rescale 222 +2.00000000 -> 2E+2 Inexact Rounded -res397 rescale 222 +2.000000001 -> ? Inexact Invalid_operation Lost_digits Rounded -res398 rescale 222 +2.0000000001 -> ? Inexact Invalid_operation Lost_digits Rounded -res399 rescale 222 +2.00000000001 -> ? Inexact Invalid_operation Lost_digits Rounded - --- lostDigits checks [rhs checks removed] -maxexponent: 999 -minexponent: -999 -precision: 9 -res401 rescale 12345678000 +3 -> 1.2345678E+10 Rounded -res403 rescale 1234567800 +1 -> 1.23456780E+9 Rounded -res405 rescale 1234567890 +1 -> 1.23456789E+9 Rounded -res407 rescale 1234567891 +1 -> 1.23456789E+9 Inexact Lost_digits Rounded -res409 rescale 12345678901 +2 -> 1.23456789E+10 Inexact Lost_digits Rounded -res411 rescale 1234567896 +1 -> 1.23456790E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -res441 rescale 12345678000 +3 -> 1.2345678E+10 Rounded -res443 rescale 1234567800 +1 -> 1.23456780E+9 Rounded -res445 rescale 1234567890 +1 -> 1.23456789E+9 Rounded -res447 rescale 1234567891 +1 -> 1.23456789E+9 Inexact Rounded -res449 rescale 12345678901 +2 -> 1.23456789E+10 Inexact Rounded -res451 rescale 1234567896 +1 -> 1.23456790E+9 Inexact Rounded - --- Null tests -res900 rescale 10 # -> ? Invalid_operation -res901 rescale # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/rounding0.decTest b/qdecimal/test/tc_subset/rounding0.decTest deleted file mode 100644 index b3b2361..0000000 --- a/qdecimal/test/tc_subset/rounding0.decTest +++ /dev/null @@ -1,888 +0,0 @@ ------------------------------------------------------------------------- --- rounding0.decTest -- decimal rounding modes testcases (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- These tests require that implementations take account of residues in --- order to get correct results for some rounding modes. Rather than --- single rounding tests we therefore need tests for most operators. --- [We do assume add/minus/plus/subtract are common paths, however, as --- is rounding of negatives (if the latter works for addition, assume it --- works for the others, too).] --- --- Underflow Subnormal and overflow behaviours are tested under the individual --- operators. - -extended: 0 -precision: 5 -- for easier visual inspection -maxExponent: 999 -minexponent: -999 - --- Addition operators ------------------------------------------------- -rounding: down - -rad100 add 12345 -0.1 -> 12344 Inexact Rounded -rad101 add 12345 -0.01 -> 12344 Inexact Rounded -rad102 add 12345 -0.001 -> 12344 Inexact Rounded -rad103 add 12345 -0.00001 -> 12344 Inexact Rounded -rad104 add 12345 -0.000001 -> 12344 Inexact Rounded -rad105 add 12345 -0.0000001 -> 12344 Inexact Rounded -rad106 add 12345 0 -> 12345 -rad107 add 12345 0.0000001 -> 12345 Inexact Rounded -rad108 add 12345 0.000001 -> 12345 Inexact Rounded -rad109 add 12345 0.00001 -> 12345 Inexact Rounded -rad110 add 12345 0.0001 -> 12345 Inexact Rounded -rad111 add 12345 0.001 -> 12345 Inexact Rounded -rad112 add 12345 0.01 -> 12345 Inexact Rounded -rad113 add 12345 0.1 -> 12345 Inexact Rounded - -rad115 add 12346 0.49999 -> 12346 Inexact Rounded -rad116 add 12346 0.5 -> 12346 Inexact Rounded -rad117 add 12346 0.50001 -> 12346 Inexact Rounded - -rad120 add 12345 0.4 -> 12345 Inexact Rounded -rad121 add 12345 0.49 -> 12345 Inexact Rounded -rad122 add 12345 0.499 -> 12345 Inexact Rounded -rad123 add 12345 0.49999 -> 12345 Inexact Rounded -rad124 add 12345 0.5 -> 12345 Inexact Rounded -rad125 add 12345 0.50001 -> 12345 Inexact Rounded -rad126 add 12345 0.5001 -> 12345 Inexact Rounded -rad127 add 12345 0.501 -> 12345 Inexact Rounded -rad128 add 12345 0.51 -> 12345 Inexact Rounded -rad129 add 12345 0.6 -> 12345 Inexact Rounded - -rounding: half_down - -rad140 add 12345 -0.1 -> 12345 Inexact Rounded -rad141 add 12345 -0.01 -> 12345 Inexact Rounded -rad142 add 12345 -0.001 -> 12345 Inexact Rounded -rad143 add 12345 -0.00001 -> 12345 Inexact Rounded -rad144 add 12345 -0.000001 -> 12345 Inexact Rounded -rad145 add 12345 -0.0000001 -> 12345 Inexact Rounded -rad146 add 12345 0 -> 12345 -rad147 add 12345 0.0000001 -> 12345 Inexact Rounded -rad148 add 12345 0.000001 -> 12345 Inexact Rounded -rad149 add 12345 0.00001 -> 12345 Inexact Rounded -rad150 add 12345 0.0001 -> 12345 Inexact Rounded -rad151 add 12345 0.001 -> 12345 Inexact Rounded -rad152 add 12345 0.01 -> 12345 Inexact Rounded -rad153 add 12345 0.1 -> 12345 Inexact Rounded - -rad155 add 12346 0.49999 -> 12346 Inexact Rounded -rad156 add 12346 0.5 -> 12346 Inexact Rounded -rad157 add 12346 0.50001 -> 12347 Inexact Rounded - -rad160 add 12345 0.4 -> 12345 Inexact Rounded -rad161 add 12345 0.49 -> 12345 Inexact Rounded -rad162 add 12345 0.499 -> 12345 Inexact Rounded -rad163 add 12345 0.49999 -> 12345 Inexact Rounded -rad164 add 12345 0.5 -> 12345 Inexact Rounded -rad165 add 12345 0.50001 -> 12346 Inexact Rounded -rad166 add 12345 0.5001 -> 12346 Inexact Rounded -rad167 add 12345 0.501 -> 12346 Inexact Rounded -rad168 add 12345 0.51 -> 12346 Inexact Rounded -rad169 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: half_even - -rad170 add 12345 -0.1 -> 12345 Inexact Rounded -rad171 add 12345 -0.01 -> 12345 Inexact Rounded -rad172 add 12345 -0.001 -> 12345 Inexact Rounded -rad173 add 12345 -0.00001 -> 12345 Inexact Rounded -rad174 add 12345 -0.000001 -> 12345 Inexact Rounded -rad175 add 12345 -0.0000001 -> 12345 Inexact Rounded -rad176 add 12345 0 -> 12345 -rad177 add 12345 0.0000001 -> 12345 Inexact Rounded -rad178 add 12345 0.000001 -> 12345 Inexact Rounded -rad179 add 12345 0.00001 -> 12345 Inexact Rounded -rad180 add 12345 0.0001 -> 12345 Inexact Rounded -rad181 add 12345 0.001 -> 12345 Inexact Rounded -rad182 add 12345 0.01 -> 12345 Inexact Rounded -rad183 add 12345 0.1 -> 12345 Inexact Rounded - -rad185 add 12346 0.49999 -> 12346 Inexact Rounded -rad186 add 12346 0.5 -> 12346 Inexact Rounded -rad187 add 12346 0.50001 -> 12347 Inexact Rounded - -rad190 add 12345 0.4 -> 12345 Inexact Rounded -rad191 add 12345 0.49 -> 12345 Inexact Rounded -rad192 add 12345 0.499 -> 12345 Inexact Rounded -rad193 add 12345 0.49999 -> 12345 Inexact Rounded -rad194 add 12345 0.5 -> 12346 Inexact Rounded -rad195 add 12345 0.50001 -> 12346 Inexact Rounded -rad196 add 12345 0.5001 -> 12346 Inexact Rounded -rad197 add 12345 0.501 -> 12346 Inexact Rounded -rad198 add 12345 0.51 -> 12346 Inexact Rounded -rad199 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: half_up - -rad200 add 12345 -0.1 -> 12345 Inexact Rounded -rad201 add 12345 -0.01 -> 12345 Inexact Rounded -rad202 add 12345 -0.001 -> 12345 Inexact Rounded -rad203 add 12345 -0.00001 -> 12345 Inexact Rounded -rad204 add 12345 -0.000001 -> 12345 Inexact Rounded -rad205 add 12345 -0.0000001 -> 12345 Inexact Rounded -rad206 add 12345 0 -> 12345 -rad207 add 12345 0.0000001 -> 12345 Inexact Rounded -rad208 add 12345 0.000001 -> 12345 Inexact Rounded -rad209 add 12345 0.00001 -> 12345 Inexact Rounded -rad210 add 12345 0.0001 -> 12345 Inexact Rounded -rad211 add 12345 0.001 -> 12345 Inexact Rounded -rad212 add 12345 0.01 -> 12345 Inexact Rounded -rad213 add 12345 0.1 -> 12345 Inexact Rounded - -rad215 add 12346 0.49999 -> 12346 Inexact Rounded -rad216 add 12346 0.5 -> 12347 Inexact Rounded -rad217 add 12346 0.50001 -> 12347 Inexact Rounded - -rad220 add 12345 0.4 -> 12345 Inexact Rounded -rad221 add 12345 0.49 -> 12345 Inexact Rounded -rad222 add 12345 0.499 -> 12345 Inexact Rounded -rad223 add 12345 0.49999 -> 12345 Inexact Rounded -rad224 add 12345 0.5 -> 12346 Inexact Rounded -rad225 add 12345 0.50001 -> 12346 Inexact Rounded -rad226 add 12345 0.5001 -> 12346 Inexact Rounded -rad227 add 12345 0.501 -> 12346 Inexact Rounded -rad228 add 12345 0.51 -> 12346 Inexact Rounded -rad229 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: up - -rad230 add 12345 -0.1 -> 12345 Inexact Rounded -rad231 add 12345 -0.01 -> 12345 Inexact Rounded -rad232 add 12345 -0.001 -> 12345 Inexact Rounded -rad233 add 12345 -0.00001 -> 12345 Inexact Rounded -rad234 add 12345 -0.000001 -> 12345 Inexact Rounded -rad235 add 12345 -0.0000001 -> 12345 Inexact Rounded -rad236 add 12345 0 -> 12345 -rad237 add 12345 0.0000001 -> 12346 Inexact Rounded -rad238 add 12345 0.000001 -> 12346 Inexact Rounded -rad239 add 12345 0.00001 -> 12346 Inexact Rounded -rad240 add 12345 0.0001 -> 12346 Inexact Rounded -rad241 add 12345 0.001 -> 12346 Inexact Rounded -rad242 add 12345 0.01 -> 12346 Inexact Rounded -rad243 add 12345 0.1 -> 12346 Inexact Rounded - -rad245 add 12346 0.49999 -> 12347 Inexact Rounded -rad246 add 12346 0.5 -> 12347 Inexact Rounded -rad247 add 12346 0.50001 -> 12347 Inexact Rounded - -rad250 add 12345 0.4 -> 12346 Inexact Rounded -rad251 add 12345 0.49 -> 12346 Inexact Rounded -rad252 add 12345 0.499 -> 12346 Inexact Rounded -rad253 add 12345 0.49999 -> 12346 Inexact Rounded -rad254 add 12345 0.5 -> 12346 Inexact Rounded -rad255 add 12345 0.50001 -> 12346 Inexact Rounded -rad256 add 12345 0.5001 -> 12346 Inexact Rounded -rad257 add 12345 0.501 -> 12346 Inexact Rounded -rad258 add 12345 0.51 -> 12346 Inexact Rounded -rad259 add 12345 0.6 -> 12346 Inexact Rounded - -rounding: floor - -rad300 add 12345 -0.1 -> 12344 Inexact Rounded -rad301 add 12345 -0.01 -> 12344 Inexact Rounded -rad302 add 12345 -0.001 -> 12344 Inexact Rounded -rad303 add 12345 -0.00001 -> 12344 Inexact Rounded -rad304 add 12345 -0.000001 -> 12344 Inexact Rounded -rad305 add 12345 -0.0000001 -> 12344 Inexact Rounded -rad306 add 12345 0 -> 12345 -rad307 add 12345 0.0000001 -> 12345 Inexact Rounded -rad308 add 12345 0.000001 -> 12345 Inexact Rounded -rad309 add 12345 0.00001 -> 12345 Inexact Rounded -rad310 add 12345 0.0001 -> 12345 Inexact Rounded -rad311 add 12345 0.001 -> 12345 Inexact Rounded -rad312 add 12345 0.01 -> 12345 Inexact Rounded -rad313 add 12345 0.1 -> 12345 Inexact Rounded - -rad315 add 12346 0.49999 -> 12346 Inexact Rounded -rad316 add 12346 0.5 -> 12346 Inexact Rounded -rad317 add 12346 0.50001 -> 12346 Inexact Rounded - -rad320 add 12345 0.4 -> 12345 Inexact Rounded -rad321 add 12345 0.49 -> 12345 Inexact Rounded -rad322 add 12345 0.499 -> 12345 Inexact Rounded -rad323 add 12345 0.49999 -> 12345 Inexact Rounded -rad324 add 12345 0.5 -> 12345 Inexact Rounded -rad325 add 12345 0.50001 -> 12345 Inexact Rounded -rad326 add 12345 0.5001 -> 12345 Inexact Rounded -rad327 add 12345 0.501 -> 12345 Inexact Rounded -rad328 add 12345 0.51 -> 12345 Inexact Rounded -rad329 add 12345 0.6 -> 12345 Inexact Rounded - -rounding: ceiling - -rad330 add 12345 -0.1 -> 12345 Inexact Rounded -rad331 add 12345 -0.01 -> 12345 Inexact Rounded -rad332 add 12345 -0.001 -> 12345 Inexact Rounded -rad333 add 12345 -0.00001 -> 12345 Inexact Rounded -rad334 add 12345 -0.000001 -> 12345 Inexact Rounded -rad335 add 12345 -0.0000001 -> 12345 Inexact Rounded -rad336 add 12345 0 -> 12345 -rad337 add 12345 0.0000001 -> 12346 Inexact Rounded -rad338 add 12345 0.000001 -> 12346 Inexact Rounded -rad339 add 12345 0.00001 -> 12346 Inexact Rounded -rad340 add 12345 0.0001 -> 12346 Inexact Rounded -rad341 add 12345 0.001 -> 12346 Inexact Rounded -rad342 add 12345 0.01 -> 12346 Inexact Rounded -rad343 add 12345 0.1 -> 12346 Inexact Rounded - -rad345 add 12346 0.49999 -> 12347 Inexact Rounded -rad346 add 12346 0.5 -> 12347 Inexact Rounded -rad347 add 12346 0.50001 -> 12347 Inexact Rounded - -rad350 add 12345 0.4 -> 12346 Inexact Rounded -rad351 add 12345 0.49 -> 12346 Inexact Rounded -rad352 add 12345 0.499 -> 12346 Inexact Rounded -rad353 add 12345 0.49999 -> 12346 Inexact Rounded -rad354 add 12345 0.5 -> 12346 Inexact Rounded -rad355 add 12345 0.50001 -> 12346 Inexact Rounded -rad356 add 12345 0.5001 -> 12346 Inexact Rounded -rad357 add 12345 0.501 -> 12346 Inexact Rounded -rad358 add 12345 0.51 -> 12346 Inexact Rounded -rad359 add 12345 0.6 -> 12346 Inexact Rounded - --- negatives... - -rounding: down - -rsu100 add -12345 -0.1 -> -12345 Inexact Rounded -rsu101 add -12345 -0.01 -> -12345 Inexact Rounded -rsu102 add -12345 -0.001 -> -12345 Inexact Rounded -rsu103 add -12345 -0.00001 -> -12345 Inexact Rounded -rsu104 add -12345 -0.000001 -> -12345 Inexact Rounded -rsu105 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsu106 add -12345 0 -> -12345 -rsu107 add -12345 0.0000001 -> -12344 Inexact Rounded -rsu108 add -12345 0.000001 -> -12344 Inexact Rounded -rsu109 add -12345 0.00001 -> -12344 Inexact Rounded -rsu110 add -12345 0.0001 -> -12344 Inexact Rounded -rsu111 add -12345 0.001 -> -12344 Inexact Rounded -rsu112 add -12345 0.01 -> -12344 Inexact Rounded -rsu113 add -12345 0.1 -> -12344 Inexact Rounded - -rsu115 add -12346 0.49999 -> -12345 Inexact Rounded -rsu116 add -12346 0.5 -> -12345 Inexact Rounded -rsu117 add -12346 0.50001 -> -12345 Inexact Rounded - -rsu120 add -12345 0.4 -> -12344 Inexact Rounded -rsu121 add -12345 0.49 -> -12344 Inexact Rounded -rsu122 add -12345 0.499 -> -12344 Inexact Rounded -rsu123 add -12345 0.49999 -> -12344 Inexact Rounded -rsu124 add -12345 0.5 -> -12344 Inexact Rounded -rsu125 add -12345 0.50001 -> -12344 Inexact Rounded -rsu126 add -12345 0.5001 -> -12344 Inexact Rounded -rsu127 add -12345 0.501 -> -12344 Inexact Rounded -rsu128 add -12345 0.51 -> -12344 Inexact Rounded -rsu129 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: half_down - -rsu140 add -12345 -0.1 -> -12345 Inexact Rounded -rsu141 add -12345 -0.01 -> -12345 Inexact Rounded -rsu142 add -12345 -0.001 -> -12345 Inexact Rounded -rsu143 add -12345 -0.00001 -> -12345 Inexact Rounded -rsu144 add -12345 -0.000001 -> -12345 Inexact Rounded -rsu145 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsu146 add -12345 0 -> -12345 -rsu147 add -12345 0.0000001 -> -12345 Inexact Rounded -rsu148 add -12345 0.000001 -> -12345 Inexact Rounded -rsu149 add -12345 0.00001 -> -12345 Inexact Rounded -rsu150 add -12345 0.0001 -> -12345 Inexact Rounded -rsu151 add -12345 0.001 -> -12345 Inexact Rounded -rsu152 add -12345 0.01 -> -12345 Inexact Rounded -rsu153 add -12345 0.1 -> -12345 Inexact Rounded - -rsu155 add -12346 0.49999 -> -12346 Inexact Rounded -rsu156 add -12346 0.5 -> -12345 Inexact Rounded -rsu157 add -12346 0.50001 -> -12345 Inexact Rounded - -rsu160 add -12345 0.4 -> -12345 Inexact Rounded -rsu161 add -12345 0.49 -> -12345 Inexact Rounded -rsu162 add -12345 0.499 -> -12345 Inexact Rounded -rsu163 add -12345 0.49999 -> -12345 Inexact Rounded -rsu164 add -12345 0.5 -> -12344 Inexact Rounded -rsu165 add -12345 0.50001 -> -12344 Inexact Rounded -rsu166 add -12345 0.5001 -> -12344 Inexact Rounded -rsu167 add -12345 0.501 -> -12344 Inexact Rounded -rsu168 add -12345 0.51 -> -12344 Inexact Rounded -rsu169 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: half_even - -rsu170 add -12345 -0.1 -> -12345 Inexact Rounded -rsu171 add -12345 -0.01 -> -12345 Inexact Rounded -rsu172 add -12345 -0.001 -> -12345 Inexact Rounded -rsu173 add -12345 -0.00001 -> -12345 Inexact Rounded -rsu174 add -12345 -0.000001 -> -12345 Inexact Rounded -rsu175 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsu176 add -12345 0 -> -12345 -rsu177 add -12345 0.0000001 -> -12345 Inexact Rounded -rsu178 add -12345 0.000001 -> -12345 Inexact Rounded -rsu179 add -12345 0.00001 -> -12345 Inexact Rounded -rsu180 add -12345 0.0001 -> -12345 Inexact Rounded -rsu181 add -12345 0.001 -> -12345 Inexact Rounded -rsu182 add -12345 0.01 -> -12345 Inexact Rounded -rsu183 add -12345 0.1 -> -12345 Inexact Rounded - -rsu185 add -12346 0.49999 -> -12346 Inexact Rounded -rsu186 add -12346 0.5 -> -12346 Inexact Rounded -rsu187 add -12346 0.50001 -> -12345 Inexact Rounded - -rsu190 add -12345 0.4 -> -12345 Inexact Rounded -rsu191 add -12345 0.49 -> -12345 Inexact Rounded -rsu192 add -12345 0.499 -> -12345 Inexact Rounded -rsu193 add -12345 0.49999 -> -12345 Inexact Rounded -rsu194 add -12345 0.5 -> -12344 Inexact Rounded -rsu195 add -12345 0.50001 -> -12344 Inexact Rounded -rsu196 add -12345 0.5001 -> -12344 Inexact Rounded -rsu197 add -12345 0.501 -> -12344 Inexact Rounded -rsu198 add -12345 0.51 -> -12344 Inexact Rounded -rsu199 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: half_up - -rsu200 add -12345 -0.1 -> -12345 Inexact Rounded -rsu201 add -12345 -0.01 -> -12345 Inexact Rounded -rsu202 add -12345 -0.001 -> -12345 Inexact Rounded -rsu203 add -12345 -0.00001 -> -12345 Inexact Rounded -rsu204 add -12345 -0.000001 -> -12345 Inexact Rounded -rsu205 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsu206 add -12345 0 -> -12345 -rsu207 add -12345 0.0000001 -> -12345 Inexact Rounded -rsu208 add -12345 0.000001 -> -12345 Inexact Rounded -rsu209 add -12345 0.00001 -> -12345 Inexact Rounded -rsu210 add -12345 0.0001 -> -12345 Inexact Rounded -rsu211 add -12345 0.001 -> -12345 Inexact Rounded -rsu212 add -12345 0.01 -> -12345 Inexact Rounded -rsu213 add -12345 0.1 -> -12345 Inexact Rounded - -rsu215 add -12346 0.49999 -> -12346 Inexact Rounded -rsu216 add -12346 0.5 -> -12346 Inexact Rounded -rsu217 add -12346 0.50001 -> -12345 Inexact Rounded - -rsu220 add -12345 0.4 -> -12345 Inexact Rounded -rsu221 add -12345 0.49 -> -12345 Inexact Rounded -rsu222 add -12345 0.499 -> -12345 Inexact Rounded -rsu223 add -12345 0.49999 -> -12345 Inexact Rounded -rsu224 add -12345 0.5 -> -12345 Inexact Rounded -rsu225 add -12345 0.50001 -> -12344 Inexact Rounded -rsu226 add -12345 0.5001 -> -12344 Inexact Rounded -rsu227 add -12345 0.501 -> -12344 Inexact Rounded -rsu228 add -12345 0.51 -> -12344 Inexact Rounded -rsu229 add -12345 0.6 -> -12344 Inexact Rounded - -rounding: up - -rsu230 add -12345 -0.1 -> -12346 Inexact Rounded -rsu231 add -12345 -0.01 -> -12346 Inexact Rounded -rsu232 add -12345 -0.001 -> -12346 Inexact Rounded -rsu233 add -12345 -0.00001 -> -12346 Inexact Rounded -rsu234 add -12345 -0.000001 -> -12346 Inexact Rounded -rsu235 add -12345 -0.0000001 -> -12346 Inexact Rounded -rsu236 add -12345 0 -> -12345 -rsu237 add -12345 0.0000001 -> -12345 Inexact Rounded -rsu238 add -12345 0.000001 -> -12345 Inexact Rounded -rsu239 add -12345 0.00001 -> -12345 Inexact Rounded -rsu240 add -12345 0.0001 -> -12345 Inexact Rounded -rsu241 add -12345 0.001 -> -12345 Inexact Rounded -rsu242 add -12345 0.01 -> -12345 Inexact Rounded -rsu243 add -12345 0.1 -> -12345 Inexact Rounded - -rsu245 add -12346 0.49999 -> -12346 Inexact Rounded -rsu246 add -12346 0.5 -> -12346 Inexact Rounded -rsu247 add -12346 0.50001 -> -12346 Inexact Rounded - -rsu250 add -12345 0.4 -> -12345 Inexact Rounded -rsu251 add -12345 0.49 -> -12345 Inexact Rounded -rsu252 add -12345 0.499 -> -12345 Inexact Rounded -rsu253 add -12345 0.49999 -> -12345 Inexact Rounded -rsu254 add -12345 0.5 -> -12345 Inexact Rounded -rsu255 add -12345 0.50001 -> -12345 Inexact Rounded -rsu256 add -12345 0.5001 -> -12345 Inexact Rounded -rsu257 add -12345 0.501 -> -12345 Inexact Rounded -rsu258 add -12345 0.51 -> -12345 Inexact Rounded -rsu259 add -12345 0.6 -> -12345 Inexact Rounded - -rounding: floor - -rsu300 add -12345 -0.1 -> -12346 Inexact Rounded -rsu301 add -12345 -0.01 -> -12346 Inexact Rounded -rsu302 add -12345 -0.001 -> -12346 Inexact Rounded -rsu303 add -12345 -0.00001 -> -12346 Inexact Rounded -rsu304 add -12345 -0.000001 -> -12346 Inexact Rounded -rsu305 add -12345 -0.0000001 -> -12346 Inexact Rounded -rsu306 add -12345 0 -> -12345 -rsu307 add -12345 0.0000001 -> -12345 Inexact Rounded -rsu308 add -12345 0.000001 -> -12345 Inexact Rounded -rsu309 add -12345 0.00001 -> -12345 Inexact Rounded -rsu310 add -12345 0.0001 -> -12345 Inexact Rounded -rsu311 add -12345 0.001 -> -12345 Inexact Rounded -rsu312 add -12345 0.01 -> -12345 Inexact Rounded -rsu313 add -12345 0.1 -> -12345 Inexact Rounded - -rsu315 add -12346 0.49999 -> -12346 Inexact Rounded -rsu316 add -12346 0.5 -> -12346 Inexact Rounded -rsu317 add -12346 0.50001 -> -12346 Inexact Rounded - -rsu320 add -12345 0.4 -> -12345 Inexact Rounded -rsu321 add -12345 0.49 -> -12345 Inexact Rounded -rsu322 add -12345 0.499 -> -12345 Inexact Rounded -rsu323 add -12345 0.49999 -> -12345 Inexact Rounded -rsu324 add -12345 0.5 -> -12345 Inexact Rounded -rsu325 add -12345 0.50001 -> -12345 Inexact Rounded -rsu326 add -12345 0.5001 -> -12345 Inexact Rounded -rsu327 add -12345 0.501 -> -12345 Inexact Rounded -rsu328 add -12345 0.51 -> -12345 Inexact Rounded -rsu329 add -12345 0.6 -> -12345 Inexact Rounded - -rounding: ceiling - -rsu330 add -12345 -0.1 -> -12345 Inexact Rounded -rsu331 add -12345 -0.01 -> -12345 Inexact Rounded -rsu332 add -12345 -0.001 -> -12345 Inexact Rounded -rsu333 add -12345 -0.00001 -> -12345 Inexact Rounded -rsu334 add -12345 -0.000001 -> -12345 Inexact Rounded -rsu335 add -12345 -0.0000001 -> -12345 Inexact Rounded -rsu336 add -12345 0 -> -12345 -rsu337 add -12345 0.0000001 -> -12344 Inexact Rounded -rsu338 add -12345 0.000001 -> -12344 Inexact Rounded -rsu339 add -12345 0.00001 -> -12344 Inexact Rounded -rsu340 add -12345 0.0001 -> -12344 Inexact Rounded -rsu341 add -12345 0.001 -> -12344 Inexact Rounded -rsu342 add -12345 0.01 -> -12344 Inexact Rounded -rsu343 add -12345 0.1 -> -12344 Inexact Rounded - -rsu345 add -12346 0.49999 -> -12345 Inexact Rounded -rsu346 add -12346 0.5 -> -12345 Inexact Rounded -rsu347 add -12346 0.50001 -> -12345 Inexact Rounded - -rsu350 add -12345 0.4 -> -12344 Inexact Rounded -rsu351 add -12345 0.49 -> -12344 Inexact Rounded -rsu352 add -12345 0.499 -> -12344 Inexact Rounded -rsu353 add -12345 0.49999 -> -12344 Inexact Rounded -rsu354 add -12345 0.5 -> -12344 Inexact Rounded -rsu355 add -12345 0.50001 -> -12344 Inexact Rounded -rsu356 add -12345 0.5001 -> -12344 Inexact Rounded -rsu357 add -12345 0.501 -> -12344 Inexact Rounded -rsu358 add -12345 0.51 -> -12344 Inexact Rounded -rsu359 add -12345 0.6 -> -12344 Inexact Rounded - --- Division operators ------------------------------------------------- - -rounding: down -rdv101 divide 12345 1 -> 12345 -rdv102 divide 12345 1.0001 -> 12343 Inexact Rounded -rdv103 divide 12345 1.001 -> 12332 Inexact Rounded -rdv104 divide 12345 1.01 -> 12222 Inexact Rounded -rdv105 divide 12345 1.1 -> 11222 Inexact Rounded -rdv106 divide 12355 4 -> 3088.7 Inexact Rounded -rdv107 divide 12345 4 -> 3086.2 Inexact Rounded -rdv108 divide 12355 4.0001 -> 3088.6 Inexact Rounded -rdv109 divide 12345 4.0001 -> 3086.1 Inexact Rounded -rdv110 divide 12345 4.9 -> 2519.3 Inexact Rounded -rdv111 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdv112 divide 12345 4.999 -> 2469.4 Inexact Rounded -rdv113 divide 12345 4.9999 -> 2469 Inexact Rounded -rdv114 divide 12345 5 -> 2469 -rdv115 divide 12345 5.0001 -> 2468.9 Inexact Rounded -rdv116 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdv117 divide 12345 5.01 -> 2464 Inexact Rounded -rdv118 divide 12345 5.1 -> 2420.5 Inexact Rounded - -rounding: half_down -rdv201 divide 12345 1 -> 12345 -rdv202 divide 12345 1.0001 -> 12344 Inexact Rounded -rdv203 divide 12345 1.001 -> 12333 Inexact Rounded -rdv204 divide 12345 1.01 -> 12223 Inexact Rounded -rdv205 divide 12345 1.1 -> 11223 Inexact Rounded -rdv206 divide 12355 4 -> 3088.7 Inexact Rounded -rdv207 divide 12345 4 -> 3086.2 Inexact Rounded -rdv208 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdv209 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdv210 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdv211 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdv212 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdv213 divide 12345 4.9999 -> 2469 Inexact Rounded -rdv214 divide 12345 5 -> 2469 -rdv215 divide 12345 5.0001 -> 2469 Inexact Rounded -rdv216 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdv217 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdv218 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: half_even -rdv301 divide 12345 1 -> 12345 -rdv302 divide 12345 1.0001 -> 12344 Inexact Rounded -rdv303 divide 12345 1.001 -> 12333 Inexact Rounded -rdv304 divide 12345 1.01 -> 12223 Inexact Rounded -rdv305 divide 12345 1.1 -> 11223 Inexact Rounded -rdv306 divide 12355 4 -> 3088.8 Inexact Rounded -rdv307 divide 12345 4 -> 3086.2 Inexact Rounded -rdv308 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdv309 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdv310 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdv311 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdv312 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdv313 divide 12345 4.9999 -> 2469 Inexact Rounded -rdv314 divide 12345 5 -> 2469 -rdv315 divide 12345 5.0001 -> 2469 Inexact Rounded -rdv316 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdv317 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdv318 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: half_up -rdv401 divide 12345 1 -> 12345 -rdv402 divide 12345 1.0001 -> 12344 Inexact Rounded -rdv403 divide 12345 1.001 -> 12333 Inexact Rounded -rdv404 divide 12345 1.01 -> 12223 Inexact Rounded -rdv405 divide 12345 1.1 -> 11223 Inexact Rounded -rdv406 divide 12355 4 -> 3088.8 Inexact Rounded -rdv407 divide 12345 4 -> 3086.3 Inexact Rounded -rdv408 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdv409 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdv410 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdv411 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdv412 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdv413 divide 12345 4.9999 -> 2469 Inexact Rounded -rdv414 divide 12345 5 -> 2469 -rdv415 divide 12345 5.0001 -> 2469 Inexact Rounded -rdv416 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdv417 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdv418 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: up -rdv501 divide 12345 1 -> 12345 -rdv502 divide 12345 1.0001 -> 12344 Inexact Rounded -rdv503 divide 12345 1.001 -> 12333 Inexact Rounded -rdv504 divide 12345 1.01 -> 12223 Inexact Rounded -rdv505 divide 12345 1.1 -> 11223 Inexact Rounded -rdv506 divide 12355 4 -> 3088.8 Inexact Rounded -rdv507 divide 12345 4 -> 3086.3 Inexact Rounded -rdv508 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdv509 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdv510 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdv511 divide 12345 4.99 -> 2474 Inexact Rounded -rdv512 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdv513 divide 12345 4.9999 -> 2469.1 Inexact Rounded -rdv514 divide 12345 5 -> 2469 -rdv515 divide 12345 5.0001 -> 2469 Inexact Rounded -rdv516 divide 12345 5.001 -> 2468.6 Inexact Rounded -rdv517 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdv518 divide 12345 5.1 -> 2420.6 Inexact Rounded - -rounding: floor -rdv601 divide 12345 1 -> 12345 -rdv602 divide 12345 1.0001 -> 12343 Inexact Rounded -rdv603 divide 12345 1.001 -> 12332 Inexact Rounded -rdv604 divide 12345 1.01 -> 12222 Inexact Rounded -rdv605 divide 12345 1.1 -> 11222 Inexact Rounded -rdv606 divide 12355 4 -> 3088.7 Inexact Rounded -rdv607 divide 12345 4 -> 3086.2 Inexact Rounded -rdv608 divide 12355 4.0001 -> 3088.6 Inexact Rounded -rdv609 divide 12345 4.0001 -> 3086.1 Inexact Rounded -rdv610 divide 12345 4.9 -> 2519.3 Inexact Rounded -rdv611 divide 12345 4.99 -> 2473.9 Inexact Rounded -rdv612 divide 12345 4.999 -> 2469.4 Inexact Rounded -rdv613 divide 12345 4.9999 -> 2469 Inexact Rounded -rdv614 divide 12345 5 -> 2469 -rdv615 divide 12345 5.0001 -> 2468.9 Inexact Rounded -rdv616 divide 12345 5.001 -> 2468.5 Inexact Rounded -rdv617 divide 12345 5.01 -> 2464 Inexact Rounded -rdv618 divide 12345 5.1 -> 2420.5 Inexact Rounded - -rounding: ceiling -rdv701 divide 12345 1 -> 12345 -rdv702 divide 12345 1.0001 -> 12344 Inexact Rounded -rdv703 divide 12345 1.001 -> 12333 Inexact Rounded -rdv704 divide 12345 1.01 -> 12223 Inexact Rounded -rdv705 divide 12345 1.1 -> 11223 Inexact Rounded -rdv706 divide 12355 4 -> 3088.8 Inexact Rounded -rdv707 divide 12345 4 -> 3086.3 Inexact Rounded -rdv708 divide 12355 4.0001 -> 3088.7 Inexact Rounded -rdv709 divide 12345 4.0001 -> 3086.2 Inexact Rounded -rdv710 divide 12345 4.9 -> 2519.4 Inexact Rounded -rdv711 divide 12345 4.99 -> 2474 Inexact Rounded -rdv712 divide 12345 4.999 -> 2469.5 Inexact Rounded -rdv713 divide 12345 4.9999 -> 2469.1 Inexact Rounded -rdv714 divide 12345 5 -> 2469 -rdv715 divide 12345 5.0001 -> 2469 Inexact Rounded -rdv716 divide 12345 5.001 -> 2468.6 Inexact Rounded -rdv717 divide 12345 5.01 -> 2464.1 Inexact Rounded -rdv718 divide 12345 5.1 -> 2420.6 Inexact Rounded - --- [divideInteger and remainder unaffected] - --- Multiplication operator -------------------------------------------- - -rounding: down -rmu101 multiply 12345 1 -> 12345 -rmu102 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmu103 multiply 12345 1.001 -> 12357 Inexact Rounded -rmu104 multiply 12345 1.01 -> 12468 Inexact Rounded -rmu105 multiply 12345 1.1 -> 13579 Inexact Rounded -rmu106 multiply 12345 4 -> 49380 -rmu107 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmu108 multiply 12345 4.9 -> 60490 Inexact Rounded -rmu109 multiply 12345 4.99 -> 61601 Inexact Rounded -rmu110 multiply 12345 4.999 -> 61712 Inexact Rounded -rmu111 multiply 12345 4.9999 -> 61723 Inexact Rounded -rmu112 multiply 12345 5 -> 61725 -rmu113 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmu114 multiply 12345 5.001 -> 61737 Inexact Rounded -rmu115 multiply 12345 5.01 -> 61848 Inexact Rounded -rmu116 multiply 12345 12 -> 1.4814E+5 Rounded -rmu117 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmu118 multiply 12355 12 -> 1.4826E+5 Rounded -rmu119 multiply 12355 13 -> 1.6061E+5 Inexact Rounded - -rounding: half_down -rmu201 multiply 12345 1 -> 12345 -rmu202 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmu203 multiply 12345 1.001 -> 12357 Inexact Rounded -rmu204 multiply 12345 1.01 -> 12468 Inexact Rounded -rmu205 multiply 12345 1.1 -> 13579 Inexact Rounded -rmu206 multiply 12345 4 -> 49380 -rmu207 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmu208 multiply 12345 4.9 -> 60490 Inexact Rounded -rmu209 multiply 12345 4.99 -> 61602 Inexact Rounded -rmu210 multiply 12345 4.999 -> 61713 Inexact Rounded -rmu211 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmu212 multiply 12345 5 -> 61725 -rmu213 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmu214 multiply 12345 5.001 -> 61737 Inexact Rounded -rmu215 multiply 12345 5.01 -> 61848 Inexact Rounded -rmu216 multiply 12345 12 -> 1.4814E+5 Rounded -rmu217 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmu218 multiply 12355 12 -> 1.4826E+5 Rounded -rmu219 multiply 12355 13 -> 1.6061E+5 Inexact Rounded - -rounding: half_even -rmu301 multiply 12345 1 -> 12345 -rmu302 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmu303 multiply 12345 1.001 -> 12357 Inexact Rounded -rmu304 multiply 12345 1.01 -> 12468 Inexact Rounded -rmu305 multiply 12345 1.1 -> 13580 Inexact Rounded -rmu306 multiply 12345 4 -> 49380 -rmu307 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmu308 multiply 12345 4.9 -> 60490 Inexact Rounded -rmu309 multiply 12345 4.99 -> 61602 Inexact Rounded -rmu310 multiply 12345 4.999 -> 61713 Inexact Rounded -rmu311 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmu312 multiply 12345 5 -> 61725 -rmu313 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmu314 multiply 12345 5.001 -> 61737 Inexact Rounded -rmu315 multiply 12345 5.01 -> 61848 Inexact Rounded -rmu316 multiply 12345 12 -> 1.4814E+5 Rounded -rmu317 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmu318 multiply 12355 12 -> 1.4826E+5 Rounded -rmu319 multiply 12355 13 -> 1.6062E+5 Inexact Rounded - -rounding: half_up -rmu401 multiply 12345 1 -> 12345 -rmu402 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmu403 multiply 12345 1.001 -> 12357 Inexact Rounded -rmu404 multiply 12345 1.01 -> 12468 Inexact Rounded -rmu405 multiply 12345 1.1 -> 13580 Inexact Rounded -rmu406 multiply 12345 4 -> 49380 -rmu407 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmu408 multiply 12345 4.9 -> 60491 Inexact Rounded -rmu409 multiply 12345 4.99 -> 61602 Inexact Rounded -rmu410 multiply 12345 4.999 -> 61713 Inexact Rounded -rmu411 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmu412 multiply 12345 5 -> 61725 -rmu413 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmu414 multiply 12345 5.001 -> 61737 Inexact Rounded -rmu415 multiply 12345 5.01 -> 61848 Inexact Rounded -rmu416 multiply 12345 12 -> 1.4814E+5 Rounded -rmu417 multiply 12345 13 -> 1.6049E+5 Inexact Rounded -rmu418 multiply 12355 12 -> 1.4826E+5 Rounded -rmu419 multiply 12355 13 -> 1.6062E+5 Inexact Rounded - -rounding: up -rmu501 multiply 12345 1 -> 12345 -rmu502 multiply 12345 1.0001 -> 12347 Inexact Rounded -rmu503 multiply 12345 1.001 -> 12358 Inexact Rounded -rmu504 multiply 12345 1.01 -> 12469 Inexact Rounded -rmu505 multiply 12345 1.1 -> 13580 Inexact Rounded -rmu506 multiply 12345 4 -> 49380 -rmu507 multiply 12345 4.0001 -> 49382 Inexact Rounded -rmu508 multiply 12345 4.9 -> 60491 Inexact Rounded -rmu509 multiply 12345 4.99 -> 61602 Inexact Rounded -rmu510 multiply 12345 4.999 -> 61713 Inexact Rounded -rmu511 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmu512 multiply 12345 5 -> 61725 -rmu513 multiply 12345 5.0001 -> 61727 Inexact Rounded -rmu514 multiply 12345 5.001 -> 61738 Inexact Rounded -rmu515 multiply 12345 5.01 -> 61849 Inexact Rounded -rmu516 multiply 12345 12 -> 1.4814E+5 Rounded -rmu517 multiply 12345 13 -> 1.6049E+5 Inexact Rounded -rmu518 multiply 12355 12 -> 1.4826E+5 Rounded -rmu519 multiply 12355 13 -> 1.6062E+5 Inexact Rounded --- [rmu516 & rmu518] can surprise - -rounding: floor -rmu601 multiply 12345 1 -> 12345 -rmu602 multiply 12345 1.0001 -> 12346 Inexact Rounded -rmu603 multiply 12345 1.001 -> 12357 Inexact Rounded -rmu604 multiply 12345 1.01 -> 12468 Inexact Rounded -rmu605 multiply 12345 1.1 -> 13579 Inexact Rounded -rmu606 multiply 12345 4 -> 49380 -rmu607 multiply 12345 4.0001 -> 49381 Inexact Rounded -rmu608 multiply 12345 4.9 -> 60490 Inexact Rounded -rmu609 multiply 12345 4.99 -> 61601 Inexact Rounded -rmu610 multiply 12345 4.999 -> 61712 Inexact Rounded -rmu611 multiply 12345 4.9999 -> 61723 Inexact Rounded -rmu612 multiply 12345 5 -> 61725 -rmu613 multiply 12345 5.0001 -> 61726 Inexact Rounded -rmu614 multiply 12345 5.001 -> 61737 Inexact Rounded -rmu615 multiply 12345 5.01 -> 61848 Inexact Rounded -rmu616 multiply 12345 12 -> 1.4814E+5 Rounded -rmu617 multiply 12345 13 -> 1.6048E+5 Inexact Rounded -rmu618 multiply 12355 12 -> 1.4826E+5 Rounded -rmu619 multiply 12355 13 -> 1.6061E+5 Inexact Rounded - -rounding: ceiling -rmu701 multiply 12345 1 -> 12345 -rmu702 multiply 12345 1.0001 -> 12347 Inexact Rounded -rmu703 multiply 12345 1.001 -> 12358 Inexact Rounded -rmu704 multiply 12345 1.01 -> 12469 Inexact Rounded -rmu705 multiply 12345 1.1 -> 13580 Inexact Rounded -rmu706 multiply 12345 4 -> 49380 -rmu707 multiply 12345 4.0001 -> 49382 Inexact Rounded -rmu708 multiply 12345 4.9 -> 60491 Inexact Rounded -rmu709 multiply 12345 4.99 -> 61602 Inexact Rounded -rmu710 multiply 12345 4.999 -> 61713 Inexact Rounded -rmu711 multiply 12345 4.9999 -> 61724 Inexact Rounded -rmu712 multiply 12345 5 -> 61725 -rmu713 multiply 12345 5.0001 -> 61727 Inexact Rounded -rmu714 multiply 12345 5.001 -> 61738 Inexact Rounded -rmu715 multiply 12345 5.01 -> 61849 Inexact Rounded -rmu716 multiply 12345 12 -> 1.4814E+5 Rounded -rmu717 multiply 12345 13 -> 1.6049E+5 Inexact Rounded -rmu718 multiply 12355 12 -> 1.4826E+5 Rounded -rmu719 multiply 12355 13 -> 1.6062E+5 Inexact Rounded - --- Power operator ----------------------------------------------------- - -rounding: down -rpo101 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpo102 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpo103 power 12345 -3 -> 5.3152E-13 Inexact Rounded -rpo104 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpo105 power 12345 -1 -> 0.000081004 Inexact Rounded -rpo106 power 12345 0 -> 1 -rpo107 power 12345 1 -> 12345 -rpo108 power 12345 2 -> 1.5239E+8 Inexact Rounded -rpo109 power 12345 3 -> 1.8813E+12 Inexact Rounded -rpo110 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpo111 power 12345 5 -> 2.8671E+20 Inexact Rounded -rpo112 power 415 2 -> 1.7222E+5 Inexact Rounded -rpo113 power 75 3 -> 4.2187E+5 Inexact Rounded - -rounding: half_down -rpo201 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpo202 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpo203 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpo204 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpo205 power 12345 -1 -> 0.000081004 Inexact Rounded -rpo206 power 12345 0 -> 1 -rpo207 power 12345 1 -> 12345 -rpo208 power 12345 2 -> 1.524E+8 Inexact Rounded -rpo209 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpo210 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpo211 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpo212 power 415 2 -> 1.7222E+5 Inexact Rounded -rpo213 power 75 3 -> 4.2187E+5 Inexact Rounded - -rounding: half_even -rpo301 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpo302 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpo303 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpo304 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpo305 power 12345 -1 -> 0.000081004 Inexact Rounded -rpo306 power 12345 0 -> 1 -rpo307 power 12345 1 -> 12345 -rpo308 power 12345 2 -> 1.524E+8 Inexact Rounded -rpo309 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpo310 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpo311 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpo312 power 415 2 -> 1.7222E+5 Inexact Rounded -rpo313 power 75 3 -> 4.2188E+5 Inexact Rounded - -rounding: half_up -rpo401 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpo402 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpo403 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpo404 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpo405 power 12345 -1 -> 0.000081004 Inexact Rounded -rpo406 power 12345 0 -> 1 -rpo407 power 12345 1 -> 12345 -rpo408 power 12345 2 -> 1.524E+8 Inexact Rounded -rpo409 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpo410 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpo411 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpo412 power 415 2 -> 1.7223E+5 Inexact Rounded -rpo413 power 75 3 -> 4.2188E+5 Inexact Rounded - -rounding: up -rpo501 power 12345 -5 -> 3.4878E-21 Inexact Rounded -rpo502 power 12345 -4 -> 4.3057E-17 Inexact Rounded -rpo503 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpo504 power 12345 -2 -> 6.5618E-9 Inexact Rounded -rpo505 power 12345 -1 -> 0.000081005 Inexact Rounded -rpo506 power 12345 0 -> 1 -rpo507 power 12345 1 -> 12345 -rpo508 power 12345 2 -> 1.524E+8 Inexact Rounded -rpo509 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpo510 power 12345 4 -> 2.3226E+16 Inexact Rounded -rpo511 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpo512 power 415 2 -> 1.7223E+5 Inexact Rounded -rpo513 power 75 3 -> 4.2188E+5 Inexact Rounded - -rounding: floor -rpo601 power 12345 -5 -> 3.4877E-21 Inexact Rounded -rpo602 power 12345 -4 -> 4.3056E-17 Inexact Rounded -rpo603 power 12345 -3 -> 5.3152E-13 Inexact Rounded -rpo604 power 12345 -2 -> 6.5617E-9 Inexact Rounded -rpo605 power 12345 -1 -> 0.000081004 Inexact Rounded -rpo606 power 12345 0 -> 1 -rpo607 power 12345 1 -> 12345 -rpo608 power 12345 2 -> 1.5239E+8 Inexact Rounded -rpo609 power 12345 3 -> 1.8813E+12 Inexact Rounded -rpo610 power 12345 4 -> 2.3225E+16 Inexact Rounded -rpo611 power 12345 5 -> 2.8671E+20 Inexact Rounded -rpo612 power 415 2 -> 1.7222E+5 Inexact Rounded -rpo613 power 75 3 -> 4.2187E+5 Inexact Rounded - -rounding: ceiling -rpo701 power 12345 -5 -> 3.4878E-21 Inexact Rounded -rpo702 power 12345 -4 -> 4.3057E-17 Inexact Rounded -rpo703 power 12345 -3 -> 5.3153E-13 Inexact Rounded -rpo704 power 12345 -2 -> 6.5618E-9 Inexact Rounded -rpo705 power 12345 -1 -> 0.000081005 Inexact Rounded -rpo706 power 12345 0 -> 1 -rpo707 power 12345 1 -> 12345 -rpo708 power 12345 2 -> 1.524E+8 Inexact Rounded -rpo709 power 12345 3 -> 1.8814E+12 Inexact Rounded -rpo710 power 12345 4 -> 2.3226E+16 Inexact Rounded -rpo711 power 12345 5 -> 2.8672E+20 Inexact Rounded -rpo712 power 415 2 -> 1.7223E+5 Inexact Rounded -rpo713 power 75 3 -> 4.2188E+5 Inexact Rounded - diff --git a/qdecimal/test/tc_subset/samequantum0.decTest b/qdecimal/test/tc_subset/samequantum0.decTest deleted file mode 100644 index 2c73cb2..0000000 --- a/qdecimal/test/tc_subset/samequantum0.decTest +++ /dev/null @@ -1,102 +0,0 @@ ------------------------------------------------------------------------- --- samequantum.decTest -- check quantums match -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minExponent: -999 - -samq001 samequantum 0 0 -> 1 -samq002 samequantum 0 1 -> 1 -samq003 samequantum 1 0 -> 1 -samq004 samequantum 1 1 -> 1 - -samq011 samequantum 10 1E+1 -> 0 -samq012 samequantum 10E+1 10E+1 -> 1 -samq013 samequantum 100 10E+1 -> 0 -samq014 samequantum 100 1E+2 -> 0 -samq015 samequantum 0.1 1E-2 -> 0 -samq016 samequantum 0.1 1E-1 -> 1 -samq017 samequantum 0.1 1E-0 -> 0 -samq018 samequantum 999 999 -> 1 -samq019 samequantum 999E-1 99.9 -> 1 -samq020 samequantum 111E-1 22.2 -> 1 -samq021 samequantum 111E-1 1234.2 -> 1 - --- combinations - -samq0413 samequantum -7E+3 -7E+3 -> 1 -samq0414 samequantum -7E+3 -7 -> 0 -samq0415 samequantum -7E+3 -7E-3 -> 0 -samq0420 samequantum -7E+3 0 -> 0 -samq0422 samequantum -7E+3 7E-3 -> 0 -samq0423 samequantum -7E+3 7 -> 0 -samq0424 samequantum -7E+3 7E+3 -> 1 - -samq0513 samequantum -7 -7E+3 -> 0 -samq0514 samequantum -7 -7 -> 1 -samq0515 samequantum -7 -7E-3 -> 0 -samq0520 samequantum -7 0 -> 1 -samq0522 samequantum -7 7E-3 -> 0 -samq0523 samequantum -7 7 -> 1 -samq0524 samequantum -7 7E+3 -> 0 - -samq0613 samequantum -7E-3 -7E+3 -> 0 -samq0614 samequantum -7E-3 -7 -> 0 -samq0615 samequantum -7E-3 -7E-3 -> 1 -samq0620 samequantum -7E-3 0 -> 0 -samq0622 samequantum -7E-3 7E-3 -> 1 -samq0623 samequantum -7E-3 7 -> 0 -samq0624 samequantum -7E-3 7E+3 -> 0 - -samq1213 samequantum 0 -7E+3 -> 0 -samq1214 samequantum 0 -7 -> 1 -samq1215 samequantum 0 -7E-3 -> 0 -samq1220 samequantum 0 0 -> 1 -samq1222 samequantum 0 7E-3 -> 0 -samq1223 samequantum 0 7 -> 1 -samq1224 samequantum 0 7E+3 -> 0 - -samq1413 samequantum 7E-3 -7E+3 -> 0 -samq1414 samequantum 7E-3 -7 -> 0 -samq1415 samequantum 7E-3 -7E-3 -> 1 -samq1420 samequantum 7E-3 0 -> 0 -samq1422 samequantum 7E-3 7E-3 -> 1 -samq1423 samequantum 7E-3 7 -> 0 -samq1424 samequantum 7E-3 7E+3 -> 0 - -samq1513 samequantum 7 -7E+3 -> 0 -samq1514 samequantum 7 -7 -> 1 -samq1515 samequantum 7 -7E-3 -> 0 -samq1520 samequantum 7 0 -> 1 -samq1522 samequantum 7 7E-3 -> 0 -samq1523 samequantum 7 7 -> 1 -samq1524 samequantum 7 7E+3 -> 0 - -samq1613 samequantum 7E+3 -7E+3 -> 1 -samq1614 samequantum 7E+3 -7 -> 0 -samq1615 samequantum 7E+3 -7E-3 -> 0 -samq1620 samequantum 7E+3 0 -> 0 -samq1622 samequantum 7E+3 7E-3 -> 0 -samq1623 samequantum 7E+3 7 -> 0 -samq1624 samequantum 7E+3 7E+3 -> 1 - diff --git a/qdecimal/test/tc_subset/squareroot0.decTest b/qdecimal/test/tc_subset/squareroot0.decTest deleted file mode 100644 index 1a6e039..0000000 --- a/qdecimal/test/tc_subset/squareroot0.decTest +++ /dev/null @@ -1,2901 +0,0 @@ ------------------------------------------------------------------------- --- squareroot0.decTest -- decimal square root -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- basics -sqtx001 squareroot 1 -> 1 -sqtx002 squareroot -1 -> ? Invalid_operation -sqtx003 squareroot 1.00 -> 1.0 -sqtx004 squareroot -1.00 -> ? Invalid_operation -sqtx005 squareroot 0 -> 0 -sqtx006 squareroot 00.0 -> 0 -sqtx007 squareroot 0.00 -> 0 -sqtx008 squareroot 00.00 -> 0 -sqtx009 squareroot 00 -> 0 - -sqtx010 squareroot -2 -> ? Invalid_operation -sqtx011 squareroot 2 -> 1.41421356 Inexact Rounded -sqtx012 squareroot -2.00 -> ? Invalid_operation -sqtx013 squareroot 2.00 -> 1.41421356 Inexact Rounded -sqtx014 squareroot -0 -> 0 -sqtx015 squareroot -0.00 -> 0 -sqtx016 squareroot -00.0 -> 0 -sqtx017 squareroot -0E+9 -> 0 -sqtx018 squareroot -0E+10 -> 0 -sqtx019 squareroot -0E+11 -> 0 -sqtx020 squareroot -0E+12 -> 0 -sqtx021 squareroot -00 -> 0 -sqtx022 squareroot 0E+5 -> 0 -sqtx023 squareroot 4.0 -> 2.0 -sqtx024 squareroot 4.00 -> 2.0 - - - -sqtx030 squareroot +0.1 -> 0.316227766 Inexact Rounded -sqtx031 squareroot -0.1 -> ? Invalid_operation -sqtx032 squareroot +0.01 -> 0.1 -sqtx033 squareroot -0.01 -> ? Invalid_operation -sqtx034 squareroot +0.001 -> 0.0316227766 Inexact Rounded -sqtx035 squareroot -0.001 -> ? Invalid_operation -sqtx036 squareroot +0.000001 -> 0.001 -sqtx037 squareroot -0.000001 -> ? Invalid_operation -sqtx038 squareroot +0.000000000001 -> 0.000001 -sqtx039 squareroot -0.000000000001 -> ? Invalid_operation - -sqtx041 squareroot 1.1 -> 1.04880885 Inexact Rounded -sqtx042 squareroot 1.10 -> 1.04880885 Inexact Rounded -sqtx043 squareroot 1.100 -> 1.04880885 Inexact Rounded -sqtx044 squareroot 1.110 -> 1.05356538 Inexact Rounded -sqtx045 squareroot -1.1 -> ? Invalid_operation -sqtx046 squareroot -1.10 -> ? Invalid_operation -sqtx047 squareroot -1.100 -> ? Invalid_operation -sqtx048 squareroot -1.110 -> ? Invalid_operation -sqtx049 squareroot 9.9 -> 3.14642654 Inexact Rounded -sqtx050 squareroot 9.90 -> 3.14642654 Inexact Rounded -sqtx051 squareroot 9.900 -> 3.14642654 Inexact Rounded -sqtx052 squareroot 9.990 -> 3.16069613 Inexact Rounded -sqtx053 squareroot -9.9 -> ? Invalid_operation -sqtx054 squareroot -9.90 -> ? Invalid_operation -sqtx055 squareroot -9.900 -> ? Invalid_operation -sqtx056 squareroot -9.990 -> ? Invalid_operation - -sqtx060 squareroot 10.0 -> 3.16227766 Inexact Rounded -sqtx061 squareroot 10.00 -> 3.16227766 Inexact Rounded -sqtx062 squareroot 100.0 -> 10.0 -sqtx063 squareroot 100.00 -> 10.0 -sqtx064 squareroot 1.1000E+3 -> 33.1662479 Inexact Rounded -sqtx065 squareroot 1.10000E+3 -> 33.1662479 Inexact Rounded -sqtx066 squareroot -10.0 -> ? Invalid_operation -sqtx067 squareroot -10.00 -> ? Invalid_operation -sqtx068 squareroot -100.0 -> ? Invalid_operation -sqtx069 squareroot -100.00 -> ? Invalid_operation -sqtx070 squareroot -1.1000E+3 -> ? Invalid_operation -sqtx071 squareroot -1.10000E+3 -> ? Invalid_operation - --- famous squares -sqtx080 squareroot 1 -> 1 -sqtx081 squareroot 4 -> 2 -sqtx082 squareroot 9 -> 3 -sqtx083 squareroot 16 -> 4 -sqtx084 squareroot 25 -> 5 -sqtx085 squareroot 36 -> 6 -sqtx086 squareroot 49 -> 7 -sqtx087 squareroot 64 -> 8 -sqtx088 squareroot 81 -> 9 -sqtx089 squareroot 100 -> 10 -sqtx090 squareroot 121 -> 11 -sqtx091 squareroot 144 -> 12 -sqtx092 squareroot 169 -> 13 -sqtx093 squareroot 256 -> 16 -sqtx094 squareroot 1024 -> 32 -sqtx095 squareroot 4096 -> 64 -sqtx100 squareroot 0.01 -> 0.1 -sqtx101 squareroot 0.04 -> 0.2 -sqtx102 squareroot 0.09 -> 0.3 -sqtx103 squareroot 0.16 -> 0.4 -sqtx104 squareroot 0.25 -> 0.5 -sqtx105 squareroot 0.36 -> 0.6 -sqtx106 squareroot 0.49 -> 0.7 -sqtx107 squareroot 0.64 -> 0.8 -sqtx108 squareroot 0.81 -> 0.9 -sqtx109 squareroot 1.00 -> 1.0 -sqtx110 squareroot 1.21 -> 1.1 -sqtx111 squareroot 1.44 -> 1.2 -sqtx112 squareroot 1.69 -> 1.3 -sqtx113 squareroot 2.56 -> 1.6 -sqtx114 squareroot 10.24 -> 3.2 -sqtx115 squareroot 40.96 -> 6.4 - --- Precision 1 squareroot tests [exhaustive, plus exponent adjusts] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 1 -sqtx1201 squareroot 0.1 -> 0.3 Inexact Rounded -sqtx1202 squareroot 0.01 -> 0.1 -sqtx1203 squareroot 1.0E-1 -> 0.3 Inexact Rounded -sqtx1204 squareroot 1.00E-2 -> 0.1 Rounded -sqtx1205 squareroot 1E-3 -> 0.03 Inexact Rounded -sqtx1206 squareroot 1E+1 -> 3 Inexact Rounded -sqtx1207 squareroot 1E+2 -> 1E+1 -sqtx1208 squareroot 1E+3 -> 3E+1 Inexact Rounded -sqtx1209 squareroot 0.2 -> 0.4 Inexact Rounded -sqtx1210 squareroot 0.02 -> 0.1 Inexact Rounded -sqtx1211 squareroot 2.0E-1 -> 0.4 Inexact Rounded -sqtx1212 squareroot 2.00E-2 -> 0.1 Inexact Rounded -sqtx1213 squareroot 2E-3 -> 0.04 Inexact Rounded -sqtx1214 squareroot 2E+1 -> 4 Inexact Rounded -sqtx1215 squareroot 2E+2 -> 1E+1 Inexact Rounded -sqtx1216 squareroot 2E+3 -> 4E+1 Inexact Rounded -sqtx1217 squareroot 0.3 -> 0.5 Inexact Rounded -sqtx1218 squareroot 0.03 -> 0.2 Inexact Rounded -sqtx1219 squareroot 3.0E-1 -> 0.5 Inexact Rounded -sqtx1220 squareroot 3.00E-2 -> 0.2 Inexact Rounded -sqtx1221 squareroot 3E-3 -> 0.05 Inexact Rounded -sqtx1222 squareroot 3E+1 -> 5 Inexact Rounded -sqtx1223 squareroot 3E+2 -> 2E+1 Inexact Rounded -sqtx1224 squareroot 3E+3 -> 5E+1 Inexact Rounded -sqtx1225 squareroot 0.4 -> 0.6 Inexact Rounded -sqtx1226 squareroot 0.04 -> 0.2 -sqtx1227 squareroot 4.0E-1 -> 0.6 Inexact Rounded -sqtx1228 squareroot 4.00E-2 -> 0.2 Rounded -sqtx1229 squareroot 4E-3 -> 0.06 Inexact Rounded -sqtx1230 squareroot 4E+1 -> 6 Inexact Rounded -sqtx1231 squareroot 4E+2 -> 2E+1 -sqtx1232 squareroot 4E+3 -> 6E+1 Inexact Rounded -sqtx1233 squareroot 0.5 -> 0.7 Inexact Rounded -sqtx1234 squareroot 0.05 -> 0.2 Inexact Rounded -sqtx1235 squareroot 5.0E-1 -> 0.7 Inexact Rounded -sqtx1236 squareroot 5.00E-2 -> 0.2 Inexact Rounded -sqtx1237 squareroot 5E-3 -> 0.07 Inexact Rounded -sqtx1238 squareroot 5E+1 -> 7 Inexact Rounded -sqtx1239 squareroot 5E+2 -> 2E+1 Inexact Rounded -sqtx1240 squareroot 5E+3 -> 7E+1 Inexact Rounded -sqtx1241 squareroot 0.6 -> 0.8 Inexact Rounded -sqtx1242 squareroot 0.06 -> 0.2 Inexact Rounded -sqtx1243 squareroot 6.0E-1 -> 0.8 Inexact Rounded -sqtx1244 squareroot 6.00E-2 -> 0.2 Inexact Rounded -sqtx1245 squareroot 6E-3 -> 0.08 Inexact Rounded -sqtx1246 squareroot 6E+1 -> 8 Inexact Rounded -sqtx1247 squareroot 6E+2 -> 2E+1 Inexact Rounded -sqtx1248 squareroot 6E+3 -> 8E+1 Inexact Rounded -sqtx1249 squareroot 0.7 -> 0.8 Inexact Rounded -sqtx1250 squareroot 0.07 -> 0.3 Inexact Rounded -sqtx1251 squareroot 7.0E-1 -> 0.8 Inexact Rounded -sqtx1252 squareroot 7.00E-2 -> 0.3 Inexact Rounded -sqtx1253 squareroot 7E-3 -> 0.08 Inexact Rounded -sqtx1254 squareroot 7E+1 -> 8 Inexact Rounded -sqtx1255 squareroot 7E+2 -> 3E+1 Inexact Rounded -sqtx1256 squareroot 7E+3 -> 8E+1 Inexact Rounded -sqtx1257 squareroot 0.8 -> 0.9 Inexact Rounded -sqtx1258 squareroot 0.08 -> 0.3 Inexact Rounded -sqtx1259 squareroot 8.0E-1 -> 0.9 Inexact Rounded -sqtx1260 squareroot 8.00E-2 -> 0.3 Inexact Rounded -sqtx1261 squareroot 8E-3 -> 0.09 Inexact Rounded -sqtx1262 squareroot 8E+1 -> 9 Inexact Rounded -sqtx1263 squareroot 8E+2 -> 3E+1 Inexact Rounded -sqtx1264 squareroot 8E+3 -> 9E+1 Inexact Rounded -sqtx1265 squareroot 0.9 -> 0.9 Inexact Rounded -sqtx1266 squareroot 0.09 -> 0.3 -sqtx1267 squareroot 9.0E-1 -> 0.9 Inexact Rounded -sqtx1268 squareroot 9.00E-2 -> 0.3 Rounded -sqtx1269 squareroot 9E-3 -> 0.09 Inexact Rounded -sqtx1270 squareroot 9E+1 -> 9 Inexact Rounded -sqtx1271 squareroot 9E+2 -> 3E+1 -sqtx1272 squareroot 9E+3 -> 9E+1 Inexact Rounded - --- Precision 2 squareroot tests [exhaustive, plus exponent adjusts] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 2 -sqtx2201 squareroot 0.1 -> 0.32 Inexact Rounded -sqtx2202 squareroot 0.01 -> 0.1 -sqtx2203 squareroot 1.0E-1 -> 0.32 Inexact Rounded --- input rounding on the next (and similar below) -sqtx2204 squareroot 1.00E-2 -> 0.10 Rounded -sqtx2205 squareroot 1E-3 -> 0.032 Inexact Rounded -sqtx2206 squareroot 1E+1 -> 3.2 Inexact Rounded -sqtx2207 squareroot 1E+2 -> 1E+1 -sqtx2208 squareroot 1E+3 -> 32 Inexact Rounded -sqtx2209 squareroot 0.2 -> 0.45 Inexact Rounded -sqtx2210 squareroot 0.02 -> 0.14 Inexact Rounded -sqtx2211 squareroot 2.0E-1 -> 0.45 Inexact Rounded -sqtx2212 squareroot 2.00E-2 -> 0.14 Inexact Rounded -sqtx2213 squareroot 2E-3 -> 0.045 Inexact Rounded -sqtx2214 squareroot 2E+1 -> 4.5 Inexact Rounded -sqtx2215 squareroot 2E+2 -> 14 Inexact Rounded -sqtx2216 squareroot 2E+3 -> 45 Inexact Rounded -sqtx2217 squareroot 0.3 -> 0.55 Inexact Rounded -sqtx2218 squareroot 0.03 -> 0.17 Inexact Rounded -sqtx2219 squareroot 3.0E-1 -> 0.55 Inexact Rounded -sqtx2220 squareroot 3.00E-2 -> 0.17 Inexact Rounded -sqtx2221 squareroot 3E-3 -> 0.055 Inexact Rounded -sqtx2222 squareroot 3E+1 -> 5.5 Inexact Rounded -sqtx2223 squareroot 3E+2 -> 17 Inexact Rounded -sqtx2224 squareroot 3E+3 -> 55 Inexact Rounded -sqtx2225 squareroot 0.4 -> 0.63 Inexact Rounded -sqtx2226 squareroot 0.04 -> 0.2 -sqtx2227 squareroot 4.0E-1 -> 0.63 Inexact Rounded -sqtx2228 squareroot 4.00E-2 -> 0.20 Rounded -sqtx2229 squareroot 4E-3 -> 0.063 Inexact Rounded -sqtx2230 squareroot 4E+1 -> 6.3 Inexact Rounded -sqtx2231 squareroot 4E+2 -> 2E+1 -sqtx2232 squareroot 4E+3 -> 63 Inexact Rounded -sqtx2233 squareroot 0.5 -> 0.71 Inexact Rounded -sqtx2234 squareroot 0.05 -> 0.22 Inexact Rounded -sqtx2235 squareroot 5.0E-1 -> 0.71 Inexact Rounded -sqtx2236 squareroot 5.00E-2 -> 0.22 Inexact Rounded -sqtx2237 squareroot 5E-3 -> 0.071 Inexact Rounded -sqtx2238 squareroot 5E+1 -> 7.1 Inexact Rounded -sqtx2239 squareroot 5E+2 -> 22 Inexact Rounded -sqtx2240 squareroot 5E+3 -> 71 Inexact Rounded -sqtx2241 squareroot 0.6 -> 0.77 Inexact Rounded -sqtx2242 squareroot 0.06 -> 0.24 Inexact Rounded -sqtx2243 squareroot 6.0E-1 -> 0.77 Inexact Rounded -sqtx2244 squareroot 6.00E-2 -> 0.24 Inexact Rounded -sqtx2245 squareroot 6E-3 -> 0.077 Inexact Rounded -sqtx2246 squareroot 6E+1 -> 7.7 Inexact Rounded -sqtx2247 squareroot 6E+2 -> 24 Inexact Rounded -sqtx2248 squareroot 6E+3 -> 77 Inexact Rounded -sqtx2249 squareroot 0.7 -> 0.84 Inexact Rounded -sqtx2250 squareroot 0.07 -> 0.26 Inexact Rounded -sqtx2251 squareroot 7.0E-1 -> 0.84 Inexact Rounded -sqtx2252 squareroot 7.00E-2 -> 0.26 Inexact Rounded -sqtx2253 squareroot 7E-3 -> 0.084 Inexact Rounded -sqtx2254 squareroot 7E+1 -> 8.4 Inexact Rounded -sqtx2255 squareroot 7E+2 -> 26 Inexact Rounded -sqtx2256 squareroot 7E+3 -> 84 Inexact Rounded -sqtx2257 squareroot 0.8 -> 0.89 Inexact Rounded -sqtx2258 squareroot 0.08 -> 0.28 Inexact Rounded -sqtx2259 squareroot 8.0E-1 -> 0.89 Inexact Rounded -sqtx2260 squareroot 8.00E-2 -> 0.28 Inexact Rounded -sqtx2261 squareroot 8E-3 -> 0.089 Inexact Rounded -sqtx2262 squareroot 8E+1 -> 8.9 Inexact Rounded -sqtx2263 squareroot 8E+2 -> 28 Inexact Rounded -sqtx2264 squareroot 8E+3 -> 89 Inexact Rounded -sqtx2265 squareroot 0.9 -> 0.95 Inexact Rounded -sqtx2266 squareroot 0.09 -> 0.3 -sqtx2267 squareroot 9.0E-1 -> 0.95 Inexact Rounded -sqtx2268 squareroot 9.00E-2 -> 0.30 Rounded -- input rounding -sqtx2269 squareroot 9E-3 -> 0.095 Inexact Rounded -sqtx2270 squareroot 9E+1 -> 9.5 Inexact Rounded -sqtx2271 squareroot 9E+2 -> 3E+1 -sqtx2272 squareroot 9E+3 -> 95 Inexact Rounded -sqtx2273 squareroot 0.10 -> 0.32 Inexact Rounded -sqtx2274 squareroot 0.010 -> 0.10 -sqtx2275 squareroot 10.0E-1 -> 1.0 Rounded -sqtx2276 squareroot 10.00E-2 -> 0.32 Inexact Rounded -sqtx2277 squareroot 10E-3 -> 0.10 -sqtx2278 squareroot 10E+1 -> 10 -sqtx2279 squareroot 10E+2 -> 32 Inexact Rounded -sqtx2280 squareroot 10E+3 -> 1.0E+2 -sqtx2281 squareroot 0.11 -> 0.33 Inexact Rounded -sqtx2282 squareroot 0.011 -> 0.10 Inexact Rounded -sqtx2283 squareroot 11.0E-1 -> 1.0 Inexact Rounded -sqtx2284 squareroot 11.00E-2 -> 0.33 Inexact Rounded -sqtx2285 squareroot 11E-3 -> 0.10 Inexact Rounded -sqtx2286 squareroot 11E+1 -> 10 Inexact Rounded -sqtx2287 squareroot 11E+2 -> 33 Inexact Rounded -sqtx2288 squareroot 11E+3 -> 1.0E+2 Inexact Rounded -sqtx2289 squareroot 0.12 -> 0.35 Inexact Rounded -sqtx2290 squareroot 0.012 -> 0.11 Inexact Rounded -sqtx2291 squareroot 12.0E-1 -> 1.1 Inexact Rounded -sqtx2292 squareroot 12.00E-2 -> 0.35 Inexact Rounded -sqtx2293 squareroot 12E-3 -> 0.11 Inexact Rounded -sqtx2294 squareroot 12E+1 -> 11 Inexact Rounded -sqtx2295 squareroot 12E+2 -> 35 Inexact Rounded -sqtx2296 squareroot 12E+3 -> 1.1E+2 Inexact Rounded -sqtx2297 squareroot 0.13 -> 0.36 Inexact Rounded -sqtx2298 squareroot 0.013 -> 0.11 Inexact Rounded -sqtx2299 squareroot 13.0E-1 -> 1.1 Inexact Rounded -sqtx2300 squareroot 13.00E-2 -> 0.36 Inexact Rounded -sqtx2301 squareroot 13E-3 -> 0.11 Inexact Rounded -sqtx2302 squareroot 13E+1 -> 11 Inexact Rounded -sqtx2303 squareroot 13E+2 -> 36 Inexact Rounded -sqtx2304 squareroot 13E+3 -> 1.1E+2 Inexact Rounded -sqtx2305 squareroot 0.14 -> 0.37 Inexact Rounded -sqtx2306 squareroot 0.014 -> 0.12 Inexact Rounded -sqtx2307 squareroot 14.0E-1 -> 1.2 Inexact Rounded -sqtx2308 squareroot 14.00E-2 -> 0.37 Inexact Rounded -sqtx2309 squareroot 14E-3 -> 0.12 Inexact Rounded -sqtx2310 squareroot 14E+1 -> 12 Inexact Rounded -sqtx2311 squareroot 14E+2 -> 37 Inexact Rounded -sqtx2312 squareroot 14E+3 -> 1.2E+2 Inexact Rounded -sqtx2313 squareroot 0.15 -> 0.39 Inexact Rounded -sqtx2314 squareroot 0.015 -> 0.12 Inexact Rounded -sqtx2315 squareroot 15.0E-1 -> 1.2 Inexact Rounded -sqtx2316 squareroot 15.00E-2 -> 0.39 Inexact Rounded -sqtx2317 squareroot 15E-3 -> 0.12 Inexact Rounded -sqtx2318 squareroot 15E+1 -> 12 Inexact Rounded -sqtx2319 squareroot 15E+2 -> 39 Inexact Rounded -sqtx2320 squareroot 15E+3 -> 1.2E+2 Inexact Rounded -sqtx2321 squareroot 0.16 -> 0.4 -sqtx2322 squareroot 0.016 -> 0.13 Inexact Rounded -sqtx2323 squareroot 16.0E-1 -> 1.3 Inexact Rounded -sqtx2324 squareroot 16.00E-2 -> 0.4 Rounded -sqtx2325 squareroot 16E-3 -> 0.13 Inexact Rounded -sqtx2326 squareroot 16E+1 -> 13 Inexact Rounded -sqtx2327 squareroot 16E+2 -> 4E+1 -sqtx2328 squareroot 16E+3 -> 1.3E+2 Inexact Rounded -sqtx2329 squareroot 0.17 -> 0.41 Inexact Rounded -sqtx2330 squareroot 0.017 -> 0.13 Inexact Rounded -sqtx2331 squareroot 17.0E-1 -> 1.3 Inexact Rounded -sqtx2332 squareroot 17.00E-2 -> 0.41 Inexact Rounded -sqtx2333 squareroot 17E-3 -> 0.13 Inexact Rounded -sqtx2334 squareroot 17E+1 -> 13 Inexact Rounded -sqtx2335 squareroot 17E+2 -> 41 Inexact Rounded -sqtx2336 squareroot 17E+3 -> 1.3E+2 Inexact Rounded -sqtx2337 squareroot 0.18 -> 0.42 Inexact Rounded -sqtx2338 squareroot 0.018 -> 0.13 Inexact Rounded -sqtx2339 squareroot 18.0E-1 -> 1.3 Inexact Rounded -sqtx2340 squareroot 18.00E-2 -> 0.42 Inexact Rounded -sqtx2341 squareroot 18E-3 -> 0.13 Inexact Rounded -sqtx2342 squareroot 18E+1 -> 13 Inexact Rounded -sqtx2343 squareroot 18E+2 -> 42 Inexact Rounded -sqtx2344 squareroot 18E+3 -> 1.3E+2 Inexact Rounded -sqtx2345 squareroot 0.19 -> 0.44 Inexact Rounded -sqtx2346 squareroot 0.019 -> 0.14 Inexact Rounded -sqtx2347 squareroot 19.0E-1 -> 1.4 Inexact Rounded -sqtx2348 squareroot 19.00E-2 -> 0.44 Inexact Rounded -sqtx2349 squareroot 19E-3 -> 0.14 Inexact Rounded -sqtx2350 squareroot 19E+1 -> 14 Inexact Rounded -sqtx2351 squareroot 19E+2 -> 44 Inexact Rounded -sqtx2352 squareroot 19E+3 -> 1.4E+2 Inexact Rounded -sqtx2353 squareroot 0.20 -> 0.45 Inexact Rounded -sqtx2354 squareroot 0.020 -> 0.14 Inexact Rounded -sqtx2355 squareroot 20.0E-1 -> 1.4 Inexact Rounded -sqtx2356 squareroot 20.00E-2 -> 0.45 Inexact Rounded -sqtx2357 squareroot 20E-3 -> 0.14 Inexact Rounded -sqtx2358 squareroot 20E+1 -> 14 Inexact Rounded -sqtx2359 squareroot 20E+2 -> 45 Inexact Rounded -sqtx2360 squareroot 20E+3 -> 1.4E+2 Inexact Rounded -sqtx2361 squareroot 0.21 -> 0.46 Inexact Rounded -sqtx2362 squareroot 0.021 -> 0.14 Inexact Rounded -sqtx2363 squareroot 21.0E-1 -> 1.4 Inexact Rounded -sqtx2364 squareroot 21.00E-2 -> 0.46 Inexact Rounded -sqtx2365 squareroot 21E-3 -> 0.14 Inexact Rounded -sqtx2366 squareroot 21E+1 -> 14 Inexact Rounded -sqtx2367 squareroot 21E+2 -> 46 Inexact Rounded -sqtx2368 squareroot 21E+3 -> 1.4E+2 Inexact Rounded -sqtx2369 squareroot 0.22 -> 0.47 Inexact Rounded -sqtx2370 squareroot 0.022 -> 0.15 Inexact Rounded -sqtx2371 squareroot 22.0E-1 -> 1.5 Inexact Rounded -sqtx2372 squareroot 22.00E-2 -> 0.47 Inexact Rounded -sqtx2373 squareroot 22E-3 -> 0.15 Inexact Rounded -sqtx2374 squareroot 22E+1 -> 15 Inexact Rounded -sqtx2375 squareroot 22E+2 -> 47 Inexact Rounded -sqtx2376 squareroot 22E+3 -> 1.5E+2 Inexact Rounded -sqtx2377 squareroot 0.23 -> 0.48 Inexact Rounded -sqtx2378 squareroot 0.023 -> 0.15 Inexact Rounded -sqtx2379 squareroot 23.0E-1 -> 1.5 Inexact Rounded -sqtx2380 squareroot 23.00E-2 -> 0.48 Inexact Rounded -sqtx2381 squareroot 23E-3 -> 0.15 Inexact Rounded -sqtx2382 squareroot 23E+1 -> 15 Inexact Rounded -sqtx2383 squareroot 23E+2 -> 48 Inexact Rounded -sqtx2384 squareroot 23E+3 -> 1.5E+2 Inexact Rounded -sqtx2385 squareroot 0.24 -> 0.49 Inexact Rounded -sqtx2386 squareroot 0.024 -> 0.15 Inexact Rounded -sqtx2387 squareroot 24.0E-1 -> 1.5 Inexact Rounded -sqtx2388 squareroot 24.00E-2 -> 0.49 Inexact Rounded -sqtx2389 squareroot 24E-3 -> 0.15 Inexact Rounded -sqtx2390 squareroot 24E+1 -> 15 Inexact Rounded -sqtx2391 squareroot 24E+2 -> 49 Inexact Rounded -sqtx2392 squareroot 24E+3 -> 1.5E+2 Inexact Rounded -sqtx2393 squareroot 0.25 -> 0.5 -sqtx2394 squareroot 0.025 -> 0.16 Inexact Rounded -sqtx2395 squareroot 25.0E-1 -> 1.6 Inexact Rounded -sqtx2396 squareroot 25.00E-2 -> 0.5 Rounded -sqtx2397 squareroot 25E-3 -> 0.16 Inexact Rounded -sqtx2398 squareroot 25E+1 -> 16 Inexact Rounded -sqtx2399 squareroot 25E+2 -> 5E+1 -sqtx2400 squareroot 25E+3 -> 1.6E+2 Inexact Rounded -sqtx2401 squareroot 0.26 -> 0.51 Inexact Rounded -sqtx2402 squareroot 0.026 -> 0.16 Inexact Rounded -sqtx2403 squareroot 26.0E-1 -> 1.6 Inexact Rounded -sqtx2404 squareroot 26.00E-2 -> 0.51 Inexact Rounded -sqtx2405 squareroot 26E-3 -> 0.16 Inexact Rounded -sqtx2406 squareroot 26E+1 -> 16 Inexact Rounded -sqtx2407 squareroot 26E+2 -> 51 Inexact Rounded -sqtx2408 squareroot 26E+3 -> 1.6E+2 Inexact Rounded -sqtx2409 squareroot 0.27 -> 0.52 Inexact Rounded -sqtx2410 squareroot 0.027 -> 0.16 Inexact Rounded -sqtx2411 squareroot 27.0E-1 -> 1.6 Inexact Rounded -sqtx2412 squareroot 27.00E-2 -> 0.52 Inexact Rounded -sqtx2413 squareroot 27E-3 -> 0.16 Inexact Rounded -sqtx2414 squareroot 27E+1 -> 16 Inexact Rounded -sqtx2415 squareroot 27E+2 -> 52 Inexact Rounded -sqtx2416 squareroot 27E+3 -> 1.6E+2 Inexact Rounded -sqtx2417 squareroot 0.28 -> 0.53 Inexact Rounded -sqtx2418 squareroot 0.028 -> 0.17 Inexact Rounded -sqtx2419 squareroot 28.0E-1 -> 1.7 Inexact Rounded -sqtx2420 squareroot 28.00E-2 -> 0.53 Inexact Rounded -sqtx2421 squareroot 28E-3 -> 0.17 Inexact Rounded -sqtx2422 squareroot 28E+1 -> 17 Inexact Rounded -sqtx2423 squareroot 28E+2 -> 53 Inexact Rounded -sqtx2424 squareroot 28E+3 -> 1.7E+2 Inexact Rounded -sqtx2425 squareroot 0.29 -> 0.54 Inexact Rounded -sqtx2426 squareroot 0.029 -> 0.17 Inexact Rounded -sqtx2427 squareroot 29.0E-1 -> 1.7 Inexact Rounded -sqtx2428 squareroot 29.00E-2 -> 0.54 Inexact Rounded -sqtx2429 squareroot 29E-3 -> 0.17 Inexact Rounded -sqtx2430 squareroot 29E+1 -> 17 Inexact Rounded -sqtx2431 squareroot 29E+2 -> 54 Inexact Rounded -sqtx2432 squareroot 29E+3 -> 1.7E+2 Inexact Rounded -sqtx2433 squareroot 0.30 -> 0.55 Inexact Rounded -sqtx2434 squareroot 0.030 -> 0.17 Inexact Rounded -sqtx2435 squareroot 30.0E-1 -> 1.7 Inexact Rounded -sqtx2436 squareroot 30.00E-2 -> 0.55 Inexact Rounded -sqtx2437 squareroot 30E-3 -> 0.17 Inexact Rounded -sqtx2438 squareroot 30E+1 -> 17 Inexact Rounded -sqtx2439 squareroot 30E+2 -> 55 Inexact Rounded -sqtx2440 squareroot 30E+3 -> 1.7E+2 Inexact Rounded -sqtx2441 squareroot 0.31 -> 0.56 Inexact Rounded -sqtx2442 squareroot 0.031 -> 0.18 Inexact Rounded -sqtx2443 squareroot 31.0E-1 -> 1.8 Inexact Rounded -sqtx2444 squareroot 31.00E-2 -> 0.56 Inexact Rounded -sqtx2445 squareroot 31E-3 -> 0.18 Inexact Rounded -sqtx2446 squareroot 31E+1 -> 18 Inexact Rounded -sqtx2447 squareroot 31E+2 -> 56 Inexact Rounded -sqtx2448 squareroot 31E+3 -> 1.8E+2 Inexact Rounded -sqtx2449 squareroot 0.32 -> 0.57 Inexact Rounded -sqtx2450 squareroot 0.032 -> 0.18 Inexact Rounded -sqtx2451 squareroot 32.0E-1 -> 1.8 Inexact Rounded -sqtx2452 squareroot 32.00E-2 -> 0.57 Inexact Rounded -sqtx2453 squareroot 32E-3 -> 0.18 Inexact Rounded -sqtx2454 squareroot 32E+1 -> 18 Inexact Rounded -sqtx2455 squareroot 32E+2 -> 57 Inexact Rounded -sqtx2456 squareroot 32E+3 -> 1.8E+2 Inexact Rounded -sqtx2457 squareroot 0.33 -> 0.57 Inexact Rounded -sqtx2458 squareroot 0.033 -> 0.18 Inexact Rounded -sqtx2459 squareroot 33.0E-1 -> 1.8 Inexact Rounded -sqtx2460 squareroot 33.00E-2 -> 0.57 Inexact Rounded -sqtx2461 squareroot 33E-3 -> 0.18 Inexact Rounded -sqtx2462 squareroot 33E+1 -> 18 Inexact Rounded -sqtx2463 squareroot 33E+2 -> 57 Inexact Rounded -sqtx2464 squareroot 33E+3 -> 1.8E+2 Inexact Rounded -sqtx2465 squareroot 0.34 -> 0.58 Inexact Rounded -sqtx2466 squareroot 0.034 -> 0.18 Inexact Rounded -sqtx2467 squareroot 34.0E-1 -> 1.8 Inexact Rounded -sqtx2468 squareroot 34.00E-2 -> 0.58 Inexact Rounded -sqtx2469 squareroot 34E-3 -> 0.18 Inexact Rounded -sqtx2470 squareroot 34E+1 -> 18 Inexact Rounded -sqtx2471 squareroot 34E+2 -> 58 Inexact Rounded -sqtx2472 squareroot 34E+3 -> 1.8E+2 Inexact Rounded -sqtx2473 squareroot 0.35 -> 0.59 Inexact Rounded -sqtx2474 squareroot 0.035 -> 0.19 Inexact Rounded -sqtx2475 squareroot 35.0E-1 -> 1.9 Inexact Rounded -sqtx2476 squareroot 35.00E-2 -> 0.59 Inexact Rounded -sqtx2477 squareroot 35E-3 -> 0.19 Inexact Rounded -sqtx2478 squareroot 35E+1 -> 19 Inexact Rounded -sqtx2479 squareroot 35E+2 -> 59 Inexact Rounded -sqtx2480 squareroot 35E+3 -> 1.9E+2 Inexact Rounded -sqtx2481 squareroot 0.36 -> 0.6 -sqtx2482 squareroot 0.036 -> 0.19 Inexact Rounded -sqtx2483 squareroot 36.0E-1 -> 1.9 Inexact Rounded -sqtx2484 squareroot 36.00E-2 -> 0.6 Rounded -sqtx2485 squareroot 36E-3 -> 0.19 Inexact Rounded -sqtx2486 squareroot 36E+1 -> 19 Inexact Rounded -sqtx2487 squareroot 36E+2 -> 6E+1 -sqtx2488 squareroot 36E+3 -> 1.9E+2 Inexact Rounded -sqtx2489 squareroot 0.37 -> 0.61 Inexact Rounded -sqtx2490 squareroot 0.037 -> 0.19 Inexact Rounded -sqtx2491 squareroot 37.0E-1 -> 1.9 Inexact Rounded -sqtx2492 squareroot 37.00E-2 -> 0.61 Inexact Rounded -sqtx2493 squareroot 37E-3 -> 0.19 Inexact Rounded -sqtx2494 squareroot 37E+1 -> 19 Inexact Rounded -sqtx2495 squareroot 37E+2 -> 61 Inexact Rounded -sqtx2496 squareroot 37E+3 -> 1.9E+2 Inexact Rounded -sqtx2497 squareroot 0.38 -> 0.62 Inexact Rounded -sqtx2498 squareroot 0.038 -> 0.19 Inexact Rounded -sqtx2499 squareroot 38.0E-1 -> 1.9 Inexact Rounded -sqtx2500 squareroot 38.00E-2 -> 0.62 Inexact Rounded -sqtx2501 squareroot 38E-3 -> 0.19 Inexact Rounded -sqtx2502 squareroot 38E+1 -> 19 Inexact Rounded -sqtx2503 squareroot 38E+2 -> 62 Inexact Rounded -sqtx2504 squareroot 38E+3 -> 1.9E+2 Inexact Rounded -sqtx2505 squareroot 0.39 -> 0.62 Inexact Rounded -sqtx2506 squareroot 0.039 -> 0.20 Inexact Rounded -sqtx2507 squareroot 39.0E-1 -> 2.0 Inexact Rounded -sqtx2508 squareroot 39.00E-2 -> 0.62 Inexact Rounded -sqtx2509 squareroot 39E-3 -> 0.20 Inexact Rounded -sqtx2510 squareroot 39E+1 -> 20 Inexact Rounded -sqtx2511 squareroot 39E+2 -> 62 Inexact Rounded -sqtx2512 squareroot 39E+3 -> 2.0E+2 Inexact Rounded -sqtx2513 squareroot 0.40 -> 0.63 Inexact Rounded -sqtx2514 squareroot 0.040 -> 0.20 -sqtx2515 squareroot 40.0E-1 -> 2.0 Rounded -sqtx2516 squareroot 40.00E-2 -> 0.63 Inexact Rounded -sqtx2517 squareroot 40E-3 -> 0.20 -sqtx2518 squareroot 40E+1 -> 20 -sqtx2519 squareroot 40E+2 -> 63 Inexact Rounded -sqtx2520 squareroot 40E+3 -> 2.0E+2 -sqtx2521 squareroot 0.41 -> 0.64 Inexact Rounded -sqtx2522 squareroot 0.041 -> 0.20 Inexact Rounded -sqtx2523 squareroot 41.0E-1 -> 2.0 Inexact Rounded -sqtx2524 squareroot 41.00E-2 -> 0.64 Inexact Rounded -sqtx2525 squareroot 41E-3 -> 0.20 Inexact Rounded -sqtx2526 squareroot 41E+1 -> 20 Inexact Rounded -sqtx2527 squareroot 41E+2 -> 64 Inexact Rounded -sqtx2528 squareroot 41E+3 -> 2.0E+2 Inexact Rounded -sqtx2529 squareroot 0.42 -> 0.65 Inexact Rounded -sqtx2530 squareroot 0.042 -> 0.20 Inexact Rounded -sqtx2531 squareroot 42.0E-1 -> 2.0 Inexact Rounded -sqtx2532 squareroot 42.00E-2 -> 0.65 Inexact Rounded -sqtx2533 squareroot 42E-3 -> 0.20 Inexact Rounded -sqtx2534 squareroot 42E+1 -> 20 Inexact Rounded -sqtx2535 squareroot 42E+2 -> 65 Inexact Rounded -sqtx2536 squareroot 42E+3 -> 2.0E+2 Inexact Rounded -sqtx2537 squareroot 0.43 -> 0.66 Inexact Rounded -sqtx2538 squareroot 0.043 -> 0.21 Inexact Rounded -sqtx2539 squareroot 43.0E-1 -> 2.1 Inexact Rounded -sqtx2540 squareroot 43.00E-2 -> 0.66 Inexact Rounded -sqtx2541 squareroot 43E-3 -> 0.21 Inexact Rounded -sqtx2542 squareroot 43E+1 -> 21 Inexact Rounded -sqtx2543 squareroot 43E+2 -> 66 Inexact Rounded -sqtx2544 squareroot 43E+3 -> 2.1E+2 Inexact Rounded -sqtx2545 squareroot 0.44 -> 0.66 Inexact Rounded -sqtx2546 squareroot 0.044 -> 0.21 Inexact Rounded -sqtx2547 squareroot 44.0E-1 -> 2.1 Inexact Rounded -sqtx2548 squareroot 44.00E-2 -> 0.66 Inexact Rounded -sqtx2549 squareroot 44E-3 -> 0.21 Inexact Rounded -sqtx2550 squareroot 44E+1 -> 21 Inexact Rounded -sqtx2551 squareroot 44E+2 -> 66 Inexact Rounded -sqtx2552 squareroot 44E+3 -> 2.1E+2 Inexact Rounded -sqtx2553 squareroot 0.45 -> 0.67 Inexact Rounded -sqtx2554 squareroot 0.045 -> 0.21 Inexact Rounded -sqtx2555 squareroot 45.0E-1 -> 2.1 Inexact Rounded -sqtx2556 squareroot 45.00E-2 -> 0.67 Inexact Rounded -sqtx2557 squareroot 45E-3 -> 0.21 Inexact Rounded -sqtx2558 squareroot 45E+1 -> 21 Inexact Rounded -sqtx2559 squareroot 45E+2 -> 67 Inexact Rounded -sqtx2560 squareroot 45E+3 -> 2.1E+2 Inexact Rounded -sqtx2561 squareroot 0.46 -> 0.68 Inexact Rounded -sqtx2562 squareroot 0.046 -> 0.21 Inexact Rounded -sqtx2563 squareroot 46.0E-1 -> 2.1 Inexact Rounded -sqtx2564 squareroot 46.00E-2 -> 0.68 Inexact Rounded -sqtx2565 squareroot 46E-3 -> 0.21 Inexact Rounded -sqtx2566 squareroot 46E+1 -> 21 Inexact Rounded -sqtx2567 squareroot 46E+2 -> 68 Inexact Rounded -sqtx2568 squareroot 46E+3 -> 2.1E+2 Inexact Rounded -sqtx2569 squareroot 0.47 -> 0.69 Inexact Rounded -sqtx2570 squareroot 0.047 -> 0.22 Inexact Rounded -sqtx2571 squareroot 47.0E-1 -> 2.2 Inexact Rounded -sqtx2572 squareroot 47.00E-2 -> 0.69 Inexact Rounded -sqtx2573 squareroot 47E-3 -> 0.22 Inexact Rounded -sqtx2574 squareroot 47E+1 -> 22 Inexact Rounded -sqtx2575 squareroot 47E+2 -> 69 Inexact Rounded -sqtx2576 squareroot 47E+3 -> 2.2E+2 Inexact Rounded -sqtx2577 squareroot 0.48 -> 0.69 Inexact Rounded -sqtx2578 squareroot 0.048 -> 0.22 Inexact Rounded -sqtx2579 squareroot 48.0E-1 -> 2.2 Inexact Rounded -sqtx2580 squareroot 48.00E-2 -> 0.69 Inexact Rounded -sqtx2581 squareroot 48E-3 -> 0.22 Inexact Rounded -sqtx2582 squareroot 48E+1 -> 22 Inexact Rounded -sqtx2583 squareroot 48E+2 -> 69 Inexact Rounded -sqtx2584 squareroot 48E+3 -> 2.2E+2 Inexact Rounded -sqtx2585 squareroot 0.49 -> 0.7 -sqtx2586 squareroot 0.049 -> 0.22 Inexact Rounded -sqtx2587 squareroot 49.0E-1 -> 2.2 Inexact Rounded -sqtx2588 squareroot 49.00E-2 -> 0.7 Rounded -sqtx2589 squareroot 49E-3 -> 0.22 Inexact Rounded -sqtx2590 squareroot 49E+1 -> 22 Inexact Rounded -sqtx2591 squareroot 49E+2 -> 7E+1 -sqtx2592 squareroot 49E+3 -> 2.2E+2 Inexact Rounded -sqtx2593 squareroot 0.50 -> 0.71 Inexact Rounded -sqtx2594 squareroot 0.050 -> 0.22 Inexact Rounded -sqtx2595 squareroot 50.0E-1 -> 2.2 Inexact Rounded -sqtx2596 squareroot 50.00E-2 -> 0.71 Inexact Rounded -sqtx2597 squareroot 50E-3 -> 0.22 Inexact Rounded -sqtx2598 squareroot 50E+1 -> 22 Inexact Rounded -sqtx2599 squareroot 50E+2 -> 71 Inexact Rounded -sqtx2600 squareroot 50E+3 -> 2.2E+2 Inexact Rounded -sqtx2601 squareroot 0.51 -> 0.71 Inexact Rounded -sqtx2602 squareroot 0.051 -> 0.23 Inexact Rounded -sqtx2603 squareroot 51.0E-1 -> 2.3 Inexact Rounded -sqtx2604 squareroot 51.00E-2 -> 0.71 Inexact Rounded -sqtx2605 squareroot 51E-3 -> 0.23 Inexact Rounded -sqtx2606 squareroot 51E+1 -> 23 Inexact Rounded -sqtx2607 squareroot 51E+2 -> 71 Inexact Rounded -sqtx2608 squareroot 51E+3 -> 2.3E+2 Inexact Rounded -sqtx2609 squareroot 0.52 -> 0.72 Inexact Rounded -sqtx2610 squareroot 0.052 -> 0.23 Inexact Rounded -sqtx2611 squareroot 52.0E-1 -> 2.3 Inexact Rounded -sqtx2612 squareroot 52.00E-2 -> 0.72 Inexact Rounded -sqtx2613 squareroot 52E-3 -> 0.23 Inexact Rounded -sqtx2614 squareroot 52E+1 -> 23 Inexact Rounded -sqtx2615 squareroot 52E+2 -> 72 Inexact Rounded -sqtx2616 squareroot 52E+3 -> 2.3E+2 Inexact Rounded -sqtx2617 squareroot 0.53 -> 0.73 Inexact Rounded -sqtx2618 squareroot 0.053 -> 0.23 Inexact Rounded -sqtx2619 squareroot 53.0E-1 -> 2.3 Inexact Rounded -sqtx2620 squareroot 53.00E-2 -> 0.73 Inexact Rounded -sqtx2621 squareroot 53E-3 -> 0.23 Inexact Rounded -sqtx2622 squareroot 53E+1 -> 23 Inexact Rounded -sqtx2623 squareroot 53E+2 -> 73 Inexact Rounded -sqtx2624 squareroot 53E+3 -> 2.3E+2 Inexact Rounded -sqtx2625 squareroot 0.54 -> 0.73 Inexact Rounded -sqtx2626 squareroot 0.054 -> 0.23 Inexact Rounded -sqtx2627 squareroot 54.0E-1 -> 2.3 Inexact Rounded -sqtx2628 squareroot 54.00E-2 -> 0.73 Inexact Rounded -sqtx2629 squareroot 54E-3 -> 0.23 Inexact Rounded -sqtx2630 squareroot 54E+1 -> 23 Inexact Rounded -sqtx2631 squareroot 54E+2 -> 73 Inexact Rounded -sqtx2632 squareroot 54E+3 -> 2.3E+2 Inexact Rounded -sqtx2633 squareroot 0.55 -> 0.74 Inexact Rounded -sqtx2634 squareroot 0.055 -> 0.23 Inexact Rounded -sqtx2635 squareroot 55.0E-1 -> 2.3 Inexact Rounded -sqtx2636 squareroot 55.00E-2 -> 0.74 Inexact Rounded -sqtx2637 squareroot 55E-3 -> 0.23 Inexact Rounded -sqtx2638 squareroot 55E+1 -> 23 Inexact Rounded -sqtx2639 squareroot 55E+2 -> 74 Inexact Rounded -sqtx2640 squareroot 55E+3 -> 2.3E+2 Inexact Rounded -sqtx2641 squareroot 0.56 -> 0.75 Inexact Rounded -sqtx2642 squareroot 0.056 -> 0.24 Inexact Rounded -sqtx2643 squareroot 56.0E-1 -> 2.4 Inexact Rounded -sqtx2644 squareroot 56.00E-2 -> 0.75 Inexact Rounded -sqtx2645 squareroot 56E-3 -> 0.24 Inexact Rounded -sqtx2646 squareroot 56E+1 -> 24 Inexact Rounded -sqtx2647 squareroot 56E+2 -> 75 Inexact Rounded -sqtx2648 squareroot 56E+3 -> 2.4E+2 Inexact Rounded -sqtx2649 squareroot 0.57 -> 0.75 Inexact Rounded -sqtx2650 squareroot 0.057 -> 0.24 Inexact Rounded -sqtx2651 squareroot 57.0E-1 -> 2.4 Inexact Rounded -sqtx2652 squareroot 57.00E-2 -> 0.75 Inexact Rounded -sqtx2653 squareroot 57E-3 -> 0.24 Inexact Rounded -sqtx2654 squareroot 57E+1 -> 24 Inexact Rounded -sqtx2655 squareroot 57E+2 -> 75 Inexact Rounded -sqtx2656 squareroot 57E+3 -> 2.4E+2 Inexact Rounded -sqtx2657 squareroot 0.58 -> 0.76 Inexact Rounded -sqtx2658 squareroot 0.058 -> 0.24 Inexact Rounded -sqtx2659 squareroot 58.0E-1 -> 2.4 Inexact Rounded -sqtx2660 squareroot 58.00E-2 -> 0.76 Inexact Rounded -sqtx2661 squareroot 58E-3 -> 0.24 Inexact Rounded -sqtx2662 squareroot 58E+1 -> 24 Inexact Rounded -sqtx2663 squareroot 58E+2 -> 76 Inexact Rounded -sqtx2664 squareroot 58E+3 -> 2.4E+2 Inexact Rounded -sqtx2665 squareroot 0.59 -> 0.77 Inexact Rounded -sqtx2666 squareroot 0.059 -> 0.24 Inexact Rounded -sqtx2667 squareroot 59.0E-1 -> 2.4 Inexact Rounded -sqtx2668 squareroot 59.00E-2 -> 0.77 Inexact Rounded -sqtx2669 squareroot 59E-3 -> 0.24 Inexact Rounded -sqtx2670 squareroot 59E+1 -> 24 Inexact Rounded -sqtx2671 squareroot 59E+2 -> 77 Inexact Rounded -sqtx2672 squareroot 59E+3 -> 2.4E+2 Inexact Rounded -sqtx2673 squareroot 0.60 -> 0.77 Inexact Rounded -sqtx2674 squareroot 0.060 -> 0.24 Inexact Rounded -sqtx2675 squareroot 60.0E-1 -> 2.4 Inexact Rounded -sqtx2676 squareroot 60.00E-2 -> 0.77 Inexact Rounded -sqtx2677 squareroot 60E-3 -> 0.24 Inexact Rounded -sqtx2678 squareroot 60E+1 -> 24 Inexact Rounded -sqtx2679 squareroot 60E+2 -> 77 Inexact Rounded -sqtx2680 squareroot 60E+3 -> 2.4E+2 Inexact Rounded -sqtx2681 squareroot 0.61 -> 0.78 Inexact Rounded -sqtx2682 squareroot 0.061 -> 0.25 Inexact Rounded -sqtx2683 squareroot 61.0E-1 -> 2.5 Inexact Rounded -sqtx2684 squareroot 61.00E-2 -> 0.78 Inexact Rounded -sqtx2685 squareroot 61E-3 -> 0.25 Inexact Rounded -sqtx2686 squareroot 61E+1 -> 25 Inexact Rounded -sqtx2687 squareroot 61E+2 -> 78 Inexact Rounded -sqtx2688 squareroot 61E+3 -> 2.5E+2 Inexact Rounded -sqtx2689 squareroot 0.62 -> 0.79 Inexact Rounded -sqtx2690 squareroot 0.062 -> 0.25 Inexact Rounded -sqtx2691 squareroot 62.0E-1 -> 2.5 Inexact Rounded -sqtx2692 squareroot 62.00E-2 -> 0.79 Inexact Rounded -sqtx2693 squareroot 62E-3 -> 0.25 Inexact Rounded -sqtx2694 squareroot 62E+1 -> 25 Inexact Rounded -sqtx2695 squareroot 62E+2 -> 79 Inexact Rounded -sqtx2696 squareroot 62E+3 -> 2.5E+2 Inexact Rounded -sqtx2697 squareroot 0.63 -> 0.79 Inexact Rounded -sqtx2698 squareroot 0.063 -> 0.25 Inexact Rounded -sqtx2699 squareroot 63.0E-1 -> 2.5 Inexact Rounded -sqtx2700 squareroot 63.00E-2 -> 0.79 Inexact Rounded -sqtx2701 squareroot 63E-3 -> 0.25 Inexact Rounded -sqtx2702 squareroot 63E+1 -> 25 Inexact Rounded -sqtx2703 squareroot 63E+2 -> 79 Inexact Rounded -sqtx2704 squareroot 63E+3 -> 2.5E+2 Inexact Rounded -sqtx2705 squareroot 0.64 -> 0.8 -sqtx2706 squareroot 0.064 -> 0.25 Inexact Rounded -sqtx2707 squareroot 64.0E-1 -> 2.5 Inexact Rounded -sqtx2708 squareroot 64.00E-2 -> 0.8 Rounded -sqtx2709 squareroot 64E-3 -> 0.25 Inexact Rounded -sqtx2710 squareroot 64E+1 -> 25 Inexact Rounded -sqtx2711 squareroot 64E+2 -> 8E+1 -sqtx2712 squareroot 64E+3 -> 2.5E+2 Inexact Rounded -sqtx2713 squareroot 0.65 -> 0.81 Inexact Rounded -sqtx2714 squareroot 0.065 -> 0.25 Inexact Rounded -sqtx2715 squareroot 65.0E-1 -> 2.5 Inexact Rounded -sqtx2716 squareroot 65.00E-2 -> 0.81 Inexact Rounded -sqtx2717 squareroot 65E-3 -> 0.25 Inexact Rounded -sqtx2718 squareroot 65E+1 -> 25 Inexact Rounded -sqtx2719 squareroot 65E+2 -> 81 Inexact Rounded -sqtx2720 squareroot 65E+3 -> 2.5E+2 Inexact Rounded -sqtx2721 squareroot 0.66 -> 0.81 Inexact Rounded -sqtx2722 squareroot 0.066 -> 0.26 Inexact Rounded -sqtx2723 squareroot 66.0E-1 -> 2.6 Inexact Rounded -sqtx2724 squareroot 66.00E-2 -> 0.81 Inexact Rounded -sqtx2725 squareroot 66E-3 -> 0.26 Inexact Rounded -sqtx2726 squareroot 66E+1 -> 26 Inexact Rounded -sqtx2727 squareroot 66E+2 -> 81 Inexact Rounded -sqtx2728 squareroot 66E+3 -> 2.6E+2 Inexact Rounded -sqtx2729 squareroot 0.67 -> 0.82 Inexact Rounded -sqtx2730 squareroot 0.067 -> 0.26 Inexact Rounded -sqtx2731 squareroot 67.0E-1 -> 2.6 Inexact Rounded -sqtx2732 squareroot 67.00E-2 -> 0.82 Inexact Rounded -sqtx2733 squareroot 67E-3 -> 0.26 Inexact Rounded -sqtx2734 squareroot 67E+1 -> 26 Inexact Rounded -sqtx2735 squareroot 67E+2 -> 82 Inexact Rounded -sqtx2736 squareroot 67E+3 -> 2.6E+2 Inexact Rounded -sqtx2737 squareroot 0.68 -> 0.82 Inexact Rounded -sqtx2738 squareroot 0.068 -> 0.26 Inexact Rounded -sqtx2739 squareroot 68.0E-1 -> 2.6 Inexact Rounded -sqtx2740 squareroot 68.00E-2 -> 0.82 Inexact Rounded -sqtx2741 squareroot 68E-3 -> 0.26 Inexact Rounded -sqtx2742 squareroot 68E+1 -> 26 Inexact Rounded -sqtx2743 squareroot 68E+2 -> 82 Inexact Rounded -sqtx2744 squareroot 68E+3 -> 2.6E+2 Inexact Rounded -sqtx2745 squareroot 0.69 -> 0.83 Inexact Rounded -sqtx2746 squareroot 0.069 -> 0.26 Inexact Rounded -sqtx2747 squareroot 69.0E-1 -> 2.6 Inexact Rounded -sqtx2748 squareroot 69.00E-2 -> 0.83 Inexact Rounded -sqtx2749 squareroot 69E-3 -> 0.26 Inexact Rounded -sqtx2750 squareroot 69E+1 -> 26 Inexact Rounded -sqtx2751 squareroot 69E+2 -> 83 Inexact Rounded -sqtx2752 squareroot 69E+3 -> 2.6E+2 Inexact Rounded -sqtx2753 squareroot 0.70 -> 0.84 Inexact Rounded -sqtx2754 squareroot 0.070 -> 0.26 Inexact Rounded -sqtx2755 squareroot 70.0E-1 -> 2.6 Inexact Rounded -sqtx2756 squareroot 70.00E-2 -> 0.84 Inexact Rounded -sqtx2757 squareroot 70E-3 -> 0.26 Inexact Rounded -sqtx2758 squareroot 70E+1 -> 26 Inexact Rounded -sqtx2759 squareroot 70E+2 -> 84 Inexact Rounded -sqtx2760 squareroot 70E+3 -> 2.6E+2 Inexact Rounded -sqtx2761 squareroot 0.71 -> 0.84 Inexact Rounded -sqtx2762 squareroot 0.071 -> 0.27 Inexact Rounded -sqtx2763 squareroot 71.0E-1 -> 2.7 Inexact Rounded -sqtx2764 squareroot 71.00E-2 -> 0.84 Inexact Rounded -sqtx2765 squareroot 71E-3 -> 0.27 Inexact Rounded -sqtx2766 squareroot 71E+1 -> 27 Inexact Rounded -sqtx2767 squareroot 71E+2 -> 84 Inexact Rounded -sqtx2768 squareroot 71E+3 -> 2.7E+2 Inexact Rounded -sqtx2769 squareroot 0.72 -> 0.85 Inexact Rounded -sqtx2770 squareroot 0.072 -> 0.27 Inexact Rounded -sqtx2771 squareroot 72.0E-1 -> 2.7 Inexact Rounded -sqtx2772 squareroot 72.00E-2 -> 0.85 Inexact Rounded -sqtx2773 squareroot 72E-3 -> 0.27 Inexact Rounded -sqtx2774 squareroot 72E+1 -> 27 Inexact Rounded -sqtx2775 squareroot 72E+2 -> 85 Inexact Rounded -sqtx2776 squareroot 72E+3 -> 2.7E+2 Inexact Rounded -sqtx2777 squareroot 0.73 -> 0.85 Inexact Rounded -sqtx2778 squareroot 0.073 -> 0.27 Inexact Rounded -sqtx2779 squareroot 73.0E-1 -> 2.7 Inexact Rounded -sqtx2780 squareroot 73.00E-2 -> 0.85 Inexact Rounded -sqtx2781 squareroot 73E-3 -> 0.27 Inexact Rounded -sqtx2782 squareroot 73E+1 -> 27 Inexact Rounded -sqtx2783 squareroot 73E+2 -> 85 Inexact Rounded -sqtx2784 squareroot 73E+3 -> 2.7E+2 Inexact Rounded -sqtx2785 squareroot 0.74 -> 0.86 Inexact Rounded -sqtx2786 squareroot 0.074 -> 0.27 Inexact Rounded -sqtx2787 squareroot 74.0E-1 -> 2.7 Inexact Rounded -sqtx2788 squareroot 74.00E-2 -> 0.86 Inexact Rounded -sqtx2789 squareroot 74E-3 -> 0.27 Inexact Rounded -sqtx2790 squareroot 74E+1 -> 27 Inexact Rounded -sqtx2791 squareroot 74E+2 -> 86 Inexact Rounded -sqtx2792 squareroot 74E+3 -> 2.7E+2 Inexact Rounded -sqtx2793 squareroot 0.75 -> 0.87 Inexact Rounded -sqtx2794 squareroot 0.075 -> 0.27 Inexact Rounded -sqtx2795 squareroot 75.0E-1 -> 2.7 Inexact Rounded -sqtx2796 squareroot 75.00E-2 -> 0.87 Inexact Rounded -sqtx2797 squareroot 75E-3 -> 0.27 Inexact Rounded -sqtx2798 squareroot 75E+1 -> 27 Inexact Rounded -sqtx2799 squareroot 75E+2 -> 87 Inexact Rounded -sqtx2800 squareroot 75E+3 -> 2.7E+2 Inexact Rounded -sqtx2801 squareroot 0.76 -> 0.87 Inexact Rounded -sqtx2802 squareroot 0.076 -> 0.28 Inexact Rounded -sqtx2803 squareroot 76.0E-1 -> 2.8 Inexact Rounded -sqtx2804 squareroot 76.00E-2 -> 0.87 Inexact Rounded -sqtx2805 squareroot 76E-3 -> 0.28 Inexact Rounded -sqtx2806 squareroot 76E+1 -> 28 Inexact Rounded -sqtx2807 squareroot 76E+2 -> 87 Inexact Rounded -sqtx2808 squareroot 76E+3 -> 2.8E+2 Inexact Rounded -sqtx2809 squareroot 0.77 -> 0.88 Inexact Rounded -sqtx2810 squareroot 0.077 -> 0.28 Inexact Rounded -sqtx2811 squareroot 77.0E-1 -> 2.8 Inexact Rounded -sqtx2812 squareroot 77.00E-2 -> 0.88 Inexact Rounded -sqtx2813 squareroot 77E-3 -> 0.28 Inexact Rounded -sqtx2814 squareroot 77E+1 -> 28 Inexact Rounded -sqtx2815 squareroot 77E+2 -> 88 Inexact Rounded -sqtx2816 squareroot 77E+3 -> 2.8E+2 Inexact Rounded -sqtx2817 squareroot 0.78 -> 0.88 Inexact Rounded -sqtx2818 squareroot 0.078 -> 0.28 Inexact Rounded -sqtx2819 squareroot 78.0E-1 -> 2.8 Inexact Rounded -sqtx2820 squareroot 78.00E-2 -> 0.88 Inexact Rounded -sqtx2821 squareroot 78E-3 -> 0.28 Inexact Rounded -sqtx2822 squareroot 78E+1 -> 28 Inexact Rounded -sqtx2823 squareroot 78E+2 -> 88 Inexact Rounded -sqtx2824 squareroot 78E+3 -> 2.8E+2 Inexact Rounded -sqtx2825 squareroot 0.79 -> 0.89 Inexact Rounded -sqtx2826 squareroot 0.079 -> 0.28 Inexact Rounded -sqtx2827 squareroot 79.0E-1 -> 2.8 Inexact Rounded -sqtx2828 squareroot 79.00E-2 -> 0.89 Inexact Rounded -sqtx2829 squareroot 79E-3 -> 0.28 Inexact Rounded -sqtx2830 squareroot 79E+1 -> 28 Inexact Rounded -sqtx2831 squareroot 79E+2 -> 89 Inexact Rounded -sqtx2832 squareroot 79E+3 -> 2.8E+2 Inexact Rounded -sqtx2833 squareroot 0.80 -> 0.89 Inexact Rounded -sqtx2834 squareroot 0.080 -> 0.28 Inexact Rounded -sqtx2835 squareroot 80.0E-1 -> 2.8 Inexact Rounded -sqtx2836 squareroot 80.00E-2 -> 0.89 Inexact Rounded -sqtx2837 squareroot 80E-3 -> 0.28 Inexact Rounded -sqtx2838 squareroot 80E+1 -> 28 Inexact Rounded -sqtx2839 squareroot 80E+2 -> 89 Inexact Rounded -sqtx2840 squareroot 80E+3 -> 2.8E+2 Inexact Rounded -sqtx2841 squareroot 0.81 -> 0.9 -sqtx2842 squareroot 0.081 -> 0.28 Inexact Rounded -sqtx2843 squareroot 81.0E-1 -> 2.8 Inexact Rounded -sqtx2844 squareroot 81.00E-2 -> 0.9 Rounded -sqtx2845 squareroot 81E-3 -> 0.28 Inexact Rounded -sqtx2846 squareroot 81E+1 -> 28 Inexact Rounded -sqtx2847 squareroot 81E+2 -> 9E+1 -sqtx2848 squareroot 81E+3 -> 2.8E+2 Inexact Rounded -sqtx2849 squareroot 0.82 -> 0.91 Inexact Rounded -sqtx2850 squareroot 0.082 -> 0.29 Inexact Rounded -sqtx2851 squareroot 82.0E-1 -> 2.9 Inexact Rounded -sqtx2852 squareroot 82.00E-2 -> 0.91 Inexact Rounded -sqtx2853 squareroot 82E-3 -> 0.29 Inexact Rounded -sqtx2854 squareroot 82E+1 -> 29 Inexact Rounded -sqtx2855 squareroot 82E+2 -> 91 Inexact Rounded -sqtx2856 squareroot 82E+3 -> 2.9E+2 Inexact Rounded -sqtx2857 squareroot 0.83 -> 0.91 Inexact Rounded -sqtx2858 squareroot 0.083 -> 0.29 Inexact Rounded -sqtx2859 squareroot 83.0E-1 -> 2.9 Inexact Rounded -sqtx2860 squareroot 83.00E-2 -> 0.91 Inexact Rounded -sqtx2861 squareroot 83E-3 -> 0.29 Inexact Rounded -sqtx2862 squareroot 83E+1 -> 29 Inexact Rounded -sqtx2863 squareroot 83E+2 -> 91 Inexact Rounded -sqtx2864 squareroot 83E+3 -> 2.9E+2 Inexact Rounded -sqtx2865 squareroot 0.84 -> 0.92 Inexact Rounded -sqtx2866 squareroot 0.084 -> 0.29 Inexact Rounded -sqtx2867 squareroot 84.0E-1 -> 2.9 Inexact Rounded -sqtx2868 squareroot 84.00E-2 -> 0.92 Inexact Rounded -sqtx2869 squareroot 84E-3 -> 0.29 Inexact Rounded -sqtx2870 squareroot 84E+1 -> 29 Inexact Rounded -sqtx2871 squareroot 84E+2 -> 92 Inexact Rounded -sqtx2872 squareroot 84E+3 -> 2.9E+2 Inexact Rounded -sqtx2873 squareroot 0.85 -> 0.92 Inexact Rounded -sqtx2874 squareroot 0.085 -> 0.29 Inexact Rounded -sqtx2875 squareroot 85.0E-1 -> 2.9 Inexact Rounded -sqtx2876 squareroot 85.00E-2 -> 0.92 Inexact Rounded -sqtx2877 squareroot 85E-3 -> 0.29 Inexact Rounded -sqtx2878 squareroot 85E+1 -> 29 Inexact Rounded -sqtx2879 squareroot 85E+2 -> 92 Inexact Rounded -sqtx2880 squareroot 85E+3 -> 2.9E+2 Inexact Rounded -sqtx2881 squareroot 0.86 -> 0.93 Inexact Rounded -sqtx2882 squareroot 0.086 -> 0.29 Inexact Rounded -sqtx2883 squareroot 86.0E-1 -> 2.9 Inexact Rounded -sqtx2884 squareroot 86.00E-2 -> 0.93 Inexact Rounded -sqtx2885 squareroot 86E-3 -> 0.29 Inexact Rounded -sqtx2886 squareroot 86E+1 -> 29 Inexact Rounded -sqtx2887 squareroot 86E+2 -> 93 Inexact Rounded -sqtx2888 squareroot 86E+3 -> 2.9E+2 Inexact Rounded -sqtx2889 squareroot 0.87 -> 0.93 Inexact Rounded -sqtx2890 squareroot 0.087 -> 0.29 Inexact Rounded -sqtx2891 squareroot 87.0E-1 -> 2.9 Inexact Rounded -sqtx2892 squareroot 87.00E-2 -> 0.93 Inexact Rounded -sqtx2893 squareroot 87E-3 -> 0.29 Inexact Rounded -sqtx2894 squareroot 87E+1 -> 29 Inexact Rounded -sqtx2895 squareroot 87E+2 -> 93 Inexact Rounded -sqtx2896 squareroot 87E+3 -> 2.9E+2 Inexact Rounded -sqtx2897 squareroot 0.88 -> 0.94 Inexact Rounded -sqtx2898 squareroot 0.088 -> 0.30 Inexact Rounded -sqtx2899 squareroot 88.0E-1 -> 3.0 Inexact Rounded -sqtx2900 squareroot 88.00E-2 -> 0.94 Inexact Rounded -sqtx2901 squareroot 88E-3 -> 0.30 Inexact Rounded -sqtx2902 squareroot 88E+1 -> 30 Inexact Rounded -sqtx2903 squareroot 88E+2 -> 94 Inexact Rounded -sqtx2904 squareroot 88E+3 -> 3.0E+2 Inexact Rounded -sqtx2905 squareroot 0.89 -> 0.94 Inexact Rounded -sqtx2906 squareroot 0.089 -> 0.30 Inexact Rounded -sqtx2907 squareroot 89.0E-1 -> 3.0 Inexact Rounded -sqtx2908 squareroot 89.00E-2 -> 0.94 Inexact Rounded -sqtx2909 squareroot 89E-3 -> 0.30 Inexact Rounded -sqtx2910 squareroot 89E+1 -> 30 Inexact Rounded -sqtx2911 squareroot 89E+2 -> 94 Inexact Rounded -sqtx2912 squareroot 89E+3 -> 3.0E+2 Inexact Rounded -sqtx2913 squareroot 0.90 -> 0.95 Inexact Rounded -sqtx2914 squareroot 0.090 -> 0.30 -sqtx2915 squareroot 90.0E-1 -> 3.0 Rounded -sqtx2916 squareroot 90.00E-2 -> 0.95 Inexact Rounded -sqtx2917 squareroot 90E-3 -> 0.30 -sqtx2918 squareroot 90E+1 -> 30 -sqtx2919 squareroot 90E+2 -> 95 Inexact Rounded -sqtx2920 squareroot 90E+3 -> 3.0E+2 -sqtx2921 squareroot 0.91 -> 0.95 Inexact Rounded -sqtx2922 squareroot 0.091 -> 0.30 Inexact Rounded -sqtx2923 squareroot 91.0E-1 -> 3.0 Inexact Rounded -sqtx2924 squareroot 91.00E-2 -> 0.95 Inexact Rounded -sqtx2925 squareroot 91E-3 -> 0.30 Inexact Rounded -sqtx2926 squareroot 91E+1 -> 30 Inexact Rounded -sqtx2927 squareroot 91E+2 -> 95 Inexact Rounded -sqtx2928 squareroot 91E+3 -> 3.0E+2 Inexact Rounded -sqtx2929 squareroot 0.92 -> 0.96 Inexact Rounded -sqtx2930 squareroot 0.092 -> 0.30 Inexact Rounded -sqtx2931 squareroot 92.0E-1 -> 3.0 Inexact Rounded -sqtx2932 squareroot 92.00E-2 -> 0.96 Inexact Rounded -sqtx2933 squareroot 92E-3 -> 0.30 Inexact Rounded -sqtx2934 squareroot 92E+1 -> 30 Inexact Rounded -sqtx2935 squareroot 92E+2 -> 96 Inexact Rounded -sqtx2936 squareroot 92E+3 -> 3.0E+2 Inexact Rounded -sqtx2937 squareroot 0.93 -> 0.96 Inexact Rounded -sqtx2938 squareroot 0.093 -> 0.30 Inexact Rounded -sqtx2939 squareroot 93.0E-1 -> 3.0 Inexact Rounded -sqtx2940 squareroot 93.00E-2 -> 0.96 Inexact Rounded -sqtx2941 squareroot 93E-3 -> 0.30 Inexact Rounded -sqtx2942 squareroot 93E+1 -> 30 Inexact Rounded -sqtx2943 squareroot 93E+2 -> 96 Inexact Rounded -sqtx2944 squareroot 93E+3 -> 3.0E+2 Inexact Rounded -sqtx2945 squareroot 0.94 -> 0.97 Inexact Rounded -sqtx2946 squareroot 0.094 -> 0.31 Inexact Rounded -sqtx2947 squareroot 94.0E-1 -> 3.1 Inexact Rounded -sqtx2948 squareroot 94.00E-2 -> 0.97 Inexact Rounded -sqtx2949 squareroot 94E-3 -> 0.31 Inexact Rounded -sqtx2950 squareroot 94E+1 -> 31 Inexact Rounded -sqtx2951 squareroot 94E+2 -> 97 Inexact Rounded -sqtx2952 squareroot 94E+3 -> 3.1E+2 Inexact Rounded -sqtx2953 squareroot 0.95 -> 0.97 Inexact Rounded -sqtx2954 squareroot 0.095 -> 0.31 Inexact Rounded -sqtx2955 squareroot 95.0E-1 -> 3.1 Inexact Rounded -sqtx2956 squareroot 95.00E-2 -> 0.97 Inexact Rounded -sqtx2957 squareroot 95E-3 -> 0.31 Inexact Rounded -sqtx2958 squareroot 95E+1 -> 31 Inexact Rounded -sqtx2959 squareroot 95E+2 -> 97 Inexact Rounded -sqtx2960 squareroot 95E+3 -> 3.1E+2 Inexact Rounded -sqtx2961 squareroot 0.96 -> 0.98 Inexact Rounded -sqtx2962 squareroot 0.096 -> 0.31 Inexact Rounded -sqtx2963 squareroot 96.0E-1 -> 3.1 Inexact Rounded -sqtx2964 squareroot 96.00E-2 -> 0.98 Inexact Rounded -sqtx2965 squareroot 96E-3 -> 0.31 Inexact Rounded -sqtx2966 squareroot 96E+1 -> 31 Inexact Rounded -sqtx2967 squareroot 96E+2 -> 98 Inexact Rounded -sqtx2968 squareroot 96E+3 -> 3.1E+2 Inexact Rounded -sqtx2969 squareroot 0.97 -> 0.98 Inexact Rounded -sqtx2970 squareroot 0.097 -> 0.31 Inexact Rounded -sqtx2971 squareroot 97.0E-1 -> 3.1 Inexact Rounded -sqtx2972 squareroot 97.00E-2 -> 0.98 Inexact Rounded -sqtx2973 squareroot 97E-3 -> 0.31 Inexact Rounded -sqtx2974 squareroot 97E+1 -> 31 Inexact Rounded -sqtx2975 squareroot 97E+2 -> 98 Inexact Rounded -sqtx2976 squareroot 97E+3 -> 3.1E+2 Inexact Rounded -sqtx2977 squareroot 0.98 -> 0.99 Inexact Rounded -sqtx2978 squareroot 0.098 -> 0.31 Inexact Rounded -sqtx2979 squareroot 98.0E-1 -> 3.1 Inexact Rounded -sqtx2980 squareroot 98.00E-2 -> 0.99 Inexact Rounded -sqtx2981 squareroot 98E-3 -> 0.31 Inexact Rounded -sqtx2982 squareroot 98E+1 -> 31 Inexact Rounded -sqtx2983 squareroot 98E+2 -> 99 Inexact Rounded -sqtx2984 squareroot 98E+3 -> 3.1E+2 Inexact Rounded -sqtx2985 squareroot 0.99 -> 0.99 Inexact Rounded -sqtx2986 squareroot 0.099 -> 0.31 Inexact Rounded -sqtx2987 squareroot 99.0E-1 -> 3.1 Inexact Rounded -sqtx2988 squareroot 99.00E-2 -> 0.99 Inexact Rounded -sqtx2989 squareroot 99E-3 -> 0.31 Inexact Rounded -sqtx2990 squareroot 99E+1 -> 31 Inexact Rounded -sqtx2991 squareroot 99E+2 -> 99 Inexact Rounded -sqtx2992 squareroot 99E+3 -> 3.1E+2 Inexact Rounded - --- Precision 3 squareroot tests [exhaustive, f and f/10] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 3 -sqtx3001 squareroot 0.1 -> 0.316 Inexact Rounded -sqtx3002 squareroot 0.01 -> 0.1 -sqtx3003 squareroot 0.2 -> 0.447 Inexact Rounded -sqtx3004 squareroot 0.02 -> 0.141 Inexact Rounded -sqtx3005 squareroot 0.3 -> 0.548 Inexact Rounded -sqtx3006 squareroot 0.03 -> 0.173 Inexact Rounded -sqtx3007 squareroot 0.4 -> 0.632 Inexact Rounded -sqtx3008 squareroot 0.04 -> 0.2 -sqtx3009 squareroot 0.5 -> 0.707 Inexact Rounded -sqtx3010 squareroot 0.05 -> 0.224 Inexact Rounded -sqtx3011 squareroot 0.6 -> 0.775 Inexact Rounded -sqtx3012 squareroot 0.06 -> 0.245 Inexact Rounded -sqtx3013 squareroot 0.7 -> 0.837 Inexact Rounded -sqtx3014 squareroot 0.07 -> 0.265 Inexact Rounded -sqtx3015 squareroot 0.8 -> 0.894 Inexact Rounded -sqtx3016 squareroot 0.08 -> 0.283 Inexact Rounded -sqtx3017 squareroot 0.9 -> 0.949 Inexact Rounded -sqtx3018 squareroot 0.09 -> 0.3 -sqtx3019 squareroot 0.11 -> 0.332 Inexact Rounded -sqtx3020 squareroot 0.011 -> 0.105 Inexact Rounded -sqtx3021 squareroot 0.12 -> 0.346 Inexact Rounded -sqtx3022 squareroot 0.012 -> 0.110 Inexact Rounded -sqtx3023 squareroot 0.13 -> 0.361 Inexact Rounded -sqtx3024 squareroot 0.013 -> 0.114 Inexact Rounded -sqtx3025 squareroot 0.14 -> 0.374 Inexact Rounded -sqtx3026 squareroot 0.014 -> 0.118 Inexact Rounded -sqtx3027 squareroot 0.15 -> 0.387 Inexact Rounded -sqtx3028 squareroot 0.015 -> 0.122 Inexact Rounded -sqtx3029 squareroot 0.16 -> 0.4 -sqtx3030 squareroot 0.016 -> 0.126 Inexact Rounded -sqtx3031 squareroot 0.17 -> 0.412 Inexact Rounded -sqtx3032 squareroot 0.017 -> 0.130 Inexact Rounded -sqtx3033 squareroot 0.18 -> 0.424 Inexact Rounded -sqtx3034 squareroot 0.018 -> 0.134 Inexact Rounded -sqtx3035 squareroot 0.19 -> 0.436 Inexact Rounded -sqtx3036 squareroot 0.019 -> 0.138 Inexact Rounded -sqtx3037 squareroot 0.21 -> 0.458 Inexact Rounded -sqtx3038 squareroot 0.021 -> 0.145 Inexact Rounded -sqtx3039 squareroot 0.22 -> 0.469 Inexact Rounded -sqtx3040 squareroot 0.022 -> 0.148 Inexact Rounded -sqtx3041 squareroot 0.23 -> 0.480 Inexact Rounded -sqtx3042 squareroot 0.023 -> 0.152 Inexact Rounded -sqtx3043 squareroot 0.24 -> 0.490 Inexact Rounded -sqtx3044 squareroot 0.024 -> 0.155 Inexact Rounded -sqtx3045 squareroot 0.25 -> 0.5 -sqtx3046 squareroot 0.025 -> 0.158 Inexact Rounded -sqtx3047 squareroot 0.26 -> 0.510 Inexact Rounded -sqtx3048 squareroot 0.026 -> 0.161 Inexact Rounded -sqtx3049 squareroot 0.27 -> 0.520 Inexact Rounded -sqtx3050 squareroot 0.027 -> 0.164 Inexact Rounded -sqtx3051 squareroot 0.28 -> 0.529 Inexact Rounded -sqtx3052 squareroot 0.028 -> 0.167 Inexact Rounded -sqtx3053 squareroot 0.29 -> 0.539 Inexact Rounded -sqtx3054 squareroot 0.029 -> 0.170 Inexact Rounded -sqtx3055 squareroot 0.31 -> 0.557 Inexact Rounded -sqtx3056 squareroot 0.031 -> 0.176 Inexact Rounded -sqtx3057 squareroot 0.32 -> 0.566 Inexact Rounded -sqtx3058 squareroot 0.032 -> 0.179 Inexact Rounded -sqtx3059 squareroot 0.33 -> 0.574 Inexact Rounded -sqtx3060 squareroot 0.033 -> 0.182 Inexact Rounded -sqtx3061 squareroot 0.34 -> 0.583 Inexact Rounded -sqtx3062 squareroot 0.034 -> 0.184 Inexact Rounded -sqtx3063 squareroot 0.35 -> 0.592 Inexact Rounded -sqtx3064 squareroot 0.035 -> 0.187 Inexact Rounded -sqtx3065 squareroot 0.36 -> 0.6 -sqtx3066 squareroot 0.036 -> 0.190 Inexact Rounded -sqtx3067 squareroot 0.37 -> 0.608 Inexact Rounded -sqtx3068 squareroot 0.037 -> 0.192 Inexact Rounded -sqtx3069 squareroot 0.38 -> 0.616 Inexact Rounded -sqtx3070 squareroot 0.038 -> 0.195 Inexact Rounded -sqtx3071 squareroot 0.39 -> 0.624 Inexact Rounded -sqtx3072 squareroot 0.039 -> 0.197 Inexact Rounded -sqtx3073 squareroot 0.41 -> 0.640 Inexact Rounded -sqtx3074 squareroot 0.041 -> 0.202 Inexact Rounded -sqtx3075 squareroot 0.42 -> 0.648 Inexact Rounded -sqtx3076 squareroot 0.042 -> 0.205 Inexact Rounded -sqtx3077 squareroot 0.43 -> 0.656 Inexact Rounded -sqtx3078 squareroot 0.043 -> 0.207 Inexact Rounded -sqtx3079 squareroot 0.44 -> 0.663 Inexact Rounded -sqtx3080 squareroot 0.044 -> 0.210 Inexact Rounded -sqtx3081 squareroot 0.45 -> 0.671 Inexact Rounded -sqtx3082 squareroot 0.045 -> 0.212 Inexact Rounded -sqtx3083 squareroot 0.46 -> 0.678 Inexact Rounded -sqtx3084 squareroot 0.046 -> 0.214 Inexact Rounded -sqtx3085 squareroot 0.47 -> 0.686 Inexact Rounded -sqtx3086 squareroot 0.047 -> 0.217 Inexact Rounded -sqtx3087 squareroot 0.48 -> 0.693 Inexact Rounded -sqtx3088 squareroot 0.048 -> 0.219 Inexact Rounded -sqtx3089 squareroot 0.49 -> 0.7 -sqtx3090 squareroot 0.049 -> 0.221 Inexact Rounded -sqtx3091 squareroot 0.51 -> 0.714 Inexact Rounded -sqtx3092 squareroot 0.051 -> 0.226 Inexact Rounded -sqtx3093 squareroot 0.52 -> 0.721 Inexact Rounded -sqtx3094 squareroot 0.052 -> 0.228 Inexact Rounded -sqtx3095 squareroot 0.53 -> 0.728 Inexact Rounded -sqtx3096 squareroot 0.053 -> 0.230 Inexact Rounded -sqtx3097 squareroot 0.54 -> 0.735 Inexact Rounded -sqtx3098 squareroot 0.054 -> 0.232 Inexact Rounded -sqtx3099 squareroot 0.55 -> 0.742 Inexact Rounded -sqtx3100 squareroot 0.055 -> 0.235 Inexact Rounded -sqtx3101 squareroot 0.56 -> 0.748 Inexact Rounded -sqtx3102 squareroot 0.056 -> 0.237 Inexact Rounded -sqtx3103 squareroot 0.57 -> 0.755 Inexact Rounded -sqtx3104 squareroot 0.057 -> 0.239 Inexact Rounded -sqtx3105 squareroot 0.58 -> 0.762 Inexact Rounded -sqtx3106 squareroot 0.058 -> 0.241 Inexact Rounded -sqtx3107 squareroot 0.59 -> 0.768 Inexact Rounded -sqtx3108 squareroot 0.059 -> 0.243 Inexact Rounded -sqtx3109 squareroot 0.61 -> 0.781 Inexact Rounded -sqtx3110 squareroot 0.061 -> 0.247 Inexact Rounded -sqtx3111 squareroot 0.62 -> 0.787 Inexact Rounded -sqtx3112 squareroot 0.062 -> 0.249 Inexact Rounded -sqtx3113 squareroot 0.63 -> 0.794 Inexact Rounded -sqtx3114 squareroot 0.063 -> 0.251 Inexact Rounded -sqtx3115 squareroot 0.64 -> 0.8 -sqtx3116 squareroot 0.064 -> 0.253 Inexact Rounded -sqtx3117 squareroot 0.65 -> 0.806 Inexact Rounded -sqtx3118 squareroot 0.065 -> 0.255 Inexact Rounded -sqtx3119 squareroot 0.66 -> 0.812 Inexact Rounded -sqtx3120 squareroot 0.066 -> 0.257 Inexact Rounded -sqtx3121 squareroot 0.67 -> 0.819 Inexact Rounded -sqtx3122 squareroot 0.067 -> 0.259 Inexact Rounded -sqtx3123 squareroot 0.68 -> 0.825 Inexact Rounded -sqtx3124 squareroot 0.068 -> 0.261 Inexact Rounded -sqtx3125 squareroot 0.69 -> 0.831 Inexact Rounded -sqtx3126 squareroot 0.069 -> 0.263 Inexact Rounded -sqtx3127 squareroot 0.71 -> 0.843 Inexact Rounded -sqtx3128 squareroot 0.071 -> 0.266 Inexact Rounded -sqtx3129 squareroot 0.72 -> 0.849 Inexact Rounded -sqtx3130 squareroot 0.072 -> 0.268 Inexact Rounded -sqtx3131 squareroot 0.73 -> 0.854 Inexact Rounded -sqtx3132 squareroot 0.073 -> 0.270 Inexact Rounded -sqtx3133 squareroot 0.74 -> 0.860 Inexact Rounded -sqtx3134 squareroot 0.074 -> 0.272 Inexact Rounded -sqtx3135 squareroot 0.75 -> 0.866 Inexact Rounded -sqtx3136 squareroot 0.075 -> 0.274 Inexact Rounded -sqtx3137 squareroot 0.76 -> 0.872 Inexact Rounded -sqtx3138 squareroot 0.076 -> 0.276 Inexact Rounded -sqtx3139 squareroot 0.77 -> 0.877 Inexact Rounded -sqtx3140 squareroot 0.077 -> 0.277 Inexact Rounded -sqtx3141 squareroot 0.78 -> 0.883 Inexact Rounded -sqtx3142 squareroot 0.078 -> 0.279 Inexact Rounded -sqtx3143 squareroot 0.79 -> 0.889 Inexact Rounded -sqtx3144 squareroot 0.079 -> 0.281 Inexact Rounded -sqtx3145 squareroot 0.81 -> 0.9 -sqtx3146 squareroot 0.081 -> 0.285 Inexact Rounded -sqtx3147 squareroot 0.82 -> 0.906 Inexact Rounded -sqtx3148 squareroot 0.082 -> 0.286 Inexact Rounded -sqtx3149 squareroot 0.83 -> 0.911 Inexact Rounded -sqtx3150 squareroot 0.083 -> 0.288 Inexact Rounded -sqtx3151 squareroot 0.84 -> 0.917 Inexact Rounded -sqtx3152 squareroot 0.084 -> 0.290 Inexact Rounded -sqtx3153 squareroot 0.85 -> 0.922 Inexact Rounded -sqtx3154 squareroot 0.085 -> 0.292 Inexact Rounded -sqtx3155 squareroot 0.86 -> 0.927 Inexact Rounded -sqtx3156 squareroot 0.086 -> 0.293 Inexact Rounded -sqtx3157 squareroot 0.87 -> 0.933 Inexact Rounded -sqtx3158 squareroot 0.087 -> 0.295 Inexact Rounded -sqtx3159 squareroot 0.88 -> 0.938 Inexact Rounded -sqtx3160 squareroot 0.088 -> 0.297 Inexact Rounded -sqtx3161 squareroot 0.89 -> 0.943 Inexact Rounded -sqtx3162 squareroot 0.089 -> 0.298 Inexact Rounded -sqtx3163 squareroot 0.91 -> 0.954 Inexact Rounded -sqtx3164 squareroot 0.091 -> 0.302 Inexact Rounded -sqtx3165 squareroot 0.92 -> 0.959 Inexact Rounded -sqtx3166 squareroot 0.092 -> 0.303 Inexact Rounded -sqtx3167 squareroot 0.93 -> 0.964 Inexact Rounded -sqtx3168 squareroot 0.093 -> 0.305 Inexact Rounded -sqtx3169 squareroot 0.94 -> 0.970 Inexact Rounded -sqtx3170 squareroot 0.094 -> 0.307 Inexact Rounded -sqtx3171 squareroot 0.95 -> 0.975 Inexact Rounded -sqtx3172 squareroot 0.095 -> 0.308 Inexact Rounded -sqtx3173 squareroot 0.96 -> 0.980 Inexact Rounded -sqtx3174 squareroot 0.096 -> 0.310 Inexact Rounded -sqtx3175 squareroot 0.97 -> 0.985 Inexact Rounded -sqtx3176 squareroot 0.097 -> 0.311 Inexact Rounded -sqtx3177 squareroot 0.98 -> 0.990 Inexact Rounded -sqtx3178 squareroot 0.098 -> 0.313 Inexact Rounded -sqtx3179 squareroot 0.99 -> 0.995 Inexact Rounded -sqtx3180 squareroot 0.099 -> 0.315 Inexact Rounded -sqtx3181 squareroot 0.101 -> 0.318 Inexact Rounded -sqtx3182 squareroot 0.0101 -> 0.100 Inexact Rounded -sqtx3183 squareroot 0.102 -> 0.319 Inexact Rounded -sqtx3184 squareroot 0.0102 -> 0.101 Inexact Rounded -sqtx3185 squareroot 0.103 -> 0.321 Inexact Rounded -sqtx3186 squareroot 0.0103 -> 0.101 Inexact Rounded -sqtx3187 squareroot 0.104 -> 0.322 Inexact Rounded -sqtx3188 squareroot 0.0104 -> 0.102 Inexact Rounded -sqtx3189 squareroot 0.105 -> 0.324 Inexact Rounded -sqtx3190 squareroot 0.0105 -> 0.102 Inexact Rounded -sqtx3191 squareroot 0.106 -> 0.326 Inexact Rounded -sqtx3192 squareroot 0.0106 -> 0.103 Inexact Rounded -sqtx3193 squareroot 0.107 -> 0.327 Inexact Rounded -sqtx3194 squareroot 0.0107 -> 0.103 Inexact Rounded -sqtx3195 squareroot 0.108 -> 0.329 Inexact Rounded -sqtx3196 squareroot 0.0108 -> 0.104 Inexact Rounded -sqtx3197 squareroot 0.109 -> 0.330 Inexact Rounded -sqtx3198 squareroot 0.0109 -> 0.104 Inexact Rounded -sqtx3199 squareroot 0.111 -> 0.333 Inexact Rounded -sqtx3200 squareroot 0.0111 -> 0.105 Inexact Rounded -sqtx3201 squareroot 0.112 -> 0.335 Inexact Rounded -sqtx3202 squareroot 0.0112 -> 0.106 Inexact Rounded -sqtx3203 squareroot 0.113 -> 0.336 Inexact Rounded -sqtx3204 squareroot 0.0113 -> 0.106 Inexact Rounded -sqtx3205 squareroot 0.114 -> 0.338 Inexact Rounded -sqtx3206 squareroot 0.0114 -> 0.107 Inexact Rounded -sqtx3207 squareroot 0.115 -> 0.339 Inexact Rounded -sqtx3208 squareroot 0.0115 -> 0.107 Inexact Rounded -sqtx3209 squareroot 0.116 -> 0.341 Inexact Rounded -sqtx3210 squareroot 0.0116 -> 0.108 Inexact Rounded -sqtx3211 squareroot 0.117 -> 0.342 Inexact Rounded -sqtx3212 squareroot 0.0117 -> 0.108 Inexact Rounded -sqtx3213 squareroot 0.118 -> 0.344 Inexact Rounded -sqtx3214 squareroot 0.0118 -> 0.109 Inexact Rounded -sqtx3215 squareroot 0.119 -> 0.345 Inexact Rounded -sqtx3216 squareroot 0.0119 -> 0.109 Inexact Rounded -sqtx3217 squareroot 0.121 -> 0.348 Inexact Rounded -sqtx3218 squareroot 0.0121 -> 0.11 -sqtx3219 squareroot 0.122 -> 0.349 Inexact Rounded -sqtx3220 squareroot 0.0122 -> 0.110 Inexact Rounded -sqtx3221 squareroot 0.123 -> 0.351 Inexact Rounded -sqtx3222 squareroot 0.0123 -> 0.111 Inexact Rounded -sqtx3223 squareroot 0.124 -> 0.352 Inexact Rounded -sqtx3224 squareroot 0.0124 -> 0.111 Inexact Rounded -sqtx3225 squareroot 0.125 -> 0.354 Inexact Rounded -sqtx3226 squareroot 0.0125 -> 0.112 Inexact Rounded -sqtx3227 squareroot 0.126 -> 0.355 Inexact Rounded -sqtx3228 squareroot 0.0126 -> 0.112 Inexact Rounded -sqtx3229 squareroot 0.127 -> 0.356 Inexact Rounded -sqtx3230 squareroot 0.0127 -> 0.113 Inexact Rounded -sqtx3231 squareroot 0.128 -> 0.358 Inexact Rounded -sqtx3232 squareroot 0.0128 -> 0.113 Inexact Rounded -sqtx3233 squareroot 0.129 -> 0.359 Inexact Rounded -sqtx3234 squareroot 0.0129 -> 0.114 Inexact Rounded -sqtx3235 squareroot 0.131 -> 0.362 Inexact Rounded -sqtx3236 squareroot 0.0131 -> 0.114 Inexact Rounded -sqtx3237 squareroot 0.132 -> 0.363 Inexact Rounded -sqtx3238 squareroot 0.0132 -> 0.115 Inexact Rounded -sqtx3239 squareroot 0.133 -> 0.365 Inexact Rounded -sqtx3240 squareroot 0.0133 -> 0.115 Inexact Rounded -sqtx3241 squareroot 0.134 -> 0.366 Inexact Rounded -sqtx3242 squareroot 0.0134 -> 0.116 Inexact Rounded -sqtx3243 squareroot 0.135 -> 0.367 Inexact Rounded -sqtx3244 squareroot 0.0135 -> 0.116 Inexact Rounded -sqtx3245 squareroot 0.136 -> 0.369 Inexact Rounded -sqtx3246 squareroot 0.0136 -> 0.117 Inexact Rounded -sqtx3247 squareroot 0.137 -> 0.370 Inexact Rounded -sqtx3248 squareroot 0.0137 -> 0.117 Inexact Rounded -sqtx3249 squareroot 0.138 -> 0.371 Inexact Rounded -sqtx3250 squareroot 0.0138 -> 0.117 Inexact Rounded -sqtx3251 squareroot 0.139 -> 0.373 Inexact Rounded -sqtx3252 squareroot 0.0139 -> 0.118 Inexact Rounded -sqtx3253 squareroot 0.141 -> 0.375 Inexact Rounded -sqtx3254 squareroot 0.0141 -> 0.119 Inexact Rounded -sqtx3255 squareroot 0.142 -> 0.377 Inexact Rounded -sqtx3256 squareroot 0.0142 -> 0.119 Inexact Rounded -sqtx3257 squareroot 0.143 -> 0.378 Inexact Rounded -sqtx3258 squareroot 0.0143 -> 0.120 Inexact Rounded -sqtx3259 squareroot 0.144 -> 0.379 Inexact Rounded -sqtx3260 squareroot 0.0144 -> 0.12 -sqtx3261 squareroot 0.145 -> 0.381 Inexact Rounded -sqtx3262 squareroot 0.0145 -> 0.120 Inexact Rounded -sqtx3263 squareroot 0.146 -> 0.382 Inexact Rounded -sqtx3264 squareroot 0.0146 -> 0.121 Inexact Rounded -sqtx3265 squareroot 0.147 -> 0.383 Inexact Rounded -sqtx3266 squareroot 0.0147 -> 0.121 Inexact Rounded -sqtx3267 squareroot 0.148 -> 0.385 Inexact Rounded -sqtx3268 squareroot 0.0148 -> 0.122 Inexact Rounded -sqtx3269 squareroot 0.149 -> 0.386 Inexact Rounded -sqtx3270 squareroot 0.0149 -> 0.122 Inexact Rounded -sqtx3271 squareroot 0.151 -> 0.389 Inexact Rounded -sqtx3272 squareroot 0.0151 -> 0.123 Inexact Rounded -sqtx3273 squareroot 0.152 -> 0.390 Inexact Rounded -sqtx3274 squareroot 0.0152 -> 0.123 Inexact Rounded -sqtx3275 squareroot 0.153 -> 0.391 Inexact Rounded -sqtx3276 squareroot 0.0153 -> 0.124 Inexact Rounded -sqtx3277 squareroot 0.154 -> 0.392 Inexact Rounded -sqtx3278 squareroot 0.0154 -> 0.124 Inexact Rounded -sqtx3279 squareroot 0.155 -> 0.394 Inexact Rounded -sqtx3280 squareroot 0.0155 -> 0.124 Inexact Rounded -sqtx3281 squareroot 0.156 -> 0.395 Inexact Rounded -sqtx3282 squareroot 0.0156 -> 0.125 Inexact Rounded -sqtx3283 squareroot 0.157 -> 0.396 Inexact Rounded -sqtx3284 squareroot 0.0157 -> 0.125 Inexact Rounded -sqtx3285 squareroot 0.158 -> 0.397 Inexact Rounded -sqtx3286 squareroot 0.0158 -> 0.126 Inexact Rounded -sqtx3287 squareroot 0.159 -> 0.399 Inexact Rounded -sqtx3288 squareroot 0.0159 -> 0.126 Inexact Rounded -sqtx3289 squareroot 0.161 -> 0.401 Inexact Rounded -sqtx3290 squareroot 0.0161 -> 0.127 Inexact Rounded -sqtx3291 squareroot 0.162 -> 0.402 Inexact Rounded -sqtx3292 squareroot 0.0162 -> 0.127 Inexact Rounded -sqtx3293 squareroot 0.163 -> 0.404 Inexact Rounded -sqtx3294 squareroot 0.0163 -> 0.128 Inexact Rounded -sqtx3295 squareroot 0.164 -> 0.405 Inexact Rounded -sqtx3296 squareroot 0.0164 -> 0.128 Inexact Rounded -sqtx3297 squareroot 0.165 -> 0.406 Inexact Rounded -sqtx3298 squareroot 0.0165 -> 0.128 Inexact Rounded -sqtx3299 squareroot 0.166 -> 0.407 Inexact Rounded -sqtx3300 squareroot 0.0166 -> 0.129 Inexact Rounded -sqtx3301 squareroot 0.167 -> 0.409 Inexact Rounded -sqtx3302 squareroot 0.0167 -> 0.129 Inexact Rounded -sqtx3303 squareroot 0.168 -> 0.410 Inexact Rounded -sqtx3304 squareroot 0.0168 -> 0.130 Inexact Rounded -sqtx3305 squareroot 0.169 -> 0.411 Inexact Rounded -sqtx3306 squareroot 0.0169 -> 0.13 -sqtx3307 squareroot 0.171 -> 0.414 Inexact Rounded -sqtx3308 squareroot 0.0171 -> 0.131 Inexact Rounded -sqtx3309 squareroot 0.172 -> 0.415 Inexact Rounded -sqtx3310 squareroot 0.0172 -> 0.131 Inexact Rounded -sqtx3311 squareroot 0.173 -> 0.416 Inexact Rounded -sqtx3312 squareroot 0.0173 -> 0.132 Inexact Rounded -sqtx3313 squareroot 0.174 -> 0.417 Inexact Rounded -sqtx3314 squareroot 0.0174 -> 0.132 Inexact Rounded -sqtx3315 squareroot 0.175 -> 0.418 Inexact Rounded -sqtx3316 squareroot 0.0175 -> 0.132 Inexact Rounded -sqtx3317 squareroot 0.176 -> 0.420 Inexact Rounded -sqtx3318 squareroot 0.0176 -> 0.133 Inexact Rounded -sqtx3319 squareroot 0.177 -> 0.421 Inexact Rounded -sqtx3320 squareroot 0.0177 -> 0.133 Inexact Rounded -sqtx3321 squareroot 0.178 -> 0.422 Inexact Rounded -sqtx3322 squareroot 0.0178 -> 0.133 Inexact Rounded -sqtx3323 squareroot 0.179 -> 0.423 Inexact Rounded -sqtx3324 squareroot 0.0179 -> 0.134 Inexact Rounded -sqtx3325 squareroot 0.181 -> 0.425 Inexact Rounded -sqtx3326 squareroot 0.0181 -> 0.135 Inexact Rounded -sqtx3327 squareroot 0.182 -> 0.427 Inexact Rounded -sqtx3328 squareroot 0.0182 -> 0.135 Inexact Rounded -sqtx3329 squareroot 0.183 -> 0.428 Inexact Rounded -sqtx3330 squareroot 0.0183 -> 0.135 Inexact Rounded -sqtx3331 squareroot 0.184 -> 0.429 Inexact Rounded -sqtx3332 squareroot 0.0184 -> 0.136 Inexact Rounded -sqtx3333 squareroot 0.185 -> 0.430 Inexact Rounded -sqtx3334 squareroot 0.0185 -> 0.136 Inexact Rounded -sqtx3335 squareroot 0.186 -> 0.431 Inexact Rounded -sqtx3336 squareroot 0.0186 -> 0.136 Inexact Rounded -sqtx3337 squareroot 0.187 -> 0.432 Inexact Rounded -sqtx3338 squareroot 0.0187 -> 0.137 Inexact Rounded -sqtx3339 squareroot 0.188 -> 0.434 Inexact Rounded -sqtx3340 squareroot 0.0188 -> 0.137 Inexact Rounded -sqtx3341 squareroot 0.189 -> 0.435 Inexact Rounded -sqtx3342 squareroot 0.0189 -> 0.137 Inexact Rounded -sqtx3343 squareroot 0.191 -> 0.437 Inexact Rounded -sqtx3344 squareroot 0.0191 -> 0.138 Inexact Rounded -sqtx3345 squareroot 0.192 -> 0.438 Inexact Rounded -sqtx3346 squareroot 0.0192 -> 0.139 Inexact Rounded -sqtx3347 squareroot 0.193 -> 0.439 Inexact Rounded -sqtx3348 squareroot 0.0193 -> 0.139 Inexact Rounded -sqtx3349 squareroot 0.194 -> 0.440 Inexact Rounded -sqtx3350 squareroot 0.0194 -> 0.139 Inexact Rounded -sqtx3351 squareroot 0.195 -> 0.442 Inexact Rounded -sqtx3352 squareroot 0.0195 -> 0.140 Inexact Rounded -sqtx3353 squareroot 0.196 -> 0.443 Inexact Rounded -sqtx3354 squareroot 0.0196 -> 0.14 -sqtx3355 squareroot 0.197 -> 0.444 Inexact Rounded -sqtx3356 squareroot 0.0197 -> 0.140 Inexact Rounded -sqtx3357 squareroot 0.198 -> 0.445 Inexact Rounded -sqtx3358 squareroot 0.0198 -> 0.141 Inexact Rounded -sqtx3359 squareroot 0.199 -> 0.446 Inexact Rounded -sqtx3360 squareroot 0.0199 -> 0.141 Inexact Rounded -sqtx3361 squareroot 0.201 -> 0.448 Inexact Rounded -sqtx3362 squareroot 0.0201 -> 0.142 Inexact Rounded -sqtx3363 squareroot 0.202 -> 0.449 Inexact Rounded -sqtx3364 squareroot 0.0202 -> 0.142 Inexact Rounded -sqtx3365 squareroot 0.203 -> 0.451 Inexact Rounded -sqtx3366 squareroot 0.0203 -> 0.142 Inexact Rounded -sqtx3367 squareroot 0.204 -> 0.452 Inexact Rounded -sqtx3368 squareroot 0.0204 -> 0.143 Inexact Rounded -sqtx3369 squareroot 0.205 -> 0.453 Inexact Rounded -sqtx3370 squareroot 0.0205 -> 0.143 Inexact Rounded -sqtx3371 squareroot 0.206 -> 0.454 Inexact Rounded -sqtx3372 squareroot 0.0206 -> 0.144 Inexact Rounded -sqtx3373 squareroot 0.207 -> 0.455 Inexact Rounded -sqtx3374 squareroot 0.0207 -> 0.144 Inexact Rounded -sqtx3375 squareroot 0.208 -> 0.456 Inexact Rounded -sqtx3376 squareroot 0.0208 -> 0.144 Inexact Rounded -sqtx3377 squareroot 0.209 -> 0.457 Inexact Rounded -sqtx3378 squareroot 0.0209 -> 0.145 Inexact Rounded -sqtx3379 squareroot 0.211 -> 0.459 Inexact Rounded -sqtx3380 squareroot 0.0211 -> 0.145 Inexact Rounded -sqtx3381 squareroot 0.212 -> 0.460 Inexact Rounded -sqtx3382 squareroot 0.0212 -> 0.146 Inexact Rounded -sqtx3383 squareroot 0.213 -> 0.462 Inexact Rounded -sqtx3384 squareroot 0.0213 -> 0.146 Inexact Rounded -sqtx3385 squareroot 0.214 -> 0.463 Inexact Rounded -sqtx3386 squareroot 0.0214 -> 0.146 Inexact Rounded -sqtx3387 squareroot 0.215 -> 0.464 Inexact Rounded -sqtx3388 squareroot 0.0215 -> 0.147 Inexact Rounded -sqtx3389 squareroot 0.216 -> 0.465 Inexact Rounded -sqtx3390 squareroot 0.0216 -> 0.147 Inexact Rounded -sqtx3391 squareroot 0.217 -> 0.466 Inexact Rounded -sqtx3392 squareroot 0.0217 -> 0.147 Inexact Rounded -sqtx3393 squareroot 0.218 -> 0.467 Inexact Rounded -sqtx3394 squareroot 0.0218 -> 0.148 Inexact Rounded -sqtx3395 squareroot 0.219 -> 0.468 Inexact Rounded -sqtx3396 squareroot 0.0219 -> 0.148 Inexact Rounded -sqtx3397 squareroot 0.221 -> 0.470 Inexact Rounded -sqtx3398 squareroot 0.0221 -> 0.149 Inexact Rounded -sqtx3399 squareroot 0.222 -> 0.471 Inexact Rounded -sqtx3400 squareroot 0.0222 -> 0.149 Inexact Rounded -sqtx3401 squareroot 0.223 -> 0.472 Inexact Rounded -sqtx3402 squareroot 0.0223 -> 0.149 Inexact Rounded -sqtx3403 squareroot 0.224 -> 0.473 Inexact Rounded -sqtx3404 squareroot 0.0224 -> 0.150 Inexact Rounded -sqtx3405 squareroot 0.225 -> 0.474 Inexact Rounded -sqtx3406 squareroot 0.0225 -> 0.15 -sqtx3407 squareroot 0.226 -> 0.475 Inexact Rounded -sqtx3408 squareroot 0.0226 -> 0.150 Inexact Rounded -sqtx3409 squareroot 0.227 -> 0.476 Inexact Rounded -sqtx3410 squareroot 0.0227 -> 0.151 Inexact Rounded -sqtx3411 squareroot 0.228 -> 0.477 Inexact Rounded -sqtx3412 squareroot 0.0228 -> 0.151 Inexact Rounded -sqtx3413 squareroot 0.229 -> 0.479 Inexact Rounded -sqtx3414 squareroot 0.0229 -> 0.151 Inexact Rounded -sqtx3415 squareroot 0.231 -> 0.481 Inexact Rounded -sqtx3416 squareroot 0.0231 -> 0.152 Inexact Rounded -sqtx3417 squareroot 0.232 -> 0.482 Inexact Rounded -sqtx3418 squareroot 0.0232 -> 0.152 Inexact Rounded -sqtx3419 squareroot 0.233 -> 0.483 Inexact Rounded -sqtx3420 squareroot 0.0233 -> 0.153 Inexact Rounded -sqtx3421 squareroot 0.234 -> 0.484 Inexact Rounded -sqtx3422 squareroot 0.0234 -> 0.153 Inexact Rounded -sqtx3423 squareroot 0.235 -> 0.485 Inexact Rounded -sqtx3424 squareroot 0.0235 -> 0.153 Inexact Rounded -sqtx3425 squareroot 0.236 -> 0.486 Inexact Rounded -sqtx3426 squareroot 0.0236 -> 0.154 Inexact Rounded -sqtx3427 squareroot 0.237 -> 0.487 Inexact Rounded -sqtx3428 squareroot 0.0237 -> 0.154 Inexact Rounded -sqtx3429 squareroot 0.238 -> 0.488 Inexact Rounded -sqtx3430 squareroot 0.0238 -> 0.154 Inexact Rounded -sqtx3431 squareroot 0.239 -> 0.489 Inexact Rounded -sqtx3432 squareroot 0.0239 -> 0.155 Inexact Rounded -sqtx3433 squareroot 0.241 -> 0.491 Inexact Rounded -sqtx3434 squareroot 0.0241 -> 0.155 Inexact Rounded -sqtx3435 squareroot 0.242 -> 0.492 Inexact Rounded -sqtx3436 squareroot 0.0242 -> 0.156 Inexact Rounded -sqtx3437 squareroot 0.243 -> 0.493 Inexact Rounded -sqtx3438 squareroot 0.0243 -> 0.156 Inexact Rounded -sqtx3439 squareroot 0.244 -> 0.494 Inexact Rounded -sqtx3440 squareroot 0.0244 -> 0.156 Inexact Rounded -sqtx3441 squareroot 0.245 -> 0.495 Inexact Rounded -sqtx3442 squareroot 0.0245 -> 0.157 Inexact Rounded -sqtx3443 squareroot 0.246 -> 0.496 Inexact Rounded -sqtx3444 squareroot 0.0246 -> 0.157 Inexact Rounded -sqtx3445 squareroot 0.247 -> 0.497 Inexact Rounded -sqtx3446 squareroot 0.0247 -> 0.157 Inexact Rounded -sqtx3447 squareroot 0.248 -> 0.498 Inexact Rounded -sqtx3448 squareroot 0.0248 -> 0.157 Inexact Rounded -sqtx3449 squareroot 0.249 -> 0.499 Inexact Rounded -sqtx3450 squareroot 0.0249 -> 0.158 Inexact Rounded -sqtx3451 squareroot 0.251 -> 0.501 Inexact Rounded -sqtx3452 squareroot 0.0251 -> 0.158 Inexact Rounded -sqtx3453 squareroot 0.252 -> 0.502 Inexact Rounded -sqtx3454 squareroot 0.0252 -> 0.159 Inexact Rounded -sqtx3455 squareroot 0.253 -> 0.503 Inexact Rounded -sqtx3456 squareroot 0.0253 -> 0.159 Inexact Rounded -sqtx3457 squareroot 0.254 -> 0.504 Inexact Rounded -sqtx3458 squareroot 0.0254 -> 0.159 Inexact Rounded -sqtx3459 squareroot 0.255 -> 0.505 Inexact Rounded -sqtx3460 squareroot 0.0255 -> 0.160 Inexact Rounded -sqtx3461 squareroot 0.256 -> 0.506 Inexact Rounded -sqtx3462 squareroot 0.0256 -> 0.16 -sqtx3463 squareroot 0.257 -> 0.507 Inexact Rounded -sqtx3464 squareroot 0.0257 -> 0.160 Inexact Rounded -sqtx3465 squareroot 0.258 -> 0.508 Inexact Rounded -sqtx3466 squareroot 0.0258 -> 0.161 Inexact Rounded -sqtx3467 squareroot 0.259 -> 0.509 Inexact Rounded -sqtx3468 squareroot 0.0259 -> 0.161 Inexact Rounded -sqtx3469 squareroot 0.261 -> 0.511 Inexact Rounded -sqtx3470 squareroot 0.0261 -> 0.162 Inexact Rounded -sqtx3471 squareroot 0.262 -> 0.512 Inexact Rounded -sqtx3472 squareroot 0.0262 -> 0.162 Inexact Rounded -sqtx3473 squareroot 0.263 -> 0.513 Inexact Rounded -sqtx3474 squareroot 0.0263 -> 0.162 Inexact Rounded -sqtx3475 squareroot 0.264 -> 0.514 Inexact Rounded -sqtx3476 squareroot 0.0264 -> 0.162 Inexact Rounded -sqtx3477 squareroot 0.265 -> 0.515 Inexact Rounded -sqtx3478 squareroot 0.0265 -> 0.163 Inexact Rounded -sqtx3479 squareroot 0.266 -> 0.516 Inexact Rounded -sqtx3480 squareroot 0.0266 -> 0.163 Inexact Rounded -sqtx3481 squareroot 0.267 -> 0.517 Inexact Rounded -sqtx3482 squareroot 0.0267 -> 0.163 Inexact Rounded -sqtx3483 squareroot 0.268 -> 0.518 Inexact Rounded -sqtx3484 squareroot 0.0268 -> 0.164 Inexact Rounded -sqtx3485 squareroot 0.269 -> 0.519 Inexact Rounded -sqtx3486 squareroot 0.0269 -> 0.164 Inexact Rounded -sqtx3487 squareroot 0.271 -> 0.521 Inexact Rounded -sqtx3488 squareroot 0.0271 -> 0.165 Inexact Rounded -sqtx3489 squareroot 0.272 -> 0.522 Inexact Rounded -sqtx3490 squareroot 0.0272 -> 0.165 Inexact Rounded -sqtx3491 squareroot 0.273 -> 0.522 Inexact Rounded -sqtx3492 squareroot 0.0273 -> 0.165 Inexact Rounded -sqtx3493 squareroot 0.274 -> 0.523 Inexact Rounded -sqtx3494 squareroot 0.0274 -> 0.166 Inexact Rounded -sqtx3495 squareroot 0.275 -> 0.524 Inexact Rounded -sqtx3496 squareroot 0.0275 -> 0.166 Inexact Rounded -sqtx3497 squareroot 0.276 -> 0.525 Inexact Rounded -sqtx3498 squareroot 0.0276 -> 0.166 Inexact Rounded -sqtx3499 squareroot 0.277 -> 0.526 Inexact Rounded -sqtx3500 squareroot 0.0277 -> 0.166 Inexact Rounded -sqtx3501 squareroot 0.278 -> 0.527 Inexact Rounded -sqtx3502 squareroot 0.0278 -> 0.167 Inexact Rounded -sqtx3503 squareroot 0.279 -> 0.528 Inexact Rounded -sqtx3504 squareroot 0.0279 -> 0.167 Inexact Rounded -sqtx3505 squareroot 0.281 -> 0.530 Inexact Rounded -sqtx3506 squareroot 0.0281 -> 0.168 Inexact Rounded -sqtx3507 squareroot 0.282 -> 0.531 Inexact Rounded -sqtx3508 squareroot 0.0282 -> 0.168 Inexact Rounded -sqtx3509 squareroot 0.283 -> 0.532 Inexact Rounded -sqtx3510 squareroot 0.0283 -> 0.168 Inexact Rounded -sqtx3511 squareroot 0.284 -> 0.533 Inexact Rounded -sqtx3512 squareroot 0.0284 -> 0.169 Inexact Rounded -sqtx3513 squareroot 0.285 -> 0.534 Inexact Rounded -sqtx3514 squareroot 0.0285 -> 0.169 Inexact Rounded -sqtx3515 squareroot 0.286 -> 0.535 Inexact Rounded -sqtx3516 squareroot 0.0286 -> 0.169 Inexact Rounded -sqtx3517 squareroot 0.287 -> 0.536 Inexact Rounded -sqtx3518 squareroot 0.0287 -> 0.169 Inexact Rounded -sqtx3519 squareroot 0.288 -> 0.537 Inexact Rounded -sqtx3520 squareroot 0.0288 -> 0.170 Inexact Rounded -sqtx3521 squareroot 0.289 -> 0.538 Inexact Rounded -sqtx3522 squareroot 0.0289 -> 0.17 -sqtx3523 squareroot 0.291 -> 0.539 Inexact Rounded -sqtx3524 squareroot 0.0291 -> 0.171 Inexact Rounded -sqtx3525 squareroot 0.292 -> 0.540 Inexact Rounded -sqtx3526 squareroot 0.0292 -> 0.171 Inexact Rounded -sqtx3527 squareroot 0.293 -> 0.541 Inexact Rounded -sqtx3528 squareroot 0.0293 -> 0.171 Inexact Rounded -sqtx3529 squareroot 0.294 -> 0.542 Inexact Rounded -sqtx3530 squareroot 0.0294 -> 0.171 Inexact Rounded -sqtx3531 squareroot 0.295 -> 0.543 Inexact Rounded -sqtx3532 squareroot 0.0295 -> 0.172 Inexact Rounded -sqtx3533 squareroot 0.296 -> 0.544 Inexact Rounded -sqtx3534 squareroot 0.0296 -> 0.172 Inexact Rounded -sqtx3535 squareroot 0.297 -> 0.545 Inexact Rounded -sqtx3536 squareroot 0.0297 -> 0.172 Inexact Rounded -sqtx3537 squareroot 0.298 -> 0.546 Inexact Rounded -sqtx3538 squareroot 0.0298 -> 0.173 Inexact Rounded -sqtx3539 squareroot 0.299 -> 0.547 Inexact Rounded -sqtx3540 squareroot 0.0299 -> 0.173 Inexact Rounded -sqtx3541 squareroot 0.301 -> 0.549 Inexact Rounded -sqtx3542 squareroot 0.0301 -> 0.173 Inexact Rounded -sqtx3543 squareroot 0.302 -> 0.550 Inexact Rounded -sqtx3544 squareroot 0.0302 -> 0.174 Inexact Rounded -sqtx3545 squareroot 0.303 -> 0.550 Inexact Rounded -sqtx3546 squareroot 0.0303 -> 0.174 Inexact Rounded -sqtx3547 squareroot 0.304 -> 0.551 Inexact Rounded -sqtx3548 squareroot 0.0304 -> 0.174 Inexact Rounded -sqtx3549 squareroot 0.305 -> 0.552 Inexact Rounded -sqtx3550 squareroot 0.0305 -> 0.175 Inexact Rounded -sqtx3551 squareroot 0.306 -> 0.553 Inexact Rounded -sqtx3552 squareroot 0.0306 -> 0.175 Inexact Rounded -sqtx3553 squareroot 0.307 -> 0.554 Inexact Rounded -sqtx3554 squareroot 0.0307 -> 0.175 Inexact Rounded -sqtx3555 squareroot 0.308 -> 0.555 Inexact Rounded -sqtx3556 squareroot 0.0308 -> 0.175 Inexact Rounded -sqtx3557 squareroot 0.309 -> 0.556 Inexact Rounded -sqtx3558 squareroot 0.0309 -> 0.176 Inexact Rounded -sqtx3559 squareroot 0.311 -> 0.558 Inexact Rounded -sqtx3560 squareroot 0.0311 -> 0.176 Inexact Rounded -sqtx3561 squareroot 0.312 -> 0.559 Inexact Rounded -sqtx3562 squareroot 0.0312 -> 0.177 Inexact Rounded -sqtx3563 squareroot 0.313 -> 0.559 Inexact Rounded -sqtx3564 squareroot 0.0313 -> 0.177 Inexact Rounded -sqtx3565 squareroot 0.314 -> 0.560 Inexact Rounded -sqtx3566 squareroot 0.0314 -> 0.177 Inexact Rounded -sqtx3567 squareroot 0.315 -> 0.561 Inexact Rounded -sqtx3568 squareroot 0.0315 -> 0.177 Inexact Rounded -sqtx3569 squareroot 0.316 -> 0.562 Inexact Rounded -sqtx3570 squareroot 0.0316 -> 0.178 Inexact Rounded -sqtx3571 squareroot 0.317 -> 0.563 Inexact Rounded -sqtx3572 squareroot 0.0317 -> 0.178 Inexact Rounded -sqtx3573 squareroot 0.318 -> 0.564 Inexact Rounded -sqtx3574 squareroot 0.0318 -> 0.178 Inexact Rounded -sqtx3575 squareroot 0.319 -> 0.565 Inexact Rounded -sqtx3576 squareroot 0.0319 -> 0.179 Inexact Rounded -sqtx3577 squareroot 0.321 -> 0.567 Inexact Rounded -sqtx3578 squareroot 0.0321 -> 0.179 Inexact Rounded -sqtx3579 squareroot 0.322 -> 0.567 Inexact Rounded -sqtx3580 squareroot 0.0322 -> 0.179 Inexact Rounded -sqtx3581 squareroot 0.323 -> 0.568 Inexact Rounded -sqtx3582 squareroot 0.0323 -> 0.180 Inexact Rounded -sqtx3583 squareroot 0.324 -> 0.569 Inexact Rounded -sqtx3584 squareroot 0.0324 -> 0.18 -sqtx3585 squareroot 0.325 -> 0.570 Inexact Rounded -sqtx3586 squareroot 0.0325 -> 0.180 Inexact Rounded -sqtx3587 squareroot 0.326 -> 0.571 Inexact Rounded -sqtx3588 squareroot 0.0326 -> 0.181 Inexact Rounded -sqtx3589 squareroot 0.327 -> 0.572 Inexact Rounded -sqtx3590 squareroot 0.0327 -> 0.181 Inexact Rounded -sqtx3591 squareroot 0.328 -> 0.573 Inexact Rounded -sqtx3592 squareroot 0.0328 -> 0.181 Inexact Rounded -sqtx3593 squareroot 0.329 -> 0.574 Inexact Rounded -sqtx3594 squareroot 0.0329 -> 0.181 Inexact Rounded -sqtx3595 squareroot 0.331 -> 0.575 Inexact Rounded -sqtx3596 squareroot 0.0331 -> 0.182 Inexact Rounded -sqtx3597 squareroot 0.332 -> 0.576 Inexact Rounded -sqtx3598 squareroot 0.0332 -> 0.182 Inexact Rounded -sqtx3599 squareroot 0.333 -> 0.577 Inexact Rounded -sqtx3600 squareroot 0.0333 -> 0.182 Inexact Rounded -sqtx3601 squareroot 0.334 -> 0.578 Inexact Rounded -sqtx3602 squareroot 0.0334 -> 0.183 Inexact Rounded -sqtx3603 squareroot 0.335 -> 0.579 Inexact Rounded -sqtx3604 squareroot 0.0335 -> 0.183 Inexact Rounded -sqtx3605 squareroot 0.336 -> 0.580 Inexact Rounded -sqtx3606 squareroot 0.0336 -> 0.183 Inexact Rounded -sqtx3607 squareroot 0.337 -> 0.581 Inexact Rounded -sqtx3608 squareroot 0.0337 -> 0.184 Inexact Rounded -sqtx3609 squareroot 0.338 -> 0.581 Inexact Rounded -sqtx3610 squareroot 0.0338 -> 0.184 Inexact Rounded -sqtx3611 squareroot 0.339 -> 0.582 Inexact Rounded -sqtx3612 squareroot 0.0339 -> 0.184 Inexact Rounded -sqtx3613 squareroot 0.341 -> 0.584 Inexact Rounded -sqtx3614 squareroot 0.0341 -> 0.185 Inexact Rounded -sqtx3615 squareroot 0.342 -> 0.585 Inexact Rounded -sqtx3616 squareroot 0.0342 -> 0.185 Inexact Rounded -sqtx3617 squareroot 0.343 -> 0.586 Inexact Rounded -sqtx3618 squareroot 0.0343 -> 0.185 Inexact Rounded -sqtx3619 squareroot 0.344 -> 0.587 Inexact Rounded -sqtx3620 squareroot 0.0344 -> 0.185 Inexact Rounded -sqtx3621 squareroot 0.345 -> 0.587 Inexact Rounded -sqtx3622 squareroot 0.0345 -> 0.186 Inexact Rounded -sqtx3623 squareroot 0.346 -> 0.588 Inexact Rounded -sqtx3624 squareroot 0.0346 -> 0.186 Inexact Rounded -sqtx3625 squareroot 0.347 -> 0.589 Inexact Rounded -sqtx3626 squareroot 0.0347 -> 0.186 Inexact Rounded -sqtx3627 squareroot 0.348 -> 0.590 Inexact Rounded -sqtx3628 squareroot 0.0348 -> 0.187 Inexact Rounded -sqtx3629 squareroot 0.349 -> 0.591 Inexact Rounded -sqtx3630 squareroot 0.0349 -> 0.187 Inexact Rounded -sqtx3631 squareroot 0.351 -> 0.592 Inexact Rounded -sqtx3632 squareroot 0.0351 -> 0.187 Inexact Rounded -sqtx3633 squareroot 0.352 -> 0.593 Inexact Rounded -sqtx3634 squareroot 0.0352 -> 0.188 Inexact Rounded -sqtx3635 squareroot 0.353 -> 0.594 Inexact Rounded -sqtx3636 squareroot 0.0353 -> 0.188 Inexact Rounded -sqtx3637 squareroot 0.354 -> 0.595 Inexact Rounded -sqtx3638 squareroot 0.0354 -> 0.188 Inexact Rounded -sqtx3639 squareroot 0.355 -> 0.596 Inexact Rounded -sqtx3640 squareroot 0.0355 -> 0.188 Inexact Rounded -sqtx3641 squareroot 0.356 -> 0.597 Inexact Rounded -sqtx3642 squareroot 0.0356 -> 0.189 Inexact Rounded -sqtx3643 squareroot 0.357 -> 0.597 Inexact Rounded -sqtx3644 squareroot 0.0357 -> 0.189 Inexact Rounded -sqtx3645 squareroot 0.358 -> 0.598 Inexact Rounded -sqtx3646 squareroot 0.0358 -> 0.189 Inexact Rounded -sqtx3647 squareroot 0.359 -> 0.599 Inexact Rounded -sqtx3648 squareroot 0.0359 -> 0.189 Inexact Rounded -sqtx3649 squareroot 0.361 -> 0.601 Inexact Rounded -sqtx3650 squareroot 0.0361 -> 0.19 -sqtx3651 squareroot 0.362 -> 0.602 Inexact Rounded -sqtx3652 squareroot 0.0362 -> 0.190 Inexact Rounded -sqtx3653 squareroot 0.363 -> 0.602 Inexact Rounded -sqtx3654 squareroot 0.0363 -> 0.191 Inexact Rounded -sqtx3655 squareroot 0.364 -> 0.603 Inexact Rounded -sqtx3656 squareroot 0.0364 -> 0.191 Inexact Rounded -sqtx3657 squareroot 0.365 -> 0.604 Inexact Rounded -sqtx3658 squareroot 0.0365 -> 0.191 Inexact Rounded -sqtx3659 squareroot 0.366 -> 0.605 Inexact Rounded -sqtx3660 squareroot 0.0366 -> 0.191 Inexact Rounded -sqtx3661 squareroot 0.367 -> 0.606 Inexact Rounded -sqtx3662 squareroot 0.0367 -> 0.192 Inexact Rounded -sqtx3663 squareroot 0.368 -> 0.607 Inexact Rounded -sqtx3664 squareroot 0.0368 -> 0.192 Inexact Rounded -sqtx3665 squareroot 0.369 -> 0.607 Inexact Rounded -sqtx3666 squareroot 0.0369 -> 0.192 Inexact Rounded -sqtx3667 squareroot 0.371 -> 0.609 Inexact Rounded -sqtx3668 squareroot 0.0371 -> 0.193 Inexact Rounded -sqtx3669 squareroot 0.372 -> 0.610 Inexact Rounded -sqtx3670 squareroot 0.0372 -> 0.193 Inexact Rounded -sqtx3671 squareroot 0.373 -> 0.611 Inexact Rounded -sqtx3672 squareroot 0.0373 -> 0.193 Inexact Rounded -sqtx3673 squareroot 0.374 -> 0.612 Inexact Rounded -sqtx3674 squareroot 0.0374 -> 0.193 Inexact Rounded -sqtx3675 squareroot 0.375 -> 0.612 Inexact Rounded -sqtx3676 squareroot 0.0375 -> 0.194 Inexact Rounded -sqtx3677 squareroot 0.376 -> 0.613 Inexact Rounded -sqtx3678 squareroot 0.0376 -> 0.194 Inexact Rounded -sqtx3679 squareroot 0.377 -> 0.614 Inexact Rounded -sqtx3680 squareroot 0.0377 -> 0.194 Inexact Rounded -sqtx3681 squareroot 0.378 -> 0.615 Inexact Rounded -sqtx3682 squareroot 0.0378 -> 0.194 Inexact Rounded -sqtx3683 squareroot 0.379 -> 0.616 Inexact Rounded -sqtx3684 squareroot 0.0379 -> 0.195 Inexact Rounded -sqtx3685 squareroot 0.381 -> 0.617 Inexact Rounded -sqtx3686 squareroot 0.0381 -> 0.195 Inexact Rounded -sqtx3687 squareroot 0.382 -> 0.618 Inexact Rounded -sqtx3688 squareroot 0.0382 -> 0.195 Inexact Rounded -sqtx3689 squareroot 0.383 -> 0.619 Inexact Rounded -sqtx3690 squareroot 0.0383 -> 0.196 Inexact Rounded -sqtx3691 squareroot 0.384 -> 0.620 Inexact Rounded -sqtx3692 squareroot 0.0384 -> 0.196 Inexact Rounded -sqtx3693 squareroot 0.385 -> 0.620 Inexact Rounded -sqtx3694 squareroot 0.0385 -> 0.196 Inexact Rounded -sqtx3695 squareroot 0.386 -> 0.621 Inexact Rounded -sqtx3696 squareroot 0.0386 -> 0.196 Inexact Rounded -sqtx3697 squareroot 0.387 -> 0.622 Inexact Rounded -sqtx3698 squareroot 0.0387 -> 0.197 Inexact Rounded -sqtx3699 squareroot 0.388 -> 0.623 Inexact Rounded -sqtx3700 squareroot 0.0388 -> 0.197 Inexact Rounded -sqtx3701 squareroot 0.389 -> 0.624 Inexact Rounded -sqtx3702 squareroot 0.0389 -> 0.197 Inexact Rounded -sqtx3703 squareroot 0.391 -> 0.625 Inexact Rounded -sqtx3704 squareroot 0.0391 -> 0.198 Inexact Rounded -sqtx3705 squareroot 0.392 -> 0.626 Inexact Rounded -sqtx3706 squareroot 0.0392 -> 0.198 Inexact Rounded -sqtx3707 squareroot 0.393 -> 0.627 Inexact Rounded -sqtx3708 squareroot 0.0393 -> 0.198 Inexact Rounded -sqtx3709 squareroot 0.394 -> 0.628 Inexact Rounded -sqtx3710 squareroot 0.0394 -> 0.198 Inexact Rounded -sqtx3711 squareroot 0.395 -> 0.628 Inexact Rounded -sqtx3712 squareroot 0.0395 -> 0.199 Inexact Rounded -sqtx3713 squareroot 0.396 -> 0.629 Inexact Rounded -sqtx3714 squareroot 0.0396 -> 0.199 Inexact Rounded -sqtx3715 squareroot 0.397 -> 0.630 Inexact Rounded -sqtx3716 squareroot 0.0397 -> 0.199 Inexact Rounded -sqtx3717 squareroot 0.398 -> 0.631 Inexact Rounded -sqtx3718 squareroot 0.0398 -> 0.199 Inexact Rounded -sqtx3719 squareroot 0.399 -> 0.632 Inexact Rounded -sqtx3720 squareroot 0.0399 -> 0.200 Inexact Rounded -sqtx3721 squareroot 0.401 -> 0.633 Inexact Rounded -sqtx3722 squareroot 0.0401 -> 0.200 Inexact Rounded -sqtx3723 squareroot 0.402 -> 0.634 Inexact Rounded -sqtx3724 squareroot 0.0402 -> 0.200 Inexact Rounded -sqtx3725 squareroot 0.403 -> 0.635 Inexact Rounded -sqtx3726 squareroot 0.0403 -> 0.201 Inexact Rounded -sqtx3727 squareroot 0.404 -> 0.636 Inexact Rounded -sqtx3728 squareroot 0.0404 -> 0.201 Inexact Rounded -sqtx3729 squareroot 0.405 -> 0.636 Inexact Rounded -sqtx3730 squareroot 0.0405 -> 0.201 Inexact Rounded -sqtx3731 squareroot 0.406 -> 0.637 Inexact Rounded -sqtx3732 squareroot 0.0406 -> 0.201 Inexact Rounded -sqtx3733 squareroot 0.407 -> 0.638 Inexact Rounded -sqtx3734 squareroot 0.0407 -> 0.202 Inexact Rounded -sqtx3735 squareroot 0.408 -> 0.639 Inexact Rounded -sqtx3736 squareroot 0.0408 -> 0.202 Inexact Rounded -sqtx3737 squareroot 0.409 -> 0.640 Inexact Rounded -sqtx3738 squareroot 0.0409 -> 0.202 Inexact Rounded -sqtx3739 squareroot 0.411 -> 0.641 Inexact Rounded -sqtx3740 squareroot 0.0411 -> 0.203 Inexact Rounded -sqtx3741 squareroot 0.412 -> 0.642 Inexact Rounded -sqtx3742 squareroot 0.0412 -> 0.203 Inexact Rounded -sqtx3743 squareroot 0.413 -> 0.643 Inexact Rounded -sqtx3744 squareroot 0.0413 -> 0.203 Inexact Rounded -sqtx3745 squareroot 0.414 -> 0.643 Inexact Rounded -sqtx3746 squareroot 0.0414 -> 0.203 Inexact Rounded -sqtx3747 squareroot 0.415 -> 0.644 Inexact Rounded -sqtx3748 squareroot 0.0415 -> 0.204 Inexact Rounded -sqtx3749 squareroot 0.416 -> 0.645 Inexact Rounded -sqtx3750 squareroot 0.0416 -> 0.204 Inexact Rounded -sqtx3751 squareroot 0.417 -> 0.646 Inexact Rounded -sqtx3752 squareroot 0.0417 -> 0.204 Inexact Rounded -sqtx3753 squareroot 0.418 -> 0.647 Inexact Rounded -sqtx3754 squareroot 0.0418 -> 0.204 Inexact Rounded -sqtx3755 squareroot 0.419 -> 0.647 Inexact Rounded -sqtx3756 squareroot 0.0419 -> 0.205 Inexact Rounded -sqtx3757 squareroot 0.421 -> 0.649 Inexact Rounded -sqtx3758 squareroot 0.0421 -> 0.205 Inexact Rounded -sqtx3759 squareroot 0.422 -> 0.650 Inexact Rounded -sqtx3760 squareroot 0.0422 -> 0.205 Inexact Rounded -sqtx3761 squareroot 0.423 -> 0.650 Inexact Rounded -sqtx3762 squareroot 0.0423 -> 0.206 Inexact Rounded -sqtx3763 squareroot 0.424 -> 0.651 Inexact Rounded -sqtx3764 squareroot 0.0424 -> 0.206 Inexact Rounded -sqtx3765 squareroot 0.425 -> 0.652 Inexact Rounded -sqtx3766 squareroot 0.0425 -> 0.206 Inexact Rounded -sqtx3767 squareroot 0.426 -> 0.653 Inexact Rounded -sqtx3768 squareroot 0.0426 -> 0.206 Inexact Rounded -sqtx3769 squareroot 0.427 -> 0.653 Inexact Rounded -sqtx3770 squareroot 0.0427 -> 0.207 Inexact Rounded -sqtx3771 squareroot 0.428 -> 0.654 Inexact Rounded -sqtx3772 squareroot 0.0428 -> 0.207 Inexact Rounded -sqtx3773 squareroot 0.429 -> 0.655 Inexact Rounded -sqtx3774 squareroot 0.0429 -> 0.207 Inexact Rounded -sqtx3775 squareroot 0.431 -> 0.657 Inexact Rounded -sqtx3776 squareroot 0.0431 -> 0.208 Inexact Rounded -sqtx3777 squareroot 0.432 -> 0.657 Inexact Rounded -sqtx3778 squareroot 0.0432 -> 0.208 Inexact Rounded -sqtx3779 squareroot 0.433 -> 0.658 Inexact Rounded -sqtx3780 squareroot 0.0433 -> 0.208 Inexact Rounded -sqtx3781 squareroot 0.434 -> 0.659 Inexact Rounded -sqtx3782 squareroot 0.0434 -> 0.208 Inexact Rounded -sqtx3783 squareroot 0.435 -> 0.660 Inexact Rounded -sqtx3784 squareroot 0.0435 -> 0.209 Inexact Rounded -sqtx3785 squareroot 0.436 -> 0.660 Inexact Rounded -sqtx3786 squareroot 0.0436 -> 0.209 Inexact Rounded -sqtx3787 squareroot 0.437 -> 0.661 Inexact Rounded -sqtx3788 squareroot 0.0437 -> 0.209 Inexact Rounded -sqtx3789 squareroot 0.438 -> 0.662 Inexact Rounded -sqtx3790 squareroot 0.0438 -> 0.209 Inexact Rounded -sqtx3791 squareroot 0.439 -> 0.663 Inexact Rounded -sqtx3792 squareroot 0.0439 -> 0.210 Inexact Rounded -sqtx3793 squareroot 0.441 -> 0.664 Inexact Rounded -sqtx3794 squareroot 0.0441 -> 0.21 -sqtx3795 squareroot 0.442 -> 0.665 Inexact Rounded -sqtx3796 squareroot 0.0442 -> 0.210 Inexact Rounded -sqtx3797 squareroot 0.443 -> 0.666 Inexact Rounded -sqtx3798 squareroot 0.0443 -> 0.210 Inexact Rounded -sqtx3799 squareroot 0.444 -> 0.666 Inexact Rounded -sqtx3800 squareroot 0.0444 -> 0.211 Inexact Rounded -sqtx3801 squareroot 0.445 -> 0.667 Inexact Rounded -sqtx3802 squareroot 0.0445 -> 0.211 Inexact Rounded -sqtx3803 squareroot 0.446 -> 0.668 Inexact Rounded -sqtx3804 squareroot 0.0446 -> 0.211 Inexact Rounded -sqtx3805 squareroot 0.447 -> 0.669 Inexact Rounded -sqtx3806 squareroot 0.0447 -> 0.211 Inexact Rounded -sqtx3807 squareroot 0.448 -> 0.669 Inexact Rounded -sqtx3808 squareroot 0.0448 -> 0.212 Inexact Rounded -sqtx3809 squareroot 0.449 -> 0.670 Inexact Rounded -sqtx3810 squareroot 0.0449 -> 0.212 Inexact Rounded -sqtx3811 squareroot 0.451 -> 0.672 Inexact Rounded -sqtx3812 squareroot 0.0451 -> 0.212 Inexact Rounded -sqtx3813 squareroot 0.452 -> 0.672 Inexact Rounded -sqtx3814 squareroot 0.0452 -> 0.213 Inexact Rounded -sqtx3815 squareroot 0.453 -> 0.673 Inexact Rounded -sqtx3816 squareroot 0.0453 -> 0.213 Inexact Rounded -sqtx3817 squareroot 0.454 -> 0.674 Inexact Rounded -sqtx3818 squareroot 0.0454 -> 0.213 Inexact Rounded -sqtx3819 squareroot 0.455 -> 0.675 Inexact Rounded -sqtx3820 squareroot 0.0455 -> 0.213 Inexact Rounded -sqtx3821 squareroot 0.456 -> 0.675 Inexact Rounded -sqtx3822 squareroot 0.0456 -> 0.214 Inexact Rounded -sqtx3823 squareroot 0.457 -> 0.676 Inexact Rounded -sqtx3824 squareroot 0.0457 -> 0.214 Inexact Rounded -sqtx3825 squareroot 0.458 -> 0.677 Inexact Rounded -sqtx3826 squareroot 0.0458 -> 0.214 Inexact Rounded -sqtx3827 squareroot 0.459 -> 0.677 Inexact Rounded -sqtx3828 squareroot 0.0459 -> 0.214 Inexact Rounded -sqtx3829 squareroot 0.461 -> 0.679 Inexact Rounded -sqtx3830 squareroot 0.0461 -> 0.215 Inexact Rounded -sqtx3831 squareroot 0.462 -> 0.680 Inexact Rounded -sqtx3832 squareroot 0.0462 -> 0.215 Inexact Rounded -sqtx3833 squareroot 0.463 -> 0.680 Inexact Rounded -sqtx3834 squareroot 0.0463 -> 0.215 Inexact Rounded -sqtx3835 squareroot 0.464 -> 0.681 Inexact Rounded -sqtx3836 squareroot 0.0464 -> 0.215 Inexact Rounded -sqtx3837 squareroot 0.465 -> 0.682 Inexact Rounded -sqtx3838 squareroot 0.0465 -> 0.216 Inexact Rounded -sqtx3839 squareroot 0.466 -> 0.683 Inexact Rounded -sqtx3840 squareroot 0.0466 -> 0.216 Inexact Rounded -sqtx3841 squareroot 0.467 -> 0.683 Inexact Rounded -sqtx3842 squareroot 0.0467 -> 0.216 Inexact Rounded -sqtx3843 squareroot 0.468 -> 0.684 Inexact Rounded -sqtx3844 squareroot 0.0468 -> 0.216 Inexact Rounded -sqtx3845 squareroot 0.469 -> 0.685 Inexact Rounded -sqtx3846 squareroot 0.0469 -> 0.217 Inexact Rounded -sqtx3847 squareroot 0.471 -> 0.686 Inexact Rounded -sqtx3848 squareroot 0.0471 -> 0.217 Inexact Rounded -sqtx3849 squareroot 0.472 -> 0.687 Inexact Rounded -sqtx3850 squareroot 0.0472 -> 0.217 Inexact Rounded -sqtx3851 squareroot 0.473 -> 0.688 Inexact Rounded -sqtx3852 squareroot 0.0473 -> 0.217 Inexact Rounded -sqtx3853 squareroot 0.474 -> 0.688 Inexact Rounded -sqtx3854 squareroot 0.0474 -> 0.218 Inexact Rounded -sqtx3855 squareroot 0.475 -> 0.689 Inexact Rounded -sqtx3856 squareroot 0.0475 -> 0.218 Inexact Rounded -sqtx3857 squareroot 0.476 -> 0.690 Inexact Rounded -sqtx3858 squareroot 0.0476 -> 0.218 Inexact Rounded -sqtx3859 squareroot 0.477 -> 0.691 Inexact Rounded -sqtx3860 squareroot 0.0477 -> 0.218 Inexact Rounded -sqtx3861 squareroot 0.478 -> 0.691 Inexact Rounded -sqtx3862 squareroot 0.0478 -> 0.219 Inexact Rounded -sqtx3863 squareroot 0.479 -> 0.692 Inexact Rounded -sqtx3864 squareroot 0.0479 -> 0.219 Inexact Rounded -sqtx3865 squareroot 0.481 -> 0.694 Inexact Rounded -sqtx3866 squareroot 0.0481 -> 0.219 Inexact Rounded -sqtx3867 squareroot 0.482 -> 0.694 Inexact Rounded -sqtx3868 squareroot 0.0482 -> 0.220 Inexact Rounded -sqtx3869 squareroot 0.483 -> 0.695 Inexact Rounded -sqtx3870 squareroot 0.0483 -> 0.220 Inexact Rounded -sqtx3871 squareroot 0.484 -> 0.696 Inexact Rounded -sqtx3872 squareroot 0.0484 -> 0.22 -sqtx3873 squareroot 0.485 -> 0.696 Inexact Rounded -sqtx3874 squareroot 0.0485 -> 0.220 Inexact Rounded -sqtx3875 squareroot 0.486 -> 0.697 Inexact Rounded -sqtx3876 squareroot 0.0486 -> 0.220 Inexact Rounded -sqtx3877 squareroot 0.487 -> 0.698 Inexact Rounded -sqtx3878 squareroot 0.0487 -> 0.221 Inexact Rounded -sqtx3879 squareroot 0.488 -> 0.699 Inexact Rounded -sqtx3880 squareroot 0.0488 -> 0.221 Inexact Rounded -sqtx3881 squareroot 0.489 -> 0.699 Inexact Rounded -sqtx3882 squareroot 0.0489 -> 0.221 Inexact Rounded -sqtx3883 squareroot 0.491 -> 0.701 Inexact Rounded -sqtx3884 squareroot 0.0491 -> 0.222 Inexact Rounded -sqtx3885 squareroot 0.492 -> 0.701 Inexact Rounded -sqtx3886 squareroot 0.0492 -> 0.222 Inexact Rounded -sqtx3887 squareroot 0.493 -> 0.702 Inexact Rounded -sqtx3888 squareroot 0.0493 -> 0.222 Inexact Rounded -sqtx3889 squareroot 0.494 -> 0.703 Inexact Rounded -sqtx3890 squareroot 0.0494 -> 0.222 Inexact Rounded -sqtx3891 squareroot 0.495 -> 0.704 Inexact Rounded -sqtx3892 squareroot 0.0495 -> 0.222 Inexact Rounded -sqtx3893 squareroot 0.496 -> 0.704 Inexact Rounded -sqtx3894 squareroot 0.0496 -> 0.223 Inexact Rounded -sqtx3895 squareroot 0.497 -> 0.705 Inexact Rounded -sqtx3896 squareroot 0.0497 -> 0.223 Inexact Rounded -sqtx3897 squareroot 0.498 -> 0.706 Inexact Rounded -sqtx3898 squareroot 0.0498 -> 0.223 Inexact Rounded -sqtx3899 squareroot 0.499 -> 0.706 Inexact Rounded -sqtx3900 squareroot 0.0499 -> 0.223 Inexact Rounded -sqtx3901 squareroot 0.501 -> 0.708 Inexact Rounded -sqtx3902 squareroot 0.0501 -> 0.224 Inexact Rounded -sqtx3903 squareroot 0.502 -> 0.709 Inexact Rounded -sqtx3904 squareroot 0.0502 -> 0.224 Inexact Rounded -sqtx3905 squareroot 0.503 -> 0.709 Inexact Rounded -sqtx3906 squareroot 0.0503 -> 0.224 Inexact Rounded -sqtx3907 squareroot 0.504 -> 0.710 Inexact Rounded -sqtx3908 squareroot 0.0504 -> 0.224 Inexact Rounded -sqtx3909 squareroot 0.505 -> 0.711 Inexact Rounded -sqtx3910 squareroot 0.0505 -> 0.225 Inexact Rounded -sqtx3911 squareroot 0.506 -> 0.711 Inexact Rounded -sqtx3912 squareroot 0.0506 -> 0.225 Inexact Rounded -sqtx3913 squareroot 0.507 -> 0.712 Inexact Rounded -sqtx3914 squareroot 0.0507 -> 0.225 Inexact Rounded -sqtx3915 squareroot 0.508 -> 0.713 Inexact Rounded -sqtx3916 squareroot 0.0508 -> 0.225 Inexact Rounded -sqtx3917 squareroot 0.509 -> 0.713 Inexact Rounded -sqtx3918 squareroot 0.0509 -> 0.226 Inexact Rounded -sqtx3919 squareroot 0.511 -> 0.715 Inexact Rounded -sqtx3920 squareroot 0.0511 -> 0.226 Inexact Rounded -sqtx3921 squareroot 0.512 -> 0.716 Inexact Rounded -sqtx3922 squareroot 0.0512 -> 0.226 Inexact Rounded -sqtx3923 squareroot 0.513 -> 0.716 Inexact Rounded -sqtx3924 squareroot 0.0513 -> 0.226 Inexact Rounded -sqtx3925 squareroot 0.514 -> 0.717 Inexact Rounded -sqtx3926 squareroot 0.0514 -> 0.227 Inexact Rounded -sqtx3927 squareroot 0.515 -> 0.718 Inexact Rounded -sqtx3928 squareroot 0.0515 -> 0.227 Inexact Rounded -sqtx3929 squareroot 0.516 -> 0.718 Inexact Rounded -sqtx3930 squareroot 0.0516 -> 0.227 Inexact Rounded -sqtx3931 squareroot 0.517 -> 0.719 Inexact Rounded -sqtx3932 squareroot 0.0517 -> 0.227 Inexact Rounded -sqtx3933 squareroot 0.518 -> 0.720 Inexact Rounded -sqtx3934 squareroot 0.0518 -> 0.228 Inexact Rounded -sqtx3935 squareroot 0.519 -> 0.720 Inexact Rounded -sqtx3936 squareroot 0.0519 -> 0.228 Inexact Rounded -sqtx3937 squareroot 0.521 -> 0.722 Inexact Rounded -sqtx3938 squareroot 0.0521 -> 0.228 Inexact Rounded -sqtx3939 squareroot 0.522 -> 0.722 Inexact Rounded -sqtx3940 squareroot 0.0522 -> 0.228 Inexact Rounded -sqtx3941 squareroot 0.523 -> 0.723 Inexact Rounded -sqtx3942 squareroot 0.0523 -> 0.229 Inexact Rounded -sqtx3943 squareroot 0.524 -> 0.724 Inexact Rounded -sqtx3944 squareroot 0.0524 -> 0.229 Inexact Rounded -sqtx3945 squareroot 0.525 -> 0.725 Inexact Rounded -sqtx3946 squareroot 0.0525 -> 0.229 Inexact Rounded -sqtx3947 squareroot 0.526 -> 0.725 Inexact Rounded -sqtx3948 squareroot 0.0526 -> 0.229 Inexact Rounded -sqtx3949 squareroot 0.527 -> 0.726 Inexact Rounded -sqtx3950 squareroot 0.0527 -> 0.230 Inexact Rounded -sqtx3951 squareroot 0.528 -> 0.727 Inexact Rounded -sqtx3952 squareroot 0.0528 -> 0.230 Inexact Rounded -sqtx3953 squareroot 0.529 -> 0.727 Inexact Rounded -sqtx3954 squareroot 0.0529 -> 0.23 -sqtx3955 squareroot 0.531 -> 0.729 Inexact Rounded -sqtx3956 squareroot 0.0531 -> 0.230 Inexact Rounded -sqtx3957 squareroot 0.532 -> 0.729 Inexact Rounded -sqtx3958 squareroot 0.0532 -> 0.231 Inexact Rounded -sqtx3959 squareroot 0.533 -> 0.730 Inexact Rounded -sqtx3960 squareroot 0.0533 -> 0.231 Inexact Rounded -sqtx3961 squareroot 0.534 -> 0.731 Inexact Rounded -sqtx3962 squareroot 0.0534 -> 0.231 Inexact Rounded -sqtx3963 squareroot 0.535 -> 0.731 Inexact Rounded -sqtx3964 squareroot 0.0535 -> 0.231 Inexact Rounded -sqtx3965 squareroot 0.536 -> 0.732 Inexact Rounded -sqtx3966 squareroot 0.0536 -> 0.232 Inexact Rounded -sqtx3967 squareroot 0.537 -> 0.733 Inexact Rounded -sqtx3968 squareroot 0.0537 -> 0.232 Inexact Rounded -sqtx3969 squareroot 0.538 -> 0.733 Inexact Rounded -sqtx3970 squareroot 0.0538 -> 0.232 Inexact Rounded -sqtx3971 squareroot 0.539 -> 0.734 Inexact Rounded -sqtx3972 squareroot 0.0539 -> 0.232 Inexact Rounded -sqtx3973 squareroot 0.541 -> 0.736 Inexact Rounded -sqtx3974 squareroot 0.0541 -> 0.233 Inexact Rounded -sqtx3975 squareroot 0.542 -> 0.736 Inexact Rounded -sqtx3976 squareroot 0.0542 -> 0.233 Inexact Rounded -sqtx3977 squareroot 0.543 -> 0.737 Inexact Rounded -sqtx3978 squareroot 0.0543 -> 0.233 Inexact Rounded -sqtx3979 squareroot 0.544 -> 0.738 Inexact Rounded -sqtx3980 squareroot 0.0544 -> 0.233 Inexact Rounded -sqtx3981 squareroot 0.545 -> 0.738 Inexact Rounded -sqtx3982 squareroot 0.0545 -> 0.233 Inexact Rounded -sqtx3983 squareroot 0.546 -> 0.739 Inexact Rounded -sqtx3984 squareroot 0.0546 -> 0.234 Inexact Rounded -sqtx3985 squareroot 0.547 -> 0.740 Inexact Rounded -sqtx3986 squareroot 0.0547 -> 0.234 Inexact Rounded -sqtx3987 squareroot 0.548 -> 0.740 Inexact Rounded -sqtx3988 squareroot 0.0548 -> 0.234 Inexact Rounded -sqtx3989 squareroot 0.549 -> 0.741 Inexact Rounded -sqtx3990 squareroot 0.0549 -> 0.234 Inexact Rounded -sqtx3991 squareroot 0.551 -> 0.742 Inexact Rounded -sqtx3992 squareroot 0.0551 -> 0.235 Inexact Rounded -sqtx3993 squareroot 0.552 -> 0.743 Inexact Rounded -sqtx3994 squareroot 0.0552 -> 0.235 Inexact Rounded -sqtx3995 squareroot 0.553 -> 0.744 Inexact Rounded -sqtx3996 squareroot 0.0553 -> 0.235 Inexact Rounded -sqtx3997 squareroot 0.554 -> 0.744 Inexact Rounded -sqtx3998 squareroot 0.0554 -> 0.235 Inexact Rounded -sqtx3999 squareroot 0.555 -> 0.745 Inexact Rounded -sqtx4000 squareroot 0.0555 -> 0.236 Inexact Rounded -sqtx4001 squareroot 0.556 -> 0.746 Inexact Rounded -sqtx4002 squareroot 0.0556 -> 0.236 Inexact Rounded -sqtx4003 squareroot 0.557 -> 0.746 Inexact Rounded -sqtx4004 squareroot 0.0557 -> 0.236 Inexact Rounded -sqtx4005 squareroot 0.558 -> 0.747 Inexact Rounded -sqtx4006 squareroot 0.0558 -> 0.236 Inexact Rounded -sqtx4007 squareroot 0.559 -> 0.748 Inexact Rounded -sqtx4008 squareroot 0.0559 -> 0.236 Inexact Rounded -sqtx4009 squareroot 0.561 -> 0.749 Inexact Rounded -sqtx4010 squareroot 0.0561 -> 0.237 Inexact Rounded -sqtx4011 squareroot 0.562 -> 0.750 Inexact Rounded -sqtx4012 squareroot 0.0562 -> 0.237 Inexact Rounded -sqtx4013 squareroot 0.563 -> 0.750 Inexact Rounded -sqtx4014 squareroot 0.0563 -> 0.237 Inexact Rounded -sqtx4015 squareroot 0.564 -> 0.751 Inexact Rounded -sqtx4016 squareroot 0.0564 -> 0.237 Inexact Rounded -sqtx4017 squareroot 0.565 -> 0.752 Inexact Rounded -sqtx4018 squareroot 0.0565 -> 0.238 Inexact Rounded -sqtx4019 squareroot 0.566 -> 0.752 Inexact Rounded -sqtx4020 squareroot 0.0566 -> 0.238 Inexact Rounded -sqtx4021 squareroot 0.567 -> 0.753 Inexact Rounded -sqtx4022 squareroot 0.0567 -> 0.238 Inexact Rounded -sqtx4023 squareroot 0.568 -> 0.754 Inexact Rounded -sqtx4024 squareroot 0.0568 -> 0.238 Inexact Rounded -sqtx4025 squareroot 0.569 -> 0.754 Inexact Rounded -sqtx4026 squareroot 0.0569 -> 0.239 Inexact Rounded -sqtx4027 squareroot 0.571 -> 0.756 Inexact Rounded -sqtx4028 squareroot 0.0571 -> 0.239 Inexact Rounded -sqtx4029 squareroot 0.572 -> 0.756 Inexact Rounded -sqtx4030 squareroot 0.0572 -> 0.239 Inexact Rounded -sqtx4031 squareroot 0.573 -> 0.757 Inexact Rounded -sqtx4032 squareroot 0.0573 -> 0.239 Inexact Rounded -sqtx4033 squareroot 0.574 -> 0.758 Inexact Rounded -sqtx4034 squareroot 0.0574 -> 0.240 Inexact Rounded -sqtx4035 squareroot 0.575 -> 0.758 Inexact Rounded -sqtx4036 squareroot 0.0575 -> 0.240 Inexact Rounded -sqtx4037 squareroot 0.576 -> 0.759 Inexact Rounded -sqtx4038 squareroot 0.0576 -> 0.24 -sqtx4039 squareroot 0.577 -> 0.760 Inexact Rounded -sqtx4040 squareroot 0.0577 -> 0.240 Inexact Rounded -sqtx4041 squareroot 0.578 -> 0.760 Inexact Rounded -sqtx4042 squareroot 0.0578 -> 0.240 Inexact Rounded -sqtx4043 squareroot 0.579 -> 0.761 Inexact Rounded -sqtx4044 squareroot 0.0579 -> 0.241 Inexact Rounded -sqtx4045 squareroot 0.581 -> 0.762 Inexact Rounded -sqtx4046 squareroot 0.0581 -> 0.241 Inexact Rounded -sqtx4047 squareroot 0.582 -> 0.763 Inexact Rounded -sqtx4048 squareroot 0.0582 -> 0.241 Inexact Rounded -sqtx4049 squareroot 0.583 -> 0.764 Inexact Rounded -sqtx4050 squareroot 0.0583 -> 0.241 Inexact Rounded -sqtx4051 squareroot 0.584 -> 0.764 Inexact Rounded -sqtx4052 squareroot 0.0584 -> 0.242 Inexact Rounded -sqtx4053 squareroot 0.585 -> 0.765 Inexact Rounded -sqtx4054 squareroot 0.0585 -> 0.242 Inexact Rounded -sqtx4055 squareroot 0.586 -> 0.766 Inexact Rounded -sqtx4056 squareroot 0.0586 -> 0.242 Inexact Rounded -sqtx4057 squareroot 0.587 -> 0.766 Inexact Rounded -sqtx4058 squareroot 0.0587 -> 0.242 Inexact Rounded -sqtx4059 squareroot 0.588 -> 0.767 Inexact Rounded -sqtx4060 squareroot 0.0588 -> 0.242 Inexact Rounded -sqtx4061 squareroot 0.589 -> 0.767 Inexact Rounded -sqtx4062 squareroot 0.0589 -> 0.243 Inexact Rounded -sqtx4063 squareroot 0.591 -> 0.769 Inexact Rounded -sqtx4064 squareroot 0.0591 -> 0.243 Inexact Rounded -sqtx4065 squareroot 0.592 -> 0.769 Inexact Rounded -sqtx4066 squareroot 0.0592 -> 0.243 Inexact Rounded -sqtx4067 squareroot 0.593 -> 0.770 Inexact Rounded -sqtx4068 squareroot 0.0593 -> 0.244 Inexact Rounded -sqtx4069 squareroot 0.594 -> 0.771 Inexact Rounded -sqtx4070 squareroot 0.0594 -> 0.244 Inexact Rounded -sqtx4071 squareroot 0.595 -> 0.771 Inexact Rounded -sqtx4072 squareroot 0.0595 -> 0.244 Inexact Rounded -sqtx4073 squareroot 0.596 -> 0.772 Inexact Rounded -sqtx4074 squareroot 0.0596 -> 0.244 Inexact Rounded -sqtx4075 squareroot 0.597 -> 0.773 Inexact Rounded -sqtx4076 squareroot 0.0597 -> 0.244 Inexact Rounded -sqtx4077 squareroot 0.598 -> 0.773 Inexact Rounded -sqtx4078 squareroot 0.0598 -> 0.245 Inexact Rounded -sqtx4079 squareroot 0.599 -> 0.774 Inexact Rounded -sqtx4080 squareroot 0.0599 -> 0.245 Inexact Rounded -sqtx4081 squareroot 0.601 -> 0.775 Inexact Rounded -sqtx4082 squareroot 0.0601 -> 0.245 Inexact Rounded -sqtx4083 squareroot 0.602 -> 0.776 Inexact Rounded -sqtx4084 squareroot 0.0602 -> 0.245 Inexact Rounded -sqtx4085 squareroot 0.603 -> 0.777 Inexact Rounded -sqtx4086 squareroot 0.0603 -> 0.246 Inexact Rounded -sqtx4087 squareroot 0.604 -> 0.777 Inexact Rounded -sqtx4088 squareroot 0.0604 -> 0.246 Inexact Rounded -sqtx4089 squareroot 0.605 -> 0.778 Inexact Rounded -sqtx4090 squareroot 0.0605 -> 0.246 Inexact Rounded -sqtx4091 squareroot 0.606 -> 0.778 Inexact Rounded -sqtx4092 squareroot 0.0606 -> 0.246 Inexact Rounded -sqtx4093 squareroot 0.607 -> 0.779 Inexact Rounded -sqtx4094 squareroot 0.0607 -> 0.246 Inexact Rounded -sqtx4095 squareroot 0.608 -> 0.780 Inexact Rounded -sqtx4096 squareroot 0.0608 -> 0.247 Inexact Rounded -sqtx4097 squareroot 0.609 -> 0.780 Inexact Rounded -sqtx4098 squareroot 0.0609 -> 0.247 Inexact Rounded -sqtx4099 squareroot 0.611 -> 0.782 Inexact Rounded -sqtx4100 squareroot 0.0611 -> 0.247 Inexact Rounded -sqtx4101 squareroot 0.612 -> 0.782 Inexact Rounded -sqtx4102 squareroot 0.0612 -> 0.247 Inexact Rounded -sqtx4103 squareroot 0.613 -> 0.783 Inexact Rounded -sqtx4104 squareroot 0.0613 -> 0.248 Inexact Rounded -sqtx4105 squareroot 0.614 -> 0.784 Inexact Rounded -sqtx4106 squareroot 0.0614 -> 0.248 Inexact Rounded -sqtx4107 squareroot 0.615 -> 0.784 Inexact Rounded -sqtx4108 squareroot 0.0615 -> 0.248 Inexact Rounded -sqtx4109 squareroot 0.616 -> 0.785 Inexact Rounded -sqtx4110 squareroot 0.0616 -> 0.248 Inexact Rounded -sqtx4111 squareroot 0.617 -> 0.785 Inexact Rounded -sqtx4112 squareroot 0.0617 -> 0.248 Inexact Rounded -sqtx4113 squareroot 0.618 -> 0.786 Inexact Rounded -sqtx4114 squareroot 0.0618 -> 0.249 Inexact Rounded -sqtx4115 squareroot 0.619 -> 0.787 Inexact Rounded -sqtx4116 squareroot 0.0619 -> 0.249 Inexact Rounded -sqtx4117 squareroot 0.621 -> 0.788 Inexact Rounded -sqtx4118 squareroot 0.0621 -> 0.249 Inexact Rounded -sqtx4119 squareroot 0.622 -> 0.789 Inexact Rounded -sqtx4120 squareroot 0.0622 -> 0.249 Inexact Rounded -sqtx4121 squareroot 0.623 -> 0.789 Inexact Rounded -sqtx4122 squareroot 0.0623 -> 0.250 Inexact Rounded -sqtx4123 squareroot 0.624 -> 0.790 Inexact Rounded -sqtx4124 squareroot 0.0624 -> 0.250 Inexact Rounded -sqtx4125 squareroot 0.625 -> 0.791 Inexact Rounded -sqtx4126 squareroot 0.0625 -> 0.25 -sqtx4127 squareroot 0.626 -> 0.791 Inexact Rounded -sqtx4128 squareroot 0.0626 -> 0.250 Inexact Rounded -sqtx4129 squareroot 0.627 -> 0.792 Inexact Rounded -sqtx4130 squareroot 0.0627 -> 0.250 Inexact Rounded -sqtx4131 squareroot 0.628 -> 0.792 Inexact Rounded -sqtx4132 squareroot 0.0628 -> 0.251 Inexact Rounded -sqtx4133 squareroot 0.629 -> 0.793 Inexact Rounded -sqtx4134 squareroot 0.0629 -> 0.251 Inexact Rounded -sqtx4135 squareroot 0.631 -> 0.794 Inexact Rounded -sqtx4136 squareroot 0.0631 -> 0.251 Inexact Rounded -sqtx4137 squareroot 0.632 -> 0.795 Inexact Rounded -sqtx4138 squareroot 0.0632 -> 0.251 Inexact Rounded -sqtx4139 squareroot 0.633 -> 0.796 Inexact Rounded -sqtx4140 squareroot 0.0633 -> 0.252 Inexact Rounded -sqtx4141 squareroot 0.634 -> 0.796 Inexact Rounded -sqtx4142 squareroot 0.0634 -> 0.252 Inexact Rounded -sqtx4143 squareroot 0.635 -> 0.797 Inexact Rounded -sqtx4144 squareroot 0.0635 -> 0.252 Inexact Rounded -sqtx4145 squareroot 0.636 -> 0.797 Inexact Rounded -sqtx4146 squareroot 0.0636 -> 0.252 Inexact Rounded -sqtx4147 squareroot 0.637 -> 0.798 Inexact Rounded -sqtx4148 squareroot 0.0637 -> 0.252 Inexact Rounded -sqtx4149 squareroot 0.638 -> 0.799 Inexact Rounded -sqtx4150 squareroot 0.0638 -> 0.253 Inexact Rounded -sqtx4151 squareroot 0.639 -> 0.799 Inexact Rounded -sqtx4152 squareroot 0.0639 -> 0.253 Inexact Rounded -sqtx4153 squareroot 0.641 -> 0.801 Inexact Rounded -sqtx4154 squareroot 0.0641 -> 0.253 Inexact Rounded -sqtx4155 squareroot 0.642 -> 0.801 Inexact Rounded -sqtx4156 squareroot 0.0642 -> 0.253 Inexact Rounded -sqtx4157 squareroot 0.643 -> 0.802 Inexact Rounded -sqtx4158 squareroot 0.0643 -> 0.254 Inexact Rounded -sqtx4159 squareroot 0.644 -> 0.802 Inexact Rounded -sqtx4160 squareroot 0.0644 -> 0.254 Inexact Rounded -sqtx4161 squareroot 0.645 -> 0.803 Inexact Rounded -sqtx4162 squareroot 0.0645 -> 0.254 Inexact Rounded -sqtx4163 squareroot 0.646 -> 0.804 Inexact Rounded -sqtx4164 squareroot 0.0646 -> 0.254 Inexact Rounded -sqtx4165 squareroot 0.647 -> 0.804 Inexact Rounded -sqtx4166 squareroot 0.0647 -> 0.254 Inexact Rounded -sqtx4167 squareroot 0.648 -> 0.805 Inexact Rounded -sqtx4168 squareroot 0.0648 -> 0.255 Inexact Rounded -sqtx4169 squareroot 0.649 -> 0.806 Inexact Rounded -sqtx4170 squareroot 0.0649 -> 0.255 Inexact Rounded -sqtx4171 squareroot 0.651 -> 0.807 Inexact Rounded -sqtx4172 squareroot 0.0651 -> 0.255 Inexact Rounded -sqtx4173 squareroot 0.652 -> 0.807 Inexact Rounded -sqtx4174 squareroot 0.0652 -> 0.255 Inexact Rounded -sqtx4175 squareroot 0.653 -> 0.808 Inexact Rounded -sqtx4176 squareroot 0.0653 -> 0.256 Inexact Rounded -sqtx4177 squareroot 0.654 -> 0.809 Inexact Rounded -sqtx4178 squareroot 0.0654 -> 0.256 Inexact Rounded -sqtx4179 squareroot 0.655 -> 0.809 Inexact Rounded -sqtx4180 squareroot 0.0655 -> 0.256 Inexact Rounded -sqtx4181 squareroot 0.656 -> 0.810 Inexact Rounded -sqtx4182 squareroot 0.0656 -> 0.256 Inexact Rounded -sqtx4183 squareroot 0.657 -> 0.811 Inexact Rounded -sqtx4184 squareroot 0.0657 -> 0.256 Inexact Rounded -sqtx4185 squareroot 0.658 -> 0.811 Inexact Rounded -sqtx4186 squareroot 0.0658 -> 0.257 Inexact Rounded -sqtx4187 squareroot 0.659 -> 0.812 Inexact Rounded -sqtx4188 squareroot 0.0659 -> 0.257 Inexact Rounded -sqtx4189 squareroot 0.661 -> 0.813 Inexact Rounded -sqtx4190 squareroot 0.0661 -> 0.257 Inexact Rounded -sqtx4191 squareroot 0.662 -> 0.814 Inexact Rounded -sqtx4192 squareroot 0.0662 -> 0.257 Inexact Rounded -sqtx4193 squareroot 0.663 -> 0.814 Inexact Rounded -sqtx4194 squareroot 0.0663 -> 0.257 Inexact Rounded -sqtx4195 squareroot 0.664 -> 0.815 Inexact Rounded -sqtx4196 squareroot 0.0664 -> 0.258 Inexact Rounded -sqtx4197 squareroot 0.665 -> 0.815 Inexact Rounded -sqtx4198 squareroot 0.0665 -> 0.258 Inexact Rounded -sqtx4199 squareroot 0.666 -> 0.816 Inexact Rounded -sqtx4200 squareroot 0.0666 -> 0.258 Inexact Rounded -sqtx4201 squareroot 0.667 -> 0.817 Inexact Rounded -sqtx4202 squareroot 0.0667 -> 0.258 Inexact Rounded -sqtx4203 squareroot 0.668 -> 0.817 Inexact Rounded -sqtx4204 squareroot 0.0668 -> 0.258 Inexact Rounded -sqtx4205 squareroot 0.669 -> 0.818 Inexact Rounded -sqtx4206 squareroot 0.0669 -> 0.259 Inexact Rounded -sqtx4207 squareroot 0.671 -> 0.819 Inexact Rounded -sqtx4208 squareroot 0.0671 -> 0.259 Inexact Rounded -sqtx4209 squareroot 0.672 -> 0.820 Inexact Rounded -sqtx4210 squareroot 0.0672 -> 0.259 Inexact Rounded -sqtx4211 squareroot 0.673 -> 0.820 Inexact Rounded -sqtx4212 squareroot 0.0673 -> 0.259 Inexact Rounded -sqtx4213 squareroot 0.674 -> 0.821 Inexact Rounded -sqtx4214 squareroot 0.0674 -> 0.260 Inexact Rounded -sqtx4215 squareroot 0.675 -> 0.822 Inexact Rounded -sqtx4216 squareroot 0.0675 -> 0.260 Inexact Rounded -sqtx4217 squareroot 0.676 -> 0.822 Inexact Rounded -sqtx4218 squareroot 0.0676 -> 0.26 -sqtx4219 squareroot 0.677 -> 0.823 Inexact Rounded -sqtx4220 squareroot 0.0677 -> 0.260 Inexact Rounded -sqtx4221 squareroot 0.678 -> 0.823 Inexact Rounded -sqtx4222 squareroot 0.0678 -> 0.260 Inexact Rounded -sqtx4223 squareroot 0.679 -> 0.824 Inexact Rounded -sqtx4224 squareroot 0.0679 -> 0.261 Inexact Rounded -sqtx4225 squareroot 0.681 -> 0.825 Inexact Rounded -sqtx4226 squareroot 0.0681 -> 0.261 Inexact Rounded -sqtx4227 squareroot 0.682 -> 0.826 Inexact Rounded -sqtx4228 squareroot 0.0682 -> 0.261 Inexact Rounded -sqtx4229 squareroot 0.683 -> 0.826 Inexact Rounded -sqtx4230 squareroot 0.0683 -> 0.261 Inexact Rounded -sqtx4231 squareroot 0.684 -> 0.827 Inexact Rounded -sqtx4232 squareroot 0.0684 -> 0.262 Inexact Rounded -sqtx4233 squareroot 0.685 -> 0.828 Inexact Rounded -sqtx4234 squareroot 0.0685 -> 0.262 Inexact Rounded -sqtx4235 squareroot 0.686 -> 0.828 Inexact Rounded -sqtx4236 squareroot 0.0686 -> 0.262 Inexact Rounded -sqtx4237 squareroot 0.687 -> 0.829 Inexact Rounded -sqtx4238 squareroot 0.0687 -> 0.262 Inexact Rounded -sqtx4239 squareroot 0.688 -> 0.829 Inexact Rounded -sqtx4240 squareroot 0.0688 -> 0.262 Inexact Rounded -sqtx4241 squareroot 0.689 -> 0.830 Inexact Rounded -sqtx4242 squareroot 0.0689 -> 0.262 Inexact Rounded -sqtx4243 squareroot 0.691 -> 0.831 Inexact Rounded -sqtx4244 squareroot 0.0691 -> 0.263 Inexact Rounded -sqtx4245 squareroot 0.692 -> 0.832 Inexact Rounded -sqtx4246 squareroot 0.0692 -> 0.263 Inexact Rounded -sqtx4247 squareroot 0.693 -> 0.832 Inexact Rounded -sqtx4248 squareroot 0.0693 -> 0.263 Inexact Rounded -sqtx4249 squareroot 0.694 -> 0.833 Inexact Rounded -sqtx4250 squareroot 0.0694 -> 0.263 Inexact Rounded -sqtx4251 squareroot 0.695 -> 0.834 Inexact Rounded -sqtx4252 squareroot 0.0695 -> 0.264 Inexact Rounded -sqtx4253 squareroot 0.696 -> 0.834 Inexact Rounded -sqtx4254 squareroot 0.0696 -> 0.264 Inexact Rounded -sqtx4255 squareroot 0.697 -> 0.835 Inexact Rounded -sqtx4256 squareroot 0.0697 -> 0.264 Inexact Rounded -sqtx4257 squareroot 0.698 -> 0.835 Inexact Rounded -sqtx4258 squareroot 0.0698 -> 0.264 Inexact Rounded -sqtx4259 squareroot 0.699 -> 0.836 Inexact Rounded -sqtx4260 squareroot 0.0699 -> 0.264 Inexact Rounded -sqtx4261 squareroot 0.701 -> 0.837 Inexact Rounded -sqtx4262 squareroot 0.0701 -> 0.265 Inexact Rounded -sqtx4263 squareroot 0.702 -> 0.838 Inexact Rounded -sqtx4264 squareroot 0.0702 -> 0.265 Inexact Rounded -sqtx4265 squareroot 0.703 -> 0.838 Inexact Rounded -sqtx4266 squareroot 0.0703 -> 0.265 Inexact Rounded -sqtx4267 squareroot 0.704 -> 0.839 Inexact Rounded -sqtx4268 squareroot 0.0704 -> 0.265 Inexact Rounded -sqtx4269 squareroot 0.705 -> 0.840 Inexact Rounded -sqtx4270 squareroot 0.0705 -> 0.266 Inexact Rounded -sqtx4271 squareroot 0.706 -> 0.840 Inexact Rounded -sqtx4272 squareroot 0.0706 -> 0.266 Inexact Rounded -sqtx4273 squareroot 0.707 -> 0.841 Inexact Rounded -sqtx4274 squareroot 0.0707 -> 0.266 Inexact Rounded -sqtx4275 squareroot 0.708 -> 0.841 Inexact Rounded -sqtx4276 squareroot 0.0708 -> 0.266 Inexact Rounded -sqtx4277 squareroot 0.709 -> 0.842 Inexact Rounded -sqtx4278 squareroot 0.0709 -> 0.266 Inexact Rounded -sqtx4279 squareroot 0.711 -> 0.843 Inexact Rounded -sqtx4280 squareroot 0.0711 -> 0.267 Inexact Rounded -sqtx4281 squareroot 0.712 -> 0.844 Inexact Rounded -sqtx4282 squareroot 0.0712 -> 0.267 Inexact Rounded -sqtx4283 squareroot 0.713 -> 0.844 Inexact Rounded -sqtx4284 squareroot 0.0713 -> 0.267 Inexact Rounded -sqtx4285 squareroot 0.714 -> 0.845 Inexact Rounded -sqtx4286 squareroot 0.0714 -> 0.267 Inexact Rounded -sqtx4287 squareroot 0.715 -> 0.846 Inexact Rounded -sqtx4288 squareroot 0.0715 -> 0.267 Inexact Rounded -sqtx4289 squareroot 0.716 -> 0.846 Inexact Rounded -sqtx4290 squareroot 0.0716 -> 0.268 Inexact Rounded -sqtx4291 squareroot 0.717 -> 0.847 Inexact Rounded -sqtx4292 squareroot 0.0717 -> 0.268 Inexact Rounded -sqtx4293 squareroot 0.718 -> 0.847 Inexact Rounded -sqtx4294 squareroot 0.0718 -> 0.268 Inexact Rounded -sqtx4295 squareroot 0.719 -> 0.848 Inexact Rounded -sqtx4296 squareroot 0.0719 -> 0.268 Inexact Rounded -sqtx4297 squareroot 0.721 -> 0.849 Inexact Rounded -sqtx4298 squareroot 0.0721 -> 0.269 Inexact Rounded -sqtx4299 squareroot 0.722 -> 0.850 Inexact Rounded -sqtx4300 squareroot 0.0722 -> 0.269 Inexact Rounded -sqtx4301 squareroot 0.723 -> 0.850 Inexact Rounded -sqtx4302 squareroot 0.0723 -> 0.269 Inexact Rounded -sqtx4303 squareroot 0.724 -> 0.851 Inexact Rounded -sqtx4304 squareroot 0.0724 -> 0.269 Inexact Rounded -sqtx4305 squareroot 0.725 -> 0.851 Inexact Rounded -sqtx4306 squareroot 0.0725 -> 0.269 Inexact Rounded -sqtx4307 squareroot 0.726 -> 0.852 Inexact Rounded -sqtx4308 squareroot 0.0726 -> 0.269 Inexact Rounded -sqtx4309 squareroot 0.727 -> 0.853 Inexact Rounded -sqtx4310 squareroot 0.0727 -> 0.270 Inexact Rounded -sqtx4311 squareroot 0.728 -> 0.853 Inexact Rounded -sqtx4312 squareroot 0.0728 -> 0.270 Inexact Rounded -sqtx4313 squareroot 0.729 -> 0.854 Inexact Rounded -sqtx4314 squareroot 0.0729 -> 0.27 -sqtx4315 squareroot 0.731 -> 0.855 Inexact Rounded -sqtx4316 squareroot 0.0731 -> 0.270 Inexact Rounded -sqtx4317 squareroot 0.732 -> 0.856 Inexact Rounded -sqtx4318 squareroot 0.0732 -> 0.271 Inexact Rounded -sqtx4319 squareroot 0.733 -> 0.856 Inexact Rounded -sqtx4320 squareroot 0.0733 -> 0.271 Inexact Rounded -sqtx4321 squareroot 0.734 -> 0.857 Inexact Rounded -sqtx4322 squareroot 0.0734 -> 0.271 Inexact Rounded -sqtx4323 squareroot 0.735 -> 0.857 Inexact Rounded -sqtx4324 squareroot 0.0735 -> 0.271 Inexact Rounded -sqtx4325 squareroot 0.736 -> 0.858 Inexact Rounded -sqtx4326 squareroot 0.0736 -> 0.271 Inexact Rounded -sqtx4327 squareroot 0.737 -> 0.858 Inexact Rounded -sqtx4328 squareroot 0.0737 -> 0.271 Inexact Rounded -sqtx4329 squareroot 0.738 -> 0.859 Inexact Rounded -sqtx4330 squareroot 0.0738 -> 0.272 Inexact Rounded -sqtx4331 squareroot 0.739 -> 0.860 Inexact Rounded -sqtx4332 squareroot 0.0739 -> 0.272 Inexact Rounded -sqtx4333 squareroot 0.741 -> 0.861 Inexact Rounded -sqtx4334 squareroot 0.0741 -> 0.272 Inexact Rounded -sqtx4335 squareroot 0.742 -> 0.861 Inexact Rounded -sqtx4336 squareroot 0.0742 -> 0.272 Inexact Rounded -sqtx4337 squareroot 0.743 -> 0.862 Inexact Rounded -sqtx4338 squareroot 0.0743 -> 0.273 Inexact Rounded -sqtx4339 squareroot 0.744 -> 0.863 Inexact Rounded -sqtx4340 squareroot 0.0744 -> 0.273 Inexact Rounded -sqtx4341 squareroot 0.745 -> 0.863 Inexact Rounded -sqtx4342 squareroot 0.0745 -> 0.273 Inexact Rounded -sqtx4343 squareroot 0.746 -> 0.864 Inexact Rounded -sqtx4344 squareroot 0.0746 -> 0.273 Inexact Rounded -sqtx4345 squareroot 0.747 -> 0.864 Inexact Rounded -sqtx4346 squareroot 0.0747 -> 0.273 Inexact Rounded -sqtx4347 squareroot 0.748 -> 0.865 Inexact Rounded -sqtx4348 squareroot 0.0748 -> 0.273 Inexact Rounded -sqtx4349 squareroot 0.749 -> 0.865 Inexact Rounded -sqtx4350 squareroot 0.0749 -> 0.274 Inexact Rounded -sqtx4351 squareroot 0.751 -> 0.867 Inexact Rounded -sqtx4352 squareroot 0.0751 -> 0.274 Inexact Rounded -sqtx4353 squareroot 0.752 -> 0.867 Inexact Rounded -sqtx4354 squareroot 0.0752 -> 0.274 Inexact Rounded -sqtx4355 squareroot 0.753 -> 0.868 Inexact Rounded -sqtx4356 squareroot 0.0753 -> 0.274 Inexact Rounded -sqtx4357 squareroot 0.754 -> 0.868 Inexact Rounded -sqtx4358 squareroot 0.0754 -> 0.275 Inexact Rounded -sqtx4359 squareroot 0.755 -> 0.869 Inexact Rounded -sqtx4360 squareroot 0.0755 -> 0.275 Inexact Rounded -sqtx4361 squareroot 0.756 -> 0.869 Inexact Rounded -sqtx4362 squareroot 0.0756 -> 0.275 Inexact Rounded -sqtx4363 squareroot 0.757 -> 0.870 Inexact Rounded -sqtx4364 squareroot 0.0757 -> 0.275 Inexact Rounded -sqtx4365 squareroot 0.758 -> 0.871 Inexact Rounded -sqtx4366 squareroot 0.0758 -> 0.275 Inexact Rounded -sqtx4367 squareroot 0.759 -> 0.871 Inexact Rounded -sqtx4368 squareroot 0.0759 -> 0.275 Inexact Rounded -sqtx4369 squareroot 0.761 -> 0.872 Inexact Rounded -sqtx4370 squareroot 0.0761 -> 0.276 Inexact Rounded -sqtx4371 squareroot 0.762 -> 0.873 Inexact Rounded -sqtx4372 squareroot 0.0762 -> 0.276 Inexact Rounded -sqtx4373 squareroot 0.763 -> 0.873 Inexact Rounded -sqtx4374 squareroot 0.0763 -> 0.276 Inexact Rounded -sqtx4375 squareroot 0.764 -> 0.874 Inexact Rounded -sqtx4376 squareroot 0.0764 -> 0.276 Inexact Rounded -sqtx4377 squareroot 0.765 -> 0.875 Inexact Rounded -sqtx4378 squareroot 0.0765 -> 0.277 Inexact Rounded -sqtx4379 squareroot 0.766 -> 0.875 Inexact Rounded -sqtx4380 squareroot 0.0766 -> 0.277 Inexact Rounded -sqtx4381 squareroot 0.767 -> 0.876 Inexact Rounded -sqtx4382 squareroot 0.0767 -> 0.277 Inexact Rounded -sqtx4383 squareroot 0.768 -> 0.876 Inexact Rounded -sqtx4384 squareroot 0.0768 -> 0.277 Inexact Rounded -sqtx4385 squareroot 0.769 -> 0.877 Inexact Rounded -sqtx4386 squareroot 0.0769 -> 0.277 Inexact Rounded -sqtx4387 squareroot 0.771 -> 0.878 Inexact Rounded -sqtx4388 squareroot 0.0771 -> 0.278 Inexact Rounded -sqtx4389 squareroot 0.772 -> 0.879 Inexact Rounded -sqtx4390 squareroot 0.0772 -> 0.278 Inexact Rounded -sqtx4391 squareroot 0.773 -> 0.879 Inexact Rounded -sqtx4392 squareroot 0.0773 -> 0.278 Inexact Rounded -sqtx4393 squareroot 0.774 -> 0.880 Inexact Rounded -sqtx4394 squareroot 0.0774 -> 0.278 Inexact Rounded -sqtx4395 squareroot 0.775 -> 0.880 Inexact Rounded -sqtx4396 squareroot 0.0775 -> 0.278 Inexact Rounded -sqtx4397 squareroot 0.776 -> 0.881 Inexact Rounded -sqtx4398 squareroot 0.0776 -> 0.279 Inexact Rounded -sqtx4399 squareroot 0.777 -> 0.881 Inexact Rounded -sqtx4400 squareroot 0.0777 -> 0.279 Inexact Rounded -sqtx4401 squareroot 0.778 -> 0.882 Inexact Rounded -sqtx4402 squareroot 0.0778 -> 0.279 Inexact Rounded -sqtx4403 squareroot 0.779 -> 0.883 Inexact Rounded -sqtx4404 squareroot 0.0779 -> 0.279 Inexact Rounded -sqtx4405 squareroot 0.781 -> 0.884 Inexact Rounded -sqtx4406 squareroot 0.0781 -> 0.279 Inexact Rounded -sqtx4407 squareroot 0.782 -> 0.884 Inexact Rounded -sqtx4408 squareroot 0.0782 -> 0.280 Inexact Rounded -sqtx4409 squareroot 0.783 -> 0.885 Inexact Rounded -sqtx4410 squareroot 0.0783 -> 0.280 Inexact Rounded -sqtx4411 squareroot 0.784 -> 0.885 Inexact Rounded -sqtx4412 squareroot 0.0784 -> 0.28 -sqtx4413 squareroot 0.785 -> 0.886 Inexact Rounded -sqtx4414 squareroot 0.0785 -> 0.280 Inexact Rounded -sqtx4415 squareroot 0.786 -> 0.887 Inexact Rounded -sqtx4416 squareroot 0.0786 -> 0.280 Inexact Rounded -sqtx4417 squareroot 0.787 -> 0.887 Inexact Rounded -sqtx4418 squareroot 0.0787 -> 0.281 Inexact Rounded -sqtx4419 squareroot 0.788 -> 0.888 Inexact Rounded -sqtx4420 squareroot 0.0788 -> 0.281 Inexact Rounded -sqtx4421 squareroot 0.789 -> 0.888 Inexact Rounded -sqtx4422 squareroot 0.0789 -> 0.281 Inexact Rounded -sqtx4423 squareroot 0.791 -> 0.889 Inexact Rounded -sqtx4424 squareroot 0.0791 -> 0.281 Inexact Rounded -sqtx4425 squareroot 0.792 -> 0.890 Inexact Rounded -sqtx4426 squareroot 0.0792 -> 0.281 Inexact Rounded -sqtx4427 squareroot 0.793 -> 0.891 Inexact Rounded -sqtx4428 squareroot 0.0793 -> 0.282 Inexact Rounded -sqtx4429 squareroot 0.794 -> 0.891 Inexact Rounded -sqtx4430 squareroot 0.0794 -> 0.282 Inexact Rounded -sqtx4431 squareroot 0.795 -> 0.892 Inexact Rounded -sqtx4432 squareroot 0.0795 -> 0.282 Inexact Rounded -sqtx4433 squareroot 0.796 -> 0.892 Inexact Rounded -sqtx4434 squareroot 0.0796 -> 0.282 Inexact Rounded -sqtx4435 squareroot 0.797 -> 0.893 Inexact Rounded -sqtx4436 squareroot 0.0797 -> 0.282 Inexact Rounded -sqtx4437 squareroot 0.798 -> 0.893 Inexact Rounded -sqtx4438 squareroot 0.0798 -> 0.282 Inexact Rounded -sqtx4439 squareroot 0.799 -> 0.894 Inexact Rounded -sqtx4440 squareroot 0.0799 -> 0.283 Inexact Rounded -sqtx4441 squareroot 0.801 -> 0.895 Inexact Rounded -sqtx4442 squareroot 0.0801 -> 0.283 Inexact Rounded -sqtx4443 squareroot 0.802 -> 0.896 Inexact Rounded -sqtx4444 squareroot 0.0802 -> 0.283 Inexact Rounded -sqtx4445 squareroot 0.803 -> 0.896 Inexact Rounded -sqtx4446 squareroot 0.0803 -> 0.283 Inexact Rounded -sqtx4447 squareroot 0.804 -> 0.897 Inexact Rounded -sqtx4448 squareroot 0.0804 -> 0.284 Inexact Rounded -sqtx4449 squareroot 0.805 -> 0.897 Inexact Rounded -sqtx4450 squareroot 0.0805 -> 0.284 Inexact Rounded -sqtx4451 squareroot 0.806 -> 0.898 Inexact Rounded -sqtx4452 squareroot 0.0806 -> 0.284 Inexact Rounded -sqtx4453 squareroot 0.807 -> 0.898 Inexact Rounded -sqtx4454 squareroot 0.0807 -> 0.284 Inexact Rounded -sqtx4455 squareroot 0.808 -> 0.899 Inexact Rounded -sqtx4456 squareroot 0.0808 -> 0.284 Inexact Rounded -sqtx4457 squareroot 0.809 -> 0.899 Inexact Rounded -sqtx4458 squareroot 0.0809 -> 0.284 Inexact Rounded -sqtx4459 squareroot 0.811 -> 0.901 Inexact Rounded -sqtx4460 squareroot 0.0811 -> 0.285 Inexact Rounded -sqtx4461 squareroot 0.812 -> 0.901 Inexact Rounded -sqtx4462 squareroot 0.0812 -> 0.285 Inexact Rounded -sqtx4463 squareroot 0.813 -> 0.902 Inexact Rounded -sqtx4464 squareroot 0.0813 -> 0.285 Inexact Rounded -sqtx4465 squareroot 0.814 -> 0.902 Inexact Rounded -sqtx4466 squareroot 0.0814 -> 0.285 Inexact Rounded -sqtx4467 squareroot 0.815 -> 0.903 Inexact Rounded -sqtx4468 squareroot 0.0815 -> 0.285 Inexact Rounded -sqtx4469 squareroot 0.816 -> 0.903 Inexact Rounded -sqtx4470 squareroot 0.0816 -> 0.286 Inexact Rounded -sqtx4471 squareroot 0.817 -> 0.904 Inexact Rounded -sqtx4472 squareroot 0.0817 -> 0.286 Inexact Rounded -sqtx4473 squareroot 0.818 -> 0.904 Inexact Rounded -sqtx4474 squareroot 0.0818 -> 0.286 Inexact Rounded -sqtx4475 squareroot 0.819 -> 0.905 Inexact Rounded -sqtx4476 squareroot 0.0819 -> 0.286 Inexact Rounded -sqtx4477 squareroot 0.821 -> 0.906 Inexact Rounded -sqtx4478 squareroot 0.0821 -> 0.287 Inexact Rounded -sqtx4479 squareroot 0.822 -> 0.907 Inexact Rounded -sqtx4480 squareroot 0.0822 -> 0.287 Inexact Rounded -sqtx4481 squareroot 0.823 -> 0.907 Inexact Rounded -sqtx4482 squareroot 0.0823 -> 0.287 Inexact Rounded -sqtx4483 squareroot 0.824 -> 0.908 Inexact Rounded -sqtx4484 squareroot 0.0824 -> 0.287 Inexact Rounded -sqtx4485 squareroot 0.825 -> 0.908 Inexact Rounded -sqtx4486 squareroot 0.0825 -> 0.287 Inexact Rounded -sqtx4487 squareroot 0.826 -> 0.909 Inexact Rounded -sqtx4488 squareroot 0.0826 -> 0.287 Inexact Rounded -sqtx4489 squareroot 0.827 -> 0.909 Inexact Rounded -sqtx4490 squareroot 0.0827 -> 0.288 Inexact Rounded -sqtx4491 squareroot 0.828 -> 0.910 Inexact Rounded -sqtx4492 squareroot 0.0828 -> 0.288 Inexact Rounded -sqtx4493 squareroot 0.829 -> 0.910 Inexact Rounded -sqtx4494 squareroot 0.0829 -> 0.288 Inexact Rounded -sqtx4495 squareroot 0.831 -> 0.912 Inexact Rounded -sqtx4496 squareroot 0.0831 -> 0.288 Inexact Rounded -sqtx4497 squareroot 0.832 -> 0.912 Inexact Rounded -sqtx4498 squareroot 0.0832 -> 0.288 Inexact Rounded -sqtx4499 squareroot 0.833 -> 0.913 Inexact Rounded -sqtx4500 squareroot 0.0833 -> 0.289 Inexact Rounded -sqtx4501 squareroot 0.834 -> 0.913 Inexact Rounded -sqtx4502 squareroot 0.0834 -> 0.289 Inexact Rounded -sqtx4503 squareroot 0.835 -> 0.914 Inexact Rounded -sqtx4504 squareroot 0.0835 -> 0.289 Inexact Rounded -sqtx4505 squareroot 0.836 -> 0.914 Inexact Rounded -sqtx4506 squareroot 0.0836 -> 0.289 Inexact Rounded -sqtx4507 squareroot 0.837 -> 0.915 Inexact Rounded -sqtx4508 squareroot 0.0837 -> 0.289 Inexact Rounded -sqtx4509 squareroot 0.838 -> 0.915 Inexact Rounded -sqtx4510 squareroot 0.0838 -> 0.289 Inexact Rounded -sqtx4511 squareroot 0.839 -> 0.916 Inexact Rounded -sqtx4512 squareroot 0.0839 -> 0.290 Inexact Rounded -sqtx4513 squareroot 0.841 -> 0.917 Inexact Rounded -sqtx4514 squareroot 0.0841 -> 0.29 -sqtx4515 squareroot 0.842 -> 0.918 Inexact Rounded -sqtx4516 squareroot 0.0842 -> 0.290 Inexact Rounded -sqtx4517 squareroot 0.843 -> 0.918 Inexact Rounded -sqtx4518 squareroot 0.0843 -> 0.290 Inexact Rounded -sqtx4519 squareroot 0.844 -> 0.919 Inexact Rounded -sqtx4520 squareroot 0.0844 -> 0.291 Inexact Rounded -sqtx4521 squareroot 0.845 -> 0.919 Inexact Rounded -sqtx4522 squareroot 0.0845 -> 0.291 Inexact Rounded -sqtx4523 squareroot 0.846 -> 0.920 Inexact Rounded -sqtx4524 squareroot 0.0846 -> 0.291 Inexact Rounded -sqtx4525 squareroot 0.847 -> 0.920 Inexact Rounded -sqtx4526 squareroot 0.0847 -> 0.291 Inexact Rounded -sqtx4527 squareroot 0.848 -> 0.921 Inexact Rounded -sqtx4528 squareroot 0.0848 -> 0.291 Inexact Rounded -sqtx4529 squareroot 0.849 -> 0.921 Inexact Rounded -sqtx4530 squareroot 0.0849 -> 0.291 Inexact Rounded -sqtx4531 squareroot 0.851 -> 0.922 Inexact Rounded -sqtx4532 squareroot 0.0851 -> 0.292 Inexact Rounded -sqtx4533 squareroot 0.852 -> 0.923 Inexact Rounded -sqtx4534 squareroot 0.0852 -> 0.292 Inexact Rounded -sqtx4535 squareroot 0.853 -> 0.924 Inexact Rounded -sqtx4536 squareroot 0.0853 -> 0.292 Inexact Rounded -sqtx4537 squareroot 0.854 -> 0.924 Inexact Rounded -sqtx4538 squareroot 0.0854 -> 0.292 Inexact Rounded -sqtx4539 squareroot 0.855 -> 0.925 Inexact Rounded -sqtx4540 squareroot 0.0855 -> 0.292 Inexact Rounded -sqtx4541 squareroot 0.856 -> 0.925 Inexact Rounded -sqtx4542 squareroot 0.0856 -> 0.293 Inexact Rounded -sqtx4543 squareroot 0.857 -> 0.926 Inexact Rounded -sqtx4544 squareroot 0.0857 -> 0.293 Inexact Rounded -sqtx4545 squareroot 0.858 -> 0.926 Inexact Rounded -sqtx4546 squareroot 0.0858 -> 0.293 Inexact Rounded -sqtx4547 squareroot 0.859 -> 0.927 Inexact Rounded -sqtx4548 squareroot 0.0859 -> 0.293 Inexact Rounded -sqtx4549 squareroot 0.861 -> 0.928 Inexact Rounded -sqtx4550 squareroot 0.0861 -> 0.293 Inexact Rounded -sqtx4551 squareroot 0.862 -> 0.928 Inexact Rounded -sqtx4552 squareroot 0.0862 -> 0.294 Inexact Rounded -sqtx4553 squareroot 0.863 -> 0.929 Inexact Rounded -sqtx4554 squareroot 0.0863 -> 0.294 Inexact Rounded -sqtx4555 squareroot 0.864 -> 0.930 Inexact Rounded -sqtx4556 squareroot 0.0864 -> 0.294 Inexact Rounded -sqtx4557 squareroot 0.865 -> 0.930 Inexact Rounded -sqtx4558 squareroot 0.0865 -> 0.294 Inexact Rounded -sqtx4559 squareroot 0.866 -> 0.931 Inexact Rounded -sqtx4560 squareroot 0.0866 -> 0.294 Inexact Rounded -sqtx4561 squareroot 0.867 -> 0.931 Inexact Rounded -sqtx4562 squareroot 0.0867 -> 0.294 Inexact Rounded -sqtx4563 squareroot 0.868 -> 0.932 Inexact Rounded -sqtx4564 squareroot 0.0868 -> 0.295 Inexact Rounded -sqtx4565 squareroot 0.869 -> 0.932 Inexact Rounded -sqtx4566 squareroot 0.0869 -> 0.295 Inexact Rounded -sqtx4567 squareroot 0.871 -> 0.933 Inexact Rounded -sqtx4568 squareroot 0.0871 -> 0.295 Inexact Rounded -sqtx4569 squareroot 0.872 -> 0.934 Inexact Rounded -sqtx4570 squareroot 0.0872 -> 0.295 Inexact Rounded -sqtx4571 squareroot 0.873 -> 0.934 Inexact Rounded -sqtx4572 squareroot 0.0873 -> 0.295 Inexact Rounded -sqtx4573 squareroot 0.874 -> 0.935 Inexact Rounded -sqtx4574 squareroot 0.0874 -> 0.296 Inexact Rounded -sqtx4575 squareroot 0.875 -> 0.935 Inexact Rounded -sqtx4576 squareroot 0.0875 -> 0.296 Inexact Rounded -sqtx4577 squareroot 0.876 -> 0.936 Inexact Rounded -sqtx4578 squareroot 0.0876 -> 0.296 Inexact Rounded -sqtx4579 squareroot 0.877 -> 0.936 Inexact Rounded -sqtx4580 squareroot 0.0877 -> 0.296 Inexact Rounded -sqtx4581 squareroot 0.878 -> 0.937 Inexact Rounded -sqtx4582 squareroot 0.0878 -> 0.296 Inexact Rounded -sqtx4583 squareroot 0.879 -> 0.938 Inexact Rounded -sqtx4584 squareroot 0.0879 -> 0.296 Inexact Rounded -sqtx4585 squareroot 0.881 -> 0.939 Inexact Rounded -sqtx4586 squareroot 0.0881 -> 0.297 Inexact Rounded -sqtx4587 squareroot 0.882 -> 0.939 Inexact Rounded -sqtx4588 squareroot 0.0882 -> 0.297 Inexact Rounded -sqtx4589 squareroot 0.883 -> 0.940 Inexact Rounded -sqtx4590 squareroot 0.0883 -> 0.297 Inexact Rounded -sqtx4591 squareroot 0.884 -> 0.940 Inexact Rounded -sqtx4592 squareroot 0.0884 -> 0.297 Inexact Rounded -sqtx4593 squareroot 0.885 -> 0.941 Inexact Rounded -sqtx4594 squareroot 0.0885 -> 0.297 Inexact Rounded -sqtx4595 squareroot 0.886 -> 0.941 Inexact Rounded -sqtx4596 squareroot 0.0886 -> 0.298 Inexact Rounded -sqtx4597 squareroot 0.887 -> 0.942 Inexact Rounded -sqtx4598 squareroot 0.0887 -> 0.298 Inexact Rounded -sqtx4599 squareroot 0.888 -> 0.942 Inexact Rounded -sqtx4600 squareroot 0.0888 -> 0.298 Inexact Rounded -sqtx4601 squareroot 0.889 -> 0.943 Inexact Rounded -sqtx4602 squareroot 0.0889 -> 0.298 Inexact Rounded -sqtx4603 squareroot 0.891 -> 0.944 Inexact Rounded -sqtx4604 squareroot 0.0891 -> 0.298 Inexact Rounded -sqtx4605 squareroot 0.892 -> 0.944 Inexact Rounded -sqtx4606 squareroot 0.0892 -> 0.299 Inexact Rounded -sqtx4607 squareroot 0.893 -> 0.945 Inexact Rounded -sqtx4608 squareroot 0.0893 -> 0.299 Inexact Rounded -sqtx4609 squareroot 0.894 -> 0.946 Inexact Rounded -sqtx4610 squareroot 0.0894 -> 0.299 Inexact Rounded -sqtx4611 squareroot 0.895 -> 0.946 Inexact Rounded -sqtx4612 squareroot 0.0895 -> 0.299 Inexact Rounded -sqtx4613 squareroot 0.896 -> 0.947 Inexact Rounded -sqtx4614 squareroot 0.0896 -> 0.299 Inexact Rounded -sqtx4615 squareroot 0.897 -> 0.947 Inexact Rounded -sqtx4616 squareroot 0.0897 -> 0.299 Inexact Rounded -sqtx4617 squareroot 0.898 -> 0.948 Inexact Rounded -sqtx4618 squareroot 0.0898 -> 0.300 Inexact Rounded -sqtx4619 squareroot 0.899 -> 0.948 Inexact Rounded -sqtx4620 squareroot 0.0899 -> 0.300 Inexact Rounded -sqtx4621 squareroot 0.901 -> 0.949 Inexact Rounded -sqtx4622 squareroot 0.0901 -> 0.300 Inexact Rounded -sqtx4623 squareroot 0.902 -> 0.950 Inexact Rounded -sqtx4624 squareroot 0.0902 -> 0.300 Inexact Rounded -sqtx4625 squareroot 0.903 -> 0.950 Inexact Rounded -sqtx4626 squareroot 0.0903 -> 0.300 Inexact Rounded -sqtx4627 squareroot 0.904 -> 0.951 Inexact Rounded -sqtx4628 squareroot 0.0904 -> 0.301 Inexact Rounded -sqtx4629 squareroot 0.905 -> 0.951 Inexact Rounded -sqtx4630 squareroot 0.0905 -> 0.301 Inexact Rounded -sqtx4631 squareroot 0.906 -> 0.952 Inexact Rounded -sqtx4632 squareroot 0.0906 -> 0.301 Inexact Rounded -sqtx4633 squareroot 0.907 -> 0.952 Inexact Rounded -sqtx4634 squareroot 0.0907 -> 0.301 Inexact Rounded -sqtx4635 squareroot 0.908 -> 0.953 Inexact Rounded -sqtx4636 squareroot 0.0908 -> 0.301 Inexact Rounded -sqtx4637 squareroot 0.909 -> 0.953 Inexact Rounded -sqtx4638 squareroot 0.0909 -> 0.301 Inexact Rounded -sqtx4639 squareroot 0.911 -> 0.954 Inexact Rounded -sqtx4640 squareroot 0.0911 -> 0.302 Inexact Rounded -sqtx4641 squareroot 0.912 -> 0.955 Inexact Rounded -sqtx4642 squareroot 0.0912 -> 0.302 Inexact Rounded -sqtx4643 squareroot 0.913 -> 0.956 Inexact Rounded -sqtx4644 squareroot 0.0913 -> 0.302 Inexact Rounded -sqtx4645 squareroot 0.914 -> 0.956 Inexact Rounded -sqtx4646 squareroot 0.0914 -> 0.302 Inexact Rounded -sqtx4647 squareroot 0.915 -> 0.957 Inexact Rounded -sqtx4648 squareroot 0.0915 -> 0.302 Inexact Rounded -sqtx4649 squareroot 0.916 -> 0.957 Inexact Rounded -sqtx4650 squareroot 0.0916 -> 0.303 Inexact Rounded -sqtx4651 squareroot 0.917 -> 0.958 Inexact Rounded -sqtx4652 squareroot 0.0917 -> 0.303 Inexact Rounded -sqtx4653 squareroot 0.918 -> 0.958 Inexact Rounded -sqtx4654 squareroot 0.0918 -> 0.303 Inexact Rounded -sqtx4655 squareroot 0.919 -> 0.959 Inexact Rounded -sqtx4656 squareroot 0.0919 -> 0.303 Inexact Rounded -sqtx4657 squareroot 0.921 -> 0.960 Inexact Rounded -sqtx4658 squareroot 0.0921 -> 0.303 Inexact Rounded -sqtx4659 squareroot 0.922 -> 0.960 Inexact Rounded -sqtx4660 squareroot 0.0922 -> 0.304 Inexact Rounded -sqtx4661 squareroot 0.923 -> 0.961 Inexact Rounded -sqtx4662 squareroot 0.0923 -> 0.304 Inexact Rounded -sqtx4663 squareroot 0.924 -> 0.961 Inexact Rounded -sqtx4664 squareroot 0.0924 -> 0.304 Inexact Rounded -sqtx4665 squareroot 0.925 -> 0.962 Inexact Rounded -sqtx4666 squareroot 0.0925 -> 0.304 Inexact Rounded -sqtx4667 squareroot 0.926 -> 0.962 Inexact Rounded -sqtx4668 squareroot 0.0926 -> 0.304 Inexact Rounded -sqtx4669 squareroot 0.927 -> 0.963 Inexact Rounded -sqtx4670 squareroot 0.0927 -> 0.304 Inexact Rounded -sqtx4671 squareroot 0.928 -> 0.963 Inexact Rounded -sqtx4672 squareroot 0.0928 -> 0.305 Inexact Rounded -sqtx4673 squareroot 0.929 -> 0.964 Inexact Rounded -sqtx4674 squareroot 0.0929 -> 0.305 Inexact Rounded -sqtx4675 squareroot 0.931 -> 0.965 Inexact Rounded -sqtx4676 squareroot 0.0931 -> 0.305 Inexact Rounded -sqtx4677 squareroot 0.932 -> 0.965 Inexact Rounded -sqtx4678 squareroot 0.0932 -> 0.305 Inexact Rounded -sqtx4679 squareroot 0.933 -> 0.966 Inexact Rounded -sqtx4680 squareroot 0.0933 -> 0.305 Inexact Rounded -sqtx4681 squareroot 0.934 -> 0.966 Inexact Rounded -sqtx4682 squareroot 0.0934 -> 0.306 Inexact Rounded -sqtx4683 squareroot 0.935 -> 0.967 Inexact Rounded -sqtx4684 squareroot 0.0935 -> 0.306 Inexact Rounded -sqtx4685 squareroot 0.936 -> 0.967 Inexact Rounded -sqtx4686 squareroot 0.0936 -> 0.306 Inexact Rounded -sqtx4687 squareroot 0.937 -> 0.968 Inexact Rounded -sqtx4688 squareroot 0.0937 -> 0.306 Inexact Rounded -sqtx4689 squareroot 0.938 -> 0.969 Inexact Rounded -sqtx4690 squareroot 0.0938 -> 0.306 Inexact Rounded -sqtx4691 squareroot 0.939 -> 0.969 Inexact Rounded -sqtx4692 squareroot 0.0939 -> 0.306 Inexact Rounded -sqtx4693 squareroot 0.941 -> 0.970 Inexact Rounded -sqtx4694 squareroot 0.0941 -> 0.307 Inexact Rounded -sqtx4695 squareroot 0.942 -> 0.971 Inexact Rounded -sqtx4696 squareroot 0.0942 -> 0.307 Inexact Rounded -sqtx4697 squareroot 0.943 -> 0.971 Inexact Rounded -sqtx4698 squareroot 0.0943 -> 0.307 Inexact Rounded -sqtx4699 squareroot 0.944 -> 0.972 Inexact Rounded -sqtx4700 squareroot 0.0944 -> 0.307 Inexact Rounded -sqtx4701 squareroot 0.945 -> 0.972 Inexact Rounded -sqtx4702 squareroot 0.0945 -> 0.307 Inexact Rounded -sqtx4703 squareroot 0.946 -> 0.973 Inexact Rounded -sqtx4704 squareroot 0.0946 -> 0.308 Inexact Rounded -sqtx4705 squareroot 0.947 -> 0.973 Inexact Rounded -sqtx4706 squareroot 0.0947 -> 0.308 Inexact Rounded -sqtx4707 squareroot 0.948 -> 0.974 Inexact Rounded -sqtx4708 squareroot 0.0948 -> 0.308 Inexact Rounded -sqtx4709 squareroot 0.949 -> 0.974 Inexact Rounded -sqtx4710 squareroot 0.0949 -> 0.308 Inexact Rounded -sqtx4711 squareroot 0.951 -> 0.975 Inexact Rounded -sqtx4712 squareroot 0.0951 -> 0.308 Inexact Rounded -sqtx4713 squareroot 0.952 -> 0.976 Inexact Rounded -sqtx4714 squareroot 0.0952 -> 0.309 Inexact Rounded -sqtx4715 squareroot 0.953 -> 0.976 Inexact Rounded -sqtx4716 squareroot 0.0953 -> 0.309 Inexact Rounded -sqtx4717 squareroot 0.954 -> 0.977 Inexact Rounded -sqtx4718 squareroot 0.0954 -> 0.309 Inexact Rounded -sqtx4719 squareroot 0.955 -> 0.977 Inexact Rounded -sqtx4720 squareroot 0.0955 -> 0.309 Inexact Rounded -sqtx4721 squareroot 0.956 -> 0.978 Inexact Rounded -sqtx4722 squareroot 0.0956 -> 0.309 Inexact Rounded -sqtx4723 squareroot 0.957 -> 0.978 Inexact Rounded -sqtx4724 squareroot 0.0957 -> 0.309 Inexact Rounded -sqtx4725 squareroot 0.958 -> 0.979 Inexact Rounded -sqtx4726 squareroot 0.0958 -> 0.310 Inexact Rounded -sqtx4727 squareroot 0.959 -> 0.979 Inexact Rounded -sqtx4728 squareroot 0.0959 -> 0.310 Inexact Rounded -sqtx4729 squareroot 0.961 -> 0.980 Inexact Rounded -sqtx4730 squareroot 0.0961 -> 0.31 -sqtx4731 squareroot 0.962 -> 0.981 Inexact Rounded -sqtx4732 squareroot 0.0962 -> 0.310 Inexact Rounded -sqtx4733 squareroot 0.963 -> 0.981 Inexact Rounded -sqtx4734 squareroot 0.0963 -> 0.310 Inexact Rounded -sqtx4735 squareroot 0.964 -> 0.982 Inexact Rounded -sqtx4736 squareroot 0.0964 -> 0.310 Inexact Rounded -sqtx4737 squareroot 0.965 -> 0.982 Inexact Rounded -sqtx4738 squareroot 0.0965 -> 0.311 Inexact Rounded -sqtx4739 squareroot 0.966 -> 0.983 Inexact Rounded -sqtx4740 squareroot 0.0966 -> 0.311 Inexact Rounded -sqtx4741 squareroot 0.967 -> 0.983 Inexact Rounded -sqtx4742 squareroot 0.0967 -> 0.311 Inexact Rounded -sqtx4743 squareroot 0.968 -> 0.984 Inexact Rounded -sqtx4744 squareroot 0.0968 -> 0.311 Inexact Rounded -sqtx4745 squareroot 0.969 -> 0.984 Inexact Rounded -sqtx4746 squareroot 0.0969 -> 0.311 Inexact Rounded -sqtx4747 squareroot 0.971 -> 0.985 Inexact Rounded -sqtx4748 squareroot 0.0971 -> 0.312 Inexact Rounded -sqtx4749 squareroot 0.972 -> 0.986 Inexact Rounded -sqtx4750 squareroot 0.0972 -> 0.312 Inexact Rounded -sqtx4751 squareroot 0.973 -> 0.986 Inexact Rounded -sqtx4752 squareroot 0.0973 -> 0.312 Inexact Rounded -sqtx4753 squareroot 0.974 -> 0.987 Inexact Rounded -sqtx4754 squareroot 0.0974 -> 0.312 Inexact Rounded -sqtx4755 squareroot 0.975 -> 0.987 Inexact Rounded -sqtx4756 squareroot 0.0975 -> 0.312 Inexact Rounded -sqtx4757 squareroot 0.976 -> 0.988 Inexact Rounded -sqtx4758 squareroot 0.0976 -> 0.312 Inexact Rounded -sqtx4759 squareroot 0.977 -> 0.988 Inexact Rounded -sqtx4760 squareroot 0.0977 -> 0.313 Inexact Rounded -sqtx4761 squareroot 0.978 -> 0.989 Inexact Rounded -sqtx4762 squareroot 0.0978 -> 0.313 Inexact Rounded -sqtx4763 squareroot 0.979 -> 0.989 Inexact Rounded -sqtx4764 squareroot 0.0979 -> 0.313 Inexact Rounded -sqtx4765 squareroot 0.981 -> 0.990 Inexact Rounded -sqtx4766 squareroot 0.0981 -> 0.313 Inexact Rounded -sqtx4767 squareroot 0.982 -> 0.991 Inexact Rounded -sqtx4768 squareroot 0.0982 -> 0.313 Inexact Rounded -sqtx4769 squareroot 0.983 -> 0.991 Inexact Rounded -sqtx4770 squareroot 0.0983 -> 0.314 Inexact Rounded -sqtx4771 squareroot 0.984 -> 0.992 Inexact Rounded -sqtx4772 squareroot 0.0984 -> 0.314 Inexact Rounded -sqtx4773 squareroot 0.985 -> 0.992 Inexact Rounded -sqtx4774 squareroot 0.0985 -> 0.314 Inexact Rounded -sqtx4775 squareroot 0.986 -> 0.993 Inexact Rounded -sqtx4776 squareroot 0.0986 -> 0.314 Inexact Rounded -sqtx4777 squareroot 0.987 -> 0.993 Inexact Rounded -sqtx4778 squareroot 0.0987 -> 0.314 Inexact Rounded -sqtx4779 squareroot 0.988 -> 0.994 Inexact Rounded -sqtx4780 squareroot 0.0988 -> 0.314 Inexact Rounded -sqtx4781 squareroot 0.989 -> 0.994 Inexact Rounded -sqtx4782 squareroot 0.0989 -> 0.314 Inexact Rounded -sqtx4783 squareroot 0.991 -> 0.995 Inexact Rounded -sqtx4784 squareroot 0.0991 -> 0.315 Inexact Rounded -sqtx4785 squareroot 0.992 -> 0.996 Inexact Rounded -sqtx4786 squareroot 0.0992 -> 0.315 Inexact Rounded -sqtx4787 squareroot 0.993 -> 0.996 Inexact Rounded -sqtx4788 squareroot 0.0993 -> 0.315 Inexact Rounded -sqtx4789 squareroot 0.994 -> 0.997 Inexact Rounded -sqtx4790 squareroot 0.0994 -> 0.315 Inexact Rounded -sqtx4791 squareroot 0.995 -> 0.997 Inexact Rounded -sqtx4792 squareroot 0.0995 -> 0.315 Inexact Rounded -sqtx4793 squareroot 0.996 -> 0.998 Inexact Rounded -sqtx4794 squareroot 0.0996 -> 0.316 Inexact Rounded -sqtx4795 squareroot 0.997 -> 0.998 Inexact Rounded -sqtx4796 squareroot 0.0997 -> 0.316 Inexact Rounded -sqtx4797 squareroot 0.998 -> 0.999 Inexact Rounded -sqtx4798 squareroot 0.0998 -> 0.316 Inexact Rounded -sqtx4799 squareroot 0.999 -> 0.999 Inexact Rounded -sqtx4800 squareroot 0.0999 -> 0.316 Inexact Rounded - --- A group of precision 4 tests where Hull & Abrham adjustments are --- needed in some cases (both up and down) [see Hull1985b] -rounding: half_even -maxExponent: 999 -minexponent: -999 -precision: 4 -sqtx5001 squareroot 0.0118 -> 0.1086 Inexact Rounded -sqtx5002 squareroot 0.119 -> 0.3450 Inexact Rounded -sqtx5003 squareroot 0.0119 -> 0.1091 Inexact Rounded -sqtx5004 squareroot 0.121 -> 0.3479 Inexact Rounded -sqtx5005 squareroot 0.0121 -> 0.11 -sqtx5006 squareroot 0.122 -> 0.3493 Inexact Rounded -sqtx5007 squareroot 0.0122 -> 0.1105 Inexact Rounded -sqtx5008 squareroot 0.123 -> 0.3507 Inexact Rounded -sqtx5009 squareroot 0.494 -> 0.7029 Inexact Rounded -sqtx5010 squareroot 0.0669 -> 0.2587 Inexact Rounded -sqtx5011 squareroot 0.9558 -> 0.9777 Inexact Rounded -sqtx5012 squareroot 0.9348 -> 0.9669 Inexact Rounded -sqtx5013 squareroot 0.9345 -> 0.9667 Inexact Rounded -sqtx5014 squareroot 0.09345 -> 0.3057 Inexact Rounded -sqtx5015 squareroot 0.9346 -> 0.9667 Inexact Rounded -sqtx5016 squareroot 0.09346 -> 0.3057 Inexact Rounded -sqtx5017 squareroot 0.9347 -> 0.9668 Inexact Rounded - --- examples from decArith -precision: 9 -sqtx700 squareroot 0 -> '0' -sqtx701 squareroot -0 -> '0' -sqtx702 squareroot 0.39 -> 0.624499800 Inexact Rounded -sqtx703 squareroot 1.00 -> '1.0' -sqtx704 squareroot 7 -> '2.64575131' Inexact Rounded -sqtx705 squareroot 10 -> 3.16227766 Inexact Rounded - --- some one-offs -precision: 9 -sqtx711 squareroot 0.1 -> 0.316227766 Inexact Rounded -sqtx712 squareroot 0.2 -> 0.447213595 Inexact Rounded -sqtx713 squareroot 0.3 -> 0.547722558 Inexact Rounded -sqtx714 squareroot 0.4 -> 0.632455532 Inexact Rounded -sqtx715 squareroot 0.5 -> 0.707106781 Inexact Rounded -sqtx716 squareroot 0.6 -> 0.774596669 Inexact Rounded -sqtx717 squareroot 0.7 -> 0.836660027 Inexact Rounded -sqtx718 squareroot 0.8 -> 0.894427191 Inexact Rounded -sqtx719 squareroot 0.9 -> 0.948683298 Inexact Rounded -precision: 10 -- note no normalizatoin here -sqtx720 squareroot +0.1 -> 0.3162277660 Inexact Rounded -precision: 11 -sqtx721 squareroot +0.1 -> 0.31622776602 Inexact Rounded -precision: 12 -sqtx722 squareroot +0.1 -> 0.316227766017 Inexact Rounded -precision: 9 -sqtx748 squareroot 0.39 -> 0.624499800 Inexact Rounded -precision: 15 -sqtx749 squareroot 0.39 -> 0.624499799839840 Inexact Rounded - --- values close to overflow (if there were input rounding) -maxexponent: 99 -minexponent: -99 -precision: 5 -sqtx760 squareroot 9.9997E+99 -> 9.9998E+49 Inexact Rounded -sqtx761 squareroot 9.9998E+99 -> 9.9999E+49 Inexact Rounded -sqtx762 squareroot 9.9999E+99 -> 9.9999E+49 Inexact Rounded -sqtx763 squareroot 9.99991E+99 -> 9.9999E+49 Inexact Rounded Lost_digits -sqtx764 squareroot 9.99994E+99 -> 9.9999E+49 Inexact Rounded Lost_digits -sqtx765 squareroot 9.99995E+99 -> ? Overflow Inexact Rounded Lost_digits -sqtx766 squareroot 9.99999E+99 -> ? Overflow Inexact Rounded Lost_digits -precision: 9 -sqtx770 squareroot 9.9997E+99 -> 9.99985000E+49 Inexact Rounded -sqtx771 squareroot 9.9998E+99 -> 9.99990000E+49 Inexact Rounded -sqtx772 squareroot 9.9999E+99 -> 9.99995000E+49 Inexact Rounded -sqtx773 squareroot 9.99991E+99 -> 9.99995500E+49 Inexact Rounded -sqtx774 squareroot 9.99994E+99 -> 9.99997000E+49 Inexact Rounded -sqtx775 squareroot 9.99995E+99 -> 9.99997500E+49 Inexact Rounded -sqtx776 squareroot 9.99999E+99 -> 9.99999500E+49 Inexact Rounded -precision: 20 -sqtx780 squareroot 9.9997E+99 -> '9.9998499988749831247E+49' Inexact Rounded -sqtx781 squareroot 9.9998E+99 -> '9.9998999994999949999E+49' Inexact Rounded -sqtx782 squareroot 9.9999E+99 -> '9.9999499998749993750E+49' Inexact Rounded -sqtx783 squareroot 9.99991E+99 -> '9.9999549998987495444E+49' Inexact Rounded -sqtx784 squareroot 9.99994E+99 -> '9.9999699999549998650E+49' Inexact Rounded -sqtx785 squareroot 9.99995E+99 -> '9.9999749999687499219E+49' Inexact Rounded -sqtx786 squareroot 9.99999E+99 -> '9.9999949999987499994E+49' Inexact Rounded - --- subnormals, special values, and underflows cannot occur when extended=0 - --- Null test -sqtx900 squareroot # -> ? Invalid_operation diff --git a/qdecimal/test/tc_subset/subtract0.decTest b/qdecimal/test/tc_subset/subtract0.decTest deleted file mode 100644 index d9e929a..0000000 --- a/qdecimal/test/tc_subset/subtract0.decTest +++ /dev/null @@ -1,674 +0,0 @@ ------------------------------------------------------------------------- --- subtract0.decTest -- decimal subtraction (simplified) -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - --- [first group are 'quick confidence check'] -sub001 subtract 0 0 -> '0' -sub002 subtract 1 1 -> '0' -sub003 subtract 1 2 -> '-1' -sub004 subtract 2 1 -> '1' -sub005 subtract 2 2 -> '0' -sub006 subtract 3 2 -> '1' -sub007 subtract 2 3 -> '-1' - -sub011 subtract -0 0 -> '0' -sub012 subtract -1 1 -> '-2' -sub013 subtract -1 2 -> '-3' -sub014 subtract -2 1 -> '-3' -sub015 subtract -2 2 -> '-4' -sub016 subtract -3 2 -> '-5' -sub017 subtract -2 3 -> '-5' - -sub021 subtract 0 -0 -> '0' -sub022 subtract 1 -1 -> '2' -sub023 subtract 1 -2 -> '3' -sub024 subtract 2 -1 -> '3' -sub025 subtract 2 -2 -> '4' -sub026 subtract 3 -2 -> '5' -sub027 subtract 2 -3 -> '5' - -sub030 subtract 11 1 -> 10 -sub031 subtract 10 1 -> 9 -sub032 subtract 9 1 -> 8 -sub033 subtract 1 1 -> 0 -sub034 subtract 0 1 -> -1 -sub035 subtract -1 1 -> -2 -sub036 subtract -9 1 -> -10 -sub037 subtract -10 1 -> -11 -sub038 subtract -11 1 -> -12 - -sub040 subtract '5.75' '3.3' -> '2.45' -sub041 subtract '5' '-3' -> '8' -sub042 subtract '-5' '-3' -> '-2' -sub043 subtract '-7' '2.5' -> '-9.5' -sub044 subtract '0.7' '0.3' -> '0.4' -sub045 subtract '1.3' '0.3' -> '1.0' -sub046 subtract '1.25' '1.25' -> '0' - -sub050 subtract '1.23456789' '1.00000000' -> '0.23456789' -sub051 subtract '1.23456789' '1.00000089' -> '0.23456700' -sub052 subtract '0.5555555559' '0.0000000001' -> '0.555555556' Inexact Lost_digits Rounded -sub053 subtract '0.5555555559' '0.0000000005' -> '0.555555556' Inexact Lost_digits Rounded -sub054 subtract '0.4444444444' '0.1111111111' -> '0.333333333' Inexact Lost_digits Rounded -sub055 subtract '1.0000000000' '0.00000001' -> '0.99999999' Rounded -sub056 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Lost_digits Rounded -sub057 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Lost_digits Rounded - -sub060 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -sub061 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -sub062 subtract '7000' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -sub063 subtract '70000' '10000e+9' -> '-9.9999999E+12' Inexact Rounded -sub064 subtract '700000' '10000e+9' -> '-9.9999993E+12' Rounded - -- symmetry: -sub065 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded -sub066 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded -sub067 subtract '10000e+9' '7000' -> '1.00000000E+13' Inexact Rounded -sub068 subtract '10000e+9' '70000' -> '9.9999999E+12' Inexact Rounded -sub069 subtract '10000e+9' '700000' -> '9.9999993E+12' Rounded - - -- change precision -sub080 subtract '10000e+9' '70000' -> '9.9999999E+12' Inexact Rounded -precision: 6 -sub081 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded -precision: 9 - - -- some of the next group are really constructor tests -sub090 subtract '00.0' '0.0' -> '0' -sub091 subtract '00.0' '0.00' -> '0' -sub092 subtract '0.00' '00.0' -> '0' -sub093 subtract '00.0' '0.00' -> '0' -sub094 subtract '0.00' '00.0' -> '0' -sub095 subtract '3' '.3' -> '2.7' -sub096 subtract '3.' '.3' -> '2.7' -sub097 subtract '3.0' '.3' -> '2.7' -sub098 subtract '3.00' '.3' -> '2.70' -sub099 subtract '3' '3' -> '0' -sub100 subtract '3' '+3' -> '0' -sub101 subtract '3' '-3' -> '6' -sub102 subtract '3' '0.3' -> '2.7' -sub103 subtract '3.' '0.3' -> '2.7' -sub104 subtract '3.0' '0.3' -> '2.7' -sub105 subtract '3.00' '0.3' -> '2.70' -sub106 subtract '3' '3.0' -> '0' -sub107 subtract '3' '+3.0' -> '0' -sub108 subtract '3' '-3.0' -> '6.0' - --- the above all from add; massaged and extended. Now some new ones... --- [particularly important for comparisons] --- NB: -1E-7 below were non-exponents pre-ANSI X3-274 -sub120 subtract '10.23456784' '10.23456789' -> '-1E-7' Inexact Lost_digits Rounded -sub121 subtract '10.23456785' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub122 subtract '10.23456786' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub123 subtract '10.23456787' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub124 subtract '10.23456788' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub125 subtract '10.23456789' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub126 subtract '10.23456790' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub127 subtract '10.23456791' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub128 subtract '10.23456792' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub129 subtract '10.23456793' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub130 subtract '10.23456794' '10.23456789' -> 0 Inexact Lost_digits Rounded -sub131 subtract '10.23456781' '10.23456786' -> '-1E-7' Inexact Lost_digits Rounded -sub132 subtract '10.23456782' '10.23456786' -> '-1E-7' Inexact Lost_digits Rounded -sub133 subtract '10.23456783' '10.23456786' -> '-1E-7' Inexact Lost_digits Rounded -sub134 subtract '10.23456784' '10.23456786' -> '-1E-7' Inexact Lost_digits Rounded -sub135 subtract '10.23456785' '10.23456786' -> 0 Inexact Lost_digits Rounded -sub136 subtract '10.23456786' '10.23456786' -> 0 Inexact Lost_digits Rounded -sub137 subtract '10.23456787' '10.23456786' -> 0 Inexact Lost_digits Rounded -sub138 subtract '10.23456788' '10.23456786' -> 0 Inexact Lost_digits Rounded -sub139 subtract '10.23456789' '10.23456786' -> 0 Inexact Lost_digits Rounded -sub140 subtract '10.23456790' '10.23456786' -> 0 Inexact Lost_digits Rounded -sub141 subtract '10.23456791' '10.23456786' -> 0 Inexact Lost_digits Rounded -sub142 subtract '1' '0.999999999' -> 0 Inexact Rounded -sub143 subtract '0.999999999' '1' -> 0 Inexact Rounded - - -precision: 3 -sub150 subtract '12345678900000' '9999999999999' -> 2.3E+12 Inexact Lost_digits Rounded -sub151 subtract '9999999999999' '12345678900000' -> -2.3E+12 Inexact Lost_digits Rounded -precision: 6 -sub152 subtract '12345678900000' '9999999999999' -> 2.3457E+12 Inexact Lost_digits Rounded -sub153 subtract '9999999999999' '12345678900000' -> -2.3457E+12 Inexact Lost_digits Rounded -precision: 9 -sub154 subtract '12345678900000' '9999999999999' -> 2.3456789E+12 Inexact Lost_digits Rounded -sub155 subtract '9999999999999' '12345678900000' -> -2.3456789E+12 Inexact Lost_digits Rounded -precision: 12 -sub156 subtract '12345678900000' '9999999999999' -> 2.3456789000E+12 Inexact Lost_digits Rounded -sub157 subtract '9999999999999' '12345678900000' -> -2.3456789000E+12 Inexact Lost_digits Rounded -precision: 15 -sub158 subtract '12345678900000' '9999999999999' -> 2345678900001 -sub159 subtract '9999999999999' '12345678900000' -> -2345678900001 -precision: 9 - --- additional scaled arithmetic tests [0.97 problem] -sub160 subtract '0' '.1' -> '-0.1' -sub161 subtract '00' '.97983' -> '-0.97983' -sub162 subtract '0' '.9' -> '-0.9' -sub163 subtract '0' '0.102' -> '-0.102' -sub164 subtract '0' '.4' -> '-0.4' -sub165 subtract '0' '.307' -> '-0.307' -sub166 subtract '0' '.43822' -> '-0.43822' -sub167 subtract '0' '.911' -> '-0.911' -sub168 subtract '.0' '.02' -> '-0.02' -sub169 subtract '00' '.392' -> '-0.392' -sub170 subtract '0' '.26' -> '-0.26' -sub171 subtract '0' '0.51' -> '-0.51' -sub172 subtract '0' '.2234' -> '-0.2234' -sub173 subtract '0' '.2' -> '-0.2' -sub174 subtract '.0' '.0008' -> '-0.0008' --- 0. on left -sub180 subtract '0.0' '-.1' -> '0.1' -sub181 subtract '0.00' '-.97983' -> '0.97983' -sub182 subtract '0.0' '-.9' -> '0.9' -sub183 subtract '0.0' '-0.102' -> '0.102' -sub184 subtract '0.0' '-.4' -> '0.4' -sub185 subtract '0.0' '-.307' -> '0.307' -sub186 subtract '0.0' '-.43822' -> '0.43822' -sub187 subtract '0.0' '-.911' -> '0.911' -sub188 subtract '0.0' '-.02' -> '0.02' -sub189 subtract '0.00' '-.392' -> '0.392' -sub190 subtract '0.0' '-.26' -> '0.26' -sub191 subtract '0.0' '-0.51' -> '0.51' -sub192 subtract '0.0' '-.2234' -> '0.2234' -sub193 subtract '0.0' '-.2' -> '0.2' -sub194 subtract '0.0' '-.0008' -> '0.0008' --- negatives of same -sub200 subtract '0' '-.1' -> '0.1' -sub201 subtract '00' '-.97983' -> '0.97983' -sub202 subtract '0' '-.9' -> '0.9' -sub203 subtract '0' '-0.102' -> '0.102' -sub204 subtract '0' '-.4' -> '0.4' -sub205 subtract '0' '-.307' -> '0.307' -sub206 subtract '0' '-.43822' -> '0.43822' -sub207 subtract '0' '-.911' -> '0.911' -sub208 subtract '.0' '-.02' -> '0.02' -sub209 subtract '00' '-.392' -> '0.392' -sub210 subtract '0' '-.26' -> '0.26' -sub211 subtract '0' '-0.51' -> '0.51' -sub212 subtract '0' '-.2234' -> '0.2234' -sub213 subtract '0' '-.2' -> '0.2' -sub214 subtract '.0' '-.0008' -> '0.0008' - --- more fixed, LHS swaps [really the same as testcases under add] -sub220 subtract '-56267E-12' 0 -> '-5.6267E-8' -sub221 subtract '-56267E-11' 0 -> '-5.6267E-7' -sub222 subtract '-56267E-10' 0 -> '-0.0000056267' -sub223 subtract '-56267E-9' 0 -> '-0.000056267' -sub224 subtract '-56267E-8' 0 -> '-0.00056267' -sub225 subtract '-56267E-7' 0 -> '-0.0056267' -sub226 subtract '-56267E-6' 0 -> '-0.056267' -sub227 subtract '-56267E-5' 0 -> '-0.56267' -sub228 subtract '-56267E-2' 0 -> '-562.67' -sub229 subtract '-56267E-1' 0 -> '-5626.7' -sub230 subtract '-56267E-0' 0 -> '-56267' --- symmetry ... -sub240 subtract 0 '-56267E-12' -> '5.6267E-8' -sub241 subtract 0 '-56267E-11' -> '5.6267E-7' -sub242 subtract 0 '-56267E-10' -> '0.0000056267' -sub243 subtract 0 '-56267E-9' -> '0.000056267' -sub244 subtract 0 '-56267E-8' -> '0.00056267' -sub245 subtract 0 '-56267E-7' -> '0.0056267' -sub246 subtract 0 '-56267E-6' -> '0.056267' -sub247 subtract 0 '-56267E-5' -> '0.56267' -sub248 subtract 0 '-56267E-2' -> '562.67' -sub249 subtract 0 '-56267E-1' -> '5626.7' -sub250 subtract 0 '-56267E-0' -> '56267' - --- now some more from the 'new' add -precision: 9 -sub301 subtract '1.23456789' '1.00000000' -> '0.23456789' -sub302 subtract '1.23456789' '1.00000011' -> '0.23456778' - -sub311 subtract '0.4444444444' '0.5555555555' -> '-0.111111112' Inexact Lost_digits Rounded -sub312 subtract '0.4444444440' '0.5555555555' -> '-0.111111112' Inexact Lost_digits Rounded -sub313 subtract '0.4444444444' '0.5555555550' -> '-0.111111111' Inexact Lost_digits Rounded -sub314 subtract '0.44444444449' '0' -> '0.444444444' Inexact Lost_digits Rounded -sub315 subtract '0.444444444499' '0' -> '0.444444444' Inexact Lost_digits Rounded -sub316 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Lost_digits Rounded -sub317 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Lost_digits Rounded -sub318 subtract '0.4444444445001' '0' -> '0.444444445' Inexact Lost_digits Rounded -sub319 subtract '0.444444444501' '0' -> '0.444444445' Inexact Lost_digits Rounded -sub320 subtract '0.44444444451' '0' -> '0.444444445' Inexact Lost_digits Rounded - --- some carrying effects -sub321 subtract '0.9998' '0.0000' -> '0.9998' -sub322 subtract '0.9998' '0.0001' -> '0.9997' -sub323 subtract '0.9998' '0.0002' -> '0.9996' -sub324 subtract '0.9998' '0.0003' -> '0.9995' -sub325 subtract '0.9998' '-0.0000' -> '0.9998' -sub326 subtract '0.9998' '-0.0001' -> '0.9999' -sub327 subtract '0.9998' '-0.0002' -> '1.0000' -sub328 subtract '0.9998' '-0.0003' -> '1.0001' - -sub330 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -sub331 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -sub332 subtract '7000' '10000e+9' -> '-1.00000000E+13' Inexact Rounded -sub333 subtract '70000' '10000e+9' -> '-9.9999999E+12' Inexact Rounded -sub334 subtract '700000' '10000e+9' -> '-9.9999993E+12' Rounded -sub335 subtract '7000000' '10000e+9' -> '-9.9999930E+12' Rounded --- symmetry: -sub340 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded -sub341 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded -sub342 subtract '10000e+9' '7000' -> '1.00000000E+13' Inexact Rounded -sub343 subtract '10000e+9' '70000' -> '9.9999999E+12' Inexact Rounded -sub344 subtract '10000e+9' '700000' -> '9.9999993E+12' Rounded -sub345 subtract '10000e+9' '7000000' -> '9.9999930E+12' Rounded - --- same, higher precision -precision: 15 -sub346 subtract '10000e+9' '7' -> '9999999999993' -sub347 subtract '10000e+9' '70' -> '9999999999930' -sub348 subtract '10000e+9' '700' -> '9999999999300' -sub349 subtract '10000e+9' '7000' -> '9999999993000' -sub350 subtract '10000e+9' '70000' -> '9999999930000' -sub351 subtract '10000e+9' '700000' -> '9999999300000' -sub352 subtract '7' '10000e+9' -> '-9999999999993' -sub353 subtract '70' '10000e+9' -> '-9999999999930' -sub354 subtract '700' '10000e+9' -> '-9999999999300' -sub355 subtract '7000' '10000e+9' -> '-9999999993000' -sub356 subtract '70000' '10000e+9' -> '-9999999930000' -sub357 subtract '700000' '10000e+9' -> '-9999999300000' - --- zero preservation -precision: 6 -sub360 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded -sub361 subtract 1 '0.0001' -> '0.9999' -sub362 subtract 1 '0.00001' -> '0.99999' -sub363 subtract 1 '0.000001' -> '1.00000' Inexact Rounded -sub364 subtract 1 '0.0000001' -> '1.00000' Inexact Rounded -sub365 subtract 1 '0.00000001' -> '1.00000' Inexact Rounded - --- some funny zeros [in case of bad signum] -sub370 subtract 1 0 -> 1 -sub371 subtract 1 0. -> 1 -sub372 subtract 1 .0 -> 1 -sub373 subtract 1 0.0 -> 1 -sub374 subtract 0 1 -> -1 -sub375 subtract 0. 1 -> -1 -sub376 subtract .0 1 -> -1 -sub377 subtract 0.0 1 -> -1 - -precision: 9 - --- leading 0 digit before round -sub910 subtract -103519362 -51897955.3 -> -51621407 Inexact Rounded -sub911 subtract 159579.444 89827.5229 -> 69751.921 Inexact Rounded - -sub920 subtract 333.123456 33.1234566 -> 299.999999 Inexact Rounded -sub921 subtract 333.123456 33.1234565 -> 300.000000 Inexact Rounded -sub922 subtract 133.123456 33.1234565 -> 100.000000 Inexact Rounded -sub923 subtract 133.123456 33.1234564 -> 100.000000 Inexact Rounded -sub924 subtract 133.123456 33.1234540 -> 100.000002 Rounded -sub925 subtract 133.123456 43.1234560 -> 90.000000 Rounded -sub926 subtract 133.123456 43.1234561 -> 90.000000 Inexact Rounded -sub927 subtract 133.123456 43.1234566 -> 89.999999 Inexact Rounded -sub928 subtract 101.123456 91.1234566 -> 9.999999 Inexact Rounded -sub929 subtract 101.123456 99.1234566 -> 1.999999 Inexact Rounded - --- more of the same; probe for cluster boundary problems -precision: 1 -sub930 subtract 11 2 -> 1E+1 Inexact Lost_digits Rounded -precision: 2 -sub932 subtract 101 2 -> 1.0E+2 Inexact Lost_digits Rounded -precision: 3 -sub934 subtract 101 2.1 -> 99 Inexact Rounded -sub935 subtract 101 92.01 -> 9 Inexact Lost_digits Rounded -precision: 4 -sub936 subtract 101 2.01 -> 99.0 Inexact Rounded -sub937 subtract 101 92.01 -> 9.0 Inexact Rounded -precision: 5 -sub938 subtract 101 2.001 -> 99.00 Inexact Rounded -sub939 subtract 101 92.001 -> 9.00 Inexact Rounded -precision: 6 -sub940 subtract 101 2.0001 -> 99.000 Inexact Rounded -sub941 subtract 101 92.0001 -> 9.000 Inexact Rounded -precision: 7 -sub942 subtract 101 2.00001 -> 99.0000 Inexact Rounded -sub943 subtract 101 92.00001 -> 9.0000 Inexact Rounded -precision: 8 -sub944 subtract 101 2.000001 -> 99.00000 Inexact Rounded -sub945 subtract 101 92.000001 -> 9.00000 Inexact Rounded -precision: 9 -sub946 subtract 101 2.0000001 -> 99.000000 Inexact Rounded -sub947 subtract 101 92.0000001 -> 9.000000 Inexact Rounded - -precision: 9 - --- more LHS swaps [were fixed] -sub390 subtract '-56267E-10' 0 -> '-0.0000056267' -sub391 subtract '-56267E-6' 0 -> '-0.056267' -sub392 subtract '-56267E-5' 0 -> '-0.56267' -sub393 subtract '-56267E-4' 0 -> '-5.6267' -sub394 subtract '-56267E-3' 0 -> '-56.267' -sub395 subtract '-56267E-2' 0 -> '-562.67' -sub396 subtract '-56267E-1' 0 -> '-5626.7' -sub397 subtract '-56267E-0' 0 -> '-56267' -sub398 subtract '-5E-10' 0 -> '-5E-10' -sub399 subtract '-5E-7' 0 -> '-5E-7' -sub400 subtract '-5E-6' 0 -> '-0.000005' -sub401 subtract '-5E-5' 0 -> '-0.00005' -sub402 subtract '-5E-4' 0 -> '-0.0005' -sub403 subtract '-5E-1' 0 -> '-0.5' -sub404 subtract '-5E0' 0 -> '-5' -sub405 subtract '-5E1' 0 -> '-50' -sub406 subtract '-5E5' 0 -> '-500000' -sub407 subtract '-5E8' 0 -> '-500000000' -sub408 subtract '-5E9' 0 -> '-5E+9' -sub409 subtract '-5E10' 0 -> '-5E+10' -sub410 subtract '-5E11' 0 -> '-5E+11' -sub411 subtract '-5E100' 0 -> '-5E+100' - --- more RHS swaps [were fixed] -sub420 subtract 0 '-56267E-10' -> '0.0000056267' -sub421 subtract 0 '-56267E-6' -> '0.056267' -sub422 subtract 0 '-56267E-5' -> '0.56267' -sub423 subtract 0 '-56267E-4' -> '5.6267' -sub424 subtract 0 '-56267E-3' -> '56.267' -sub425 subtract 0 '-56267E-2' -> '562.67' -sub426 subtract 0 '-56267E-1' -> '5626.7' -sub427 subtract 0 '-56267E-0' -> '56267' -sub428 subtract 0 '-5E-10' -> '5E-10' -sub429 subtract 0 '-5E-7' -> '5E-7' -sub430 subtract 0 '-5E-6' -> '0.000005' -sub431 subtract 0 '-5E-5' -> '0.00005' -sub432 subtract 0 '-5E-4' -> '0.0005' -sub433 subtract 0 '-5E-1' -> '0.5' -sub434 subtract 0 '-5E0' -> '5' -sub435 subtract 0 '-5E1' -> '50' -sub436 subtract 0 '-5E5' -> '500000' -sub437 subtract 0 '-5E8' -> '500000000' -sub438 subtract 0 '-5E9' -> '5E+9' -sub439 subtract 0 '-5E10' -> '5E+10' -sub440 subtract 0 '-5E11' -> '5E+11' -sub441 subtract 0 '-5E100' -> '5E+100' - - --- try borderline precision, with carries, etc. -precision: 15 -sub461 subtract '1E+12' '1' -> '999999999999' -sub462 subtract '1E+12' '-1.11' -> '1000000000001.11' -sub463 subtract '1.11' '-1E+12' -> '1000000000001.11' -sub464 subtract '-1' '-1E+12' -> '999999999999' -sub465 subtract '7E+12' '1' -> '6999999999999' -sub466 subtract '7E+12' '-1.11' -> '7000000000001.11' -sub467 subtract '1.11' '-7E+12' -> '7000000000001.11' -sub468 subtract '-1' '-7E+12' -> '6999999999999' - --- 123456789012345 123456789012345 1 23456789012345 -sub470 subtract '0.444444444444444' '-0.555555555555563' -> '1.00000000000001' Inexact Rounded -sub471 subtract '0.444444444444444' '-0.555555555555562' -> '1.00000000000001' Inexact Rounded -sub472 subtract '0.444444444444444' '-0.555555555555561' -> '1.00000000000001' Inexact Rounded -sub473 subtract '0.444444444444444' '-0.555555555555560' -> '1.00000000000000' Inexact Rounded -sub474 subtract '0.444444444444444' '-0.555555555555559' -> '1.00000000000000' Inexact Rounded -sub475 subtract '0.444444444444444' '-0.555555555555558' -> '1.00000000000000' Inexact Rounded -sub476 subtract '0.444444444444444' '-0.555555555555557' -> '1.00000000000000' Inexact Rounded -sub477 subtract '0.444444444444444' '-0.555555555555556' -> '1.00000000000000' Rounded -sub478 subtract '0.444444444444444' '-0.555555555555555' -> '0.999999999999999' -sub479 subtract '0.444444444444444' '-0.555555555555554' -> '0.999999999999998' -sub480 subtract '0.444444444444444' '-0.555555555555553' -> '0.999999999999997' -sub481 subtract '0.444444444444444' '-0.555555555555552' -> '0.999999999999996' -sub482 subtract '0.444444444444444' '-0.555555555555551' -> '0.999999999999995' -sub483 subtract '0.444444444444444' '-0.555555555555550' -> '0.999999999999994' - --- and some more, including residue effects and different roundings -precision: 9 -rounding: half_up -sub500 subtract '123456789' 0 -> '123456789' -sub501 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded -sub502 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded -sub503 subtract '123456789' 0.1 -> '123456789' Inexact Rounded -sub504 subtract '123456789' 0.4 -> '123456789' Inexact Rounded -sub505 subtract '123456789' 0.49 -> '123456789' Inexact Rounded -sub506 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded -sub507 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded -sub508 subtract '123456789' 0.5 -> '123456789' Inexact Rounded -sub509 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded -sub510 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded -sub511 subtract '123456789' 0.51 -> '123456788' Inexact Rounded -sub512 subtract '123456789' 0.6 -> '123456788' Inexact Rounded -sub513 subtract '123456789' 0.9 -> '123456788' Inexact Rounded -sub514 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded -sub515 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded -sub516 subtract '123456789' 1 -> '123456788' -sub517 subtract '123456789' 1.000000001 -> '123456788' Inexact Lost_digits Rounded -sub518 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded -sub519 subtract '123456789' 1.1 -> '123456788' Inexact Rounded - -rounding: half_even -sub520 subtract '123456789' 0 -> '123456789' -sub521 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded -sub522 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded -sub523 subtract '123456789' 0.1 -> '123456789' Inexact Rounded -sub524 subtract '123456789' 0.4 -> '123456789' Inexact Rounded -sub525 subtract '123456789' 0.49 -> '123456789' Inexact Rounded -sub526 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded -sub527 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded -sub528 subtract '123456789' 0.5 -> '123456788' Inexact Rounded -sub529 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded -sub530 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded -sub531 subtract '123456789' 0.51 -> '123456788' Inexact Rounded -sub532 subtract '123456789' 0.6 -> '123456788' Inexact Rounded -sub533 subtract '123456789' 0.9 -> '123456788' Inexact Rounded -sub534 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded -sub535 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded -sub536 subtract '123456789' 1 -> '123456788' -sub537 subtract '123456789' 1.00000001 -> '123456788' Inexact Rounded -sub538 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded -sub539 subtract '123456789' 1.1 -> '123456788' Inexact Rounded --- critical few with even bottom digit... -sub540 subtract '123456788' 0.499999999 -> '123456788' Inexact Rounded -sub541 subtract '123456788' 0.5 -> '123456788' Inexact Rounded -sub542 subtract '123456788' 0.500000001 -> '123456787' Inexact Rounded - -rounding: down -sub550 subtract '123456789' 0 -> '123456789' -sub551 subtract '123456789' 0.000000001 -> '123456788' Inexact Rounded -sub552 subtract '123456789' 0.000001 -> '123456788' Inexact Rounded -sub553 subtract '123456789' 0.1 -> '123456788' Inexact Rounded -sub554 subtract '123456789' 0.4 -> '123456788' Inexact Rounded -sub555 subtract '123456789' 0.49 -> '123456788' Inexact Rounded -sub556 subtract '123456789' 0.499999 -> '123456788' Inexact Rounded -sub557 subtract '123456789' 0.499999999 -> '123456788' Inexact Rounded -sub558 subtract '123456789' 0.5 -> '123456788' Inexact Rounded -sub559 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded -sub560 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded -sub561 subtract '123456789' 0.51 -> '123456788' Inexact Rounded -sub562 subtract '123456789' 0.6 -> '123456788' Inexact Rounded -sub563 subtract '123456789' 0.9 -> '123456788' Inexact Rounded -sub564 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded -sub565 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded -sub566 subtract '123456789' 1 -> '123456788' -sub567 subtract '123456789' 1.00000001 -> '123456787' Inexact Rounded -sub568 subtract '123456789' 1.00001 -> '123456787' Inexact Rounded -sub569 subtract '123456789' 1.1 -> '123456787' Inexact Rounded - --- symmetry... -rounding: half_up -sub600 subtract 0 '123456789' -> '-123456789' -sub601 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded -sub602 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded -sub603 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded -sub604 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded -sub605 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded -sub606 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded -sub607 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded -sub608 subtract 0.5 '123456789' -> '-123456789' Inexact Rounded -sub609 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded -sub610 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded -sub611 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded -sub612 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded -sub613 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded -sub614 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded -sub615 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded -sub616 subtract 1 '123456789' -> '-123456788' -sub617 subtract 1.000000001 '123456789' -> '-123456788' Inexact Lost_digits Rounded -sub618 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded -sub619 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded - -rounding: half_even -sub620 subtract 0 '123456789' -> '-123456789' -sub621 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded -sub622 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded -sub623 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded -sub624 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded -sub625 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded -sub626 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded -sub627 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded -sub628 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded -sub629 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded -sub630 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded -sub631 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded -sub632 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded -sub633 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded -sub634 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded -sub635 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded -sub636 subtract 1 '123456789' -> '-123456788' -sub637 subtract 1.00000001 '123456789' -> '-123456788' Inexact Rounded -sub638 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded -sub639 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded --- critical few with even bottom digit... -sub640 subtract 0.499999999 '123456788' -> '-123456788' Inexact Rounded -sub641 subtract 0.5 '123456788' -> '-123456788' Inexact Rounded -sub642 subtract 0.500000001 '123456788' -> '-123456787' Inexact Rounded - -rounding: down -sub650 subtract 0 '123456789' -> '-123456789' -sub651 subtract 0.000000001 '123456789' -> '-123456788' Inexact Rounded -sub652 subtract 0.000001 '123456789' -> '-123456788' Inexact Rounded -sub653 subtract 0.1 '123456789' -> '-123456788' Inexact Rounded -sub654 subtract 0.4 '123456789' -> '-123456788' Inexact Rounded -sub655 subtract 0.49 '123456789' -> '-123456788' Inexact Rounded -sub656 subtract 0.499999 '123456789' -> '-123456788' Inexact Rounded -sub657 subtract 0.499999999 '123456789' -> '-123456788' Inexact Rounded -sub658 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded -sub659 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded -sub660 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded -sub661 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded -sub662 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded -sub663 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded -sub664 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded -sub665 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded -sub666 subtract 1 '123456789' -> '-123456788' -sub667 subtract 1.00000001 '123456789' -> '-123456787' Inexact Rounded -sub668 subtract 1.00001 '123456789' -> '-123456787' Inexact Rounded -sub669 subtract 1.1 '123456789' -> '-123456787' Inexact Rounded - --- lots of leading zeros in intermediate result, and showing effects of --- input rounding -precision: 9 -rounding: half_up -sub670 subtract '123456789' '123456788.1' -> 1 Inexact Lost_digits Rounded -sub671 subtract '123456789' '123456788.9' -> 0 Inexact Lost_digits Rounded -sub672 subtract '123456789' '123456789.1' -> 0 Inexact Lost_digits Rounded -sub673 subtract '123456789' '123456789.5' -> -1 Inexact Lost_digits Rounded -sub674 subtract '123456789' '123456789.9' -> -1 Inexact Lost_digits Rounded - -rounding: half_even -sub680 subtract '123456789' '123456788.1' -> 1 Inexact Lost_digits Rounded -sub681 subtract '123456789' '123456788.9' -> 0 Inexact Lost_digits Rounded -sub682 subtract '123456789' '123456789.1' -> 0 Inexact Lost_digits Rounded -sub683 subtract '123456789' '123456789.5' -> -1 Inexact Lost_digits Rounded -sub684 subtract '123456789' '123456789.9' -> -1 Inexact Lost_digits Rounded - -sub685 subtract '123456788' '123456787.1' -> 1 Inexact Lost_digits Rounded -sub686 subtract '123456788' '123456787.9' -> 0 Inexact Lost_digits Rounded -sub687 subtract '123456788' '123456788.1' -> 0 Inexact Lost_digits Rounded -sub688 subtract '123456788' '123456788.5' -> 0 Inexact Lost_digits Rounded -sub689 subtract '123456788' '123456788.9' -> -1 Inexact Lost_digits Rounded - -rounding: down -sub690 subtract '123456789' '123456788.1' -> 1 Inexact Lost_digits Rounded -sub691 subtract '123456789' '123456788.9' -> 1 Inexact Lost_digits Rounded -sub692 subtract '123456789' '123456789.1' -> 0 Inexact Lost_digits Rounded -sub693 subtract '123456789' '123456789.5' -> 0 Inexact Lost_digits Rounded -sub694 subtract '123456789' '123456789.9' -> 0 Inexact Lost_digits Rounded - - --- input preparation tests -rounding: half_up -precision: 3 - -sub700 subtract '12345678900000' -9999999999999 -> '2.23E+13' Inexact Lost_digits Rounded -sub701 subtract '9999999999999' -12345678900000 -> '2.23E+13' Inexact Lost_digits Rounded -sub702 subtract '12E+3' '-3456' -> '1.55E+4' Inexact Lost_digits Rounded --- next was 1.54E+4 under old [truncate to digits+1] rules -sub703 subtract '12E+3' '-3446' -> '1.55E+4' Inexact Lost_digits Rounded -sub704 subtract '12E+3' '-3454' -> '1.55E+4' Inexact Lost_digits Rounded -sub705 subtract '12E+3' '-3444' -> '1.54E+4' Inexact Lost_digits Rounded - -sub706 subtract '3456' '-12E+3' -> '1.55E+4' Inexact Lost_digits Rounded --- next was 1.54E+4 under old [truncate to digits+1] rules -sub707 subtract '3446' '-12E+3' -> '1.55E+4' Inexact Lost_digits Rounded -sub708 subtract '3454' '-12E+3' -> '1.55E+4' Inexact Lost_digits Rounded -sub709 subtract '3444' '-12E+3' -> '1.54E+4' Inexact Lost_digits Rounded - --- overflow and underflow tests -maxexponent: 999999999 -minexponent: -999999999 -sub730 subtract 1E+999999999 -9E+999999999 -> ? Overflow Inexact Rounded -sub731 subtract 9E+999999999 -1E+999999999 -> ? Overflow Inexact Rounded -sub732 subtract -1.1E-999999999 -1E-999999999 -> ? Underflow Subnormal Inexact Rounded -sub733 subtract 1E-999999999 1.1e-999999999 -> ? Underflow Subnormal Inexact Rounded -sub734 subtract -1E+999999999 9E+999999999 -> ? Overflow Inexact Rounded -sub735 subtract -9E+999999999 1E+999999999 -> ? Overflow Inexact Rounded -sub736 subtract +1.1E-999999999 1E-999999999 -> ? Underflow Subnormal Inexact Rounded -sub737 subtract -1E-999999999 -1.1e-999999999 -> ? Underflow Subnormal Inexact Rounded - --- lostDigits checks -maxexponent: 999 -minexponent: -999 -precision: 9 -sub801 subtract 12345678000 0 -> 1.23456780E+10 Rounded -sub802 subtract 0 12345678000 -> -1.23456780E+10 Rounded -sub803 subtract 1234567800 0 -> 1.23456780E+9 Rounded -sub804 subtract 0 1234567800 -> -1.23456780E+9 Rounded -sub805 subtract 1234567890 0 -> 1.23456789E+9 Rounded -sub806 subtract 0 1234567890 -> -1.23456789E+9 Rounded -sub807 subtract 1234567891 0 -> 1.23456789E+9 Inexact Lost_digits Rounded -sub808 subtract 0 1234567891 -> -1.23456789E+9 Inexact Lost_digits Rounded -sub809 subtract 12345678901 0 -> 1.23456789E+10 Inexact Lost_digits Rounded -sub810 subtract 0 12345678901 -> -1.23456789E+10 Inexact Lost_digits Rounded -sub811 subtract 1234567896 0 -> 1.23456790E+9 Inexact Lost_digits Rounded -sub812 subtract 0 1234567896 -> -1.23456790E+9 Inexact Lost_digits Rounded - -precision: 15 --- still checking for [no] lostDigits -sub841 subtract 12345678000 0 -> 12345678000 -sub842 subtract 0 12345678000 -> -12345678000 -sub843 subtract 1234567800 0 -> 1234567800 -sub844 subtract 0 1234567800 -> -1234567800 -sub845 subtract 1234567890 0 -> 1234567890 -sub846 subtract 0 1234567890 -> -1234567890 -sub847 subtract 1234567891 0 -> 1234567891 -sub848 subtract 0 1234567891 -> -1234567891 -sub849 subtract 12345678901 0 -> 12345678901 -sub850 subtract 0 12345678901 -> -12345678901 -sub851 subtract 1234567896 0 -> 1234567896 -sub852 subtract 0 1234567896 -> -1234567896 - --- Null tests -sub900 subtract 10 # -> ? Invalid_operation -sub901 subtract # 10 -> ? Invalid_operation - diff --git a/qdecimal/test/tc_subset/testall0.decTest b/qdecimal/test/tc_subset/testall0.decTest deleted file mode 100644 index 41bab31..0000000 --- a/qdecimal/test/tc_subset/testall0.decTest +++ /dev/null @@ -1,55 +0,0 @@ ------------------------------------------------------------------------- --- testall0.decTest -- run all subset decimal arithmetic testcases -- --- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- subset arithmetic tests (using Extended: 0) --------------------- -dectest: base0 -dectest: abs0 -dectest: add0 -dectest: compare0 -dectest: comparetotal0 -dectest: divide0 -dectest: divideint0 -dectest: exp0 -dectest: fma0 -dectest: inexact0 -dectest: ln0 -dectest: log100 -dectest: max0 -dectest: min0 -dectest: minus0 -dectest: multiply0 -dectest: plus0 -dectest: power0 -dectest: quantize0 -dectest: randoms0 -dectest: reduce0 -dectest: remainder0 -dectest: remaindernear0 -dectest: rescale0 -- [obsolete] -dectest: rounding0 -dectest: samequantum0 -dectest: squareroot0 -dectest: subtract0 -dectest: tointegral0 -dectest: trim0 - --- General 31->33-digit boundary tests -dectest: randombound320 diff --git a/qdecimal/test/tc_subset/tointegral0.decTest b/qdecimal/test/tc_subset/tointegral0.decTest deleted file mode 100644 index 5482d9e..0000000 --- a/qdecimal/test/tc_subset/tointegral0.decTest +++ /dev/null @@ -1,110 +0,0 @@ ------------------------------------------------------------------------- --- tointegral0.decTest -- round decimal to integral value -- --- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - --- This set of tests tests the extended specification 'round-to-integral --- value' operation (from IEEE 854, later modified in 754r). --- All non-zero results are defined as being those from either copy or --- quantize, so those are assumed to have been tested. --- Note that 754r requires that Inexact not be set, and we similarly --- assume Rounded is not set. - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -int001 tointegral 0 -> 0 -int002 tointegral 0.0 -> 0 -int003 tointegral 0.1 -> 0 -int004 tointegral 0.2 -> 0 -int005 tointegral 0.3 -> 0 -int006 tointegral 0.4 -> 0 -int007 tointegral 0.5 -> 1 -int008 tointegral 0.6 -> 1 -int009 tointegral 0.7 -> 1 -int010 tointegral 0.8 -> 1 -int011 tointegral 0.9 -> 1 -int012 tointegral 1 -> 1 -int013 tointegral 1.0 -> 1 -int014 tointegral 1.1 -> 1 -int015 tointegral 1.2 -> 1 -int016 tointegral 1.3 -> 1 -int017 tointegral 1.4 -> 1 -int018 tointegral 1.5 -> 2 -int019 tointegral 1.6 -> 2 -int020 tointegral 1.7 -> 2 -int021 tointegral 1.8 -> 2 -int022 tointegral 1.9 -> 2 --- negatives -int031 tointegral -0 -> 0 -int032 tointegral -0.0 -> 0 -int033 tointegral -0.1 -> 0 -int034 tointegral -0.2 -> 0 -int035 tointegral -0.3 -> 0 -int036 tointegral -0.4 -> 0 -int037 tointegral -0.5 -> -1 -int038 tointegral -0.6 -> -1 -int039 tointegral -0.7 -> -1 -int040 tointegral -0.8 -> -1 -int041 tointegral -0.9 -> -1 -int042 tointegral -1 -> -1 -int043 tointegral -1.0 -> -1 -int044 tointegral -1.1 -> -1 -int045 tointegral -1.2 -> -1 -int046 tointegral -1.3 -> -1 -int047 tointegral -1.4 -> -1 -int048 tointegral -1.5 -> -2 -int049 tointegral -1.6 -> -2 -int050 tointegral -1.7 -> -2 -int051 tointegral -1.8 -> -2 -int052 tointegral -1.9 -> -2 - --- numbers around precision -precision: 9 -int060 tointegral '56267E-10' -> '0' -int061 tointegral '56267E-5' -> '1' -int062 tointegral '56267E-2' -> '563' -int063 tointegral '56267E-1' -> '5627' -int065 tointegral '56267E-0' -> '56267' -int066 tointegral '56267E+0' -> '56267' -int067 tointegral '56267E+1' -> '5.6267E+5' -int068 tointegral '56267E+2' -> '5.6267E+6' -int069 tointegral '56267E+3' -> '5.6267E+7' -int070 tointegral '56267E+4' -> '5.6267E+8' -int071 tointegral '56267E+5' -> '5.6267E+9' -int072 tointegral '56267E+6' -> '5.6267E+10' -int073 tointegral '56267E+995' -> '5.6267E+999' - -int080 tointegral '-56267E-10' -> '0' -int081 tointegral '-56267E-5' -> '-1' -int082 tointegral '-56267E-2' -> '-563' -int083 tointegral '-56267E-1' -> '-5627' -int085 tointegral '-56267E-0' -> '-56267' -int086 tointegral '-56267E+0' -> '-56267' -int087 tointegral '-56267E+1' -> '-5.6267E+5' -int088 tointegral '-56267E+2' -> '-5.6267E+6' -int089 tointegral '-56267E+3' -> '-5.6267E+7' -int090 tointegral '-56267E+4' -> '-5.6267E+8' -int091 tointegral '-56267E+5' -> '-5.6267E+9' -int092 tointegral '-56267E+6' -> '-5.6267E+10' -int093 tointegral '-56267E+995' -> '-5.6267E+999' - diff --git a/qdecimal/test/tc_subset/trim0.decTest b/qdecimal/test/tc_subset/trim0.decTest deleted file mode 100644 index 3f85ff1..0000000 --- a/qdecimal/test/tc_subset/trim0.decTest +++ /dev/null @@ -1,132 +0,0 @@ ------------------------------------------------------------------------- --- trim0.decTest -- remove insignificant trailing zeros (simplified) -- --- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------- --- Please see the document "General Decimal Arithmetic Testcases" -- --- at http://www2.hursley.ibm.com/decimal for the description of -- --- these testcases. -- --- -- --- These testcases are experimental ('beta' versions), and they -- --- may contain errors. They are offered on an as-is basis. In -- --- particular, achieving the same results as the tests here is not -- --- a guarantee that an implementation complies with any Standard -- --- or specification. The tests are not exhaustive. -- --- -- --- Please send comments, suggestions, and corrections to the author: -- --- Mike Cowlishaw, IBM Fellow -- --- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- --- mfc@uk.ibm.com -- ------------------------------------------------------------------------- -version: 2.58 - -extended: 0 -precision: 9 -rounding: half_up -maxExponent: 999 -minexponent: -999 - -trm001 trim '1' -> '1' -trm002 trim '-1' -> '-1' -trm003 trim '1.00' -> '1' -trm004 trim '-1.00' -> '-1' -trm005 trim '0' -> '0' -trm006 trim '0.00' -> '0' -trm007 trim '00.0' -> '0' -trm008 trim '00.00' -> '0' -trm009 trim '00' -> '0' - -trm010 trim '-2' -> '-2' -trm011 trim '2' -> '2' -trm012 trim '-2.00' -> '-2' -trm013 trim '2.00' -> '2' -trm014 trim '-0' -> '0' -trm015 trim '-0.00' -> '0' -trm016 trim '-00.0' -> '0' -trm017 trim '-00.00' -> '0' -trm018 trim '-00' -> '0' -trm019 trim '0E+5' -> '0' -trm020 trim '-0E+1' -> '0' - -trm030 trim '+0.1' -> '0.1' -trm031 trim '-0.1' -> '-0.1' -trm032 trim '+0.01' -> '0.01' -trm033 trim '-0.01' -> '-0.01' -trm034 trim '+0.001' -> '0.001' -trm035 trim '-0.001' -> '-0.001' -trm036 trim '+0.000001' -> '0.000001' -trm037 trim '-0.000001' -> '-0.000001' -trm038 trim '+0.000000000001' -> '1E-12' -trm039 trim '-0.000000000001' -> '-1E-12' - -trm041 trim 1.1 -> 1.1 -trm042 trim 1.10 -> 1.1 -trm043 trim 1.100 -> 1.1 -trm044 trim 1.110 -> 1.11 -trm045 trim -1.1 -> -1.1 -trm046 trim -1.10 -> -1.1 -trm047 trim -1.100 -> -1.1 -trm048 trim -1.110 -> -1.11 -trm049 trim 9.9 -> 9.9 -trm050 trim 9.90 -> 9.9 -trm051 trim 9.900 -> 9.9 -trm052 trim 9.990 -> 9.99 -trm053 trim -9.9 -> -9.9 -trm054 trim -9.90 -> -9.9 -trm055 trim -9.900 -> -9.9 -trm056 trim -9.990 -> -9.99 - --- some insignificant trailing fractional zeros -trm060 trim 10.0 -> 10 -trm061 trim 10.00 -> 10 -trm062 trim 100.0 -> 100 -trm063 trim 100.00 -> 100 -trm064 trim 1.1000E+3 -> 1100 -trm065 trim 1.10000E+3 -> 1100 -trm066 trim -10.0 -> -10 -trm067 trim -10.00 -> -10 -trm068 trim -100.0 -> -100 -trm069 trim -100.00 -> -100 -trm070 trim -1.1000E+3 -> -1100 -trm071 trim -1.10000E+3 -> -1100 - --- some insignificant trailing zeros with positive exponent -trm080 trim 10E+1 -> 1E+2 -trm081 trim 100E+1 -> 1E+3 -trm082 trim 1.0E+2 -> 1E+2 -trm083 trim 1.0E+3 -> 1E+3 -trm084 trim 1.1E+3 -> 1.1E+3 -trm085 trim 1.00E+3 -> 1E+3 -trm086 trim 1.10E+3 -> 1.1E+3 -trm087 trim -10E+1 -> -1E+2 -trm088 trim -100E+1 -> -1E+3 -trm089 trim -1.0E+2 -> -1E+2 -trm090 trim -1.0E+3 -> -1E+3 -trm091 trim -1.1E+3 -> -1.1E+3 -trm092 trim -1.00E+3 -> -1E+3 -trm093 trim -1.10E+3 -> -1.1E+3 - --- some significant trailing zeros -trm100 trim 11 -> 11 -trm101 trim 10 -> 10 -trm102 trim 10. -> 10 -trm103 trim 1.1E+1 -> 11 -trm104 trim 1.0E+1 -> 10 -trm105 trim 1.10E+2 -> 110 -trm106 trim 1.00E+2 -> 100 -trm107 trim 1.100E+3 -> 1100 -trm108 trim 1.000E+3 -> 1000 -trm109 trim 1.000000E+6 -> 1000000 -trm110 trim -11 -> -11 -trm111 trim -10 -> -10 -trm112 trim -10. -> -10 -trm113 trim -1.1E+1 -> -11 -trm114 trim -1.0E+1 -> -10 -trm115 trim -1.10E+2 -> -110 -trm116 trim -1.00E+2 -> -100 -trm117 trim -1.100E+3 -> -1100 -trm118 trim -1.000E+3 -> -1000 -trm119 trim -1.000000E+6 -> -1000000 - --- Null test -trm400 trim # -> ? Invalid_operation - diff --git a/qdecimal/test/test.pro b/qdecimal/test/test.pro deleted file mode 100644 index 39b9971..0000000 --- a/qdecimal/test/test.pro +++ /dev/null @@ -1,18 +0,0 @@ -# -# -# -include(../common.pri) - -QT -= gui -TEMPLATE = app -QT += testlib - -TARGET = qdecimal_test -DESTDIR = ../bin -DEPENDPATH += . -INCLUDEPATH += ../decnumber ../src -LIBS += -L../lib -lqdecimal -ldecnumber - -# Input -HEADERS += QDecNumberTests.hh -SOURCES += QDecNumberTests.cc Main.cc diff --git a/services/accserviceform.cpp b/services/accserviceform.cpp index cc9ab39..34dfae9 100644 --- a/services/accserviceform.cpp +++ b/services/accserviceform.cpp @@ -15,7 +15,9 @@ AccServiceForm::AccServiceForm(QWidget *parent) : registerBinding(ui->salePossible); registerBinding(ui->active); QList cd ; - cd << ComboData(AccService::CAR,tr("Car")) << ComboData(AccService::TENT,tr("Tent")) << ComboData(AccService::OTHER,tr("OTHER")); + cd << ComboData(AccService::CAR,tr("Car")) + << ComboData(AccService::TENT,tr("Tent")) + << ComboData(AccService::OTHER,tr("OTHER")); registerBinding(ui->serviceType,cd); QList vt ; vt << ComboData(Enums::NONE,tr("None")) diff --git a/services/accserviceform.h b/services/accserviceform.h index 432cb22..ed7043c 100644 --- a/services/accserviceform.h +++ b/services/accserviceform.h @@ -4,7 +4,6 @@ #include #include "autoform.h" #include "data/accservice.h" -#include "services-odb.hxx" namespace Ui { class AccServiceForm; @@ -16,7 +15,7 @@ class AccServiceForm : public AutoForm public: explicit AccServiceForm(QWidget *parent = 0); - ~AccServiceForm(); + ~AccServiceForm() override; private: Ui::AccServiceForm *ui; diff --git a/services/accserviceform.ui b/services/accserviceform.ui index fa819a6..daddc97 100644 --- a/services/accserviceform.ui +++ b/services/accserviceform.ui @@ -14,6 +14,9 @@ Form + + QFormLayout::ExpandingFieldsGrow + diff --git a/services/accservicegrid.h b/services/accservicegrid.h index de08c64..15e2422 100644 --- a/services/accservicegrid.h +++ b/services/accservicegrid.h @@ -4,7 +4,6 @@ #include #include "data/accservice.h" -#include "services-odb.hxx" class AccServiceGrid : public GridForm { diff --git a/services/data/accservice.cpp b/services/data/accservice.cpp index d6c0a65..4ecde08 100644 --- a/services/data/accservice.cpp +++ b/services/data/accservice.cpp @@ -1,21 +1,37 @@ #include "accservice.h" #include +QX_REGISTER_CPP_SERVICE(AccService) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("AccService"); + t.id(&AccService::m_id, "id"); + t.data(&AccService::m_accServiceName, "accServiceName"); + t.data(&AccService::m_accServiceCode, "accServiceCode"); + t.data(&AccService::m_price, "price"); + t.data(&AccService::m_active, "active"); + t.data(&AccService::m_salePossible, "salePossible"); + t.data(&AccService::m_serviceType, "serviceType"); + t.data(&AccService::m_vatType, "vatType"); + } +} + AccService::AccService(QObject *parent) :QObject(parent) { - m_price = 0; - m_active = 1; } -int AccService::id() const + +long AccService::id() const { return m_id; } -void AccService::setId(int id) +void AccService::setId(long id) { m_id = id; } + QDecDouble AccService::price() const { return QDecDouble((double)m_price / DEC_MULTIPLE); diff --git a/services/data/accservice.h b/services/data/accservice.h index 9abac86..58b689c 100644 --- a/services/data/accservice.h +++ b/services/data/accservice.h @@ -5,42 +5,33 @@ #include #include #include - -#include - -#include - #include +#include -#if defined(SERVICES_LIBRARY) -# define SERVICESSHARED_EXPORT Q_DECL_EXPORT -#else -# define SERVICESSHARED_EXPORT Q_DECL_IMPORT -#endif +#include +#include "../services_global.h" -#pragma db object class SERVICESSHARED_EXPORT AccService : public QObject { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(AccService) Q_PROPERTY(QString accServiceName READ accServiceName WRITE setAccServiceName) Q_PROPERTY(QString accServiceCode READ accServiceCode WRITE setAccServiceCode) Q_PROPERTY(QDecDouble price READ price WRITE setPrice) Q_PROPERTY(bool active READ active WRITE setActive) Q_PROPERTY(bool salePossible READ salePossible WRITE setSalePossible) Q_PROPERTY(ServiceType serviceType READ serviceType WRITE setServiceType) - Q_ENUMS(ServiceType) Q_PROPERTY(Enums::VatType vatType READ vatType WRITE setVatType) public: - AccService(QObject *parent = 0); - - + explicit AccService(QObject *parent = nullptr); enum ServiceType { CAR,TENT,OTHER,ACCFEE }; + Q_ENUM(ServiceType) - int id() const; - void setId(int id); + long id() const; + void setId(long id); QDecDouble price() const; void setPrice(QDecDouble price); @@ -65,19 +56,19 @@ public: void setVatType(const Enums::VatType &vatType); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id{0}; QString m_accServiceName; - int m_price; - bool m_active; - bool m_salePossible; - ServiceType m_serviceType; + int m_price{0}; + bool m_active{true}; + bool m_salePossible{false}; + ServiceType m_serviceType{OTHER}; QString m_accServiceCode; - Enums::VatType m_vatType; + Enums::VatType m_vatType{Enums::NONE}; }; typedef QSharedPointer AccServicePtr; +QX_REGISTER_HPP_SERVICE(AccService, QObject, 0) + #endif // ACCSERVICE_H diff --git a/services/services.h b/services/services.h index a32e023..6ea415d 100644 --- a/services/services.h +++ b/services/services.h @@ -22,8 +22,8 @@ protected: // IPlugin interface public: - virtual QIcon pluginIcon(); - QTranslator *translator(); + QIcon pluginIcon() override; + QTranslator *translator() override; }; #endif // SERVICES_H diff --git a/services/services.pro b/services/services.pro deleted file mode 100644 index 6a93eec..0000000 --- a/services/services.pro +++ /dev/null @@ -1,43 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2016-02-04T20:14:07 -# -#------------------------------------------------- - - -QT += widgets sql - -TARGET = services -TEMPLATE = lib - -DEFINES += SERVICES_LIBRARY\ - _GLIBCXX_USE_CXX11_ABI=1 - -SOURCES += services.cpp \ - data/accservice.cpp \ - accserviceform.cpp \ - accservicestablemodel.cpp \ - accservicegrid.cpp - -HEADERS += services.h\ - services_global.h \ - data/accservice.h \ - accserviceform.h \ - accservicestablemodel.h \ - accservicegrid.h - -include(../config_plugin.pri) - -OTHER_FILES += service.json - -ODB_FILES = services/data/accservice.h -H_DIR = $$PWD/data/*.h -include(../odb.pri) - -FORMS += \ - accserviceform.ui - - -RESOURCES += \ - servicesrc.qrc -TRANSLATIONS = translations/services_cs_CZ.ts diff --git a/services/services_global.h b/services/services_global.h index f8dc350..183aa6c 100644 --- a/services/services_global.h +++ b/services/services_global.h @@ -9,4 +9,12 @@ # define SERVICESSHARED_EXPORT Q_DECL_IMPORT #endif +#ifdef SERVICES_LIBRARY +#define QX_REGISTER_HPP_SERVICE QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_SERVICE QX_REGISTER_CPP_EXPORT_DLL +#else // SERVICES_LIBRARY +#define QX_REGISTER_HPP_SERVICE QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_SERVICE QX_REGISTER_CPP_IMPORT_DLL +#endif + #endif // SERVICES_GLOBAL_H diff --git a/shop/CMakeLists.txt b/shop/CMakeLists.txt new file mode 100644 index 0000000..ec6e06b --- /dev/null +++ b/shop/CMakeLists.txt @@ -0,0 +1,93 @@ +cmake_minimum_required(VERSION 3.24) +project(shop) + +include(../3rdparty/QxOrm/QxOrm.cmake) + +set (CMAKE_LIBRARY_OUTPUT_DIRECTORY ../plugins) + +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_AUTOMOC ON) +set(CMAKE_AUTORCC ON) +set(CMAKE_AUTOUIC ON) + +find_package(Qt6 COMPONENTS + Core + Gui + Widgets + REQUIRED) + +add_library(shop SHARED + directsaleform.cpp + directsaleform.h + directsaleform.ui + directsaleitem.cpp + directsaleitem.h + eetbatchdialog.cpp + eetbatchdialog.h + eetbatchdialog.ui + favbutton.h + isellableservice.cpp + isellableservice.h + iseller.cpp + iseller.h + ishopitem.h + paydialog.cpp + paydialog.h + paydialog.ui + paydvouchersdialog.cpp + paydvouchersdialog.h + paydvouchersdialog.ui + receiptgenerator.cpp + receiptgenerator.h + receiptloadform.cpp + receiptloadform.h + receiptloadform.ui + receiptsaveform.cpp + receiptsaveform.h + receiptsaveform.ui + shop.cpp + shop.h + shop_global.h + shopform.cpp + shopform.h + shopform.ui + shopitem.cpp + shopform.h + shopoverview.cpp + shopoverview.h + shopoverview.ui + shoprc.qrc + shopservice.cpp + shopservice.h + temporaryreceiptsaveform.cpp + temporaryreceiptsaveform.h + temporaryreceiptsaveform.ui + data/favoritgroup.cpp + data/favoritgroup.h + data/favorititem.cpp + data/favorititem.h + data/shop-data.h + data/voucher.cpp + data/voucher.h + data/voucheritem.cpp + data/voucheritem.h + settings/shopsettings.cpp + settings/shopsettings.h + settings/shopsettingsform.cpp + settings/shopsettingsform.h + settings/shopsettingsform.ui ishopitem.cpp) + +target_compile_definitions(shop PRIVATE -DSHOP_LIBRARY) + +include_directories(../core ../countryregister ../addressbook) + +target_link_libraries(shop + Qt::Core + Qt::Gui + Qt::Widgets + qdecimal + decnumber + QxOrm + core + addressbook + ) \ No newline at end of file diff --git a/shop/data/favoritgroup.cpp b/shop/data/favoritgroup.cpp new file mode 100644 index 0000000..3c4d830 --- /dev/null +++ b/shop/data/favoritgroup.cpp @@ -0,0 +1,6 @@ +#include "favoritgroup.h" + +FavoritGroup::FavoritGroup() +{ + +} diff --git a/shop/data/favoritgroup.h b/shop/data/favoritgroup.h new file mode 100644 index 0000000..8b9244f --- /dev/null +++ b/shop/data/favoritgroup.h @@ -0,0 +1,11 @@ +#ifndef FAVORITGROUP_H +#define FAVORITGROUP_H + + +class FavoritGroup +{ +public: + FavoritGroup(); +}; + +#endif // FAVORITGROUP_H diff --git a/shop/data/favorititem.cpp b/shop/data/favorititem.cpp index 7c94224..77b434e 100644 --- a/shop/data/favorititem.cpp +++ b/shop/data/favorititem.cpp @@ -1,19 +1,16 @@ #include "favorititem.h" #include -FavoritItem::FavoritItem() -{ - m_id = 0; - m_vatType = Enums::NONE; - m_unitPrice = 0; -} +QX_REGISTER_CPP_SHOP(FavoritItem) + +QX_REGISTER_ALL_QT_PROPERTIES(FavoritItem, "id") -int FavoritItem::id() +long FavoritItem::id() { return m_id; } -void FavoritItem::setId(int id) +void FavoritItem::setId(long id) { m_id = id; } @@ -78,12 +75,12 @@ void FavoritItem::setFavButtonName(const QString &favButtonName) m_favButtonName = favButtonName; } -int FavoritItem::refId() const +long FavoritItem::refId() const { return m_refId; } -void FavoritItem::setRefId(int refId) +void FavoritItem::setRefId(long refId) { m_refId = refId; } diff --git a/shop/data/favorititem.h b/shop/data/favorititem.h index 02848c3..4b49372 100644 --- a/shop/data/favorititem.h +++ b/shop/data/favorititem.h @@ -1,21 +1,21 @@ #ifndef FAVORITITEM_H #define FAVORITITEM_H +#include "../ishopitem.h" + #include #include #include #include +//#include #include -#include -#include -class IShopItem; -#pragma db object -class FavoritItem : public QObject, public IShopItem +class FavoritItem : public IShopItem { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(FavoritItem) Q_PROPERTY(int id READ id WRITE setId) Q_PROPERTY(int refId READ refId WRITE setRefId) Q_PROPERTY(QString name READ name WRITE setName) @@ -26,12 +26,12 @@ class FavoritItem : public QObject, public IShopItem Q_PROPERTY(QString favButtonName READ favButtonName WRITE setFavButtonName) public: - FavoritItem(); + FavoritItem() = default; // IShopItem interface public: - int id() override; - void setId(int id); + long id() override; + void setId(long id); QString name() override; void setName(const QString &name); @@ -51,17 +51,15 @@ public: QString favButtonName() const; void setFavButtonName(const QString &favButtonName); - int refId() const; - void setRefId(int refId); + long refId() const; + void setRefId(long refId); private: - friend class odb::access; -#pragma db id auto - int m_id; - int m_refId; + long m_id{0}; + long m_refId{0}; QString m_name; - int m_unitPrice; - Enums::VatType m_vatType; + int m_unitPrice{0}; + Enums::VatType m_vatType{Enums::NONE}; QString m_pluginId; QString m_favButtonName; QString m_shortName; @@ -69,4 +67,6 @@ private: typedef QSharedPointer FavoritItemPtr; +QX_REGISTER_HPP_SHOP(FavoritItem, QObject, 0) + #endif // FAVORITITEM_H diff --git a/shop/data/voucher.cpp b/shop/data/voucher.cpp index 482972a..3588e8b 100644 --- a/shop/data/voucher.cpp +++ b/shop/data/voucher.cpp @@ -1,6 +1,47 @@ +#include #include "voucher.h" #include +QX_REGISTER_CPP_SHOP(Voucher) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("Voucher"); + t.id(&Voucher::m_id, "id"); + t.data(&Voucher::m_numSer, "numSer"); + t.data(&Voucher::m_payDateTime, "payDateTime"); + t.data(&Voucher::m_name, "name"); + t.data(&Voucher::m_description, "description"); + t.data(&Voucher::m_vatRateHigh, "vatRateHigh"); + t.data(&Voucher::m_vatRateFirstLower, "vatRateFirstLower"); + t.data(&Voucher::m_vatRateSecondLower, "vatRateSecondLower"); + t.data(&Voucher::m_priceNoVat, "priceNoVat"); + t.data(&Voucher::m_priceVatHigh, "priceVatHigh"); + t.data(&Voucher::m_priceVatFirstLower, "priceVatFirstLower"); + t.data(&Voucher::m_priceVatSecondLower, "priceVatSecondLower"); + t.data(&Voucher::m_priceWitouthVat, "priceWitouthVat"); + t.data(&Voucher::m_totalPriceVatHigh, "totalPriceVatHigh"); + t.data(&Voucher::m_totalPriceVatFirstLower, "totalPriceVatFirstLower"); + t.data(&Voucher::m_totalPriceVatSecondLower, "totalPriceVatSecondLower"); + t.data(&Voucher::m_totalPrice, "totalPrice"); + t.data(&Voucher::m_status, "status"); + t.data(&Voucher::m_eetStatus, "eetStatus"); + t.data(&Voucher::m_eetSendDateTime, "eetSendDateTime"); + t.data(&Voucher::m_eetPkp, "eetPkp"); + t.data(&Voucher::m_eetBkp, "eetBkp"); + t.data(&Voucher::m_eetFik, "eetFik"); + t.data(&Voucher::m_saveDateTime, "saveDateTime"); + t.data(&Voucher::m_createdBy, "createdBy"); + t.data(&Voucher::m_created, "created"); + t.data(&Voucher::m_updatedBy, "updatedBy"); + t.data(&Voucher::m_updated, "updated"); + + t.relationOneToMany(&Voucher::m_items, "voucher", "voucher"); + t.relationManyToOne(&Voucher::m_season, "season"); + t.relationManyToOne(&Voucher::m_contact, "contact"); + } +} + Voucher::Voucher(QObject *parent) : QObject(parent) { m_id = 0; @@ -17,6 +58,7 @@ Voucher::Voucher(QObject *parent) : QObject(parent) m_totalPriceVatSecondLower = 0; m_totalPrice = 0; m_eetStatus = EET_FOR_SEND; + m_status = NEW; } QString Voucher::name() const @@ -341,20 +383,28 @@ void Voucher::setUpdated(const QDateTime &updated) m_updated = updated; } -int Voucher::id() const +long Voucher::id() const { return m_id; } -void Voucher::setId(int id) +void Voucher::setId(long id) { m_id = id; } -VoucherSum::VoucherSum() -{ - m_totalPrice = 0; - m_count = 0; +QStringList Voucher::eagerLoad() { + return { "season", "contact" }; +} + +QX_REGISTER_CPP_SHOP(VoucherSum) + +namespace qx { + template<> void register_class(QxClass& t) { + t.setName("VoucherSum"); + t.data(&VoucherSum::m_count, "count"); + t.data(&VoucherSum::m_totalPrice, "totalPrice"); + } } QDecDouble VoucherSum::totalPrice() const @@ -362,7 +412,6 @@ QDecDouble VoucherSum::totalPrice() const return TO_DEC(m_totalPrice); } -void VoucherSum::setTotalPrice(QDecDouble totalPrice) -{ - m_totalPrice = FROM_DEC(totalPrice); +int VoucherSum::count() const { + return m_count; } diff --git a/shop/data/voucher.h b/shop/data/voucher.h index 0656cad..5794266 100644 --- a/shop/data/voucher.h +++ b/shop/data/voucher.h @@ -5,27 +5,19 @@ #include #include #include -#include -#include -#include -#include -#include +#include +#include +#include "../shop_global.h" #include "voucheritem.h" #include -#if defined(SHOP_LIBRARY) -# define SHOPSHARED_EXPORT Q_DECL_EXPORT -#else -# define SHOPSHARED_EXPORT Q_DECL_IMPORT -#endif - -#pragma db object class SHOPSHARED_EXPORT Voucher : public QObject { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(Voucher) Q_PROPERTY(QString numSer READ numSer WRITE setNumSer) Q_PROPERTY(QDateTime payDateTime READ payDateTime WRITE setPayDateTime) Q_PROPERTY(QDateTime saveDateTime READ saveDateTime WRITE setSaveDateTime) @@ -44,8 +36,6 @@ class SHOPSHARED_EXPORT Voucher : public QObject Q_PROPERTY(QString eetBkp READ eetBkp WRITE setEetBkp) Q_PROPERTY(QString eetPkp READ eetPkp WRITE setEetPkp) Q_PROPERTY(QString eetFik READ eetFik WRITE setEetFik) - Q_ENUMS(VoucherStatus) - Q_ENUMS(EetStatus) Q_PROPERTY(VoucherStatus status READ status WRITE setStatus) Q_PROPERTY(QString createdBy READ createdBy WRITE setCreatedBy) Q_PROPERTY(QString updatedBy READ updatedBy WRITE setUpdatedBy) @@ -53,7 +43,7 @@ class SHOPSHARED_EXPORT Voucher : public QObject Q_PROPERTY(QDateTime updated READ updated WRITE setUpdated) public: - explicit Voucher(QObject *parent = 0); + explicit Voucher(QObject *parent = nullptr); enum VoucherStatus { @@ -71,8 +61,11 @@ public: EET_ERROR }; - int id() const; - void setId(int id); + Q_ENUM(VoucherStatus) + Q_ENUM(EetStatus) + + long id() const; + void setId(long id); QString name() const; void setName(const QString &name); @@ -172,13 +165,10 @@ public: QDateTime updated() const; void setUpdated(const QDateTime &updated); -#pragma db load(lazy) - odb::section m_itemsSection; + Q_INVOKABLE QStringList eagerLoad(); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id; QString m_numSer; QDateTime m_payDateTime; QDateTime m_saveDateTime; @@ -202,8 +192,7 @@ private: QString m_eetPkp; QString m_eetBkp; QString m_eetFik; -#pragma db value_not_null inverse(m_voucher) section(m_itemsSection) - QOdbList > m_items; + QList> m_items; VoucherStatus m_status; SeasonPtr m_season; QString m_createdBy; @@ -214,18 +203,22 @@ private: typedef QSharedPointer VoucherPtr; -#pragma db view object(Voucher) -struct VoucherSum +QX_REGISTER_HPP_SHOP(Voucher, QObject, 0) + +class VoucherSum { - VoucherSum(); + QX_REGISTER_FRIEND_CLASS(VoucherSum) +public: + VoucherSum() = default; QDecDouble totalPrice() const; - void setTotalPrice(QDecDouble totalPrice); - - #pragma db column("count(id)") - int m_count; - #pragma db column("sum(totalPrice)") - int m_totalPrice; + int count() const; + +private: + int m_count{0}; + int m_totalPrice{0}; }; +QX_REGISTER_HPP_SHOP(VoucherSum, qx::trait::no_base_class_defined, 0) + #endif // VOUCHER_H diff --git a/shop/data/voucheritem.cpp b/shop/data/voucheritem.cpp index 51a3f72..893b23e 100644 --- a/shop/data/voucheritem.cpp +++ b/shop/data/voucheritem.cpp @@ -1,8 +1,31 @@ +#include "voucher.h" #include "voucheritem.h" #include +QX_REGISTER_CPP_SHOP(VoucherItem) + +namespace qx { + template<> void register_class(QxClass &t) { + t.setName("VoucherItem"); + t.id(&VoucherItem::m_id, "id"); + t.data(&VoucherItem::m_name, "name"); + t.data(&VoucherItem::m_count, "count"); + t.data(&VoucherItem::m_unitPrice, "unitPrice"); + t.data(&VoucherItem::m_vatRate, "vatRate"); + t.data(&VoucherItem::m_priceWitouthVat, "priceWitouthVat"); + t.data(&VoucherItem::m_price, "price"); + t.data(&VoucherItem::m_refId, "refId"); + t.data(&VoucherItem::m_itemPlugin, "itemPlugin"); + t.data(&VoucherItem::m_vatType, "vatType"); + t.data(&VoucherItem::m_insertDate, "insertDate"); + + t.relationManyToOne(&VoucherItem::m_voucher, "voucher"); + } +} + VoucherItem::VoucherItem(QObject *parent) : QObject(parent) { + m_id = 0; m_price = 0; m_unitPrice = 0; m_count = 0; @@ -12,12 +35,12 @@ VoucherItem::VoucherItem(QObject *parent) : QObject(parent) m_priceWitouthVat = 0; } -int VoucherItem::id() const +long VoucherItem::id() const { return m_id; } -void VoucherItem::setId(int id) +void VoucherItem::setId(long id) { m_id = id; } @@ -117,12 +140,12 @@ QDecDouble VoucherItem::vatAmount() const return TO_DEC(m_price) - TO_DEC(m_priceWitouthVat); } -QWeakPointer VoucherItem::voucher() const +QSharedPointer VoucherItem::voucher() const { return m_voucher; } -void VoucherItem::setVoucher(const QWeakPointer &voucher) +void VoucherItem::setVoucher(const QSharedPointer &voucher) { m_voucher = voucher; } diff --git a/shop/data/voucheritem.h b/shop/data/voucheritem.h index e1b0508..bf06e6c 100644 --- a/shop/data/voucheritem.h +++ b/shop/data/voucheritem.h @@ -4,27 +4,21 @@ #include #include #include -#include #include #include #include +#include "../shop_global.h" #include -#if defined(SHOP_LIBRARY) -# define SHOPSHARED_EXPORT Q_DECL_EXPORT -#else -# define SHOPSHARED_EXPORT Q_DECL_IMPORT -#endif - class Voucher; -#pragma db object class SHOPSHARED_EXPORT VoucherItem : public QObject { Q_OBJECT + QX_REGISTER_FRIEND_CLASS(VoucherItem) Q_PROPERTY(QDateTime insertDate READ insertDate WRITE setInsertDate) Q_PROPERTY(QString name READ name WRITE setName) Q_PROPERTY(int count READ count WRITE setCount NOTIFY countChanged) @@ -35,10 +29,10 @@ class SHOPSHARED_EXPORT VoucherItem : public QObject Q_PROPERTY(QDecDouble price READ price WRITE setPrice) public: - explicit VoucherItem(QObject *parent = 0); + explicit VoucherItem(QObject *parent = nullptr); - int id() const; - void setId(int id); + long id() const; + void setId(long id); QString name() const; void setName(const QString &name); @@ -69,8 +63,8 @@ public: QDecDouble vatAmount() const; - QWeakPointer voucher() const; - void setVoucher(const QWeakPointer &voucher); + QSharedPointer voucher() const; + void setVoucher(const QSharedPointer &voucher); QDateTime insertDate() const; void setInsertDate(const QDateTime &insertDate); @@ -79,9 +73,7 @@ signals: void countChanged(int oldCount); private: - friend class odb::access; -#pragma db id auto - int m_id; + long m_id; QString m_name; int m_count; int m_unitPrice; @@ -92,10 +84,11 @@ private: QDateTime m_insertDate; QString m_itemPlugin; Enums::VatType m_vatType; - #pragma db not_null - QWeakPointer m_voucher; + QSharedPointer m_voucher; }; typedef QSharedPointer VoucherItemPtr; +QX_REGISTER_HPP_SHOP(VoucherItem, QObject, 0); + #endif // VOUCHERITEM_H diff --git a/shop/directsaleitem.cpp b/shop/directsaleitem.cpp index 2b360a9..dcd7b93 100644 --- a/shop/directsaleitem.cpp +++ b/shop/directsaleitem.cpp @@ -1,12 +1,12 @@ #include "directsaleitem.h" -DirectSaleItem::DirectSaleItem(QObject *parent) : QObject(parent) +DirectSaleItem::DirectSaleItem(QObject *parent) : IShopItem(parent) { m_count = 1; m_vat = Enums::NONE; } -int DirectSaleItem::id() +long DirectSaleItem::id() { return 0; } diff --git a/shop/directsaleitem.h b/shop/directsaleitem.h index 0d3c28c..3fb7a49 100644 --- a/shop/directsaleitem.h +++ b/shop/directsaleitem.h @@ -5,7 +5,7 @@ #include #include "ishopitem.h" -class DirectSaleItem : public QObject, public IShopItem +class DirectSaleItem : public IShopItem { Q_OBJECT Q_PROPERTY(QString name READ name WRITE setName) @@ -22,7 +22,7 @@ public slots: // IShopItem interface public: - int id() override; + long id() override; QString name() override; QString shortName() override; QDecDouble unitPrice() override; diff --git a/shop/isellableservice.h b/shop/isellableservice.h index 1125009..994b9e6 100644 --- a/shop/isellableservice.h +++ b/shop/isellableservice.h @@ -12,8 +12,8 @@ class SHOPSHARED_EXPORT ISellableService public: ISellableService(); - virtual QList shopItems() = 0; - virtual ShopItemPtr shopItem(int itemId) = 0; + virtual QList shopItems() = 0; + virtual IShopItemPtr shopItem(int itemId) = 0; virtual void addedToVoucher(int itemId, int countAdded) = 0; virtual ISeller *seller() = 0; }; diff --git a/shop/ishopitem.cpp b/shop/ishopitem.cpp new file mode 100644 index 0000000..bb19601 --- /dev/null +++ b/shop/ishopitem.cpp @@ -0,0 +1,14 @@ +#include "ishopitem.h" + +QX_REGISTER_CPP_SHOP(IShopItem) + +namespace qx { + template<> + void register_class(QxClass &) { + + } +} + +IShopItem::IShopItem(QObject *parent) : QObject(parent) { + +} diff --git a/shop/ishopitem.h b/shop/ishopitem.h index 87fa264..60054d2 100644 --- a/shop/ishopitem.h +++ b/shop/ishopitem.h @@ -5,17 +5,34 @@ #include #include #include +#include +#include -class SHOPSHARED_EXPORT IShopItem +class SHOPSHARED_EXPORT IShopItem : public QObject { + Q_OBJECT + + Q_PROPERTY(QString code READ code) + Q_PROPERTY(QString name READ name) + Q_PROPERTY(QString shortName READ shortName) + Q_PROPERTY(QDecDouble unitPrice READ unitPrice) + Q_PROPERTY(Enums::VatType vatType READ vatType) public: - virtual int id() = 0; - virtual QString name() = 0; - virtual QString shortName() = 0; - virtual QDecDouble unitPrice() = 0; - virtual Enums::VatType vatType() = 0; - virtual QString pluginId() = 0; + explicit IShopItem(QObject* parent = nullptr); + ~IShopItem() override = default; + + virtual long id() { return {}; } + virtual QString name() { return {}; } + virtual QString code() { return {}; } + virtual QString shortName() { return {}; } + virtual QDecDouble unitPrice() { return {}; } + virtual Enums::VatType vatType() { return {}; } + virtual QString pluginId() { return {}; } }; +using IShopItemPtr = QSharedPointer; + +QX_REGISTER_HPP_SHOP(IShopItem, QObject, 0) + #endif // ISHOPITEM_H diff --git a/shop/paydialog.cpp b/shop/paydialog.cpp index 0cb3302..fabfd6d 100644 --- a/shop/paydialog.cpp +++ b/shop/paydialog.cpp @@ -2,8 +2,6 @@ #include "ui_paydialog.h" #include "shopservice.h" -#include "shop-odb.hxx" - PayDialog::PayDialog(QDecDouble total, QWidget *parent) : QDialog(parent), ui(new Ui::PayDialog) diff --git a/shop/paydvouchersdialog.cpp b/shop/paydvouchersdialog.cpp index a7ab8d2..6e65f3f 100644 --- a/shop/paydvouchersdialog.cpp +++ b/shop/paydvouchersdialog.cpp @@ -11,8 +11,6 @@ #include #include -#include "shop-odb.hxx" - PaydVouchersDialog::PaydVouchersDialog(QWidget *parent) : QDialog(parent), ui(new Ui::PaydVouchersDialog) @@ -56,7 +54,10 @@ PaydVouchersDialog::PaydVouchersDialog(QWidget *parent) : connect(ui->tableVouchers->selectionModel(), &QItemSelectionModel::currentRowChanged, [this, &srv](const QModelIndex ¤t, const QModelIndex &) { QSharedPointer voucher = m_voucherModel->itemFromIndex(current); - srv.loadItems(voucher); + if (voucher->items().isEmpty()) { + srv.load(voucher); + } + m_itemModel->setData(voucher->items()); ui->total->setText(QString::number(voucher->totalPrice().toDouble(), 'f', 2)); diff --git a/shop/receiptgenerator.cpp b/shop/receiptgenerator.cpp index 8a1f8be..4710292 100644 --- a/shop/receiptgenerator.cpp +++ b/shop/receiptgenerator.cpp @@ -2,7 +2,7 @@ #include #include -#include +//#include #include #ifdef _WIN32 @@ -349,6 +349,7 @@ QByteArray ReceiptGenerator::prepareString(const QString &str) strOut = strOut.replace(DIACRITIC.at(i), NON_DIACRITIC.at(i)); } - QTextCodec *codec = QTextCodec::codecForName("IBM850"); - return codec->fromUnicode(strOut); + //QTextCodec *codec = QTextCodec::codecForName("IBM850"); + //return codec->fromUnicode(strOut); + return strOut.toLatin1(); } diff --git a/shop/receiptloadform.cpp b/shop/receiptloadform.cpp index 9b9eba9..36da9c9 100644 --- a/shop/receiptloadform.cpp +++ b/shop/receiptloadform.cpp @@ -3,7 +3,6 @@ #include "receiptloadform.h" #include "ui_receiptloadform.h" #include "shopservice.h" -#include "shop-odb.hxx" ReceiptLoadForm::ReceiptLoadForm(QWidget *parent) : QDialog(parent), @@ -13,7 +12,7 @@ ReceiptLoadForm::ReceiptLoadForm(QWidget *parent) : m_voucherModel = new AutoTableModel(this); ShopService srv; - m_voucherModel->setData(srv.all(QString("status = %1").arg(QString::number(Voucher::NOT_PAID)))); + m_voucherModel->setData(srv.savedVouchers()); m_voucherModel->setTranslations(Context::instance().plugin("SHOP")->translations()); ui->tabVouchers->setModel(m_voucherModel); ui->tabVouchers->setColumnHidden(0, true); @@ -43,7 +42,10 @@ ReceiptLoadForm::ReceiptLoadForm(QWidget *parent) : connect(ui->tabVouchers->selectionModel(), &QItemSelectionModel::currentRowChanged, [this](const QModelIndex ¤t, QModelIndex){ ShopService srv; VoucherPtr voucher = m_voucherModel->itemFromIndex(current); - srv.loadItems(voucher); + if (voucher->items().isEmpty()) { + srv.load(voucher); + } + m_itemModel->setData(voucher->items()); }); } diff --git a/shop/receiptsaveform.cpp b/shop/receiptsaveform.cpp index df8586a..5376070 100644 --- a/shop/receiptsaveform.cpp +++ b/shop/receiptsaveform.cpp @@ -9,11 +9,10 @@ #include #include #include -#include +#include #include "data/voucher.h" #include "shopservice.h" -#include "shop-odb.hxx" ReceiptSaveForm::ReceiptSaveForm(QSharedPointer voucher, QWidget *parent) : QDialog(parent), @@ -54,7 +53,7 @@ ReceiptSaveForm::ReceiptSaveForm(QSharedPointer voucher, QWidget *paren m_binder.setData(voucher.data()); AddressBookService srvAdb; - m_binder.registerBinding(ui->contact, ComboData::createComboData(srvAdb.all("", "lastName, firstName"))); + m_binder.registerBinding(ui->contact, ComboData::createComboData(srvAdb.all(""/*, "lastName, firstName"*/))); m_binder.registerBinding(ui->name); m_binder.registerBinding(ui->description); m_binder.bindToUi(); diff --git a/shop/settings/shopsettingsform.cpp b/shop/settings/shopsettingsform.cpp index 33a471a..8dcf4a4 100644 --- a/shop/settings/shopsettingsform.cpp +++ b/shop/settings/shopsettingsform.cpp @@ -6,9 +6,7 @@ #include #include #include -#include "shopservice.h" -#include "shop-odb.hxx" - +#include "../shopservice.h" ShopSettingsForm::ShopSettingsForm(QWidget *parent) : FormBinder(parent), @@ -58,7 +56,7 @@ ShopSettingsForm::ShopSettingsForm(QWidget *parent) : << ComboData(Enums::SECOND_LOWER, tr("Second lower")); registerBinding(ui->defaultVat, listVatTypes); - m_itemModel = new AutoTableModel(); + m_itemModel = new AutoTableModel(this); } ShopSettingsForm::~ShopSettingsForm() @@ -99,7 +97,7 @@ void ShopSettingsForm::drawButtons() }); connect(btn, &FavButton::itemDropped, [this, btn](){ - ShopItemPtr item = m_itemModel->itemFromIndex(ui->tableItems->currentIndex()); + IShopItemPtr item = m_itemModel->itemFromIndex(ui->tableItems->currentIndex()); FavoritItemPtr favItem = QSharedPointer(new FavoritItem); favItem->setFavButtonName(btn->objectName()); favItem->setName(item->name()); diff --git a/shop/settings/shopsettingsform.h b/shop/settings/shopsettingsform.h index ca3db10..a08cef0 100644 --- a/shop/settings/shopsettingsform.h +++ b/shop/settings/shopsettingsform.h @@ -7,9 +7,9 @@ #include #include "shopsettings.h" #include -#include "shopitem.h" -#include "data/favorititem.h" -#include "favbutton.h" +#include "../shopitem.h" +#include "../data/favorititem.h" +#include "../favbutton.h" namespace Ui { class ShopSettingsForm; @@ -25,10 +25,10 @@ public: private: Ui::ShopSettingsForm *ui; - AutoTableModel *m_itemModel; - int m_favBtnRows; + AutoTableModel *m_itemModel; + /*int m_favBtnRows; int m_favBtnCols; - int m_favBtnSize; + int m_favBtnSize;*/ QMap m_btnMap; void drawButtons(); diff --git a/shop/settings/shopsettingsform.ui b/shop/settings/shopsettingsform.ui index 248d96e..b7da5d4 100644 --- a/shop/settings/shopsettingsform.ui +++ b/shop/settings/shopsettingsform.ui @@ -17,7 +17,7 @@ - 3 + 0 @@ -83,6 +83,9 @@ + + QFormLayout::ExpandingFieldsGrow + @@ -126,6 +129,9 @@ Printer + + QFormLayout::ExpandingFieldsGrow + @@ -175,6 +181,9 @@ false + + QFormLayout::ExpandingFieldsGrow + @@ -284,6 +293,9 @@ Rounding + + QFormLayout::ExpandingFieldsGrow + @@ -342,6 +354,9 @@ false + + QFormLayout::ExpandingFieldsGrow + diff --git a/shop/shop.cpp b/shop/shop.cpp index ec60a41..a53d93d 100644 --- a/shop/shop.cpp +++ b/shop/shop.cpp @@ -3,7 +3,6 @@ #include "shopform.h" #include "shopservice.h" #include "settings/shopsettingsform.h" -#include "shop-odb.hxx" #include "shopoverview.h" Shop::Shop() @@ -27,9 +26,9 @@ QWidget *Shop::ui() { QWidget *uiWidget = IPlugin::ui(); - if (uiWidget == NULL) + if (uiWidget == nullptr) { - return NULL; + return nullptr; } qobject_cast(uiWidget)->setupForm(); diff --git a/shop/shop.h b/shop/shop.h index a3b061b..bea760d 100644 --- a/shop/shop.h +++ b/shop/shop.h @@ -21,11 +21,11 @@ protected: // IPlugin interface public: - virtual QIcon pluginIcon(); - virtual QWidget *ui() override; - QTranslator *translator(); - bool hasNumberSeries(); - QString numberSeriesPrefix(); + QIcon pluginIcon() override; + QWidget *ui() override; + QTranslator *translator() override; + bool hasNumberSeries() override; + QString numberSeriesPrefix() override; }; #endif // SHOP_H diff --git a/shop/shop.pro b/shop/shop.pro deleted file mode 100644 index 81fd717..0000000 --- a/shop/shop.pro +++ /dev/null @@ -1,120 +0,0 @@ -#------------------------------------------------- -# -# Project created by QtCreator 2016-04-06T20:45:20 -# -#------------------------------------------------- - -QT += widgets sql - -TARGET = shop -TEMPLATE = lib - -CONFIG += eet - -DEFINES += SHOP_LIBRARY - -SOURCES += shop.cpp \ - data/voucher.cpp \ - shopform.cpp \ - directsaleform.cpp \ - temporaryreceiptsaveform.cpp \ - receiptsaveform.cpp \ - receiptloadform.cpp \ - data/voucheritem.cpp \ - shopservice.cpp \ - directsaleitem.cpp \ - receiptgenerator.cpp \ - settings/shopsettings.cpp \ - settings/shopsettingsform.cpp \ - paydialog.cpp \ - paydvouchersdialog.cpp \ - shopitem.cpp \ - isellableservice.cpp \ - data/favorititem.cpp \ - eetbatchdialog.cpp \ - iseller.cpp \ - shopoverview.cpp - -HEADERS += shop.h\ - shop_global.h \ - data/voucher.h \ - shopform.h \ - directsaleform.h \ - temporaryreceiptsaveform.h \ - receiptsaveform.h \ - receiptloadform.h \ - ishopitem.h \ - data/voucheritem.h \ - data/shop-data.h \ - isellableservice.h \ - shopservice.h \ - directsaleitem.h \ - receiptgenerator.h \ - settings/shopsettings.h \ - settings/shopsettingsform.h \ - paydialog.h \ - paydvouchersdialog.h \ - shopitem.h \ - data/favorititem.h \ - eetbatchdialog.h \ - favbutton.h \ - iseller.h \ - shopoverview.h - -include(../config_plugin.pri) - -OTHER_FILES += shop.json - -ODB_FILES = shop/data/shop-data.h -H_DIR = $$PWD/data/*.h -ODB_OTHER_INCLUDES = -I $$PWD/../addressbook/data -I $$PWD/../countryregister/data -I $$PWD/ -include(../odb.pri) - -RESOURCES += \ - shoprc.qrc - -FORMS += \ - shopform.ui \ - directsaleform.ui \ - temporaryreceiptsaveform.ui \ - receiptsaveform.ui \ - receiptloadform.ui \ - settings/shopsettingsform.ui \ - paydialog.ui \ - paydvouchersdialog.ui \ - eetbatchdialog.ui \ - shopoverview.ui - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -laddressbook -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -laddressbook -else:unix: LIBS += -L$$OUT_PWD/../plugins/ -laddressbook - -win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lcountryregister -else:win32:CONFIG(debug, debug|release): LIBS += -L$$OUT_PWD/../plugins/ -lcountryregister - -INCLUDEPATH += $$PWD/../addressbook/data -INCLUDEPATH += $$PWD/../addressbook -INCLUDEPATH += $$PWD/ -DEPENDPATH += $$PWD/../addressbook - -INCLUDEPATH += $$PWD/../countryregister/data -INCLUDEPATH += $$PWD/../countryregister - -TRANSLATIONS = translations/shop_cs_CZ.ts - -win32 { - LIBS += -lwinspool -} - -eet { - CONFIG(debug, debug|release) { - LIBS += -L$$PWD/../../EetCpp/bin/debug -lEetCpp - } else { - LIBS += -L$$PWD/../../EetCpp/bin/release -lEetCpp - } - - DEFINES += EET -} - -INCLUDEPATH += $$PWD/../../EetCpp/libEet -DEPENDPATH += $$PWD/../../EetCpp/libEet diff --git a/shop/shop_global.h b/shop/shop_global.h index b29ff0d..25515e7 100644 --- a/shop/shop_global.h +++ b/shop/shop_global.h @@ -2,6 +2,7 @@ #define SHOP_GLOBAL_H #include +#include #if defined(SHOP_LIBRARY) # define SHOPSHARED_EXPORT Q_DECL_EXPORT @@ -9,4 +10,12 @@ # define SHOPSHARED_EXPORT Q_DECL_IMPORT #endif +#ifdef SHOP_LIBRARY +#define QX_REGISTER_HPP_SHOP QX_REGISTER_HPP_EXPORT_DLL +#define QX_REGISTER_CPP_SHOP QX_REGISTER_CPP_EXPORT_DLL +#else // SHOP_LIBRARY +#define QX_REGISTER_HPP_SHOP QX_REGISTER_HPP_IMPORT_DLL +#define QX_REGISTER_CPP_SHOP QX_REGISTER_CPP_IMPORT_DLL +#endif + #endif // SHOP_GLOBAL_H diff --git a/shop/shopform.cpp b/shop/shopform.cpp index 57d2079..35cd74d 100644 --- a/shop/shopform.cpp +++ b/shop/shopform.cpp @@ -18,9 +18,7 @@ #include "data/favorititem.h" #include "favbutton.h" -#include "shop-odb.hxx" - -void payVoucherFromUI(VoucherPtr voucher, PayDialog *dialog, ShopForm *form) +void payVoucherFromUI(const VoucherPtr& voucher, PayDialog *dialog, ShopForm *form) { ShopService srv; srv.pay(voucher); @@ -43,11 +41,11 @@ void payVoucherFromUI(VoucherPtr voucher, PayDialog *dialog, ShopForm *form) errMsg += QObject::tr("Switch to offline?"); - if (srv.isEetOnline() && QMessageBox::question(NULL, QObject::tr("EET error"), errMsg) == QMessageBox::Yes) + if (srv.isEetOnline() && QMessageBox::question(nullptr, QObject::tr("EET error"), errMsg) == QMessageBox::Yes) { srv.setEetOnline(false); - if (form != NULL) + if (form != nullptr) { form->setEetStatusText(srv.isEetOnline() ? QObject::tr("Online") : QObject::tr("Offline")); } @@ -65,8 +63,8 @@ ShopForm::ShopForm(QWidget *parent) : ui(new Ui::ShopForm) { ui->setupUi(this); - m_itemsModel = NULL; - m_commodityModel = NULL; + m_itemsModel = nullptr; + m_commodityModel = nullptr; m_itemFound = false; ui->temporarySaveButton->setEnabled(false); @@ -89,7 +87,7 @@ ShopForm::~ShopForm() void ShopForm::loadLast() { - if (m_itemsModel == NULL) + if (m_itemsModel == nullptr) { m_itemsModel = new AutoTableModel(this); m_itemsModel->setEditableCols(QList() << 2); @@ -118,7 +116,7 @@ void ShopForm::loadLast() if (!receipt.isEmpty()) { m_voucher = receipt[0]; - srv.loadItems(m_voucher); + srv.load(m_voucher); m_itemsModel->setData(m_voucher->items()); connectItemSignals(); @@ -133,9 +131,9 @@ void ShopForm::loadLast() } } - if (m_commodityModel == NULL) + if (m_commodityModel == nullptr) { - m_commodityModel = new AutoTableModel(this); + m_commodityModel = new AutoTableModel(this); m_commodityModel->setTranslations(Context::instance().plugin("SHOP")->translations()); ui->commodityTable->setModel(m_commodityModel); @@ -218,7 +216,7 @@ void ShopForm::loadButtons(const ShopSettingsPtr& settings) ui->commoditySearch->setFocus(); } -void ShopForm::fillRaceiptCombo() +void ShopForm::fillReceiptCombo() { bool oldState = ui->receiptCombo->blockSignals(true); @@ -229,7 +227,7 @@ void ShopForm::fillRaceiptCombo() ui->receiptCombo->addItem(tr("<< empty >>")); foreach (QSharedPointer voucher, receipts) { - ui->receiptCombo->addItem(voucher->name(), voucher->id()); + ui->receiptCombo->addItem(voucher->name(), (qlonglong)voucher->id()); } ui->receiptCombo->blockSignals(oldState); @@ -249,7 +247,7 @@ void ShopForm::setupForm() ui->lblCount->setVisible(settings->showCount()); loadLast(); - fillRaceiptCombo(); + fillReceiptCombo(); loadButtons(settings); } @@ -285,7 +283,7 @@ void ShopForm::on_saveButton_clicked() { m_voucher->setStatus(Voucher::NOT_PAID); m_voucher->setSaveDateTime(QDateTime::currentDateTime()); - srv.updateVoucher(m_voucher); + srv.update(m_voucher); createEmptyVoucher(); } else @@ -293,7 +291,7 @@ void ShopForm::on_saveButton_clicked() VoucherPtr selVoucher = form->selectedVoucher(); srv.moveItems(m_voucher->items(), m_voucher, selVoucher); srv.calculate(selVoucher); - srv.updateVoucher(selVoucher); + srv.update(selVoucher); createEmptyVoucher(); } @@ -365,13 +363,13 @@ void ShopForm::doTempSave(bool comboChanged) TemporaryReceiptSaveForm *form = new TemporaryReceiptSaveForm(m_voucher, this); form->setAttribute(Qt::WA_DeleteOnClose); - connect(form, &QDialog::accepted, [this, form, comboChanged](){ + connect(form, &QDialog::accepted, [this, comboChanged](){ ShopService srv; if (!m_voucher->items().isEmpty()) { m_voucher->setStatus(Voucher::TEMPORARY); - srv.updateVoucher(m_voucher); + srv.update(m_voucher); } if (comboChanged && ui->receiptCombo->currentIndex() > 0) @@ -383,7 +381,7 @@ void ShopForm::doTempSave(bool comboChanged) createEmptyVoucher(); } - fillRaceiptCombo(); + fillReceiptCombo(); m_itemsModel->setData(m_voucher->items()); }); @@ -396,10 +394,13 @@ void ShopForm::changeReceipt() ShopService srv; m_voucher = srv.loadById(ui->receiptCombo->currentData().toInt()); - srv.loadItems(m_voucher); + if (m_voucher->items().isEmpty()) { + srv.load(m_voucher); + } + connectItemSignals(); m_voucher->setStatus(Voucher::NEW); - srv.updateVoucher(m_voucher); + srv.update(m_voucher); m_itemsModel->setData(m_voucher->items()); //ui->total->setText(m_voucher->totalPrice().toString()); @@ -409,7 +410,7 @@ void ShopForm::changeReceipt() ui->saveButton->setEnabled(true); ui->payButton->setEnabled(true); - fillRaceiptCombo(); + fillReceiptCombo(); } void ShopForm::connectItemSignals() @@ -430,7 +431,7 @@ void ShopForm::createEmptyVoucher() ui->payButton->setEnabled(false); } -void ShopForm::addItem(QSharedPointer item, int count) +void ShopForm::addItem(const QSharedPointer& item, int count) { if (m_voucher.isNull()) { @@ -517,7 +518,7 @@ void ShopForm::recalculate() } else { - srv.updateVoucher(m_voucher); + srv.update(m_voucher); } } @@ -558,7 +559,7 @@ void ShopForm::on_payButton_clicked() } -void ShopForm::on_showPaiedButton_clicked() +void ShopForm::on_showPaidButton_clicked() { PaydVouchersDialog *dialog = new PaydVouchersDialog(this); dialog->setAttribute(Qt::WA_DeleteOnClose); @@ -567,7 +568,7 @@ void ShopForm::on_showPaiedButton_clicked() void ShopForm::on_btnAddItem_clicked() { - ShopItemPtr item = m_commodityModel->itemFromIndex(ui->commodityTable->currentIndex()); + IShopItemPtr item = m_commodityModel->itemFromIndex(ui->commodityTable->currentIndex()); addItem(item, ui->spnCount->value()); } @@ -631,7 +632,7 @@ void ShopForm::on_commoditySearch_returnPressed() { if (m_itemFound) { - ShopItemPtr item = m_commodityModel->itemFromIndex(ui->commodityTable->currentIndex()); + IShopItemPtr item = m_commodityModel->itemFromIndex(ui->commodityTable->currentIndex()); addItem(item, ui->spnCount->value()); } ui->commoditySearch->clear(); @@ -639,7 +640,7 @@ void ShopForm::on_commoditySearch_returnPressed() void ShopForm::on_actionDelete_items_triggered() { - if (QMessageBox::question(this, tr("Delete items"), tr("Realy delete selected voucher items?")) == QMessageBox::Yes) { + if (QMessageBox::question(this, tr("Delete items"), tr("Really delete selected voucher items?")) == QMessageBox::Yes) { QList forDelete; for (const auto& row : ui->actualReceipt->selectionModel()->selectedIndexes()) { diff --git a/shop/shopform.h b/shop/shopform.h index cc35bab..61abdc3 100644 --- a/shop/shopform.h +++ b/shop/shopform.h @@ -42,7 +42,7 @@ private slots: void on_payButton_clicked(); - void on_showPaiedButton_clicked(); + void on_showPaidButton_clicked(); void on_btnAddItem_clicked(); @@ -61,19 +61,19 @@ private: Ui::ShopForm *ui; QSharedPointer m_voucher; AutoTableModel *m_itemsModel; - AutoTableModel *m_commodityModel; + AutoTableModel *m_commodityModel; bool m_itemFound; QScopedPointer m_itemCtxMenu; void loadLast(); void loadButtons(const ShopSettingsPtr& settings); - void fillRaceiptCombo(); + void fillReceiptCombo(); void createVoucher(); void doTempSave(bool comboChanged); void changeReceipt(); void connectItemSignals(); void createEmptyVoucher(); - void addItem(QSharedPointer item, int count); + void addItem(const QSharedPointer& item, int count); void setTotalText(); void recalculate(); void updateItemCount(VoucherItem *item, int oldCount); diff --git a/shop/shopform.ui b/shop/shopform.ui index 2b0dc8e..a87b397 100644 --- a/shop/shopform.ui +++ b/shop/shopform.ui @@ -6,7 +6,7 @@ 0 0 - 990 + 1010 643 @@ -124,7 +124,7 @@ - Direct Sale + Direct Sell @@ -242,7 +242,6 @@ - 75 true @@ -294,7 +293,6 @@ - 75 true @@ -323,7 +321,6 @@ - 75 true @@ -349,7 +346,6 @@ - 75 true @@ -420,7 +416,6 @@ - 75 true @@ -453,7 +448,6 @@ 12 - 75 true @@ -470,7 +464,6 @@ 12 - 75 true @@ -555,7 +548,7 @@ - + 10 diff --git a/shop/shopitem.cpp b/shop/shopitem.cpp index 541aaac..e625968 100644 --- a/shop/shopitem.cpp +++ b/shop/shopitem.cpp @@ -1,6 +1,6 @@ #include "shopitem.h" -ShopItem::ShopItem(QObject *parent) : QObject(parent) +ShopItem::ShopItem(QObject *parent) : IShopItem(parent) { } diff --git a/shop/shopitem.h b/shop/shopitem.h index 97c5ecc..ebd183c 100644 --- a/shop/shopitem.h +++ b/shop/shopitem.h @@ -6,7 +6,7 @@ #include "shop_global.h" #include "ishopitem.h" -class SHOPSHARED_EXPORT ShopItem : public QObject, public IShopItem +class SHOPSHARED_EXPORT ShopItem : public IShopItem { Q_OBJECT @@ -17,7 +17,7 @@ class SHOPSHARED_EXPORT ShopItem : public QObject, public IShopItem Q_PROPERTY(Enums::VatType vatType READ vatType) public: - explicit ShopItem(QObject *parent = 0); + explicit ShopItem(QObject *parent = nullptr); signals: @@ -25,13 +25,13 @@ public slots: // IShopItem interface public: - virtual int id() override { return 0; } - virtual QString code() { return ""; } - virtual QString name() override { return ""; } - virtual QString shortName() override { return ""; } - virtual QDecDouble unitPrice() override { return QDecDouble(); } - virtual Enums::VatType vatType() override { return Enums::NONE; } - virtual QString pluginId() override { return ""; } + long id() override { return 0; } + QString code() override { return ""; } + QString name() override { return ""; } + QString shortName() override { return ""; } + QDecDouble unitPrice() override { return {}; } + Enums::VatType vatType() override { return Enums::NONE; } + QString pluginId() override { return ""; } }; typedef QSharedPointer ShopItemPtr; diff --git a/shop/shopoverview.cpp b/shop/shopoverview.cpp index fadf141..f980bef 100644 --- a/shop/shopoverview.cpp +++ b/shop/shopoverview.cpp @@ -1,6 +1,5 @@ #include "shopoverview.h" #include "ui_shopoverview.h" -#include "shop-odb.hxx" #include "shopservice.h" ShopOverview::ShopOverview(QWidget *parent) : @@ -22,7 +21,7 @@ void ShopOverview::refresh() VoucherSum unpaid = srv.unpaidSummary(); VoucherSum unsend = srv.unsendEET(); - ui->labelUnapiedCount->setText(QString::number(unpaid.m_count)); + ui->labelUnapiedCount->setText(QString::number(unpaid.count())); ui->labelUnpaiedAmount->setText(QString::number(unpaid.totalPrice().toDouble())); - ui->labelUnsendEET->setText(QString::number(unsend.m_count)); + ui->labelUnsendEET->setText(QString::number(unsend.count())); } diff --git a/shop/shopservice.cpp b/shop/shopservice.cpp index 4a06f99..39b90ed 100644 --- a/shop/shopservice.cpp +++ b/shop/shopservice.cpp @@ -1,23 +1,20 @@ #include "shopservice.h" #include "numberseriesservice.h" #include "isellableservice.h" -#include "shop-odb.hxx" #include "settings/shopsettings.h" +#ifdef EET #include +#endif #include #include -#include +#include #ifdef _WIN32 inline double round(double value) { return value < 0 ? -std::floor(0.5 - value) : std::floor(0.5 + value); } #endif -ShopService::ShopService() -{ -} - VoucherPtr ShopService::createVoucher() { QSharedPointer voucher(new Voucher); @@ -41,6 +38,7 @@ void ShopService::addShopItem(VoucherPtr voucher, QSharedPointer item vItem->setItemPlugin(item->pluginId()); vItem->setVatType(item->vatType()); vItem->setInsertDate(QDateTime::currentDateTime()); + vItem->setVoucher(voucher); voucher->addItem(vItem); @@ -62,6 +60,10 @@ void ShopService::calculate(VoucherPtr voucher) loadSettings(); + if (voucher->items().isEmpty()) { + load(voucher); + } + foreach (QSharedPointer item, voucher->items()) { if (item->refId() == ROUNDING_ITEM) @@ -159,34 +161,27 @@ void ShopService::calculateItem(VoucherItemPtr item) } } -void ShopService::loadItems(VoucherPtr voucher) -{ - Service srv; - voucher->setItems(srv.all(QString("voucher = %1").arg(voucher->id()))); -} - void ShopService::pay(VoucherPtr voucher) { - Transaction tx; NumberSeriesService srvNs; - voucher->setNumSer(srvNs.nextStrForPlugin("SHOP")); + qx::QxSession session; + + voucher->setNumSer(srvNs.nextStrForPlugin("SHOP", &session)); voucher->setStatus(Voucher::PAID); voucher->setEetStatus(Voucher::EET_FOR_SEND); voucher->setPayDateTime(QDateTime::currentDateTime()); - this->update(voucher); - - tx.commit(); + this->update(voucher, &session); } void ShopService::updateRelatedItem(VoucherItem* item, int countAdded) { IPlugin *plugin = Context::instance().plugin(item->itemPlugin()); - IService *srv = (plugin != NULL ? plugin->service() : NULL); + IService *srv = (plugin != nullptr ? plugin->service() : nullptr); ISellableService *selSrv = dynamic_cast(srv); - if (selSrv != NULL) + if (selSrv != nullptr) { selSrv->addedToVoucher(item->refId(), countAdded); } @@ -359,39 +354,41 @@ VoucherItemPtr ShopService::roundingItem(VoucherPtr voucher) } } - return VoucherItemPtr(); + return {}; } void ShopService::moveItems(QList items, VoucherPtr source, VoucherPtr target) { - Transaction tx; + if (source->items().isEmpty()) { + load(source); + } - if (target->status() == Voucher::NEW && target->id() == 0) - { - this->saveVoucher(target); + if (target->items().isEmpty()) { + load(target); } - odb::database *db = Context::instance().db(); + qx::QxSession session; - foreach (VoucherItemPtr item, items) { - QString sql = QString("update VoucherItem set voucher = %1 where id = %2").arg(QString::number(target->id()), QString::number(item->id())); - db->execute(sql.toStdString()); + if (target->status() == Voucher::NEW && target->id() == 0) + { + this->saveVoucher(target, &session); } - loadItems(source); - loadItems(target); + for (const auto& it : items) { + target->addItem(it); + source->removeItem(it); + it->setVoucher(target); + } if (source->items().isEmpty()) { - erase(source); + erase(source, &session); } else { calculate(source); - update(source); + update(source, &session); } - - tx.commit(); } QList ShopService::savedVouchers() @@ -418,14 +415,14 @@ QList ShopService::vouchersForEet() .arg(QString::number(Voucher::PAID), QString::number(Voucher::EET_SENT), QString::number(Voucher::EET_NOT_ENTERING))); } -QList ShopService::allSellableItems() +QList ShopService::allSellableItems() { - QList > items; + QList > items; foreach (IPlugin *plugin, Context::instance().plugins()) { IService *srv = plugin->service(); ISellableService *selSrv = dynamic_cast(srv); - if (selSrv != NULL) + if (selSrv != nullptr) { items.append(selSrv->shopItems()); } @@ -436,29 +433,17 @@ QList ShopService::allSellableItems() VoucherSum ShopService::unpaidSummary() { - Transaction tr; - - odb::database *db = Context::instance().db(); - typedef odb::query query; - - VoucherSum sum = db->query_value("status = " + query::_ref((int)Voucher::NOT_PAID)); + VoucherSum sum; //= db->query_value("status = " + query::_ref((int)Voucher::NOT_PAID)); - tr.commit(); return sum; } VoucherSum ShopService::unsendEET() { - Transaction tr; + VoucherSum sum; //= db->query_value("(eetStatus = " + query::_ref((int)Voucher::EET_FOR_SEND) + //+ " OR eetStatus = " + query::_ref((int)Voucher::EET_ERROR) + //+ ") AND status = " + query::_ref((int)Voucher::PAID)); - odb::database *db = Context::instance().db(); - typedef odb::query query; - - VoucherSum sum = db->query_value("(eetStatus = " + query::_ref((int)Voucher::EET_FOR_SEND) - + " OR eetStatus = " + query::_ref((int)Voucher::EET_ERROR) - + ") AND status = " + query::_ref((int)Voucher::PAID)); - - tr.commit(); return sum; } @@ -506,53 +491,13 @@ QDecDouble ShopService::vatRate(Enums::VatType vatType) return vatRate; } -void ShopService::saveVoucher(VoucherPtr entity) +void ShopService::saveVoucher(VoucherPtr entity, qx::QxSession* pSession/* = nullptr*/) { SeasonService seasonSrv; SeasonPtr season = seasonSrv.active(); entity->setSeason(season); - Transaction tr; - odb::database *db = Context::instance().db(); - addDateAndUser(entity, true); - - db->persist(entity); - - foreach (QSharedPointer item, entity->items()) { - item->setVoucher(entity.toWeakRef()); - db->persist(item); - } - - tr.commit(); -} - -void ShopService::updateVoucher(VoucherPtr entity) -{ - Transaction tr; - odb::database *db = Context::instance().db(); - - db->execute(QString("DELETE FROM VoucherItem WHERE voucher = %1").arg(entity->id()).toStdString()); - - foreach (QSharedPointer item, entity->items()) { - item->setVoucher(entity.toWeakRef()); - db->persist(item); - } - - addDateAndUser(entity, false); - - db->update(entity); - - tr.commit(); + save(entity, pSession); } -void ShopService::eraseVoucher(VoucherPtr entity) -{ - Transaction tr; - odb::database *db = Context::instance().db(); - - db->execute(QString("DELETE FROM VoucherItem WHERE voucher = %1").arg(entity->id()).toStdString()); - db->erase(entity); - - tr.commit(); -} diff --git a/shop/shopservice.h b/shop/shopservice.h index 4092a26..780dfcc 100644 --- a/shop/shopservice.h +++ b/shop/shopservice.h @@ -16,18 +16,18 @@ class PayDialog; class ShopForm; -void SHOPSHARED_EXPORT payVoucherFromUI(VoucherPtr voucher, PayDialog *dialog, ShopForm *form = NULL); +void SHOPSHARED_EXPORT payVoucherFromUI(const VoucherPtr& voucher, PayDialog *dialog, ShopForm *form = nullptr); class SHOPSHARED_EXPORT ShopService : public Service { public: - ShopService(); + ShopService() = default; VoucherPtr createVoucher(); void addShopItem(VoucherPtr voucher, QSharedPointer item, int count); void calculate(VoucherPtr voucher); void calculateItem(VoucherItemPtr item); - void loadItems(VoucherPtr voucher); void pay(VoucherPtr voucher); + void saveVoucher(VoucherPtr entity, qx::QxSession* pSession = nullptr); void moveItems(QList items, VoucherPtr source, VoucherPtr target); void updateRelatedItem(VoucherItem* item, int countAdded); bool processEet(VoucherPtr voucher, QString &message); @@ -40,7 +40,7 @@ public: QList tempVouchers(); QList paiedVouchers(); QList vouchersForEet(); - QList allSellableItems(); + QList allSellableItems(); VoucherSum unpaidSummary(); VoucherSum unsendEET(); @@ -51,11 +51,6 @@ private: QSharedPointer m_gs; QDecDouble vatRate(Enums::VatType vatType); - -public: - void saveVoucher(VoucherPtr entity); - void updateVoucher(VoucherPtr entity); - void eraseVoucher(VoucherPtr entity); }; #endif // SHOPSERVICE_H